solos-pci: Fix race condition in tasklet RX handling
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / mn10300 / unit-asb2305 / pci.c
blob6d8720a0a59945bfa4b3c60d70c4d2ceb48c8a12
1 /* ASB2305 PCI support
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 * Derived from arch/i386/kernel/pci-pc.c
6 * (c) 1999--2000 Martin Mares <mj@suse.cz>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public Licence
10 * as published by the Free Software Foundation; either version
11 * 2 of the Licence, or (at your option) any later version.
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/pci.h>
17 #include <linux/init.h>
18 #include <linux/ioport.h>
19 #include <linux/delay.h>
20 #include <asm/io.h>
21 #include "pci-asb2305.h"
23 unsigned int pci_probe = 1;
25 int pcibios_last_bus = -1;
26 struct pci_bus *pci_root_bus;
27 struct pci_ops *pci_root_ops;
30 * The accessible PCI window does not cover the entire CPU address space, but
31 * there are devices we want to access outside of that window, so we need to
32 * insert specific PCI bus resources instead of using the platform-level bus
33 * resources directly for the PCI root bus.
35 * These are configured and inserted by pcibios_init() and are attached to the
36 * root bus by pcibios_fixup_bus().
38 static struct resource pci_ioport_resource = {
39 .name = "PCI IO",
40 .start = 0xbe000000,
41 .end = 0xbe03ffff,
42 .flags = IORESOURCE_IO,
45 static struct resource pci_iomem_resource = {
46 .name = "PCI mem",
47 .start = 0xb8000000,
48 .end = 0xbbffffff,
49 .flags = IORESOURCE_MEM,
53 * Functions for accessing PCI configuration space
56 #define CONFIG_CMD(bus, devfn, where) \
57 (0x80000000 | (bus->number << 16) | (devfn << 8) | (where & ~3))
59 #define MEM_PAGING_REG (*(volatile __u32 *) 0xBFFFFFF4)
60 #define CONFIG_ADDRESS (*(volatile __u32 *) 0xBFFFFFF8)
61 #define CONFIG_DATAL(X) (*(volatile __u32 *) 0xBFFFFFFC)
62 #define CONFIG_DATAW(X) (*(volatile __u16 *) (0xBFFFFFFC + ((X) & 2)))
63 #define CONFIG_DATAB(X) (*(volatile __u8 *) (0xBFFFFFFC + ((X) & 3)))
65 #define BRIDGEREGB(X) (*(volatile __u8 *) (0xBE040000 + (X)))
66 #define BRIDGEREGW(X) (*(volatile __u16 *) (0xBE040000 + (X)))
67 #define BRIDGEREGL(X) (*(volatile __u32 *) (0xBE040000 + (X)))
69 static inline int __query(const struct pci_bus *bus, unsigned int devfn)
71 #if 0
72 return bus->number == 0 && (devfn == PCI_DEVFN(0, 0));
73 return bus->number == 1;
74 return bus->number == 0 &&
75 (devfn == PCI_DEVFN(2, 0) || devfn == PCI_DEVFN(3, 0));
76 #endif
77 return 1;
81 * translate Linuxcentric addresses to PCI bus addresses
83 void pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region,
84 struct resource *res)
86 if (res->flags & IORESOURCE_IO) {
87 region->start = (res->start & 0x00ffffff);
88 region->end = (res->end & 0x00ffffff);
91 if (res->flags & IORESOURCE_MEM) {
92 region->start = (res->start & 0x03ffffff) | MEM_PAGING_REG;
93 region->end = (res->end & 0x03ffffff) | MEM_PAGING_REG;
96 #if 0
97 printk(KERN_DEBUG "RES->BUS: %lx-%lx => %lx-%lx\n",
98 res->start, res->end, region->start, region->end);
99 #endif
101 EXPORT_SYMBOL(pcibios_resource_to_bus);
104 * translate PCI bus addresses to Linuxcentric addresses
106 void pcibios_bus_to_resource(struct pci_dev *dev, struct resource *res,
107 struct pci_bus_region *region)
109 if (res->flags & IORESOURCE_IO) {
110 res->start = (region->start & 0x00ffffff) | 0xbe000000;
111 res->end = (region->end & 0x00ffffff) | 0xbe000000;
114 if (res->flags & IORESOURCE_MEM) {
115 res->start = (region->start & 0x03ffffff) | 0xb8000000;
