hfs: fix hfs_find_init() sb->ext_tree NULL ptr oops
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / time / clocksource.c
blob8f77da18feffc2005895bec92301ad428a27bfcc
1 /*
2 * linux/kernel/time/clocksource.c
4 * This file contains the functions which manage clocksource drivers.
6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * TODO WishList:
23 * o Allow clocksource drivers to be unregistered
26 #include <linux/clocksource.h>
27 #include <linux/sysdev.h>
28 #include <linux/init.h>
29 #include <linux/module.h>
30 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
31 #include <linux/tick.h>
32 #include <linux/kthread.h>
34 void timecounter_init(struct timecounter *tc,
35 const struct cyclecounter *cc,
36 u64 start_tstamp)
38 tc->cc = cc;
39 tc->cycle_last = cc->read(cc);
40 tc->nsec = start_tstamp;
42 EXPORT_SYMBOL_GPL(timecounter_init);
44 /**
45 * timecounter_read_delta - get nanoseconds since last call of this function
46 * @tc: Pointer to time counter
48 * When the underlying cycle counter runs over, this will be handled
49 * correctly as long as it does not run over more than once between
50 * calls.
52 * The first call to this function for a new time counter initializes
53 * the time tracking and returns an undefined result.
55 static u64 timecounter_read_delta(struct timecounter *tc)
57 cycle_t cycle_now, cycle_delta;
58 u64 ns_offset;
60 /* read cycle counter: */
61 cycle_now = tc->cc->read(tc->cc);
63 /* calculate the delta since the last timecounter_read_delta(): */
64 cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
66 /* convert to nanoseconds: */
67 ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
69 /* update time stamp of timecounter_read_delta() call: */
70 tc->cycle_last = cycle_now;
72 return ns_offset;
75 u64 timecounter_read(struct timecounter *tc)
77 u64 nsec;
79 /* increment time by nanoseconds since last call */
80 nsec = timecounter_read_delta(tc);
81 nsec += tc->nsec;
82 tc->nsec = nsec;
84 return nsec;
86 EXPORT_SYMBOL_GPL(timecounter_read);
88 u64 timecounter_cyc2time(struct timecounter *tc,
89 cycle_t cycle_tstamp)
91 u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
92 u64 nsec;
95 * Instead of always treating cycle_tstamp as more recent
96 * than tc->cycle_last, detect when it is too far in the
97 * future and treat it as old time stamp instead.
99 if (cycle_delta > tc->cc->mask / 2) {
100 cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
101 nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
102 } else {
103 nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
106 return nsec;
108 EXPORT_SYMBOL_GPL(timecounter_cyc2time);
111 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
112 * @mult: pointer to mult variable
113 * @shift: pointer to shift variable
114 * @from: frequency to convert from
115 * @to: frequency to convert to
116 * @maxsec: guaranteed runtime conversion range in seconds
118 * The function evaluates the shift/mult pair for the scaled math
119 * operations of clocksources and clockevents.
121 * @to and @from are frequency values in HZ. For clock sources @to is
122 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
123 * event @to is the counter frequency and @from is NSEC_PER_SEC.
125 * The @maxsec conversion range argument controls the time frame in
126 * seconds which must be covered by the runtime conversion with the
127 * calculated mult and shift factors. This guarantees that no 64bit
128 * overflow happens when the input value of the conversion is
129 * multiplied with the calculated mult factor. Larger ranges may
130 * reduce the conversion accuracy by chosing smaller mult and shift
131 * factors.
133 void
134 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
136 u64 tmp;
137 u32 sft, sftacc= 32;
140 * Calculate the shift factor which is limiting the conversion
141 * range:
143 tmp = ((u64)maxsec * from) >> 32;
144 while (tmp) {
145 tmp >>=1;
146 sftacc--;
150 * Find the conversion shift/mult pair which has the best
151 * accuracy and fits the maxsec conversion range:
153 for (sft = 32; sft > 0; sft--) {
154 tmp = (u64) to << sft;
155 tmp += from / 2;
156 do_div(tmp, from);
157 if ((tmp >> sftacc) == 0)
158 break;
160 *mult = tmp;
161 *shift = sft;
164 /*[Clocksource internal variables]---------
165 * curr_clocksource:
166 * currently selected clocksource.
