2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/smp_lock.h>
65 #include <linux/swap.h>
66 #include <linux/slab.h>
67 #include <linux/loop.h>
68 #include <linux/compat.h>
69 #include <linux/suspend.h>
70 #include <linux/freezer.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 #include <linux/kthread.h>
77 #include <linux/splice.h>
79 #include <asm/uaccess.h>
81 static LIST_HEAD(loop_devices
);
82 static DEFINE_MUTEX(loop_devices_mutex
);
85 static int part_shift
;
90 static int transfer_none(struct loop_device
*lo
, int cmd
,
91 struct page
*raw_page
, unsigned raw_off
,
92 struct page
*loop_page
, unsigned loop_off
,
93 int size
, sector_t real_block
)
95 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
96 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
99 memcpy(loop_buf
, raw_buf
, size
);
101 memcpy(raw_buf
, loop_buf
, size
);
103 kunmap_atomic(raw_buf
, KM_USER0
);
104 kunmap_atomic(loop_buf
, KM_USER1
);
109 static int transfer_xor(struct loop_device
*lo
, int cmd
,
110 struct page
*raw_page
, unsigned raw_off
,
111 struct page
*loop_page
, unsigned loop_off
,
112 int size
, sector_t real_block
)
114 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
115 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
116 char *in
, *out
, *key
;
127 key
= lo
->lo_encrypt_key
;
128 keysize
= lo
->lo_encrypt_key_size
;
129 for (i
= 0; i
< size
; i
++)
130 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
132 kunmap_atomic(raw_buf
, KM_USER0
);
133 kunmap_atomic(loop_buf
, KM_USER1
);
138 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
140 if (unlikely(info
->lo_encrypt_key_size
<= 0))
145 static struct loop_func_table none_funcs
= {
146 .number
= LO_CRYPT_NONE
,
147 .transfer
= transfer_none
,
150 static struct loop_func_table xor_funcs
= {
151 .number
= LO_CRYPT_XOR
,
152 .transfer
= transfer_xor
,
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
162 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
164 loff_t size
, offset
, loopsize
;
166 /* Compute loopsize in bytes */
167 size
= i_size_read(file
->f_mapping
->host
);
168 offset
= lo
->lo_offset
;
169 loopsize
= size
- offset
;
170 if (lo
->lo_sizelimit
> 0 && lo
->lo_sizelimit
< loopsize
)
171 loopsize
= lo
->lo_sizelimit
;
174 * Unfortunately, if we want to do I/O on the device,
175 * the number of 512-byte sectors has to fit into a sector_t.
177 return loopsize
>> 9;
181 figure_loop_size(struct loop_device
*lo
)
183 loff_t size
= get_loop_size(lo
, lo
->lo_backing_file
);
184 sector_t x
= (sector_t
)size
;
186 if (unlikely((loff_t
)x
!= size
))
189 set_capacity(lo
->lo_disk
, x
);
194 lo_do_transfer(struct loop_device
*lo
, int cmd
,
195 struct page
*rpage
, unsigned roffs
,
196 struct page
*lpage
, unsigned loffs
,
197 int size
, sector_t rblock
)
199 if (unlikely(!lo
->transfer
))
202 return lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
206 * do_lo_send_aops - helper for writing data to a loop device
208 * This is the fast version for backing filesystems which implement the address
209 * space operations write_begin and write_end.
211 static int do_lo_send_aops(struct loop_device
*lo
, struct bio_vec
*bvec
,
212 loff_t pos
, struct page
*unused
)
214 struct file
*file
= lo
->lo_backing_file
; /* kudos to NFsckingS */
215 struct address_space
*mapping
= file
->f_mapping
;
217 unsigned offset
, bv_offs
;
220 mutex_lock(&mapping
->host
->i_mutex
);
221 index
= pos
>> PAGE_CACHE_SHIFT
;
222 offset
= pos
& ((pgoff_t
)PAGE_CACHE_SIZE
- 1);
223 bv_offs
= bvec
->bv_offset
;
227 unsigned size
, copied
;
232 IV
= ((sector_t
)index
<< (PAGE_CACHE_SHIFT
- 9))+(offset
>> 9);
233 size
= PAGE_CACHE_SIZE
- offset
;
237 ret
= pagecache_write_begin(file
, mapping
, pos
, size
, 0,
242 transfer_result
= lo_do_transfer(lo
, WRITE
, page
, offset
,
243 bvec
->bv_page
, bv_offs
, size
, IV
);
245 if (unlikely(transfer_result
))
248 ret
= pagecache_write_end(file
, mapping
, pos
, size
, copied
,
250 if (ret
< 0 || ret
!= copied
)
253 if (unlikely(transfer_result
))
264 mutex_unlock(&mapping
->host
->i_mutex
);
272 * __do_lo_send_write - helper for writing data to a loop device
274 * This helper just factors out common code between do_lo_send_direct_write()
275 * and do_lo_send_write().
