2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2007 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
46 * @vi: vfs inode which to test
47 * @na: ntfs attribute which is being tested with
49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50 * inode @vi for equality with the ntfs attribute @na.
52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53 * @na->name and @na->name_len are then ignored.
55 * Return 1 if the attributes match and 0 if not.
57 * NOTE: This function runs with the inode_lock spin lock held so it is not
60 int ntfs_test_inode(struct inode
*vi
, ntfs_attr
*na
)
64 if (vi
->i_ino
!= na
->mft_no
)
67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 if (likely(!NInoAttr(ni
))) {
69 /* If not looking for a normal inode this is a mismatch. */
70 if (unlikely(na
->type
!= AT_UNUSED
))
73 /* A fake inode describing an attribute. */
74 if (ni
->type
!= na
->type
)
76 if (ni
->name_len
!= na
->name_len
)
78 if (na
->name_len
&& memcmp(ni
->name
, na
->name
,
79 na
->name_len
* sizeof(ntfschar
)))
87 * ntfs_init_locked_inode - initialize an inode
88 * @vi: vfs inode to initialize
89 * @na: ntfs attribute which to initialize @vi to
91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92 * order to enable ntfs_test_inode() to do its work.
94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
96 * respectively. Although that is not strictly necessary as
97 * ntfs_read_locked_inode() will fill them in later.
99 * Return 0 on success and -errno on error.
101 * NOTE: This function runs with the inode_lock spin lock held so it is not
102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
104 static int ntfs_init_locked_inode(struct inode
*vi
, ntfs_attr
*na
)
106 ntfs_inode
*ni
= NTFS_I(vi
);
108 vi
->i_ino
= na
->mft_no
;
111 if (na
->type
== AT_INDEX_ALLOCATION
)
112 NInoSetMstProtected(ni
);
115 ni
->name_len
= na
->name_len
;
117 /* If initializing a normal inode, we are done. */
118 if (likely(na
->type
== AT_UNUSED
)) {
120 BUG_ON(na
->name_len
);
124 /* It is a fake inode. */
128 * We have I30 global constant as an optimization as it is the name
129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 * allocation but that is ok. And most attributes are unnamed anyway,
131 * thus the fraction of named attributes with name != I30 is actually
134 if (na
->name_len
&& na
->name
!= I30
) {
138 i
= na
->name_len
* sizeof(ntfschar
);
139 ni
->name
= kmalloc(i
+ sizeof(ntfschar
), GFP_ATOMIC
);
142 memcpy(ni
->name
, na
->name
, i
);
143 ni
->name
[na
->name_len
] = 0;
148 typedef int (*set_t
)(struct inode
*, void *);
149 static int ntfs_read_locked_inode(struct inode
*vi
);
150 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
);
151 static int ntfs_read_locked_index_inode(struct inode
*base_vi
,
155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156 * @sb: super block of mounted volume
157 * @mft_no: mft record number / inode number to obtain
159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160 * file or directory).
162 * If the inode is in the cache, it is just returned with an increased
163 * reference count. Otherwise, a new struct inode is allocated and initialized,
164 * and finally ntfs_read_locked_inode() is called to read in the inode and
165 * fill in the remainder of the inode structure.
167 * Return the struct inode on success. Check the return value with IS_ERR() and
168 * if true, the function failed and the error code is obtained from PTR_ERR().
170 struct inode
*ntfs_iget(struct super_block
*sb
, unsigned long mft_no
)
181 vi
= iget5_locked(sb
, mft_no
, (test_t
)ntfs_test_inode
,
182 (set_t
)ntfs_init_locked_inode
, &na
);
184 return ERR_PTR(-ENOMEM
);
188 /* If this is a freshly allocated inode, need to read it now. */
189 if (vi
->i_state
& I_NEW
) {
190 err
= ntfs_read_locked_inode(vi
);
191 unlock_new_inode(vi
);
194 * There is no point in keeping bad inodes around if the failure was
195 * due to ENOMEM. We want to be able to retry again later.
197 if (unlikely(err
== -ENOMEM
)) {
205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206 * @base_vi: vfs base inode containing the attribute
207 * @type: attribute type
208 * @name: Unicode name of the attribute (NULL if unnamed)
209 * @name_len: length of @name in Unicode characters (0 if unnamed)
211 * Obtain the (fake) struct inode corresponding to the attribute specified by
212 * @type, @name, and @name_len, which is present in the base mft record
213 * specified by the vfs inode @base_vi.
215 * If the attribute inode is in the cache, it is just returned with an
216 * increased reference count. Otherwise, a new struct inode is allocated and
217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218 * attribute and fill in the inode structure.
220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
223 * Return the struct inode of the attribute inode on success. Check the return
224 * value with IS_ERR() and if true, the function failed and the error code is
225 * obtained from PTR_ERR().
227 struct inode
*ntfs_attr_iget(struct inode
*base_vi
, ATTR_TYPE type
,
228 ntfschar
*name
, u32 name_len
)
234 /* Make sure no one calls ntfs_attr_iget() for indices. */
235 BUG_ON(type
== AT_INDEX_ALLOCATION
);
237 na
.mft_no
= base_vi
->i_ino
;
240 na
.name_len
= name_len
;
242 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
243 (set_t
)ntfs_init_locked_inode
, &na
);
245 return ERR_PTR(-ENOMEM
);
249 /* If this is a freshly allocated inode, need to read it now. */
250 if (vi
->i_state
& I_NEW
) {
251 err
= ntfs_read_locked_attr_inode(base_vi
, vi
);
252 unlock_new_inode(vi
);
255 * There is no point in keeping bad attribute inodes around. This also
256 * simplifies things in that we never need to check for bad attribute
267 * ntfs_index_iget - obtain a struct inode corresponding to an index
268 * @base_vi: vfs base inode containing the index related attributes
269 * @name: Unicode name of the index
270 * @name_len: length of @name in Unicode characters
272 * Obtain the (fake) struct inode corresponding to the index specified by @name
273 * and @name_len, which is present in the base mft record specified by the vfs
276 * If the index inode is in the cache, it is just returned with an increased
277 * reference count. Otherwise, a new struct inode is allocated and
278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
279 * the index related attributes and fill in the inode structure.
281 * Return the struct inode of the index inode on success. Check the return
282 * value with IS_ERR() and if true, the function failed and the error code is
283 * obtained from PTR_ERR().
285 struct inode
*ntfs_index_iget(struct inode
*base_vi
, ntfschar
*name
,
292 na
.mft_no
= base_vi
->i_ino
;
293 na
.type
= AT_INDEX_ALLOCATION
;
295 na
.name_len
= name_len
;
297 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
298 (set_t
)ntfs_init_locked_inode
, &na
);
300 return ERR_PTR(-ENOMEM
);
304 /* If this is a freshly allocated inode, need to read it now. */
305 if (vi
->i_state
& I_NEW
) {
306 err
= ntfs_read_locked_index_inode(base_vi
, vi
);
307 unlock_new_inode(vi
);
310 * There is no point in keeping bad index inodes around. This also
311 * simplifies things in that we never need to check for bad index
321 struct inode
*ntfs_alloc_big_inode(struct super_block
*sb
)
325 ntfs_debug("Entering.");
326 ni
= kmem_cache_alloc(ntfs_big_inode_cache
, GFP_NOFS
);
327 if (likely(ni
!= NULL
)) {
331 ntfs_error(sb
, "Allocation of NTFS big inode structure failed.");
335 void ntfs_destroy_big_inode(struct inode
*inode
)
337 ntfs_inode
*ni
= NTFS_I(inode
);
339 ntfs_debug("Entering.");
341 if (!atomic_dec_and_test(&ni
->count
))
343 kmem_cache_free(ntfs_big_inode_cache
, NTFS_I(inode
));
346 static inline ntfs_inode
*ntfs_alloc_extent_inode(void)
350 ntfs_debug("Entering.");
351 ni
= kmem_cache_alloc(ntfs_inode_cache
, GFP_NOFS
);
352 if (likely(ni
!= NULL
)) {
356 ntfs_error(NULL
, "Allocation of NTFS inode structure failed.");
360 static void ntfs_destroy_extent_inode(ntfs_inode
*ni
)
362 ntfs_debug("Entering.");
364 if (!atomic_dec_and_test(&ni
->count
))
366 kmem_cache_free(ntfs_inode_cache
, ni
);
370 * The attribute runlist lock has separate locking rules from the
371 * normal runlist lock, so split the two lock-classes:
373 static struct lock_class_key attr_list_rl_lock_class
;
376 * __ntfs_init_inode - initialize ntfs specific part of an inode
377 * @sb: super block of mounted volume
378 * @ni: freshly allocated ntfs inode which to initialize
380 * Initialize an ntfs inode to defaults.
382 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
383 * untouched. Make sure to initialize them elsewhere.
385 * Return zero on success and -ENOMEM on error.
387 void __ntfs_init_inode(struct super_block
*sb
, ntfs_inode
*ni
)
389 ntfs_debug("Entering.");
390 rwlock_init(&ni
->size_lock
);
391 ni
->initialized_size
= ni
->allocated_size
= 0;
393 atomic_set(&ni
->count
, 1);
394 ni
->vol
= NTFS_SB(sb
);
395 ntfs_init_runlist(&ni
->runlist
);
396 mutex_init(&ni
->mrec_lock
);
399 ni
->attr_list_size
= 0;
400 ni
->attr_list
= NULL
;
401 ntfs_init_runlist(&ni
->attr_list_rl
);
402 lockdep_set_class(&ni
->attr_list_rl
.lock
,
403 &attr_list_rl_lock_class
);
404 ni
->itype
.index
.block_size
= 0;
405 ni
->itype
.index
.vcn_size
= 0;
406 ni
->itype
.index
.collation_rule
= 0;
407 ni
->itype
.index
.block_size_bits
= 0;
408 ni
->itype
.index
.vcn_size_bits
= 0;
409 mutex_init(&ni
->extent_lock
);
411 ni
->ext
.base_ntfs_ino
= NULL
;
415 * Extent inodes get MFT-mapped in a nested way, while the base inode
416 * is still mapped. Teach this nesting to the lock validator by creating
417 * a separate class for nested inode's mrec_lock's:
419 static struct lock_class_key extent_inode_mrec_lock_key
;
421 inline ntfs_inode
*ntfs_new_extent_inode(struct super_block
*sb
,
422 unsigned long mft_no
)
424 ntfs_inode
*ni
= ntfs_alloc_extent_inode();
426 ntfs_debug("Entering.");
427 if (likely(ni
!= NULL
)) {
428 __ntfs_init_inode(sb
, ni
);
429 lockdep_set_class(&ni
->mrec_lock
, &extent_inode_mrec_lock_key
);
431 ni
->type
= AT_UNUSED
;
439 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
440 * @ctx: initialized attribute search context
442 * Search all file name attributes in the inode described by the attribute
443 * search context @ctx and check if any of the names are in the $Extend system
447 * 1: file is in $Extend directory
448 * 0: file is not in $Extend directory
449 * -errno: failed to determine if the file is in the $Extend directory
451 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx
*ctx
)
455 /* Restart search. */
456 ntfs_attr_reinit_search_ctx(ctx
);
458 /* Get number of hard links. */
459 nr_links
= le16_to_cpu(ctx
->mrec
->link_count
);
461 /* Loop through all hard links. */
462 while (!(err
= ntfs_attr_lookup(AT_FILE_NAME
, NULL
, 0, 0, 0, NULL
, 0,
464 FILE_NAME_ATTR
*file_name_attr
;
465 ATTR_RECORD
*attr
= ctx
->attr
;
470 * Maximum sanity checking as we are called on an inode that
471 * we suspect might be corrupt.
