sched: rt-group: interface
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob85a5fbff2b007164f60725f19c2bfb85e85d4b7c
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
70 #include <asm/tlb.h>
71 #include <asm/irq_regs.h>
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
78 unsigned long long __attribute__((weak)) sched_clock(void)
80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
117 #ifdef CONFIG_SMP
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136 #endif
138 static inline int rt_policy(int policy)
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
145 static inline int task_has_rt_policy(struct task_struct *p)
147 return rt_policy(p->policy);
151 * This is the priority-queue data structure of the RT scheduling class:
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
158 #ifdef CONFIG_FAIR_GROUP_SCHED
160 #include <linux/cgroup.h>
162 struct cfs_rq;
164 static LIST_HEAD(task_groups);
166 /* task group related information */
167 struct task_group {
168 #ifdef CONFIG_FAIR_CGROUP_SCHED
169 struct cgroup_subsys_state css;
170 #endif
171 /* schedulable entities of this group on each cpu */
172 struct sched_entity **se;
173 /* runqueue "owned" by this group on each cpu */
174 struct cfs_rq **cfs_rq;
176 struct sched_rt_entity **rt_se;
177 struct rt_rq **rt_rq;
179 u64 rt_runtime;
182 * shares assigned to a task group governs how much of cpu bandwidth
183 * is allocated to the group. The more shares a group has, the more is
184 * the cpu bandwidth allocated to it.
186 * For ex, lets say that there are three task groups, A, B and C which
187 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
188 * cpu bandwidth allocated by the scheduler to task groups A, B and C
189 * should be:
191 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
192 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
193 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
195 * The weight assigned to a task group's schedulable entities on every
196 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
197 * group's shares. For ex: lets say that task group A has been
198 * assigned shares of 1000 and there are two CPUs in a system. Then,
200 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
202 * Note: It's not necessary that each of a task's group schedulable
203 * entity have the same weight on all CPUs. If the group
204 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
205 * better distribution of weight could be:
207 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
208 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
210 * rebalance_shares() is responsible for distributing the shares of a
211 * task groups like this among the group's schedulable entities across
212 * cpus.
215 unsigned long shares;
217 struct rcu_head rcu;
218 struct list_head list;
221 /* Default task group's sched entity on each cpu */
222 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
223 /* Default task group's cfs_rq on each cpu */
224 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
226 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
227 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
229 static struct sched_entity *init_sched_entity_p[NR_CPUS];
230 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
232 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
233 static struct rt_rq *init_rt_rq_p[NR_CPUS];
235 /* task_group_lock serializes add/remove of task groups and also changes to
236 * a task group's cpu shares.
238 static DEFINE_SPINLOCK(task_group_lock);
240 /* doms_cur_mutex serializes access to doms_cur[] array */
241 static DEFINE_MUTEX(doms_cur_mutex);
243 #ifdef CONFIG_SMP
244 /* kernel thread that runs rebalance_shares() periodically */
245 static struct task_struct *lb_monitor_task;
246 static int load_balance_monitor(void *unused);
247 #endif
249 static void set_se_shares(struct sched_entity *se, unsigned long shares);
251 /* Default task group.
252 * Every task in system belong to this group at bootup.
254 struct task_group init_task_group = {
255 .se = init_sched_entity_p,
256 .cfs_rq = init_cfs_rq_p,
258 .rt_se = init_sched_rt_entity_p,
259 .rt_rq = init_rt_rq_p,
262 #ifdef CONFIG_FAIR_USER_SCHED
263 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
264 #else
265 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
266 #endif
268 #define MIN_GROUP_SHARES 2
270 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
272 /* return group to which a task belongs */
273 static inline struct task_group *task_group(struct task_struct *p)
275 struct task_group *tg;
277 #ifdef CONFIG_FAIR_USER_SCHED
278 tg = p->user->tg;
279 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
280 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
281 struct task_group, css);
282 #else
283 tg = &init_task_group;
284 #endif
285 return tg;
288 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
289 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
291 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
292 p->se.parent = task_group(p)->se[cpu];
294 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
295 p->rt.parent = task_group(p)->rt_se[cpu];
298 static inline void lock_doms_cur(void)
300 mutex_lock(&doms_cur_mutex);
303 static inline void unlock_doms_cur(void)
305 mutex_unlock(&doms_cur_mutex);
308 #else
310 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
311 static inline void lock_doms_cur(void) { }
312 static inline void unlock_doms_cur(void) { }
314 #endif /* CONFIG_FAIR_GROUP_SCHED */
316 /* CFS-related fields in a runqueue */
317 struct cfs_rq {
318 struct load_weight load;
319 unsigned long nr_running;
321 u64 exec_clock;
322 u64 min_vruntime;
324 struct rb_root tasks_timeline;
325 struct rb_node *rb_leftmost;
326 struct rb_node *rb_load_balance_curr;
327 /* 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity *curr;
332 unsigned long nr_spread_over;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
347 #endif
350 /* Real-Time classes' related field in a runqueue: */
351 struct rt_rq {
352 struct rt_prio_array active;
353 unsigned long rt_nr_running;
354 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
355 int highest_prio; /* highest queued rt task prio */
356 #endif
357 #ifdef CONFIG_SMP
358 unsigned long rt_nr_migratory;
359 int overloaded;
360 #endif
361 int rt_throttled;
362 u64 rt_time;
364 #ifdef CONFIG_FAIR_GROUP_SCHED
365 unsigned long rt_nr_boosted;
367 struct rq *rq;
368 struct list_head leaf_rt_rq_list;
369 struct task_group *tg;
370 struct sched_rt_entity *rt_se;
371 #endif
374 #ifdef CONFIG_SMP
377 * We add the notion of a root-domain which will be used to define per-domain
378 * variables. Each exclusive cpuset essentially defines an island domain by
379 * fully partitioning the member cpus from any other cpuset. Whenever a new
380 * exclusive cpuset is created, we also create and attach a new root-domain
381 * object.
384 struct root_domain {
385 atomic_t refcount;
386 cpumask_t span;
387 cpumask_t online;
390 * The "RT overload" flag: it gets set if a CPU has more than
391 * one runnable RT task.
393 cpumask_t rto_mask;
394 atomic_t rto_count;
398 * By default the system creates a single root-domain with all cpus as
399 * members (mimicking the global state we have today).
401 static struct root_domain def_root_domain;
403 #endif
406 * This is the main, per-CPU runqueue data structure.
408 * Locking rule: those places that want to lock multiple runqueues
409 * (such as the load balancing or the thread migration code), lock
410 * acquire operations must be ordered by ascending &runqueue.
412 struct rq {
413 /* runqueue lock: */
414 spinlock_t lock;
417 * nr_running and cpu_load should be in the same cacheline because
418 * remote CPUs use both these fields when doing load calculation.
420 unsigned long nr_running;
421 #define CPU_LOAD_IDX_MAX 5
422 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
423 unsigned char idle_at_tick;
424 #ifdef CONFIG_NO_HZ
425 unsigned char in_nohz_recently;
426 #endif
427 /* capture load from *all* tasks on this cpu: */
428 struct load_weight load;
429 unsigned long nr_load_updates;
430 u64 nr_switches;
432 struct cfs_rq cfs;
433 struct rt_rq rt;
434 u64 rt_period_expire;
435 int rt_throttled;
437 #ifdef CONFIG_FAIR_GROUP_SCHED
438 /* list of leaf cfs_rq on this cpu: */
439 struct list_head leaf_cfs_rq_list;
440 struct list_head leaf_rt_rq_list;
441 #endif
444 * This is part of a global counter where only the total sum
445 * over all CPUs matters. A task can increase this counter on
446 * one CPU and if it got migrated afterwards it may decrease
447 * it on another CPU. Always updated under the runqueue lock:
449 unsigned long nr_uninterruptible;
451 struct task_struct *curr, *idle;
452 unsigned long next_balance;
453 struct mm_struct *prev_mm;
455 u64 clock, prev_clock_raw;
456 s64 clock_max_delta;
458 unsigned int clock_warps, clock_overflows, clock_underflows;
459 u64 idle_clock;
460 unsigned int clock_deep_idle_events;
461 u64 tick_timestamp;
463 atomic_t nr_iowait;
465 #ifdef CONFIG_SMP
466 struct root_domain *rd;
467 struct sched_domain *sd;
469 /* For active balancing */
470 int active_balance;
471 int push_cpu;
472 /* cpu of this runqueue: */
473 int cpu;
475 struct task_struct *migration_thread;
476 struct list_head migration_queue;
477 #endif
479 #ifdef CONFIG_SCHED_HRTICK
480 unsigned long hrtick_flags;
481 ktime_t hrtick_expire;
482 struct hrtimer hrtick_timer;
483 #endif
485 #ifdef CONFIG_SCHEDSTATS
486 /* latency stats */
487 struct sched_info rq_sched_info;
489 /* sys_sched_yield() stats */
490 unsigned int yld_exp_empty;
491 unsigned int yld_act_empty;
492 unsigned int yld_both_empty;
493 unsigned int yld_count;
495 /* schedule() stats */
496 unsigned int sched_switch;
497 unsigned int sched_count;
498 unsigned int sched_goidle;
500 /* try_to_wake_up() stats */
501 unsigned int ttwu_count;
502 unsigned int ttwu_local;
504 /* BKL stats */
505 unsigned int bkl_count;
506 #endif
507 struct lock_class_key rq_lock_key;
510 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
512 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
514 rq->curr->sched_class->check_preempt_curr(rq, p);
517 static inline int cpu_of(struct rq *rq)
519 #ifdef CONFIG_SMP
520 return rq->cpu;
521 #else
522 return 0;
523 #endif
527 * Update the per-runqueue clock, as finegrained as the platform can give
528 * us, but without assuming monotonicity, etc.:
530 static void __update_rq_clock(struct rq *rq)
532 u64 prev_raw = rq->prev_clock_raw;
533 u64 now = sched_clock();
534 s64 delta = now - prev_raw;
535 u64 clock = rq->clock;
537 #ifdef CONFIG_SCHED_DEBUG
538 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
539 #endif
541 * Protect against sched_clock() occasionally going backwards:
543 if (unlikely(delta < 0)) {
544 clock++;
545 rq->clock_warps++;
546 } else {
548 * Catch too large forward jumps too:
550 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
551 if (clock < rq->tick_timestamp + TICK_NSEC)
552 clock = rq->tick_timestamp + TICK_NSEC;
553 else
554 clock++;
555 rq->clock_overflows++;
556 } else {
557 if (unlikely(delta > rq->clock_max_delta))
558 rq->clock_max_delta = delta;
559 clock += delta;
563 rq->prev_clock_raw = now;
564 rq->clock = clock;
567 static void update_rq_clock(struct rq *rq)
569 if (likely(smp_processor_id() == cpu_of(rq)))
570 __update_rq_clock(rq);
574 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
575 * See detach_destroy_domains: synchronize_sched for details.
577 * The domain tree of any CPU may only be accessed from within
578 * preempt-disabled sections.
580 #define for_each_domain(cpu, __sd) \
581 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
583 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
584 #define this_rq() (&__get_cpu_var(runqueues))
585 #define task_rq(p) cpu_rq(task_cpu(p))
586 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
588 unsigned long rt_needs_cpu(int cpu)
590 struct rq *rq = cpu_rq(cpu);
591 u64 delta;
593 if (!rq->rt_throttled)
594 return 0;
596 if (rq->clock > rq->rt_period_expire)
597 return 1;
599 delta = rq->rt_period_expire - rq->clock;
600 do_div(delta, NSEC_PER_SEC / HZ);
602 return (unsigned long)delta;
606 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
608 #ifdef CONFIG_SCHED_DEBUG
609 # define const_debug __read_mostly
610 #else
611 # define const_debug static const
612 #endif
615 * Debugging: various feature bits
617 enum {
618 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
619 SCHED_FEAT_WAKEUP_PREEMPT = 2,
620 SCHED_FEAT_START_DEBIT = 4,
621 SCHED_FEAT_TREE_AVG = 8,
622 SCHED_FEAT_APPROX_AVG = 16,
623 SCHED_FEAT_HRTICK = 32,
624 SCHED_FEAT_DOUBLE_TICK = 64,
627 const_debug unsigned int sysctl_sched_features =
628 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
629 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
630 SCHED_FEAT_START_DEBIT * 1 |
631 SCHED_FEAT_TREE_AVG * 0 |
632 SCHED_FEAT_APPROX_AVG * 0 |
633 SCHED_FEAT_HRTICK * 1 |
634 SCHED_FEAT_DOUBLE_TICK * 0;
636 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
639 * Number of tasks to iterate in a single balance run.
640 * Limited because this is done with IRQs disabled.
642 const_debug unsigned int sysctl_sched_nr_migrate = 32;
645 * period over which we measure -rt task cpu usage in us.
646 * default: 1s
648 unsigned int sysctl_sched_rt_period = 1000000;
651 * part of the period that we allow rt tasks to run in us.
652 * default: 0.95s
654 int sysctl_sched_rt_runtime = 950000;
657 * single value that denotes runtime == period, ie unlimited time.
659 #define RUNTIME_INF ((u64)~0ULL)
662 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
663 * clock constructed from sched_clock():
665 unsigned long long cpu_clock(int cpu)
667 unsigned long long now;
668 unsigned long flags;
669 struct rq *rq;
671 local_irq_save(flags);
672 rq = cpu_rq(cpu);
674 * Only call sched_clock() if the scheduler has already been
675 * initialized (some code might call cpu_clock() very early):
677 if (rq->idle)
678 update_rq_clock(rq);
679 now = rq->clock;
680 local_irq_restore(flags);
682 return now;
684 EXPORT_SYMBOL_GPL(cpu_clock);
686 #ifndef prepare_arch_switch
687 # define prepare_arch_switch(next) do { } while (0)
688 #endif
689 #ifndef finish_arch_switch
690 # define finish_arch_switch(prev) do { } while (0)
691 #endif
693 static inline int task_current(struct rq *rq, struct task_struct *p)
695 return rq->curr == p;
698 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
699 static inline int task_running(struct rq *rq, struct task_struct *p)
701 return task_current(rq, p);
704 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
708 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
710 #ifdef CONFIG_DEBUG_SPINLOCK
711 /* this is a valid case when another task releases the spinlock */
712 rq->lock.owner = current;
713 #endif
715 * If we are tracking spinlock dependencies then we have to
716 * fix up the runqueue lock - which gets 'carried over' from
717 * prev into current:
719 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
721 spin_unlock_irq(&rq->lock);
724 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
725 static inline int task_running(struct rq *rq, struct task_struct *p)
727 #ifdef CONFIG_SMP
728 return p->oncpu;
729 #else
730 return task_current(rq, p);
731 #endif
734 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
736 #ifdef CONFIG_SMP
738 * We can optimise this out completely for !SMP, because the
739 * SMP rebalancing from interrupt is the only thing that cares
740 * here.
742 next->oncpu = 1;
743 #endif
744 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
745 spin_unlock_irq(&rq->lock);
746 #else
747 spin_unlock(&rq->lock);
748 #endif
751 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
753 #ifdef CONFIG_SMP
755 * After ->oncpu is cleared, the task can be moved to a different CPU.
756 * We must ensure this doesn't happen until the switch is completely
757 * finished.
759 smp_wmb();
760 prev->oncpu = 0;
761 #endif
762 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
763 local_irq_enable();
764 #endif
766 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
769 * __task_rq_lock - lock the runqueue a given task resides on.
770 * Must be called interrupts disabled.
772 static inline struct rq *__task_rq_lock(struct task_struct *p)
773 __acquires(rq->lock)
775 for (;;) {
776 struct rq *rq = task_rq(p);
777 spin_lock(&rq->lock);
778 if (likely(rq == task_rq(p)))
779 return rq;
780 spin_unlock(&rq->lock);
785 * task_rq_lock - lock the runqueue a given task resides on and disable
786 * interrupts. Note the ordering: we can safely lookup the task_rq without
787 * explicitly disabling preemption.
789 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
790 __acquires(rq->lock)
792 struct rq *rq;
794 for (;;) {
795 local_irq_save(*flags);
796 rq = task_rq(p);
797 spin_lock(&rq->lock);
798 if (likely(rq == task_rq(p)))
799 return rq;
800 spin_unlock_irqrestore(&rq->lock, *flags);
804 static void __task_rq_unlock(struct rq *rq)
805 __releases(rq->lock)
807 spin_unlock(&rq->lock);
810 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
811 __releases(rq->lock)
813 spin_unlock_irqrestore(&rq->lock, *flags);
817 * this_rq_lock - lock this runqueue and disable interrupts.
819 static struct rq *this_rq_lock(void)
820 __acquires(rq->lock)
822 struct rq *rq;
824 local_irq_disable();
825 rq = this_rq();
826 spin_lock(&rq->lock);
828 return rq;
832 * We are going deep-idle (irqs are disabled):
834 void sched_clock_idle_sleep_event(void)
836 struct rq *rq = cpu_rq(smp_processor_id());
838 spin_lock(&rq->lock);
839 __update_rq_clock(rq);
840 spin_unlock(&rq->lock);
841 rq->clock_deep_idle_events++;
843 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
846 * We just idled delta nanoseconds (called with irqs disabled):
848 void sched_clock_idle_wakeup_event(u64 delta_ns)
850 struct rq *rq = cpu_rq(smp_processor_id());
851 u64 now = sched_clock();
853 rq->idle_clock += delta_ns;
855 * Override the previous timestamp and ignore all
856 * sched_clock() deltas that occured while we idled,
857 * and use the PM-provided delta_ns to advance the
858 * rq clock:
860 spin_lock(&rq->lock);
861 rq->prev_clock_raw = now;
862 rq->clock += delta_ns;
863 spin_unlock(&rq->lock);
864 touch_softlockup_watchdog();
866 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
868 static void __resched_task(struct task_struct *p, int tif_bit);
870 static inline void resched_task(struct task_struct *p)
872 __resched_task(p, TIF_NEED_RESCHED);
875 #ifdef CONFIG_SCHED_HRTICK
877 * Use HR-timers to deliver accurate preemption points.
879 * Its all a bit involved since we cannot program an hrt while holding the
880 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
881 * reschedule event.
883 * When we get rescheduled we reprogram the hrtick_timer outside of the
884 * rq->lock.
886 static inline void resched_hrt(struct task_struct *p)
888 __resched_task(p, TIF_HRTICK_RESCHED);
891 static inline void resched_rq(struct rq *rq)
893 unsigned long flags;
895 spin_lock_irqsave(&rq->lock, flags);
896 resched_task(rq->curr);
897 spin_unlock_irqrestore(&rq->lock, flags);
900 enum {
901 HRTICK_SET, /* re-programm hrtick_timer */
902 HRTICK_RESET, /* not a new slice */
906 * Use hrtick when:
907 * - enabled by features
908 * - hrtimer is actually high res
910 static inline int hrtick_enabled(struct rq *rq)
912 if (!sched_feat(HRTICK))
913 return 0;
914 return hrtimer_is_hres_active(&rq->hrtick_timer);
918 * Called to set the hrtick timer state.
920 * called with rq->lock held and irqs disabled
922 static void hrtick_start(struct rq *rq, u64 delay, int reset)
924 assert_spin_locked(&rq->lock);
927 * preempt at: now + delay
929 rq->hrtick_expire =
930 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
932 * indicate we need to program the timer
934 __set_bit(HRTICK_SET, &rq->hrtick_flags);
935 if (reset)
936 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
939 * New slices are called from the schedule path and don't need a
940 * forced reschedule.
942 if (reset)
943 resched_hrt(rq->curr);
946 static void hrtick_clear(struct rq *rq)
948 if (hrtimer_active(&rq->hrtick_timer))
949 hrtimer_cancel(&rq->hrtick_timer);
953 * Update the timer from the possible pending state.
955 static void hrtick_set(struct rq *rq)
957 ktime_t time;
958 int set, reset;
959 unsigned long flags;
961 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
963 spin_lock_irqsave(&rq->lock, flags);
964 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
965 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
966 time = rq->hrtick_expire;
967 clear_thread_flag(TIF_HRTICK_RESCHED);
968 spin_unlock_irqrestore(&rq->lock, flags);
970 if (set) {
971 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
972 if (reset && !hrtimer_active(&rq->hrtick_timer))
973 resched_rq(rq);
974 } else
975 hrtick_clear(rq);
979 * High-resolution timer tick.
980 * Runs from hardirq context with interrupts disabled.
982 static enum hrtimer_restart hrtick(struct hrtimer *timer)
984 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
986 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
988 spin_lock(&rq->lock);
989 __update_rq_clock(rq);
990 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
991 spin_unlock(&rq->lock);
993 return HRTIMER_NORESTART;
996 static inline void init_rq_hrtick(struct rq *rq)
998 rq->hrtick_flags = 0;
999 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1000 rq->hrtick_timer.function = hrtick;
1001 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1004 void hrtick_resched(void)
1006 struct rq *rq;
1007 unsigned long flags;
1009 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1010 return;
1012 local_irq_save(flags);
1013 rq = cpu_rq(smp_processor_id());
1014 hrtick_set(rq);
1015 local_irq_restore(flags);
1017 #else
1018 static inline void hrtick_clear(struct rq *rq)
1022 static inline void hrtick_set(struct rq *rq)
1026 static inline void init_rq_hrtick(struct rq *rq)
1030 void hrtick_resched(void)
1033 #endif
1036 * resched_task - mark a task 'to be rescheduled now'.
1038 * On UP this means the setting of the need_resched flag, on SMP it
1039 * might also involve a cross-CPU call to trigger the scheduler on
1040 * the target CPU.
1042 #ifdef CONFIG_SMP
1044 #ifndef tsk_is_polling
1045 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1046 #endif
1048 static void __resched_task(struct task_struct *p, int tif_bit)
1050 int cpu;
1052 assert_spin_locked(&task_rq(p)->lock);
1054 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1055 return;
1057 set_tsk_thread_flag(p, tif_bit);
1059 cpu = task_cpu(p);
1060 if (cpu == smp_processor_id())
1061 return;
1063 /* NEED_RESCHED must be visible before we test polling */
1064 smp_mb();
1065 if (!tsk_is_polling(p))
1066 smp_send_reschedule(cpu);
1069 static void resched_cpu(int cpu)
1071 struct rq *rq = cpu_rq(cpu);
1072 unsigned long flags;
1074 if (!spin_trylock_irqsave(&rq->lock, flags))
1075 return;
1076 resched_task(cpu_curr(cpu));
1077 spin_unlock_irqrestore(&rq->lock, flags);
1079 #else
1080 static void __resched_task(struct task_struct *p, int tif_bit)
1082 assert_spin_locked(&task_rq(p)->lock);
1083 set_tsk_thread_flag(p, tif_bit);
1085 #endif
1087 #if BITS_PER_LONG == 32
1088 # define WMULT_CONST (~0UL)
1089 #else
1090 # define WMULT_CONST (1UL << 32)
1091 #endif
1093 #define WMULT_SHIFT 32
1096 * Shift right and round:
1098 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1100 static unsigned long
1101 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1102 struct load_weight *lw)
1104 u64 tmp;
1106 if (unlikely(!lw->inv_weight))
1107 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1109 tmp = (u64)delta_exec * weight;
1111 * Check whether we'd overflow the 64-bit multiplication:
1113 if (unlikely(tmp > WMULT_CONST))
1114 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1115 WMULT_SHIFT/2);
1116 else
1117 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1119 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1122 static inline unsigned long
1123 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1125 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1128 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1130 lw->weight += inc;
1133 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1135 lw->weight -= dec;
1139 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1140 * of tasks with abnormal "nice" values across CPUs the contribution that
1141 * each task makes to its run queue's load is weighted according to its
1142 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1143 * scaled version of the new time slice allocation that they receive on time
1144 * slice expiry etc.
1147 #define WEIGHT_IDLEPRIO 2
1148 #define WMULT_IDLEPRIO (1 << 31)
1151 * Nice levels are multiplicative, with a gentle 10% change for every
1152 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1153 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1154 * that remained on nice 0.
1156 * The "10% effect" is relative and cumulative: from _any_ nice level,
1157 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1158 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1159 * If a task goes up by ~10% and another task goes down by ~10% then
1160 * the relative distance between them is ~25%.)
1162 static const int prio_to_weight[40] = {
1163 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1164 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1165 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1166 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1167 /* 0 */ 1024, 820, 655, 526, 423,
1168 /* 5 */ 335, 272, 215, 172, 137,
1169 /* 10 */ 110, 87, 70, 56, 45,
1170 /* 15 */ 36, 29, 23, 18, 15,
1174 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1176 * In cases where the weight does not change often, we can use the
1177 * precalculated inverse to speed up arithmetics by turning divisions
1178 * into multiplications:
1180 static const u32 prio_to_wmult[40] = {
1181 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1182 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1183 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1184 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1185 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1186 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1187 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1188 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1191 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1194 * runqueue iterator, to support SMP load-balancing between different
1195 * scheduling classes, without having to expose their internal data
1196 * structures to the load-balancing proper:
1198 struct rq_iterator {
1199 void *arg;
1200 struct task_struct *(*start)(void *);
1201 struct task_struct *(*next)(void *);
1204 #ifdef CONFIG_SMP
1205 static unsigned long
1206 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1207 unsigned long max_load_move, struct sched_domain *sd,
1208 enum cpu_idle_type idle, int *all_pinned,
1209 int *this_best_prio, struct rq_iterator *iterator);
1211 static int
1212 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1213 struct sched_domain *sd, enum cpu_idle_type idle,
1214 struct rq_iterator *iterator);
1215 #endif
1217 #ifdef CONFIG_CGROUP_CPUACCT
1218 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1219 #else
1220 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1221 #endif
1223 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1225 update_load_add(&rq->load, load);
1228 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1230 update_load_sub(&rq->load, load);
1233 #ifdef CONFIG_SMP
1234 static unsigned long source_load(int cpu, int type);
1235 static unsigned long target_load(int cpu, int type);
1236 static unsigned long cpu_avg_load_per_task(int cpu);
1237 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1238 #endif /* CONFIG_SMP */
1240 #include "sched_stats.h"
1241 #include "sched_idletask.c"
1242 #include "sched_fair.c"
1243 #include "sched_rt.c"
1244 #ifdef CONFIG_SCHED_DEBUG
1245 # include "sched_debug.c"
1246 #endif
1248 #define sched_class_highest (&rt_sched_class)
1250 static void inc_nr_running(struct rq *rq)
1252 rq->nr_running++;
1255 static void dec_nr_running(struct rq *rq)
1257 rq->nr_running--;
1260 static void set_load_weight(struct task_struct *p)
1262 if (task_has_rt_policy(p)) {
1263 p->se.load.weight = prio_to_weight[0] * 2;
1264 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1265 return;
1269 * SCHED_IDLE tasks get minimal weight:
1271 if (p->policy == SCHED_IDLE) {
1272 p->se.load.weight = WEIGHT_IDLEPRIO;
1273 p->se.load.inv_weight = WMULT_IDLEPRIO;
1274 return;
1277 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1278 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1281 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1283 sched_info_queued(p);
1284 p->sched_class->enqueue_task(rq, p, wakeup);
1285 p->se.on_rq = 1;
1288 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1290 p->sched_class->dequeue_task(rq, p, sleep);
1291 p->se.on_rq = 0;
1295 * __normal_prio - return the priority that is based on the static prio
1297 static inline int __normal_prio(struct task_struct *p)
1299 return p->static_prio;
1303 * Calculate the expected normal priority: i.e. priority
1304 * without taking RT-inheritance into account. Might be
1305 * boosted by interactivity modifiers. Changes upon fork,
1306 * setprio syscalls, and whenever the interactivity
1307 * estimator recalculates.
