xfs: validate acl count
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / pci / sis7019.c
blobb11ee62b16c0d59a3dc004f57b2f6047947f78e2
1 /*
2 * Driver for SiS7019 Audio Accelerator
4 * Copyright (C) 2004-2007, David Dillow
5 * Written by David Dillow <dave@thedillows.org>
6 * Inspired by the Trident 4D-WaveDX/NX driver.
8 * All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, version 2.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/time.h>
27 #include <linux/moduleparam.h>
28 #include <linux/interrupt.h>
29 #include <linux/delay.h>
30 #include <sound/core.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/initval.h>
33 #include "sis7019.h"
35 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
36 MODULE_DESCRIPTION("SiS7019");
37 MODULE_LICENSE("GPL");
38 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
40 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
41 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
42 static int enable = 1;
43 static int codecs = 1;
45 module_param(index, int, 0444);
46 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
47 module_param(id, charp, 0444);
48 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
49 module_param(enable, bool, 0444);
50 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
51 module_param(codecs, int, 0444);
52 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
54 static struct pci_device_id snd_sis7019_ids[] = {
55 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
56 { 0, }
59 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
61 /* There are three timing modes for the voices.
63 * For both playback and capture, when the buffer is one or two periods long,
64 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
65 * to let us know when the periods have ended.
67 * When performing playback with more than two periods per buffer, we set
68 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
69 * reach it. We then update the offset and continue on until we are
70 * interrupted for the next period.
72 * Capture channels do not have a SSO, so we allocate a playback channel to
73 * use as a timer for the capture periods. We use the SSO on the playback
74 * channel to clock out virtual periods, and adjust the virtual period length
75 * to maintain synchronization. This algorithm came from the Trident driver.
77 * FIXME: It'd be nice to make use of some of the synth features in the
78 * hardware, but a woeful lack of documentation is a significant roadblock.
80 struct voice {
81 u16 flags;
82 #define VOICE_IN_USE 1
83 #define VOICE_CAPTURE 2
84 #define VOICE_SSO_TIMING 4
85 #define VOICE_SYNC_TIMING 8
86 u16 sync_cso;
87 u16 period_size;
88 u16 buffer_size;
89 u16 sync_period_size;
90 u16 sync_buffer_size;
91 u32 sso;
92 u32 vperiod;
93 struct snd_pcm_substream *substream;
94 struct voice *timing;
95 void __iomem *ctrl_base;
96 void __iomem *wave_base;
97 void __iomem *sync_base;
98 int num;
101 /* We need four pages to store our wave parameters during a suspend. If
102 * we're not doing power management, we still need to allocate a page
103 * for the silence buffer.
105 #ifdef CONFIG_PM
106 #define SIS_SUSPEND_PAGES 4
107 #else
108 #define SIS_SUSPEND_PAGES 1
109 #endif
111 struct sis7019 {
112 unsigned long ioport;
113 void __iomem *ioaddr;
114 int irq;
115 int codecs_present;
117 struct pci_dev *pci;
118 struct snd_pcm *pcm;
119 struct snd_card *card;
120 struct snd_ac97 *ac97[3];
122 /* Protect against more than one thread hitting the AC97
123 * registers (in a more polite manner than pounding the hardware
124 * semaphore)
126 struct mutex ac97_mutex;
128 /* voice_lock protects allocation/freeing of the voice descriptions
130 spinlock_t voice_lock;
132 struct voice voices[64];
133 struct voice capture_voice;
135 /* Allocate pages to store the internal wave state during
136 * suspends. When we're operating, this can be used as a silence
137 * buffer for a timing channel.
139 void *suspend_state[SIS_SUSPEND_PAGES];
141 int silence_users;
142 dma_addr_t silence_dma_addr;
145 /* These values are also used by the module param 'codecs' to indicate
146 * which codecs should be present.
148 #define SIS_PRIMARY_CODEC_PRESENT 0x0001
149 #define SIS_SECONDARY_CODEC_PRESENT 0x0002
150 #define SIS_TERTIARY_CODEC_PRESENT 0x0004
152 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
153 * documented range of 8-0xfff8 samples. Given that they are 0-based,
154 * that places our period/buffer range at 9-0xfff9 samples. That makes the
155 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
156 * max samples / min samples gives us the max periods in a buffer.
158 * We'll add a constraint upon open that limits the period and buffer sample
159 * size to values that are legal for the hardware.