277 static int __do_lo_send_write(struct file
*file
,
278 u8
*buf
, const int len
, loff_t pos
)
281 mm_segment_t old_fs
= get_fs();
284 bw
= file
->f_op
->write(file
, buf
, len
, &pos
);
286 if (likely(bw
== len
))
288 printk(KERN_ERR
"loop: Write error at byte offset %llu, length %i.\n",
289 (unsigned long long)pos
, len
);
296 * do_lo_send_direct_write - helper for writing data to a loop device
298 * This is the fast, non-transforming version for backing filesystems which do
299 * not implement the address space operations write_begin and write_end.
300 * It uses the write file operation which should be present on all writeable
303 static int do_lo_send_direct_write(struct loop_device
*lo
,
304 struct bio_vec
*bvec
, loff_t pos
, struct page
*page
)
306 ssize_t bw
= __do_lo_send_write(lo
->lo_backing_file
,
307 kmap(bvec
->bv_page
) + bvec
->bv_offset
,
309 kunmap(bvec
->bv_page
);
315 * do_lo_send_write - helper for writing data to a loop device
317 * This is the slow, transforming version for filesystems which do not
318 * implement the address space operations write_begin and write_end. It
319 * uses the write file operation which should be present on all writeable
322 * Using fops->write is slower than using aops->{prepare,commit}_write in the
323 * transforming case because we need to double buffer the data as we cannot do
324 * the transformations in place as we do not have direct access to the
325 * destination pages of the backing file.
327 static int do_lo_send_write(struct loop_device
*lo
, struct bio_vec
*bvec
,
328 loff_t pos
, struct page
*page
)
330 int ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
->bv_page
,
331 bvec
->bv_offset
, bvec
->bv_len
, pos
>> 9);
333 return __do_lo_send_write(lo
->lo_backing_file
,
334 page_address(page
), bvec
->bv_len
,
336 printk(KERN_ERR
"loop: Transfer error at byte offset %llu, "
337 "length %i.\n", (unsigned long long)pos
, bvec
->bv_len
);
343 static int lo_send(struct loop_device
*lo
, struct bio
*bio
, loff_t pos
)
345 int (*do_lo_send
)(struct loop_device
*, struct bio_vec
*, loff_t
,
347 struct bio_vec
*bvec
;
348 struct page
*page
= NULL
;
351 do_lo_send
= do_lo_send_aops
;
352 if (!(lo
->lo_flags
& LO_FLAGS_USE_AOPS
)) {
353 do_lo_send
= do_lo_send_direct_write
;
354 if (lo
->transfer
!= transfer_none
) {
355 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
);
359 do_lo_send
= do_lo_send_write
;
362 bio_for_each_segment(bvec
, bio
, i
) {
363 ret
= do_lo_send(lo
, bvec
, pos
, page
);
375 printk(KERN_ERR
"loop: Failed to allocate temporary page for write.\n");
380 struct lo_read_data
{
381 struct loop_device
*lo
;
388 lo_splice_actor(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
389 struct splice_desc
*sd
)
391 struct lo_read_data
*p
= sd
->u
.data
;
392 struct loop_device
*lo
= p
->lo
;
393 struct page
*page
= buf
->page
;
397 ret
= buf
->ops
->confirm(pipe
, buf
);
401 IV
= ((sector_t
) page
->index
<< (PAGE_CACHE_SHIFT
- 9)) +
407 if (lo_do_transfer(lo
, READ
, page
, buf
->offset
, p
->page
, p
->offset
, size
, IV
)) {
408 printk(KERN_ERR
"loop: transfer error block %ld\n",
413 flush_dcache_page(p
->page
);
422 lo_direct_splice_actor(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
424 return __splice_from_pipe(pipe
, sd
, lo_splice_actor
);
428 do_lo_receive(struct loop_device
*lo
,
429 struct bio_vec
*bvec
, int bsize
, loff_t pos
)
431 struct lo_read_data cookie
;
432 struct splice_desc sd
;
437 cookie
.page
= bvec
->bv_page
;
438 cookie
.offset
= bvec
->bv_offset
;
439 cookie
.bsize
= bsize
;
442 sd
.total_len
= bvec
->bv_len
;
447 file
= lo
->lo_backing_file
;
448 retval
= splice_direct_to_actor(file
, &sd
, lo_direct_splice_actor
);
457 lo_receive(struct loop_device
*lo
, struct bio
*bio
, int bsize
, loff_t pos
)
459 struct bio_vec
*bvec
;
462 bio_for_each_segment(bvec
, bio
, i
) {
463 ret
= do_lo_receive(lo
, bvec
, bsize
, pos
);
471 static int do_bio_filebacked(struct loop_device
*lo
, struct bio
*bio
)
476 pos
= ((loff_t
) bio
->bi_sector
<< 9) + lo
->lo_offset
;
478 if (bio_rw(bio
) == WRITE
) {
479 int barrier
= bio_barrier(bio
);