167 * clocksource_list:
168 * linked list with the registered clocksources
169 * clocksource_mutex:
170 * protects manipulations to curr_clocksource and the clocksource_list
171 * override_name:
172 * Name of the user-specified clocksource.
174 static struct clocksource *curr_clocksource;
175 static LIST_HEAD(clocksource_list);
176 static DEFINE_MUTEX(clocksource_mutex);
177 static char override_name[32];
178 static int finished_booting;
180 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
181 static void clocksource_watchdog_work(struct work_struct *work);
183 static LIST_HEAD(watchdog_list);
184 static struct clocksource *watchdog;
185 static struct timer_list watchdog_timer;
186 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
187 static DEFINE_SPINLOCK(watchdog_lock);
188 static int watchdog_running;
190 static int clocksource_watchdog_kthread(void *data);
191 static void __clocksource_change_rating(struct clocksource *cs, int rating);
194 * Interval: 0.5sec Threshold: 0.0625s
196 #define WATCHDOG_INTERVAL (HZ >> 1)
197 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
199 static void clocksource_watchdog_work(struct work_struct *work)
202 * If kthread_run fails the next watchdog scan over the
203 * watchdog_list will find the unstable clock again.
205 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
208 static void __clocksource_unstable(struct clocksource *cs)
210 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
211 cs->flags |= CLOCK_SOURCE_UNSTABLE;
212 if (finished_booting)
213 schedule_work(&watchdog_work);
216 static void clocksource_unstable(struct clocksource *cs, int64_t delta)
218 printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
219 cs->name, delta);
220 __clocksource_unstable(cs);
224 * clocksource_mark_unstable - mark clocksource unstable via watchdog
225 * @cs: clocksource to be marked unstable
227 * This function is called instead of clocksource_change_rating from
228 * cpu hotplug code to avoid a deadlock between the clocksource mutex
229 * and the cpu hotplug mutex. It defers the update of the clocksource
230 * to the watchdog thread.
232 void clocksource_mark_unstable(struct clocksource *cs)
234 unsigned long flags;
236 spin_lock_irqsave(&watchdog_lock, flags);
237 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
238 if (list_empty(&cs->wd_list))
239 list_add(&cs->wd_list, &watchdog_list);
240 __clocksource_unstable(cs);
242 spin_unlock_irqrestore(&watchdog_lock, flags);
245 static void clocksource_watchdog(unsigned long data)
247 struct clocksource *cs;
248 cycle_t csnow, wdnow;
249 int64_t wd_nsec, cs_nsec;
250 int next_cpu;
252 spin_lock(&watchdog_lock);
253 if (!watchdog_running)
254 goto out;
256 list_for_each_entry(cs, &watchdog_list, wd_list) {
258 /* Clocksource already marked unstable? */
259 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
260 if (finished_booting)
261 schedule_work(&watchdog_work);
262 continue;
265 local_irq_disable();
266 csnow = cs->read(cs);
267 wdnow = watchdog->read(watchdog);
268 local_irq_enable();
270 /* Clocksource initialized ? */
271 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) {
272 cs->flags |= CLOCK_SOURCE_WATCHDOG;
273 cs->wd_last = wdnow;
274 cs->cs_last = csnow;
275 continue;
278 wd_nsec = clocksource_cyc2ns((wdnow - cs->wd_last) & watchdog->mask,
279 watchdog->mult, watchdog->shift);
281 cs_nsec = clocksource_cyc2ns((csnow - cs->cs_last) &
282 cs->mask, cs->mult, cs->shift);
283 cs->cs_last = csnow;
284 cs->wd_last = wdnow;
286 /* Check the deviation from the watchdog clocksource. */
287 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
288 clocksource_unstable(cs, cs_nsec - wd_nsec);
289 continue;
292 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
293 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
294 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
295 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
297 * We just marked the clocksource as highres-capable,
298 * notify the rest of the system as well so that we
299 * transition into high-res mode:
301 tick_clock_notify();
306 * Cycle through CPUs to check if the CPUs stay synchronized
307 * to each other.
