rt2x00: Add support for L2 padding during TX/RX
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blobe15086af7278e61a6143530a20319bfbfdffade0
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
33 * Radio control handlers.
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
37 int status;
40 * Don't enable the radio twice.
41 * And check if the hardware button has been disabled.
43 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
44 test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
45 return 0;
48 * Initialize all data queues.
50 rt2x00queue_init_queues(rt2x00dev);
53 * Enable radio.
55 status =
56 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
57 if (status)
58 return status;
60 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
62 rt2x00leds_led_radio(rt2x00dev, true);
63 rt2x00led_led_activity(rt2x00dev, true);
65 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
68 * Enable RX.
70 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
73 * Start the TX queues.
75 ieee80211_wake_queues(rt2x00dev->hw);
77 return 0;
80 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
82 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
83 return;
86 * Stop the TX queues in mac80211.
88 ieee80211_stop_queues(rt2x00dev->hw);
89 rt2x00queue_stop_queues(rt2x00dev);
92 * Disable RX.
94 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
97 * Disable radio.
99 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
100 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
101 rt2x00led_led_activity(rt2x00dev, false);
102 rt2x00leds_led_radio(rt2x00dev, false);
105 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
108 * When we are disabling the RX, we should also stop the link tuner.
110 if (state == STATE_RADIO_RX_OFF)
111 rt2x00link_stop_tuner(rt2x00dev);
113 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
116 * When we are enabling the RX, we should also start the link tuner.
118 if (state == STATE_RADIO_RX_ON)
119 rt2x00link_start_tuner(rt2x00dev);
122 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
124 struct rt2x00_dev *rt2x00dev =
125 container_of(work, struct rt2x00_dev, filter_work);
127 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
130 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
131 struct ieee80211_vif *vif)
133 struct rt2x00_dev *rt2x00dev = data;
134 struct rt2x00_intf *intf = vif_to_intf(vif);
135 struct ieee80211_bss_conf conf;
136 int delayed_flags;
139 * Copy all data we need during this action under the protection
140 * of a spinlock. Otherwise race conditions might occur which results
141 * into an invalid configuration.
143 spin_lock(&intf->lock);
145 memcpy(&conf, &vif->bss_conf, sizeof(conf));
146 delayed_flags = intf->delayed_flags;
147 intf->delayed_flags = 0;
149 spin_unlock(&intf->lock);
152 * It is possible the radio was disabled while the work had been
153 * scheduled. If that happens we should return here immediately,
154 * note that in the spinlock protected area above the delayed_flags
155 * have been cleared correctly.
157 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
158 return;
160 if (delayed_flags & DELAYED_UPDATE_BEACON)
161 rt2x00queue_update_beacon(rt2x00dev, vif, true);
163 if (delayed_flags & DELAYED_CONFIG_ERP)
164 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
166 if (delayed_flags & DELAYED_LED_ASSOC)
167 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
170 static void rt2x00lib_intf_scheduled(struct work_struct *work)
172 struct rt2x00_dev *rt2x00dev =
173 container_of(work, struct rt2x00_dev, intf_work);
176 * Iterate over each interface and perform the
177 * requested configurations.
179 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
180 rt2x00lib_intf_scheduled_iter,
181 rt2x00dev);
185 * Interrupt context handlers.
187 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
188 struct ieee80211_vif *vif)
190 struct rt2x00_dev *rt2x00dev = data;
191 struct rt2x00_intf *intf = vif_to_intf(vif);
193 if (vif->type != NL80211_IFTYPE_AP &&
194 vif->type != NL80211_IFTYPE_ADHOC &&
195 vif->type != NL80211_IFTYPE_MESH_POINT &&
196 vif->type != NL80211_IFTYPE_WDS)
197 return;
200 * Clean up the beacon skb.
