TOMOYO: Use stack memory for pending entry.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmstat.c
blobfa12ea3051fb109c18f66ee41da49fd2f7ff4fdb
1 /*
2 * linux/mm/vmstat.c
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
20 #ifdef CONFIG_VM_EVENT_COUNTERS
21 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
22 EXPORT_PER_CPU_SYMBOL(vm_event_states);
24 static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask)
26 int cpu;
27 int i;
29 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
31 for_each_cpu(cpu, cpumask) {
32 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
34 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
35 ret[i] += this->event[i];
40 * Accumulate the vm event counters across all CPUs.
41 * The result is unavoidably approximate - it can change
42 * during and after execution of this function.
44 void all_vm_events(unsigned long *ret)
46 get_online_cpus();
47 sum_vm_events(ret, cpu_online_mask);
48 put_online_cpus();
50 EXPORT_SYMBOL_GPL(all_vm_events);
52 #ifdef CONFIG_HOTPLUG
54 * Fold the foreign cpu events into our own.
56 * This is adding to the events on one processor
57 * but keeps the global counts constant.
59 void vm_events_fold_cpu(int cpu)
61 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
62 int i;
64 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
65 count_vm_events(i, fold_state->event[i]);
66 fold_state->event[i] = 0;
69 #endif /* CONFIG_HOTPLUG */
71 #endif /* CONFIG_VM_EVENT_COUNTERS */
74 * Manage combined zone based / global counters
76 * vm_stat contains the global counters
78 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
79 EXPORT_SYMBOL(vm_stat);
81 #ifdef CONFIG_SMP
83 static int calculate_threshold(struct zone *zone)
85 int threshold;
86 int mem; /* memory in 128 MB units */
89 * The threshold scales with the number of processors and the amount
90 * of memory per zone. More memory means that we can defer updates for
91 * longer, more processors could lead to more contention.
92 * fls() is used to have a cheap way of logarithmic scaling.
94 * Some sample thresholds:
96 * Threshold Processors (fls) Zonesize fls(mem+1)
97 * ------------------------------------------------------------------
98 * 8 1 1 0.9-1 GB 4
99 * 16 2 2 0.9-1 GB 4
100 * 20 2 2 1-2 GB 5
101 * 24 2 2 2-4 GB 6
102 * 28 2 2 4-8 GB 7
103 * 32 2 2 8-16 GB 8
104 * 4 2 2 <128M 1
105 * 30 4 3 2-4 GB 5
106 * 48 4 3 8-16 GB 8
107 * 32 8 4 1-2 GB 4
108 * 32 8 4 0.9-1GB 4
109 * 10 16 5 <128M 1
110 * 40 16 5 900M 4
111 * 70 64 7 2-4 GB 5
112 * 84 64 7 4-8 GB 6
113 * 108 512 9 4-8 GB 6
114 * 125 1024 10 8-16 GB 8
115 * 125 1024 10 16-32 GB 9
118 mem = zone->present_pages >> (27 - PAGE_SHIFT);
120 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
123 * Maximum threshold is 125
125 threshold = min(125, threshold);
127 return threshold;
131 * Refresh the thresholds for each zone.
133 static void refresh_zone_stat_thresholds(void)
135 struct zone *zone;
136 int cpu;
137 int threshold;
139 for_each_populated_zone(zone) {
140 threshold = calculate_threshold(zone);
142 for_each_online_cpu(cpu)
143 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
144 = threshold;
149 * For use when we know that interrupts are disabled.
151 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
152 int delta)
154 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
156 s8 *p = pcp->vm_stat_diff + item;
157 long x;
159 x = delta + *p;
161 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
162 zone_page_state_add(x, zone, item);
163 x = 0;
165 *p = x;
167 EXPORT_SYMBOL(__mod_zone_page_state);
170 * For an unknown interrupt state
172 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
173 int delta)
175 unsigned long flags;
177 local_irq_save(flags);
178 __mod_zone_page_state(zone, item, delta);
179 local_irq_restore(flags);
181 EXPORT_SYMBOL(mod_zone_page_state);
184 * Optimized increment and decrement functions.