309 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
310 if (next_cpu >= nr_cpu_ids)
311 next_cpu = cpumask_first(cpu_online_mask);
312 watchdog_timer.expires += WATCHDOG_INTERVAL;
313 add_timer_on(&watchdog_timer, next_cpu);
314 out:
315 spin_unlock(&watchdog_lock);
318 static inline void clocksource_start_watchdog(void)
320 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
321 return;
322 init_timer(&watchdog_timer);
323 watchdog_timer.function = clocksource_watchdog;
324 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
325 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
326 watchdog_running = 1;
329 static inline void clocksource_stop_watchdog(void)
331 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
332 return;
333 del_timer(&watchdog_timer);
334 watchdog_running = 0;
337 static inline void clocksource_reset_watchdog(void)
339 struct clocksource *cs;
341 list_for_each_entry(cs, &watchdog_list, wd_list)
342 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
345 static void clocksource_resume_watchdog(void)
347 unsigned long flags;
350 * We use trylock here to avoid a potential dead lock when
351 * kgdb calls this code after the kernel has been stopped with
352 * watchdog_lock held. When watchdog_lock is held we just
353 * return and accept, that the watchdog might trigger and mark
354 * the monitored clock source (usually TSC) unstable.
356 * This does not affect the other caller clocksource_resume()
357 * because at this point the kernel is UP, interrupts are
358 * disabled and nothing can hold watchdog_lock.
360 if (!spin_trylock_irqsave(&watchdog_lock, flags))
361 return;
362 clocksource_reset_watchdog();
363 spin_unlock_irqrestore(&watchdog_lock, flags);
366 static void clocksource_enqueue_watchdog(struct clocksource *cs)
368 unsigned long flags;
370 spin_lock_irqsave(&watchdog_lock, flags);
371 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
372 /* cs is a clocksource to be watched. */
373 list_add(&cs->wd_list, &watchdog_list);
374 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
375 } else {
376 /* cs is a watchdog. */
377 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
378 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
379 /* Pick the best watchdog. */
380 if (!watchdog || cs->rating > watchdog->rating) {
381 watchdog = cs;
382 /* Reset watchdog cycles */
383 clocksource_reset_watchdog();
386 /* Check if the watchdog timer needs to be started. */
387 clocksource_start_watchdog();
388 spin_unlock_irqrestore(&watchdog_lock, flags);
391 static void clocksource_dequeue_watchdog(struct clocksource *cs)
393 struct clocksource *tmp;
394 unsigned long flags;
396 spin_lock_irqsave(&watchdog_lock, flags);
397 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
398 /* cs is a watched clocksource. */
399 list_del_init(&cs->wd_list);
400 } else if (cs == watchdog) {
401 /* Reset watchdog cycles */
402 clocksource_reset_watchdog();
403 /* Current watchdog is removed. Find an alternative. */
404 watchdog = NULL;
405 list_for_each_entry(tmp, &clocksource_list, list) {
406 if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY)
407 continue;
408 if (!watchdog || tmp->rating > watchdog->rating)
409 watchdog = tmp;
412 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
413 /* Check if the watchdog timer needs to be stopped. */
414 clocksource_stop_watchdog();
415 spin_unlock_irqrestore(&watchdog_lock, flags);
418 static int clocksource_watchdog_kthread(void *data)
420 struct clocksource *cs, *tmp;
421 unsigned long flags;
422 LIST_HEAD(unstable);
424 mutex_lock(&clocksource_mutex);
425 spin_lock_irqsave(&watchdog_lock, flags);
426 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list)
427 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