202 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
203 intf->beacon->skb = NULL;
205 spin_lock(&intf->lock);
206 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
207 spin_unlock(&intf->lock);
210 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
212 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
213 return;
215 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
216 rt2x00lib_beacondone_iter,
217 rt2x00dev);
219 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
221 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
223 void rt2x00lib_txdone(struct queue_entry *entry,
224 struct txdone_entry_desc *txdesc)
226 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
227 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
228 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
229 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
230 unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
231 u8 rate_idx, rate_flags;
234 * Unmap the skb.
236 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
239 * Remove L2 padding which was added during
241 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
242 rt2x00queue_payload_align(entry->skb, true, header_length);
245 * If the IV/EIV data was stripped from the frame before it was
246 * passed to the hardware, we should now reinsert it again because
247 * mac80211 will expect the the same data to be present it the
248 * frame as it was passed to us.
250 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
251 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
254 * Send frame to debugfs immediately, after this call is completed
255 * we are going to overwrite the skb->cb array.
257 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
260 * Update TX statistics.
262 rt2x00dev->link.qual.tx_success +=
263 test_bit(TXDONE_SUCCESS, &txdesc->flags);
264 rt2x00dev->link.qual.tx_failed +=
265 test_bit(TXDONE_FAILURE, &txdesc->flags);
267 rate_idx = skbdesc->tx_rate_idx;
268 rate_flags = skbdesc->tx_rate_flags;
271 * Initialize TX status
273 memset(&tx_info->status, 0, sizeof(tx_info->status));
274 tx_info->status.ack_signal = 0;
275 tx_info->status.rates[0].idx = rate_idx;
276 tx_info->status.rates[0].flags = rate_flags;
277 tx_info->status.rates[0].count = txdesc->retry + 1;
278 tx_info->status.rates[1].idx = -1; /* terminate */
280 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
281 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
282 tx_info->flags |= IEEE80211_TX_STAT_ACK;
283 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
284 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
287 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
288 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
289 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
290 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
291 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
295 * Only send the status report to mac80211 when TX status was
296 * requested by it. If this was a extra frame coming through
297 * a mac80211 library call (RTS/CTS) then we should not send the
298 * status report back.
300 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
301 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
302 else
303 dev_kfree_skb_irq(entry->skb);
306 * Make this entry available for reuse.
308 entry->skb = NULL;
309 entry->flags = 0;
311 rt2x00dev->ops->lib->clear_entry(entry);
313 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
314 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
317 * If the data queue was below the threshold before the txdone
318 * handler we must make sure the packet queue in the mac80211 stack
319 * is reenabled when the txdone handler has finished.
321 if (!rt2x00queue_threshold(entry->queue))
322 ieee80211_wake_queue(rt2x00dev->hw, qid);
324 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
326 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
327 struct queue_entry *entry)
329 struct rxdone_entry_desc rxdesc;
330 struct sk_buff *skb;
331 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
332 struct ieee80211_supported_band *sband;
333 const struct rt2x00_rate *rate;
334 unsigned int header_length;
335 bool l2pad;
336 unsigned int i;
337 int idx = -1;
340 * Allocate a new sk_buffer. If no new buffer available, drop the
341 * received frame and reuse the existing buffer.
343 skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
344 if (!skb)
345 return;
348 * Unmap the skb.
350 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
353 * Extract the RXD details.
355 memset(&rxdesc, 0, sizeof(rxdesc));
356 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
358 /* Trim buffer to correct size */
359 skb_trim(entry->skb, rxdesc.size);
362 * The data behind the ieee80211 header must be
363 * aligned on a 4 byte boundary.
365 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
366 l2pad = !!(rxdesc.dev_flags & RXDONE_L2PAD);
369 * Hardware might have stripped the IV/EIV/ICV data,
370 * in that case it is possible that the data was
371 * provided seperately (through hardware descriptor)
372 * in which case we should reinsert the data into the frame.
374 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
375 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
376 rt2x00crypto_rx_insert_iv(entry->skb, l2pad, header_length,
377 &rxdesc);
378 else
379 rt2x00queue_payload_align(entry->skb, l2pad, header_length);
382 * Update RX statistics.