186 * These are only for a single page and therefore can take a struct page *
187 * argument instead of struct zone *. This allows the inclusion of the code
188 * generated for page_zone(page) into the optimized functions.
190 * No overflow check is necessary and therefore the differential can be
191 * incremented or decremented in place which may allow the compilers to
192 * generate better code.
193 * The increment or decrement is known and therefore one boundary check can
194 * be omitted.
196 * NOTE: These functions are very performance sensitive. Change only
197 * with care.
199 * Some processors have inc/dec instructions that are atomic vs an interrupt.
200 * However, the code must first determine the differential location in a zone
201 * based on the processor number and then inc/dec the counter. There is no
202 * guarantee without disabling preemption that the processor will not change
203 * in between and therefore the atomicity vs. interrupt cannot be exploited
204 * in a useful way here.
206 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
208 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
209 s8 *p = pcp->vm_stat_diff + item;
211 (*p)++;
213 if (unlikely(*p > pcp->stat_threshold)) {
214 int overstep = pcp->stat_threshold / 2;
216 zone_page_state_add(*p + overstep, zone, item);
217 *p = -overstep;
221 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
223 __inc_zone_state(page_zone(page), item);
225 EXPORT_SYMBOL(__inc_zone_page_state);
227 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
229 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
230 s8 *p = pcp->vm_stat_diff + item;
232 (*p)--;
234 if (unlikely(*p < - pcp->stat_threshold)) {
235 int overstep = pcp->stat_threshold / 2;
237 zone_page_state_add(*p - overstep, zone, item);
238 *p = overstep;
242 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
244 __dec_zone_state(page_zone(page), item);
246 EXPORT_SYMBOL(__dec_zone_page_state);
248 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
250 unsigned long flags;
252 local_irq_save(flags);
253 __inc_zone_state(zone, item);
254 local_irq_restore(flags);
257 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
259 unsigned long flags;
260 struct zone *zone;
262 zone = page_zone(page);
263 local_irq_save(flags);
264 __inc_zone_state(zone, item);
265 local_irq_restore(flags);
267 EXPORT_SYMBOL(inc_zone_page_state);
269 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
271 unsigned long flags;
273 local_irq_save(flags);
274 __dec_zone_page_state(page, item);
275 local_irq_restore(flags);
277 EXPORT_SYMBOL(dec_zone_page_state);
280 * Update the zone counters for one cpu.
282 * The cpu specified must be either the current cpu or a processor that
283 * is not online. If it is the current cpu then the execution thread must
284 * be pinned to the current cpu.
286 * Note that refresh_cpu_vm_stats strives to only access
287 * node local memory. The per cpu pagesets on remote zones are placed
288 * in the memory local to the processor using that pageset. So the
289 * loop over all zones will access a series of cachelines local to
290 * the processor.
292 * The call to zone_page_state_add updates the cachelines with the
293 * statistics in the remote zone struct as well as the global cachelines
294 * with the global counters. These could cause remote node cache line
295 * bouncing and will have to be only done when necessary.
297 void refresh_cpu_vm_stats(int cpu)
299 struct zone *zone;
300 int i;
301 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
303 for_each_populated_zone(zone) {
304 struct per_cpu_pageset *p;
306 p = per_cpu_ptr(zone->pageset, cpu);
308 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
309 if (p->vm_stat_diff[i]) {
310 unsigned long flags;
311 int v;
313 local_irq_save(flags);
314 v = p->vm_stat_diff[i];
315 p->vm_stat_diff[i] = 0;
316 local_irq_restore(flags);
317 atomic_long_add(v, &zone->vm_stat[i]);
318 global_diff[i] += v;
319 #ifdef CONFIG_NUMA
320 /* 3 seconds idle till flush */
321 p->expire = 3;
322 #endif
324 cond_resched();
325 #ifdef CONFIG_NUMA
327 * Deal with draining the remote pageset of this
328 * processor
330 * Check if there are pages remaining in this pageset
331 * if not then there is nothing to expire.
333 if (!p->expire || !p->pcp.count)
334 continue;
337 * We never drain zones local to this processor.