473 p
= (u8
*)attr
+ le32_to_cpu(attr
->length
);
474 if (p
< (u8
*)ctx
->mrec
|| (u8
*)p
> (u8
*)ctx
->mrec
+
475 le32_to_cpu(ctx
->mrec
->bytes_in_use
)) {
477 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Corrupt file name "
478 "attribute. You should run chkdsk.");
481 if (attr
->non_resident
) {
482 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Non-resident file "
483 "name. You should run chkdsk.");
487 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "File name with "
488 "invalid flags. You should run "
492 if (!(attr
->data
.resident
.flags
& RESIDENT_ATTR_IS_INDEXED
)) {
493 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Unindexed file "
494 "name. You should run chkdsk.");
497 file_name_attr
= (FILE_NAME_ATTR
*)((u8
*)attr
+
498 le16_to_cpu(attr
->data
.resident
.value_offset
));
499 p2
= (u8
*)attr
+ le32_to_cpu(attr
->data
.resident
.value_length
);
500 if (p2
< (u8
*)attr
|| p2
> p
)
501 goto err_corrupt_attr
;
502 /* This attribute is ok, but is it in the $Extend directory? */
503 if (MREF_LE(file_name_attr
->parent_directory
) == FILE_Extend
)
504 return 1; /* YES, it's an extended system file. */
506 if (unlikely(err
!= -ENOENT
))
508 if (unlikely(nr_links
)) {
509 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Inode hard link count "
510 "doesn't match number of name attributes. You "
511 "should run chkdsk.");
514 return 0; /* NO, it is not an extended system file. */
518 * ntfs_read_locked_inode - read an inode from its device
521 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
522 * described by @vi into memory from the device.
524 * The only fields in @vi that we need to/can look at when the function is
525 * called are i_sb, pointing to the mounted device's super block, and i_ino,
526 * the number of the inode to load.
528 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
529 * for reading and sets up the necessary @vi fields as well as initializing
532 * Q: What locks are held when the function is called?
533 * A: i_state has I_NEW set, hence the inode is locked, also
534 * i_count is set to 1, so it is not going to go away
535 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
536 * is allowed to write to them. We should of course be honouring them but
537 * we need to do that using the IS_* macros defined in include/linux/fs.h.
538 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
540 * Return 0 on success and -errno on error. In the error case, the inode will
541 * have had make_bad_inode() executed on it.
543 static int ntfs_read_locked_inode(struct inode
*vi
)
545 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
550 STANDARD_INFORMATION
*si
;
551 ntfs_attr_search_ctx
*ctx
;
554 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
556 /* Setup the generic vfs inode parts now. */
559 * This is for checking whether an inode has changed w.r.t. a file so
560 * that the file can be updated if necessary (compare with f_version).
564 vi
->i_uid
= vol
->uid
;
565 vi
->i_gid
= vol
->gid
;
569 * Initialize the ntfs specific part of @vi special casing
570 * FILE_MFT which we need to do at mount time.
572 if (vi
->i_ino
!= FILE_MFT
)
573 ntfs_init_big_inode(vi
);
576 m
= map_mft_record(ni
);
581 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
587 if (!(m
->flags
& MFT_RECORD_IN_USE
)) {
588 ntfs_error(vi
->i_sb
, "Inode is not in use!");
591 if (m
->base_mft_record
) {
592 ntfs_error(vi
->i_sb
, "Inode is an extent inode!");
596 /* Transfer information from mft record into vfs and ntfs inodes. */
597 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
600 * FIXME: Keep in mind that link_count is two for files which have both
601 * a long file name and a short file name as separate entries, so if
602 * we are hiding short file names this will be too high. Either we need
603 * to account for the short file names by subtracting them or we need
604 * to make sure we delete files even though i_nlink is not zero which
605 * might be tricky due to vfs interactions. Need to think about this
606 * some more when implementing the unlink command.
608 vi
->i_nlink
= le16_to_cpu(m
->link_count
);
610 * FIXME: Reparse points can have the directory bit set even though
611 * they would be S_IFLNK. Need to deal with this further below when we
612 * implement reparse points / symbolic links but it will do for now.
613 * Also if not a directory, it could be something else, rather than
614 * a regular file. But again, will do for now.
616 /* Everyone gets all permissions. */
617 vi
->i_mode
|= S_IRWXUGO
;
618 /* If read-only, noone gets write permissions. */
620 vi
->i_mode
&= ~S_IWUGO
;
621 if (m
->flags
& MFT_RECORD_IS_DIRECTORY
) {
622 vi
->i_mode
|= S_IFDIR
;
624 * Apply the directory permissions mask set in the mount
627 vi
->i_mode
&= ~vol
->dmask
;
628 /* Things break without this kludge! */
632 vi
->i_mode
|= S_IFREG
;
633 /* Apply the file permissions mask set in the mount options. */
634 vi
->i_mode
&= ~vol
->fmask
;
637 * Find the standard information attribute in the mft record. At this
638 * stage we haven't setup the attribute list stuff yet, so this could
639 * in fact fail if the standard information is in an extent record, but
640 * I don't think this actually ever happens.
642 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
645 if (err
== -ENOENT
) {
647 * TODO: We should be performing a hot fix here (if the
648 * recover mount option is set) by creating a new
651 ntfs_error(vi
->i_sb
, "$STANDARD_INFORMATION attribute "
657 /* Get the standard information attribute value. */
658 si
= (STANDARD_INFORMATION
*)((u8
*)a
+
659 le16_to_cpu(a
->data
.resident
.value_offset
));
661 /* Transfer information from the standard information into vi. */
663 * Note: The i_?times do not quite map perfectly onto the NTFS times,
664 * but they are close enough, and in the end it doesn't really matter
668 * mtime is the last change of the data within the file. Not changed
669 * when only metadata is changed, e.g. a rename doesn't affect mtime.
671 vi
->i_mtime
= ntfs2utc(si
->last_data_change_time
);
673 * ctime is the last change of the metadata of the file. This obviously
674 * always changes, when mtime is changed. ctime can be changed on its
675 * own, mtime is then not changed, e.g. when a file is renamed.
677 vi
->i_ctime
= ntfs2utc(si
->last_mft_change_time
);
679 * Last access to the data within the file. Not changed during a rename
680 * for example but changed whenever the file is written to.
682 vi
->i_atime
= ntfs2utc(si
->last_access_time
);
684 /* Find the attribute list attribute if present. */
685 ntfs_attr_reinit_search_ctx(ctx
);
686 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
688 if (unlikely(err
!= -ENOENT
)) {
689 ntfs_error(vi
->i_sb
, "Failed to lookup attribute list "
693 } else /* if (!err) */ {
694 if (vi
->i_ino
== FILE_MFT
)
695 goto skip_attr_list_load
;
696 ntfs_debug("Attribute list found in inode 0x%lx.", vi
->i_ino
);
699 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
700 ntfs_error(vi
->i_sb
, "Attribute list attribute is "
704 if (a
->flags
& ATTR_IS_ENCRYPTED
||
705 a
->flags
& ATTR_IS_SPARSE
) {
706 if (a
->non_resident
) {
707 ntfs_error(vi
->i_sb
, "Non-resident attribute "
708 "list attribute is encrypted/"
712 ntfs_warning(vi
->i_sb
, "Resident attribute list "
713 "attribute in inode 0x%lx is marked "
714 "encrypted/sparse which is not true. "
715 "However, Windows allows this and "
716 "chkdsk does not detect or correct it "
717 "so we will just ignore the invalid "
718 "flags and pretend they are not set.",
721 /* Now allocate memory for the attribute list. */
722 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
723 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
724 if (!ni
->attr_list
) {
725 ntfs_error(vi
->i_sb
, "Not enough memory to allocate "
726 "buffer for attribute list.");
730 if (a
->non_resident
) {
731 NInoSetAttrListNonResident(ni
);
732 if (a
->data
.non_resident
.lowest_vcn
) {
733 ntfs_error(vi
->i_sb
, "Attribute list has non "
738 * Setup the runlist. No need for locking as we have
739 * exclusive access to the inode at this time.
741 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
743 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
744 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
745 ni
->attr_list_rl
.rl
= NULL
;
746 ntfs_error(vi
->i_sb
, "Mapping pairs "
747 "decompression failed.");
750 /* Now load the attribute list. */
751 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
752 ni
->attr_list
, ni
->attr_list_size
,
753 sle64_to_cpu(a
->data
.non_resident
.
754 initialized_size
)))) {
755 ntfs_error(vi
->i_sb
, "Failed to load "
756 "attribute list attribute.");
759 } else /* if (!a->non_resident) */ {
760 if ((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
)
762 a
->data
.resident
.value_length
) >
763 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
764 ntfs_error(vi
->i_sb
, "Corrupt attribute list "
768 /* Now copy the attribute list. */
769 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
770 a
->data
.resident
.value_offset
),
772 a
->data
.resident
.value_length
));
777 * If an attribute list is present we now have the attribute list value
778 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
780 if (S_ISDIR(vi
->i_mode
)) {
784 u8
*ir_end
, *index_end
;
786 /* It is a directory, find index root attribute. */
787 ntfs_attr_reinit_search_ctx(ctx
);
788 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, I30
, 4, CASE_SENSITIVE
,
791 if (err
== -ENOENT
) {
792 // FIXME: File is corrupt! Hot-fix with empty
793 // index root attribute if recovery option is
795 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute "
801 /* Set up the state. */
802 if (unlikely(a
->non_resident
)) {
803 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not "
807 /* Ensure the attribute name is placed before the value. */
808 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
809 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
810 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is "
811 "placed after the attribute value.");
815 * Compressed/encrypted index root just means that the newly
816 * created files in that directory should be created compressed/
817 * encrypted. However index root cannot be both compressed and
820 if (a
->flags
& ATTR_COMPRESSION_MASK
)
821 NInoSetCompressed(ni
);
822 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
823 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
824 ntfs_error(vi
->i_sb
, "Found encrypted and "
825 "compressed attribute.");
828 NInoSetEncrypted(ni
);
830 if (a
->flags
& ATTR_IS_SPARSE
)
832 ir
= (INDEX_ROOT
*)((u8
*)a
+
833 le16_to_cpu(a
->data
.resident
.value_offset
));
834 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
835 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
836 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
840 index_end
= (u8
*)&ir
->index
+
841 le32_to_cpu(ir
->index
.index_length
);
842 if (index_end
> ir_end
) {
843 ntfs_error(vi
->i_sb
, "Directory index is corrupt.");
846 if (ir
->type
!= AT_FILE_NAME
) {
847 ntfs_error(vi
->i_sb
, "Indexed attribute is not "
851 if (ir
->collation_rule
!= COLLATION_FILE_NAME
) {
852 ntfs_error(vi
->i_sb
, "Index collation rule is not "
853 "COLLATION_FILE_NAME.");
856 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
857 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
858 if (ni
->itype
.index
.block_size
&
859 (ni
->itype
.index
.block_size
- 1)) {
860 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a "
862 ni
->itype
.index
.block_size
);
865 if (ni
->itype
.index
.block_size
> PAGE_CACHE_SIZE
) {
866 ntfs_error(vi
->i_sb
, "Index block size (%u) > "
867 "PAGE_CACHE_SIZE (%ld) is not "
869 ni
->itype
.index
.block_size
,
874 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
875 ntfs_error(vi
->i_sb
, "Index block size (%u) < "
876 "NTFS_BLOCK_SIZE (%i) is not "
878 ni
->itype
.index
.block_size
,
883 ni
->itype
.index
.block_size_bits
=
884 ffs(ni
->itype
.index
.block_size
) - 1;
885 /* Determine the size of a vcn in the directory index. */
886 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
887 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
888 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
890 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
891 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
894 /* Setup the index allocation attribute, even if not present. */
895 NInoSetMstProtected(ni
);
896 ni
->type
= AT_INDEX_ALLOCATION
;
900 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
901 /* No index allocation. */
902 vi
->i_size
= ni
->initialized_size
=
903 ni
->allocated_size
= 0;
904 /* We are done with the mft record, so we release it. */
905 ntfs_attr_put_search_ctx(ctx
);
906 unmap_mft_record(ni
);
909 goto skip_large_dir_stuff
;
910 } /* LARGE_INDEX: Index allocation present. Setup state. */
911 NInoSetIndexAllocPresent(ni
);
912 /* Find index allocation attribute. */
913 ntfs_attr_reinit_search_ctx(ctx
);
914 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, I30
, 4,
915 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
918 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION "
919 "attribute is not present but "
920 "$INDEX_ROOT indicated it is.");
922 ntfs_error(vi
->i_sb
, "Failed to lookup "
928 if (!a
->non_resident
) {
929 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
934 * Ensure the attribute name is placed before the mapping pairs
937 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
939 a
->data
.non_resident
.mapping_pairs_offset
)))) {
940 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name "
941 "is placed after the mapping pairs "
945 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
946 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
950 if (a
->flags
& ATTR_IS_SPARSE
) {
951 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
955 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
956 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
960 if (a
->data
.non_resident
.lowest_vcn
) {
961 ntfs_error(vi
->i_sb
, "First extent of "
962 "$INDEX_ALLOCATION attribute has non "
966 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
967 ni
->initialized_size
= sle64_to_cpu(
968 a
->data
.non_resident
.initialized_size
);
969 ni
->allocated_size
= sle64_to_cpu(
970 a
->data
.non_resident
.allocated_size
);
972 * We are done with the mft record, so we release it. Otherwise
973 * we would deadlock in ntfs_attr_iget().