116 res->end = (region->end & 0x03ffffff) | 0xb8000000;
119 #if 0
120 printk(KERN_INFO "BUS->RES: %lx-%lx => %lx-%lx\n",
121 region->start, region->end, res->start, res->end);
122 #endif
124 EXPORT_SYMBOL(pcibios_bus_to_resource);
129 static int pci_ampci_read_config_byte(struct pci_bus *bus, unsigned int devfn,
130 int where, u32 *_value)
132 u32 rawval, value;
134 if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
135 value = BRIDGEREGB(where);
136 __pcbdebug("=> %02hx", &BRIDGEREGL(where), value);
137 } else {
138 CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where);
139 rawval = CONFIG_ADDRESS;
140 value = CONFIG_DATAB(where);
141 if (__query(bus, devfn))
142 __pcidebug("=> %02hx", bus, devfn, where, value);
145 *_value = value;
146 return PCIBIOS_SUCCESSFUL;
149 static int pci_ampci_read_config_word(struct pci_bus *bus, unsigned int devfn,
150 int where, u32 *_value)
152 u32 rawval, value;
154 if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
155 value = BRIDGEREGW(where);
156 __pcbdebug("=> %04hx", &BRIDGEREGL(where), value);
157 } else {
158 CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where);
159 rawval = CONFIG_ADDRESS;
160 value = CONFIG_DATAW(where);
161 if (__query(bus, devfn))
162 __pcidebug("=> %04hx", bus, devfn, where, value);
165 *_value = value;
166 return PCIBIOS_SUCCESSFUL;
169 static int pci_ampci_read_config_dword(struct pci_bus *bus, unsigned int devfn,
170 int where, u32 *_value)
172 u32 rawval, value;
174 if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
175 value = BRIDGEREGL(where);
176 __pcbdebug("=> %08x", &BRIDGEREGL(where), value);
177 } else {
178 CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where);
179 rawval = CONFIG_ADDRESS;
180 value = CONFIG_DATAL(where);
181 if (__query(bus, devfn))
182 __pcidebug("=> %08x", bus, devfn, where, value);
185 *_value = value;
186 return PCIBIOS_SUCCESSFUL;
189 static int pci_ampci_write_config_byte(struct pci_bus *bus, unsigned int devfn,
190 int where, u8 value)
192 u32 rawval;
194 if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
195 __pcbdebug("<= %02x", &BRIDGEREGB(where), value);
196 BRIDGEREGB(where) = value;
197 } else {
198 if (bus->number == 0 &&
199 (devfn == PCI_DEVFN(2, 0) || devfn == PCI_DEVFN(3, 0))
201 __pcidebug("<= %02x", bus, devfn, where, value);
202 CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where);
203 rawval = CONFIG_ADDRESS;
204 CONFIG_DATAB(where) = value;
206 return PCIBIOS_SUCCESSFUL;
209 static int pci_ampci_write_config_word(struct pci_bus *bus, unsigned int devfn,
210 int where, u16 value)
212 u32 rawval;
214 if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
215 __pcbdebug("<= %04hx", &BRIDGEREGW(where), value);
216 BRIDGEREGW(where) = value;
217 } else {
218 if (__query(bus, devfn))
219 __pcidebug("<= %04hx", bus, devfn, where, value);
220 CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where);
221 rawval = CONFIG_ADDRESS;
222 CONFIG_DATAW(where) = value;
224 return PCIBIOS_SUCCESSFUL;
227 static int pci_ampci_write_config_dword(struct pci_bus *bus, unsigned int devfn,
228 int where, u32 value)
230 u32 rawval;
232 if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
233 __pcbdebug("<= %08x", &BRIDGEREGL(where), value);
234 BRIDGEREGL(where) = value;
235 } else {
236 if (__query(bus, devfn))
237 __pcidebug("<= %08x", bus, devfn, where, value);
238 CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where);
239 rawval = CONFIG_ADDRESS;
240 CONFIG_DATAL(where) = value;