339 if (zone_to_nid(zone) == numa_node_id()) {
340 p->expire = 0;
341 continue;
344 p->expire--;
345 if (p->expire)
346 continue;
348 if (p->pcp.count)
349 drain_zone_pages(zone, &p->pcp);
350 #endif
353 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
354 if (global_diff[i])
355 atomic_long_add(global_diff[i], &vm_stat[i]);
358 #endif
360 #ifdef CONFIG_NUMA
362 * zonelist = the list of zones passed to the allocator
363 * z = the zone from which the allocation occurred.
365 * Must be called with interrupts disabled.
367 void zone_statistics(struct zone *preferred_zone, struct zone *z)
369 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
370 __inc_zone_state(z, NUMA_HIT);
371 } else {
372 __inc_zone_state(z, NUMA_MISS);
373 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
375 if (z->node == numa_node_id())
376 __inc_zone_state(z, NUMA_LOCAL);
377 else
378 __inc_zone_state(z, NUMA_OTHER);
380 #endif
382 #ifdef CONFIG_PROC_FS
383 #include <linux/proc_fs.h>
384 #include <linux/seq_file.h>
386 static char * const migratetype_names[MIGRATE_TYPES] = {
387 "Unmovable",
388 "Reclaimable",
389 "Movable",
390 "Reserve",
391 "Isolate",
394 static void *frag_start(struct seq_file *m, loff_t *pos)
396 pg_data_t *pgdat;
397 loff_t node = *pos;
398 for (pgdat = first_online_pgdat();
399 pgdat && node;
400 pgdat = next_online_pgdat(pgdat))
401 --node;
403 return pgdat;
406 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
408 pg_data_t *pgdat = (pg_data_t *)arg;
410 (*pos)++;
411 return next_online_pgdat(pgdat);
414 static void frag_stop(struct seq_file *m, void *arg)
418 /* Walk all the zones in a node and print using a callback */
419 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
420 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
422 struct zone *zone;
423 struct zone *node_zones = pgdat->node_zones;
424 unsigned long flags;
426 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
427 if (!populated_zone(zone))
428 continue;
430 spin_lock_irqsave(&zone->lock, flags);
431 print(m, pgdat, zone);
432 spin_unlock_irqrestore(&zone->lock, flags);
436 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
437 struct zone *zone)
439 int order;
441 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
442 for (order = 0; order < MAX_ORDER; ++order)
443 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
444 seq_putc(m, '\n');
448 * This walks the free areas for each zone.
450 static int frag_show(struct seq_file *m, void *arg)
452 pg_data_t *pgdat = (pg_data_t *)arg;
453 walk_zones_in_node(m, pgdat, frag_show_print);
454 return 0;
457 static void pagetypeinfo_showfree_print(struct seq_file *m,
458 pg_data_t *pgdat, struct zone *zone)
460 int order, mtype;
462 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
463 seq_printf(m, "Node %4d, zone %8s, type %12s ",
464 pgdat->node_id,
465 zone->name,
466 migratetype_names[mtype]);
467 for (order = 0; order < MAX_ORDER; ++order) {
468 unsigned long freecount = 0;
469 struct free_area *area;
470 struct list_head *curr;
472 area = &(zone->free_area[order]);
474 list_for_each(curr, &area->free_list[mtype])
475 freecount++;
476 seq_printf(m, "%6lu ", freecount);
478 seq_putc(m, '\n');
482 /* Print out the free pages at each order for each migatetype */
483 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
485 int order;
486 pg_data_t *pgdat = (pg_data_t *)arg;
488 /* Print header */
489 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
490 for (order = 0; order < MAX_ORDER; ++order)
491 seq_printf(m, "%6d ", order);
492 seq_putc(m, '\n');
494 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
496 return 0;
499 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
500 pg_data_t *pgdat, struct zone *zone)
502 int mtype;
503 unsigned long pfn;
504 unsigned long start_pfn = zone->zone_start_pfn;
505 unsigned long end_pfn = start_pfn + zone->spanned_pages;
506 unsigned long count[MIGRATE_TYPES] = { 0, };
508 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
509 struct page *page;
511 if (!pfn_valid(pfn))
512 continue;
514 page = pfn_to_page(pfn);
516 /* Watch for unexpected holes punched in the memmap */
517 if (!memmap_valid_within(pfn, page, zone))
518 continue;
520 mtype = get_pageblock_migratetype(page);
522 if (mtype < MIGRATE_TYPES)
523 count[mtype]++;
526 /* Print counts */
527 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
528 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
529 seq_printf(m, "%12lu ", count[mtype]);
530 seq_putc(m, '\n');
533 /* Print out the free pages at each order for each migratetype */
534 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
536 int mtype;
537 pg_data_t *pgdat = (pg_data_t *)arg;
539 seq_printf(m, "\n%-23s", "Number of blocks type ");
540 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
541 seq_printf(m, "%12s ", migratetype_names[mtype]);
542 seq_putc(m, '\n');
543 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
545 return 0;
549 * This prints out statistics in relation to grouping pages by mobility.