428 list_del_init(&cs->wd_list);
429 list_add(&cs->wd_list, &unstable);
431 /* Check if the watchdog timer needs to be stopped. */
432 clocksource_stop_watchdog();
433 spin_unlock_irqrestore(&watchdog_lock, flags);
435 /* Needs to be done outside of watchdog lock */
436 list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
437 list_del_init(&cs->wd_list);
438 __clocksource_change_rating(cs, 0);
440 mutex_unlock(&clocksource_mutex);
441 return 0;
444 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
446 static void clocksource_enqueue_watchdog(struct clocksource *cs)
448 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
449 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
452 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
453 static inline void clocksource_resume_watchdog(void) { }
454 static inline int clocksource_watchdog_kthread(void *data) { return 0; }
456 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
459 * clocksource_suspend - suspend the clocksource(s)
461 void clocksource_suspend(void)
463 struct clocksource *cs;
465 list_for_each_entry_reverse(cs, &clocksource_list, list)
466 if (cs->suspend)
467 cs->suspend(cs);
471 * clocksource_resume - resume the clocksource(s)
473 void clocksource_resume(void)
475 struct clocksource *cs;
477 list_for_each_entry(cs, &clocksource_list, list)
478 if (cs->resume)
479 cs->resume(cs);
481 clocksource_resume_watchdog();
485 * clocksource_touch_watchdog - Update watchdog
487 * Update the watchdog after exception contexts such as kgdb so as not
488 * to incorrectly trip the watchdog. This might fail when the kernel
489 * was stopped in code which holds watchdog_lock.
491 void clocksource_touch_watchdog(void)
493 clocksource_resume_watchdog();
497 * clocksource_max_adjustment- Returns max adjustment amount
498 * @cs: Pointer to clocksource
501 static u32 clocksource_max_adjustment(struct clocksource *cs)
503 u64 ret;
505 * We won't try to correct for more then 11% adjustments (110,000 ppm),
507 ret = (u64)cs->mult * 11;
508 do_div(ret,100);
509 return (u32)ret;
513 * clocksource_max_deferment - Returns max time the clocksource can be deferred
514 * @cs: Pointer to clocksource
517 static u64 clocksource_max_deferment(struct clocksource *cs)
519 u64 max_nsecs, max_cycles;
522 * Calculate the maximum number of cycles that we can pass to the
523 * cyc2ns function without overflowing a 64-bit signed result. The
524 * maximum number of cycles is equal to ULLONG_MAX/(cs->mult+cs->maxadj)
525 * which is equivalent to the below.
526 * max_cycles < (2^63)/(cs->mult + cs->maxadj)
527 * max_cycles < 2^(log2((2^63)/(cs->mult + cs->maxadj)))
528 * max_cycles < 2^(log2(2^63) - log2(cs->mult + cs->maxadj))
529 * max_cycles < 2^(63 - log2(cs->mult + cs->maxadj))
530 * max_cycles < 1 << (63 - log2(cs->mult + cs->maxadj))
531 * Please note that we add 1 to the result of the log2 to account for
532 * any rounding errors, ensure the above inequality is satisfied and
533 * no overflow will occur.
535 max_cycles = 1ULL << (63 - (ilog2(cs->mult + cs->maxadj) + 1));
538 * The actual maximum number of cycles we can defer the clocksource is
539 * determined by the minimum of max_cycles and cs->mask.
540 * Note: Here we subtract the maxadj to make sure we don't sleep for
541 * too long if there's a large negative adjustment.
543 max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
544 max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult - cs->maxadj,
545 cs->shift);
548 * To ensure that the clocksource does not wrap whilst we are idle,
549 * limit the time the clocksource can be deferred by 12.5%. Please
550 * note a margin of 12.5% is used because this can be computed with
551 * a shift, versus say 10% which would require division.