384 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
385 for (i = 0; i < sband->n_bitrates; i++) {
386 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
388 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
389 (rate->plcp == rxdesc.signal)) ||
390 ((rxdesc.dev_flags & RXDONE_SIGNAL_BITRATE) &&
391 (rate->bitrate == rxdesc.signal))) {
392 idx = i;
393 break;
397 if (idx < 0) {
398 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
399 "signal=0x%.2x, type=%d.\n", rxdesc.signal,
400 (rxdesc.dev_flags & RXDONE_SIGNAL_MASK));
401 idx = 0;
405 * Update extra components
407 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
408 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
410 rx_status->mactime = rxdesc.timestamp;
411 rx_status->rate_idx = idx;
412 rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
413 rx_status->signal = rxdesc.rssi;
414 rx_status->noise = rxdesc.noise;
415 rx_status->flag = rxdesc.flags;
416 rx_status->antenna = rt2x00dev->link.ant.active.rx;
419 * Send frame to mac80211 & debugfs.
420 * mac80211 will clean up the skb structure.
422 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
423 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
426 * Replace the skb with the freshly allocated one.
428 entry->skb = skb;
429 entry->flags = 0;
431 rt2x00dev->ops->lib->clear_entry(entry);
433 rt2x00queue_index_inc(entry->queue, Q_INDEX);
435 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
438 * Driver initialization handlers.
440 const struct rt2x00_rate rt2x00_supported_rates[12] = {
442 .flags = DEV_RATE_CCK,
443 .bitrate = 10,
444 .ratemask = BIT(0),
445 .plcp = 0x00,
448 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
449 .bitrate = 20,
450 .ratemask = BIT(1),
451 .plcp = 0x01,
454 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
455 .bitrate = 55,
456 .ratemask = BIT(2),
457 .plcp = 0x02,
460 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
461 .bitrate = 110,
462 .ratemask = BIT(3),
463 .plcp = 0x03,
466 .flags = DEV_RATE_OFDM,
467 .bitrate = 60,
468 .ratemask = BIT(4),
469 .plcp = 0x0b,
472 .flags = DEV_RATE_OFDM,
473 .bitrate = 90,
474 .ratemask = BIT(5),
475 .plcp = 0x0f,
478 .flags = DEV_RATE_OFDM,
479 .bitrate = 120,
480 .ratemask = BIT(6),
481 .plcp = 0x0a,
484 .flags = DEV_RATE_OFDM,
485 .bitrate = 180,
486 .ratemask = BIT(7),
487 .plcp = 0x0e,
490 .flags = DEV_RATE_OFDM,
491 .bitrate = 240,
492 .ratemask = BIT(8),
493 .plcp = 0x09,
496 .flags = DEV_RATE_OFDM,
497 .bitrate = 360,
498 .ratemask = BIT(9),
499 .plcp = 0x0d,
502 .flags = DEV_RATE_OFDM,
503 .bitrate = 480,
504 .ratemask = BIT(10),
505 .plcp = 0x08,
508 .flags = DEV_RATE_OFDM,
509 .bitrate = 540,
510 .ratemask = BIT(11),
511 .plcp = 0x0c,
515 static void rt2x00lib_channel(struct ieee80211_channel *entry,
516 const int channel, const int tx_power,
517 const int value)
519 entry->center_freq = ieee80211_channel_to_frequency(channel);
520 entry->hw_value = value;
521 entry->max_power = tx_power;
522 entry->max_antenna_gain = 0xff;
525 static void rt2x00lib_rate(struct ieee80211_rate *entry,
526 const u16 index, const struct rt2x00_rate *rate)
528 entry->flags = 0;
529 entry->bitrate = rate->bitrate;
530 entry->hw_value =index;
531 entry->hw_value_short = index;
533 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
534 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
537 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
538 struct hw_mode_spec *spec)
540 struct ieee80211_hw *hw = rt2x00dev->hw;
541 struct ieee80211_channel *channels;
542 struct ieee80211_rate *rates;
543 unsigned int num_rates;
544 unsigned int i;
546 num_rates = 0;
547 if (spec->supported_rates & SUPPORT_RATE_CCK)
548 num_rates += 4;
549 if (spec->supported_rates & SUPPORT_RATE_OFDM)
550 num_rates += 8;
552 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
553 if (!channels)
554 return -ENOMEM;
556 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
557 if (!rates)
558 goto exit_free_channels;
561 * Initialize Rate list.