242 return PCIBIOS_SUCCESSFUL;
245 static int pci_ampci_read_config(struct pci_bus *bus, unsigned int devfn,
246 int where, int size, u32 *val)
248 switch (size) {
249 case 1:
250 return pci_ampci_read_config_byte(bus, devfn, where, val);
251 case 2:
252 return pci_ampci_read_config_word(bus, devfn, where, val);
253 case 4:
254 return pci_ampci_read_config_dword(bus, devfn, where, val);
255 default:
256 BUG();
257 return -EOPNOTSUPP;
261 static int pci_ampci_write_config(struct pci_bus *bus, unsigned int devfn,
262 int where, int size, u32 val)
264 switch (size) {
265 case 1:
266 return pci_ampci_write_config_byte(bus, devfn, where, val);
267 case 2:
268 return pci_ampci_write_config_word(bus, devfn, where, val);
269 case 4:
270 return pci_ampci_write_config_dword(bus, devfn, where, val);
271 default:
272 BUG();
273 return -EOPNOTSUPP;
277 static struct pci_ops pci_direct_ampci = {
278 pci_ampci_read_config,
279 pci_ampci_write_config,
283 * Before we decide to use direct hardware access mechanisms, we try to do some
284 * trivial checks to ensure it at least _seems_ to be working -- we just test
285 * whether bus 00 contains a host bridge (this is similar to checking
286 * techniques used in XFree86, but ours should be more reliable since we
287 * attempt to make use of direct access hints provided by the PCI BIOS).
289 * This should be close to trivial, but it isn't, because there are buggy
290 * chipsets (yes, you guessed it, by Intel and Compaq) that have no class ID.
292 static int __init pci_sanity_check(struct pci_ops *o)
294 struct pci_bus bus; /* Fake bus and device */
295 u32 x;
297 bus.number = 0;
299 if ((!o->read(&bus, 0, PCI_CLASS_DEVICE, 2, &x) &&
300 (x == PCI_CLASS_BRIDGE_HOST || x == PCI_CLASS_DISPLAY_VGA)) ||
301 (!o->read(&bus, 0, PCI_VENDOR_ID, 2, &x) &&
302 (x == PCI_VENDOR_ID_INTEL || x == PCI_VENDOR_ID_COMPAQ)))
303 return 1;
305 printk(KERN_ERR "PCI: Sanity check failed\n");
306 return 0;
309 static int __init pci_check_direct(void)
311 unsigned long flags;
313 local_irq_save(flags);
316 * Check if access works.
318 if (pci_sanity_check(&pci_direct_ampci)) {
319 local_irq_restore(flags);
320 printk(KERN_INFO "PCI: Using configuration ampci\n");
321 request_mem_region(0xBE040000, 256, "AMPCI bridge");
322 request_mem_region(0xBFFFFFF4, 12, "PCI ampci");
323 request_mem_region(0xBC000000, 32 * 1024 * 1024, "PCI SRAM");
324 return 0;
327 local_irq_restore(flags);
328 return -ENODEV;
331 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
333 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
334 struct resource *devr = &dev->resource[idx], *busr;
336 if (dev->bus) {
337 pci_bus_for_each_resource(dev->bus, busr, i) {
338 if (!busr || (busr->flags ^ devr->flags) & type_mask)
339 continue;
341 if (devr->start &&
342 devr->start >= busr->start &&
343 devr->end <= busr->end)
344 return 1;
348 return 0;
351 static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
353 struct pci_bus_region region;
354 int i;
355 int limit;
357 if (dev->bus->number != 0)
358 return;
360 limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ?
361 PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES;
363 for (i = 0; i < limit; i++) {
364 if (!dev->resource[i].flags)
365 continue;
367 region.start = dev->resource[i].start;
368 region.end = dev->resource[i].end;
369 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
370 if (is_valid_resource(dev, i))
371 pci_claim_resource(dev, i);
376 * Called after each bus is probed, but before its children
377 * are examined.