553 return max_nsecs - (max_nsecs >> 3);
556 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
559 * clocksource_select - Select the best clocksource available
561 * Private function. Must hold clocksource_mutex when called.
563 * Select the clocksource with the best rating, or the clocksource,
564 * which is selected by userspace override.
566 static void clocksource_select(void)
568 struct clocksource *best, *cs;
570 if (!finished_booting || list_empty(&clocksource_list))
571 return;
572 /* First clocksource on the list has the best rating. */
573 best = list_first_entry(&clocksource_list, struct clocksource, list);
574 /* Check for the override clocksource. */
575 list_for_each_entry(cs, &clocksource_list, list) {
576 if (strcmp(cs->name, override_name) != 0)
577 continue;
579 * Check to make sure we don't switch to a non-highres
580 * capable clocksource if the tick code is in oneshot
581 * mode (highres or nohz)
583 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
584 tick_oneshot_mode_active()) {
585 /* Override clocksource cannot be used. */
586 printk(KERN_WARNING "Override clocksource %s is not "
587 "HRT compatible. Cannot switch while in "
588 "HRT/NOHZ mode\n", cs->name);
589 override_name[0] = 0;
590 } else
591 /* Override clocksource can be used. */
592 best = cs;
593 break;
595 if (curr_clocksource != best) {
596 printk(KERN_INFO "Switching to clocksource %s\n", best->name);
597 curr_clocksource = best;
598 timekeeping_notify(curr_clocksource);
602 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
604 static inline void clocksource_select(void) { }
606 #endif
609 * clocksource_done_booting - Called near the end of core bootup
611 * Hack to avoid lots of clocksource churn at boot time.
612 * We use fs_initcall because we want this to start before
613 * device_initcall but after subsys_initcall.
615 static int __init clocksource_done_booting(void)
617 mutex_lock(&clocksource_mutex);
618 curr_clocksource = clocksource_default_clock();
619 mutex_unlock(&clocksource_mutex);
621 finished_booting = 1;
624 * Run the watchdog first to eliminate unstable clock sources
626 clocksource_watchdog_kthread(NULL);
628 mutex_lock(&clocksource_mutex);
629 clocksource_select();
630 mutex_unlock(&clocksource_mutex);
631 return 0;
633 fs_initcall(clocksource_done_booting);
636 * Enqueue the clocksource sorted by rating
638 static void clocksource_enqueue(struct clocksource *cs)
640 struct list_head *entry = &clocksource_list;
641 struct clocksource *tmp;
643 list_for_each_entry(tmp, &clocksource_list, list)
644 /* Keep track of the place, where to insert */
645 if (tmp->rating >= cs->rating)
646 entry = &tmp->list;
647 list_add(&cs->list, entry);
651 * __clocksource_updatefreq_scale - Used update clocksource with new freq
652 * @t: clocksource to be registered
653 * @scale: Scale factor multiplied against freq to get clocksource hz
654 * @freq: clocksource frequency (cycles per second) divided by scale
656 * This should only be called from the clocksource->enable() method.
658 * This *SHOULD NOT* be called directly! Please use the
659 * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
661 void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
663 u64 sec;
665 * Calc the maximum number of seconds which we can run before
666 * wrapping around. For clocksources which have a mask > 32bit
667 * we need to limit the max sleep time to have a good
668 * conversion precision. 10 minutes is still a reasonable
669 * amount. That results in a shift value of 24 for a
670 * clocksource with mask >= 40bit and f >= 4GHz. That maps to
671 * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
672 * margin as we do in clocksource_max_deferment()
674 sec = (cs->mask - (cs->mask >> 3));
675 do_div(sec, freq);
676 do_div(sec, scale);
677 if (!sec)
678 sec = 1;
679 else if (sec > 600 && cs->mask > UINT_MAX)
680 sec = 600;
682 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
683 NSEC_PER_SEC / scale, sec * scale);
686 * for clocksources that have large mults, to avoid overflow.