161 static struct snd_pcm_hardware sis_playback_hw_info = {
162 .info = (SNDRV_PCM_INFO_MMAP |
163 SNDRV_PCM_INFO_MMAP_VALID |
164 SNDRV_PCM_INFO_INTERLEAVED |
165 SNDRV_PCM_INFO_BLOCK_TRANSFER |
166 SNDRV_PCM_INFO_SYNC_START |
167 SNDRV_PCM_INFO_RESUME),
168 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
169 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
170 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
171 .rate_min = 4000,
172 .rate_max = 48000,
173 .channels_min = 1,
174 .channels_max = 2,
175 .buffer_bytes_max = (0xfff9 * 4),
176 .period_bytes_min = 9,
177 .period_bytes_max = (0xfff9 * 4),
178 .periods_min = 1,
179 .periods_max = (0xfff9 / 9),
182 static struct snd_pcm_hardware sis_capture_hw_info = {
183 .info = (SNDRV_PCM_INFO_MMAP |
184 SNDRV_PCM_INFO_MMAP_VALID |
185 SNDRV_PCM_INFO_INTERLEAVED |
186 SNDRV_PCM_INFO_BLOCK_TRANSFER |
187 SNDRV_PCM_INFO_SYNC_START |
188 SNDRV_PCM_INFO_RESUME),
189 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
190 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
191 .rates = SNDRV_PCM_RATE_48000,
192 .rate_min = 4000,
193 .rate_max = 48000,
194 .channels_min = 1,
195 .channels_max = 2,
196 .buffer_bytes_max = (0xfff9 * 4),
197 .period_bytes_min = 9,
198 .period_bytes_max = (0xfff9 * 4),
199 .periods_min = 1,
200 .periods_max = (0xfff9 / 9),
203 static void sis_update_sso(struct voice *voice, u16 period)
205 void __iomem *base = voice->ctrl_base;
207 voice->sso += period;
208 if (voice->sso >= voice->buffer_size)
209 voice->sso -= voice->buffer_size;
211 /* Enforce the documented hardware minimum offset */
212 if (voice->sso < 8)
213 voice->sso = 8;
215 /* The SSO is in the upper 16 bits of the register. */
216 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
219 static void sis_update_voice(struct voice *voice)
221 if (voice->flags & VOICE_SSO_TIMING) {
222 sis_update_sso(voice, voice->period_size);
223 } else if (voice->flags & VOICE_SYNC_TIMING) {
224 int sync;
226 /* If we've not hit the end of the virtual period, update
227 * our records and keep going.
229 if (voice->vperiod > voice->period_size) {
230 voice->vperiod -= voice->period_size;
231 if (voice->vperiod < voice->period_size)
232 sis_update_sso(voice, voice->vperiod);
233 else
234 sis_update_sso(voice, voice->period_size);
235 return;
238 /* Calculate our relative offset between the target and
239 * the actual CSO value. Since we're operating in a loop,
240 * if the value is more than half way around, we can
241 * consider ourselves wrapped.
243 sync = voice->sync_cso;
244 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
245 if (sync > (voice->sync_buffer_size / 2))
246 sync -= voice->sync_buffer_size;
248 /* If sync is positive, then we interrupted too early, and
249 * we'll need to come back in a few samples and try again.
250 * There's a minimum wait, as it takes some time for the DMA
251 * engine to startup, etc...
253 if (sync > 0) {
254 if (sync < 16)
255 sync = 16;
256 sis_update_sso(voice, sync);
257 return;
260 /* Ok, we interrupted right on time, or (hopefully) just
261 * a bit late. We'll adjst our next waiting period based
262 * on how close we got.
264 * We need to stay just behind the actual channel to ensure
265 * it really is past a period when we get our interrupt --
266 * otherwise we'll fall into the early code above and have
267 * a minimum wait time, which makes us quite late here,
268 * eating into the user's time to refresh the buffer, esp.
269 * if using small periods.
271 * If we're less than 9 samples behind, we're on target.
273 if (sync > -9)
274 voice->vperiod = voice->sync_period_size + 1;
275 else
276 voice->vperiod = voice->sync_period_size - 4;
278 if (voice->vperiod < voice->buffer_size) {
279 sis_update_sso(voice, voice->vperiod);
280 voice->vperiod = 0;
281 } else
282 sis_update_sso(voice, voice->period_size);
284 sync = voice->sync_cso + voice->sync_period_size;
285 if (sync >= voice->sync_buffer_size)
286 sync -= voice->sync_buffer_size;
287 voice->sync_cso = sync;
290 snd_pcm_period_elapsed(voice->substream);
293 static void sis_voice_irq(u32 status, struct voice *voice)
295 int bit;
297 while (status) {
298 bit = __ffs(status);
299 status >>= bit + 1;
300 voice += bit;
301 sis_update_voice(voice);
302 voice++;
306 static irqreturn_t sis_interrupt(int irq, void *dev)
308 struct sis7019 *sis = dev;
309 unsigned long io = sis->ioport;
310 struct voice *voice;
311 u32 intr, status;
313 /* We only use the DMA interrupts, and we don't enable any other
314 * source of interrupts. But, it is possible to see an interupt
315 * status that didn't actually interrupt us, so eliminate anything
316 * we're not expecting to avoid falsely claiming an IRQ, and an
317 * ensuing endless loop.
319 intr = inl(io + SIS_GISR);
320 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
321 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
322 if (!intr)
323 return IRQ_NONE;
325 do {
326 status = inl(io + SIS_PISR_A);
327 if (status) {
328 sis_voice_irq(status, sis->voices);
329 outl(status, io + SIS_PISR_A);
332 status = inl(io + SIS_PISR_B);
333 if (status) {
334 sis_voice_irq(status, &sis->voices[32]);
335 outl(status, io + SIS_PISR_B);
338 status = inl(io + SIS_RISR);
339 if (status) {
340 voice = &sis->capture_voice;
341 if (!voice->timing)
342 snd_pcm_period_elapsed(voice->substream);
344 outl(status, io + SIS_RISR);
347 outl(intr, io + SIS_GISR);
348 intr = inl(io + SIS_GISR);
349 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
350 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
351 } while (intr);
353 return IRQ_HANDLED;
356 static u32 sis_rate_to_delta(unsigned int rate)
358 u32 delta;
360 /* This was copied from the trident driver, but it seems its gotten
361 * around a bit... nevertheless, it works well.