550 * It is expensive to collect so do not constantly read the file.
552 static int pagetypeinfo_show(struct seq_file *m, void *arg)
554 pg_data_t *pgdat = (pg_data_t *)arg;
556 /* check memoryless node */
557 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
558 return 0;
560 seq_printf(m, "Page block order: %d\n", pageblock_order);
561 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
562 seq_putc(m, '\n');
563 pagetypeinfo_showfree(m, pgdat);
564 pagetypeinfo_showblockcount(m, pgdat);
566 return 0;
569 static const struct seq_operations fragmentation_op = {
570 .start = frag_start,
571 .next = frag_next,
572 .stop = frag_stop,
573 .show = frag_show,
576 static int fragmentation_open(struct inode *inode, struct file *file)
578 return seq_open(file, &fragmentation_op);
581 static const struct file_operations fragmentation_file_operations = {
582 .open = fragmentation_open,
583 .read = seq_read,
584 .llseek = seq_lseek,
585 .release = seq_release,
588 static const struct seq_operations pagetypeinfo_op = {
589 .start = frag_start,
590 .next = frag_next,
591 .stop = frag_stop,
592 .show = pagetypeinfo_show,
595 static int pagetypeinfo_open(struct inode *inode, struct file *file)
597 return seq_open(file, &pagetypeinfo_op);
600 static const struct file_operations pagetypeinfo_file_ops = {
601 .open = pagetypeinfo_open,
602 .read = seq_read,
603 .llseek = seq_lseek,
604 .release = seq_release,
607 #ifdef CONFIG_ZONE_DMA
608 #define TEXT_FOR_DMA(xx) xx "_dma",
609 #else
610 #define TEXT_FOR_DMA(xx)
611 #endif
613 #ifdef CONFIG_ZONE_DMA32
614 #define TEXT_FOR_DMA32(xx) xx "_dma32",
615 #else
616 #define TEXT_FOR_DMA32(xx)
617 #endif
619 #ifdef CONFIG_HIGHMEM
620 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
621 #else
622 #define TEXT_FOR_HIGHMEM(xx)
623 #endif
625 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
626 TEXT_FOR_HIGHMEM(xx) xx "_movable",
628 static const char * const vmstat_text[] = {
629 /* Zoned VM counters */
630 "nr_free_pages",
631 "nr_inactive_anon",
632 "nr_active_anon",
633 "nr_inactive_file",
634 "nr_active_file",
635 "nr_unevictable",
636 "nr_mlock",
637 "nr_anon_pages",
638 "nr_mapped",
639 "nr_file_pages",
640 "nr_dirty",
641 "nr_writeback",
642 "nr_slab_reclaimable",
643 "nr_slab_unreclaimable",
644 "nr_page_table_pages",
645 "nr_kernel_stack",
646 "nr_unstable",
647 "nr_bounce",
648 "nr_vmscan_write",
649 "nr_writeback_temp",
650 "nr_isolated_anon",
651 "nr_isolated_file",
652 "nr_shmem",
653 #ifdef CONFIG_NUMA
654 "numa_hit",
655 "numa_miss",
656 "numa_foreign",
657 "numa_interleave",
658 "numa_local",
659 "numa_other",