480 struct file
*file
= lo
->lo_backing_file
;
483 if (unlikely(!file
->f_op
->fsync
)) {
488 ret
= vfs_fsync(file
, file
->f_path
.dentry
, 0);
495 ret
= lo_send(lo
, bio
, pos
);
497 if (barrier
&& !ret
) {
498 ret
= vfs_fsync(file
, file
->f_path
.dentry
, 0);
503 ret
= lo_receive(lo
, bio
, lo
->lo_blocksize
, pos
);
510 * Add bio to back of pending list
512 static void loop_add_bio(struct loop_device
*lo
, struct bio
*bio
)
514 if (lo
->lo_biotail
) {
515 lo
->lo_biotail
->bi_next
= bio
;
516 lo
->lo_biotail
= bio
;
518 lo
->lo_bio
= lo
->lo_biotail
= bio
;
522 * Grab first pending buffer
524 static struct bio
*loop_get_bio(struct loop_device
*lo
)
528 if ((bio
= lo
->lo_bio
)) {
529 if (bio
== lo
->lo_biotail
)
530 lo
->lo_biotail
= NULL
;
531 lo
->lo_bio
= bio
->bi_next
;
538 static int loop_make_request(struct request_queue
*q
, struct bio
*old_bio
)
540 struct loop_device
*lo
= q
->queuedata
;
541 int rw
= bio_rw(old_bio
);
546 BUG_ON(!lo
|| (rw
!= READ
&& rw
!= WRITE
));
548 spin_lock_irq(&lo
->lo_lock
);
549 if (lo
->lo_state
!= Lo_bound
)
551 if (unlikely(rw
== WRITE
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)))
553 loop_add_bio(lo
, old_bio
);
554 wake_up(&lo
->lo_event
);
555 spin_unlock_irq(&lo
->lo_lock
);
559 spin_unlock_irq(&lo
->lo_lock
);
560 bio_io_error(old_bio
);
565 * kick off io on the underlying address space
567 static void loop_unplug(struct request_queue
*q
)
569 struct loop_device
*lo
= q
->queuedata
;
571 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED
, q
);
572 blk_run_address_space(lo
->lo_backing_file
->f_mapping
);
575 struct switch_request
{
577 struct completion wait
;
580 static void do_loop_switch(struct loop_device
*, struct switch_request
*);
582 static inline void loop_handle_bio(struct loop_device
*lo
, struct bio
*bio
)
584 if (unlikely(!bio
->bi_bdev
)) {
585 do_loop_switch(lo
, bio
->bi_private
);
588 int ret
= do_bio_filebacked(lo
, bio
);
594 * worker thread that handles reads/writes to file backed loop devices,
595 * to avoid blocking in our make_request_fn. it also does loop decrypting
596 * on reads for block backed loop, as that is too heavy to do from
597 * b_end_io context where irqs may be disabled.
599 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
600 * calling kthread_stop(). Therefore once kthread_should_stop() is
601 * true, make_request will not place any more requests. Therefore
602 * once kthread_should_stop() is true and lo_bio is NULL, we are
603 * done with the loop.
605 static int loop_thread(void *data
)
607 struct loop_device
*lo
= data
;
610 set_user_nice(current
, -20);
612 while (!kthread_should_stop() || lo
->lo_bio
) {
614 wait_event_interruptible(lo
->lo_event
,
615 lo
->lo_bio
|| kthread_should_stop());
619 spin_lock_irq(&lo
->lo_lock
);
620 bio
= loop_get_bio(lo
);
621 spin_unlock_irq(&lo
->lo_lock
);
624 loop_handle_bio(lo
, bio
);
631 * loop_switch performs the hard work of switching a backing store.
632 * First it needs to flush existing IO, it does this by sending a magic
633 * BIO down the pipe. The completion of this BIO does the actual switch.
635 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
637 struct switch_request w
;
638 struct bio
*bio
= bio_alloc(GFP_KERNEL
, 0);
641 init_completion(&w
.wait
);
643 bio
->bi_private
= &w
;
645 loop_make_request(lo
->lo_queue
, bio
);
646 wait_for_completion(&w
.wait
);
651 * Helper to flush the IOs in loop, but keeping loop thread running
653 static int loop_flush(struct loop_device
*lo
)
655 /* loop not yet configured, no running thread, nothing to flush */
659 return loop_switch(lo
, NULL
);
663 * Do the actual switch; called from the BIO completion routine
665 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
667 struct file
*file
= p
->file
;
668 struct file
*old_file
= lo
->lo_backing_file
;
669 struct address_space
*mapping
;
671 /* if no new file, only flush of queued bios requested */
675 mapping
= file
->f_mapping
;
676 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
677 lo
->lo_backing_file
= file
;
678 lo
->lo_blocksize
= S_ISBLK(mapping
->host
->i_mode
) ?