363 * We special case 44100 and 8000 since rounding with the equation
364 * does not give us an accurate enough value. For 11025 and 22050
365 * the equation gives us the best answer. All other frequencies will
366 * also use the equation. JDW
368 if (rate == 44100)
369 delta = 0xeb3;
370 else if (rate == 8000)
371 delta = 0x2ab;
372 else if (rate == 48000)
373 delta = 0x1000;
374 else
375 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
376 return delta;
379 static void __sis_map_silence(struct sis7019 *sis)
381 /* Helper function: must hold sis->voice_lock on entry */
382 if (!sis->silence_users)
383 sis->silence_dma_addr = pci_map_single(sis->pci,
384 sis->suspend_state[0],
385 4096, PCI_DMA_TODEVICE);
386 sis->silence_users++;
389 static void __sis_unmap_silence(struct sis7019 *sis)
391 /* Helper function: must hold sis->voice_lock on entry */
392 sis->silence_users--;
393 if (!sis->silence_users)
394 pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
395 PCI_DMA_TODEVICE);
398 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
400 unsigned long flags;
402 spin_lock_irqsave(&sis->voice_lock, flags);
403 if (voice->timing) {
404 __sis_unmap_silence(sis);
405 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
406 VOICE_SYNC_TIMING);
407 voice->timing = NULL;
409 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
410 spin_unlock_irqrestore(&sis->voice_lock, flags);
413 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
415 /* Must hold the voice_lock on entry */
416 struct voice *voice;
417 int i;
419 for (i = 0; i < 64; i++) {
420 voice = &sis->voices[i];
421 if (voice->flags & VOICE_IN_USE)
422 continue;
423 voice->flags |= VOICE_IN_USE;
424 goto found_one;
426 voice = NULL;
428 found_one:
429 return voice;
432 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
434 struct voice *voice;
435 unsigned long flags;
437 spin_lock_irqsave(&sis->voice_lock, flags);
438 voice = __sis_alloc_playback_voice(sis);
439 spin_unlock_irqrestore(&sis->voice_lock, flags);
441 return voice;
444 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
445 struct snd_pcm_hw_params *hw_params)
447 struct sis7019 *sis = snd_pcm_substream_chip(substream);
448 struct snd_pcm_runtime *runtime = substream->runtime;
449 struct voice *voice = runtime->private_data;
450 unsigned int period_size, buffer_size;
451 unsigned long flags;
452 int needed;
454 /* If there are one or two periods per buffer, we don't need a
455 * timing voice, as we can use the capture channel's interrupts
456 * to clock out the periods.
458 period_size = params_period_size(hw_params);
459 buffer_size = params_buffer_size(hw_params);
460 needed = (period_size != buffer_size &&
461 period_size != (buffer_size / 2));
463 if (needed && !voice->timing) {
464 spin_lock_irqsave(&sis->voice_lock, flags);
465 voice->timing = __sis_alloc_playback_voice(sis);
466 if (voice->timing)
467 __sis_map_silence(sis);
468 spin_unlock_irqrestore(&sis->voice_lock, flags);
469 if (!voice->timing)
470 return -ENOMEM;
471 voice->timing->substream = substream;
472 } else if (!needed && voice->timing) {
473 sis_free_voice(sis, voice);
474 voice->timing = NULL;
477 return 0;
480 static int sis_playback_open(struct snd_pcm_substream *substream)
482 struct sis7019 *sis = snd_pcm_substream_chip(substream);
483 struct snd_pcm_runtime *runtime = substream->runtime;
484 struct voice *voice;
486 voice = sis_alloc_playback_voice(sis);
487 if (!voice)
488 return -EAGAIN;
490 voice->substream = substream;
491 runtime->private_data = voice;
492 runtime->hw = sis_playback_hw_info;
493 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
494 9, 0xfff9);
495 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
496 9, 0xfff9);
497 snd_pcm_set_sync(substream);
498 return 0;
501 static int sis_substream_close(struct snd_pcm_substream *substream)
503 struct sis7019 *sis = snd_pcm_substream_chip(substream);
504 struct snd_pcm_runtime *runtime = substream->runtime;
505 struct voice *voice = runtime->private_data;
507 sis_free_voice(sis, voice);
508 return 0;
511 static int sis_playback_hw_params(struct snd_pcm_substream *substream,
512 struct snd_pcm_hw_params *hw_params)
514 return snd_pcm_lib_malloc_pages(substream,
515 params_buffer_bytes(hw_params));
518 static int sis_hw_free(struct snd_pcm_substream *substream)
520 return snd_pcm_lib_free_pages(substream);
523 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
525 struct snd_pcm_runtime *runtime = substream->runtime;
526 struct voice *voice = runtime->private_data;
527 void __iomem *ctrl_base = voice->ctrl_base;
528 void __iomem *wave_base = voice->wave_base;
529 u32 format, dma_addr, control, sso_eso, delta, reg;
530 u16 leo;
532 /* We rely on the PCM core to ensure that the parameters for this
533 * substream do not change on us while we're programming the HW.