563 for (i = 0; i < num_rates; i++)
564 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
567 * Initialize Channel list.
569 for (i = 0; i < spec->num_channels; i++) {
570 rt2x00lib_channel(&channels[i],
571 spec->channels[i].channel,
572 spec->channels_info[i].tx_power1, i);
576 * Intitialize 802.11b, 802.11g
577 * Rates: CCK, OFDM.
578 * Channels: 2.4 GHz
580 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
581 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
582 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
583 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
584 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
585 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
586 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
590 * Intitialize 802.11a
591 * Rates: OFDM.
592 * Channels: OFDM, UNII, HiperLAN2.
594 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
595 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
596 spec->num_channels - 14;
597 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
598 num_rates - 4;
599 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
600 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
601 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
602 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
605 return 0;
607 exit_free_channels:
608 kfree(channels);
609 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
610 return -ENOMEM;
613 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
615 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
616 ieee80211_unregister_hw(rt2x00dev->hw);
618 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
619 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
620 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
621 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
622 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
625 kfree(rt2x00dev->spec.channels_info);
628 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
630 struct hw_mode_spec *spec = &rt2x00dev->spec;
631 int status;
633 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
634 return 0;
637 * Initialize HW modes.
639 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
640 if (status)
641 return status;
644 * Initialize HW fields.
646 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
649 * Register HW.
651 status = ieee80211_register_hw(rt2x00dev->hw);
652 if (status)
653 return status;
655 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
657 return 0;
661 * Initialization/uninitialization handlers.
663 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
665 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
666 return;
669 * Unregister extra components.
671 rt2x00rfkill_unregister(rt2x00dev);
674 * Allow the HW to uninitialize.
676 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
679 * Free allocated queue entries.
681 rt2x00queue_uninitialize(rt2x00dev);
684 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
686 int status;
688 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
689 return 0;
692 * Allocate all queue entries.
694 status = rt2x00queue_initialize(rt2x00dev);
695 if (status)
696 return status;
699 * Initialize the device.
701 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
702 if (status) {
703 rt2x00queue_uninitialize(rt2x00dev);
704 return status;
707 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
710 * Register the extra components.
712 rt2x00rfkill_register(rt2x00dev);
714 return 0;
717 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
719 int retval;
721 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
722 return 0;
725 * If this is the first interface which is added,
726 * we should load the firmware now.
728 retval = rt2x00lib_load_firmware(rt2x00dev);
729 if (retval)
730 return retval;
733 * Initialize the device.
735 retval = rt2x00lib_initialize(rt2x00dev);
736 if (retval)
737 return retval;
739 rt2x00dev->intf_ap_count = 0;
740 rt2x00dev->intf_sta_count = 0;
741 rt2x00dev->intf_associated = 0;
743 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
745 return 0;
748 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
750 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
751 return;
754 * Perhaps we can add something smarter here,
755 * but for now just disabling the radio should do.
757 rt2x00lib_disable_radio(rt2x00dev);
759 rt2x00dev->intf_ap_count = 0;
760 rt2x00dev->intf_sta_count = 0;
761 rt2x00dev->intf_associated = 0;
765 * driver allocation handlers.
767 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
769 int retval = -ENOMEM;
771 mutex_init(&rt2x00dev->csr_mutex);
774 * Make room for rt2x00_intf inside the per-interface
775 * structure ieee80211_vif.