1309 static inline int normal_prio(struct task_struct *p)
1311 int prio;
1313 if (task_has_rt_policy(p))
1314 prio = MAX_RT_PRIO-1 - p->rt_priority;
1315 else
1316 prio = __normal_prio(p);
1317 return prio;
1321 * Calculate the current priority, i.e. the priority
1322 * taken into account by the scheduler. This value might
1323 * be boosted by RT tasks, or might be boosted by
1324 * interactivity modifiers. Will be RT if the task got
1325 * RT-boosted. If not then it returns p->normal_prio.
1327 static int effective_prio(struct task_struct *p)
1329 p->normal_prio = normal_prio(p);
1331 * If we are RT tasks or we were boosted to RT priority,
1332 * keep the priority unchanged. Otherwise, update priority
1333 * to the normal priority:
1335 if (!rt_prio(p->prio))
1336 return p->normal_prio;
1337 return p->prio;
1341 * activate_task - move a task to the runqueue.
1343 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1345 if (task_contributes_to_load(p))
1346 rq->nr_uninterruptible--;
1348 enqueue_task(rq, p, wakeup);
1349 inc_nr_running(rq);
1353 * deactivate_task - remove a task from the runqueue.
1355 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1357 if (task_contributes_to_load(p))
1358 rq->nr_uninterruptible++;
1360 dequeue_task(rq, p, sleep);
1361 dec_nr_running(rq);
1365 * task_curr - is this task currently executing on a CPU?
1366 * @p: the task in question.
1368 inline int task_curr(const struct task_struct *p)
1370 return cpu_curr(task_cpu(p)) == p;
1373 /* Used instead of source_load when we know the type == 0 */
1374 unsigned long weighted_cpuload(const int cpu)
1376 return cpu_rq(cpu)->load.weight;
1379 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1381 set_task_rq(p, cpu);
1382 #ifdef CONFIG_SMP
1384 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1385 * successfuly executed on another CPU. We must ensure that updates of
1386 * per-task data have been completed by this moment.
1388 smp_wmb();
1389 task_thread_info(p)->cpu = cpu;
1390 #endif
1393 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1394 const struct sched_class *prev_class,
1395 int oldprio, int running)
1397 if (prev_class != p->sched_class) {
1398 if (prev_class->switched_from)
1399 prev_class->switched_from(rq, p, running);
1400 p->sched_class->switched_to(rq, p, running);
1401 } else
1402 p->sched_class->prio_changed(rq, p, oldprio, running);
1405 #ifdef CONFIG_SMP
1408 * Is this task likely cache-hot:
1410 static int
1411 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1413 s64 delta;
1415 if (p->sched_class != &fair_sched_class)
1416 return 0;
1418 if (sysctl_sched_migration_cost == -1)
1419 return 1;
1420 if (sysctl_sched_migration_cost == 0)
1421 return 0;
1423 delta = now - p->se.exec_start;
1425 return delta < (s64)sysctl_sched_migration_cost;
1429 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1431 int old_cpu = task_cpu(p);
1432 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1433 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1434 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1435 u64 clock_offset;
1437 clock_offset = old_rq->clock - new_rq->clock;
1439 #ifdef CONFIG_SCHEDSTATS
1440 if (p->se.wait_start)
1441 p->se.wait_start -= clock_offset;
1442 if (p->se.sleep_start)
1443 p->se.sleep_start -= clock_offset;
1444 if (p->se.block_start)
1445 p->se.block_start -= clock_offset;
1446 if (old_cpu != new_cpu) {
1447 schedstat_inc(p, se.nr_migrations);
1448 if (task_hot(p, old_rq->clock, NULL))
1449 schedstat_inc(p, se.nr_forced2_migrations);
1451 #endif
1452 p->se.vruntime -= old_cfsrq->min_vruntime -
1453 new_cfsrq->min_vruntime;
1455 __set_task_cpu(p, new_cpu);
1458 struct migration_req {
1459 struct list_head list;
1461 struct task_struct *task;
1462 int dest_cpu;
1464 struct completion done;
1468 * The task's runqueue lock must be held.
1469 * Returns true if you have to wait for migration thread.
1471 static int
1472 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1474 struct rq *rq = task_rq(p);
1477 * If the task is not on a runqueue (and not running), then
1478 * it is sufficient to simply update the task's cpu field.
1480 if (!p->se.on_rq && !task_running(rq, p)) {
1481 set_task_cpu(p, dest_cpu);
1482 return 0;
1485 init_completion(&req->done);
1486 req->task = p;
1487 req->dest_cpu = dest_cpu;
1488 list_add(&req->list, &rq->migration_queue);
1490 return 1;
1494 * wait_task_inactive - wait for a thread to unschedule.
1496 * The caller must ensure that the task *will* unschedule sometime soon,
1497 * else this function might spin for a *long* time. This function can't
1498 * be called with interrupts off, or it may introduce deadlock with
1499 * smp_call_function() if an IPI is sent by the same process we are
1500 * waiting to become inactive.
1502 void wait_task_inactive(struct task_struct *p)
1504 unsigned long flags;
1505 int running, on_rq;
1506 struct rq *rq;
1508 for (;;) {
1510 * We do the initial early heuristics without holding
1511 * any task-queue locks at all. We'll only try to get
1512 * the runqueue lock when things look like they will
1513 * work out!
1515 rq = task_rq(p);
1518 * If the task is actively running on another CPU
1519 * still, just relax and busy-wait without holding
1520 * any locks.
1522 * NOTE! Since we don't hold any locks, it's not
1523 * even sure that "rq" stays as the right runqueue!
1524 * But we don't care, since "task_running()" will
1525 * return false if the runqueue has changed and p
1526 * is actually now running somewhere else!
1528 while (task_running(rq, p))
1529 cpu_relax();
1532 * Ok, time to look more closely! We need the rq
1533 * lock now, to be *sure*. If we're wrong, we'll
1534 * just go back and repeat.
1536 rq = task_rq_lock(p, &flags);
1537 running = task_running(rq, p);
1538 on_rq = p->se.on_rq;
1539 task_rq_unlock(rq, &flags);
1542 * Was it really running after all now that we
1543 * checked with the proper locks actually held?
1545 * Oops. Go back and try again..
1547 if (unlikely(running)) {
1548 cpu_relax();
1549 continue;
1553 * It's not enough that it's not actively running,
1554 * it must be off the runqueue _entirely_, and not
1555 * preempted!
1557 * So if it wa still runnable (but just not actively
1558 * running right now), it's preempted, and we should
1559 * yield - it could be a while.
1561 if (unlikely(on_rq)) {
1562 schedule_timeout_uninterruptible(1);
1563 continue;
1567 * Ahh, all good. It wasn't running, and it wasn't
1568 * runnable, which means that it will never become
1569 * running in the future either. We're all done!
1571 break;
1575 /***
1576 * kick_process - kick a running thread to enter/exit the kernel
1577 * @p: the to-be-kicked thread
1579 * Cause a process which is running on another CPU to enter
1580 * kernel-mode, without any delay. (to get signals handled.)
1582 * NOTE: this function doesnt have to take the runqueue lock,
1583 * because all it wants to ensure is that the remote task enters
1584 * the kernel. If the IPI races and the task has been migrated
1585 * to another CPU then no harm is done and the purpose has been
1586 * achieved as well.
1588 void kick_process(struct task_struct *p)
1590 int cpu;
1592 preempt_disable();
1593 cpu = task_cpu(p);
1594 if ((cpu != smp_processor_id()) && task_curr(p))
1595 smp_send_reschedule(cpu);
1596 preempt_enable();
1600 * Return a low guess at the load of a migration-source cpu weighted
1601 * according to the scheduling class and "nice" value.
1603 * We want to under-estimate the load of migration sources, to
1604 * balance conservatively.
1606 static unsigned long source_load(int cpu, int type)
1608 struct rq *rq = cpu_rq(cpu);
1609 unsigned long total = weighted_cpuload(cpu);
1611 if (type == 0)
1612 return total;
1614 return min(rq->cpu_load[type-1], total);
1618 * Return a high guess at the load of a migration-target cpu weighted
1619 * according to the scheduling class and "nice" value.
1621 static unsigned long target_load(int cpu, int type)
1623 struct rq *rq = cpu_rq(cpu);
1624 unsigned long total = weighted_cpuload(cpu);
1626 if (type == 0)
1627 return total;
1629 return max(rq->cpu_load[type-1], total);
1633 * Return the average load per task on the cpu's run queue
1635 static unsigned long cpu_avg_load_per_task(int cpu)
1637 struct rq *rq = cpu_rq(cpu);
1638 unsigned long total = weighted_cpuload(cpu);
1639 unsigned long n = rq->nr_running;
1641 return n ? total / n : SCHED_LOAD_SCALE;
1645 * find_idlest_group finds and returns the least busy CPU group within the
1646 * domain.
1648 static struct sched_group *
1649 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1651 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1652 unsigned long min_load = ULONG_MAX, this_load = 0;
1653 int load_idx = sd->forkexec_idx;
1654 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1656 do {
1657 unsigned long load, avg_load;
1658 int local_group;
1659 int i;
1661 /* Skip over this group if it has no CPUs allowed */
1662 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1663 continue;
1665 local_group = cpu_isset(this_cpu, group->cpumask);
1667 /* Tally up the load of all CPUs in the group */
1668 avg_load = 0;
1670 for_each_cpu_mask(i, group->cpumask) {
1671 /* Bias balancing toward cpus of our domain */
1672 if (local_group)
1673 load = source_load(i, load_idx);
1674 else
1675 load = target_load(i, load_idx);
1677 avg_load += load;
1680 /* Adjust by relative CPU power of the group */
1681 avg_load = sg_div_cpu_power(group,
1682 avg_load * SCHED_LOAD_SCALE);
1684 if (local_group) {
1685 this_load = avg_load;
1686 this = group;
1687 } else if (avg_load < min_load) {
1688 min_load = avg_load;
1689 idlest = group;
1691 } while (group = group->next, group != sd->groups);
1693 if (!idlest || 100*this_load < imbalance*min_load)
1694 return NULL;
1695 return idlest;
1699 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1701 static int
1702 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1704 cpumask_t tmp;
1705 unsigned long load, min_load = ULONG_MAX;
1706 int idlest = -1;
1707 int i;
1709 /* Traverse only the allowed CPUs */
1710 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1712 for_each_cpu_mask(i, tmp) {
1713 load = weighted_cpuload(i);
1715 if (load < min_load || (load == min_load && i == this_cpu)) {
1716 min_load = load;
1717 idlest = i;
1721 return idlest;
1725 * sched_balance_self: balance the current task (running on cpu) in domains
1726 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1727 * SD_BALANCE_EXEC.
1729 * Balance, ie. select the least loaded group.
1731 * Returns the target CPU number, or the same CPU if no balancing is needed.
1733 * preempt must be disabled.
1735 static int sched_balance_self(int cpu, int flag)
1737 struct task_struct *t = current;
1738 struct sched_domain *tmp, *sd = NULL;
1740 for_each_domain(cpu, tmp) {
1742 * If power savings logic is enabled for a domain, stop there.
1744 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1745 break;
1746 if (tmp->flags & flag)
1747 sd = tmp;
1750 while (sd) {
1751 cpumask_t span;
1752 struct sched_group *group;
1753 int new_cpu, weight;
1755 if (!(sd->flags & flag)) {
1756 sd = sd->child;
1757 continue;
1760 span = sd->span;
1761 group = find_idlest_group(sd, t, cpu);
1762 if (!group) {
1763 sd = sd->child;
1764 continue;
1767 new_cpu = find_idlest_cpu(group, t, cpu);
1768 if (new_cpu == -1 || new_cpu == cpu) {
1769 /* Now try balancing at a lower domain level of cpu */
1770 sd = sd->child;
1771 continue;
1774 /* Now try balancing at a lower domain level of new_cpu */
1775 cpu = new_cpu;
1776 sd = NULL;
1777 weight = cpus_weight(span);
1778 for_each_domain(cpu, tmp) {
1779 if (weight <= cpus_weight(tmp->span))
1780 break;
1781 if (tmp->flags & flag)
1782 sd = tmp;
1784 /* while loop will break here if sd == NULL */
1787 return cpu;
1790 #endif /* CONFIG_SMP */
1792 /***
1793 * try_to_wake_up - wake up a thread
1794 * @p: the to-be-woken-up thread
1795 * @state: the mask of task states that can be woken
1796 * @sync: do a synchronous wakeup?
1798 * Put it on the run-queue if it's not already there. The "current"
1799 * thread is always on the run-queue (except when the actual
1800 * re-schedule is in progress), and as such you're allowed to do
1801 * the simpler "current->state = TASK_RUNNING" to mark yourself
1802 * runnable without the overhead of this.
1804 * returns failure only if the task is already active.
1806 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1808 int cpu, orig_cpu, this_cpu, success = 0;
1809 unsigned long flags;
1810 long old_state;
1811 struct rq *rq;
1813 rq = task_rq_lock(p, &flags);
1814 old_state = p->state;
1815 if (!(old_state & state))
1816 goto out;
1818 if (p->se.on_rq)
1819 goto out_running;
1821 cpu = task_cpu(p);
1822 orig_cpu = cpu;
1823 this_cpu = smp_processor_id();
1825 #ifdef CONFIG_SMP
1826 if (unlikely(task_running(rq, p)))
1827 goto out_activate;
1829 cpu = p->sched_class->select_task_rq(p, sync);
1830 if (cpu != orig_cpu) {
1831 set_task_cpu(p, cpu);
1832 task_rq_unlock(rq, &flags);
1833 /* might preempt at this point */
1834 rq = task_rq_lock(p, &flags);
1835 old_state = p->state;
1836 if (!(old_state & state))
1837 goto out;
1838 if (p->se.on_rq)
1839 goto out_running;
1841 this_cpu = smp_processor_id();
1842 cpu = task_cpu(p);
1845 #ifdef CONFIG_SCHEDSTATS
1846 schedstat_inc(rq, ttwu_count);
1847 if (cpu == this_cpu)
1848 schedstat_inc(rq, ttwu_local);
1849 else {
1850 struct sched_domain *sd;
1851 for_each_domain(this_cpu, sd) {
1852 if (cpu_isset(cpu, sd->span)) {
1853 schedstat_inc(sd, ttwu_wake_remote);
1854 break;
1858 #endif
1860 out_activate:
1861 #endif /* CONFIG_SMP */
1862 schedstat_inc(p, se.nr_wakeups);
1863 if (sync)
1864 schedstat_inc(p, se.nr_wakeups_sync);
1865 if (orig_cpu != cpu)
1866 schedstat_inc(p, se.nr_wakeups_migrate);
1867 if (cpu == this_cpu)
1868 schedstat_inc(p, se.nr_wakeups_local);
1869 else
1870 schedstat_inc(p, se.nr_wakeups_remote);
1871 update_rq_clock(rq);
1872 activate_task(rq, p, 1);
1873 check_preempt_curr(rq, p);
1874 success = 1;
1876 out_running:
1877 p->state = TASK_RUNNING;
1878 #ifdef CONFIG_SMP
1879 if (p->sched_class->task_wake_up)
1880 p->sched_class->task_wake_up(rq, p);
1881 #endif
1882 out:
1883 task_rq_unlock(rq, &flags);
1885 return success;
1888 int wake_up_process(struct task_struct *p)
1890 return try_to_wake_up(p, TASK_ALL, 0);
1892 EXPORT_SYMBOL(wake_up_process);
1894 int wake_up_state(struct task_struct *p, unsigned int state)
1896 return try_to_wake_up(p, state, 0);
1900 * Perform scheduler related setup for a newly forked process p.
1901 * p is forked by current.
1903 * __sched_fork() is basic setup used by init_idle() too:
1905 static void __sched_fork(struct task_struct *p)
1907 p->se.exec_start = 0;
1908 p->se.sum_exec_runtime = 0;
1909 p->se.prev_sum_exec_runtime = 0;
1911 #ifdef CONFIG_SCHEDSTATS
1912 p->se.wait_start = 0;
1913 p->se.sum_sleep_runtime = 0;
1914 p->se.sleep_start = 0;
1915 p->se.block_start = 0;
1916 p->se.sleep_max = 0;
1917 p->se.block_max = 0;
1918 p->se.exec_max = 0;
1919 p->se.slice_max = 0;
1920 p->se.wait_max = 0;
1921 #endif
1923 INIT_LIST_HEAD(&p->rt.run_list);
1924 p->se.on_rq = 0;
1926 #ifdef CONFIG_PREEMPT_NOTIFIERS
1927 INIT_HLIST_HEAD(&p->preempt_notifiers);
1928 #endif
1931 * We mark the process as running here, but have not actually
1932 * inserted it onto the runqueue yet. This guarantees that
1933 * nobody will actually run it, and a signal or other external
1934 * event cannot wake it up and insert it on the runqueue either.
1936 p->state = TASK_RUNNING;
1940 * fork()/clone()-time setup:
1942 void sched_fork(struct task_struct *p, int clone_flags)
1944 int cpu = get_cpu();
1946 __sched_fork(p);
1948 #ifdef CONFIG_SMP
1949 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1950 #endif
1951 set_task_cpu(p, cpu);
1954 * Make sure we do not leak PI boosting priority to the child:
1956 p->prio = current->normal_prio;
1957 if (!rt_prio(p->prio))
1958 p->sched_class = &fair_sched_class;
1960 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1961 if (likely(sched_info_on()))
1962 memset(&p->sched_info, 0, sizeof(p->sched_info));
1963 #endif
1964 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1965 p->oncpu = 0;
1966 #endif
1967 #ifdef CONFIG_PREEMPT
1968 /* Want to start with kernel preemption disabled. */
1969 task_thread_info(p)->preempt_count = 1;
1970 #endif
1971 put_cpu();
1975 * wake_up_new_task - wake up a newly created task for the first time.
1977 * This function will do some initial scheduler statistics housekeeping
1978 * that must be done for every newly created context, then puts the task
1979 * on the runqueue and wakes it.
1981 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1983 unsigned long flags;
1984 struct rq *rq;
1986 rq = task_rq_lock(p, &flags);
1987 BUG_ON(p->state != TASK_RUNNING);
1988 update_rq_clock(rq);
1990 p->prio = effective_prio(p);
1992 if (!p->sched_class->task_new || !current->se.on_rq) {
1993 activate_task(rq, p, 0);
1994 } else {
1996 * Let the scheduling class do new task startup
1997 * management (if any):
1999 p->sched_class->task_new(rq, p);
2000 inc_nr_running(rq);
2002 check_preempt_curr(rq, p);
2003 #ifdef CONFIG_SMP
2004 if (p->sched_class->task_wake_up)
2005 p->sched_class->task_wake_up(rq, p);
2006 #endif
2007 task_rq_unlock(rq, &flags);
2010 #ifdef CONFIG_PREEMPT_NOTIFIERS
2013 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2014 * @notifier: notifier struct to register
2016 void preempt_notifier_register(struct preempt_notifier *notifier)
2018 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2020 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2023 * preempt_notifier_unregister - no longer interested in preemption notifications
2024 * @notifier: notifier struct to unregister
2026 * This is safe to call from within a preemption notifier.
2028 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2030 hlist_del(&notifier->link);
2032 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2034 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2036 struct preempt_notifier *notifier;
2037 struct hlist_node *node;
2039 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2040 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2043 static void
2044 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2045 struct task_struct *next)
2047 struct preempt_notifier *notifier;
2048 struct hlist_node *node;
2050 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2051 notifier->ops->sched_out(notifier, next);
2054 #else
2056 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2060 static void
2061 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2062 struct task_struct *next)
2066 #endif
2069 * prepare_task_switch - prepare to switch tasks
2070 * @rq: the runqueue preparing to switch
2071 * @prev: the current task that is being switched out
2072 * @next: the task we are going to switch to.
2074 * This is called with the rq lock held and interrupts off. It must
2075 * be paired with a subsequent finish_task_switch after the context
2076 * switch.
2078 * prepare_task_switch sets up locking and calls architecture specific
2079 * hooks.
2081 static inline void
2082 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2083 struct task_struct *next)
2085 fire_sched_out_preempt_notifiers(prev, next);
2086 prepare_lock_switch(rq, next);
2087 prepare_arch_switch(next);
2091 * finish_task_switch - clean up after a task-switch
2092 * @rq: runqueue associated with task-switch
2093 * @prev: the thread we just switched away from.
2095 * finish_task_switch must be called after the context switch, paired
2096 * with a prepare_task_switch call before the context switch.
2097 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2098 * and do any other architecture-specific cleanup actions.
2100 * Note that we may have delayed dropping an mm in context_switch(). If
2101 * so, we finish that here outside of the runqueue lock. (Doing it
2102 * with the lock held can cause deadlocks; see schedule() for
2103 * details.)
2105 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2106 __releases(rq->lock)
2108 struct mm_struct *mm = rq->prev_mm;
2109 long prev_state;
2111 rq->prev_mm = NULL;
2114 * A task struct has one reference for the use as "current".
2115 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2116 * schedule one last time. The schedule call will never return, and
2117 * the scheduled task must drop that reference.
2118 * The test for TASK_DEAD must occur while the runqueue locks are
2119 * still held, otherwise prev could be scheduled on another cpu, die
2120 * there before we look at prev->state, and then the reference would
2121 * be dropped twice.
2122 * Manfred Spraul <manfred@colorfullife.com>
2124 prev_state = prev->state;
2125 finish_arch_switch(prev);
2126 finish_lock_switch(rq, prev);
2127 #ifdef CONFIG_SMP
2128 if (current->sched_class->post_schedule)
2129 current->sched_class->post_schedule(rq);
2130 #endif
2132 fire_sched_in_preempt_notifiers(current);
2133 if (mm)
2134 mmdrop(mm);
2135 if (unlikely(prev_state == TASK_DEAD)) {
2137 * Remove function-return probe instances associated with this
2138 * task and put them back on the free list.
2140 kprobe_flush_task(prev);
2141 put_task_struct(prev);
2146 * schedule_tail - first thing a freshly forked thread must call.
2147 * @prev: the thread we just switched away from.
2149 asmlinkage void schedule_tail(struct task_struct *prev)
2150 __releases(rq->lock)
2152 struct rq *rq = this_rq();
2154 finish_task_switch(rq, prev);
2155 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2156 /* In this case, finish_task_switch does not reenable preemption */
2157 preempt_enable();
2158 #endif
2159 if (current->set_child_tid)
2160 put_user(task_pid_vnr(current), current->set_child_tid);
2164 * context_switch - switch to the new MM and the new
2165 * thread's register state.
2167 static inline void
2168 context_switch(struct rq *rq, struct task_struct *prev,
2169 struct task_struct *next)
2171 struct mm_struct *mm, *oldmm;
2173 prepare_task_switch(rq, prev, next);
2174 mm = next->mm;
2175 oldmm = prev->active_mm;
2177 * For paravirt, this is coupled with an exit in switch_to to
2178 * combine the page table reload and the switch backend into
2179 * one hypercall.
2181 arch_enter_lazy_cpu_mode();
2183 if (unlikely(!mm)) {
2184 next->active_mm = oldmm;
2185 atomic_inc(&oldmm->mm_count);
2186 enter_lazy_tlb(oldmm, next);
2187 } else
2188 switch_mm(oldmm, mm, next);
2190 if (unlikely(!prev->mm)) {
2191 prev->active_mm = NULL;
2192 rq->prev_mm = oldmm;
2195 * Since the runqueue lock will be released by the next
2196 * task (which is an invalid locking op but in the case
2197 * of the scheduler it's an obvious special-case), so we
2198 * do an early lockdep release here:
2200 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2201 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2202 #endif
2204 /* Here we just switch the register state and the stack. */
2205 switch_to(prev, next, prev);
2207 barrier();
2209 * this_rq must be evaluated again because prev may have moved
2210 * CPUs since it called schedule(), thus the 'rq' on its stack
2211 * frame will be invalid.
2213 finish_task_switch(this_rq(), prev);
2217 * nr_running, nr_uninterruptible and nr_context_switches:
2219 * externally visible scheduler statistics: current number of runnable
2220 * threads, current number of uninterruptible-sleeping threads, total
2221 * number of context switches performed since bootup.
2223 unsigned long nr_running(void)
2225 unsigned long i, sum = 0;
2227 for_each_online_cpu(i)
2228 sum += cpu_rq(i)->nr_running;
2230 return sum;
2233 unsigned long nr_uninterruptible(void)
2235 unsigned long i, sum = 0;
2237 for_each_possible_cpu(i)
2238 sum += cpu_rq(i)->nr_uninterruptible;
2241 * Since we read the counters lockless, it might be slightly
2242 * inaccurate. Do not allow it to go below zero though:
2244 if (unlikely((long)sum < 0))
2245 sum = 0;
2247 return sum;
2250 unsigned long long nr_context_switches(void)
2252 int i;
2253 unsigned long long sum = 0;
2255 for_each_possible_cpu(i)
2256 sum += cpu_rq(i)->nr_switches;
2258 return sum;
2261 unsigned long nr_iowait(void)
2263 unsigned long i, sum = 0;
2265 for_each_possible_cpu(i)
2266 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2268 return sum;
2271 unsigned long nr_active(void)
2273 unsigned long i, running = 0, uninterruptible = 0;
2275 for_each_online_cpu(i) {
2276 running += cpu_rq(i)->nr_running;
2277 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2280 if (unlikely((long)uninterruptible < 0))
2281 uninterruptible = 0;
2283 return running + uninterruptible;
2287 * Update rq->cpu_load[] statistics. This function is usually called every
2288 * scheduler tick (TICK_NSEC).