535 format = 0;
536 if (snd_pcm_format_width(runtime->format) == 8)
537 format |= SIS_PLAY_DMA_FORMAT_8BIT;
538 if (!snd_pcm_format_signed(runtime->format))
539 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
540 if (runtime->channels == 1)
541 format |= SIS_PLAY_DMA_FORMAT_MONO;
543 /* The baseline setup is for a single period per buffer, and
544 * we add bells and whistles as needed from there.
546 dma_addr = runtime->dma_addr;
547 leo = runtime->buffer_size - 1;
548 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
549 sso_eso = leo;
551 if (runtime->period_size == (runtime->buffer_size / 2)) {
552 control |= SIS_PLAY_DMA_INTR_AT_MLP;
553 } else if (runtime->period_size != runtime->buffer_size) {
554 voice->flags |= VOICE_SSO_TIMING;
555 voice->sso = runtime->period_size - 1;
556 voice->period_size = runtime->period_size;
557 voice->buffer_size = runtime->buffer_size;
559 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
560 control |= SIS_PLAY_DMA_INTR_AT_SSO;
561 sso_eso |= (runtime->period_size - 1) << 16;
564 delta = sis_rate_to_delta(runtime->rate);
566 /* Ok, we're ready to go, set up the channel.
568 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
569 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
570 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
571 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
573 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
574 writel(0, wave_base + reg);
576 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
577 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
578 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
579 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
580 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
581 wave_base + SIS_WAVE_CHANNEL_CONTROL);
583 /* Force PCI writes to post. */
584 readl(ctrl_base);
586 return 0;
589 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
591 struct sis7019 *sis = snd_pcm_substream_chip(substream);
592 unsigned long io = sis->ioport;
593 struct snd_pcm_substream *s;
594 struct voice *voice;
595 void *chip;
596 int starting;
597 u32 record = 0;
598 u32 play[2] = { 0, 0 };
600 /* No locks needed, as the PCM core will hold the locks on the
601 * substreams, and the HW will only start/stop the indicated voices
602 * without changing the state of the others.
604 switch (cmd) {
605 case SNDRV_PCM_TRIGGER_START:
606 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
607 case SNDRV_PCM_TRIGGER_RESUME:
608 starting = 1;
609 break;
610 case SNDRV_PCM_TRIGGER_STOP:
611 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
612 case SNDRV_PCM_TRIGGER_SUSPEND:
613 starting = 0;
614 break;
615 default:
616 return -EINVAL;
619 snd_pcm_group_for_each_entry(s, substream) {
620 /* Make sure it is for us... */
621 chip = snd_pcm_substream_chip(s);
622 if (chip != sis)
623 continue;
625 voice = s->runtime->private_data;
626 if (voice->flags & VOICE_CAPTURE) {
627 record |= 1 << voice->num;
628 voice = voice->timing;
631 /* voice could be NULL if this a recording stream, and it
632 * doesn't have an external timing channel.
634 if (voice)
635 play[voice->num / 32] |= 1 << (voice->num & 0x1f);
637 snd_pcm_trigger_done(s, substream);
640 if (starting) {
641 if (record)
642 outl(record, io + SIS_RECORD_START_REG);
643 if (play[0])
644 outl(play[0], io + SIS_PLAY_START_A_REG);
645 if (play[1])
646 outl(play[1], io + SIS_PLAY_START_B_REG);
647 } else {
648 if (record)
649 outl(record, io + SIS_RECORD_STOP_REG);
650 if (play[0])
651 outl(play[0], io + SIS_PLAY_STOP_A_REG);
652 if (play[1])
653 outl(play[1], io + SIS_PLAY_STOP_B_REG);
655 return 0;
658 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
660 struct snd_pcm_runtime *runtime = substream->runtime;
661 struct voice *voice = runtime->private_data;
662 u32 cso;
664 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
665 cso &= 0xffff;
666 return cso;
669 static int sis_capture_open(struct snd_pcm_substream *substream)
671 struct sis7019 *sis = snd_pcm_substream_chip(substream);
672 struct snd_pcm_runtime *runtime = substream->runtime;
673 struct voice *voice = &sis->capture_voice;
674 unsigned long flags;
676 /* FIXME: The driver only supports recording from one channel
677 * at the moment, but it could support more.
679 spin_lock_irqsave(&sis->voice_lock, flags);
680 if (voice->flags & VOICE_IN_USE)
681 voice = NULL;
682 else
683 voice->flags |= VOICE_IN_USE;
684 spin_unlock_irqrestore(&sis->voice_lock, flags);
686 if (!voice)
687 return -EAGAIN;
689 voice->substream = substream;
690 runtime->private_data = voice;
691 runtime->hw = sis_capture_hw_info;
692 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
693 snd_pcm_limit_hw_rates(runtime);
694 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
695 9, 0xfff9);
696 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
697 9, 0xfff9);
698 snd_pcm_set_sync(substream);
699 return 0;
702 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
703 struct snd_pcm_hw_params *hw_params)
705 struct sis7019 *sis = snd_pcm_substream_chip(substream);
706 int rc;
708 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
709 params_rate(hw_params));
710 if (rc)
711 goto out;
713 rc = snd_pcm_lib_malloc_pages(substream,
714 params_buffer_bytes(hw_params));
715 if (rc < 0)
716 goto out;
718 rc = sis_alloc_timing_voice(substream, hw_params);
720 out:
721 return rc;
724 static void sis_prepare_timing_voice(struct voice *voice,
725 struct snd_pcm_substream *substream)
727 struct sis7019 *sis = snd_pcm_substream_chip(substream);
728 struct snd_pcm_runtime *runtime = substream->runtime;
729 struct voice *timing = voice->timing;
730 void __iomem *play_base = timing->ctrl_base;
731 void __iomem *wave_base = timing->wave_base;
732 u16 buffer_size, period_size;
733 u32 format, control, sso_eso, delta;
734 u32 vperiod, sso, reg;
736 /* Set our initial buffer and period as large as we can given a
737 * single page of silence.