660 #endif
662 #ifdef CONFIG_VM_EVENT_COUNTERS
663 "pgpgin",
664 "pgpgout",
665 "pswpin",
666 "pswpout",
668 TEXTS_FOR_ZONES("pgalloc")
670 "pgfree",
671 "pgactivate",
672 "pgdeactivate",
674 "pgfault",
675 "pgmajfault",
677 TEXTS_FOR_ZONES("pgrefill")
678 TEXTS_FOR_ZONES("pgsteal")
679 TEXTS_FOR_ZONES("pgscan_kswapd")
680 TEXTS_FOR_ZONES("pgscan_direct")
682 #ifdef CONFIG_NUMA
683 "zone_reclaim_failed",
684 #endif
685 "pginodesteal",
686 "slabs_scanned",
687 "kswapd_steal",
688 "kswapd_inodesteal",
689 "kswapd_low_wmark_hit_quickly",
690 "kswapd_high_wmark_hit_quickly",
691 "kswapd_skip_congestion_wait",
692 "pageoutrun",
693 "allocstall",
695 "pgrotated",
696 #ifdef CONFIG_HUGETLB_PAGE
697 "htlb_buddy_alloc_success",
698 "htlb_buddy_alloc_fail",
699 #endif
700 "unevictable_pgs_culled",
701 "unevictable_pgs_scanned",
702 "unevictable_pgs_rescued",
703 "unevictable_pgs_mlocked",
704 "unevictable_pgs_munlocked",
705 "unevictable_pgs_cleared",
706 "unevictable_pgs_stranded",
707 "unevictable_pgs_mlockfreed",
708 #endif
711 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
712 struct zone *zone)
714 int i;
715 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
716 seq_printf(m,
717 "\n pages free %lu"
718 "\n min %lu"
719 "\n low %lu"
720 "\n high %lu"
721 "\n scanned %lu"
722 "\n spanned %lu"
723 "\n present %lu",
724 zone_page_state(zone, NR_FREE_PAGES),
725 min_wmark_pages(zone),
726 low_wmark_pages(zone),
727 high_wmark_pages(zone),
728 zone->pages_scanned,
729 zone->spanned_pages,
730 zone->present_pages);
732 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
733 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
734 zone_page_state(zone, i));
736 seq_printf(m,
737 "\n protection: (%lu",
738 zone->lowmem_reserve[0]);
739 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
740 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
741 seq_printf(m,
743 "\n pagesets");
744 for_each_online_cpu(i) {
745 struct per_cpu_pageset *pageset;
747 pageset = per_cpu_ptr(zone->pageset, i);
748 seq_printf(m,
749 "\n cpu: %i"
750 "\n count: %i"
751 "\n high: %i"
752 "\n batch: %i",
754 pageset->pcp.count,
755 pageset->pcp.high,
756 pageset->pcp.batch);
757 #ifdef CONFIG_SMP
758 seq_printf(m, "\n vm stats threshold: %d",
759 pageset->stat_threshold);
760 #endif
762 seq_printf(m,
763 "\n all_unreclaimable: %u"
764 "\n prev_priority: %i"
765 "\n start_pfn: %lu"
766 "\n inactive_ratio: %u",
767 zone->all_unreclaimable,
768 zone->prev_priority,
769 zone->zone_start_pfn,
770 zone->inactive_ratio);
771 seq_putc(m, '\n');
775 * Output information about zones in @pgdat.