2290 static void update_cpu_load(struct rq *this_rq)
2292 unsigned long this_load = this_rq->load.weight;
2293 int i, scale;
2295 this_rq->nr_load_updates++;
2297 /* Update our load: */
2298 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2299 unsigned long old_load, new_load;
2301 /* scale is effectively 1 << i now, and >> i divides by scale */
2303 old_load = this_rq->cpu_load[i];
2304 new_load = this_load;
2306 * Round up the averaging division if load is increasing. This
2307 * prevents us from getting stuck on 9 if the load is 10, for
2308 * example.
2310 if (new_load > old_load)
2311 new_load += scale-1;
2312 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2316 #ifdef CONFIG_SMP
2319 * double_rq_lock - safely lock two runqueues
2321 * Note this does not disable interrupts like task_rq_lock,
2322 * you need to do so manually before calling.
2324 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2325 __acquires(rq1->lock)
2326 __acquires(rq2->lock)
2328 BUG_ON(!irqs_disabled());
2329 if (rq1 == rq2) {
2330 spin_lock(&rq1->lock);
2331 __acquire(rq2->lock); /* Fake it out ;) */
2332 } else {
2333 if (rq1 < rq2) {
2334 spin_lock(&rq1->lock);
2335 spin_lock(&rq2->lock);
2336 } else {
2337 spin_lock(&rq2->lock);
2338 spin_lock(&rq1->lock);
2341 update_rq_clock(rq1);
2342 update_rq_clock(rq2);
2346 * double_rq_unlock - safely unlock two runqueues
2348 * Note this does not restore interrupts like task_rq_unlock,
2349 * you need to do so manually after calling.
2351 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2352 __releases(rq1->lock)
2353 __releases(rq2->lock)
2355 spin_unlock(&rq1->lock);
2356 if (rq1 != rq2)
2357 spin_unlock(&rq2->lock);
2358 else
2359 __release(rq2->lock);
2363 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2365 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2366 __releases(this_rq->lock)
2367 __acquires(busiest->lock)
2368 __acquires(this_rq->lock)
2370 int ret = 0;
2372 if (unlikely(!irqs_disabled())) {
2373 /* printk() doesn't work good under rq->lock */
2374 spin_unlock(&this_rq->lock);
2375 BUG_ON(1);
2377 if (unlikely(!spin_trylock(&busiest->lock))) {
2378 if (busiest < this_rq) {
2379 spin_unlock(&this_rq->lock);
2380 spin_lock(&busiest->lock);
2381 spin_lock(&this_rq->lock);
2382 ret = 1;
2383 } else
2384 spin_lock(&busiest->lock);
2386 return ret;
2390 * If dest_cpu is allowed for this process, migrate the task to it.
2391 * This is accomplished by forcing the cpu_allowed mask to only
2392 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2393 * the cpu_allowed mask is restored.
2395 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2397 struct migration_req req;
2398 unsigned long flags;
2399 struct rq *rq;
2401 rq = task_rq_lock(p, &flags);
2402 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2403 || unlikely(cpu_is_offline(dest_cpu)))
2404 goto out;
2406 /* force the process onto the specified CPU */
2407 if (migrate_task(p, dest_cpu, &req)) {
2408 /* Need to wait for migration thread (might exit: take ref). */
2409 struct task_struct *mt = rq->migration_thread;
2411 get_task_struct(mt);
2412 task_rq_unlock(rq, &flags);
2413 wake_up_process(mt);
2414 put_task_struct(mt);
2415 wait_for_completion(&req.done);
2417 return;
2419 out:
2420 task_rq_unlock(rq, &flags);
2424 * sched_exec - execve() is a valuable balancing opportunity, because at
2425 * this point the task has the smallest effective memory and cache footprint.
2427 void sched_exec(void)
2429 int new_cpu, this_cpu = get_cpu();
2430 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2431 put_cpu();
2432 if (new_cpu != this_cpu)
2433 sched_migrate_task(current, new_cpu);
2437 * pull_task - move a task from a remote runqueue to the local runqueue.
2438 * Both runqueues must be locked.
2440 static void pull_task(struct rq *src_rq, struct task_struct *p,
2441 struct rq *this_rq, int this_cpu)
2443 deactivate_task(src_rq, p, 0);
2444 set_task_cpu(p, this_cpu);
2445 activate_task(this_rq, p, 0);
2447 * Note that idle threads have a prio of MAX_PRIO, for this test
2448 * to be always true for them.
2450 check_preempt_curr(this_rq, p);
2454 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2456 static
2457 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2458 struct sched_domain *sd, enum cpu_idle_type idle,
2459 int *all_pinned)
2462 * We do not migrate tasks that are:
2463 * 1) running (obviously), or
2464 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2465 * 3) are cache-hot on their current CPU.
2467 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2468 schedstat_inc(p, se.nr_failed_migrations_affine);
2469 return 0;
2471 *all_pinned = 0;
2473 if (task_running(rq, p)) {
2474 schedstat_inc(p, se.nr_failed_migrations_running);
2475 return 0;
2479 * Aggressive migration if:
2480 * 1) task is cache cold, or
2481 * 2) too many balance attempts have failed.
2484 if (!task_hot(p, rq->clock, sd) ||
2485 sd->nr_balance_failed > sd->cache_nice_tries) {
2486 #ifdef CONFIG_SCHEDSTATS
2487 if (task_hot(p, rq->clock, sd)) {
2488 schedstat_inc(sd, lb_hot_gained[idle]);
2489 schedstat_inc(p, se.nr_forced_migrations);
2491 #endif
2492 return 1;
2495 if (task_hot(p, rq->clock, sd)) {
2496 schedstat_inc(p, se.nr_failed_migrations_hot);
2497 return 0;
2499 return 1;
2502 static unsigned long
2503 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2504 unsigned long max_load_move, struct sched_domain *sd,
2505 enum cpu_idle_type idle, int *all_pinned,
2506 int *this_best_prio, struct rq_iterator *iterator)
2508 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2509 struct task_struct *p;
2510 long rem_load_move = max_load_move;
2512 if (max_load_move == 0)
2513 goto out;
2515 pinned = 1;
2518 * Start the load-balancing iterator:
2520 p = iterator->start(iterator->arg);
2521 next:
2522 if (!p || loops++ > sysctl_sched_nr_migrate)
2523 goto out;
2525 * To help distribute high priority tasks across CPUs we don't
2526 * skip a task if it will be the highest priority task (i.e. smallest
2527 * prio value) on its new queue regardless of its load weight
2529 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2530 SCHED_LOAD_SCALE_FUZZ;
2531 if ((skip_for_load && p->prio >= *this_best_prio) ||
2532 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2533 p = iterator->next(iterator->arg);
2534 goto next;
2537 pull_task(busiest, p, this_rq, this_cpu);
2538 pulled++;
2539 rem_load_move -= p->se.load.weight;
2542 * We only want to steal up to the prescribed amount of weighted load.
2544 if (rem_load_move > 0) {
2545 if (p->prio < *this_best_prio)
2546 *this_best_prio = p->prio;
2547 p = iterator->next(iterator->arg);
2548 goto next;
2550 out:
2552 * Right now, this is one of only two places pull_task() is called,
2553 * so we can safely collect pull_task() stats here rather than
2554 * inside pull_task().
2556 schedstat_add(sd, lb_gained[idle], pulled);
2558 if (all_pinned)
2559 *all_pinned = pinned;
2561 return max_load_move - rem_load_move;
2565 * move_tasks tries to move up to max_load_move weighted load from busiest to
2566 * this_rq, as part of a balancing operation within domain "sd".
2567 * Returns 1 if successful and 0 otherwise.
2569 * Called with both runqueues locked.
2571 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2572 unsigned long max_load_move,
2573 struct sched_domain *sd, enum cpu_idle_type idle,
2574 int *all_pinned)
2576 const struct sched_class *class = sched_class_highest;
2577 unsigned long total_load_moved = 0;
2578 int this_best_prio = this_rq->curr->prio;
2580 do {
2581 total_load_moved +=
2582 class->load_balance(this_rq, this_cpu, busiest,
2583 max_load_move - total_load_moved,
2584 sd, idle, all_pinned, &this_best_prio);
2585 class = class->next;
2586 } while (class && max_load_move > total_load_moved);
2588 return total_load_moved > 0;
2591 static int
2592 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2593 struct sched_domain *sd, enum cpu_idle_type idle,
2594 struct rq_iterator *iterator)
2596 struct task_struct *p = iterator->start(iterator->arg);
2597 int pinned = 0;
2599 while (p) {
2600 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2601 pull_task(busiest, p, this_rq, this_cpu);
2603 * Right now, this is only the second place pull_task()
2604 * is called, so we can safely collect pull_task()
2605 * stats here rather than inside pull_task().
2607 schedstat_inc(sd, lb_gained[idle]);
2609 return 1;
2611 p = iterator->next(iterator->arg);
2614 return 0;
2618 * move_one_task tries to move exactly one task from busiest to this_rq, as
2619 * part of active balancing operations within "domain".
2620 * Returns 1 if successful and 0 otherwise.
2622 * Called with both runqueues locked.
2624 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2625 struct sched_domain *sd, enum cpu_idle_type idle)
2627 const struct sched_class *class;
2629 for (class = sched_class_highest; class; class = class->next)
2630 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2631 return 1;
2633 return 0;
2637 * find_busiest_group finds and returns the busiest CPU group within the
2638 * domain. It calculates and returns the amount of weighted load which
2639 * should be moved to restore balance via the imbalance parameter.
2641 static struct sched_group *
2642 find_busiest_group(struct sched_domain *sd, int this_cpu,
2643 unsigned long *imbalance, enum cpu_idle_type idle,
2644 int *sd_idle, cpumask_t *cpus, int *balance)
2646 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2647 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2648 unsigned long max_pull;
2649 unsigned long busiest_load_per_task, busiest_nr_running;
2650 unsigned long this_load_per_task, this_nr_running;
2651 int load_idx, group_imb = 0;
2652 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2653 int power_savings_balance = 1;
2654 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2655 unsigned long min_nr_running = ULONG_MAX;
2656 struct sched_group *group_min = NULL, *group_leader = NULL;
2657 #endif
2659 max_load = this_load = total_load = total_pwr = 0;
2660 busiest_load_per_task = busiest_nr_running = 0;
2661 this_load_per_task = this_nr_running = 0;
2662 if (idle == CPU_NOT_IDLE)
2663 load_idx = sd->busy_idx;
2664 else if (idle == CPU_NEWLY_IDLE)
2665 load_idx = sd->newidle_idx;
2666 else
2667 load_idx = sd->idle_idx;
2669 do {
2670 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2671 int local_group;
2672 int i;
2673 int __group_imb = 0;
2674 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2675 unsigned long sum_nr_running, sum_weighted_load;
2677 local_group = cpu_isset(this_cpu, group->cpumask);
2679 if (local_group)
2680 balance_cpu = first_cpu(group->cpumask);
2682 /* Tally up the load of all CPUs in the group */
2683 sum_weighted_load = sum_nr_running = avg_load = 0;
2684 max_cpu_load = 0;
2685 min_cpu_load = ~0UL;
2687 for_each_cpu_mask(i, group->cpumask) {
2688 struct rq *rq;
2690 if (!cpu_isset(i, *cpus))
2691 continue;
2693 rq = cpu_rq(i);
2695 if (*sd_idle && rq->nr_running)
2696 *sd_idle = 0;
2698 /* Bias balancing toward cpus of our domain */
2699 if (local_group) {
2700 if (idle_cpu(i) && !first_idle_cpu) {
2701 first_idle_cpu = 1;
2702 balance_cpu = i;
2705 load = target_load(i, load_idx);
2706 } else {
2707 load = source_load(i, load_idx);
2708 if (load > max_cpu_load)
2709 max_cpu_load = load;
2710 if (min_cpu_load > load)
2711 min_cpu_load = load;
2714 avg_load += load;
2715 sum_nr_running += rq->nr_running;
2716 sum_weighted_load += weighted_cpuload(i);
2720 * First idle cpu or the first cpu(busiest) in this sched group
2721 * is eligible for doing load balancing at this and above
2722 * domains. In the newly idle case, we will allow all the cpu's
2723 * to do the newly idle load balance.
2725 if (idle != CPU_NEWLY_IDLE && local_group &&
2726 balance_cpu != this_cpu && balance) {
2727 *balance = 0;
2728 goto ret;
2731 total_load += avg_load;
2732 total_pwr += group->__cpu_power;
2734 /* Adjust by relative CPU power of the group */
2735 avg_load = sg_div_cpu_power(group,
2736 avg_load * SCHED_LOAD_SCALE);
2738 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2739 __group_imb = 1;
2741 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2743 if (local_group) {
2744 this_load = avg_load;
2745 this = group;
2746 this_nr_running = sum_nr_running;
2747 this_load_per_task = sum_weighted_load;
2748 } else if (avg_load > max_load &&
2749 (sum_nr_running > group_capacity || __group_imb)) {
2750 max_load = avg_load;
2751 busiest = group;
2752 busiest_nr_running = sum_nr_running;
2753 busiest_load_per_task = sum_weighted_load;
2754 group_imb = __group_imb;
2757 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2759 * Busy processors will not participate in power savings
2760 * balance.
2762 if (idle == CPU_NOT_IDLE ||
2763 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2764 goto group_next;
2767 * If the local group is idle or completely loaded
2768 * no need to do power savings balance at this domain
2770 if (local_group && (this_nr_running >= group_capacity ||
2771 !this_nr_running))
2772 power_savings_balance = 0;
2775 * If a group is already running at full capacity or idle,
2776 * don't include that group in power savings calculations
2778 if (!power_savings_balance || sum_nr_running >= group_capacity
2779 || !sum_nr_running)
2780 goto group_next;
2783 * Calculate the group which has the least non-idle load.
2784 * This is the group from where we need to pick up the load
2785 * for saving power
2787 if ((sum_nr_running < min_nr_running) ||
2788 (sum_nr_running == min_nr_running &&
2789 first_cpu(group->cpumask) <
2790 first_cpu(group_min->cpumask))) {
2791 group_min = group;
2792 min_nr_running = sum_nr_running;
2793 min_load_per_task = sum_weighted_load /
2794 sum_nr_running;
2798 * Calculate the group which is almost near its
2799 * capacity but still has some space to pick up some load
2800 * from other group and save more power
2802 if (sum_nr_running <= group_capacity - 1) {
2803 if (sum_nr_running > leader_nr_running ||
2804 (sum_nr_running == leader_nr_running &&
2805 first_cpu(group->cpumask) >
2806 first_cpu(group_leader->cpumask))) {
2807 group_leader = group;
2808 leader_nr_running = sum_nr_running;
2811 group_next:
2812 #endif
2813 group = group->next;
2814 } while (group != sd->groups);
2816 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2817 goto out_balanced;
2819 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2821 if (this_load >= avg_load ||
2822 100*max_load <= sd->imbalance_pct*this_load)
2823 goto out_balanced;
2825 busiest_load_per_task /= busiest_nr_running;
2826 if (group_imb)
2827 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2830 * We're trying to get all the cpus to the average_load, so we don't
2831 * want to push ourselves above the average load, nor do we wish to
2832 * reduce the max loaded cpu below the average load, as either of these
2833 * actions would just result in more rebalancing later, and ping-pong
2834 * tasks around. Thus we look for the minimum possible imbalance.
2835 * Negative imbalances (*we* are more loaded than anyone else) will
2836 * be counted as no imbalance for these purposes -- we can't fix that
2837 * by pulling tasks to us. Be careful of negative numbers as they'll
2838 * appear as very large values with unsigned longs.
2840 if (max_load <= busiest_load_per_task)
2841 goto out_balanced;
2844 * In the presence of smp nice balancing, certain scenarios can have
2845 * max load less than avg load(as we skip the groups at or below
2846 * its cpu_power, while calculating max_load..)
2848 if (max_load < avg_load) {
2849 *imbalance = 0;
2850 goto small_imbalance;
2853 /* Don't want to pull so many tasks that a group would go idle */
2854 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2856 /* How much load to actually move to equalise the imbalance */
2857 *imbalance = min(max_pull * busiest->__cpu_power,
2858 (avg_load - this_load) * this->__cpu_power)
2859 / SCHED_LOAD_SCALE;
2862 * if *imbalance is less than the average load per runnable task
2863 * there is no gaurantee that any tasks will be moved so we'll have
2864 * a think about bumping its value to force at least one task to be
2865 * moved
2867 if (*imbalance < busiest_load_per_task) {
2868 unsigned long tmp, pwr_now, pwr_move;
2869 unsigned int imbn;
2871 small_imbalance:
2872 pwr_move = pwr_now = 0;
2873 imbn = 2;
2874 if (this_nr_running) {
2875 this_load_per_task /= this_nr_running;
2876 if (busiest_load_per_task > this_load_per_task)
2877 imbn = 1;
2878 } else
2879 this_load_per_task = SCHED_LOAD_SCALE;
2881 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2882 busiest_load_per_task * imbn) {
2883 *imbalance = busiest_load_per_task;
2884 return busiest;
2888 * OK, we don't have enough imbalance to justify moving tasks,
2889 * however we may be able to increase total CPU power used by
2890 * moving them.
2893 pwr_now += busiest->__cpu_power *
2894 min(busiest_load_per_task, max_load);
2895 pwr_now += this->__cpu_power *
2896 min(this_load_per_task, this_load);
2897 pwr_now /= SCHED_LOAD_SCALE;
2899 /* Amount of load we'd subtract */
2900 tmp = sg_div_cpu_power(busiest,
2901 busiest_load_per_task * SCHED_LOAD_SCALE);
2902 if (max_load > tmp)
2903 pwr_move += busiest->__cpu_power *
2904 min(busiest_load_per_task, max_load - tmp);
2906 /* Amount of load we'd add */
2907 if (max_load * busiest->__cpu_power <
2908 busiest_load_per_task * SCHED_LOAD_SCALE)
2909 tmp = sg_div_cpu_power(this,
2910 max_load * busiest->__cpu_power);
2911 else
2912 tmp = sg_div_cpu_power(this,
2913 busiest_load_per_task * SCHED_LOAD_SCALE);
2914 pwr_move += this->__cpu_power *
2915 min(this_load_per_task, this_load + tmp);
2916 pwr_move /= SCHED_LOAD_SCALE;
2918 /* Move if we gain throughput */
2919 if (pwr_move > pwr_now)
2920 *imbalance = busiest_load_per_task;
2923 return busiest;
2925 out_balanced:
2926 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2927 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2928 goto ret;
2930 if (this == group_leader && group_leader != group_min) {
2931 *imbalance = min_load_per_task;
2932 return group_min;
2934 #endif
2935 ret:
2936 *imbalance = 0;
2937 return NULL;
2941 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2943 static struct rq *
2944 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2945 unsigned long imbalance, cpumask_t *cpus)
2947 struct rq *busiest = NULL, *rq;
2948 unsigned long max_load = 0;
2949 int i;
2951 for_each_cpu_mask(i, group->cpumask) {
2952 unsigned long wl;
2954 if (!cpu_isset(i, *cpus))
2955 continue;
2957 rq = cpu_rq(i);
2958 wl = weighted_cpuload(i);
2960 if (rq->nr_running == 1 && wl > imbalance)
2961 continue;
2963 if (wl > max_load) {
2964 max_load = wl;
2965 busiest = rq;
2969 return busiest;
2973 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2974 * so long as it is large enough.
2976 #define MAX_PINNED_INTERVAL 512
2979 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2980 * tasks if there is an imbalance.
2982 static int load_balance(int this_cpu, struct rq *this_rq,
2983 struct sched_domain *sd, enum cpu_idle_type idle,
2984 int *balance)
2986 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2987 struct sched_group *group;
2988 unsigned long imbalance;
2989 struct rq *busiest;
2990 cpumask_t cpus = CPU_MASK_ALL;
2991 unsigned long flags;
2994 * When power savings policy is enabled for the parent domain, idle
2995 * sibling can pick up load irrespective of busy siblings. In this case,
2996 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2997 * portraying it as CPU_NOT_IDLE.
2999 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3000 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3001 sd_idle = 1;
3003 schedstat_inc(sd, lb_count[idle]);
3005 redo:
3006 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3007 &cpus, balance);
3009 if (*balance == 0)
3010 goto out_balanced;
3012 if (!group) {
3013 schedstat_inc(sd, lb_nobusyg[idle]);
3014 goto out_balanced;
3017 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3018 if (!busiest) {
3019 schedstat_inc(sd, lb_nobusyq[idle]);
3020 goto out_balanced;
3023 BUG_ON(busiest == this_rq);
3025 schedstat_add(sd, lb_imbalance[idle], imbalance);
3027 ld_moved = 0;
3028 if (busiest->nr_running > 1) {
3030 * Attempt to move tasks. If find_busiest_group has found
3031 * an imbalance but busiest->nr_running <= 1, the group is
3032 * still unbalanced. ld_moved simply stays zero, so it is
3033 * correctly treated as an imbalance.
3035 local_irq_save(flags);
3036 double_rq_lock(this_rq, busiest);
3037 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3038 imbalance, sd, idle, &all_pinned);
3039 double_rq_unlock(this_rq, busiest);
3040 local_irq_restore(flags);
3043 * some other cpu did the load balance for us.
3045 if (ld_moved && this_cpu != smp_processor_id())
3046 resched_cpu(this_cpu);
3048 /* All tasks on this runqueue were pinned by CPU affinity */
3049 if (unlikely(all_pinned)) {
3050 cpu_clear(cpu_of(busiest), cpus);
3051 if (!cpus_empty(cpus))
3052 goto redo;
3053 goto out_balanced;
3057 if (!ld_moved) {
3058 schedstat_inc(sd, lb_failed[idle]);
3059 sd->nr_balance_failed++;
3061 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3063 spin_lock_irqsave(&busiest->lock, flags);
3065 /* don't kick the migration_thread, if the curr
3066 * task on busiest cpu can't be moved to this_cpu
3068 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3069 spin_unlock_irqrestore(&busiest->lock, flags);
3070 all_pinned = 1;
3071 goto out_one_pinned;
3074 if (!busiest->active_balance) {
3075 busiest->active_balance = 1;
3076 busiest->push_cpu = this_cpu;
3077 active_balance = 1;
3079 spin_unlock_irqrestore(&busiest->lock, flags);
3080 if (active_balance)
3081 wake_up_process(busiest->migration_thread);
3084 * We've kicked active balancing, reset the failure
3085 * counter.
3087 sd->nr_balance_failed = sd->cache_nice_tries+1;
3089 } else
3090 sd->nr_balance_failed = 0;
3092 if (likely(!active_balance)) {
3093 /* We were unbalanced, so reset the balancing interval */
3094 sd->balance_interval = sd->min_interval;
3095 } else {
3097 * If we've begun active balancing, start to back off. This
3098 * case may not be covered by the all_pinned logic if there
3099 * is only 1 task on the busy runqueue (because we don't call
3100 * move_tasks).
3102 if (sd->balance_interval < sd->max_interval)
3103 sd->balance_interval *= 2;
3106 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3107 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3108 return -1;
3109 return ld_moved;
3111 out_balanced:
3112 schedstat_inc(sd, lb_balanced[idle]);
3114 sd->nr_balance_failed = 0;
3116 out_one_pinned:
3117 /* tune up the balancing interval */
3118 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3119 (sd->balance_interval < sd->max_interval))
3120 sd->balance_interval *= 2;
3122 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3123 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3124 return -1;
3125 return 0;
3129 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3130 * tasks if there is an imbalance.
3132 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3133 * this_rq is locked.
3135 static int
3136 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3138 struct sched_group *group;
3139 struct rq *busiest = NULL;
3140 unsigned long imbalance;
3141 int ld_moved = 0;
3142 int sd_idle = 0;
3143 int all_pinned = 0;
3144 cpumask_t cpus = CPU_MASK_ALL;
3147 * When power savings policy is enabled for the parent domain, idle
3148 * sibling can pick up load irrespective of busy siblings. In this case,
3149 * let the state of idle sibling percolate up as IDLE, instead of
3150 * portraying it as CPU_NOT_IDLE.
3152 if (sd->flags & SD_SHARE_CPUPOWER &&
3153 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3154 sd_idle = 1;
3156 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3157 redo:
3158 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3159 &sd_idle, &cpus, NULL);
3160 if (!group) {
3161 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3162 goto out_balanced;
3165 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3166 &cpus);
3167 if (!busiest) {
3168 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3169 goto out_balanced;
3172 BUG_ON(busiest == this_rq);
3174 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3176 ld_moved = 0;
3177 if (busiest->nr_running > 1) {
3178 /* Attempt to move tasks */
3179 double_lock_balance(this_rq, busiest);
3180 /* this_rq->clock is already updated */
3181 update_rq_clock(busiest);
3182 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3183 imbalance, sd, CPU_NEWLY_IDLE,
3184 &all_pinned);
3185 spin_unlock(&busiest->lock);
3187 if (unlikely(all_pinned)) {
3188 cpu_clear(cpu_of(busiest), cpus);
3189 if (!cpus_empty(cpus))
3190 goto redo;
3194 if (!ld_moved) {
3195 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3196 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3197 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3198 return -1;
3199 } else
3200 sd->nr_balance_failed = 0;
3202 return ld_moved;
3204 out_balanced:
3205 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3206 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3207 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3208 return -1;
3209 sd->nr_balance_failed = 0;
3211 return 0;
3215 * idle_balance is called by schedule() if this_cpu is about to become
3216 * idle. Attempts to pull tasks from other CPUs.
3218 static void idle_balance(int this_cpu, struct rq *this_rq)
3220 struct sched_domain *sd;
3221 int pulled_task = -1;
3222 unsigned long next_balance = jiffies + HZ;
3224 for_each_domain(this_cpu, sd) {
3225 unsigned long interval;
3227 if (!(sd->flags & SD_LOAD_BALANCE))
3228 continue;
3230 if (sd->flags & SD_BALANCE_NEWIDLE)
3231 /* If we've pulled tasks over stop searching: */
3232 pulled_task = load_balance_newidle(this_cpu,
3233 this_rq, sd);
3235 interval = msecs_to_jiffies(sd->balance_interval);
3236 if (time_after(next_balance, sd->last_balance + interval))
3237 next_balance = sd->last_balance + interval;
3238 if (pulled_task)
3239 break;
3241 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3243 * We are going idle. next_balance may be set based on
3244 * a busy processor. So reset next_balance.