777 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
780 * Determine which operating modes are supported, all modes
781 * which require beaconing, depend on the availability of
782 * beacon entries.
784 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
785 if (rt2x00dev->ops->bcn->entry_num > 0)
786 rt2x00dev->hw->wiphy->interface_modes |=
787 BIT(NL80211_IFTYPE_ADHOC) |
788 BIT(NL80211_IFTYPE_AP) |
789 BIT(NL80211_IFTYPE_MESH_POINT) |
790 BIT(NL80211_IFTYPE_WDS);
793 * Let the driver probe the device to detect the capabilities.
795 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
796 if (retval) {
797 ERROR(rt2x00dev, "Failed to allocate device.\n");
798 goto exit;
802 * Initialize configuration work.
804 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
805 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
808 * Allocate queue array.
810 retval = rt2x00queue_allocate(rt2x00dev);
811 if (retval)
812 goto exit;
815 * Initialize ieee80211 structure.
817 retval = rt2x00lib_probe_hw(rt2x00dev);
818 if (retval) {
819 ERROR(rt2x00dev, "Failed to initialize hw.\n");
820 goto exit;
824 * Register extra components.
826 rt2x00link_register(rt2x00dev);
827 rt2x00leds_register(rt2x00dev);
828 rt2x00rfkill_allocate(rt2x00dev);
829 rt2x00debug_register(rt2x00dev);
831 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
833 return 0;
835 exit:
836 rt2x00lib_remove_dev(rt2x00dev);
838 return retval;
840 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
842 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
844 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
847 * Disable radio.
849 rt2x00lib_disable_radio(rt2x00dev);
852 * Uninitialize device.
854 rt2x00lib_uninitialize(rt2x00dev);
857 * Free extra components
859 rt2x00debug_deregister(rt2x00dev);
860 rt2x00rfkill_free(rt2x00dev);
861 rt2x00leds_unregister(rt2x00dev);
864 * Free ieee80211_hw memory.
866 rt2x00lib_remove_hw(rt2x00dev);
869 * Free firmware image.
871 rt2x00lib_free_firmware(rt2x00dev);
874 * Free queue structures.
876 rt2x00queue_free(rt2x00dev);
878 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
881 * Device state handlers
883 #ifdef CONFIG_PM
884 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
886 NOTICE(rt2x00dev, "Going to sleep.\n");
889 * Prevent mac80211 from accessing driver while suspended.
891 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
892 return 0;
895 * Cleanup as much as possible.
897 rt2x00lib_uninitialize(rt2x00dev);
900 * Suspend/disable extra components.
902 rt2x00leds_suspend(rt2x00dev);
903 rt2x00debug_deregister(rt2x00dev);
906 * Set device mode to sleep for power management,
907 * on some hardware this call seems to consistently fail.
908 * From the specifications it is hard to tell why it fails,
909 * and if this is a "bad thing".
910 * Overall it is safe to just ignore the failure and
911 * continue suspending. The only downside is that the
912 * device will not be in optimal power save mode, but with
913 * the radio and the other components already disabled the
914 * device is as good as disabled.
916 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
917 WARNING(rt2x00dev, "Device failed to enter sleep state, "
918 "continue suspending.\n");
920 return 0;
922 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
924 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
926 NOTICE(rt2x00dev, "Waking up.\n");
929 * Restore/enable extra components.
931 rt2x00debug_register(rt2x00dev);
932 rt2x00leds_resume(rt2x00dev);
935 * We are ready again to receive requests from mac80211.
937 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
939 return 0;
941 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
942 #endif /* CONFIG_PM */
945 * rt2x00lib module information.
947 MODULE_AUTHOR(DRV_PROJECT);
948 MODULE_VERSION(DRV_VERSION);
949 MODULE_DESCRIPTION("rt2x00 library");
950 MODULE_LICENSE("GPL");