975 ntfs_attr_put_search_ctx(ctx
);
976 unmap_mft_record(ni
);
979 /* Get the index bitmap attribute inode. */
980 bvi
= ntfs_attr_iget(vi
, AT_BITMAP
, I30
, 4);
982 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
987 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
989 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed "
990 "and/or encrypted and/or sparse.");
991 goto iput_unm_err_out
;
993 /* Consistency check bitmap size vs. index allocation size. */
994 bvi_size
= i_size_read(bvi
);
995 if ((bvi_size
<< 3) < (vi
->i_size
>>
996 ni
->itype
.index
.block_size_bits
)) {
997 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) "
998 "for index allocation (0x%llx).",
999 bvi_size
<< 3, vi
->i_size
);
1000 goto iput_unm_err_out
;
1002 /* No longer need the bitmap attribute inode. */
1004 skip_large_dir_stuff
:
1005 /* Setup the operations for this inode. */
1006 vi
->i_op
= &ntfs_dir_inode_ops
;
1007 vi
->i_fop
= &ntfs_dir_ops
;
1010 ntfs_attr_reinit_search_ctx(ctx
);
1012 /* Setup the data attribute, even if not present. */
1017 /* Find first extent of the unnamed data attribute. */
1018 err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
1019 if (unlikely(err
)) {
1020 vi
->i_size
= ni
->initialized_size
=
1021 ni
->allocated_size
= 0;
1022 if (err
!= -ENOENT
) {
1023 ntfs_error(vi
->i_sb
, "Failed to lookup $DATA "
1028 * FILE_Secure does not have an unnamed $DATA
1029 * attribute, so we special case it here.
1031 if (vi
->i_ino
== FILE_Secure
)
1032 goto no_data_attr_special_case
;
1034 * Most if not all the system files in the $Extend
1035 * system directory do not have unnamed data
1036 * attributes so we need to check if the parent
1037 * directory of the file is FILE_Extend and if it is
1038 * ignore this error. To do this we need to get the
1039 * name of this inode from the mft record as the name
1040 * contains the back reference to the parent directory.
1042 if (ntfs_is_extended_system_file(ctx
) > 0)
1043 goto no_data_attr_special_case
;
1044 // FIXME: File is corrupt! Hot-fix with empty data
1045 // attribute if recovery option is set.
1046 ntfs_error(vi
->i_sb
, "$DATA attribute is missing.");
1050 /* Setup the state. */
1051 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1052 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1053 NInoSetCompressed(ni
);
1054 if (vol
->cluster_size
> 4096) {
1055 ntfs_error(vi
->i_sb
, "Found "
1056 "compressed data but "
1059 "cluster size (%i) > "
1064 if ((a
->flags
& ATTR_COMPRESSION_MASK
)
1065 != ATTR_IS_COMPRESSED
) {
1066 ntfs_error(vi
->i_sb
, "Found unknown "
1067 "compression method "
1068 "or corrupt file.");
1072 if (a
->flags
& ATTR_IS_SPARSE
)
1075 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1076 if (NInoCompressed(ni
)) {
1077 ntfs_error(vi
->i_sb
, "Found encrypted and "
1078 "compressed data.");
1081 NInoSetEncrypted(ni
);
1083 if (a
->non_resident
) {
1084 NInoSetNonResident(ni
);
1085 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1086 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1087 compression_unit
!= 4) {
1088 ntfs_error(vi
->i_sb
, "Found "
1090 "compression unit (%u "
1092 "Cannot handle this.",
1093 a
->data
.non_resident
.
1098 if (a
->data
.non_resident
.compression_unit
) {
1099 ni
->itype
.compressed
.block_size
= 1U <<
1100 (a
->data
.non_resident
.
1102 vol
->cluster_size_bits
);
1103 ni
->itype
.compressed
.block_size_bits
=
1107 ni
->itype
.compressed
.block_clusters
=
1112 ni
->itype
.compressed
.block_size
= 0;
1113 ni
->itype
.compressed
.block_size_bits
=
1115 ni
->itype
.compressed
.block_clusters
=
1118 ni
->itype
.compressed
.size
= sle64_to_cpu(
1119 a
->data
.non_resident
.
1122 if (a
->data
.non_resident
.lowest_vcn
) {
1123 ntfs_error(vi
->i_sb
, "First extent of $DATA "
1124 "attribute has non zero "
1128 vi
->i_size
= sle64_to_cpu(
1129 a
->data
.non_resident
.data_size
);
1130 ni
->initialized_size
= sle64_to_cpu(
1131 a
->data
.non_resident
.initialized_size
);
1132 ni
->allocated_size
= sle64_to_cpu(
1133 a
->data
.non_resident
.allocated_size
);
1134 } else { /* Resident attribute. */
1135 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1136 a
->data
.resident
.value_length
);
1137 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1139 a
->data
.resident
.value_offset
);
1140 if (vi
->i_size
> ni
->allocated_size
) {
1141 ntfs_error(vi
->i_sb
, "Resident data attribute "
1142 "is corrupt (size exceeds "
1147 no_data_attr_special_case
:
1148 /* We are done with the mft record, so we release it. */
1149 ntfs_attr_put_search_ctx(ctx
);
1150 unmap_mft_record(ni
);
1153 /* Setup the operations for this inode. */
1154 vi
->i_op
= &ntfs_file_inode_ops
;
1155 vi
->i_fop
= &ntfs_file_ops
;
1157 if (NInoMstProtected(ni
))
1158 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1160 vi
->i_mapping
->a_ops
= &ntfs_aops
;
1162 * The number of 512-byte blocks used on disk (for stat). This is in so
1163 * far inaccurate as it doesn't account for any named streams or other
1164 * special non-resident attributes, but that is how Windows works, too,
1165 * so we are at least consistent with Windows, if not entirely
1166 * consistent with the Linux Way. Doing it the Linux Way would cause a
1167 * significant slowdown as it would involve iterating over all
1168 * attributes in the mft record and adding the allocated/compressed
1169 * sizes of all non-resident attributes present to give us the Linux
1170 * correct size that should go into i_blocks (after division by 512).
1172 if (S_ISREG(vi
->i_mode
) && (NInoCompressed(ni
) || NInoSparse(ni
)))
1173 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1175 vi
->i_blocks
= ni
->allocated_size
>> 9;
1176 ntfs_debug("Done.");
1184 ntfs_attr_put_search_ctx(ctx
);
1186 unmap_mft_record(ni
);
1188 ntfs_error(vol
->sb
, "Failed with error code %i. Marking corrupt "
1189 "inode 0x%lx as bad. Run chkdsk.", err
, vi
->i_ino
);
1191 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1197 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1198 * @base_vi: base inode
1199 * @vi: attribute inode to read
1201 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1202 * attribute inode described by @vi into memory from the base mft record
1203 * described by @base_ni.
1205 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1206 * reading and looks up the attribute described by @vi before setting up the
1207 * necessary fields in @vi as well as initializing the ntfs inode.
1209 * Q: What locks are held when the function is called?
1210 * A: i_state has I_NEW set, hence the inode is locked, also
1211 * i_count is set to 1, so it is not going to go away
1213 * Return 0 on success and -errno on error. In the error case, the inode will
1214 * have had make_bad_inode() executed on it.
1216 * Note this cannot be called for AT_INDEX_ALLOCATION.
1218 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
)
1220 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1221 ntfs_inode
*ni
, *base_ni
;
1224 ntfs_attr_search_ctx
*ctx
;
1227 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1229 ntfs_init_big_inode(vi
);
1232 base_ni
= NTFS_I(base_vi
);
1234 /* Just mirror the values from the base inode. */
1235 vi
->i_version
= base_vi
->i_version
;
1236 vi
->i_uid
= base_vi
->i_uid
;
1237 vi
->i_gid
= base_vi
->i_gid
;
1238 vi
->i_nlink
= base_vi
->i_nlink
;
1239 vi
->i_mtime
= base_vi
->i_mtime
;
1240 vi
->i_ctime
= base_vi
->i_ctime
;
1241 vi
->i_atime
= base_vi
->i_atime
;
1242 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1244 /* Set inode type to zero but preserve permissions. */
1245 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1247 m
= map_mft_record(base_ni
);
1252 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1257 /* Find the attribute. */
1258 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1259 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1263 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1264 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1265 NInoSetCompressed(ni
);
1266 if ((ni
->type
!= AT_DATA
) || (ni
->type
== AT_DATA
&&
1268 ntfs_error(vi
->i_sb
, "Found compressed "
1269 "non-data or named data "
1270 "attribute. Please report "
1271 "you saw this message to "
1272 "linux-ntfs-dev@lists."
1276 if (vol
->cluster_size
> 4096) {
1277 ntfs_error(vi
->i_sb
, "Found compressed "
1278 "attribute but compression is "
1279 "disabled due to cluster size "
1284 if ((a
->flags
& ATTR_COMPRESSION_MASK
) !=
1285 ATTR_IS_COMPRESSED
) {
1286 ntfs_error(vi
->i_sb
, "Found unknown "
1287 "compression method.");
1292 * The compressed/sparse flag set in an index root just means
1293 * to compress all files.
1295 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1296 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1297 "but the attribute is %s. Please "
1298 "report you saw this message to "
1299 "linux-ntfs-dev@lists.sourceforge.net",
1300 NInoCompressed(ni
) ? "compressed" :
1304 if (a
->flags
& ATTR_IS_SPARSE
)
1307 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1308 if (NInoCompressed(ni
)) {
1309 ntfs_error(vi
->i_sb
, "Found encrypted and compressed "
1314 * The encryption flag set in an index root just means to
1315 * encrypt all files.
1317 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1318 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1319 "but the attribute is encrypted. "
1320 "Please report you saw this message "
1321 "to linux-ntfs-dev@lists.sourceforge."