3246 this_rq->next_balance = next_balance;
3251 * active_load_balance is run by migration threads. It pushes running tasks
3252 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3253 * running on each physical CPU where possible, and avoids physical /
3254 * logical imbalances.
3256 * Called with busiest_rq locked.
3258 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3260 int target_cpu = busiest_rq->push_cpu;
3261 struct sched_domain *sd;
3262 struct rq *target_rq;
3264 /* Is there any task to move? */
3265 if (busiest_rq->nr_running <= 1)
3266 return;
3268 target_rq = cpu_rq(target_cpu);
3271 * This condition is "impossible", if it occurs
3272 * we need to fix it. Originally reported by
3273 * Bjorn Helgaas on a 128-cpu setup.
3275 BUG_ON(busiest_rq == target_rq);
3277 /* move a task from busiest_rq to target_rq */
3278 double_lock_balance(busiest_rq, target_rq);
3279 update_rq_clock(busiest_rq);
3280 update_rq_clock(target_rq);
3282 /* Search for an sd spanning us and the target CPU. */
3283 for_each_domain(target_cpu, sd) {
3284 if ((sd->flags & SD_LOAD_BALANCE) &&
3285 cpu_isset(busiest_cpu, sd->span))
3286 break;
3289 if (likely(sd)) {
3290 schedstat_inc(sd, alb_count);
3292 if (move_one_task(target_rq, target_cpu, busiest_rq,
3293 sd, CPU_IDLE))
3294 schedstat_inc(sd, alb_pushed);
3295 else
3296 schedstat_inc(sd, alb_failed);
3298 spin_unlock(&target_rq->lock);
3301 #ifdef CONFIG_NO_HZ
3302 static struct {
3303 atomic_t load_balancer;
3304 cpumask_t cpu_mask;
3305 } nohz ____cacheline_aligned = {
3306 .load_balancer = ATOMIC_INIT(-1),
3307 .cpu_mask = CPU_MASK_NONE,
3311 * This routine will try to nominate the ilb (idle load balancing)
3312 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3313 * load balancing on behalf of all those cpus. If all the cpus in the system
3314 * go into this tickless mode, then there will be no ilb owner (as there is
3315 * no need for one) and all the cpus will sleep till the next wakeup event
3316 * arrives...
3318 * For the ilb owner, tick is not stopped. And this tick will be used
3319 * for idle load balancing. ilb owner will still be part of
3320 * nohz.cpu_mask..
3322 * While stopping the tick, this cpu will become the ilb owner if there
3323 * is no other owner. And will be the owner till that cpu becomes busy
3324 * or if all cpus in the system stop their ticks at which point
3325 * there is no need for ilb owner.
3327 * When the ilb owner becomes busy, it nominates another owner, during the
3328 * next busy scheduler_tick()
3330 int select_nohz_load_balancer(int stop_tick)
3332 int cpu = smp_processor_id();
3334 if (stop_tick) {
3335 cpu_set(cpu, nohz.cpu_mask);
3336 cpu_rq(cpu)->in_nohz_recently = 1;
3339 * If we are going offline and still the leader, give up!
3341 if (cpu_is_offline(cpu) &&
3342 atomic_read(&nohz.load_balancer) == cpu) {
3343 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3344 BUG();
3345 return 0;
3348 /* time for ilb owner also to sleep */
3349 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3350 if (atomic_read(&nohz.load_balancer) == cpu)
3351 atomic_set(&nohz.load_balancer, -1);
3352 return 0;
3355 if (atomic_read(&nohz.load_balancer) == -1) {
3356 /* make me the ilb owner */
3357 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3358 return 1;
3359 } else if (atomic_read(&nohz.load_balancer) == cpu)
3360 return 1;
3361 } else {
3362 if (!cpu_isset(cpu, nohz.cpu_mask))
3363 return 0;
3365 cpu_clear(cpu, nohz.cpu_mask);
3367 if (atomic_read(&nohz.load_balancer) == cpu)
3368 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3369 BUG();
3371 return 0;
3373 #endif
3375 static DEFINE_SPINLOCK(balancing);
3378 * It checks each scheduling domain to see if it is due to be balanced,
3379 * and initiates a balancing operation if so.
3381 * Balancing parameters are set up in arch_init_sched_domains.
3383 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3385 int balance = 1;
3386 struct rq *rq = cpu_rq(cpu);
3387 unsigned long interval;
3388 struct sched_domain *sd;
3389 /* Earliest time when we have to do rebalance again */
3390 unsigned long next_balance = jiffies + 60*HZ;
3391 int update_next_balance = 0;
3393 for_each_domain(cpu, sd) {
3394 if (!(sd->flags & SD_LOAD_BALANCE))
3395 continue;
3397 interval = sd->balance_interval;
3398 if (idle != CPU_IDLE)
3399 interval *= sd->busy_factor;
3401 /* scale ms to jiffies */
3402 interval = msecs_to_jiffies(interval);
3403 if (unlikely(!interval))
3404 interval = 1;
3405 if (interval > HZ*NR_CPUS/10)
3406 interval = HZ*NR_CPUS/10;
3409 if (sd->flags & SD_SERIALIZE) {
3410 if (!spin_trylock(&balancing))
3411 goto out;
3414 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3415 if (load_balance(cpu, rq, sd, idle, &balance)) {
3417 * We've pulled tasks over so either we're no
3418 * longer idle, or one of our SMT siblings is
3419 * not idle.
3421 idle = CPU_NOT_IDLE;
3423 sd->last_balance = jiffies;
3425 if (sd->flags & SD_SERIALIZE)
3426 spin_unlock(&balancing);
3427 out:
3428 if (time_after(next_balance, sd->last_balance + interval)) {
3429 next_balance = sd->last_balance + interval;
3430 update_next_balance = 1;
3434 * Stop the load balance at this level. There is another
3435 * CPU in our sched group which is doing load balancing more
3436 * actively.
3438 if (!balance)
3439 break;
3443 * next_balance will be updated only when there is a need.
3444 * When the cpu is attached to null domain for ex, it will not be
3445 * updated.
3447 if (likely(update_next_balance))
3448 rq->next_balance = next_balance;
3452 * run_rebalance_domains is triggered when needed from the scheduler tick.
3453 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3454 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3456 static void run_rebalance_domains(struct softirq_action *h)
3458 int this_cpu = smp_processor_id();
3459 struct rq *this_rq = cpu_rq(this_cpu);
3460 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3461 CPU_IDLE : CPU_NOT_IDLE;
3463 rebalance_domains(this_cpu, idle);
3465 #ifdef CONFIG_NO_HZ
3467 * If this cpu is the owner for idle load balancing, then do the
3468 * balancing on behalf of the other idle cpus whose ticks are
3469 * stopped.
3471 if (this_rq->idle_at_tick &&
3472 atomic_read(&nohz.load_balancer) == this_cpu) {
3473 cpumask_t cpus = nohz.cpu_mask;
3474 struct rq *rq;
3475 int balance_cpu;
3477 cpu_clear(this_cpu, cpus);
3478 for_each_cpu_mask(balance_cpu, cpus) {
3480 * If this cpu gets work to do, stop the load balancing
3481 * work being done for other cpus. Next load
3482 * balancing owner will pick it up.
3484 if (need_resched())
3485 break;
3487 rebalance_domains(balance_cpu, CPU_IDLE);
3489 rq = cpu_rq(balance_cpu);
3490 if (time_after(this_rq->next_balance, rq->next_balance))
3491 this_rq->next_balance = rq->next_balance;
3494 #endif
3498 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3500 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3501 * idle load balancing owner or decide to stop the periodic load balancing,
3502 * if the whole system is idle.
3504 static inline void trigger_load_balance(struct rq *rq, int cpu)
3506 #ifdef CONFIG_NO_HZ
3508 * If we were in the nohz mode recently and busy at the current
3509 * scheduler tick, then check if we need to nominate new idle
3510 * load balancer.
3512 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3513 rq->in_nohz_recently = 0;
3515 if (atomic_read(&nohz.load_balancer) == cpu) {
3516 cpu_clear(cpu, nohz.cpu_mask);
3517 atomic_set(&nohz.load_balancer, -1);
3520 if (atomic_read(&nohz.load_balancer) == -1) {
3522 * simple selection for now: Nominate the
3523 * first cpu in the nohz list to be the next
3524 * ilb owner.
3526 * TBD: Traverse the sched domains and nominate
3527 * the nearest cpu in the nohz.cpu_mask.
3529 int ilb = first_cpu(nohz.cpu_mask);
3531 if (ilb != NR_CPUS)
3532 resched_cpu(ilb);
3537 * If this cpu is idle and doing idle load balancing for all the
3538 * cpus with ticks stopped, is it time for that to stop?
3540 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3541 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3542 resched_cpu(cpu);
3543 return;
3547 * If this cpu is idle and the idle load balancing is done by
3548 * someone else, then no need raise the SCHED_SOFTIRQ
3550 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3551 cpu_isset(cpu, nohz.cpu_mask))
3552 return;
3553 #endif
3554 if (time_after_eq(jiffies, rq->next_balance))
3555 raise_softirq(SCHED_SOFTIRQ);
3558 #else /* CONFIG_SMP */
3561 * on UP we do not need to balance between CPUs:
3563 static inline void idle_balance(int cpu, struct rq *rq)
3567 #endif
3569 DEFINE_PER_CPU(struct kernel_stat, kstat);
3571 EXPORT_PER_CPU_SYMBOL(kstat);
3574 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3575 * that have not yet been banked in case the task is currently running.
3577 unsigned long long task_sched_runtime(struct task_struct *p)
3579 unsigned long flags;
3580 u64 ns, delta_exec;
3581 struct rq *rq;
3583 rq = task_rq_lock(p, &flags);
3584 ns = p->se.sum_exec_runtime;
3585 if (task_current(rq, p)) {
3586 update_rq_clock(rq);
3587 delta_exec = rq->clock - p->se.exec_start;
3588 if ((s64)delta_exec > 0)
3589 ns += delta_exec;
3591 task_rq_unlock(rq, &flags);
3593 return ns;
3597 * Account user cpu time to a process.
3598 * @p: the process that the cpu time gets accounted to
3599 * @cputime: the cpu time spent in user space since the last update
3601 void account_user_time(struct task_struct *p, cputime_t cputime)
3603 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3604 cputime64_t tmp;
3606 p->utime = cputime_add(p->utime, cputime);
3608 /* Add user time to cpustat. */
3609 tmp = cputime_to_cputime64(cputime);
3610 if (TASK_NICE(p) > 0)
3611 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3612 else
3613 cpustat->user = cputime64_add(cpustat->user, tmp);
3617 * Account guest cpu time to a process.
3618 * @p: the process that the cpu time gets accounted to
3619 * @cputime: the cpu time spent in virtual machine since the last update
3621 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3623 cputime64_t tmp;
3624 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3626 tmp = cputime_to_cputime64(cputime);
3628 p->utime = cputime_add(p->utime, cputime);
3629 p->gtime = cputime_add(p->gtime, cputime);
3631 cpustat->user = cputime64_add(cpustat->user, tmp);
3632 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3636 * Account scaled user cpu time to a process.
3637 * @p: the process that the cpu time gets accounted to
3638 * @cputime: the cpu time spent in user space since the last update
3640 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3642 p->utimescaled = cputime_add(p->utimescaled, cputime);
3646 * Account system cpu time to a process.
3647 * @p: the process that the cpu time gets accounted to
3648 * @hardirq_offset: the offset to subtract from hardirq_count()
3649 * @cputime: the cpu time spent in kernel space since the last update
3651 void account_system_time(struct task_struct *p, int hardirq_offset,
3652 cputime_t cputime)
3654 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3655 struct rq *rq = this_rq();
3656 cputime64_t tmp;
3658 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3659 return account_guest_time(p, cputime);
3661 p->stime = cputime_add(p->stime, cputime);
3663 /* Add system time to cpustat. */
3664 tmp = cputime_to_cputime64(cputime);
3665 if (hardirq_count() - hardirq_offset)
3666 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3667 else if (softirq_count())
3668 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3669 else if (p != rq->idle)
3670 cpustat->system = cputime64_add(cpustat->system, tmp);
3671 else if (atomic_read(&rq->nr_iowait) > 0)
3672 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3673 else
3674 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3675 /* Account for system time used */
3676 acct_update_integrals(p);
3680 * Account scaled system cpu time to a process.
3681 * @p: the process that the cpu time gets accounted to
3682 * @hardirq_offset: the offset to subtract from hardirq_count()
3683 * @cputime: the cpu time spent in kernel space since the last update
3685 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3687 p->stimescaled = cputime_add(p->stimescaled, cputime);
3691 * Account for involuntary wait time.
3692 * @p: the process from which the cpu time has been stolen
3693 * @steal: the cpu time spent in involuntary wait
3695 void account_steal_time(struct task_struct *p, cputime_t steal)
3697 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3698 cputime64_t tmp = cputime_to_cputime64(steal);
3699 struct rq *rq = this_rq();
3701 if (p == rq->idle) {
3702 p->stime = cputime_add(p->stime, steal);
3703 if (atomic_read(&rq->nr_iowait) > 0)
3704 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3705 else
3706 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3707 } else
3708 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3712 * This function gets called by the timer code, with HZ frequency.
3713 * We call it with interrupts disabled.
3715 * It also gets called by the fork code, when changing the parent's
3716 * timeslices.
3718 void scheduler_tick(void)
3720 int cpu = smp_processor_id();
3721 struct rq *rq = cpu_rq(cpu);
3722 struct task_struct *curr = rq->curr;
3723 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3725 spin_lock(&rq->lock);
3726 __update_rq_clock(rq);
3728 * Let rq->clock advance by at least TICK_NSEC:
3730 if (unlikely(rq->clock < next_tick)) {
3731 rq->clock = next_tick;
3732 rq->clock_underflows++;
3734 rq->tick_timestamp = rq->clock;
3735 update_cpu_load(rq);
3736 curr->sched_class->task_tick(rq, curr, 0);
3737 update_sched_rt_period(rq);
3738 spin_unlock(&rq->lock);
3740 #ifdef CONFIG_SMP
3741 rq->idle_at_tick = idle_cpu(cpu);
3742 trigger_load_balance(rq, cpu);
3743 #endif
3746 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3748 void add_preempt_count(int val)
3751 * Underflow?
3753 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3754 return;
3755 preempt_count() += val;
3757 * Spinlock count overflowing soon?
3759 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3760 PREEMPT_MASK - 10);
3762 EXPORT_SYMBOL(add_preempt_count);
3764 void sub_preempt_count(int val)
3767 * Underflow?
3769 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3770 return;
3772 * Is the spinlock portion underflowing?
3774 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3775 !(preempt_count() & PREEMPT_MASK)))
3776 return;
3778 preempt_count() -= val;
3780 EXPORT_SYMBOL(sub_preempt_count);
3782 #endif
3785 * Print scheduling while atomic bug:
3787 static noinline void __schedule_bug(struct task_struct *prev)
3789 struct pt_regs *regs = get_irq_regs();
3791 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3792 prev->comm, prev->pid, preempt_count());
3794 debug_show_held_locks(prev);
3795 if (irqs_disabled())
3796 print_irqtrace_events(prev);
3798 if (regs)
3799 show_regs(regs);
3800 else
3801 dump_stack();
3805 * Various schedule()-time debugging checks and statistics:
3807 static inline void schedule_debug(struct task_struct *prev)
3810 * Test if we are atomic. Since do_exit() needs to call into
3811 * schedule() atomically, we ignore that path for now.
3812 * Otherwise, whine if we are scheduling when we should not be.
3814 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3815 __schedule_bug(prev);
3817 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3819 schedstat_inc(this_rq(), sched_count);
3820 #ifdef CONFIG_SCHEDSTATS
3821 if (unlikely(prev->lock_depth >= 0)) {
3822 schedstat_inc(this_rq(), bkl_count);
3823 schedstat_inc(prev, sched_info.bkl_count);
3825 #endif
3829 * Pick up the highest-prio task:
3831 static inline struct task_struct *
3832 pick_next_task(struct rq *rq, struct task_struct *prev)
3834 const struct sched_class *class;
3835 struct task_struct *p;
3838 * Optimization: we know that if all tasks are in
3839 * the fair class we can call that function directly:
3841 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3842 p = fair_sched_class.pick_next_task(rq);
3843 if (likely(p))
3844 return p;
3847 class = sched_class_highest;
3848 for ( ; ; ) {
3849 p = class->pick_next_task(rq);
3850 if (p)
3851 return p;
3853 * Will never be NULL as the idle class always
3854 * returns a non-NULL p:
3856 class = class->next;
3861 * schedule() is the main scheduler function.
3863 asmlinkage void __sched schedule(void)
3865 struct task_struct *prev, *next;
3866 long *switch_count;
3867 struct rq *rq;
3868 int cpu;
3870 need_resched:
3871 preempt_disable();
3872 cpu = smp_processor_id();
3873 rq = cpu_rq(cpu);
3874 rcu_qsctr_inc(cpu);
3875 prev = rq->curr;
3876 switch_count = &prev->nivcsw;
3878 release_kernel_lock(prev);
3879 need_resched_nonpreemptible:
3881 schedule_debug(prev);
3883 hrtick_clear(rq);
3886 * Do the rq-clock update outside the rq lock:
3888 local_irq_disable();
3889 __update_rq_clock(rq);
3890 spin_lock(&rq->lock);
3891 clear_tsk_need_resched(prev);
3893 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3894 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3895 unlikely(signal_pending(prev)))) {
3896 prev->state = TASK_RUNNING;
3897 } else {
3898 deactivate_task(rq, prev, 1);
3900 switch_count = &prev->nvcsw;
3903 #ifdef CONFIG_SMP
3904 if (prev->sched_class->pre_schedule)
3905 prev->sched_class->pre_schedule(rq, prev);
3906 #endif
3908 if (unlikely(!rq->nr_running))
3909 idle_balance(cpu, rq);
3911 prev->sched_class->put_prev_task(rq, prev);
3912 next = pick_next_task(rq, prev);
3914 sched_info_switch(prev, next);
3916 if (likely(prev != next)) {
3917 rq->nr_switches++;
3918 rq->curr = next;
3919 ++*switch_count;
3921 context_switch(rq, prev, next); /* unlocks the rq */
3923 * the context switch might have flipped the stack from under
3924 * us, hence refresh the local variables.
3926 cpu = smp_processor_id();
3927 rq = cpu_rq(cpu);
3928 } else
3929 spin_unlock_irq(&rq->lock);
3931 hrtick_set(rq);
3933 if (unlikely(reacquire_kernel_lock(current) < 0))
3934 goto need_resched_nonpreemptible;
3936 preempt_enable_no_resched();
3937 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3938 goto need_resched;
3940 EXPORT_SYMBOL(schedule);
3942 #ifdef CONFIG_PREEMPT
3944 * this is the entry point to schedule() from in-kernel preemption
3945 * off of preempt_enable. Kernel preemptions off return from interrupt
3946 * occur there and call schedule directly.
3948 asmlinkage void __sched preempt_schedule(void)
3950 struct thread_info *ti = current_thread_info();
3951 struct task_struct *task = current;
3952 int saved_lock_depth;
3955 * If there is a non-zero preempt_count or interrupts are disabled,
3956 * we do not want to preempt the current task. Just return..
3958 if (likely(ti->preempt_count || irqs_disabled()))
3959 return;
3961 do {
3962 add_preempt_count(PREEMPT_ACTIVE);
3965 * We keep the big kernel semaphore locked, but we
3966 * clear ->lock_depth so that schedule() doesnt
3967 * auto-release the semaphore:
3969 saved_lock_depth = task->lock_depth;
3970 task->lock_depth = -1;
3971 schedule();
3972 task->lock_depth = saved_lock_depth;
3973 sub_preempt_count(PREEMPT_ACTIVE);
3976 * Check again in case we missed a preemption opportunity
3977 * between schedule and now.
3979 barrier();
3980 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3982 EXPORT_SYMBOL(preempt_schedule);
3985 * this is the entry point to schedule() from kernel preemption
3986 * off of irq context.
3987 * Note, that this is called and return with irqs disabled. This will
3988 * protect us against recursive calling from irq.
3990 asmlinkage void __sched preempt_schedule_irq(void)
3992 struct thread_info *ti = current_thread_info();
3993 struct task_struct *task = current;
3994 int saved_lock_depth;
3996 /* Catch callers which need to be fixed */
3997 BUG_ON(ti->preempt_count || !irqs_disabled());
3999 do {
4000 add_preempt_count(PREEMPT_ACTIVE);
4003 * We keep the big kernel semaphore locked, but we
4004 * clear ->lock_depth so that schedule() doesnt
4005 * auto-release the semaphore:
4007 saved_lock_depth = task->lock_depth;
4008 task->lock_depth = -1;
4009 local_irq_enable();
4010 schedule();
4011 local_irq_disable();
4012 task->lock_depth = saved_lock_depth;
4013 sub_preempt_count(PREEMPT_ACTIVE);
4016 * Check again in case we missed a preemption opportunity
4017 * between schedule and now.
4019 barrier();
4020 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4023 #endif /* CONFIG_PREEMPT */
4025 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4026 void *key)
4028 return try_to_wake_up(curr->private, mode, sync);
4030 EXPORT_SYMBOL(default_wake_function);
4033 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4034 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4035 * number) then we wake all the non-exclusive tasks and one exclusive task.
4037 * There are circumstances in which we can try to wake a task which has already
4038 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4039 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4041 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4042 int nr_exclusive, int sync, void *key)
4044 wait_queue_t *curr, *next;
4046 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4047 unsigned flags = curr->flags;
4049 if (curr->func(curr, mode, sync, key) &&
4050 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4051 break;
4056 * __wake_up - wake up threads blocked on a waitqueue.
4057 * @q: the waitqueue
4058 * @mode: which threads
4059 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4060 * @key: is directly passed to the wakeup function
4062 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4063 int nr_exclusive, void *key)
4065 unsigned long flags;
4067 spin_lock_irqsave(&q->lock, flags);
4068 __wake_up_common(q, mode, nr_exclusive, 0, key);
4069 spin_unlock_irqrestore(&q->lock, flags);
4071 EXPORT_SYMBOL(__wake_up);
4074 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4076 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4078 __wake_up_common(q, mode, 1, 0, NULL);
4082 * __wake_up_sync - wake up threads blocked on a waitqueue.
4083 * @q: the waitqueue
4084 * @mode: which threads
4085 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4087 * The sync wakeup differs that the waker knows that it will schedule
4088 * away soon, so while the target thread will be woken up, it will not
4089 * be migrated to another CPU - ie. the two threads are 'synchronized'
4090 * with each other. This can prevent needless bouncing between CPUs.
4092 * On UP it can prevent extra preemption.
4094 void
4095 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4097 unsigned long flags;
4098 int sync = 1;
4100 if (unlikely(!q))
4101 return;
4103 if (unlikely(!nr_exclusive))
4104 sync = 0;
4106 spin_lock_irqsave(&q->lock, flags);
4107 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4108 spin_unlock_irqrestore(&q->lock, flags);
4110 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4112 void complete(struct completion *x)
4114 unsigned long flags;
4116 spin_lock_irqsave(&x->wait.lock, flags);
4117 x->done++;
4118 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4119 spin_unlock_irqrestore(&x->wait.lock, flags);
4121 EXPORT_SYMBOL(complete);
4123 void complete_all(struct completion *x)
4125 unsigned long flags;
4127 spin_lock_irqsave(&x->wait.lock, flags);
4128 x->done += UINT_MAX/2;
4129 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4130 spin_unlock_irqrestore(&x->wait.lock, flags);
4132 EXPORT_SYMBOL(complete_all);
4134 static inline long __sched
4135 do_wait_for_common(struct completion *x, long timeout, int state)
4137 if (!x->done) {
4138 DECLARE_WAITQUEUE(wait, current);
4140 wait.flags |= WQ_FLAG_EXCLUSIVE;
4141 __add_wait_queue_tail(&x->wait, &wait);
4142 do {
4143 if ((state == TASK_INTERRUPTIBLE &&
4144 signal_pending(current)) ||
4145 (state == TASK_KILLABLE &&
4146 fatal_signal_pending(current))) {
4147 __remove_wait_queue(&x->wait, &wait);
4148 return -ERESTARTSYS;
4150 __set_current_state(state);
4151 spin_unlock_irq(&x->wait.lock);
4152 timeout = schedule_timeout(timeout);
4153 spin_lock_irq(&x->wait.lock);
4154 if (!timeout) {
4155 __remove_wait_queue(&x->wait, &wait);
4156 return timeout;
4158 } while (!x->done);
4159 __remove_wait_queue(&x->wait, &wait);
4161 x->done--;
4162 return timeout;
4165 static long __sched
4166 wait_for_common(struct completion *x, long timeout, int state)
4168 might_sleep();
4170 spin_lock_irq(&x->wait.lock);
4171 timeout = do_wait_for_common(x, timeout, state);
4172 spin_unlock_irq(&x->wait.lock);
4173 return timeout;
4176 void __sched wait_for_completion(struct completion *x)
4178 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4180 EXPORT_SYMBOL(wait_for_completion);
4182 unsigned long __sched
4183 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4185 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4187 EXPORT_SYMBOL(wait_for_completion_timeout);
4189 int __sched wait_for_completion_interruptible(struct completion *x)
4191 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4192 if (t == -ERESTARTSYS)
4193 return t;
4194 return 0;
4196 EXPORT_SYMBOL(wait_for_completion_interruptible);
4198 unsigned long __sched
4199 wait_for_completion_interruptible_timeout(struct completion *x,
4200 unsigned long timeout)
4202 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4204 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4206 int __sched wait_for_completion_killable(struct completion *x)
4208 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4209 if (t == -ERESTARTSYS)
4210 return t;
4211 return 0;
4213 EXPORT_SYMBOL(wait_for_completion_killable);
4215 static long __sched
4216 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4218 unsigned long flags;
4219 wait_queue_t wait;
4221 init_waitqueue_entry(&wait, current);
4223 __set_current_state(state);
4225 spin_lock_irqsave(&q->lock, flags);
4226 __add_wait_queue(q, &wait);
4227 spin_unlock(&q->lock);
4228 timeout = schedule_timeout(timeout);
4229 spin_lock_irq(&q->lock);
4230 __remove_wait_queue(q, &wait);
4231 spin_unlock_irqrestore(&q->lock, flags);
4233 return timeout;
4236 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4238 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4240 EXPORT_SYMBOL(interruptible_sleep_on);
4242 long __sched
4243 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4245 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4247 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4249 void __sched sleep_on(wait_queue_head_t *q)
4251 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4253 EXPORT_SYMBOL(sleep_on);
4255 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4257 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4259 EXPORT_SYMBOL(sleep_on_timeout);
4261 #ifdef CONFIG_RT_MUTEXES
4264 * rt_mutex_setprio - set the current priority of a task
4265 * @p: task
4266 * @prio: prio value (kernel-internal form)
4268 * This function changes the 'effective' priority of a task. It does
4269 * not touch ->normal_prio like __setscheduler().