679 mapping
->host
->i_bdev
->bd_block_size
: PAGE_SIZE
;
680 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
681 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
688 * loop_change_fd switched the backing store of a loopback device to
689 * a new file. This is useful for operating system installers to free up
690 * the original file and in High Availability environments to switch to
691 * an alternative location for the content in case of server meltdown.
692 * This can only work if the loop device is used read-only, and if the
693 * new backing store is the same size and type as the old backing store.
695 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
698 struct file
*file
, *old_file
;
703 if (lo
->lo_state
!= Lo_bound
)
706 /* the loop device has to be read-only */
708 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
716 inode
= file
->f_mapping
->host
;
717 old_file
= lo
->lo_backing_file
;
721 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
724 /* new backing store needs to support loop (eg splice_read) */
725 if (!inode
->i_fop
->splice_read
)
728 /* size of the new backing store needs to be the same */
729 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
733 error
= loop_switch(lo
, file
);
739 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
748 static inline int is_loop_device(struct file
*file
)
750 struct inode
*i
= file
->f_mapping
->host
;
752 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
755 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
756 struct block_device
*bdev
, unsigned int arg
)
758 struct file
*file
, *f
;
760 struct address_space
*mapping
;
761 unsigned lo_blocksize
;
766 /* This is safe, since we have a reference from open(). */
767 __module_get(THIS_MODULE
);
775 if (lo
->lo_state
!= Lo_unbound
)
778 /* Avoid recursion */
780 while (is_loop_device(f
)) {
781 struct loop_device
*l
;
783 if (f
->f_mapping
->host
->i_bdev
== bdev
)
786 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
787 if (l
->lo_state
== Lo_unbound
) {
791 f
= l
->lo_backing_file
;
794 mapping
= file
->f_mapping
;
795 inode
= mapping
->host
;
797 if (!(file
->f_mode
& FMODE_WRITE
))
798 lo_flags
|= LO_FLAGS_READ_ONLY
;
801 if (S_ISREG(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
802 const struct address_space_operations
*aops
= mapping
->a_ops
;
804 * If we can't read - sorry. If we only can't write - well,
805 * it's going to be read-only.
807 if (!file
->f_op
->splice_read
)
809 if (aops
->write_begin
)
810 lo_flags
|= LO_FLAGS_USE_AOPS
;
811 if (!(lo_flags
& LO_FLAGS_USE_AOPS
) && !file
->f_op
->write
)
812 lo_flags
|= LO_FLAGS_READ_ONLY
;
814 lo_blocksize
= S_ISBLK(inode
->i_mode
) ?
815 inode
->i_bdev
->bd_block_size
: PAGE_SIZE
;
822 size
= get_loop_size(lo
, file
);
824 if ((loff_t
)(sector_t
)size
!= size
) {
829 if (!(mode
& FMODE_WRITE
))
830 lo_flags
|= LO_FLAGS_READ_ONLY
;
832 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
834 lo
->lo_blocksize
= lo_blocksize
;
835 lo
->lo_device
= bdev
;
836 lo
->lo_flags
= lo_flags
;
837 lo
->lo_backing_file
= file
;
838 lo
->transfer
= transfer_none
;
840 lo
->lo_sizelimit
= 0;
841 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
842 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
844 lo
->lo_bio
= lo
->lo_biotail
= NULL
;
847 * set queue make_request_fn, and add limits based on lower level
850 blk_queue_make_request(lo
->lo_queue
, loop_make_request
);
851 lo
->lo_queue
->queuedata
= lo
;
852 lo
->lo_queue
->unplug_fn
= loop_unplug
;
854 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
855 blk_queue_ordered(lo
->lo_queue
, QUEUE_ORDERED_DRAIN
, NULL
);
857 set_capacity(lo
->lo_disk
, size
);
858 bd_set_size(bdev
, size
<< 9);
860 set_blocksize(bdev
, lo_blocksize
);
862 lo
->lo_thread
= kthread_create(loop_thread
, lo
, "loop%d",
864 if (IS_ERR(lo
->lo_thread
)) {
865 error
= PTR_ERR(lo
->lo_thread
);
868 lo
->lo_state
= Lo_bound
;
869 wake_up_process(lo
->lo_thread
);
871 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
875 lo
->lo_thread
= NULL
;
876 lo
->lo_device
= NULL
;
877 lo
->lo_backing_file
= NULL
;
879 set_capacity(lo
->lo_disk
, 0);
880 invalidate_bdev(bdev
);
881 bd_set_size(bdev
, 0);
882 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
);
883 lo
->lo_state
= Lo_unbound
;
887 /* This is safe: open() is still holding a reference. */
888 module_put(THIS_MODULE
);
893 loop_release_xfer(struct loop_device
*lo
)
896 struct loop_func_table
*xfer
= lo
->lo_encryption
;
900 err
= xfer
->release(lo
);
902 lo
->lo_encryption