739 buffer_size = 4096 / runtime->channels;
740 buffer_size /= snd_pcm_format_size(runtime->format, 1);
741 period_size = buffer_size;
743 /* Initially, we want to interrupt just a bit behind the end of
744 * the period we're clocking out. 10 samples seems to give a good
745 * delay.
747 * We want to spread our interrupts throughout the virtual period,
748 * so that we don't end up with two interrupts back to back at the
749 * end -- this helps minimize the effects of any jitter. Adjust our
750 * clocking period size so that the last period is at least a fourth
751 * of a full period.
753 * This is all moot if we don't need to use virtual periods.
755 vperiod = runtime->period_size + 10;
756 if (vperiod > period_size) {
757 u16 tail = vperiod % period_size;
758 u16 quarter_period = period_size / 4;
760 if (tail && tail < quarter_period) {
761 u16 loops = vperiod / period_size;
763 tail = quarter_period - tail;
764 tail += loops - 1;
765 tail /= loops;
766 period_size -= tail;
769 sso = period_size - 1;
770 } else {
771 /* The initial period will fit inside the buffer, so we
772 * don't need to use virtual periods -- disable them.
774 period_size = runtime->period_size;
775 sso = vperiod - 1;
776 vperiod = 0;
779 /* The interrupt handler implements the timing syncronization, so
780 * setup its state.
782 timing->flags |= VOICE_SYNC_TIMING;
783 timing->sync_base = voice->ctrl_base;
784 timing->sync_cso = runtime->period_size - 1;
785 timing->sync_period_size = runtime->period_size;
786 timing->sync_buffer_size = runtime->buffer_size;
787 timing->period_size = period_size;
788 timing->buffer_size = buffer_size;
789 timing->sso = sso;
790 timing->vperiod = vperiod;
792 /* Using unsigned samples with the all-zero silence buffer
793 * forces the output to the lower rail, killing playback.
794 * So ignore unsigned vs signed -- it doesn't change the timing.
796 format = 0;
797 if (snd_pcm_format_width(runtime->format) == 8)
798 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
799 if (runtime->channels == 1)
800 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
802 control = timing->buffer_size - 1;
803 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
804 sso_eso = timing->buffer_size - 1;
805 sso_eso |= timing->sso << 16;
807 delta = sis_rate_to_delta(runtime->rate);
809 /* We've done the math, now configure the channel.
811 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
812 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
813 writel(control, play_base + SIS_PLAY_DMA_CONTROL);
814 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
816 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
817 writel(0, wave_base + reg);
819 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
820 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
821 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
822 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
823 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
824 wave_base + SIS_WAVE_CHANNEL_CONTROL);
827 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
829 struct snd_pcm_runtime *runtime = substream->runtime;
830 struct voice *voice = runtime->private_data;
831 void __iomem *rec_base = voice->ctrl_base;
832 u32 format, dma_addr, control;
833 u16 leo;
835 /* We rely on the PCM core to ensure that the parameters for this
836 * substream do not change on us while we're programming the HW.
838 format = 0;
839 if (snd_pcm_format_width(runtime->format) == 8)
840 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
841 if (!snd_pcm_format_signed(runtime->format))
842 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
843 if (runtime->channels == 1)
844 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
846 dma_addr = runtime->dma_addr;
847 leo = runtime->buffer_size - 1;
848 control = leo | SIS_CAPTURE_DMA_LOOP;
850 /* If we've got more than two periods per buffer, then we have
851 * use a timing voice to clock out the periods. Otherwise, we can
852 * use the capture channel's interrupts.
854 if (voice->timing) {
855 sis_prepare_timing_voice(voice, substream);
856 } else {
857 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
858 if (runtime->period_size != runtime->buffer_size)
859 control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
862 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
863 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
864 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
866 /* Force the writes to post. */
867 readl(rec_base);
869 return 0;
872 static struct snd_pcm_ops sis_playback_ops = {
873 .open = sis_playback_open,
874 .close = sis_substream_close,
875 .ioctl = snd_pcm_lib_ioctl,
876 .hw_params = sis_playback_hw_params,
877 .hw_free = sis_hw_free,
878 .prepare = sis_pcm_playback_prepare,
879 .trigger = sis_pcm_trigger,
880 .pointer = sis_pcm_pointer,
883 static struct snd_pcm_ops sis_capture_ops = {
884 .open = sis_capture_open,
885 .close = sis_substream_close,
886 .ioctl = snd_pcm_lib_ioctl,
887 .hw_params = sis_capture_hw_params,
888 .hw_free = sis_hw_free,
889 .prepare = sis_pcm_capture_prepare,
890 .trigger = sis_pcm_trigger,
891 .pointer = sis_pcm_pointer,
894 static int __devinit sis_pcm_create(struct sis7019 *sis)
896 struct snd_pcm *pcm;
897 int rc;
899 /* We have 64 voices, and the driver currently records from
900 * only one channel, though that could change in the future.