4271 * Used by the rt_mutex code to implement priority inheritance logic.
4273 void rt_mutex_setprio(struct task_struct *p, int prio)
4275 unsigned long flags;
4276 int oldprio, on_rq, running;
4277 struct rq *rq;
4278 const struct sched_class *prev_class = p->sched_class;
4280 BUG_ON(prio < 0 || prio > MAX_PRIO);
4282 rq = task_rq_lock(p, &flags);
4283 update_rq_clock(rq);
4285 oldprio = p->prio;
4286 on_rq = p->se.on_rq;
4287 running = task_current(rq, p);
4288 if (on_rq) {
4289 dequeue_task(rq, p, 0);
4290 if (running)
4291 p->sched_class->put_prev_task(rq, p);
4294 if (rt_prio(prio))
4295 p->sched_class = &rt_sched_class;
4296 else
4297 p->sched_class = &fair_sched_class;
4299 p->prio = prio;
4301 if (on_rq) {
4302 if (running)
4303 p->sched_class->set_curr_task(rq);
4305 enqueue_task(rq, p, 0);
4307 check_class_changed(rq, p, prev_class, oldprio, running);
4309 task_rq_unlock(rq, &flags);
4312 #endif
4314 void set_user_nice(struct task_struct *p, long nice)
4316 int old_prio, delta, on_rq;
4317 unsigned long flags;
4318 struct rq *rq;
4320 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4321 return;
4323 * We have to be careful, if called from sys_setpriority(),
4324 * the task might be in the middle of scheduling on another CPU.
4326 rq = task_rq_lock(p, &flags);
4327 update_rq_clock(rq);
4329 * The RT priorities are set via sched_setscheduler(), but we still
4330 * allow the 'normal' nice value to be set - but as expected
4331 * it wont have any effect on scheduling until the task is
4332 * SCHED_FIFO/SCHED_RR:
4334 if (task_has_rt_policy(p)) {
4335 p->static_prio = NICE_TO_PRIO(nice);
4336 goto out_unlock;
4338 on_rq = p->se.on_rq;
4339 if (on_rq)
4340 dequeue_task(rq, p, 0);
4342 p->static_prio = NICE_TO_PRIO(nice);
4343 set_load_weight(p);
4344 old_prio = p->prio;
4345 p->prio = effective_prio(p);
4346 delta = p->prio - old_prio;
4348 if (on_rq) {
4349 enqueue_task(rq, p, 0);
4351 * If the task increased its priority or is running and
4352 * lowered its priority, then reschedule its CPU:
4354 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4355 resched_task(rq->curr);
4357 out_unlock:
4358 task_rq_unlock(rq, &flags);
4360 EXPORT_SYMBOL(set_user_nice);
4363 * can_nice - check if a task can reduce its nice value
4364 * @p: task
4365 * @nice: nice value
4367 int can_nice(const struct task_struct *p, const int nice)
4369 /* convert nice value [19,-20] to rlimit style value [1,40] */
4370 int nice_rlim = 20 - nice;
4372 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4373 capable(CAP_SYS_NICE));
4376 #ifdef __ARCH_WANT_SYS_NICE
4379 * sys_nice - change the priority of the current process.
4380 * @increment: priority increment
4382 * sys_setpriority is a more generic, but much slower function that
4383 * does similar things.
4385 asmlinkage long sys_nice(int increment)
4387 long nice, retval;
4390 * Setpriority might change our priority at the same moment.
4391 * We don't have to worry. Conceptually one call occurs first
4392 * and we have a single winner.
4394 if (increment < -40)
4395 increment = -40;
4396 if (increment > 40)
4397 increment = 40;
4399 nice = PRIO_TO_NICE(current->static_prio) + increment;
4400 if (nice < -20)
4401 nice = -20;
4402 if (nice > 19)
4403 nice = 19;
4405 if (increment < 0 && !can_nice(current, nice))
4406 return -EPERM;
4408 retval = security_task_setnice(current, nice);
4409 if (retval)
4410 return retval;
4412 set_user_nice(current, nice);
4413 return 0;
4416 #endif
4419 * task_prio - return the priority value of a given task.
4420 * @p: the task in question.
4422 * This is the priority value as seen by users in /proc.
4423 * RT tasks are offset by -200. Normal tasks are centered
4424 * around 0, value goes from -16 to +15.
4426 int task_prio(const struct task_struct *p)
4428 return p->prio - MAX_RT_PRIO;
4432 * task_nice - return the nice value of a given task.
4433 * @p: the task in question.
4435 int task_nice(const struct task_struct *p)
4437 return TASK_NICE(p);
4439 EXPORT_SYMBOL_GPL(task_nice);
4442 * idle_cpu - is a given cpu idle currently?
4443 * @cpu: the processor in question.
4445 int idle_cpu(int cpu)
4447 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4451 * idle_task - return the idle task for a given cpu.
4452 * @cpu: the processor in question.
4454 struct task_struct *idle_task(int cpu)
4456 return cpu_rq(cpu)->idle;
4460 * find_process_by_pid - find a process with a matching PID value.
4461 * @pid: the pid in question.
4463 static struct task_struct *find_process_by_pid(pid_t pid)
4465 return pid ? find_task_by_vpid(pid) : current;
4468 /* Actually do priority change: must hold rq lock. */
4469 static void
4470 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4472 BUG_ON(p->se.on_rq);
4474 p->policy = policy;
4475 switch (p->policy) {
4476 case SCHED_NORMAL:
4477 case SCHED_BATCH:
4478 case SCHED_IDLE:
4479 p->sched_class = &fair_sched_class;
4480 break;
4481 case SCHED_FIFO:
4482 case SCHED_RR:
4483 p->sched_class = &rt_sched_class;
4484 break;
4487 p->rt_priority = prio;
4488 p->normal_prio = normal_prio(p);
4489 /* we are holding p->pi_lock already */
4490 p->prio = rt_mutex_getprio(p);
4491 set_load_weight(p);
4495 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4496 * @p: the task in question.
4497 * @policy: new policy.
4498 * @param: structure containing the new RT priority.
4500 * NOTE that the task may be already dead.
4502 int sched_setscheduler(struct task_struct *p, int policy,
4503 struct sched_param *param)
4505 int retval, oldprio, oldpolicy = -1, on_rq, running;
4506 unsigned long flags;
4507 const struct sched_class *prev_class = p->sched_class;
4508 struct rq *rq;
4510 /* may grab non-irq protected spin_locks */
4511 BUG_ON(in_interrupt());
4512 recheck:
4513 /* double check policy once rq lock held */
4514 if (policy < 0)
4515 policy = oldpolicy = p->policy;
4516 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4517 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4518 policy != SCHED_IDLE)
4519 return -EINVAL;
4521 * Valid priorities for SCHED_FIFO and SCHED_RR are
4522 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4523 * SCHED_BATCH and SCHED_IDLE is 0.
4525 if (param->sched_priority < 0 ||
4526 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4527 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4528 return -EINVAL;
4529 if (rt_policy(policy) != (param->sched_priority != 0))
4530 return -EINVAL;
4533 * Allow unprivileged RT tasks to decrease priority:
4535 if (!capable(CAP_SYS_NICE)) {
4536 if (rt_policy(policy)) {
4537 unsigned long rlim_rtprio;
4539 if (!lock_task_sighand(p, &flags))
4540 return -ESRCH;
4541 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4542 unlock_task_sighand(p, &flags);
4544 /* can't set/change the rt policy */
4545 if (policy != p->policy && !rlim_rtprio)
4546 return -EPERM;
4548 /* can't increase priority */
4549 if (param->sched_priority > p->rt_priority &&
4550 param->sched_priority > rlim_rtprio)
4551 return -EPERM;
4554 * Like positive nice levels, dont allow tasks to
4555 * move out of SCHED_IDLE either:
4557 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4558 return -EPERM;
4560 /* can't change other user's priorities */
4561 if ((current->euid != p->euid) &&
4562 (current->euid != p->uid))
4563 return -EPERM;
4566 retval = security_task_setscheduler(p, policy, param);
4567 if (retval)
4568 return retval;
4570 * make sure no PI-waiters arrive (or leave) while we are
4571 * changing the priority of the task:
4573 spin_lock_irqsave(&p->pi_lock, flags);
4575 * To be able to change p->policy safely, the apropriate
4576 * runqueue lock must be held.
4578 rq = __task_rq_lock(p);
4579 /* recheck policy now with rq lock held */
4580 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4581 policy = oldpolicy = -1;
4582 __task_rq_unlock(rq);
4583 spin_unlock_irqrestore(&p->pi_lock, flags);
4584 goto recheck;
4586 update_rq_clock(rq);
4587 on_rq = p->se.on_rq;
4588 running = task_current(rq, p);
4589 if (on_rq) {
4590 deactivate_task(rq, p, 0);
4591 if (running)
4592 p->sched_class->put_prev_task(rq, p);
4595 oldprio = p->prio;
4596 __setscheduler(rq, p, policy, param->sched_priority);
4598 if (on_rq) {
4599 if (running)
4600 p->sched_class->set_curr_task(rq);
4602 activate_task(rq, p, 0);
4604 check_class_changed(rq, p, prev_class, oldprio, running);
4606 __task_rq_unlock(rq);
4607 spin_unlock_irqrestore(&p->pi_lock, flags);
4609 rt_mutex_adjust_pi(p);
4611 return 0;
4613 EXPORT_SYMBOL_GPL(sched_setscheduler);
4615 static int
4616 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4618 struct sched_param lparam;
4619 struct task_struct *p;
4620 int retval;
4622 if (!param || pid < 0)
4623 return -EINVAL;
4624 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4625 return -EFAULT;
4627 rcu_read_lock();
4628 retval = -ESRCH;
4629 p = find_process_by_pid(pid);
4630 if (p != NULL)
4631 retval = sched_setscheduler(p, policy, &lparam);
4632 rcu_read_unlock();
4634 return retval;
4638 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4639 * @pid: the pid in question.
4640 * @policy: new policy.
4641 * @param: structure containing the new RT priority.
4643 asmlinkage long
4644 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4646 /* negative values for policy are not valid */
4647 if (policy < 0)
4648 return -EINVAL;
4650 return do_sched_setscheduler(pid, policy, param);
4654 * sys_sched_setparam - set/change the RT priority of a thread
4655 * @pid: the pid in question.
4656 * @param: structure containing the new RT priority.
4658 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4660 return do_sched_setscheduler(pid, -1, param);
4664 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4665 * @pid: the pid in question.
4667 asmlinkage long sys_sched_getscheduler(pid_t pid)
4669 struct task_struct *p;
4670 int retval;
4672 if (pid < 0)
4673 return -EINVAL;
4675 retval = -ESRCH;
4676 read_lock(&tasklist_lock);
4677 p = find_process_by_pid(pid);
4678 if (p) {
4679 retval = security_task_getscheduler(p);
4680 if (!retval)
4681 retval = p->policy;
4683 read_unlock(&tasklist_lock);
4684 return retval;
4688 * sys_sched_getscheduler - get the RT priority of a thread
4689 * @pid: the pid in question.
4690 * @param: structure containing the RT priority.
4692 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4694 struct sched_param lp;
4695 struct task_struct *p;
4696 int retval;
4698 if (!param || pid < 0)
4699 return -EINVAL;
4701 read_lock(&tasklist_lock);
4702 p = find_process_by_pid(pid);
4703 retval = -ESRCH;
4704 if (!p)
4705 goto out_unlock;
4707 retval = security_task_getscheduler(p);
4708 if (retval)
4709 goto out_unlock;
4711 lp.sched_priority = p->rt_priority;
4712 read_unlock(&tasklist_lock);
4715 * This one might sleep, we cannot do it with a spinlock held ...
4717 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4719 return retval;
4721 out_unlock:
4722 read_unlock(&tasklist_lock);
4723 return retval;
4726 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4728 cpumask_t cpus_allowed;
4729 struct task_struct *p;
4730 int retval;
4732 get_online_cpus();
4733 read_lock(&tasklist_lock);
4735 p = find_process_by_pid(pid);
4736 if (!p) {
4737 read_unlock(&tasklist_lock);
4738 put_online_cpus();
4739 return -ESRCH;
4743 * It is not safe to call set_cpus_allowed with the
4744 * tasklist_lock held. We will bump the task_struct's
4745 * usage count and then drop tasklist_lock.
4747 get_task_struct(p);
4748 read_unlock(&tasklist_lock);
4750 retval = -EPERM;
4751 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4752 !capable(CAP_SYS_NICE))
4753 goto out_unlock;
4755 retval = security_task_setscheduler(p, 0, NULL);
4756 if (retval)
4757 goto out_unlock;
4759 cpus_allowed = cpuset_cpus_allowed(p);
4760 cpus_and(new_mask, new_mask, cpus_allowed);
4761 again:
4762 retval = set_cpus_allowed(p, new_mask);
4764 if (!retval) {
4765 cpus_allowed = cpuset_cpus_allowed(p);
4766 if (!cpus_subset(new_mask, cpus_allowed)) {
4768 * We must have raced with a concurrent cpuset
4769 * update. Just reset the cpus_allowed to the
4770 * cpuset's cpus_allowed
4772 new_mask = cpus_allowed;
4773 goto again;
4776 out_unlock:
4777 put_task_struct(p);
4778 put_online_cpus();
4779 return retval;
4782 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4783 cpumask_t *new_mask)
4785 if (len < sizeof(cpumask_t)) {
4786 memset(new_mask, 0, sizeof(cpumask_t));
4787 } else if (len > sizeof(cpumask_t)) {
4788 len = sizeof(cpumask_t);
4790 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4794 * sys_sched_setaffinity - set the cpu affinity of a process
4795 * @pid: pid of the process
4796 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4797 * @user_mask_ptr: user-space pointer to the new cpu mask
4799 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4800 unsigned long __user *user_mask_ptr)
4802 cpumask_t new_mask;
4803 int retval;
4805 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4806 if (retval)
4807 return retval;
4809 return sched_setaffinity(pid, new_mask);
4813 * Represents all cpu's present in the system
4814 * In systems capable of hotplug, this map could dynamically grow
4815 * as new cpu's are detected in the system via any platform specific
4816 * method, such as ACPI for e.g.
4819 cpumask_t cpu_present_map __read_mostly;
4820 EXPORT_SYMBOL(cpu_present_map);
4822 #ifndef CONFIG_SMP
4823 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4824 EXPORT_SYMBOL(cpu_online_map);
4826 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4827 EXPORT_SYMBOL(cpu_possible_map);
4828 #endif
4830 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4832 struct task_struct *p;
4833 int retval;
4835 get_online_cpus();
4836 read_lock(&tasklist_lock);
4838 retval = -ESRCH;
4839 p = find_process_by_pid(pid);
4840 if (!p)
4841 goto out_unlock;
4843 retval = security_task_getscheduler(p);
4844 if (retval)
4845 goto out_unlock;
4847 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4849 out_unlock:
4850 read_unlock(&tasklist_lock);
4851 put_online_cpus();
4853 return retval;
4857 * sys_sched_getaffinity - get the cpu affinity of a process
4858 * @pid: pid of the process
4859 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4860 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4862 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4863 unsigned long __user *user_mask_ptr)
4865 int ret;
4866 cpumask_t mask;
4868 if (len < sizeof(cpumask_t))
4869 return -EINVAL;
4871 ret = sched_getaffinity(pid, &mask);
4872 if (ret < 0)
4873 return ret;
4875 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4876 return -EFAULT;
4878 return sizeof(cpumask_t);
4882 * sys_sched_yield - yield the current processor to other threads.
4884 * This function yields the current CPU to other tasks. If there are no
4885 * other threads running on this CPU then this function will return.
4887 asmlinkage long sys_sched_yield(void)
4889 struct rq *rq = this_rq_lock();
4891 schedstat_inc(rq, yld_count);
4892 current->sched_class->yield_task(rq);
4895 * Since we are going to call schedule() anyway, there's
4896 * no need to preempt or enable interrupts:
4898 __release(rq->lock);
4899 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4900 _raw_spin_unlock(&rq->lock);
4901 preempt_enable_no_resched();
4903 schedule();
4905 return 0;
4908 static void __cond_resched(void)
4910 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4911 __might_sleep(__FILE__, __LINE__);
4912 #endif
4914 * The BKS might be reacquired before we have dropped
4915 * PREEMPT_ACTIVE, which could trigger a second
4916 * cond_resched() call.
4918 do {
4919 add_preempt_count(PREEMPT_ACTIVE);
4920 schedule();
4921 sub_preempt_count(PREEMPT_ACTIVE);
4922 } while (need_resched());
4925 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4926 int __sched _cond_resched(void)
4928 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4929 system_state == SYSTEM_RUNNING) {
4930 __cond_resched();
4931 return 1;
4933 return 0;
4935 EXPORT_SYMBOL(_cond_resched);
4936 #endif
4939 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4940 * call schedule, and on return reacquire the lock.
4942 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4943 * operations here to prevent schedule() from being called twice (once via
4944 * spin_unlock(), once by hand).
4946 int cond_resched_lock(spinlock_t *lock)
4948 int resched = need_resched() && system_state == SYSTEM_RUNNING;
4949 int ret = 0;
4951 if (spin_needbreak(lock) || resched) {
4952 spin_unlock(lock);
4953 if (resched && need_resched())
4954 __cond_resched();
4955 else
4956 cpu_relax();
4957 ret = 1;
4958 spin_lock(lock);
4960 return ret;
4962 EXPORT_SYMBOL(cond_resched_lock);
4964 int __sched cond_resched_softirq(void)
4966 BUG_ON(!in_softirq());
4968 if (need_resched() && system_state == SYSTEM_RUNNING) {
4969 local_bh_enable();
4970 __cond_resched();
4971 local_bh_disable();
4972 return 1;
4974 return 0;
4976 EXPORT_SYMBOL(cond_resched_softirq);
4979 * yield - yield the current processor to other threads.
4981 * This is a shortcut for kernel-space yielding - it marks the
4982 * thread runnable and calls sys_sched_yield().
4984 void __sched yield(void)
4986 set_current_state(TASK_RUNNING);
4987 sys_sched_yield();
4989 EXPORT_SYMBOL(yield);
4992 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4993 * that process accounting knows that this is a task in IO wait state.
4995 * But don't do that if it is a deliberate, throttling IO wait (this task
4996 * has set its backing_dev_info: the queue against which it should throttle)
4998 void __sched io_schedule(void)
5000 struct rq *rq = &__raw_get_cpu_var(runqueues);
5002 delayacct_blkio_start();
5003 atomic_inc(&rq->nr_iowait);
5004 schedule();
5005 atomic_dec(&rq->nr_iowait);
5006 delayacct_blkio_end();
5008 EXPORT_SYMBOL(io_schedule);
5010 long __sched io_schedule_timeout(long timeout)
5012 struct rq *rq = &__raw_get_cpu_var(runqueues);
5013 long ret;
5015 delayacct_blkio_start();
5016 atomic_inc(&rq->nr_iowait);
5017 ret = schedule_timeout(timeout);
5018 atomic_dec(&rq->nr_iowait);
5019 delayacct_blkio_end();
5020 return ret;
5024 * sys_sched_get_priority_max - return maximum RT priority.
5025 * @policy: scheduling class.
5027 * this syscall returns the maximum rt_priority that can be used
5028 * by a given scheduling class.
5030 asmlinkage long sys_sched_get_priority_max(int policy)
5032 int ret = -EINVAL;
5034 switch (policy) {
5035 case SCHED_FIFO:
5036 case SCHED_RR:
5037 ret = MAX_USER_RT_PRIO-1;
5038 break;
5039 case SCHED_NORMAL:
5040 case SCHED_BATCH:
5041 case SCHED_IDLE:
5042 ret = 0;
5043 break;
5045 return ret;
5049 * sys_sched_get_priority_min - return minimum RT priority.
5050 * @policy: scheduling class.
5052 * this syscall returns the minimum rt_priority that can be used
5053 * by a given scheduling class.
5055 asmlinkage long sys_sched_get_priority_min(int policy)
5057 int ret = -EINVAL;
5059 switch (policy) {
5060 case SCHED_FIFO:
5061 case SCHED_RR:
5062 ret = 1;
5063 break;
5064 case SCHED_NORMAL:
5065 case SCHED_BATCH:
5066 case SCHED_IDLE:
5067 ret = 0;
5069 return ret;
5073 * sys_sched_rr_get_interval - return the default timeslice of a process.
5074 * @pid: pid of the process.
5075 * @interval: userspace pointer to the timeslice value.
5077 * this syscall writes the default timeslice value of a given process
5078 * into the user-space timespec buffer. A value of '0' means infinity.
5080 asmlinkage
5081 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5083 struct task_struct *p;
5084 unsigned int time_slice;
5085 int retval;
5086 struct timespec t;
5088 if (pid < 0)
5089 return -EINVAL;
5091 retval = -ESRCH;
5092 read_lock(&tasklist_lock);
5093 p = find_process_by_pid(pid);
5094 if (!p)
5095 goto out_unlock;
5097 retval = security_task_getscheduler(p);
5098 if (retval)
5099 goto out_unlock;
5102 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5103 * tasks that are on an otherwise idle runqueue:
5105 time_slice = 0;
5106 if (p->policy == SCHED_RR) {
5107 time_slice = DEF_TIMESLICE;
5108 } else {
5109 struct sched_entity *se = &p->se;
5110 unsigned long flags;
5111 struct rq *rq;
5113 rq = task_rq_lock(p, &flags);
5114 if (rq->cfs.load.weight)
5115 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5116 task_rq_unlock(rq, &flags);
5118 read_unlock(&tasklist_lock);
5119 jiffies_to_timespec(time_slice, &t);
5120 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5121 return retval;
5123 out_unlock:
5124 read_unlock(&tasklist_lock);
5125 return retval;
5128 static const char stat_nam[] = "RSDTtZX";
5130 void sched_show_task(struct task_struct *p)
5132 unsigned long free = 0;
5133 unsigned state;
5135 state = p->state ? __ffs(p->state) + 1 : 0;
5136 printk(KERN_INFO "%-13.13s %c", p->comm,
5137 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5138 #if BITS_PER_LONG == 32
5139 if (state == TASK_RUNNING)
5140 printk(KERN_CONT " running ");
5141 else
5142 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5143 #else
5144 if (state == TASK_RUNNING)
5145 printk(KERN_CONT " running task ");
5146 else
5147 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5148 #endif
5149 #ifdef CONFIG_DEBUG_STACK_USAGE
5151 unsigned long *n = end_of_stack(p);
5152 while (!*n)
5153 n++;
5154 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5156 #endif
5157 printk(KERN_CONT "%5lu %5d %6d\n", free,
5158 task_pid_nr(p), task_pid_nr(p->real_parent));
5160 show_stack(p, NULL);
5163 void show_state_filter(unsigned long state_filter)
5165 struct task_struct *g, *p;
5167 #if BITS_PER_LONG == 32
5168 printk(KERN_INFO
5169 " task PC stack pid father\n");
5170 #else
5171 printk(KERN_INFO
5172 " task PC stack pid father\n");
5173 #endif
5174 read_lock(&tasklist_lock);
5175 do_each_thread(g, p) {
5177 * reset the NMI-timeout, listing all files on a slow
5178 * console might take alot of time:
5180 touch_nmi_watchdog();
5181 if (!state_filter || (p->state & state_filter))
5182 sched_show_task(p);
5183 } while_each_thread(g, p);
5185 touch_all_softlockup_watchdogs();
5187 #ifdef CONFIG_SCHED_DEBUG
5188 sysrq_sched_debug_show();
5189 #endif
5190 read_unlock(&tasklist_lock);
5192 * Only show locks if all tasks are dumped:
5194 if (state_filter == -1)
5195 debug_show_all_locks();
5198 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5200 idle->sched_class = &idle_sched_class;
5204 * init_idle - set up an idle thread for a given CPU
5205 * @idle: task in question
5206 * @cpu: cpu the idle task belongs to
5208 * NOTE: this function does not set the idle thread's NEED_RESCHED
5209 * flag, to make booting more robust.
5211 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5213 struct rq *rq = cpu_rq(cpu);
5214 unsigned long flags;
5216 __sched_fork(idle);
5217 idle->se.exec_start = sched_clock();
5219 idle->prio = idle->normal_prio = MAX_PRIO;
5220 idle->cpus_allowed = cpumask_of_cpu(cpu);
5221 __set_task_cpu(idle, cpu);
5223 spin_lock_irqsave(&rq->lock, flags);
5224 rq->curr = rq->idle = idle;
5225 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5226 idle->oncpu = 1;
5227 #endif
5228 spin_unlock_irqrestore(&rq->lock, flags);
5230 /* Set the preempt count _outside_ the spinlocks! */
5231 task_thread_info(idle)->preempt_count = 0;
5234 * The idle tasks have their own, simple scheduling class:
5236 idle->sched_class = &idle_sched_class;
5240 * In a system that switches off the HZ timer nohz_cpu_mask
5241 * indicates which cpus entered this state. This is used
5242 * in the rcu update to wait only for active cpus. For system
5243 * which do not switch off the HZ timer nohz_cpu_mask should
5244 * always be CPU_MASK_NONE.
5246 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5249 * Increase the granularity value when there are more CPUs,
5250 * because with more CPUs the 'effective latency' as visible
5251 * to users decreases. But the relationship is not linear,
5252 * so pick a second-best guess by going with the log2 of the
5253 * number of CPUs.