1325 if (ni
->type
!= AT_DATA
) {
1326 ntfs_error(vi
->i_sb
, "Found encrypted non-data "
1330 NInoSetEncrypted(ni
);
1332 if (!a
->non_resident
) {
1333 /* Ensure the attribute name is placed before the value. */
1334 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1335 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1336 ntfs_error(vol
->sb
, "Attribute name is placed after "
1337 "the attribute value.");
1340 if (NInoMstProtected(ni
)) {
1341 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1342 "but the attribute is resident. "
1343 "Please report you saw this message to "
1344 "linux-ntfs-dev@lists.sourceforge.net");
1347 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1348 a
->data
.resident
.value_length
);
1349 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1350 le16_to_cpu(a
->data
.resident
.value_offset
);
1351 if (vi
->i_size
> ni
->allocated_size
) {
1352 ntfs_error(vi
->i_sb
, "Resident attribute is corrupt "
1353 "(size exceeds allocation).");
1357 NInoSetNonResident(ni
);
1359 * Ensure the attribute name is placed before the mapping pairs
1362 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1364 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1365 ntfs_error(vol
->sb
, "Attribute name is placed after "
1366 "the mapping pairs array.");
1369 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1370 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1371 compression_unit
!= 4) {
1372 ntfs_error(vi
->i_sb
, "Found non-standard "
1373 "compression unit (%u instead "
1374 "of 4). Cannot handle this.",
1375 a
->data
.non_resident
.
1380 if (a
->data
.non_resident
.compression_unit
) {
1381 ni
->itype
.compressed
.block_size
= 1U <<
1382 (a
->data
.non_resident
.
1384 vol
->cluster_size_bits
);
1385 ni
->itype
.compressed
.block_size_bits
=
1386 ffs(ni
->itype
.compressed
.
1388 ni
->itype
.compressed
.block_clusters
= 1U <<
1389 a
->data
.non_resident
.
1392 ni
->itype
.compressed
.block_size
= 0;
1393 ni
->itype
.compressed
.block_size_bits
= 0;
1394 ni
->itype
.compressed
.block_clusters
= 0;
1396 ni
->itype
.compressed
.size
= sle64_to_cpu(
1397 a
->data
.non_resident
.compressed_size
);
1399 if (a
->data
.non_resident
.lowest_vcn
) {
1400 ntfs_error(vi
->i_sb
, "First extent of attribute has "
1401 "non-zero lowest_vcn.");
1404 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1405 ni
->initialized_size
= sle64_to_cpu(
1406 a
->data
.non_resident
.initialized_size
);
1407 ni
->allocated_size
= sle64_to_cpu(
1408 a
->data
.non_resident
.allocated_size
);
1410 if (NInoMstProtected(ni
))
1411 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1413 vi
->i_mapping
->a_ops
= &ntfs_aops
;
1414 if ((NInoCompressed(ni
) || NInoSparse(ni
)) && ni
->type
!= AT_INDEX_ROOT
)
1415 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1417 vi
->i_blocks
= ni
->allocated_size
>> 9;
1419 * Make sure the base inode does not go away and attach it to the
1423 ni
->ext
.base_ntfs_ino
= base_ni
;
1424 ni
->nr_extents
= -1;
1426 ntfs_attr_put_search_ctx(ctx
);
1427 unmap_mft_record(base_ni
);
1429 ntfs_debug("Done.");
1436 ntfs_attr_put_search_ctx(ctx
);
1437 unmap_mft_record(base_ni
);
1439 ntfs_error(vol
->sb
, "Failed with error code %i while reading attribute "
1440 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1441 "Marking corrupt inode and base inode 0x%lx as bad. "
1442 "Run chkdsk.", err
, vi
->i_ino
, ni
->type
, ni
->name_len
,
1451 * ntfs_read_locked_index_inode - read an index inode from its base inode
1452 * @base_vi: base inode
1453 * @vi: index inode to read
1455 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1456 * index inode described by @vi into memory from the base mft record described
1459 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1460 * reading and looks up the attributes relating to the index described by @vi
1461 * before setting up the necessary fields in @vi as well as initializing the
1464 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1465 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1466 * are setup like directory inodes since directories are a special case of
1467 * indices ao they need to be treated in much the same way. Most importantly,
1468 * for small indices the index allocation attribute might not actually exist.
1469 * However, the index root attribute always exists but this does not need to
1470 * have an inode associated with it and this is why we define a new inode type
1471 * index. Also, like for directories, we need to have an attribute inode for
1472 * the bitmap attribute corresponding to the index allocation attribute and we
1473 * can store this in the appropriate field of the inode, just like we do for
1474 * normal directory inodes.
1476 * Q: What locks are held when the function is called?
1477 * A: i_state has I_NEW set, hence the inode is locked, also
1478 * i_count is set to 1, so it is not going to go away
1480 * Return 0 on success and -errno on error. In the error case, the inode will
1481 * have had make_bad_inode() executed on it.
1483 static int ntfs_read_locked_index_inode(struct inode
*base_vi
, struct inode
*vi
)
1486 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1487 ntfs_inode
*ni
, *base_ni
, *bni
;
1491 ntfs_attr_search_ctx
*ctx
;
1493 u8
*ir_end
, *index_end
;
1496 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1497 ntfs_init_big_inode(vi
);
1499 base_ni
= NTFS_I(base_vi
);
1500 /* Just mirror the values from the base inode. */
1501 vi
->i_version
= base_vi
->i_version
;
1502 vi
->i_uid
= base_vi
->i_uid
;
1503 vi
->i_gid
= base_vi
->i_gid
;
1504 vi
->i_nlink
= base_vi
->i_nlink
;
1505 vi
->i_mtime
= base_vi
->i_mtime
;
1506 vi
->i_ctime
= base_vi
->i_ctime
;
1507 vi
->i_atime
= base_vi
->i_atime
;
1508 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1509 /* Set inode type to zero but preserve permissions. */
1510 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1511 /* Map the mft record for the base inode. */
1512 m
= map_mft_record(base_ni
);
1517 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1522 /* Find the index root attribute. */
1523 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, ni
->name
, ni
->name_len
,
1524 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1525 if (unlikely(err
)) {
1527 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
1532 /* Set up the state. */
1533 if (unlikely(a
->non_resident
)) {
1534 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not resident.");
1537 /* Ensure the attribute name is placed before the value. */
1538 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1539 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1540 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is placed "
1541 "after the attribute value.");
1545 * Compressed/encrypted/sparse index root is not allowed, except for
1546 * directories of course but those are not dealt with here.
1548 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_ENCRYPTED
|
1550 ntfs_error(vi
->i_sb
, "Found compressed/encrypted/sparse index "
1554 ir
= (INDEX_ROOT
*)((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
));
1555 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
1556 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1557 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is corrupt.");
1560 index_end
= (u8
*)&ir
->index
+ le32_to_cpu(ir
->index
.index_length
);
1561 if (index_end
> ir_end
) {
1562 ntfs_error(vi
->i_sb
, "Index is corrupt.");
1566 ntfs_error(vi
->i_sb
, "Index type is not 0 (type is 0x%x).",
1567 le32_to_cpu(ir
->type
));
1570 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
1571 ntfs_debug("Index collation rule is 0x%x.",
1572 le32_to_cpu(ir
->collation_rule
));
1573 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
1574 if (!is_power_of_2(ni
->itype
.index
.block_size
)) {
1575 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a power of "
1576 "two.", ni
->itype
.index
.block_size
);
1579 if (ni
->itype
.index
.block_size
> PAGE_CACHE_SIZE
) {
1580 ntfs_error(vi
->i_sb
, "Index block size (%u) > PAGE_CACHE_SIZE "
1581 "(%ld) is not supported. Sorry.",
1582 ni
->itype
.index
.block_size
, PAGE_CACHE_SIZE
);
1586 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
1587 ntfs_error(vi
->i_sb
, "Index block size (%u) < NTFS_BLOCK_SIZE "
1588 "(%i) is not supported. Sorry.",
1589 ni
->itype
.index
.block_size
, NTFS_BLOCK_SIZE
);
1593 ni
->itype
.index
.block_size_bits
= ffs(ni
->itype
.index
.block_size
) - 1;
1594 /* Determine the size of a vcn in the index. */
1595 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
1596 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
1597 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
1599 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
1600 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
1602 /* Check for presence of index allocation attribute. */
1603 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
1604 /* No index allocation. */
1605 vi
->i_size
= ni
->initialized_size
= ni
->allocated_size
= 0;
1606 /* We are done with the mft record, so we release it. */
1607 ntfs_attr_put_search_ctx(ctx
);
1608 unmap_mft_record(base_ni
);
1611 goto skip_large_index_stuff
;
1612 } /* LARGE_INDEX: Index allocation present. Setup state. */
1613 NInoSetIndexAllocPresent(ni
);
1614 /* Find index allocation attribute. */
1615 ntfs_attr_reinit_search_ctx(ctx
);
1616 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, ni
->name
, ni
->name_len
,
1617 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1618 if (unlikely(err
)) {
1620 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1621 "not present but $INDEX_ROOT "
1622 "indicated it is.");
1624 ntfs_error(vi
->i_sb
, "Failed to lookup "
1625 "$INDEX_ALLOCATION attribute.");
1629 if (!a
->non_resident
) {
1630 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1635 * Ensure the attribute name is placed before the mapping pairs array.
1637 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1639 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1640 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name is "
1641 "placed after the mapping pairs array.");
1644 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1645 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1649 if (a
->flags
& ATTR_IS_SPARSE
) {
1650 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is sparse.");
1653 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1654 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1658 if (a
->data
.non_resident
.lowest_vcn
) {
1659 ntfs_error(vi
->i_sb
, "First extent of $INDEX_ALLOCATION "
1660 "attribute has non zero lowest_vcn.");
1663 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1664 ni
->initialized_size
= sle64_to_cpu(
1665 a
->data
.non_resident
.initialized_size
);
1666 ni
->allocated_size
= sle64_to_cpu(a
->data
.non_resident
.allocated_size
);
1668 * We are done with the mft record, so we release it. Otherwise
1669 * we would deadlock in ntfs_attr_iget().
1671 ntfs_attr_put_search_ctx(ctx
);
1672 unmap_mft_record(base_ni
);
1675 /* Get the index bitmap attribute inode. */
1676 bvi
= ntfs_attr_iget(base_vi
, AT_BITMAP
, ni
->name
, ni
->name_len
);
1678 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
1683 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
1685 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed and/or "
1686 "encrypted and/or sparse.");
1687 goto iput_unm_err_out
;
1689 /* Consistency check bitmap size vs. index allocation size. */
1690 bvi_size
= i_size_read(bvi
);
1691 if ((bvi_size
<< 3) < (vi
->i_size
>> ni
->itype
.index
.block_size_bits
)) {
1692 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) for "
1693 "index allocation (0x%llx).", bvi_size
<< 3,
1695 goto iput_unm_err_out
;
1698 skip_large_index_stuff
:
1699 /* Setup the operations for this index inode. */
1702 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1703 vi
->i_blocks
= ni
->allocated_size
>> 9;
1705 * Make sure the base inode doesn't go away and attach it to the
1709 ni
->ext
.base_ntfs_ino
= base_ni
;
1710 ni
->nr_extents
= -1;
1712 ntfs_debug("Done.");
1720 ntfs_attr_put_search_ctx(ctx
);
1722 unmap_mft_record(base_ni
);
1724 ntfs_error(vi
->i_sb
, "Failed with error code %i while reading index "
1725 "inode (mft_no 0x%lx, name_len %i.", err
, vi
->i_ino
,
1728 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1734 * The MFT inode has special locking, so teach the lock validator
1735 * about this by splitting off the locking rules of the MFT from
1736 * the locking rules of other inodes. The MFT inode can never be
1737 * accessed from the VFS side (or even internally), only by the
1738 * map_mft functions.