687 * Since mult may be adjusted by ntp, add an safety extra margin
690 cs->maxadj = clocksource_max_adjustment(cs);
691 while ((cs->mult + cs->maxadj < cs->mult)
692 || (cs->mult - cs->maxadj > cs->mult)) {
693 cs->mult >>= 1;
694 cs->shift--;
695 cs->maxadj = clocksource_max_adjustment(cs);
698 cs->max_idle_ns = clocksource_max_deferment(cs);
700 EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
703 * __clocksource_register_scale - Used to install new clocksources
704 * @t: clocksource to be registered
705 * @scale: Scale factor multiplied against freq to get clocksource hz
706 * @freq: clocksource frequency (cycles per second) divided by scale
708 * Returns -EBUSY if registration fails, zero otherwise.
710 * This *SHOULD NOT* be called directly! Please use the
711 * clocksource_register_hz() or clocksource_register_khz helper functions.
713 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
716 /* Initialize mult/shift and max_idle_ns */
717 __clocksource_updatefreq_scale(cs, scale, freq);
719 /* Add clocksource to the clcoksource list */
720 mutex_lock(&clocksource_mutex);
721 clocksource_enqueue(cs);
722 clocksource_enqueue_watchdog(cs);
723 clocksource_select();
724 mutex_unlock(&clocksource_mutex);
725 return 0;
727 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
731 * clocksource_register - Used to install new clocksources
732 * @t: clocksource to be registered
734 * Returns -EBUSY if registration fails, zero otherwise.
736 int clocksource_register(struct clocksource *cs)
738 /* calculate max adjustment for given mult/shift */
739 cs->maxadj = clocksource_max_adjustment(cs);
740 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
741 "Clocksource %s might overflow on 11%% adjustment\n",
742 cs->name);
744 /* calculate max idle time permitted for this clocksource */
745 cs->max_idle_ns = clocksource_max_deferment(cs);
747 mutex_lock(&clocksource_mutex);
748 clocksource_enqueue(cs);
749 clocksource_enqueue_watchdog(cs);
750 clocksource_select();
751 mutex_unlock(&clocksource_mutex);
752 return 0;
754 EXPORT_SYMBOL(clocksource_register);
756 static void __clocksource_change_rating(struct clocksource *cs, int rating)
758 list_del(&cs->list);
759 cs->rating = rating;
760 clocksource_enqueue(cs);
761 clocksource_select();
765 * clocksource_change_rating - Change the rating of a registered clocksource
767 void clocksource_change_rating(struct clocksource *cs, int rating)
769 mutex_lock(&clocksource_mutex);
770 __clocksource_change_rating(cs, rating);
771 mutex_unlock(&clocksource_mutex);
773 EXPORT_SYMBOL(clocksource_change_rating);
776 * clocksource_unregister - remove a registered clocksource
778 void clocksource_unregister(struct clocksource *cs)
780 mutex_lock(&clocksource_mutex);
781 clocksource_dequeue_watchdog(cs);
782 list_del(&cs->list);
783 clocksource_select();
784 mutex_unlock(&clocksource_mutex);
786 EXPORT_SYMBOL(clocksource_unregister);
788 #ifdef CONFIG_SYSFS
790 * sysfs_show_current_clocksources - sysfs interface for current clocksource
791 * @dev: unused
792 * @buf: char buffer to be filled with clocksource list
794 * Provides sysfs interface for listing current clocksource.