= NULL
;
903 module_put(xfer
->owner
);
909 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
910 const struct loop_info64
*i
)
915 struct module
*owner
= xfer
->owner
;
917 if (!try_module_get(owner
))
920 err
= xfer
->init(lo
, i
);
924 lo
->lo_encryption
= xfer
;
929 static int loop_clr_fd(struct loop_device
*lo
, struct block_device
*bdev
)
931 struct file
*filp
= lo
->lo_backing_file
;
932 gfp_t gfp
= lo
->old_gfp_mask
;
934 if (lo
->lo_state
!= Lo_bound
)
937 if (lo
->lo_refcnt
> 1) /* we needed one fd for the ioctl */
943 spin_lock_irq(&lo
->lo_lock
);
944 lo
->lo_state
= Lo_rundown
;
945 spin_unlock_irq(&lo
->lo_lock
);
947 kthread_stop(lo
->lo_thread
);
949 lo
->lo_queue
->unplug_fn
= NULL
;
950 lo
->lo_backing_file
= NULL
;
952 loop_release_xfer(lo
);
955 lo
->lo_device
= NULL
;
956 lo
->lo_encryption
= NULL
;
958 lo
->lo_sizelimit
= 0;
959 lo
->lo_encrypt_key_size
= 0;
961 lo
->lo_thread
= NULL
;
962 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
963 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
964 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
966 invalidate_bdev(bdev
);
967 set_capacity(lo
->lo_disk
, 0);
969 bd_set_size(bdev
, 0);
970 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
971 lo
->lo_state
= Lo_unbound
;
972 /* This is safe: open() is still holding a reference. */
973 module_put(THIS_MODULE
);
975 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
976 mutex_unlock(&lo
->lo_ctl_mutex
);
978 * Need not hold lo_ctl_mutex to fput backing file.
979 * Calling fput holding lo_ctl_mutex triggers a circular
980 * lock dependency possibility warning as fput can take
981 * bd_mutex which is usually taken before lo_ctl_mutex.
988 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
991 struct loop_func_table
*xfer
;
992 uid_t uid
= current_uid();
994 if (lo
->lo_encrypt_key_size
&&
995 lo
->lo_key_owner
!= uid
&&
996 !capable(CAP_SYS_ADMIN
))
998 if (lo
->lo_state
!= Lo_bound
)
1000 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
1003 err
= loop_release_xfer(lo
);
1007 if (info
->lo_encrypt_type
) {
1008 unsigned int type
= info
->lo_encrypt_type
;
1010 if (type
>= MAX_LO_CRYPT
)
1012 xfer
= xfer_funcs
[type
];
1018 err
= loop_init_xfer(lo
, xfer
, info
);
1022 if (lo
->lo_offset
!= info
->lo_offset
||
1023 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1024 lo
->lo_offset
= info
->lo_offset
;
1025 lo
->lo_sizelimit
= info
->lo_sizelimit
;
1026 if (figure_loop_size(lo
))
1030 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1031 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1032 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1033 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1037 lo
->transfer
= xfer
->transfer
;
1038 lo
->ioctl
= xfer
->ioctl
;
1040 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1041 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1042 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1044 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1045 lo
->lo_init
[0] = info
->lo_init
[0];
1046 lo
->lo_init
[1] = info
->lo_init
[1];
1047 if (info
->lo_encrypt_key_size
) {
1048 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1049 info
->lo_encrypt_key_size
);
1050 lo
->lo_key_owner
= uid
;
1057 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1059 struct file
*file
= lo
->lo_backing_file
;
1063 if (lo
->lo_state
!= Lo_bound
)
1065 error
= vfs_getattr(file
->f_path
.mnt
, file
->f_path
.dentry
, &stat
);
1068 memset(info
, 0, sizeof(*info
));
1069 info
->lo_number
= lo
->lo_number
;
1070 info
->lo_device
= huge_encode_dev(stat
.dev
);
1071 info
->lo_inode
= stat
.ino
;
1072 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1073 info
->lo_offset
= lo
->lo_offset
;
1074 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1075 info
->lo_flags
= lo
->lo_flags
;
1076 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1077 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1078 info
->lo_encrypt_type
=
1079 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1080 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1081 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1082 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1083 lo
->lo_encrypt_key_size
);
1089 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1091 memset(info64
, 0, sizeof(*info64
));
1092 info64
->lo_number
= info
->lo_number
;
1093 info64
->lo_device
= info
->lo_device
;
1094 info64
->lo_inode
= info
->lo_inode
;
1095 info64
->lo_rdevice
= info
->lo_rdevice
;
1096 info64