1740 static struct lock_class_key mft_ni_runlist_lock_key
, mft_ni_mrec_lock_key
;
1743 * ntfs_read_inode_mount - special read_inode for mount time use only
1744 * @vi: inode to read
1746 * Read inode FILE_MFT at mount time, only called with super_block lock
1747 * held from within the read_super() code path.
1749 * This function exists because when it is called the page cache for $MFT/$DATA
1750 * is not initialized and hence we cannot get at the contents of mft records
1751 * by calling map_mft_record*().
1753 * Further it needs to cope with the circular references problem, i.e. cannot
1754 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1755 * we do not know where the other extent mft records are yet and again, because
1756 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1757 * attribute list is actually present in $MFT inode.
1759 * We solve these problems by starting with the $DATA attribute before anything
1760 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1761 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1762 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1763 * sufficient information for the next step to complete.
1765 * This should work but there are two possible pit falls (see inline comments
1766 * below), but only time will tell if they are real pits or just smoke...
1768 int ntfs_read_inode_mount(struct inode
*vi
)
1770 VCN next_vcn
, last_vcn
, highest_vcn
;
1772 struct super_block
*sb
= vi
->i_sb
;
1773 ntfs_volume
*vol
= NTFS_SB(sb
);
1774 struct buffer_head
*bh
;
1776 MFT_RECORD
*m
= NULL
;
1778 ntfs_attr_search_ctx
*ctx
;
1779 unsigned int i
, nr_blocks
;
1782 ntfs_debug("Entering.");
1784 /* Initialize the ntfs specific part of @vi. */
1785 ntfs_init_big_inode(vi
);
1789 /* Setup the data attribute. It is special as it is mst protected. */
1790 NInoSetNonResident(ni
);
1791 NInoSetMstProtected(ni
);
1792 NInoSetSparseDisabled(ni
);
1797 * This sets up our little cheat allowing us to reuse the async read io
1798 * completion handler for directories.
1800 ni
->itype
.index
.block_size
= vol
->mft_record_size
;
1801 ni
->itype
.index
.block_size_bits
= vol
->mft_record_size_bits
;
1803 /* Very important! Needed to be able to call map_mft_record*(). */
1806 /* Allocate enough memory to read the first mft record. */
1807 if (vol
->mft_record_size
> 64 * 1024) {
1808 ntfs_error(sb
, "Unsupported mft record size %i (max 64kiB).",
1809 vol
->mft_record_size
);
1812 i
= vol
->mft_record_size
;
1813 if (i
< sb
->s_blocksize
)
1814 i
= sb
->s_blocksize
;
1815 m
= (MFT_RECORD
*)ntfs_malloc_nofs(i
);
1817 ntfs_error(sb
, "Failed to allocate buffer for $MFT record 0.");
1821 /* Determine the first block of the $MFT/$DATA attribute. */
1822 block
= vol
->mft_lcn
<< vol
->cluster_size_bits
>>
1823 sb
->s_blocksize_bits
;
1824 nr_blocks
= vol
->mft_record_size
>> sb
->s_blocksize_bits
;
1828 /* Load $MFT/$DATA's first mft record. */
1829 for (i
= 0; i
< nr_blocks
; i
++) {
1830 bh
= sb_bread(sb
, block
++);
1832 ntfs_error(sb
, "Device read failed.");
1835 memcpy((char*)m
+ (i
<< sb
->s_blocksize_bits
), bh
->b_data
,
1840 /* Apply the mst fixups. */
1841 if (post_read_mst_fixup((NTFS_RECORD
*)m
, vol
->mft_record_size
)) {
1842 /* FIXME: Try to use the $MFTMirr now. */
1843 ntfs_error(sb
, "MST fixup failed. $MFT is corrupt.");
1847 /* Need this to sanity check attribute list references to $MFT. */
1848 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
1850 /* Provides readpage() and sync_page() for map_mft_record(). */
1851 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1853 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
1859 /* Find the attribute list attribute if present. */
1860 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
1862 if (unlikely(err
!= -ENOENT
)) {
1863 ntfs_error(sb
, "Failed to lookup attribute list "
1864 "attribute. You should run chkdsk.");
1867 } else /* if (!err) */ {
1868 ATTR_LIST_ENTRY
*al_entry
, *next_al_entry
;
1870 static const char *es
= " Not allowed. $MFT is corrupt. "
1871 "You should run chkdsk.";
1873 ntfs_debug("Attribute list attribute found in $MFT.");
1874 NInoSetAttrList(ni
);
1876 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1877 ntfs_error(sb
, "Attribute list attribute is "
1878 "compressed.%s", es
);
1881 if (a
->flags
& ATTR_IS_ENCRYPTED
||
1882 a
->flags
& ATTR_IS_SPARSE
) {
1883 if (a
->non_resident
) {
1884 ntfs_error(sb
, "Non-resident attribute list "
1885 "attribute is encrypted/"
1889 ntfs_warning(sb
, "Resident attribute list attribute "
1890 "in $MFT system file is marked "
1891 "encrypted/sparse which is not true. "
1892 "However, Windows allows this and "
1893 "chkdsk does not detect or correct it "
1894 "so we will just ignore the invalid "
1895 "flags and pretend they are not set.");
1897 /* Now allocate memory for the attribute list. */
1898 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
1899 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
1900 if (!ni
->attr_list
) {
1901 ntfs_error(sb
, "Not enough memory to allocate buffer "
1902 "for attribute list.");
1905 if (a
->non_resident
) {
1906 NInoSetAttrListNonResident(ni
);
1907 if (a
->data
.non_resident
.lowest_vcn
) {
1908 ntfs_error(sb
, "Attribute list has non zero "
1909 "lowest_vcn. $MFT is corrupt. "
1910 "You should run chkdsk.");
1913 /* Setup the runlist. */
1914 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
1916 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
1917 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
1918 ni
->attr_list_rl
.rl
= NULL
;
1919 ntfs_error(sb
, "Mapping pairs decompression "
1920 "failed with error code %i.",
1924 /* Now load the attribute list. */
1925 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
1926 ni
->attr_list
, ni
->attr_list_size
,
1927 sle64_to_cpu(a
->data
.
1928 non_resident
.initialized_size
)))) {
1929 ntfs_error(sb
, "Failed to load attribute list "
1930 "attribute with error code %i.",
1934 } else /* if (!ctx.attr->non_resident) */ {
1935 if ((u8
*)a
+ le16_to_cpu(
1936 a
->data
.resident
.value_offset
) +
1938 a
->data
.resident
.value_length
) >
1939 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1940 ntfs_error(sb
, "Corrupt attribute list "
1944 /* Now copy the attribute list. */
1945 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
1946 a
->data
.resident
.value_offset
),
1948 a
->data
.resident
.value_length
));
1950 /* The attribute list is now setup in memory. */
1952 * FIXME: I don't know if this case is actually possible.
1953 * According to logic it is not possible but I have seen too
1954 * many weird things in MS software to rely on logic... Thus we
1955 * perform a manual search and make sure the first $MFT/$DATA
1956 * extent is in the base inode. If it is not we abort with an
1957 * error and if we ever see a report of this error we will need
1958 * to do some magic in order to have the necessary mft record
1959 * loaded and in the right place in the page cache. But
1960 * hopefully logic will prevail and this never happens...
1962 al_entry
= (ATTR_LIST_ENTRY
*)ni
->attr_list
;
1963 al_end
= (u8
*)al_entry
+ ni
->attr_list_size
;
1964 for (;; al_entry
= next_al_entry
) {
1965 /* Out of bounds check. */
1966 if ((u8
*)al_entry
< ni
->attr_list
||
1967 (u8
*)al_entry
> al_end
)
1968 goto em_put_err_out
;
1969 /* Catch the end of the attribute list. */
1970 if ((u8
*)al_entry
== al_end
)
1971 goto em_put_err_out
;
1972 if (!al_entry
->length
)
1973 goto em_put_err_out
;
1974 if ((u8
*)al_entry
+ 6 > al_end
|| (u8
*)al_entry
+
1975 le16_to_cpu(al_entry
->length
) > al_end
)
1976 goto em_put_err_out
;
1977 next_al_entry
= (ATTR_LIST_ENTRY
*)((u8
*)al_entry
+
1978 le16_to_cpu(al_entry
->length
));
1979 if (le32_to_cpu(al_entry
->type
) > le32_to_cpu(AT_DATA
))
1980 goto em_put_err_out
;
1981 if (AT_DATA
!= al_entry
->type
)
1983 /* We want an unnamed attribute. */
1984 if (al_entry
->name_length
)
1985 goto em_put_err_out
;
1986 /* Want the first entry, i.e. lowest_vcn == 0. */
1987 if (al_entry
->lowest_vcn
)
1988 goto em_put_err_out
;
1989 /* First entry has to be in the base mft record. */
1990 if (MREF_LE(al_entry
->mft_reference
) != vi
->i_ino
) {
1991 /* MFT references do not match, logic fails. */
1992 ntfs_error(sb
, "BUG: The first $DATA extent "
1993 "of $MFT is not in the base "
1994 "mft record. Please report "
1995 "you saw this message to "
1996 "linux-ntfs-dev@lists."
2000 /* Sequence numbers must match. */
2001 if (MSEQNO_LE(al_entry
->mft_reference
) !=
2003 goto em_put_err_out
;
2004 /* Got it. All is ok. We can stop now. */
2010 ntfs_attr_reinit_search_ctx(ctx
);
2012 /* Now load all attribute extents. */
2014 next_vcn
= last_vcn
= highest_vcn
= 0;
2015 while (!(err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, next_vcn
, NULL
, 0,
2017 runlist_element
*nrl
;
2019 /* Cache the current attribute. */
2021 /* $MFT must be non-resident. */
2022 if (!a
->non_resident
) {
2023 ntfs_error(sb
, "$MFT must be non-resident but a "
2024 "resident extent was found. $MFT is "
2025 "corrupt. Run chkdsk.");
2028 /* $MFT must be uncompressed and unencrypted. */
2029 if (a
->flags
& ATTR_COMPRESSION_MASK
||
2030 a
->flags
& ATTR_IS_ENCRYPTED
||
2031 a
->flags
& ATTR_IS_SPARSE
) {
2032 ntfs_error(sb
, "$MFT must be uncompressed, "
2033 "non-sparse, and unencrypted but a "
2034 "compressed/sparse/encrypted extent "
2035 "was found. $MFT is corrupt. Run "
2040 * Decompress the mapping pairs array of this extent and merge
2041 * the result into the existing runlist. No need for locking
2042 * as we have exclusive access to the inode at this time and we
2043 * are a mount in progress task, too.
2045 nrl
= ntfs_mapping_pairs_decompress(vol
, a
, ni
->runlist
.rl
);
2047 ntfs_error(sb
, "ntfs_mapping_pairs_decompress() "
2048 "failed with error code %ld. $MFT is "
2049 "corrupt.", PTR_ERR(nrl
));
2052 ni
->runlist
.rl
= nrl
;
2054 /* Are we in the first extent? */
2056 if (a
->data
.non_resident
.lowest_vcn
) {
2057 ntfs_error(sb
, "First extent of $DATA "
2058 "attribute has non zero "
2059 "lowest_vcn. $MFT is corrupt. "
2060 "You should run chkdsk.");
2063 /* Get the last vcn in the $DATA attribute. */
2064 last_vcn
= sle64_to_cpu(
2065 a
->data
.non_resident
.allocated_size
)
2066 >> vol
->cluster_size_bits
;
2067 /* Fill in the inode size. */
2068 vi
->i_size
= sle64_to_cpu(
2069 a
->data
.non_resident
.data_size
);
2070 ni
->initialized_size
= sle64_to_cpu(
2071 a
->data
.non_resident
.initialized_size
);
2072 ni
->allocated_size
= sle64_to_cpu(
2073 a
->data
.non_resident
.allocated_size
);
2075 * Verify the number of mft records does not exceed
2078 if ((vi
->i_size
>> vol
->mft_record_size_bits
) >=
2080 ntfs_error(sb
, "$MFT is too big! Aborting.");
2084 * We have got the first extent of the runlist for
2085 * $MFT which means it is now relatively safe to call
2086 * the normal ntfs_read_inode() function.