796 static ssize_t
797 sysfs_show_current_clocksources(struct sys_device *dev,
798 struct sysdev_attribute *attr, char *buf)
800 ssize_t count = 0;
802 mutex_lock(&clocksource_mutex);
803 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
804 mutex_unlock(&clocksource_mutex);
806 return count;
810 * sysfs_override_clocksource - interface for manually overriding clocksource
811 * @dev: unused
812 * @buf: name of override clocksource
813 * @count: length of buffer
815 * Takes input from sysfs interface for manually overriding the default
816 * clocksource selection.
818 static ssize_t sysfs_override_clocksource(struct sys_device *dev,
819 struct sysdev_attribute *attr,
820 const char *buf, size_t count)
822 size_t ret = count;
824 /* strings from sysfs write are not 0 terminated! */
825 if (count >= sizeof(override_name))
826 return -EINVAL;
828 /* strip of \n: */
829 if (buf[count-1] == '\n')
830 count--;
832 mutex_lock(&clocksource_mutex);
834 if (count > 0)
835 memcpy(override_name, buf, count);
836 override_name[count] = 0;
837 clocksource_select();
839 mutex_unlock(&clocksource_mutex);
841 return ret;
845 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
846 * @dev: unused
847 * @buf: char buffer to be filled with clocksource list
849 * Provides sysfs interface for listing registered clocksources
851 static ssize_t
852 sysfs_show_available_clocksources(struct sys_device *dev,
853 struct sysdev_attribute *attr,
854 char *buf)
856 struct clocksource *src;
857 ssize_t count = 0;
859 mutex_lock(&clocksource_mutex);
860 list_for_each_entry(src, &clocksource_list, list) {
862 * Don't show non-HRES clocksource if the tick code is
863 * in one shot mode (highres=on or nohz=on)
865 if (!tick_oneshot_mode_active() ||
866 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
867 count += snprintf(buf + count,
868 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
869 "%s ", src->name);
871 mutex_unlock(&clocksource_mutex);
873 count += snprintf(buf + count,
874 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
876 return count;
880 * Sysfs setup bits:
882 static SYSDEV_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
883 sysfs_override_clocksource);
885 static SYSDEV_ATTR(available_clocksource, 0444,
886 sysfs_show_available_clocksources, NULL);
888 static struct sysdev_class clocksource_sysclass = {
889 .name = "clocksource",
892 static struct sys_device device_clocksource = {
893 .id = 0,
894 .cls = &clocksource_sysclass,
897 static int __init init_clocksource_sysfs(void)
899 int error = sysdev_class_register(&clocksource_sysclass);
901 if (!error)
902 error = sysdev_register(&device_clocksource);
903 if (!error)
904 error = sysdev_create_file(
905 &device_clocksource,
906 &attr_current_clocksource);
907 if (!error)
908 error = sysdev_create_file(
909 &device_clocksource,
910 &attr_available_clocksource);
911 return error;
914 device_initcall(init_clocksource_sysfs);
915 #endif /* CONFIG_SYSFS */
918 * boot_override_clocksource - boot clock override
919 * @str: override name
921 * Takes a clocksource= boot argument and uses it
922 * as the clocksource override name.
924 static int __init boot_override_clocksource(char* str)
926 mutex_lock(&clocksource_mutex);
927 if (str)
928 strlcpy(override_name, str, sizeof(override_name));
929 mutex_unlock(&clocksource_mutex);
930 return 1;
933 __setup("clocksource=", boot_override_clocksource);
936 * boot_override_clock - Compatibility layer for deprecated boot option
937 * @str: override name
939 * DEPRECATED! Takes a clock= boot argument and uses it
940 * as the clocksource override name
942 static int __init boot_override_clock(char* str)
944 if (!strcmp(str, "pmtmr")) {
945 printk("Warning: clock=pmtmr is deprecated. "
946 "Use clocksource=acpi_pm.\n");
947 return boot_override_clocksource("acpi_pm");
949 printk("Warning! clock= boot option is deprecated. "
950 "Use clocksource=xyz\n");
951 return boot_override_clocksource(str);
954 __setup("clock=", boot_override_clock);