777 static int zoneinfo_show(struct seq_file *m, void *arg)
779 pg_data_t *pgdat = (pg_data_t *)arg;
780 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
781 return 0;
784 static const struct seq_operations zoneinfo_op = {
785 .start = frag_start, /* iterate over all zones. The same as in
786 * fragmentation. */
787 .next = frag_next,
788 .stop = frag_stop,
789 .show = zoneinfo_show,
792 static int zoneinfo_open(struct inode *inode, struct file *file)
794 return seq_open(file, &zoneinfo_op);
797 static const struct file_operations proc_zoneinfo_file_operations = {
798 .open = zoneinfo_open,
799 .read = seq_read,
800 .llseek = seq_lseek,
801 .release = seq_release,
804 static void *vmstat_start(struct seq_file *m, loff_t *pos)
806 unsigned long *v;
807 #ifdef CONFIG_VM_EVENT_COUNTERS
808 unsigned long *e;
809 #endif
810 int i;
812 if (*pos >= ARRAY_SIZE(vmstat_text))
813 return NULL;
815 #ifdef CONFIG_VM_EVENT_COUNTERS
816 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
817 + sizeof(struct vm_event_state), GFP_KERNEL);
818 #else
819 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
820 GFP_KERNEL);
821 #endif
822 m->private = v;
823 if (!v)
824 return ERR_PTR(-ENOMEM);
825 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
826 v[i] = global_page_state(i);
827 #ifdef CONFIG_VM_EVENT_COUNTERS
828 e = v + NR_VM_ZONE_STAT_ITEMS;
829 all_vm_events(e);
830 e[PGPGIN] /= 2; /* sectors -> kbytes */
831 e[PGPGOUT] /= 2;
832 #endif
833 return v + *pos;
836 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
838 (*pos)++;
839 if (*pos >= ARRAY_SIZE(vmstat_text))
840 return NULL;
841 return (unsigned long *)m->private + *pos;
844 static int vmstat_show(struct seq_file *m, void *arg)
846 unsigned long *l = arg;
847 unsigned long off = l - (unsigned long *)m->private;
849 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
850 return 0;
853 static void vmstat_stop(struct seq_file *m, void *arg)
855 kfree(m->private);
856 m->private = NULL;
859 static const struct seq_operations vmstat_op = {
860 .start = vmstat_start,
861 .next = vmstat_next,
862 .stop = vmstat_stop,
863 .show = vmstat_show,
866 static int vmstat_open(struct inode *inode, struct file *file)
868 return seq_open(file, &vmstat_op);
871 static const struct file_operations proc_vmstat_file_operations = {
872 .open = vmstat_open,
873 .read = seq_read,
874 .llseek = seq_lseek,
875 .release = seq_release,
877 #endif /* CONFIG_PROC_FS */
879 #ifdef CONFIG_SMP
880 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
881 int sysctl_stat_interval __read_mostly = HZ;
883 static void vmstat_update(struct work_struct *w)
885 refresh_cpu_vm_stats(smp_processor_id());
886 schedule_delayed_work(&__get_cpu_var(vmstat_work),
887 round_jiffies_relative(sysctl_stat_interval));
890 static void __cpuinit start_cpu_timer(int cpu)
892 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
894 INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
895 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
899 * Use the cpu notifier to insure that the thresholds are recalculated
900 * when necessary.
902 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
903 unsigned long action,
904 void *hcpu)
906 long cpu = (long)hcpu;
908 switch (action) {
909 case CPU_ONLINE:
910 case CPU_ONLINE_FROZEN:
911 start_cpu_timer(cpu);
912 node_set_state(cpu_to_node(cpu), N_CPU);
913 break;
914 case CPU_DOWN_PREPARE:
915 case CPU_DOWN_PREPARE_FROZEN:
916 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
917 per_cpu(vmstat_work, cpu).work.func = NULL;
918 break;
919 case CPU_DOWN_FAILED:
920 case CPU_DOWN_FAILED_FROZEN:
921 start_cpu_timer(cpu);
922 break;
923 case CPU_DEAD:
924 case CPU_DEAD_FROZEN:
925 refresh_zone_stat_thresholds();
926 break;
927 default:
928 break;
930 return NOTIFY_OK;
933 static struct notifier_block __cpuinitdata vmstat_notifier =
934 { &vmstat_cpuup_callback, NULL, 0 };
935 #endif
937 static int __init setup_vmstat(void)
939 #ifdef CONFIG_SMP
940 int cpu;
942 refresh_zone_stat_thresholds();
943 register_cpu_notifier(&vmstat_notifier);
945 for_each_online_cpu(cpu)
946 start_cpu_timer(cpu);
947 #endif
948 #ifdef CONFIG_PROC_FS
949 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
950 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
951 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
952 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
953 #endif
954 return 0;
956 module_init(setup_vmstat)