->lo_offset
= info
->lo_offset
;
1097 info64
->lo_sizelimit
= 0;
1098 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1099 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1100 info64
->lo_flags
= info
->lo_flags
;
1101 info64
->lo_init
[0] = info
->lo_init
[0];
1102 info64
->lo_init
[1] = info
->lo_init
[1];
1103 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1104 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1106 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1107 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1111 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1113 memset(info
, 0, sizeof(*info
));
1114 info
->lo_number
= info64
->lo_number
;
1115 info
->lo_device
= info64
->lo_device
;
1116 info
->lo_inode
= info64
->lo_inode
;
1117 info
->lo_rdevice
= info64
->lo_rdevice
;
1118 info
->lo_offset
= info64
->lo_offset
;
1119 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1120 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1121 info
->lo_flags
= info64
->lo_flags
;
1122 info
->lo_init
[0] = info64
->lo_init
[0];
1123 info
->lo_init
[1] = info64
->lo_init
[1];
1124 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1125 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1127 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1128 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1130 /* error in case values were truncated */
1131 if (info
->lo_device
!= info64
->lo_device
||
1132 info
->lo_rdevice
!= info64
->lo_rdevice
||
1133 info
->lo_inode
!= info64
->lo_inode
||
1134 info
->lo_offset
!= info64
->lo_offset
)
1141 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1143 struct loop_info info
;
1144 struct loop_info64 info64
;
1146 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1148 loop_info64_from_old(&info
, &info64
);
1149 return loop_set_status(lo
, &info64
);
1153 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1155 struct loop_info64 info64
;
1157 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1159 return loop_set_status(lo
, &info64
);
1163 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1164 struct loop_info info
;
1165 struct loop_info64 info64
;
1171 err
= loop_get_status(lo
, &info64
);
1173 err
= loop_info64_to_old(&info64
, &info
);
1174 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1181 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1182 struct loop_info64 info64
;
1188 err
= loop_get_status(lo
, &info64
);
1189 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1195 static int loop_set_capacity(struct loop_device
*lo
, struct block_device
*bdev
)
1202 if (unlikely(lo
->lo_state
!= Lo_bound
))
1204 err
= figure_loop_size(lo
);
1207 sec
= get_capacity(lo
->lo_disk
);
1208 /* the width of sector_t may be narrow for bit-shift */
1211 mutex_lock(&bdev
->bd_mutex
);
1212 bd_set_size(bdev
, sz
);
1213 mutex_unlock(&bdev
->bd_mutex
);
1219 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1220 unsigned int cmd
, unsigned long arg
)
1222 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1225 mutex_lock_nested(&lo
->lo_ctl_mutex
, 1);
1228 err
= loop_set_fd(lo
, mode
, bdev
, arg
);
1230 case LOOP_CHANGE_FD
:
1231 err
= loop_change_fd(lo
, bdev
, arg
);
1234 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1235 err
= loop_clr_fd(lo
, bdev
);
1239 case LOOP_SET_STATUS
:
1240 err
= loop_set_status_old(lo
, (struct loop_info __user
*) arg
);
1242 case LOOP_GET_STATUS
:
1243 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1245 case LOOP_SET_STATUS64
:
1246 err
= loop_set_status64(lo
, (struct loop_info64 __user
*) arg
);
1248 case LOOP_GET_STATUS64
:
1249 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1251 case LOOP_SET_CAPACITY
:
1253 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1254 err
= loop_set_capacity(lo
, bdev
);
1257 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1259 mutex_unlock(&lo
->lo_ctl_mutex
);
1265 #ifdef CONFIG_COMPAT
1266 struct compat_loop_info
{
1267 compat_int_t lo_number
; /* ioctl r/o */
1268 compat_dev_t lo_device
; /* ioctl r/o */
1269 compat_ulong_t lo_inode
; /* ioctl r/o */
1270 compat_dev_t lo_rdevice
; /* ioctl r/o */
1271 compat_int_t lo_offset
;
1272 compat_int_t lo_encrypt_type
;
1273 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1274 compat_int_t lo_flags
; /* ioctl r/o */
1275 char lo_name
[LO_NAME_SIZE
];
1276 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1277 compat_ulong_t lo_init
[2];
1282 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1283 * - noinlined to reduce stack space usage in main part of driver