5255 * This idea comes from the SD scheduler of Con Kolivas:
5257 static inline void sched_init_granularity(void)
5259 unsigned int factor = 1 + ilog2(num_online_cpus());
5260 const unsigned long limit = 200000000;
5262 sysctl_sched_min_granularity *= factor;
5263 if (sysctl_sched_min_granularity > limit)
5264 sysctl_sched_min_granularity = limit;
5266 sysctl_sched_latency *= factor;
5267 if (sysctl_sched_latency > limit)
5268 sysctl_sched_latency = limit;
5270 sysctl_sched_wakeup_granularity *= factor;
5271 sysctl_sched_batch_wakeup_granularity *= factor;
5274 #ifdef CONFIG_SMP
5276 * This is how migration works:
5278 * 1) we queue a struct migration_req structure in the source CPU's
5279 * runqueue and wake up that CPU's migration thread.
5280 * 2) we down() the locked semaphore => thread blocks.
5281 * 3) migration thread wakes up (implicitly it forces the migrated
5282 * thread off the CPU)
5283 * 4) it gets the migration request and checks whether the migrated
5284 * task is still in the wrong runqueue.
5285 * 5) if it's in the wrong runqueue then the migration thread removes
5286 * it and puts it into the right queue.
5287 * 6) migration thread up()s the semaphore.
5288 * 7) we wake up and the migration is done.
5292 * Change a given task's CPU affinity. Migrate the thread to a
5293 * proper CPU and schedule it away if the CPU it's executing on
5294 * is removed from the allowed bitmask.
5296 * NOTE: the caller must have a valid reference to the task, the
5297 * task must not exit() & deallocate itself prematurely. The
5298 * call is not atomic; no spinlocks may be held.
5300 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5302 struct migration_req req;
5303 unsigned long flags;
5304 struct rq *rq;
5305 int ret = 0;
5307 rq = task_rq_lock(p, &flags);
5308 if (!cpus_intersects(new_mask, cpu_online_map)) {
5309 ret = -EINVAL;
5310 goto out;
5313 if (p->sched_class->set_cpus_allowed)
5314 p->sched_class->set_cpus_allowed(p, &new_mask);
5315 else {
5316 p->cpus_allowed = new_mask;
5317 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5320 /* Can the task run on the task's current CPU? If so, we're done */
5321 if (cpu_isset(task_cpu(p), new_mask))
5322 goto out;
5324 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5325 /* Need help from migration thread: drop lock and wait. */
5326 task_rq_unlock(rq, &flags);
5327 wake_up_process(rq->migration_thread);
5328 wait_for_completion(&req.done);
5329 tlb_migrate_finish(p->mm);
5330 return 0;
5332 out:
5333 task_rq_unlock(rq, &flags);
5335 return ret;
5337 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5340 * Move (not current) task off this cpu, onto dest cpu. We're doing
5341 * this because either it can't run here any more (set_cpus_allowed()
5342 * away from this CPU, or CPU going down), or because we're
5343 * attempting to rebalance this task on exec (sched_exec).
5345 * So we race with normal scheduler movements, but that's OK, as long
5346 * as the task is no longer on this CPU.
5348 * Returns non-zero if task was successfully migrated.
5350 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5352 struct rq *rq_dest, *rq_src;
5353 int ret = 0, on_rq;
5355 if (unlikely(cpu_is_offline(dest_cpu)))
5356 return ret;
5358 rq_src = cpu_rq(src_cpu);
5359 rq_dest = cpu_rq(dest_cpu);
5361 double_rq_lock(rq_src, rq_dest);
5362 /* Already moved. */
5363 if (task_cpu(p) != src_cpu)
5364 goto out;
5365 /* Affinity changed (again). */
5366 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5367 goto out;
5369 on_rq = p->se.on_rq;
5370 if (on_rq)
5371 deactivate_task(rq_src, p, 0);
5373 set_task_cpu(p, dest_cpu);
5374 if (on_rq) {
5375 activate_task(rq_dest, p, 0);
5376 check_preempt_curr(rq_dest, p);
5378 ret = 1;
5379 out:
5380 double_rq_unlock(rq_src, rq_dest);
5381 return ret;
5385 * migration_thread - this is a highprio system thread that performs
5386 * thread migration by bumping thread off CPU then 'pushing' onto
5387 * another runqueue.
5389 static int migration_thread(void *data)
5391 int cpu = (long)data;
5392 struct rq *rq;
5394 rq = cpu_rq(cpu);
5395 BUG_ON(rq->migration_thread != current);
5397 set_current_state(TASK_INTERRUPTIBLE);
5398 while (!kthread_should_stop()) {
5399 struct migration_req *req;
5400 struct list_head *head;
5402 spin_lock_irq(&rq->lock);
5404 if (cpu_is_offline(cpu)) {
5405 spin_unlock_irq(&rq->lock);
5406 goto wait_to_die;
5409 if (rq->active_balance) {
5410 active_load_balance(rq, cpu);
5411 rq->active_balance = 0;
5414 head = &rq->migration_queue;
5416 if (list_empty(head)) {
5417 spin_unlock_irq(&rq->lock);
5418 schedule();
5419 set_current_state(TASK_INTERRUPTIBLE);
5420 continue;
5422 req = list_entry(head->next, struct migration_req, list);
5423 list_del_init(head->next);
5425 spin_unlock(&rq->lock);
5426 __migrate_task(req->task, cpu, req->dest_cpu);
5427 local_irq_enable();
5429 complete(&req->done);
5431 __set_current_state(TASK_RUNNING);
5432 return 0;
5434 wait_to_die:
5435 /* Wait for kthread_stop */
5436 set_current_state(TASK_INTERRUPTIBLE);
5437 while (!kthread_should_stop()) {
5438 schedule();
5439 set_current_state(TASK_INTERRUPTIBLE);
5441 __set_current_state(TASK_RUNNING);
5442 return 0;
5445 #ifdef CONFIG_HOTPLUG_CPU
5447 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5449 int ret;
5451 local_irq_disable();
5452 ret = __migrate_task(p, src_cpu, dest_cpu);
5453 local_irq_enable();
5454 return ret;
5458 * Figure out where task on dead CPU should go, use force if necessary.
5459 * NOTE: interrupts should be disabled by the caller
5461 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5463 unsigned long flags;
5464 cpumask_t mask;
5465 struct rq *rq;
5466 int dest_cpu;
5468 do {
5469 /* On same node? */
5470 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5471 cpus_and(mask, mask, p->cpus_allowed);
5472 dest_cpu = any_online_cpu(mask);
5474 /* On any allowed CPU? */
5475 if (dest_cpu == NR_CPUS)
5476 dest_cpu = any_online_cpu(p->cpus_allowed);
5478 /* No more Mr. Nice Guy. */
5479 if (dest_cpu == NR_CPUS) {
5480 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5482 * Try to stay on the same cpuset, where the
5483 * current cpuset may be a subset of all cpus.
5484 * The cpuset_cpus_allowed_locked() variant of
5485 * cpuset_cpus_allowed() will not block. It must be
5486 * called within calls to cpuset_lock/cpuset_unlock.
5488 rq = task_rq_lock(p, &flags);
5489 p->cpus_allowed = cpus_allowed;
5490 dest_cpu = any_online_cpu(p->cpus_allowed);
5491 task_rq_unlock(rq, &flags);
5494 * Don't tell them about moving exiting tasks or
5495 * kernel threads (both mm NULL), since they never
5496 * leave kernel.
5498 if (p->mm && printk_ratelimit()) {
5499 printk(KERN_INFO "process %d (%s) no "
5500 "longer affine to cpu%d\n",
5501 task_pid_nr(p), p->comm, dead_cpu);
5504 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5508 * While a dead CPU has no uninterruptible tasks queued at this point,
5509 * it might still have a nonzero ->nr_uninterruptible counter, because
5510 * for performance reasons the counter is not stricly tracking tasks to
5511 * their home CPUs. So we just add the counter to another CPU's counter,
5512 * to keep the global sum constant after CPU-down:
5514 static void migrate_nr_uninterruptible(struct rq *rq_src)
5516 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5517 unsigned long flags;
5519 local_irq_save(flags);
5520 double_rq_lock(rq_src, rq_dest);
5521 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5522 rq_src->nr_uninterruptible = 0;
5523 double_rq_unlock(rq_src, rq_dest);
5524 local_irq_restore(flags);
5527 /* Run through task list and migrate tasks from the dead cpu. */
5528 static void migrate_live_tasks(int src_cpu)
5530 struct task_struct *p, *t;
5532 read_lock(&tasklist_lock);
5534 do_each_thread(t, p) {
5535 if (p == current)
5536 continue;
5538 if (task_cpu(p) == src_cpu)
5539 move_task_off_dead_cpu(src_cpu, p);
5540 } while_each_thread(t, p);
5542 read_unlock(&tasklist_lock);
5546 * Schedules idle task to be the next runnable task on current CPU.
5547 * It does so by boosting its priority to highest possible.
5548 * Used by CPU offline code.
5550 void sched_idle_next(void)
5552 int this_cpu = smp_processor_id();
5553 struct rq *rq = cpu_rq(this_cpu);
5554 struct task_struct *p = rq->idle;
5555 unsigned long flags;
5557 /* cpu has to be offline */
5558 BUG_ON(cpu_online(this_cpu));
5561 * Strictly not necessary since rest of the CPUs are stopped by now
5562 * and interrupts disabled on the current cpu.
5564 spin_lock_irqsave(&rq->lock, flags);
5566 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5568 update_rq_clock(rq);
5569 activate_task(rq, p, 0);
5571 spin_unlock_irqrestore(&rq->lock, flags);
5575 * Ensures that the idle task is using init_mm right before its cpu goes
5576 * offline.
5578 void idle_task_exit(void)
5580 struct mm_struct *mm = current->active_mm;
5582 BUG_ON(cpu_online(smp_processor_id()));
5584 if (mm != &init_mm)
5585 switch_mm(mm, &init_mm, current);
5586 mmdrop(mm);
5589 /* called under rq->lock with disabled interrupts */
5590 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5592 struct rq *rq = cpu_rq(dead_cpu);
5594 /* Must be exiting, otherwise would be on tasklist. */
5595 BUG_ON(!p->exit_state);
5597 /* Cannot have done final schedule yet: would have vanished. */
5598 BUG_ON(p->state == TASK_DEAD);
5600 get_task_struct(p);
5603 * Drop lock around migration; if someone else moves it,
5604 * that's OK. No task can be added to this CPU, so iteration is
5605 * fine.
5607 spin_unlock_irq(&rq->lock);
5608 move_task_off_dead_cpu(dead_cpu, p);
5609 spin_lock_irq(&rq->lock);
5611 put_task_struct(p);
5614 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5615 static void migrate_dead_tasks(unsigned int dead_cpu)
5617 struct rq *rq = cpu_rq(dead_cpu);
5618 struct task_struct *next;
5620 for ( ; ; ) {
5621 if (!rq->nr_running)
5622 break;
5623 update_rq_clock(rq);
5624 next = pick_next_task(rq, rq->curr);
5625 if (!next)
5626 break;
5627 migrate_dead(dead_cpu, next);
5631 #endif /* CONFIG_HOTPLUG_CPU */
5633 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5635 static struct ctl_table sd_ctl_dir[] = {
5637 .procname = "sched_domain",
5638 .mode = 0555,
5640 {0, },
5643 static struct ctl_table sd_ctl_root[] = {
5645 .ctl_name = CTL_KERN,
5646 .procname = "kernel",
5647 .mode = 0555,
5648 .child = sd_ctl_dir,
5650 {0, },
5653 static struct ctl_table *sd_alloc_ctl_entry(int n)
5655 struct ctl_table *entry =
5656 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5658 return entry;
5661 static void sd_free_ctl_entry(struct ctl_table **tablep)
5663 struct ctl_table *entry;
5666 * In the intermediate directories, both the child directory and
5667 * procname are dynamically allocated and could fail but the mode
5668 * will always be set. In the lowest directory the names are
5669 * static strings and all have proc handlers.
5671 for (entry = *tablep; entry->mode; entry++) {
5672 if (entry->child)
5673 sd_free_ctl_entry(&entry->child);
5674 if (entry->proc_handler == NULL)
5675 kfree(entry->procname);
5678 kfree(*tablep);
5679 *tablep = NULL;
5682 static void
5683 set_table_entry(struct ctl_table *entry,
5684 const char *procname, void *data, int maxlen,
5685 mode_t mode, proc_handler *proc_handler)
5687 entry->procname = procname;
5688 entry->data = data;
5689 entry->maxlen = maxlen;
5690 entry->mode = mode;
5691 entry->proc_handler = proc_handler;
5694 static struct ctl_table *
5695 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5697 struct ctl_table *table = sd_alloc_ctl_entry(12);
5699 if (table == NULL)
5700 return NULL;
5702 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5703 sizeof(long), 0644, proc_doulongvec_minmax);
5704 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5705 sizeof(long), 0644, proc_doulongvec_minmax);
5706 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5707 sizeof(int), 0644, proc_dointvec_minmax);
5708 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5709 sizeof(int), 0644, proc_dointvec_minmax);
5710 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5711 sizeof(int), 0644, proc_dointvec_minmax);
5712 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5713 sizeof(int), 0644, proc_dointvec_minmax);
5714 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5715 sizeof(int), 0644, proc_dointvec_minmax);
5716 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5717 sizeof(int), 0644, proc_dointvec_minmax);
5718 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5719 sizeof(int), 0644, proc_dointvec_minmax);
5720 set_table_entry(&table[9], "cache_nice_tries",
5721 &sd->cache_nice_tries,
5722 sizeof(int), 0644, proc_dointvec_minmax);
5723 set_table_entry(&table[10], "flags", &sd->flags,
5724 sizeof(int), 0644, proc_dointvec_minmax);
5725 /* &table[11] is terminator */
5727 return table;
5730 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5732 struct ctl_table *entry, *table;
5733 struct sched_domain *sd;
5734 int domain_num = 0, i;
5735 char buf[32];
5737 for_each_domain(cpu, sd)
5738 domain_num++;
5739 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5740 if (table == NULL)
5741 return NULL;
5743 i = 0;
5744 for_each_domain(cpu, sd) {
5745 snprintf(buf, 32, "domain%d", i);
5746 entry->procname = kstrdup(buf, GFP_KERNEL);
5747 entry->mode = 0555;
5748 entry->child = sd_alloc_ctl_domain_table(sd);
5749 entry++;
5750 i++;
5752 return table;
5755 static struct ctl_table_header *sd_sysctl_header;
5756 static void register_sched_domain_sysctl(void)
5758 int i, cpu_num = num_online_cpus();
5759 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5760 char buf[32];
5762 WARN_ON(sd_ctl_dir[0].child);
5763 sd_ctl_dir[0].child = entry;
5765 if (entry == NULL)
5766 return;
5768 for_each_online_cpu(i) {
5769 snprintf(buf, 32, "cpu%d", i);
5770 entry->procname = kstrdup(buf, GFP_KERNEL);
5771 entry->mode = 0555;
5772 entry->child = sd_alloc_ctl_cpu_table(i);
5773 entry++;
5776 WARN_ON(sd_sysctl_header);
5777 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5780 /* may be called multiple times per register */
5781 static void unregister_sched_domain_sysctl(void)
5783 if (sd_sysctl_header)
5784 unregister_sysctl_table(sd_sysctl_header);
5785 sd_sysctl_header = NULL;
5786 if (sd_ctl_dir[0].child)
5787 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5789 #else
5790 static void register_sched_domain_sysctl(void)
5793 static void unregister_sched_domain_sysctl(void)
5796 #endif
5799 * migration_call - callback that gets triggered when a CPU is added.
5800 * Here we can start up the necessary migration thread for the new CPU.
5802 static int __cpuinit
5803 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5805 struct task_struct *p;
5806 int cpu = (long)hcpu;
5807 unsigned long flags;
5808 struct rq *rq;
5810 switch (action) {
5812 case CPU_UP_PREPARE:
5813 case CPU_UP_PREPARE_FROZEN:
5814 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5815 if (IS_ERR(p))
5816 return NOTIFY_BAD;
5817 kthread_bind(p, cpu);
5818 /* Must be high prio: stop_machine expects to yield to it. */
5819 rq = task_rq_lock(p, &flags);
5820 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5821 task_rq_unlock(rq, &flags);
5822 cpu_rq(cpu)->migration_thread = p;
5823 break;
5825 case CPU_ONLINE:
5826 case CPU_ONLINE_FROZEN:
5827 /* Strictly unnecessary, as first user will wake it. */
5828 wake_up_process(cpu_rq(cpu)->migration_thread);
5830 /* Update our root-domain */
5831 rq = cpu_rq(cpu);
5832 spin_lock_irqsave(&rq->lock, flags);
5833 if (rq->rd) {
5834 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5835 cpu_set(cpu, rq->rd->online);
5837 spin_unlock_irqrestore(&rq->lock, flags);
5838 break;
5840 #ifdef CONFIG_HOTPLUG_CPU
5841 case CPU_UP_CANCELED:
5842 case CPU_UP_CANCELED_FROZEN:
5843 if (!cpu_rq(cpu)->migration_thread)
5844 break;
5845 /* Unbind it from offline cpu so it can run. Fall thru. */
5846 kthread_bind(cpu_rq(cpu)->migration_thread,
5847 any_online_cpu(cpu_online_map));
5848 kthread_stop(cpu_rq(cpu)->migration_thread);
5849 cpu_rq(cpu)->migration_thread = NULL;
5850 break;
5852 case CPU_DEAD:
5853 case CPU_DEAD_FROZEN:
5854 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5855 migrate_live_tasks(cpu);
5856 rq = cpu_rq(cpu);
5857 kthread_stop(rq->migration_thread);
5858 rq->migration_thread = NULL;
5859 /* Idle task back to normal (off runqueue, low prio) */
5860 spin_lock_irq(&rq->lock);
5861 update_rq_clock(rq);
5862 deactivate_task(rq, rq->idle, 0);
5863 rq->idle->static_prio = MAX_PRIO;
5864 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5865 rq->idle->sched_class = &idle_sched_class;
5866 migrate_dead_tasks(cpu);
5867 spin_unlock_irq(&rq->lock);
5868 cpuset_unlock();
5869 migrate_nr_uninterruptible(rq);
5870 BUG_ON(rq->nr_running != 0);
5873 * No need to migrate the tasks: it was best-effort if
5874 * they didn't take sched_hotcpu_mutex. Just wake up
5875 * the requestors.
5877 spin_lock_irq(&rq->lock);
5878 while (!list_empty(&rq->migration_queue)) {
5879 struct migration_req *req;
5881 req = list_entry(rq->migration_queue.next,
5882 struct migration_req, list);
5883 list_del_init(&req->list);
5884 complete(&req->done);
5886 spin_unlock_irq(&rq->lock);
5887 break;
5889 case CPU_DOWN_PREPARE:
5890 /* Update our root-domain */
5891 rq = cpu_rq(cpu);
5892 spin_lock_irqsave(&rq->lock, flags);
5893 if (rq->rd) {
5894 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5895 cpu_clear(cpu, rq->rd->online);
5897 spin_unlock_irqrestore(&rq->lock, flags);
5898 break;
5899 #endif
5901 return NOTIFY_OK;
5904 /* Register at highest priority so that task migration (migrate_all_tasks)
5905 * happens before everything else.
5907 static struct notifier_block __cpuinitdata migration_notifier = {
5908 .notifier_call = migration_call,
5909 .priority = 10
5912 void __init migration_init(void)
5914 void *cpu = (void *)(long)smp_processor_id();
5915 int err;
5917 /* Start one for the boot CPU: */
5918 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5919 BUG_ON(err == NOTIFY_BAD);
5920 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5921 register_cpu_notifier(&migration_notifier);
5923 #endif
5925 #ifdef CONFIG_SMP
5927 /* Number of possible processor ids */
5928 int nr_cpu_ids __read_mostly = NR_CPUS;
5929 EXPORT_SYMBOL(nr_cpu_ids);
5931 #ifdef CONFIG_SCHED_DEBUG
5933 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5935 struct sched_group *group = sd->groups;
5936 cpumask_t groupmask;
5937 char str[NR_CPUS];
5939 cpumask_scnprintf(str, NR_CPUS, sd->span);
5940 cpus_clear(groupmask);
5942 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5944 if (!(sd->flags & SD_LOAD_BALANCE)) {
5945 printk("does not load-balance\n");
5946 if (sd->parent)
5947 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5948 " has parent");
5949 return -1;
5952 printk(KERN_CONT "span %s\n", str);
5954 if (!cpu_isset(cpu, sd->span)) {
5955 printk(KERN_ERR "ERROR: domain->span does not contain "
5956 "CPU%d\n", cpu);
5958 if (!cpu_isset(cpu, group->cpumask)) {
5959 printk(KERN_ERR "ERROR: domain->groups does not contain"
5960 " CPU%d\n", cpu);
5963 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5964 do {
5965 if (!group) {
5966 printk("\n");
5967 printk(KERN_ERR "ERROR: group is NULL\n");
5968 break;
5971 if (!group->__cpu_power) {
5972 printk(KERN_CONT "\n");
5973 printk(KERN_ERR "ERROR: domain->cpu_power not "
5974 "set\n");
5975 break;
5978 if (!cpus_weight(group->cpumask)) {
5979 printk(KERN_CONT "\n");
5980 printk(KERN_ERR "ERROR: empty group\n");
5981 break;
5984 if (cpus_intersects(groupmask, group->cpumask)) {
5985 printk(KERN_CONT "\n");
5986 printk(KERN_ERR "ERROR: repeated CPUs\n");
5987 break;
5990 cpus_or(groupmask, groupmask, group->cpumask);
5992 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5993 printk(KERN_CONT " %s", str);
5995 group = group->next;
5996 } while (group != sd->groups);
5997 printk(KERN_CONT "\n");
5999 if (!cpus_equal(sd->span, groupmask))
6000 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6002 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6003 printk(KERN_ERR "ERROR: parent span is not a superset "
6004 "of domain->span\n");
6005 return 0;
6008 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6010 int level = 0;
6012 if (!sd) {
6013 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6014 return;
6017 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6019 for (;;) {
6020 if (sched_domain_debug_one(sd, cpu, level))
6021 break;
6022 level++;
6023 sd = sd->parent;
6024 if (!sd)
6025 break;
6028 #else
6029 # define sched_domain_debug(sd, cpu) do { } while (0)
6030 #endif
6032 static int sd_degenerate(struct sched_domain *sd)
6034 if (cpus_weight(sd->span) == 1)
6035 return 1;
6037 /* Following flags need at least 2 groups */
6038 if (sd->flags & (SD_LOAD_BALANCE |
6039 SD_BALANCE_NEWIDLE |
6040 SD_BALANCE_FORK |
6041 SD_BALANCE_EXEC |
6042 SD_SHARE_CPUPOWER |
6043 SD_SHARE_PKG_RESOURCES)) {
6044 if (sd->groups != sd->groups->next)
6045 return 0;
6048 /* Following flags don't use groups */
6049 if (sd->flags & (SD_WAKE_IDLE |
6050 SD_WAKE_AFFINE |
6051 SD_WAKE_BALANCE))
6052 return 0;
6054 return 1;
6057 static int
6058 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6060 unsigned long cflags = sd->flags, pflags = parent->flags;
6062 if (sd_degenerate(parent))
6063 return 1;
6065 if (!cpus_equal(sd->span, parent->span))
6066 return 0;
6068 /* Does parent contain flags not in child? */
6069 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6070 if (cflags & SD_WAKE_AFFINE)
6071 pflags &= ~SD_WAKE_BALANCE;
6072 /* Flags needing groups don't count if only 1 group in parent */
6073 if (parent->groups == parent->groups->next) {
6074 pflags &= ~(SD_LOAD_BALANCE |
6075 SD_BALANCE_NEWIDLE |
6076 SD_BALANCE_FORK |
6077 SD_BALANCE_EXEC |
6078 SD_SHARE_CPUPOWER |
6079 SD_SHARE_PKG_RESOURCES);
6081 if (~cflags & pflags)
6082 return 0;
6084 return 1;
6087 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6089 unsigned long flags;
6090 const struct sched_class *class;
6092 spin_lock_irqsave(&rq->lock, flags);
6094 if (rq->rd) {
6095 struct root_domain *old_rd = rq->rd;
6097 for (class = sched_class_highest; class; class = class->next) {
6098 if (class->leave_domain)
6099 class->leave_domain(rq);
6102 cpu_clear(rq->cpu, old_rd->span);
6103 cpu_clear(rq->cpu, old_rd->online);
6105 if (atomic_dec_and_test(&old_rd->refcount))
6106 kfree(old_rd);
6109 atomic_inc(&rd->refcount);
6110 rq->rd = rd;
6112 cpu_set(rq->cpu, rd->span);
6113 if (cpu_isset(rq->cpu, cpu_online_map))
6114 cpu_set(rq->cpu, rd->online);
6116 for (class = sched_class_highest; class; class = class->next) {
6117 if (class->join_domain)
6118 class->join_domain(rq);
6121 spin_unlock_irqrestore(&rq->lock, flags);
6124 static void init_rootdomain(struct root_domain *rd)
6126 memset(rd, 0, sizeof(*rd));
6128 cpus_clear(rd->span);
6129 cpus_clear(rd->online);
6132 static void init_defrootdomain(void)
6134 init_rootdomain(&def_root_domain);
6135 atomic_set(&def_root_domain.refcount, 1);
6138 static struct root_domain *alloc_rootdomain(void)
6140 struct root_domain *rd;
6142 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6143 if (!rd)
6144 return NULL;
6146 init_rootdomain(rd);
6148 return rd;
6152 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6153 * hold the hotplug lock.
6155 static void
6156 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6158 struct rq *rq = cpu_rq(cpu);
6159 struct sched_domain *tmp;
6161 /* Remove the sched domains which do not contribute to scheduling. */
6162 for (tmp = sd; tmp; tmp = tmp->parent) {
6163 struct sched_domain *parent = tmp->parent;
6164 if (!parent)
6165 break;
6166 if (sd_parent_degenerate(tmp, parent)) {
6167 tmp->parent = parent->parent;
6168 if (parent->parent)
6169 parent->parent->child = tmp;
6173 if (sd && sd_degenerate(sd)) {
6174 sd = sd->parent;
6175 if (sd)
6176 sd->child = NULL;
6179 sched_domain_debug(sd, cpu);
6181 rq_attach_root(rq, rd);
6182 rcu_assign_pointer(rq->sd, sd);
6185 /* cpus with isolated domains */
6186 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6188 /* Setup the mask of cpus configured for isolated domains */
6189 static int __init isolated_cpu_setup(char *str)
6191 int ints[NR_CPUS], i;
6193 str = get_options(str, ARRAY_SIZE(ints), ints);
6194 cpus_clear(cpu_isolated_map);
6195 for (i = 1; i <= ints[0]; i++)
6196 if (ints[i] < NR_CPUS)
6197 cpu_set(ints[i], cpu_isolated_map);
6198 return 1;
6201 __setup("isolcpus=", isolated_cpu_setup);
6204 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6205 * to a function which identifies what group(along with sched group) a CPU
6206 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6207 * (due to the fact that we keep track of groups covered with a cpumask_t).