379 void __devinit pcibios_fixup_bus(struct pci_bus *bus)
381 struct pci_dev *dev;
383 if (bus->number == 0) {
384 bus->resource[0] = &pci_ioport_resource;
385 bus->resource[1] = &pci_iomem_resource;
388 if (bus->self) {
389 pci_read_bridge_bases(bus);
390 pcibios_fixup_device_resources(bus->self);
393 list_for_each_entry(dev, &bus->devices, bus_list)
394 pcibios_fixup_device_resources(dev);
398 * Initialization. Try all known PCI access methods. Note that we support
399 * using both PCI BIOS and direct access: in such cases, we use I/O ports
400 * to access config space, but we still keep BIOS order of cards to be
401 * compatible with 2.0.X. This should go away some day.
403 static int __init pcibios_init(void)
405 ioport_resource.start = 0xA0000000;
406 ioport_resource.end = 0xDFFFFFFF;
407 iomem_resource.start = 0xA0000000;
408 iomem_resource.end = 0xDFFFFFFF;
410 if (insert_resource(&iomem_resource, &pci_iomem_resource) < 0)
411 panic("Unable to insert PCI IOMEM resource\n");
412 if (insert_resource(&ioport_resource, &pci_ioport_resource) < 0)
413 panic("Unable to insert PCI IOPORT resource\n");
415 if (!pci_probe)
416 return 0;
418 if (pci_check_direct() < 0) {
419 printk(KERN_WARNING "PCI: No PCI bus detected\n");
420 return 0;
423 printk(KERN_INFO "PCI: Probing PCI hardware [mempage %08x]\n",
424 MEM_PAGING_REG);
426 pci_root_bus = pci_scan_bus(0, &pci_direct_ampci, NULL);
428 pcibios_irq_init();
429 pcibios_fixup_irqs();
430 pcibios_resource_survey();
431 return 0;
434 arch_initcall(pcibios_init);
436 char *__init pcibios_setup(char *str)
438 if (!strcmp(str, "off")) {
439 pci_probe = 0;
440 return NULL;
442 } else if (!strncmp(str, "lastbus=", 8)) {
443 pcibios_last_bus = simple_strtol(str+8, NULL, 0);
444 return NULL;
447 return str;
450 int pcibios_enable_device(struct pci_dev *dev, int mask)
452 int err;
454 err = pci_enable_resources(dev, mask);
455 if (err == 0)
456 pcibios_enable_irq(dev);
457 return err;
461 * disable the ethernet chipset
463 static void __init unit_disable_pcnet(struct pci_bus *bus, struct pci_ops *o)
465 u32 x;
467 bus->number = 0;
469 o->read (bus, PCI_DEVFN(2, 0), PCI_VENDOR_ID, 4, &x);
470 o->read (bus, PCI_DEVFN(2, 0), PCI_COMMAND, 2, &x);
471 x |= PCI_COMMAND_MASTER |
472 PCI_COMMAND_IO | PCI_COMMAND_MEMORY |
473 PCI_COMMAND_SERR | PCI_COMMAND_PARITY;
474 o->write(bus, PCI_DEVFN(2, 0), PCI_COMMAND, 2, x);
475 o->read (bus, PCI_DEVFN(2, 0), PCI_COMMAND, 2, &x);
476 o->write(bus, PCI_DEVFN(2, 0), PCI_BASE_ADDRESS_0, 4, 0x00030001);
477 o->read (bus, PCI_DEVFN(2, 0), PCI_BASE_ADDRESS_0, 4, &x);
479 #define RDP (*(volatile u32 *) 0xBE030010)