902 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
903 if (rc)
904 return rc;
906 pcm->private_data = sis;
907 strcpy(pcm->name, "SiS7019");
908 sis->pcm = pcm;
910 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
911 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
913 /* Try to preallocate some memory, but it's not the end of the
914 * world if this fails.
916 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
917 snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
919 return 0;
922 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
924 unsigned long io = sis->ioport;
925 unsigned short val = 0xffff;
926 u16 status;
927 u16 rdy;
928 int count;
929 static const u16 codec_ready[3] = {
930 SIS_AC97_STATUS_CODEC_READY,
931 SIS_AC97_STATUS_CODEC2_READY,
932 SIS_AC97_STATUS_CODEC3_READY,
935 rdy = codec_ready[codec];
938 /* Get the AC97 semaphore -- software first, so we don't spin
939 * pounding out IO reads on the hardware semaphore...
941 mutex_lock(&sis->ac97_mutex);
943 count = 0xffff;
944 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
945 udelay(1);
947 if (!count)
948 goto timeout;
950 /* ... and wait for any outstanding commands to complete ...
952 count = 0xffff;
953 do {
954 status = inw(io + SIS_AC97_STATUS);
955 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
956 break;
958 udelay(1);
959 } while (--count);
961 if (!count)
962 goto timeout_sema;
964 /* ... before sending our command and waiting for it to finish ...
966 outl(cmd, io + SIS_AC97_CMD);
967 udelay(10);
969 count = 0xffff;
970 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
971 udelay(1);
973 /* ... and reading the results (if any).
975 val = inl(io + SIS_AC97_CMD) >> 16;
977 timeout_sema:
978 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
979 timeout:
980 mutex_unlock(&sis->ac97_mutex);
982 if (!count) {
983 printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n",
984 codec, cmd);
987 return val;
990 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
991 unsigned short val)
993 static const u32 cmd[3] = {
994 SIS_AC97_CMD_CODEC_WRITE,
995 SIS_AC97_CMD_CODEC2_WRITE,
996 SIS_AC97_CMD_CODEC3_WRITE,
998 sis_ac97_rw(ac97->private_data, ac97->num,
999 (val << 16) | (reg << 8) | cmd[ac97->num]);
1002 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
1004 static const u32 cmd[3] = {
1005 SIS_AC97_CMD_CODEC_READ,
1006 SIS_AC97_CMD_CODEC2_READ,
1007 SIS_AC97_CMD_CODEC3_READ,
1009 return sis_ac97_rw(ac97->private_data, ac97->num,
1010 (reg << 8) | cmd[ac97->num]);
1013 static int __devinit sis_mixer_create(struct sis7019 *sis)
1015 struct snd_ac97_bus *bus;
1016 struct snd_ac97_template ac97;
1017 static struct snd_ac97_bus_ops ops = {
1018 .write = sis_ac97_write,
1019 .read = sis_ac97_read,
1021 int rc;
1023 memset(&ac97, 0, sizeof(ac97));
1024 ac97.private_data = sis;
1026 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1027 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1028 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1029 ac97.num = 1;
1030 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1031 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1032 ac97.num = 2;
1033 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1034 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1036 /* If we return an error here, then snd_card_free() should
1037 * free up any ac97 codecs that got created, as well as the bus.
1039 return rc;
1042 static void sis_free_suspend(struct sis7019 *sis)
1044 int i;
1046 for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1047 kfree(sis->suspend_state[i]);
1050 static int sis_chip_free(struct sis7019 *sis)
1052 /* Reset the chip, and disable all interrputs.
1054 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1055 udelay(10);
1056 outl(0, sis->ioport + SIS_GCR);
1057 outl(0, sis->ioport + SIS_GIER);
1059 /* Now, free everything we allocated.
1061 if (sis->irq >= 0)
1062 free_irq(sis->irq, sis);
1064 if (sis->ioaddr)
1065 iounmap(sis->ioaddr);
1067 pci_release_regions(sis->pci);
1068 pci_disable_device(sis->pci);
1070 sis_free_suspend(sis);
1071 return 0;
1074 static int sis_dev_free(struct snd_device *dev)
1076 struct sis7019 *sis = dev->device_data;
1077 return sis_chip_free(sis);
1080 static int sis_chip_init(struct sis7019 *sis)
1082 unsigned long io = sis->ioport;
1083 void __iomem *ioaddr = sis->ioaddr;
1084 unsigned long timeout;
1085 u16 status;
1086 int count;
1087 int i;
1089 /* Reset the audio controller
1091 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1092 udelay(10);
1093 outl(0, io + SIS_GCR);
1095 /* Get the AC-link semaphore, and reset the codecs
1097 count = 0xffff;
1098 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1099 udelay(1);
1101 if (!count)
1102 return -EIO;
1104 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1105 udelay(10);
1107 count = 0xffff;
1108 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1109 udelay(1);
1111 /* Command complete, we can let go of the semaphore now.