6209 * init_sched_build_groups will build a circular linked list of the groups
6210 * covered by the given span, and will set each group's ->cpumask correctly,
6211 * and ->cpu_power to 0.
6213 static void
6214 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6215 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6216 struct sched_group **sg))
6218 struct sched_group *first = NULL, *last = NULL;
6219 cpumask_t covered = CPU_MASK_NONE;
6220 int i;
6222 for_each_cpu_mask(i, span) {
6223 struct sched_group *sg;
6224 int group = group_fn(i, cpu_map, &sg);
6225 int j;
6227 if (cpu_isset(i, covered))
6228 continue;
6230 sg->cpumask = CPU_MASK_NONE;
6231 sg->__cpu_power = 0;
6233 for_each_cpu_mask(j, span) {
6234 if (group_fn(j, cpu_map, NULL) != group)
6235 continue;
6237 cpu_set(j, covered);
6238 cpu_set(j, sg->cpumask);
6240 if (!first)
6241 first = sg;
6242 if (last)
6243 last->next = sg;
6244 last = sg;
6246 last->next = first;
6249 #define SD_NODES_PER_DOMAIN 16
6251 #ifdef CONFIG_NUMA
6254 * find_next_best_node - find the next node to include in a sched_domain
6255 * @node: node whose sched_domain we're building
6256 * @used_nodes: nodes already in the sched_domain
6258 * Find the next node to include in a given scheduling domain. Simply
6259 * finds the closest node not already in the @used_nodes map.
6261 * Should use nodemask_t.
6263 static int find_next_best_node(int node, unsigned long *used_nodes)
6265 int i, n, val, min_val, best_node = 0;
6267 min_val = INT_MAX;
6269 for (i = 0; i < MAX_NUMNODES; i++) {
6270 /* Start at @node */
6271 n = (node + i) % MAX_NUMNODES;
6273 if (!nr_cpus_node(n))
6274 continue;
6276 /* Skip already used nodes */
6277 if (test_bit(n, used_nodes))
6278 continue;
6280 /* Simple min distance search */
6281 val = node_distance(node, n);
6283 if (val < min_val) {
6284 min_val = val;
6285 best_node = n;
6289 set_bit(best_node, used_nodes);
6290 return best_node;
6294 * sched_domain_node_span - get a cpumask for a node's sched_domain
6295 * @node: node whose cpumask we're constructing
6296 * @size: number of nodes to include in this span
6298 * Given a node, construct a good cpumask for its sched_domain to span. It
6299 * should be one that prevents unnecessary balancing, but also spreads tasks
6300 * out optimally.
6302 static cpumask_t sched_domain_node_span(int node)
6304 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6305 cpumask_t span, nodemask;
6306 int i;
6308 cpus_clear(span);
6309 bitmap_zero(used_nodes, MAX_NUMNODES);
6311 nodemask = node_to_cpumask(node);
6312 cpus_or(span, span, nodemask);
6313 set_bit(node, used_nodes);
6315 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6316 int next_node = find_next_best_node(node, used_nodes);
6318 nodemask = node_to_cpumask(next_node);
6319 cpus_or(span, span, nodemask);
6322 return span;
6324 #endif
6326 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6329 * SMT sched-domains:
6331 #ifdef CONFIG_SCHED_SMT
6332 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6333 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6335 static int
6336 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6338 if (sg)
6339 *sg = &per_cpu(sched_group_cpus, cpu);
6340 return cpu;
6342 #endif
6345 * multi-core sched-domains:
6347 #ifdef CONFIG_SCHED_MC
6348 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6349 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6350 #endif
6352 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6353 static int
6354 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6356 int group;
6357 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6358 cpus_and(mask, mask, *cpu_map);
6359 group = first_cpu(mask);
6360 if (sg)
6361 *sg = &per_cpu(sched_group_core, group);
6362 return group;
6364 #elif defined(CONFIG_SCHED_MC)
6365 static int
6366 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6368 if (sg)
6369 *sg = &per_cpu(sched_group_core, cpu);
6370 return cpu;
6372 #endif
6374 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6375 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6377 static int
6378 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6380 int group;
6381 #ifdef CONFIG_SCHED_MC
6382 cpumask_t mask = cpu_coregroup_map(cpu);
6383 cpus_and(mask, mask, *cpu_map);
6384 group = first_cpu(mask);
6385 #elif defined(CONFIG_SCHED_SMT)
6386 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6387 cpus_and(mask, mask, *cpu_map);
6388 group = first_cpu(mask);
6389 #else
6390 group = cpu;
6391 #endif
6392 if (sg)
6393 *sg = &per_cpu(sched_group_phys, group);
6394 return group;
6397 #ifdef CONFIG_NUMA
6399 * The init_sched_build_groups can't handle what we want to do with node
6400 * groups, so roll our own. Now each node has its own list of groups which
6401 * gets dynamically allocated.
6403 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6404 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6406 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6407 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6409 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6410 struct sched_group **sg)
6412 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6413 int group;
6415 cpus_and(nodemask, nodemask, *cpu_map);
6416 group = first_cpu(nodemask);
6418 if (sg)
6419 *sg = &per_cpu(sched_group_allnodes, group);
6420 return group;
6423 static void init_numa_sched_groups_power(struct sched_group *group_head)
6425 struct sched_group *sg = group_head;
6426 int j;
6428 if (!sg)
6429 return;
6430 do {
6431 for_each_cpu_mask(j, sg->cpumask) {
6432 struct sched_domain *sd;
6434 sd = &per_cpu(phys_domains, j);
6435 if (j != first_cpu(sd->groups->cpumask)) {
6437 * Only add "power" once for each
6438 * physical package.
6440 continue;
6443 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6445 sg = sg->next;
6446 } while (sg != group_head);
6448 #endif
6450 #ifdef CONFIG_NUMA
6451 /* Free memory allocated for various sched_group structures */
6452 static void free_sched_groups(const cpumask_t *cpu_map)
6454 int cpu, i;
6456 for_each_cpu_mask(cpu, *cpu_map) {
6457 struct sched_group **sched_group_nodes
6458 = sched_group_nodes_bycpu[cpu];
6460 if (!sched_group_nodes)
6461 continue;
6463 for (i = 0; i < MAX_NUMNODES; i++) {
6464 cpumask_t nodemask = node_to_cpumask(i);
6465 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6467 cpus_and(nodemask, nodemask, *cpu_map);
6468 if (cpus_empty(nodemask))
6469 continue;
6471 if (sg == NULL)
6472 continue;
6473 sg = sg->next;
6474 next_sg:
6475 oldsg = sg;
6476 sg = sg->next;
6477 kfree(oldsg);
6478 if (oldsg != sched_group_nodes[i])
6479 goto next_sg;
6481 kfree(sched_group_nodes);
6482 sched_group_nodes_bycpu[cpu] = NULL;
6485 #else
6486 static void free_sched_groups(const cpumask_t *cpu_map)
6489 #endif
6492 * Initialize sched groups cpu_power.
6494 * cpu_power indicates the capacity of sched group, which is used while
6495 * distributing the load between different sched groups in a sched domain.
6496 * Typically cpu_power for all the groups in a sched domain will be same unless
6497 * there are asymmetries in the topology. If there are asymmetries, group
6498 * having more cpu_power will pickup more load compared to the group having
6499 * less cpu_power.
6501 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6502 * the maximum number of tasks a group can handle in the presence of other idle
6503 * or lightly loaded groups in the same sched domain.
6505 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6507 struct sched_domain *child;
6508 struct sched_group *group;
6510 WARN_ON(!sd || !sd->groups);
6512 if (cpu != first_cpu(sd->groups->cpumask))
6513 return;
6515 child = sd->child;
6517 sd->groups->__cpu_power = 0;
6520 * For perf policy, if the groups in child domain share resources
6521 * (for example cores sharing some portions of the cache hierarchy
6522 * or SMT), then set this domain groups cpu_power such that each group
6523 * can handle only one task, when there are other idle groups in the
6524 * same sched domain.
6526 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6527 (child->flags &
6528 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6529 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6530 return;
6534 * add cpu_power of each child group to this groups cpu_power
6536 group = child->groups;
6537 do {
6538 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6539 group = group->next;
6540 } while (group != child->groups);
6544 * Build sched domains for a given set of cpus and attach the sched domains
6545 * to the individual cpus
6547 static int build_sched_domains(const cpumask_t *cpu_map)
6549 int i;
6550 struct root_domain *rd;
6551 #ifdef CONFIG_NUMA
6552 struct sched_group **sched_group_nodes = NULL;
6553 int sd_allnodes = 0;
6556 * Allocate the per-node list of sched groups
6558 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6559 GFP_KERNEL);
6560 if (!sched_group_nodes) {
6561 printk(KERN_WARNING "Can not alloc sched group node list\n");
6562 return -ENOMEM;
6564 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6565 #endif
6567 rd = alloc_rootdomain();
6568 if (!rd) {
6569 printk(KERN_WARNING "Cannot alloc root domain\n");
6570 return -ENOMEM;
6574 * Set up domains for cpus specified by the cpu_map.
6576 for_each_cpu_mask(i, *cpu_map) {
6577 struct sched_domain *sd = NULL, *p;
6578 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6580 cpus_and(nodemask, nodemask, *cpu_map);
6582 #ifdef CONFIG_NUMA
6583 if (cpus_weight(*cpu_map) >
6584 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6585 sd = &per_cpu(allnodes_domains, i);
6586 *sd = SD_ALLNODES_INIT;
6587 sd->span = *cpu_map;
6588 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6589 p = sd;
6590 sd_allnodes = 1;
6591 } else
6592 p = NULL;
6594 sd = &per_cpu(node_domains, i);
6595 *sd = SD_NODE_INIT;
6596 sd->span = sched_domain_node_span(cpu_to_node(i));
6597 sd->parent = p;
6598 if (p)
6599 p->child = sd;
6600 cpus_and(sd->span, sd->span, *cpu_map);
6601 #endif
6603 p = sd;
6604 sd = &per_cpu(phys_domains, i);
6605 *sd = SD_CPU_INIT;
6606 sd->span = nodemask;
6607 sd->parent = p;
6608 if (p)
6609 p->child = sd;
6610 cpu_to_phys_group(i, cpu_map, &sd->groups);
6612 #ifdef CONFIG_SCHED_MC
6613 p = sd;
6614 sd = &per_cpu(core_domains, i);
6615 *sd = SD_MC_INIT;
6616 sd->span = cpu_coregroup_map(i);
6617 cpus_and(sd->span, sd->span, *cpu_map);
6618 sd->parent = p;
6619 p->child = sd;
6620 cpu_to_core_group(i, cpu_map, &sd->groups);
6621 #endif
6623 #ifdef CONFIG_SCHED_SMT
6624 p = sd;
6625 sd = &per_cpu(cpu_domains, i);
6626 *sd = SD_SIBLING_INIT;
6627 sd->span = per_cpu(cpu_sibling_map, i);
6628 cpus_and(sd->span, sd->span, *cpu_map);
6629 sd->parent = p;
6630 p->child = sd;
6631 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6632 #endif
6635 #ifdef CONFIG_SCHED_SMT
6636 /* Set up CPU (sibling) groups */
6637 for_each_cpu_mask(i, *cpu_map) {
6638 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6639 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6640 if (i != first_cpu(this_sibling_map))
6641 continue;
6643 init_sched_build_groups(this_sibling_map, cpu_map,
6644 &cpu_to_cpu_group);
6646 #endif
6648 #ifdef CONFIG_SCHED_MC
6649 /* Set up multi-core groups */
6650 for_each_cpu_mask(i, *cpu_map) {
6651 cpumask_t this_core_map = cpu_coregroup_map(i);
6652 cpus_and(this_core_map, this_core_map, *cpu_map);
6653 if (i != first_cpu(this_core_map))
6654 continue;
6655 init_sched_build_groups(this_core_map, cpu_map,
6656 &cpu_to_core_group);
6658 #endif
6660 /* Set up physical groups */
6661 for (i = 0; i < MAX_NUMNODES; i++) {
6662 cpumask_t nodemask = node_to_cpumask(i);
6664 cpus_and(nodemask, nodemask, *cpu_map);
6665 if (cpus_empty(nodemask))
6666 continue;
6668 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6671 #ifdef CONFIG_NUMA
6672 /* Set up node groups */
6673 if (sd_allnodes)
6674 init_sched_build_groups(*cpu_map, cpu_map,
6675 &cpu_to_allnodes_group);
6677 for (i = 0; i < MAX_NUMNODES; i++) {
6678 /* Set up node groups */
6679 struct sched_group *sg, *prev;
6680 cpumask_t nodemask = node_to_cpumask(i);
6681 cpumask_t domainspan;
6682 cpumask_t covered = CPU_MASK_NONE;
6683 int j;
6685 cpus_and(nodemask, nodemask, *cpu_map);
6686 if (cpus_empty(nodemask)) {
6687 sched_group_nodes[i] = NULL;
6688 continue;
6691 domainspan = sched_domain_node_span(i);
6692 cpus_and(domainspan, domainspan, *cpu_map);
6694 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6695 if (!sg) {
6696 printk(KERN_WARNING "Can not alloc domain group for "
6697 "node %d\n", i);
6698 goto error;
6700 sched_group_nodes[i] = sg;
6701 for_each_cpu_mask(j, nodemask) {
6702 struct sched_domain *sd;
6704 sd = &per_cpu(node_domains, j);
6705 sd->groups = sg;
6707 sg->__cpu_power = 0;
6708 sg->cpumask = nodemask;
6709 sg->next = sg;
6710 cpus_or(covered, covered, nodemask);
6711 prev = sg;
6713 for (j = 0; j < MAX_NUMNODES; j++) {
6714 cpumask_t tmp, notcovered;
6715 int n = (i + j) % MAX_NUMNODES;
6717 cpus_complement(notcovered, covered);
6718 cpus_and(tmp, notcovered, *cpu_map);
6719 cpus_and(tmp, tmp, domainspan);
6720 if (cpus_empty(tmp))
6721 break;
6723 nodemask = node_to_cpumask(n);
6724 cpus_and(tmp, tmp, nodemask);
6725 if (cpus_empty(tmp))
6726 continue;
6728 sg = kmalloc_node(sizeof(struct sched_group),
6729 GFP_KERNEL, i);
6730 if (!sg) {
6731 printk(KERN_WARNING
6732 "Can not alloc domain group for node %d\n", j);
6733 goto error;
6735 sg->__cpu_power = 0;
6736 sg->cpumask = tmp;
6737 sg->next = prev->next;
6738 cpus_or(covered, covered, tmp);
6739 prev->next = sg;
6740 prev = sg;
6743 #endif
6745 /* Calculate CPU power for physical packages and nodes */
6746 #ifdef CONFIG_SCHED_SMT
6747 for_each_cpu_mask(i, *cpu_map) {
6748 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6750 init_sched_groups_power(i, sd);
6752 #endif
6753 #ifdef CONFIG_SCHED_MC
6754 for_each_cpu_mask(i, *cpu_map) {
6755 struct sched_domain *sd = &per_cpu(core_domains, i);
6757 init_sched_groups_power(i, sd);
6759 #endif
6761 for_each_cpu_mask(i, *cpu_map) {
6762 struct sched_domain *sd = &per_cpu(phys_domains, i);
6764 init_sched_groups_power(i, sd);
6767 #ifdef CONFIG_NUMA
6768 for (i = 0; i < MAX_NUMNODES; i++)
6769 init_numa_sched_groups_power(sched_group_nodes[i]);
6771 if (sd_allnodes) {
6772 struct sched_group *sg;
6774 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6775 init_numa_sched_groups_power(sg);
6777 #endif
6779 /* Attach the domains */
6780 for_each_cpu_mask(i, *cpu_map) {
6781 struct sched_domain *sd;
6782 #ifdef CONFIG_SCHED_SMT
6783 sd = &per_cpu(cpu_domains, i);
6784 #elif defined(CONFIG_SCHED_MC)
6785 sd = &per_cpu(core_domains, i);
6786 #else
6787 sd = &per_cpu(phys_domains, i);
6788 #endif
6789 cpu_attach_domain(sd, rd, i);
6792 return 0;
6794 #ifdef CONFIG_NUMA
6795 error:
6796 free_sched_groups(cpu_map);
6797 return -ENOMEM;
6798 #endif
6801 static cpumask_t *doms_cur; /* current sched domains */
6802 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6805 * Special case: If a kmalloc of a doms_cur partition (array of
6806 * cpumask_t) fails, then fallback to a single sched domain,
6807 * as determined by the single cpumask_t fallback_doms.
6809 static cpumask_t fallback_doms;
6812 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6813 * For now this just excludes isolated cpus, but could be used to
6814 * exclude other special cases in the future.
6816 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6818 int err;
6820 ndoms_cur = 1;
6821 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6822 if (!doms_cur)
6823 doms_cur = &fallback_doms;
6824 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6825 err = build_sched_domains(doms_cur);
6826 register_sched_domain_sysctl();
6828 return err;
6831 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6833 free_sched_groups(cpu_map);
6837 * Detach sched domains from a group of cpus specified in cpu_map
6838 * These cpus will now be attached to the NULL domain
6840 static void detach_destroy_domains(const cpumask_t *cpu_map)
6842 int i;
6844 unregister_sched_domain_sysctl();
6846 for_each_cpu_mask(i, *cpu_map)
6847 cpu_attach_domain(NULL, &def_root_domain, i);
6848 synchronize_sched();
6849 arch_destroy_sched_domains(cpu_map);
6853 * Partition sched domains as specified by the 'ndoms_new'
6854 * cpumasks in the array doms_new[] of cpumasks. This compares
6855 * doms_new[] to the current sched domain partitioning, doms_cur[].
6856 * It destroys each deleted domain and builds each new domain.
6858 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6859 * The masks don't intersect (don't overlap.) We should setup one
6860 * sched domain for each mask. CPUs not in any of the cpumasks will
6861 * not be load balanced. If the same cpumask appears both in the
6862 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6863 * it as it is.
6865 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6866 * ownership of it and will kfree it when done with it. If the caller
6867 * failed the kmalloc call, then it can pass in doms_new == NULL,
6868 * and partition_sched_domains() will fallback to the single partition
6869 * 'fallback_doms'.
6871 * Call with hotplug lock held
6873 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6875 int i, j;
6877 lock_doms_cur();
6879 /* always unregister in case we don't destroy any domains */
6880 unregister_sched_domain_sysctl();
6882 if (doms_new == NULL) {
6883 ndoms_new = 1;
6884 doms_new = &fallback_doms;
6885 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6888 /* Destroy deleted domains */
6889 for (i = 0; i < ndoms_cur; i++) {
6890 for (j = 0; j < ndoms_new; j++) {
6891 if (cpus_equal(doms_cur[i], doms_new[j]))
6892 goto match1;
6894 /* no match - a current sched domain not in new doms_new[] */
6895 detach_destroy_domains(doms_cur + i);
6896 match1:
6900 /* Build new domains */
6901 for (i = 0; i < ndoms_new; i++) {
6902 for (j = 0; j < ndoms_cur; j++) {
6903 if (cpus_equal(doms_new[i], doms_cur[j]))
6904 goto match2;
6906 /* no match - add a new doms_new */
6907 build_sched_domains(doms_new + i);
6908 match2:
6912 /* Remember the new sched domains */
6913 if (doms_cur != &fallback_doms)
6914 kfree(doms_cur);
6915 doms_cur = doms_new;
6916 ndoms_cur = ndoms_new;
6918 register_sched_domain_sysctl();
6920 unlock_doms_cur();
6923 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6924 static int arch_reinit_sched_domains(void)
6926 int err;
6928 get_online_cpus();
6929 detach_destroy_domains(&cpu_online_map);
6930 err = arch_init_sched_domains(&cpu_online_map);
6931 put_online_cpus();
6933 return err;
6936 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6938 int ret;
6940 if (buf[0] != '0' && buf[0] != '1')
6941 return -EINVAL;
6943 if (smt)
6944 sched_smt_power_savings = (buf[0] == '1');
6945 else
6946 sched_mc_power_savings = (buf[0] == '1');
6948 ret = arch_reinit_sched_domains();
6950 return ret ? ret : count;
6953 #ifdef CONFIG_SCHED_MC
6954 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6956 return sprintf(page, "%u\n", sched_mc_power_savings);
6958 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6959 const char *buf, size_t count)
6961 return sched_power_savings_store(buf, count, 0);
6963 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6964 sched_mc_power_savings_store);
6965 #endif
6967 #ifdef CONFIG_SCHED_SMT
6968 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6970 return sprintf(page, "%u\n", sched_smt_power_savings);
6972 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6973 const char *buf, size_t count)
6975 return sched_power_savings_store(buf, count, 1);
6977 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6978 sched_smt_power_savings_store);
6979 #endif
6981 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6983 int err = 0;
6985 #ifdef CONFIG_SCHED_SMT
6986 if (smt_capable())
6987 err = sysfs_create_file(&cls->kset.kobj,
6988 &attr_sched_smt_power_savings.attr);
6989 #endif
6990 #ifdef CONFIG_SCHED_MC
6991 if (!err && mc_capable())
6992 err = sysfs_create_file(&cls->kset.kobj,
6993 &attr_sched_mc_power_savings.attr);
6994 #endif
6995 return err;
6997 #endif
7000 * Force a reinitialization of the sched domains hierarchy. The domains
7001 * and groups cannot be updated in place without racing with the balancing
7002 * code, so we temporarily attach all running cpus to the NULL domain
7003 * which will prevent rebalancing while the sched domains are recalculated.
7005 static int update_sched_domains(struct notifier_block *nfb,
7006 unsigned long action, void *hcpu)
7008 switch (action) {
7009 case CPU_UP_PREPARE:
7010 case CPU_UP_PREPARE_FROZEN:
7011 case CPU_DOWN_PREPARE:
7012 case CPU_DOWN_PREPARE_FROZEN:
7013 detach_destroy_domains(&cpu_online_map);
7014 return NOTIFY_OK;
7016 case CPU_UP_CANCELED:
7017 case CPU_UP_CANCELED_FROZEN:
7018 case CPU_DOWN_FAILED:
7019 case CPU_DOWN_FAILED_FROZEN:
7020 case CPU_ONLINE:
7021 case CPU_ONLINE_FROZEN:
7022 case CPU_DEAD:
7023 case CPU_DEAD_FROZEN:
7025 * Fall through and re-initialise the domains.
7027 break;
7028 default:
7029 return NOTIFY_DONE;
7032 /* The hotplug lock is already held by cpu_up/cpu_down */
7033 arch_init_sched_domains(&cpu_online_map);
7035 return NOTIFY_OK;
7038 void __init sched_init_smp(void)
7040 cpumask_t non_isolated_cpus;
7042 get_online_cpus();
7043 arch_init_sched_domains(&cpu_online_map);
7044 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7045 if (cpus_empty(non_isolated_cpus))
7046 cpu_set(smp_processor_id(), non_isolated_cpus);
7047 put_online_cpus();
7048 /* XXX: Theoretical race here - CPU may be hotplugged now */
7049 hotcpu_notifier(update_sched_domains, 0);
7051 /* Move init over to a non-isolated CPU */
7052 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7053 BUG();
7054 sched_init_granularity();
7056 #ifdef CONFIG_FAIR_GROUP_SCHED
7057 if (nr_cpu_ids == 1)
7058 return;
7060 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
7061 "group_balance");
7062 if (!IS_ERR(lb_monitor_task)) {
7063 lb_monitor_task->flags |= PF_NOFREEZE;
7064 wake_up_process(lb_monitor_task);
7065 } else {
7066 printk(KERN_ERR "Could not create load balance monitor thread"
7067 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
7069 #endif
7071 #else
7072 void __init sched_init_smp(void)
7074 sched_init_granularity();
7076 #endif /* CONFIG_SMP */
7078 int in_sched_functions(unsigned long addr)
7080 return in_lock_functions(addr) ||
7081 (addr >= (unsigned long)__sched_text_start
7082 && addr < (unsigned long)__sched_text_end);
7085 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7087 cfs_rq->tasks_timeline = RB_ROOT;
7088 #ifdef CONFIG_FAIR_GROUP_SCHED
7089 cfs_rq->rq = rq;
7090 #endif
7091 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7094 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7096 struct rt_prio_array *array;
7097 int i;
7099 array = &rt_rq->active;
7100 for (i = 0; i < MAX_RT_PRIO; i++) {
7101 INIT_LIST_HEAD(array->queue + i);
7102 __clear_bit(i, array->bitmap);
7104 /* delimiter for bitsearch: */
7105 __set_bit(MAX_RT_PRIO, array->bitmap);
7107 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
7108 rt_rq->highest_prio = MAX_RT_PRIO;
7109 #endif
7110 #ifdef CONFIG_SMP
7111 rt_rq->rt_nr_migratory = 0;
7112 rt_rq->overloaded = 0;
7113 #endif
7115 rt_rq->rt_time = 0;
7116 rt_rq->rt_throttled = 0;
7118 #ifdef CONFIG_FAIR_GROUP_SCHED
7119 rt_rq->rt_nr_boosted = 0;
7120 rt_rq->rq = rq;
7121 #endif
7124 #ifdef CONFIG_FAIR_GROUP_SCHED
7125 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7126 struct cfs_rq *cfs_rq, struct sched_entity *se,
7127 int cpu, int add)
7129 tg->cfs_rq[cpu] = cfs_rq;
7130 init_cfs_rq(cfs_rq, rq);
7131 cfs_rq->tg = tg;
7132 if (add)
7133 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7135 tg->se[cpu] = se;
7136 se->cfs_rq = &rq->cfs;
7137 se->my_q = cfs_rq;
7138 se->load.weight = tg->shares;
7139 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7140 se->parent = NULL;
7143 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7144 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7145 int cpu, int add)
7147 tg->rt_rq[cpu] = rt_rq;
7148 init_rt_rq(rt_rq, rq);
7149 rt_rq->tg = tg;
7150 rt_rq->rt_se = rt_se;
7151 if (add)
7152 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7154 tg->rt_se[cpu] = rt_se;
7155 rt_se->rt_rq = &rq->rt;
7156 rt_se->my_q = rt_rq;
7157 rt_se->parent = NULL;
7158 INIT_LIST_HEAD(&rt_se->run_list);
7160 #endif
7162 void __init sched_init(void)
7164 int highest_cpu = 0;
7165 int i, j;
7167 #ifdef CONFIG_SMP
7168 init_defrootdomain();
7169 #endif
7171 #ifdef CONFIG_FAIR_GROUP_SCHED
7172 list_add(&init_task_group.list, &task_groups);
7173 #endif
7175 for_each_possible_cpu(i) {
7176 struct rq *rq;
7178 rq = cpu_rq(i);
7179 spin_lock_init(&rq->lock);
7180 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7181 rq->nr_running = 0;
7182 rq->clock = 1;
7183 init_cfs_rq(&rq->cfs, rq);
7184 init_rt_rq(&rq->rt, rq);
7185 #ifdef CONFIG_FAIR_GROUP_SCHED
7186 init_task_group.shares = init_task_group_load;
7187 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7188 init_tg_cfs_entry(rq, &init_task_group,
7189 &per_cpu(init_cfs_rq, i),
7190 &per_cpu(init_sched_entity, i), i, 1);
7192 init_task_group.rt_runtime =
7193 sysctl_sched_rt_runtime * NSEC_PER_USEC;
7194 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7195 init_tg_rt_entry(rq, &init_task_group,
7196 &per_cpu(init_rt_rq, i),
7197 &per_cpu(init_sched_rt_entity, i), i, 1);
7198 #endif
7199 rq->rt_period_expire = 0;
7200 rq->rt_throttled = 0;
7202 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7203 rq->cpu_load[j] = 0;
7204 #ifdef CONFIG_SMP
7205 rq->sd = NULL;
7206 rq->rd = NULL;
7207 rq->active_balance = 0;
7208 rq->next_balance = jiffies;
7209 rq->push_cpu = 0;
7210 rq->cpu = i;
7211 rq->migration_thread = NULL;
7212 INIT_LIST_HEAD(&rq->migration_queue);
7213 rq_attach_root(rq, &def_root_domain);
7214 #endif
7215 init_rq_hrtick(rq);
7216 atomic_set(&rq->nr_iowait, 0);
7217 highest_cpu = i;
7220 set_load_weight(&init_task);
7222 #ifdef CONFIG_PREEMPT_NOTIFIERS
7223 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7224 #endif
7226 #ifdef CONFIG_SMP
7227 nr_cpu_ids = highest_cpu + 1;
7228 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7229 #endif
7231 #ifdef CONFIG_RT_MUTEXES
7232 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7233 #endif
7236 * The boot idle thread does lazy MMU switching as well:
7238 atomic_inc(&init_mm.mm_count);
7239 enter_lazy_tlb(&init_mm, current);
7242 * Make us the idle thread. Technically, schedule() should not be
7243 * called from this thread, however somewhere below it might be,
7244 * but because we are the idle thread, we just pick up running again
7245 * when this runqueue becomes "idle".