1286 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1287 struct loop_info64
*info64
)
1289 struct compat_loop_info info
;
1291 if (copy_from_user(&info
, arg
, sizeof(info
)))
1294 memset(info64
, 0, sizeof(*info64
));
1295 info64
->lo_number
= info
.lo_number
;
1296 info64
->lo_device
= info
.lo_device
;
1297 info64
->lo_inode
= info
.lo_inode
;
1298 info64
->lo_rdevice
= info
.lo_rdevice
;
1299 info64
->lo_offset
= info
.lo_offset
;
1300 info64
->lo_sizelimit
= 0;
1301 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1302 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1303 info64
->lo_flags
= info
.lo_flags
;
1304 info64
->lo_init
[0] = info
.lo_init
[0];
1305 info64
->lo_init
[1] = info
.lo_init
[1];
1306 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1307 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1309 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1310 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1315 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1316 * - noinlined to reduce stack space usage in main part of driver
1319 loop_info64_to_compat(const struct loop_info64
*info64
,
1320 struct compat_loop_info __user
*arg
)
1322 struct compat_loop_info info
;
1324 memset(&info
, 0, sizeof(info
));
1325 info
.lo_number
= info64
->lo_number
;
1326 info
.lo_device
= info64
->lo_device
;
1327 info
.lo_inode
= info64
->lo_inode
;
1328 info
.lo_rdevice
= info64
->lo_rdevice
;
1329 info
.lo_offset
= info64
->lo_offset
;
1330 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1331 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1332 info
.lo_flags
= info64
->lo_flags
;
1333 info
.lo_init
[0] = info64
->lo_init
[0];
1334 info
.lo_init
[1] = info64
->lo_init
[1];
1335 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1336 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1338 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1339 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1341 /* error in case values were truncated */
1342 if (info
.lo_device
!= info64
->lo_device
||
1343 info
.lo_rdevice
!= info64
->lo_rdevice
||
1344 info
.lo_inode
!= info64
->lo_inode
||
1345 info
.lo_offset
!= info64
->lo_offset
||
1346 info
.lo_init
[0] != info64
->lo_init
[0] ||
1347 info
.lo_init
[1] != info64
->lo_init
[1])
1350 if (copy_to_user(arg
, &info
, sizeof(info
)))
1356 loop_set_status_compat(struct loop_device
*lo
,
1357 const struct compat_loop_info __user
*arg
)
1359 struct loop_info64 info64
;
1362 ret
= loop_info64_from_compat(arg
, &info64
);
1365 return loop_set_status(lo
, &info64
);
1369 loop_get_status_compat(struct loop_device
*lo
,
1370 struct compat_loop_info __user
*arg
)
1372 struct loop_info64 info64
;
1378 err
= loop_get_status(lo
, &info64
);
1380 err
= loop_info64_to_compat(&info64
, arg
);
1384 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1385 unsigned int cmd
, unsigned long arg
)
1387 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1391 case LOOP_SET_STATUS
:
1392 mutex_lock(&lo
->lo_ctl_mutex
);
1393 err
= loop_set_status_compat(
1394 lo
, (const struct compat_loop_info __user
*) arg
);
1395 mutex_unlock(&lo
->lo_ctl_mutex
);
1397 case LOOP_GET_STATUS
:
1398 mutex_lock(&lo
->lo_ctl_mutex
);
1399 err
= loop_get_status_compat(
1400 lo
, (struct compat_loop_info __user
*) arg
);
1401 mutex_unlock(&lo
->lo_ctl_mutex
);
1403 case LOOP_SET_CAPACITY
:
1405 case LOOP_GET_STATUS64
:
1406 case LOOP_SET_STATUS64
:
1407 arg
= (unsigned long) compat_ptr(arg
);
1409 case LOOP_CHANGE_FD
:
1410 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1420 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1422 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1424 mutex_lock(&lo
->lo_ctl_mutex
);
1426 mutex_unlock(&lo
->lo_ctl_mutex
);
1431 static int lo_release(struct gendisk
*disk
, fmode_t mode
)
1433 struct loop_device
*lo
= disk
->private_data
;
1436 mutex_lock(&lo
->lo_ctl_mutex
);
1438 if (--lo
->lo_refcnt
)
1441 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1443 * In autoclear mode, stop the loop thread
1444 * and remove configuration after last close.
1446 err
= loop_clr_fd(lo
, NULL
);
1451 * Otherwise keep thread (if running) and config,
1452 * but flush possible ongoing bios in thread.
1458 mutex_unlock(&lo
->lo_ctl_mutex
);
1463 static struct block_device_operations lo_fops
= {
1464 .owner
= THIS_MODULE
,
1466 .release
= lo_release
,
1468 #ifdef CONFIG_COMPAT
1469 .compat_ioctl
= lo_compat_ioctl
,
1474 * And now the modules code and kernel interface.