480 #define RAP (*(volatile u32 *) 0xBE030014)
481 #define __set_RAP(X) do { RAP = (X); x = RAP; } while (0)
482 #define __set_RDP(X) do { RDP = (X); x = RDP; } while (0)
483 #define __get_RDP() ({ RDP & 0xffff; })
485 __set_RAP(0);
486 __set_RDP(0x0004); /* CSR0 = STOP */
488 __set_RAP(88); /* check CSR88 indicates an Am79C973 */
489 BUG_ON(__get_RDP() != 0x5003);
491 for (x = 0; x < 100; x++)
492 asm volatile("nop");
494 __set_RDP(0x0004); /* CSR0 = STOP */
498 * initialise the unit hardware
500 asmlinkage void __init unit_pci_init(void)
502 struct pci_bus bus; /* Fake bus and device */
503 struct pci_ops *o = &pci_direct_ampci;
504 u32 x;
506 set_intr_level(XIRQ1, GxICR_LEVEL_3);
508 memset(&bus, 0, sizeof(bus));
510 MEM_PAGING_REG = 0xE8000000;
512 /* we need to set up the bridge _now_ or we won't be able to access the
513 * PCI config registers
515 BRIDGEREGW(PCI_COMMAND) |=
516 PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
517 PCI_COMMAND_MEMORY | PCI_COMMAND_IO | PCI_COMMAND_MASTER;
518 BRIDGEREGW(PCI_STATUS) = 0xF800;
519 BRIDGEREGB(PCI_LATENCY_TIMER) = 0x10;
520 BRIDGEREGL(PCI_BASE_ADDRESS_0) = 0x80000000;
521 BRIDGEREGB(PCI_INTERRUPT_LINE) = 1;
522 BRIDGEREGL(0x48) = 0x98000000; /* AMPCI base addr */
523 BRIDGEREGB(0x41) = 0x00; /* secondary bus
524 * number */
525 BRIDGEREGB(0x42) = 0x01; /* subordinate bus
526 * number */
527 BRIDGEREGB(0x44) = 0x01;
528 BRIDGEREGL(0x50) = 0x00000001;
529 BRIDGEREGL(0x58) = 0x00001002;
530 BRIDGEREGL(0x5C) = 0x00000011;
532 /* we also need to set up the PCI-PCI bridge */
533 bus.number = 0;
535 /* IO: 0x00000000-0x00020000 */
536 o->read (&bus, PCI_DEVFN(3, 0), PCI_COMMAND, 2, &x);
537 x |= PCI_COMMAND_MASTER |
538 PCI_COMMAND_IO | PCI_COMMAND_MEMORY |
539 PCI_COMMAND_SERR | PCI_COMMAND_PARITY;
540 o->write(&bus, PCI_DEVFN(3, 0), PCI_COMMAND, 2, x);
542 o->read (&bus, PCI_DEVFN(3, 0), PCI_IO_BASE, 1, &x);
543 o->read (&bus, PCI_DEVFN(3, 0), PCI_IO_BASE_UPPER16, 4, &x);
544 o->read (&bus, PCI_DEVFN(3, 0), PCI_MEMORY_BASE, 4, &x);
545 o->read (&bus, PCI_DEVFN(3, 0), PCI_PREF_MEMORY_BASE, 4, &x);
547 o->write(&bus, PCI_DEVFN(3, 0), PCI_IO_BASE, 1, 0x01);
548 o->read (&bus, PCI_DEVFN(3, 0), PCI_IO_BASE, 1, &x);
549 o->write(&bus, PCI_DEVFN(3, 0), PCI_IO_BASE_UPPER16, 4, 0x00020000);
550 o->read (&bus, PCI_DEVFN(3, 0), PCI_IO_BASE_UPPER16, 4, &x);
551 o->write(&bus, PCI_DEVFN(3, 0), PCI_MEMORY_BASE, 4, 0xEBB0EA00);
552 o->read (&bus, PCI_DEVFN(3, 0), PCI_MEMORY_BASE, 4, &x);
553 o->write(&bus, PCI_DEVFN(3, 0), PCI_PREF_MEMORY_BASE, 4, 0xE9F0E800);
554 o->read (&bus, PCI_DEVFN(3, 0), PCI_PREF_MEMORY_BASE, 4, &x);
556 unit_disable_pcnet(&bus, o);