2087 * Complete reading the inode, this will actually
2088 * re-read the mft record for $MFT, this time entering
2089 * it into the page cache with which we complete the
2090 * kick start of the volume. It should be safe to do
2091 * this now as the first extent of $MFT/$DATA is
2092 * already known and we would hope that we don't need
2093 * further extents in order to find the other
2094 * attributes belonging to $MFT. Only time will tell if
2095 * this is really the case. If not we will have to play
2096 * magic at this point, possibly duplicating a lot of
2097 * ntfs_read_inode() at this point. We will need to
2098 * ensure we do enough of its work to be able to call
2099 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2100 * hope this never happens...
2102 ntfs_read_locked_inode(vi
);
2103 if (is_bad_inode(vi
)) {
2104 ntfs_error(sb
, "ntfs_read_inode() of $MFT "
2105 "failed. BUG or corrupt $MFT. "
2106 "Run chkdsk and if no errors "
2107 "are found, please report you "
2108 "saw this message to "
2109 "linux-ntfs-dev@lists."
2111 ntfs_attr_put_search_ctx(ctx
);
2112 /* Revert to the safe super operations. */
2117 * Re-initialize some specifics about $MFT's inode as
2118 * ntfs_read_inode() will have set up the default ones.
2120 /* Set uid and gid to root. */
2121 vi
->i_uid
= vi
->i_gid
= 0;
2122 /* Regular file. No access for anyone. */
2123 vi
->i_mode
= S_IFREG
;
2124 /* No VFS initiated operations allowed for $MFT. */
2125 vi
->i_op
= &ntfs_empty_inode_ops
;
2126 vi
->i_fop
= &ntfs_empty_file_ops
;
2129 /* Get the lowest vcn for the next extent. */
2130 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2131 next_vcn
= highest_vcn
+ 1;
2133 /* Only one extent or error, which we catch below. */
2137 /* Avoid endless loops due to corruption. */
2138 if (next_vcn
< sle64_to_cpu(
2139 a
->data
.non_resident
.lowest_vcn
)) {
2140 ntfs_error(sb
, "$MFT has corrupt attribute list "
2141 "attribute. Run chkdsk.");
2145 if (err
!= -ENOENT
) {
2146 ntfs_error(sb
, "Failed to lookup $MFT/$DATA attribute extent. "
2147 "$MFT is corrupt. Run chkdsk.");
2151 ntfs_error(sb
, "$MFT/$DATA attribute not found. $MFT is "
2152 "corrupt. Run chkdsk.");
2155 if (highest_vcn
&& highest_vcn
!= last_vcn
- 1) {
2156 ntfs_error(sb
, "Failed to load the complete runlist for "
2157 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2159 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2160 (unsigned long long)highest_vcn
,
2161 (unsigned long long)last_vcn
- 1);
2164 ntfs_attr_put_search_ctx(ctx
);
2165 ntfs_debug("Done.");
2169 * Split the locking rules of the MFT inode from the
2170 * locking rules of other inodes:
2172 lockdep_set_class(&ni
->runlist
.lock
, &mft_ni_runlist_lock_key
);
2173 lockdep_set_class(&ni
->mrec_lock
, &mft_ni_mrec_lock_key
);
2178 ntfs_error(sb
, "Couldn't find first extent of $DATA attribute in "
2179 "attribute list. $MFT is corrupt. Run chkdsk.");
2181 ntfs_attr_put_search_ctx(ctx
);
2183 ntfs_error(sb
, "Failed. Marking inode as bad.");
2189 static void __ntfs_clear_inode(ntfs_inode
*ni
)
2191 /* Free all alocated memory. */
2192 down_write(&ni
->runlist
.lock
);
2193 if (ni
->runlist
.rl
) {
2194 ntfs_free(ni
->runlist
.rl
);
2195 ni
->runlist
.rl
= NULL
;
2197 up_write(&ni
->runlist
.lock
);
2199 if (ni
->attr_list
) {
2200 ntfs_free(ni
->attr_list
);
2201 ni
->attr_list
= NULL
;
2204 down_write(&ni
->attr_list_rl
.lock
);
2205 if (ni
->attr_list_rl
.rl
) {
2206 ntfs_free(ni
->attr_list_rl
.rl
);
2207 ni
->attr_list_rl
.rl
= NULL
;
2209 up_write(&ni
->attr_list_rl
.lock
);
2211 if (ni
->name_len
&& ni
->name
!= I30
) {
2218 void ntfs_clear_extent_inode(ntfs_inode
*ni
)
2220 ntfs_debug("Entering for inode 0x%lx.", ni
->mft_no
);
2222 BUG_ON(NInoAttr(ni
));
2223 BUG_ON(ni
->nr_extents
!= -1);
2226 if (NInoDirty(ni
)) {
2227 if (!is_bad_inode(VFS_I(ni
->ext
.base_ntfs_ino
)))
2228 ntfs_error(ni
->vol
->sb
, "Clearing dirty extent inode! "
2229 "Losing data! This is a BUG!!!");
2230 // FIXME: Do something!!!
2232 #endif /* NTFS_RW */
2234 __ntfs_clear_inode(ni
);
2237 ntfs_destroy_extent_inode(ni
);
2241 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2242 * @vi: vfs inode pending annihilation
2244 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2245 * is called, which deallocates all memory belonging to the NTFS specific part
2246 * of the inode and returns.
2248 * If the MFT record is dirty, we commit it before doing anything else.
2250 void ntfs_evict_big_inode(struct inode
*vi
)
2252 ntfs_inode
*ni
= NTFS_I(vi
);
2254 truncate_inode_pages(&vi
->i_data
, 0);
2258 if (NInoDirty(ni
)) {
2259 bool was_bad
= (is_bad_inode(vi
));
2261 /* Committing the inode also commits all extent inodes. */
2262 ntfs_commit_inode(vi
);
2264 if (!was_bad
&& (is_bad_inode(vi
) || NInoDirty(ni
))) {
2265 ntfs_error(vi
->i_sb
, "Failed to commit dirty inode "
2266 "0x%lx. Losing data!", vi
->i_ino
);
2267 // FIXME: Do something!!!
2270 #endif /* NTFS_RW */
2272 /* No need to lock at this stage as no one else has a reference. */
2273 if (ni
->nr_extents
> 0) {
2276 for (i
= 0; i
< ni
->nr_extents
; i
++)
2277 ntfs_clear_extent_inode(ni
->ext
.extent_ntfs_inos
[i
]);
2278 kfree(ni
->ext
.extent_ntfs_inos
);
2281 __ntfs_clear_inode(ni
);
2284 /* Release the base inode if we are holding it. */
2285 if (ni
->nr_extents
== -1) {
2286 iput(VFS_I(ni
->ext
.base_ntfs_ino
));
2288 ni
->ext
.base_ntfs_ino
= NULL
;
2295 * ntfs_show_options - show mount options in /proc/mounts
2296 * @sf: seq_file in which to write our mount options
2297 * @mnt: vfs mount whose mount options to display
2299 * Called by the VFS once for each mounted ntfs volume when someone reads
2300 * /proc/mounts in order to display the NTFS specific mount options of each
2301 * mount. The mount options of the vfs mount @mnt are written to the seq file
2302 * @sf and success is returned.
2304 int ntfs_show_options(struct seq_file
*sf
, struct vfsmount
*mnt
)
2306 ntfs_volume
*vol
= NTFS_SB(mnt
->mnt_sb
);
2309 seq_printf(sf
, ",uid=%i", vol
->uid
);
2310 seq_printf(sf
, ",gid=%i", vol
->gid
);
2311 if (vol
->fmask
== vol
->dmask
)
2312 seq_printf(sf
, ",umask=0%o", vol
->fmask
);
2314 seq_printf(sf
, ",fmask=0%o", vol
->fmask
);
2315 seq_printf(sf
, ",dmask=0%o", vol
->dmask
);
2317 seq_printf(sf
, ",nls=%s", vol
->nls_map
->charset
);
2318 if (NVolCaseSensitive(vol
))
2319 seq_printf(sf
, ",case_sensitive");
2320 if (NVolShowSystemFiles(vol
))
2321 seq_printf(sf
, ",show_sys_files");
2322 if (!NVolSparseEnabled(vol
))
2323 seq_printf(sf
, ",disable_sparse");
2324 for (i
= 0; on_errors_arr
[i
].val
; i
++) {
2325 if (on_errors_arr
[i
].val
& vol
->on_errors
)
2326 seq_printf(sf
, ",errors=%s", on_errors_arr
[i
].str
);
2328 seq_printf(sf
, ",mft_zone_multiplier=%i", vol
->mft_zone_multiplier
);
2334 static const char *es
= " Leaving inconsistent metadata. Unmount and run "
2338 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2339 * @vi: inode for which the i_size was changed
2341 * We only support i_size changes for normal files at present, i.e. not
2342 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2345 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2346 * that the change is allowed.
2348 * This implies for us that @vi is a file inode rather than a directory, index,
2349 * or attribute inode as well as that @vi is a base inode.
2351 * Returns 0 on success or -errno on error.
2353 * Called with ->i_mutex held. In all but one case ->i_alloc_sem is held for
2354 * writing. The only case in the kernel where ->i_alloc_sem is not held is
2355 * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called
2356 * with the current i_size as the offset. The analogous place in NTFS is in
2357 * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again
2358 * without holding ->i_alloc_sem.
2360 int ntfs_truncate(struct inode
*vi
)
2362 s64 new_size
, old_size
, nr_freed
, new_alloc_size
, old_alloc_size
;
2364 unsigned long flags
;
2365 ntfs_inode
*base_ni
, *ni
= NTFS_I(vi
);
2366 ntfs_volume
*vol
= ni
->vol
;
2367 ntfs_attr_search_ctx
*ctx
;
2370 const char *te
= " Leaving file length out of sync with i_size.";
2371 int err
, mp_size
, size_change
, alloc_change
;
2374 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
2375 BUG_ON(NInoAttr(ni
));
2376 BUG_ON(S_ISDIR(vi
->i_mode
));
2377 BUG_ON(NInoMstProtected(ni
));
2378 BUG_ON(ni
->nr_extents
< 0);
2381 * Lock the runlist for writing and map the mft record to ensure it is
2382 * safe to mess with the attribute runlist and sizes.
2384 down_write(&ni
->runlist
.lock
);
2388 base_ni
= ni
->ext
.base_ntfs_ino
;
2389 m
= map_mft_record(base_ni
);
2392 ntfs_error(vi
->i_sb
, "Failed to map mft record for inode 0x%lx "
2393 "(error code %d).%s", vi
->i_ino
, err
, te
);
2398 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
2399 if (unlikely(!ctx
)) {
2400 ntfs_error(vi
->i_sb
, "Failed to allocate a search context for "
2401 "inode 0x%lx (not enough memory).%s",
2406 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
2407 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2408 if (unlikely(err
)) {
2409 if (err
== -ENOENT
) {
2410 ntfs_error(vi
->i_sb
, "Open attribute is missing from "
2411 "mft record. Inode 0x%lx is corrupt. "
2412 "Run chkdsk.%s", vi
->i_ino
, te
);
2415 ntfs_error(vi
->i_sb
, "Failed to lookup attribute in "
2416 "inode 0x%lx (error code %d).%s",
2417 vi
->i_ino
, err
, te
);
2423 * The i_size of the vfs inode is the new size for the attribute value.