1476 static int max_loop
;
1477 module_param(max_loop
, int, 0);
1478 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1479 module_param(max_part
, int, 0);
1480 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1481 MODULE_LICENSE("GPL");
1482 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1484 int loop_register_transfer(struct loop_func_table
*funcs
)
1486 unsigned int n
= funcs
->number
;
1488 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1490 xfer_funcs
[n
] = funcs
;
1494 int loop_unregister_transfer(int number
)
1496 unsigned int n
= number
;
1497 struct loop_device
*lo
;
1498 struct loop_func_table
*xfer
;
1500 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1503 xfer_funcs
[n
] = NULL
;
1505 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1506 mutex_lock(&lo
->lo_ctl_mutex
);
1508 if (lo
->lo_encryption
== xfer
)
1509 loop_release_xfer(lo
);
1511 mutex_unlock(&lo
->lo_ctl_mutex
);
1517 EXPORT_SYMBOL(loop_register_transfer
);
1518 EXPORT_SYMBOL(loop_unregister_transfer
);
1520 static struct loop_device
*loop_alloc(int i
)
1522 struct loop_device
*lo
;
1523 struct gendisk
*disk
;
1525 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1529 lo
->lo_queue
= blk_alloc_queue(GFP_KERNEL
);
1533 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
1535 goto out_free_queue
;
1537 mutex_init(&lo
->lo_ctl_mutex
);
1539 lo
->lo_thread
= NULL
;
1540 init_waitqueue_head(&lo
->lo_event
);
1541 spin_lock_init(&lo
->lo_lock
);
1542 disk
->major
= LOOP_MAJOR
;
1543 disk
->first_minor
= i
<< part_shift
;
1544 disk
->fops
= &lo_fops
;
1545 disk
->private_data
= lo
;
1546 disk
->queue
= lo
->lo_queue
;
1547 sprintf(disk
->disk_name
, "loop%d", i
);
1551 blk_cleanup_queue(lo
->lo_queue
);
1558 static void loop_free(struct loop_device
*lo
)
1560 blk_cleanup_queue(lo
->lo_queue
);
1561 put_disk(lo
->lo_disk
);
1562 list_del(&lo
->lo_list
);
1566 static struct loop_device
*loop_init_one(int i
)
1568 struct loop_device
*lo
;
1570 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1571 if (lo
->lo_number
== i
)
1577 add_disk(lo
->lo_disk
);
1578 list_add_tail(&lo
->lo_list
, &loop_devices
);
1583 static void loop_del_one(struct loop_device
*lo
)
1585 del_gendisk(lo
->lo_disk
);
1589 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1591 struct loop_device
*lo
;
1592 struct kobject
*kobj
;
1594 mutex_lock(&loop_devices_mutex
);
1595 lo
= loop_init_one(dev
& MINORMASK
);
1596 kobj
= lo
? get_disk(lo
->lo_disk
) : ERR_PTR(-ENOMEM
);
1597 mutex_unlock(&loop_devices_mutex
);
1603 static int __init
loop_init(void)
1606 unsigned long range
;
1607 struct loop_device
*lo
, *next
;
1610 * loop module now has a feature to instantiate underlying device
1611 * structure on-demand, provided that there is an access dev node.
1612 * However, this will not work well with user space tool that doesn't
1613 * know about such "feature". In order to not break any existing
1614 * tool, we do the following:
1616 * (1) if max_loop is specified, create that many upfront, and this
1617 * also becomes a hard limit.
1618 * (2) if max_loop is not specified, create 8 loop device on module
1619 * load, user can further extend loop device by create dev node
1620 * themselves and have kernel automatically instantiate actual
1626 part_shift
= fls(max_part
);
1628 if (max_loop
> 1UL << (MINORBITS
- part_shift
))
1636 range
= 1UL << (MINORBITS
- part_shift
);
1639 if (register_blkdev(LOOP_MAJOR
, "loop"))
1642 for (i
= 0; i
< nr
; i
++) {
1646 list_add_tail(&lo
->lo_list
, &loop_devices
);
1649 /* point of no return */
1651 list_for_each_entry(lo
, &loop_devices
, lo_list
)
1652 add_disk(lo
->lo_disk
);
1654 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
1655 THIS_MODULE
, loop_probe
, NULL
, NULL
);
1657 printk(KERN_INFO
"loop: module loaded\n");
1661 printk(KERN_INFO
"loop: out of memory\n");
1663 list_for_each_entry_safe(lo
, next
, &loop_devices
, lo_list
)
1666 unregister_blkdev(LOOP_MAJOR
, "loop");
1670 static void __exit
loop_exit(void)
1672 unsigned long range
;
1673 struct loop_device
*lo
, *next
;
1675 range
= max_loop
? max_loop
: 1UL << (MINORBITS
- part_shift
);
1677 list_for_each_entry_safe(lo
, next
, &loop_devices
, lo_list
)
1680 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
1681 unregister_blkdev(LOOP_MAJOR
, "loop");
1684 module_init(loop_init
);
1685 module_exit(loop_exit
);
1688 static int __init
max_loop_setup(char *str
)
1690 max_loop
= simple_strtol(str
, NULL
, 0);
1694 __setup("max_loop=", max_loop_setup
);