7247 init_idle(current, smp_processor_id());
7249 * During early bootup we pretend to be a normal task:
7251 current->sched_class = &fair_sched_class;
7254 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7255 void __might_sleep(char *file, int line)
7257 #ifdef in_atomic
7258 static unsigned long prev_jiffy; /* ratelimiting */
7260 if ((in_atomic() || irqs_disabled()) &&
7261 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7262 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7263 return;
7264 prev_jiffy = jiffies;
7265 printk(KERN_ERR "BUG: sleeping function called from invalid"
7266 " context at %s:%d\n", file, line);
7267 printk("in_atomic():%d, irqs_disabled():%d\n",
7268 in_atomic(), irqs_disabled());
7269 debug_show_held_locks(current);
7270 if (irqs_disabled())
7271 print_irqtrace_events(current);
7272 dump_stack();
7274 #endif
7276 EXPORT_SYMBOL(__might_sleep);
7277 #endif
7279 #ifdef CONFIG_MAGIC_SYSRQ
7280 static void normalize_task(struct rq *rq, struct task_struct *p)
7282 int on_rq;
7283 update_rq_clock(rq);
7284 on_rq = p->se.on_rq;
7285 if (on_rq)
7286 deactivate_task(rq, p, 0);
7287 __setscheduler(rq, p, SCHED_NORMAL, 0);
7288 if (on_rq) {
7289 activate_task(rq, p, 0);
7290 resched_task(rq->curr);
7294 void normalize_rt_tasks(void)
7296 struct task_struct *g, *p;
7297 unsigned long flags;
7298 struct rq *rq;
7300 read_lock_irqsave(&tasklist_lock, flags);
7301 do_each_thread(g, p) {
7303 * Only normalize user tasks:
7305 if (!p->mm)
7306 continue;
7308 p->se.exec_start = 0;
7309 #ifdef CONFIG_SCHEDSTATS
7310 p->se.wait_start = 0;
7311 p->se.sleep_start = 0;
7312 p->se.block_start = 0;
7313 #endif
7314 task_rq(p)->clock = 0;
7316 if (!rt_task(p)) {
7318 * Renice negative nice level userspace
7319 * tasks back to 0:
7321 if (TASK_NICE(p) < 0 && p->mm)
7322 set_user_nice(p, 0);
7323 continue;
7326 spin_lock(&p->pi_lock);
7327 rq = __task_rq_lock(p);
7329 normalize_task(rq, p);
7331 __task_rq_unlock(rq);
7332 spin_unlock(&p->pi_lock);
7333 } while_each_thread(g, p);
7335 read_unlock_irqrestore(&tasklist_lock, flags);
7338 #endif /* CONFIG_MAGIC_SYSRQ */
7340 #ifdef CONFIG_IA64
7342 * These functions are only useful for the IA64 MCA handling.
7344 * They can only be called when the whole system has been
7345 * stopped - every CPU needs to be quiescent, and no scheduling
7346 * activity can take place. Using them for anything else would
7347 * be a serious bug, and as a result, they aren't even visible
7348 * under any other configuration.
7352 * curr_task - return the current task for a given cpu.
7353 * @cpu: the processor in question.
7355 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7357 struct task_struct *curr_task(int cpu)
7359 return cpu_curr(cpu);
7363 * set_curr_task - set the current task for a given cpu.
7364 * @cpu: the processor in question.
7365 * @p: the task pointer to set.
7367 * Description: This function must only be used when non-maskable interrupts
7368 * are serviced on a separate stack. It allows the architecture to switch the
7369 * notion of the current task on a cpu in a non-blocking manner. This function
7370 * must be called with all CPU's synchronized, and interrupts disabled, the
7371 * and caller must save the original value of the current task (see
7372 * curr_task() above) and restore that value before reenabling interrupts and
7373 * re-starting the system.
7375 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7377 void set_curr_task(int cpu, struct task_struct *p)
7379 cpu_curr(cpu) = p;
7382 #endif
7384 #ifdef CONFIG_FAIR_GROUP_SCHED
7386 #ifdef CONFIG_SMP
7388 * distribute shares of all task groups among their schedulable entities,
7389 * to reflect load distribution across cpus.
7391 static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7393 struct cfs_rq *cfs_rq;
7394 struct rq *rq = cpu_rq(this_cpu);
7395 cpumask_t sdspan = sd->span;
7396 int balanced = 1;
7398 /* Walk thr' all the task groups that we have */
7399 for_each_leaf_cfs_rq(rq, cfs_rq) {
7400 int i;
7401 unsigned long total_load = 0, total_shares;
7402 struct task_group *tg = cfs_rq->tg;
7404 /* Gather total task load of this group across cpus */
7405 for_each_cpu_mask(i, sdspan)
7406 total_load += tg->cfs_rq[i]->load.weight;
7408 /* Nothing to do if this group has no load */
7409 if (!total_load)
7410 continue;
7413 * tg->shares represents the number of cpu shares the task group
7414 * is eligible to hold on a single cpu. On N cpus, it is
7415 * eligible to hold (N * tg->shares) number of cpu shares.
7417 total_shares = tg->shares * cpus_weight(sdspan);
7420 * redistribute total_shares across cpus as per the task load
7421 * distribution.
7423 for_each_cpu_mask(i, sdspan) {
7424 unsigned long local_load, local_shares;
7426 local_load = tg->cfs_rq[i]->load.weight;
7427 local_shares = (local_load * total_shares) / total_load;
7428 if (!local_shares)
7429 local_shares = MIN_GROUP_SHARES;
7430 if (local_shares == tg->se[i]->load.weight)
7431 continue;
7433 spin_lock_irq(&cpu_rq(i)->lock);
7434 set_se_shares(tg->se[i], local_shares);
7435 spin_unlock_irq(&cpu_rq(i)->lock);
7436 balanced = 0;
7440 return balanced;
7444 * How frequently should we rebalance_shares() across cpus?
7446 * The more frequently we rebalance shares, the more accurate is the fairness
7447 * of cpu bandwidth distribution between task groups. However higher frequency
7448 * also implies increased scheduling overhead.
7450 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7451 * consecutive calls to rebalance_shares() in the same sched domain.
7453 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7454 * consecutive calls to rebalance_shares() in the same sched domain.
7456 * These settings allows for the appropriate trade-off between accuracy of
7457 * fairness and the associated overhead.
7461 /* default: 8ms, units: milliseconds */
7462 const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7464 /* default: 128ms, units: milliseconds */
7465 const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7467 /* kernel thread that runs rebalance_shares() periodically */
7468 static int load_balance_monitor(void *unused)
7470 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7471 struct sched_param schedparm;
7472 int ret;
7475 * We don't want this thread's execution to be limited by the shares
7476 * assigned to default group (init_task_group). Hence make it run
7477 * as a SCHED_RR RT task at the lowest priority.
7479 schedparm.sched_priority = 1;
7480 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7481 if (ret)
7482 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7483 " monitor thread (error = %d) \n", ret);
7485 while (!kthread_should_stop()) {
7486 int i, cpu, balanced = 1;
7488 /* Prevent cpus going down or coming up */
7489 get_online_cpus();
7490 /* lockout changes to doms_cur[] array */
7491 lock_doms_cur();
7493 * Enter a rcu read-side critical section to safely walk rq->sd
7494 * chain on various cpus and to walk task group list
7495 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7497 rcu_read_lock();
7499 for (i = 0; i < ndoms_cur; i++) {
7500 cpumask_t cpumap = doms_cur[i];
7501 struct sched_domain *sd = NULL, *sd_prev = NULL;
7503 cpu = first_cpu(cpumap);
7505 /* Find the highest domain at which to balance shares */
7506 for_each_domain(cpu, sd) {
7507 if (!(sd->flags & SD_LOAD_BALANCE))
7508 continue;
7509 sd_prev = sd;
7512 sd = sd_prev;
7513 /* sd == NULL? No load balance reqd in this domain */
7514 if (!sd)
7515 continue;
7517 balanced &= rebalance_shares(sd, cpu);
7520 rcu_read_unlock();
7522 unlock_doms_cur();
7523 put_online_cpus();
7525 if (!balanced)
7526 timeout = sysctl_sched_min_bal_int_shares;
7527 else if (timeout < sysctl_sched_max_bal_int_shares)
7528 timeout *= 2;
7530 msleep_interruptible(timeout);
7533 return 0;
7535 #endif /* CONFIG_SMP */
7537 static void free_sched_group(struct task_group *tg)
7539 int i;
7541 for_each_possible_cpu(i) {
7542 if (tg->cfs_rq)
7543 kfree(tg->cfs_rq[i]);
7544 if (tg->se)
7545 kfree(tg->se[i]);
7546 if (tg->rt_rq)
7547 kfree(tg->rt_rq[i]);
7548 if (tg->rt_se)
7549 kfree(tg->rt_se[i]);
7552 kfree(tg->cfs_rq);
7553 kfree(tg->se);
7554 kfree(tg->rt_rq);
7555 kfree(tg->rt_se);
7556 kfree(tg);
7559 /* allocate runqueue etc for a new task group */
7560 struct task_group *sched_create_group(void)
7562 struct task_group *tg;
7563 struct cfs_rq *cfs_rq;
7564 struct sched_entity *se;
7565 struct rt_rq *rt_rq;
7566 struct sched_rt_entity *rt_se;
7567 struct rq *rq;
7568 unsigned long flags;
7569 int i;
7571 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7572 if (!tg)
7573 return ERR_PTR(-ENOMEM);
7575 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7576 if (!tg->cfs_rq)
7577 goto err;
7578 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7579 if (!tg->se)
7580 goto err;
7581 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7582 if (!tg->rt_rq)
7583 goto err;
7584 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7585 if (!tg->rt_se)
7586 goto err;
7588 tg->shares = NICE_0_LOAD;
7589 tg->rt_runtime = 0;
7591 for_each_possible_cpu(i) {
7592 rq = cpu_rq(i);
7594 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7595 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7596 if (!cfs_rq)
7597 goto err;
7599 se = kmalloc_node(sizeof(struct sched_entity),
7600 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7601 if (!se)
7602 goto err;
7604 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7605 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7606 if (!rt_rq)
7607 goto err;
7609 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7610 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7611 if (!rt_se)
7612 goto err;
7614 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7615 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7618 spin_lock_irqsave(&task_group_lock, flags);
7619 for_each_possible_cpu(i) {
7620 rq = cpu_rq(i);
7621 cfs_rq = tg->cfs_rq[i];
7622 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7623 rt_rq = tg->rt_rq[i];
7624 list_add_rcu(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7626 list_add_rcu(&tg->list, &task_groups);
7627 spin_unlock_irqrestore(&task_group_lock, flags);
7629 return tg;
7631 err:
7632 free_sched_group(tg);
7633 return ERR_PTR(-ENOMEM);
7636 /* rcu callback to free various structures associated with a task group */
7637 static void free_sched_group_rcu(struct rcu_head *rhp)
7639 /* now it should be safe to free those cfs_rqs */
7640 free_sched_group(container_of(rhp, struct task_group, rcu));
7643 /* Destroy runqueue etc associated with a task group */
7644 void sched_destroy_group(struct task_group *tg)
7646 struct cfs_rq *cfs_rq = NULL;
7647 struct rt_rq *rt_rq = NULL;
7648 unsigned long flags;
7649 int i;
7651 spin_lock_irqsave(&task_group_lock, flags);
7652 for_each_possible_cpu(i) {
7653 cfs_rq = tg->cfs_rq[i];
7654 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7655 rt_rq = tg->rt_rq[i];
7656 list_del_rcu(&rt_rq->leaf_rt_rq_list);
7658 list_del_rcu(&tg->list);
7659 spin_unlock_irqrestore(&task_group_lock, flags);
7661 BUG_ON(!cfs_rq);
7663 /* wait for possible concurrent references to cfs_rqs complete */
7664 call_rcu(&tg->rcu, free_sched_group_rcu);
7667 /* change task's runqueue when it moves between groups.
7668 * The caller of this function should have put the task in its new group
7669 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7670 * reflect its new group.
7672 void sched_move_task(struct task_struct *tsk)
7674 int on_rq, running;
7675 unsigned long flags;
7676 struct rq *rq;
7678 rq = task_rq_lock(tsk, &flags);
7680 update_rq_clock(rq);
7682 running = task_current(rq, tsk);
7683 on_rq = tsk->se.on_rq;
7685 if (on_rq) {
7686 dequeue_task(rq, tsk, 0);
7687 if (unlikely(running))
7688 tsk->sched_class->put_prev_task(rq, tsk);
7691 set_task_rq(tsk, task_cpu(tsk));
7693 if (on_rq) {
7694 if (unlikely(running))
7695 tsk->sched_class->set_curr_task(rq);
7696 enqueue_task(rq, tsk, 0);
7699 task_rq_unlock(rq, &flags);
7702 /* rq->lock to be locked by caller */
7703 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7705 struct cfs_rq *cfs_rq = se->cfs_rq;
7706 struct rq *rq = cfs_rq->rq;
7707 int on_rq;
7709 if (!shares)
7710 shares = MIN_GROUP_SHARES;
7712 on_rq = se->on_rq;
7713 if (on_rq) {
7714 dequeue_entity(cfs_rq, se, 0);
7715 dec_cpu_load(rq, se->load.weight);
7718 se->load.weight = shares;
7719 se->load.inv_weight = div64_64((1ULL<<32), shares);
7721 if (on_rq) {
7722 enqueue_entity(cfs_rq, se, 0);
7723 inc_cpu_load(rq, se->load.weight);
7727 static DEFINE_MUTEX(shares_mutex);
7729 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7731 int i;
7732 struct cfs_rq *cfs_rq;
7733 struct rq *rq;
7734 unsigned long flags;
7736 mutex_lock(&shares_mutex);
7737 if (tg->shares == shares)
7738 goto done;
7740 if (shares < MIN_GROUP_SHARES)
7741 shares = MIN_GROUP_SHARES;
7744 * Prevent any load balance activity (rebalance_shares,
7745 * load_balance_fair) from referring to this group first,
7746 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7748 spin_lock_irqsave(&task_group_lock, flags);
7749 for_each_possible_cpu(i) {
7750 cfs_rq = tg->cfs_rq[i];
7751 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7753 spin_unlock_irqrestore(&task_group_lock, flags);
7755 /* wait for any ongoing reference to this group to finish */
7756 synchronize_sched();
7759 * Now we are free to modify the group's share on each cpu
7760 * w/o tripping rebalance_share or load_balance_fair.
7762 tg->shares = shares;
7763 for_each_possible_cpu(i) {
7764 spin_lock_irq(&cpu_rq(i)->lock);
7765 set_se_shares(tg->se[i], shares);
7766 spin_unlock_irq(&cpu_rq(i)->lock);
7770 * Enable load balance activity on this group, by inserting it back on
7771 * each cpu's rq->leaf_cfs_rq_list.
7773 spin_lock_irqsave(&task_group_lock, flags);
7774 for_each_possible_cpu(i) {
7775 rq = cpu_rq(i);
7776 cfs_rq = tg->cfs_rq[i];
7777 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7779 spin_unlock_irqrestore(&task_group_lock, flags);
7780 done:
7781 mutex_unlock(&shares_mutex);
7782 return 0;
7785 unsigned long sched_group_shares(struct task_group *tg)
7787 return tg->shares;
7791 * Ensure that the real time constraints are schedulable.
7793 static DEFINE_MUTEX(rt_constraints_mutex);
7795 static unsigned long to_ratio(u64 period, u64 runtime)
7797 if (runtime == RUNTIME_INF)
7798 return 1ULL << 16;
7800 runtime *= (1ULL << 16);
7801 div64_64(runtime, period);
7802 return runtime;
7805 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7807 struct task_group *tgi;
7808 unsigned long total = 0;
7809 unsigned long global_ratio =
7810 to_ratio(sysctl_sched_rt_period,
7811 sysctl_sched_rt_runtime < 0 ?
7812 RUNTIME_INF : sysctl_sched_rt_runtime);
7814 rcu_read_lock();
7815 list_for_each_entry_rcu(tgi, &task_groups, list) {
7816 if (tgi == tg)
7817 continue;
7819 total += to_ratio(period, tgi->rt_runtime);
7821 rcu_read_unlock();
7823 return total + to_ratio(period, runtime) < global_ratio;
7826 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7828 u64 rt_runtime, rt_period;
7829 int err = 0;
7831 rt_period = sysctl_sched_rt_period * NSEC_PER_USEC;
7832 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7833 if (rt_runtime_us == -1)
7834 rt_runtime = rt_period;
7836 mutex_lock(&rt_constraints_mutex);
7837 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7838 err = -EINVAL;
7839 goto unlock;
7841 if (rt_runtime_us == -1)
7842 rt_runtime = RUNTIME_INF;
7843 tg->rt_runtime = rt_runtime;
7844 unlock:
7845 mutex_unlock(&rt_constraints_mutex);
7847 return err;
7850 long sched_group_rt_runtime(struct task_group *tg)
7852 u64 rt_runtime_us;
7854 if (tg->rt_runtime == RUNTIME_INF)
7855 return -1;
7857 rt_runtime_us = tg->rt_runtime;
7858 do_div(rt_runtime_us, NSEC_PER_USEC);
7859 return rt_runtime_us;
7861 #endif /* CONFIG_FAIR_GROUP_SCHED */
7863 #ifdef CONFIG_FAIR_CGROUP_SCHED
7865 /* return corresponding task_group object of a cgroup */
7866 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7868 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7869 struct task_group, css);
7872 static struct cgroup_subsys_state *
7873 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7875 struct task_group *tg;
7877 if (!cgrp->parent) {
7878 /* This is early initialization for the top cgroup */
7879 init_task_group.css.cgroup = cgrp;
7880 return &init_task_group.css;
7883 /* we support only 1-level deep hierarchical scheduler atm */
7884 if (cgrp->parent->parent)
7885 return ERR_PTR(-EINVAL);
7887 tg = sched_create_group();
7888 if (IS_ERR(tg))
7889 return ERR_PTR(-ENOMEM);
7891 /* Bind the cgroup to task_group object we just created */
7892 tg->css.cgroup = cgrp;
7894 return &tg->css;
7897 static void
7898 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7900 struct task_group *tg = cgroup_tg(cgrp);
7902 sched_destroy_group(tg);
7905 static int
7906 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7907 struct task_struct *tsk)
7909 /* We don't support RT-tasks being in separate groups */
7910 if (tsk->sched_class != &fair_sched_class)
7911 return -EINVAL;
7913 return 0;
7916 static void
7917 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7918 struct cgroup *old_cont, struct task_struct *tsk)
7920 sched_move_task(tsk);
7923 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7924 u64 shareval)
7926 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7929 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7931 struct task_group *tg = cgroup_tg(cgrp);
7933 return (u64) tg->shares;
7936 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7937 struct file *file,
7938 const char __user *userbuf,
7939 size_t nbytes, loff_t *unused_ppos)
7941 char buffer[64];
7942 int retval = 0;
7943 s64 val;
7944 char *end;
7946 if (!nbytes)
7947 return -EINVAL;
7948 if (nbytes >= sizeof(buffer))
7949 return -E2BIG;
7950 if (copy_from_user(buffer, userbuf, nbytes))
7951 return -EFAULT;
7953 buffer[nbytes] = 0; /* nul-terminate */
7955 /* strip newline if necessary */
7956 if (nbytes && (buffer[nbytes-1] == '\n'))
7957 buffer[nbytes-1] = 0;
7958 val = simple_strtoll(buffer, &end, 0);
7959 if (*end)
7960 return -EINVAL;
7962 /* Pass to subsystem */
7963 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7964 if (!retval)
7965 retval = nbytes;
7966 return retval;
7969 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
7970 struct file *file,
7971 char __user *buf, size_t nbytes,
7972 loff_t *ppos)
7974 char tmp[64];
7975 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
7976 int len = sprintf(tmp, "%ld\n", val);
7978 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
7981 static struct cftype cpu_files[] = {
7983 .name = "shares",
7984 .read_uint = cpu_shares_read_uint,
7985 .write_uint = cpu_shares_write_uint,
7988 .name = "rt_runtime_us",
7989 .read = cpu_rt_runtime_read,
7990 .write = cpu_rt_runtime_write,
7994 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7996 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7999 struct cgroup_subsys cpu_cgroup_subsys = {
8000 .name = "cpu",
8001 .create = cpu_cgroup_create,
8002 .destroy = cpu_cgroup_destroy,
8003 .can_attach = cpu_cgroup_can_attach,
8004 .attach = cpu_cgroup_attach,
8005 .populate = cpu_cgroup_populate,
8006 .subsys_id = cpu_cgroup_subsys_id,
8007 .early_init = 1,
8010 #endif /* CONFIG_FAIR_CGROUP_SCHED */
8012 #ifdef CONFIG_CGROUP_CPUACCT
8015 * CPU accounting code for task groups.
8017 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8018 * (balbir@in.ibm.com).
8021 /* track cpu usage of a group of tasks */
8022 struct cpuacct {
8023 struct cgroup_subsys_state css;
8024 /* cpuusage holds pointer to a u64-type object on every cpu */
8025 u64 *cpuusage;
8028 struct cgroup_subsys cpuacct_subsys;
8030 /* return cpu accounting group corresponding to this container */
8031 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
8033 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
8034 struct cpuacct, css);
8037 /* return cpu accounting group to which this task belongs */
8038 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8040 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8041 struct cpuacct, css);
8044 /* create a new cpu accounting group */
8045 static struct cgroup_subsys_state *cpuacct_create(
8046 struct cgroup_subsys *ss, struct cgroup *cont)
8048 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8050 if (!ca)
8051 return ERR_PTR(-ENOMEM);
8053 ca->cpuusage = alloc_percpu(u64);
8054 if (!ca->cpuusage) {
8055 kfree(ca);
8056 return ERR_PTR(-ENOMEM);
8059 return &ca->css;
8062 /* destroy an existing cpu accounting group */
8063 static void
8064 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8066 struct cpuacct *ca = cgroup_ca(cont);
8068 free_percpu(ca->cpuusage);
8069 kfree(ca);
8072 /* return total cpu usage (in nanoseconds) of a group */
8073 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8075 struct cpuacct *ca = cgroup_ca(cont);
8076 u64 totalcpuusage = 0;
8077 int i;
8079 for_each_possible_cpu(i) {
8080 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8083 * Take rq->lock to make 64-bit addition safe on 32-bit
8084 * platforms.
8086 spin_lock_irq(&cpu_rq(i)->lock);
8087 totalcpuusage += *cpuusage;
8088 spin_unlock_irq(&cpu_rq(i)->lock);
8091 return totalcpuusage;
8094 static struct cftype files[] = {
8096 .name = "usage",
8097 .read_uint = cpuusage_read,
8101 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8103 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8107 * charge this task's execution time to its accounting group.
8109 * called with rq->lock held.
8111 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8113 struct cpuacct *ca;
8115 if (!cpuacct_subsys.active)
8116 return;
8118 ca = task_ca(tsk);
8119 if (ca) {
8120 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8122 *cpuusage += cputime;
8126 struct cgroup_subsys cpuacct_subsys = {
8127 .name = "cpuacct",
8128 .create = cpuacct_create,
8129 .destroy = cpuacct_destroy,
8130 .populate = cpuacct_populate,
8131 .subsys_id = cpuacct_subsys_id,
8133 #endif /* CONFIG_CGROUP_CPUACCT */