2425 new_size
= i_size_read(vi
);
2426 /* The current size of the attribute value is the old size. */
2427 old_size
= ntfs_attr_size(a
);
2428 /* Calculate the new allocated size. */
2429 if (NInoNonResident(ni
))
2430 new_alloc_size
= (new_size
+ vol
->cluster_size
- 1) &
2431 ~(s64
)vol
->cluster_size_mask
;
2433 new_alloc_size
= (new_size
+ 7) & ~7;
2434 /* The current allocated size is the old allocated size. */
2435 read_lock_irqsave(&ni
->size_lock
, flags
);
2436 old_alloc_size
= ni
->allocated_size
;
2437 read_unlock_irqrestore(&ni
->size_lock
, flags
);
2439 * The change in the file size. This will be 0 if no change, >0 if the
2440 * size is growing, and <0 if the size is shrinking.
2443 if (new_size
- old_size
>= 0) {
2445 if (new_size
== old_size
)
2448 /* As above for the allocated size. */
2450 if (new_alloc_size
- old_alloc_size
>= 0) {
2452 if (new_alloc_size
== old_alloc_size
)
2456 * If neither the size nor the allocation are being changed there is
2459 if (!size_change
&& !alloc_change
)
2461 /* If the size is changing, check if new size is allowed in $AttrDef. */
2463 err
= ntfs_attr_size_bounds_check(vol
, ni
->type
, new_size
);
2464 if (unlikely(err
)) {
2465 if (err
== -ERANGE
) {
2466 ntfs_error(vol
->sb
, "Truncate would cause the "
2467 "inode 0x%lx to %simum size "
2468 "for its attribute type "
2469 "(0x%x). Aborting truncate.",
2471 new_size
> old_size
? "exceed "
2472 "the max" : "go under the min",
2473 le32_to_cpu(ni
->type
));
2476 ntfs_error(vol
->sb
, "Inode 0x%lx has unknown "
2477 "attribute type 0x%x. "
2478 "Aborting truncate.",
2480 le32_to_cpu(ni
->type
));
2483 /* Reset the vfs inode size to the old size. */
2484 i_size_write(vi
, old_size
);
2488 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2489 ntfs_warning(vi
->i_sb
, "Changes in inode size are not "
2490 "supported yet for %s files, ignoring.",
2491 NInoCompressed(ni
) ? "compressed" :
2496 if (a
->non_resident
)
2497 goto do_non_resident_truncate
;
2498 BUG_ON(NInoNonResident(ni
));
2499 /* Resize the attribute record to best fit the new attribute size. */
2500 if (new_size
< vol
->mft_record_size
&&
2501 !ntfs_resident_attr_value_resize(m
, a
, new_size
)) {
2502 /* The resize succeeded! */
2503 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2504 mark_mft_record_dirty(ctx
->ntfs_ino
);
2505 write_lock_irqsave(&ni
->size_lock
, flags
);
2506 /* Update the sizes in the ntfs inode and all is done. */
2507 ni
->allocated_size
= le32_to_cpu(a
->length
) -
2508 le16_to_cpu(a
->data
.resident
.value_offset
);
2510 * Note ntfs_resident_attr_value_resize() has already done any
2511 * necessary data clearing in the attribute record. When the
2512 * file is being shrunk vmtruncate() will already have cleared
2513 * the top part of the last partial page, i.e. since this is
2514 * the resident case this is the page with index 0. However,
2515 * when the file is being expanded, the page cache page data
2516 * between the old data_size, i.e. old_size, and the new_size
2517 * has not been zeroed. Fortunately, we do not need to zero it
2518 * either since on one hand it will either already be zero due
2519 * to both readpage and writepage clearing partial page data
2520 * beyond i_size in which case there is nothing to do or in the
2521 * case of the file being mmap()ped at the same time, POSIX
2522 * specifies that the behaviour is unspecified thus we do not
2523 * have to do anything. This means that in our implementation
2524 * in the rare case that the file is mmap()ped and a write
2525 * occured into the mmap()ped region just beyond the file size
2526 * and writepage has not yet been called to write out the page
2527 * (which would clear the area beyond the file size) and we now
2528 * extend the file size to incorporate this dirty region
2529 * outside the file size, a write of the page would result in
2530 * this data being written to disk instead of being cleared.
2531 * Given both POSIX and the Linux mmap(2) man page specify that
2532 * this corner case is undefined, we choose to leave it like
2533 * that as this is much simpler for us as we cannot lock the
2534 * relevant page now since we are holding too many ntfs locks
2535 * which would result in a lock reversal deadlock.
2537 ni
->initialized_size
= new_size
;
2538 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2541 /* If the above resize failed, this must be an attribute extension. */
2542 BUG_ON(size_change
< 0);
2544 * We have to drop all the locks so we can call
2545 * ntfs_attr_make_non_resident(). This could be optimised by try-
2546 * locking the first page cache page and only if that fails dropping
2547 * the locks, locking the page, and redoing all the locking and
2548 * lookups. While this would be a huge optimisation, it is not worth
2549 * it as this is definitely a slow code path as it only ever can happen
2550 * once for any given file.
2552 ntfs_attr_put_search_ctx(ctx
);
2553 unmap_mft_record(base_ni
);
2554 up_write(&ni
->runlist
.lock
);
2556 * Not enough space in the mft record, try to make the attribute
2557 * non-resident and if successful restart the truncation process.
2559 err
= ntfs_attr_make_non_resident(ni
, old_size
);
2561 goto retry_truncate
;
2563 * Could not make non-resident. If this is due to this not being
2564 * permitted for this attribute type or there not being enough space,
2565 * try to make other attributes non-resident. Otherwise fail.
2567 if (unlikely(err
!= -EPERM
&& err
!= -ENOSPC
)) {
2568 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, attribute "
2569 "type 0x%x, because the conversion from "
2570 "resident to non-resident attribute failed "
2571 "with error code %i.", vi
->i_ino
,
2572 (unsigned)le32_to_cpu(ni
->type
), err
);
2577 /* TODO: Not implemented from here, abort. */
2579 ntfs_error(vol
->sb
, "Not enough space in the mft record/on "
2580 "disk for the non-resident attribute value. "
2581 "This case is not implemented yet.");
2582 else /* if (err == -EPERM) */
2583 ntfs_error(vol
->sb
, "This attribute type may not be "
2584 "non-resident. This case is not implemented "
2589 // TODO: Attempt to make other attributes non-resident.
2591 goto do_resident_extend
;
2593 * Both the attribute list attribute and the standard information
2594 * attribute must remain in the base inode. Thus, if this is one of
2595 * these attributes, we have to try to move other attributes out into
2596 * extent mft records instead.
2598 if (ni
->type
== AT_ATTRIBUTE_LIST
||
2599 ni
->type
== AT_STANDARD_INFORMATION
) {
2600 // TODO: Attempt to move other attributes into extent mft
2604 goto do_resident_extend
;
2607 // TODO: Attempt to move this attribute to an extent mft record, but
2608 // only if it is not already the only attribute in an mft record in
2609 // which case there would be nothing to gain.
2612 goto do_resident_extend
;
2613 /* There is nothing we can do to make enough space. )-: */
2616 do_non_resident_truncate
:
2617 BUG_ON(!NInoNonResident(ni
));
2618 if (alloc_change
< 0) {
2619 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2620 if (highest_vcn
> 0 &&
2621 old_alloc_size
>> vol
->cluster_size_bits
>
2624 * This attribute has multiple extents. Not yet
2627 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, "
2628 "attribute type 0x%x, because the "
2629 "attribute is highly fragmented (it "
2630 "consists of multiple extents) and "
2631 "this case is not implemented yet.",
2633 (unsigned)le32_to_cpu(ni
->type
));
2639 * If the size is shrinking, need to reduce the initialized_size and
2640 * the data_size before reducing the allocation.
2642 if (size_change
< 0) {
2644 * Make the valid size smaller (i_size is already up-to-date).
2646 write_lock_irqsave(&ni
->size_lock
, flags
);
2647 if (new_size
< ni
->initialized_size
) {
2648 ni
->initialized_size
= new_size
;
2649 a
->data
.non_resident
.initialized_size
=
2650 cpu_to_sle64(new_size
);
2652 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2653 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2654 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2655 mark_mft_record_dirty(ctx
->ntfs_ino
);
2656 /* If the allocated size is not changing, we are done. */
2660 * If the size is shrinking it makes no sense for the
2661 * allocation to be growing.
2663 BUG_ON(alloc_change
> 0);
2664 } else /* if (size_change >= 0) */ {
2666 * The file size is growing or staying the same but the
2667 * allocation can be shrinking, growing or staying the same.
2669 if (alloc_change
> 0) {
2671 * We need to extend the allocation and possibly update
2672 * the data size. If we are updating the data size,
2673 * since we are not touching the initialized_size we do
2674 * not need to worry about the actual data on disk.
2675 * And as far as the page cache is concerned, there
2676 * will be no pages beyond the old data size and any
2677 * partial region in the last page between the old and
2678 * new data size (or the end of the page if the new
2679 * data size is outside the page) does not need to be
2680 * modified as explained above for the resident
2681 * attribute truncate case. To do this, we simply drop
2682 * the locks we hold and leave all the work to our
2683 * friendly helper ntfs_attr_extend_allocation().
2685 ntfs_attr_put_search_ctx(ctx
);
2686 unmap_mft_record(base_ni
);
2687 up_write(&ni
->runlist
.lock
);
2688 err
= ntfs_attr_extend_allocation(ni
, new_size
,
2689 size_change
> 0 ? new_size
: -1, -1);
2691 * ntfs_attr_extend_allocation() will have done error
2699 /* alloc_change < 0 */
2700 /* Free the clusters. */
2701 nr_freed
= ntfs_cluster_free(ni
, new_alloc_size
>>
2702 vol
->cluster_size_bits
, -1, ctx
);
2705 if (unlikely(nr_freed
< 0)) {
2706 ntfs_error(vol
->sb
, "Failed to release cluster(s) (error code "
2707 "%lli). Unmount and run chkdsk to recover "
2708 "the lost cluster(s).", (long long)nr_freed
);
2712 /* Truncate the runlist. */
2713 err
= ntfs_rl_truncate_nolock(vol
, &ni
->runlist
,
2714 new_alloc_size
>> vol
->cluster_size_bits
);
2716 * If the runlist truncation failed and/or the search context is no
2717 * longer valid, we cannot resize the attribute record or build the
2718 * mapping pairs array thus we mark the inode bad so that no access to
2719 * the freed clusters can happen.
2721 if (unlikely(err
|| IS_ERR(m
))) {
2722 ntfs_error(vol
->sb
, "Failed to %s (error code %li).%s",
2724 "restore attribute search context" :
2725 "truncate attribute runlist",
2726 IS_ERR(m
) ? PTR_ERR(m
) : err
, es
);
2730 /* Get the size for the shrunk mapping pairs array for the runlist. */
2731 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, ni
->runlist
.rl
, 0, -1);
2732 if (unlikely(mp_size
<= 0)) {
2733 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2734 "attribute type 0x%x, because determining the "
2735 "size for the mapping pairs failed with error "
2736 "code %i.%s", vi
->i_ino
,
2737 (unsigned)le32_to_cpu(ni
->type
), mp_size
, es
);
2742 * Shrink the attribute record for the new mapping pairs array. Note,
2743 * this cannot fail since we are making the attribute smaller thus by
2744 * definition there is enough space to do so.
2746 attr_len
= le32_to_cpu(a
->length
);
2747 err
= ntfs_attr_record_resize(m
, a
, mp_size
+
2748 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
));
2751 * Generate the mapping pairs array directly into the attribute record.