1113 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1114 if (!count)
1115 return -EIO;
1117 /* Now that we've finished the reset, find out what's attached.
1118 * There are some codec/board combinations that take an extremely
1119 * long time to come up. 350+ ms has been observed in the field,
1120 * so we'll give them up to 500ms.
1122 sis->codecs_present = 0;
1123 timeout = msecs_to_jiffies(500) + jiffies;
1124 while (time_before_eq(jiffies, timeout)) {
1125 status = inl(io + SIS_AC97_STATUS);
1126 if (status & SIS_AC97_STATUS_CODEC_READY)
1127 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1128 if (status & SIS_AC97_STATUS_CODEC2_READY)
1129 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1130 if (status & SIS_AC97_STATUS_CODEC3_READY)
1131 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1133 if (sis->codecs_present == codecs)
1134 break;
1136 msleep(1);
1139 /* All done, check for errors.
1141 if (!sis->codecs_present) {
1142 printk(KERN_ERR "sis7019: could not find any codecs\n");
1143 return -EIO;
1146 if (sis->codecs_present != codecs) {
1147 printk(KERN_WARNING "sis7019: missing codecs, found %0x, expected %0x\n",
1148 sis->codecs_present, codecs);
1151 /* Let the hardware know that the audio driver is alive,
1152 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1153 * record channels. We're going to want to use Variable Rate Audio
1154 * for recording, to avoid needlessly resampling from 48kHZ.
1156 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1157 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1158 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1159 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1160 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1162 /* All AC97 PCM slots should be sourced from sub-mixer 0.
1164 outl(0, io + SIS_AC97_PSR);
1166 /* There is only one valid DMA setup for a PCI environment.
1168 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1170 /* Reset the syncronization groups for all of the channels
1171 * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
1172 * we'll need to change how we handle these. Until then, we just
1173 * assign sub-mixer 0 to all playback channels, and avoid any
1174 * attenuation on the audio.
1176 outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1177 outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1178 outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1179 outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1180 outl(0, io + SIS_MIXER_SYNC_GROUP);
1182 for (i = 0; i < 64; i++) {
1183 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1184 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1185 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1188 /* Don't attenuate any audio set for the wave amplifier.
1190 * FIXME: Maximum attenuation is set for the music amp, which will
1191 * need to change if we start using the synth engine.
1193 outl(0xffff0000, io + SIS_WEVCR);
1195 /* Ensure that the wave engine is in normal operating mode.
1197 outl(0, io + SIS_WECCR);
1199 /* Go ahead and enable the DMA interrupts. They won't go live
1200 * until we start a channel.
1202 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1203 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1205 return 0;
1208 #ifdef CONFIG_PM
1209 static int sis_suspend(struct pci_dev *pci, pm_message_t state)
1211 struct snd_card *card = pci_get_drvdata(pci);
1212 struct sis7019 *sis = card->private_data;
1213 void __iomem *ioaddr = sis->ioaddr;
1214 int i;
1216 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1217 snd_pcm_suspend_all(sis->pcm);
1218 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1219 snd_ac97_suspend(sis->ac97[0]);
1220 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1221 snd_ac97_suspend(sis->ac97[1]);
1222 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1223 snd_ac97_suspend(sis->ac97[2]);
1225 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1227 if (sis->irq >= 0) {
1228 free_irq(sis->irq, sis);
1229 sis->irq = -1;
1232 /* Save the internal state away
1234 for (i = 0; i < 4; i++) {
1235 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1236 ioaddr += 4096;
1239 pci_disable_device(pci);
1240 pci_save_state(pci);
1241 pci_set_power_state(pci, pci_choose_state(pci, state));
1242 return 0;
1245 static int sis_resume(struct pci_dev *pci)
1247 struct snd_card *card = pci_get_drvdata(pci);
1248 struct sis7019 *sis = card->private_data;
1249 void __iomem *ioaddr = sis->ioaddr;
1250 int i;
1252 pci_set_power_state(pci, PCI_D0);
1253 pci_restore_state(pci);
1255 if (pci_enable_device(pci) < 0) {
1256 printk(KERN_ERR "sis7019: unable to re-enable device\n");
1257 goto error;
1260 if (sis_chip_init(sis)) {
1261 printk(KERN_ERR "sis7019: unable to re-init controller\n");
1262 goto error;
1265 if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1266 card->shortname, sis)) {
1267 printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq);
1268 goto error;
1271 /* Restore saved state, then clear out the page we use for the
1272 * silence buffer.
1274 for (i = 0; i < 4; i++) {
1275 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1276 ioaddr += 4096;
1279 memset(sis->suspend_state[0], 0, 4096);
1281 sis->irq = pci->irq;
1282 pci_set_master(pci);
1284 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1285 snd_ac97_resume(sis->ac97[0]);
1286 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1287 snd_ac97_resume(sis->ac97[1]);
1288 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1289 snd_ac97_resume(sis->ac97[2]);
1291 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1292 return 0;
1294 error:
1295 snd_card_disconnect(card);
1296 return -EIO;
1298 #endif /* CONFIG_PM */
1300 static int sis_alloc_suspend(struct sis7019 *sis)
1302 int i;
1304 /* We need 16K to store the internal wave engine state during a
1305 * suspend, but we don't need it to be contiguous, so play nice
1306 * with the memory system. We'll also use this area for a silence
1307 * buffer.