2753 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+
2754 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
),
2755 mp_size
, ni
->runlist
.rl
, 0, -1, NULL
);
2756 if (unlikely(err
)) {
2757 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2758 "attribute type 0x%x, because building the "
2759 "mapping pairs failed with error code %i.%s",
2760 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
2765 /* Update the allocated/compressed size as well as the highest vcn. */
2766 a
->data
.non_resident
.highest_vcn
= cpu_to_sle64((new_alloc_size
>>
2767 vol
->cluster_size_bits
) - 1);
2768 write_lock_irqsave(&ni
->size_lock
, flags
);
2769 ni
->allocated_size
= new_alloc_size
;
2770 a
->data
.non_resident
.allocated_size
= cpu_to_sle64(new_alloc_size
);
2771 if (NInoSparse(ni
) || NInoCompressed(ni
)) {
2773 ni
->itype
.compressed
.size
-= nr_freed
<<
2774 vol
->cluster_size_bits
;
2775 BUG_ON(ni
->itype
.compressed
.size
< 0);
2776 a
->data
.non_resident
.compressed_size
= cpu_to_sle64(
2777 ni
->itype
.compressed
.size
);
2778 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
2781 vi
->i_blocks
= new_alloc_size
>> 9;
2782 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2784 * We have shrunk the allocation. If this is a shrinking truncate we
2785 * have already dealt with the initialized_size and the data_size above
2786 * and we are done. If the truncate is only changing the allocation
2787 * and not the data_size, we are also done. If this is an extending
2788 * truncate, need to extend the data_size now which is ensured by the
2789 * fact that @size_change is positive.
2793 * If the size is growing, need to update it now. If it is shrinking,
2794 * we have already updated it above (before the allocation change).
2796 if (size_change
> 0)
2797 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2798 /* Ensure the modified mft record is written out. */
2799 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2800 mark_mft_record_dirty(ctx
->ntfs_ino
);
2802 ntfs_attr_put_search_ctx(ctx
);
2803 unmap_mft_record(base_ni
);
2804 up_write(&ni
->runlist
.lock
);
2806 /* Update the mtime and ctime on the base inode. */
2807 /* normally ->truncate shouldn't update ctime or mtime,
2808 * but ntfs did before so it got a copy & paste version
2809 * of file_update_time. one day someone should fix this
2812 if (!IS_NOCMTIME(VFS_I(base_ni
)) && !IS_RDONLY(VFS_I(base_ni
))) {
2813 struct timespec now
= current_fs_time(VFS_I(base_ni
)->i_sb
);
2816 if (!timespec_equal(&VFS_I(base_ni
)->i_mtime
, &now
) ||
2817 !timespec_equal(&VFS_I(base_ni
)->i_ctime
, &now
))
2819 VFS_I(base_ni
)->i_mtime
= now
;
2820 VFS_I(base_ni
)->i_ctime
= now
;
2823 mark_inode_dirty_sync(VFS_I(base_ni
));
2827 NInoClearTruncateFailed(ni
);
2828 ntfs_debug("Done.");
2834 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2836 if (err
!= -EOPNOTSUPP
)
2837 NInoSetTruncateFailed(ni
);
2838 else if (old_size
>= 0)
2839 i_size_write(vi
, old_size
);
2842 ntfs_attr_put_search_ctx(ctx
);
2844 unmap_mft_record(base_ni
);
2845 up_write(&ni
->runlist
.lock
);
2847 ntfs_debug("Failed. Returning error code %i.", err
);
2850 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2852 if (err
!= -EOPNOTSUPP
)
2853 NInoSetTruncateFailed(ni
);
2855 i_size_write(vi
, old_size
);
2860 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2861 * @vi: inode for which the i_size was changed
2863 * Wrapper for ntfs_truncate() that has no return value.
2865 * See ntfs_truncate() description above for details.
2867 void ntfs_truncate_vfs(struct inode
*vi
) {
2872 * ntfs_setattr - called from notify_change() when an attribute is being changed
2873 * @dentry: dentry whose attributes to change
2874 * @attr: structure describing the attributes and the changes
2876 * We have to trap VFS attempts to truncate the file described by @dentry as
2877 * soon as possible, because we do not implement changes in i_size yet. So we
2878 * abort all i_size changes here.
2880 * We also abort all changes of user, group, and mode as we do not implement
2881 * the NTFS ACLs yet.
2883 * Called with ->i_mutex held. For the ATTR_SIZE (i.e. ->truncate) case, also
2884 * called with ->i_alloc_sem held for writing.
2886 int ntfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2888 struct inode
*vi
= dentry
->d_inode
;
2890 unsigned int ia_valid
= attr
->ia_valid
;
2892 err
= inode_change_ok(vi
, attr
);
2895 /* We do not support NTFS ACLs yet. */
2896 if (ia_valid
& (ATTR_UID
| ATTR_GID
| ATTR_MODE
)) {
2897 ntfs_warning(vi
->i_sb
, "Changes in user/group/mode are not "
2898 "supported yet, ignoring.");
2902 if (ia_valid
& ATTR_SIZE
) {
2903 if (attr
->ia_size
!= i_size_read(vi
)) {
2904 ntfs_inode
*ni
= NTFS_I(vi
);
2906 * FIXME: For now we do not support resizing of
2907 * compressed or encrypted files yet.
2909 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2910 ntfs_warning(vi
->i_sb
, "Changes in inode size "
2911 "are not supported yet for "
2912 "%s files, ignoring.",
2913 NInoCompressed(ni
) ?
2914 "compressed" : "encrypted");
2917 err
= vmtruncate(vi
, attr
->ia_size
);
2918 if (err
|| ia_valid
== ATTR_SIZE
)
2922 * We skipped the truncate but must still update
2925 ia_valid
|= ATTR_MTIME
| ATTR_CTIME
;
2928 if (ia_valid
& ATTR_ATIME
)
2929 vi
->i_atime
= timespec_trunc(attr
->ia_atime
,
2930 vi
->i_sb
->s_time_gran
);
2931 if (ia_valid
& ATTR_MTIME
)
2932 vi
->i_mtime
= timespec_trunc(attr
->ia_mtime
,
2933 vi
->i_sb
->s_time_gran
);
2934 if (ia_valid
& ATTR_CTIME
)
2935 vi
->i_ctime
= timespec_trunc(attr
->ia_ctime
,
2936 vi
->i_sb
->s_time_gran
);
2937 mark_inode_dirty(vi
);
2943 * ntfs_write_inode - write out a dirty inode
2944 * @vi: inode to write out
2945 * @sync: if true, write out synchronously
2947 * Write out a dirty inode to disk including any extent inodes if present.
2949 * If @sync is true, commit the inode to disk and wait for io completion. This
2950 * is done using write_mft_record().
2952 * If @sync is false, just schedule the write to happen but do not wait for i/o
2953 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2954 * marking the page (and in this case mft record) dirty but we do not implement
2955 * this yet as write_mft_record() largely ignores the @sync parameter and
2956 * always performs synchronous writes.
2958 * Return 0 on success and -errno on error.
2960 int __ntfs_write_inode(struct inode
*vi
, int sync
)
2963 ntfs_inode
*ni
= NTFS_I(vi
);
2964 ntfs_attr_search_ctx
*ctx
;
2966 STANDARD_INFORMATION
*si
;
2968 bool modified
= false;
2970 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni
) ? "attr " : "",
2973 * Dirty attribute inodes are written via their real inodes so just
2974 * clean them here. Access time updates are taken care off when the
2975 * real inode is written.
2979 ntfs_debug("Done.");
2982 /* Map, pin, and lock the mft record belonging to the inode. */
2983 m
= map_mft_record(ni
);
2988 /* Update the access times in the standard information attribute. */
2989 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
2990 if (unlikely(!ctx
)) {
2994 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0,
2995 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2996 if (unlikely(err
)) {
2997 ntfs_attr_put_search_ctx(ctx
);
3000 si
= (STANDARD_INFORMATION
*)((u8
*)ctx
->attr
+
3001 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
3002 /* Update the access times if they have changed. */
3003 nt
= utc2ntfs(vi
->i_mtime
);
3004 if (si
->last_data_change_time
!= nt
) {
3005 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3006 "new = 0x%llx", vi
->i_ino
, (long long)
3007 sle64_to_cpu(si
->last_data_change_time
),
3008 (long long)sle64_to_cpu(nt
));
3009 si
->last_data_change_time
= nt
;
3012 nt
= utc2ntfs(vi
->i_ctime
);
3013 if (si
->last_mft_change_time
!= nt
) {
3014 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3015 "new = 0x%llx", vi
->i_ino
, (long long)
3016 sle64_to_cpu(si
->last_mft_change_time
),
3017 (long long)sle64_to_cpu(nt
));
3018 si
->last_mft_change_time
= nt
;
3021 nt
= utc2ntfs(vi
->i_atime
);
3022 if (si
->last_access_time
!= nt
) {
3023 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3024 "new = 0x%llx", vi
->i_ino
,
3025 (long long)sle64_to_cpu(si
->last_access_time
),
3026 (long long)sle64_to_cpu(nt
));
3027 si
->last_access_time
= nt
;
3031 * If we just modified the standard information attribute we need to
3032 * mark the mft record it is in dirty. We do this manually so that
3033 * mark_inode_dirty() is not called which would redirty the inode and
3034 * hence result in an infinite loop of trying to write the inode.
3035 * There is no need to mark the base inode nor the base mft record
3036 * dirty, since we are going to write this mft record below in any case
3037 * and the base mft record may actually not have been modified so it
3038 * might not need to be written out.
3039 * NOTE: It is not a problem when the inode for $MFT itself is being
3040 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3041 * on the $MFT inode and hence ntfs_write_inode() will not be
3042 * re-invoked because of it which in turn is ok since the dirtied mft
3043 * record will be cleaned and written out to disk below, i.e. before
3044 * this function returns.
3047 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
3048 if (!NInoTestSetDirty(ctx
->ntfs_ino
))
3049 mark_ntfs_record_dirty(ctx
->ntfs_ino
->page
,
3050 ctx
->ntfs_ino
->page_ofs
);
3052 ntfs_attr_put_search_ctx(ctx
);
3053 /* Now the access times are updated, write the base mft record. */
3055 err
= write_mft_record(ni
, m
, sync
);
3056 /* Write all attached extent mft records. */
3057 mutex_lock(&ni
->extent_lock
);
3058 if (ni
->nr_extents
> 0) {
3059 ntfs_inode
**extent_nis
= ni
->ext
.extent_ntfs_inos
;
3062 ntfs_debug("Writing %i extent inodes.", ni
->nr_extents
);
3063 for (i
= 0; i
< ni
->nr_extents
; i
++) {
3064 ntfs_inode
*tni
= extent_nis
[i
];
3066 if (NInoDirty(tni
)) {
3067 MFT_RECORD
*tm
= map_mft_record(tni
);
3071 if (!err
|| err
== -ENOMEM
)
3075 ret
= write_mft_record(tni
, tm
, sync
);
3076 unmap_mft_record(tni
);
3077 if (unlikely(ret
)) {
3078 if (!err
|| err
== -ENOMEM
)
3084 mutex_unlock(&ni
->extent_lock
);
3085 unmap_mft_record(ni
);
3088 ntfs_debug("Done.");
3091 unmap_mft_record(ni
);
3093 if (err
== -ENOMEM
) {
3094 ntfs_warning(vi
->i_sb
, "Not enough memory to write inode. "
3095 "Marking the inode dirty again, so the VFS "
3097 mark_inode_dirty(vi
);
3099 ntfs_error(vi
->i_sb
, "Failed (error %i): Run chkdsk.", -err
);
3100 NVolSetErrors(ni
->vol
);
3105 #endif /* NTFS_RW */