1309 for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1310 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1311 if (!sis->suspend_state[i])
1312 return -ENOMEM;
1314 memset(sis->suspend_state[0], 0, 4096);
1316 return 0;
1319 static int __devinit sis_chip_create(struct snd_card *card,
1320 struct pci_dev *pci)
1322 struct sis7019 *sis = card->private_data;
1323 struct voice *voice;
1324 static struct snd_device_ops ops = {
1325 .dev_free = sis_dev_free,
1327 int rc;
1328 int i;
1330 rc = pci_enable_device(pci);
1331 if (rc)
1332 goto error_out;
1334 if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0) {
1335 printk(KERN_ERR "sis7019: architecture does not support "
1336 "30-bit PCI busmaster DMA");
1337 goto error_out_enabled;
1340 memset(sis, 0, sizeof(*sis));
1341 mutex_init(&sis->ac97_mutex);
1342 spin_lock_init(&sis->voice_lock);
1343 sis->card = card;
1344 sis->pci = pci;
1345 sis->irq = -1;
1346 sis->ioport = pci_resource_start(pci, 0);
1348 rc = pci_request_regions(pci, "SiS7019");
1349 if (rc) {
1350 printk(KERN_ERR "sis7019: unable request regions\n");
1351 goto error_out_enabled;
1354 rc = -EIO;
1355 sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1356 if (!sis->ioaddr) {
1357 printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n");
1358 goto error_out_cleanup;
1361 rc = sis_alloc_suspend(sis);
1362 if (rc < 0) {
1363 printk(KERN_ERR "sis7019: unable to allocate state storage\n");
1364 goto error_out_cleanup;
1367 rc = sis_chip_init(sis);
1368 if (rc)
1369 goto error_out_cleanup;
1371 if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1372 card->shortname, sis)) {
1373 printk(KERN_ERR "unable to allocate irq %d\n", sis->irq);
1374 goto error_out_cleanup;
1377 sis->irq = pci->irq;
1378 pci_set_master(pci);
1380 for (i = 0; i < 64; i++) {
1381 voice = &sis->voices[i];
1382 voice->num = i;
1383 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1384 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1387 voice = &sis->capture_voice;
1388 voice->flags = VOICE_CAPTURE;
1389 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1390 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1392 rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1393 if (rc)
1394 goto error_out_cleanup;
1396 snd_card_set_dev(card, &pci->dev);
1398 return 0;
1400 error_out_cleanup:
1401 sis_chip_free(sis);
1403 error_out_enabled:
1404 pci_disable_device(pci);
1406 error_out:
1407 return rc;
1410 static int __devinit snd_sis7019_probe(struct pci_dev *pci,
1411 const struct pci_device_id *pci_id)
1413 struct snd_card *card;
1414 struct sis7019 *sis;
1415 int rc;
1417 rc = -ENOENT;
1418 if (!enable)
1419 goto error_out;
1421 /* The user can specify which codecs should be present so that we
1422 * can wait for them to show up if they are slow to recover from
1423 * the AC97 cold reset. We default to a single codec, the primary.
1425 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1427 codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1428 SIS_TERTIARY_CODEC_PRESENT;
1429 if (!codecs)
1430 codecs = SIS_PRIMARY_CODEC_PRESENT;
1432 rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card);
1433 if (rc < 0)
1434 goto error_out;
1436 strcpy(card->driver, "SiS7019");
1437 strcpy(card->shortname, "SiS7019");
1438 rc = sis_chip_create(card, pci);
1439 if (rc)
1440 goto card_error_out;
1442 sis = card->private_data;
1444 rc = sis_mixer_create(sis);
1445 if (rc)
1446 goto card_error_out;
1448 rc = sis_pcm_create(sis);
1449 if (rc)
1450 goto card_error_out;
1452 snprintf(card->longname, sizeof(card->longname),
1453 "%s Audio Accelerator with %s at 0x%lx, irq %d",
1454 card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1455 sis->ioport, sis->irq);
1457 rc = snd_card_register(card);
1458 if (rc)
1459 goto card_error_out;
1461 pci_set_drvdata(pci, card);
1462 return 0;
1464 card_error_out:
1465 snd_card_free(card);
1467 error_out:
1468 return rc;
1471 static void __devexit snd_sis7019_remove(struct pci_dev *pci)
1473 snd_card_free(pci_get_drvdata(pci));
1474 pci_set_drvdata(pci, NULL);
1477 static struct pci_driver sis7019_driver = {
1478 .name = "SiS7019",
1479 .id_table = snd_sis7019_ids,
1480 .probe = snd_sis7019_probe,
1481 .remove = __devexit_p(snd_sis7019_remove),
1483 #ifdef CONFIG_PM
1484 .suspend = sis_suspend,
1485 .resume = sis_resume,
1486 #endif
1489 static int __init sis7019_init(void)
1491 return pci_register_driver(&sis7019_driver);
1494 static void __exit sis7019_exit(void)
1496 pci_unregister_driver(&sis7019_driver);
1499 module_init(sis7019_init);
1500 module_exit(sis7019_exit);