ptrace: cleanup arch_ptrace() on sh
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / jffs2 / gc.c
blob846a79452497b9adcb20b831a8e12c6037038d9d
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
5 * Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
7 * Created by David Woodhouse <dwmw2@infradead.org>
9 * For licensing information, see the file 'LICENCE' in this directory.
13 #include <linux/kernel.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/slab.h>
16 #include <linux/pagemap.h>
17 #include <linux/crc32.h>
18 #include <linux/compiler.h>
19 #include <linux/stat.h>
20 #include "nodelist.h"
21 #include "compr.h"
23 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
24 struct jffs2_inode_cache *ic,
25 struct jffs2_raw_node_ref *raw);
26 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
27 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
28 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
29 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
30 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
31 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
32 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
33 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
34 uint32_t start, uint32_t end);
35 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
36 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
37 uint32_t start, uint32_t end);
38 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
39 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
41 /* Called with erase_completion_lock held */
42 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
44 struct jffs2_eraseblock *ret;
45 struct list_head *nextlist = NULL;
46 int n = jiffies % 128;
48 /* Pick an eraseblock to garbage collect next. This is where we'll
49 put the clever wear-levelling algorithms. Eventually. */
50 /* We possibly want to favour the dirtier blocks more when the
51 number of free blocks is low. */
52 again:
53 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
54 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
55 nextlist = &c->bad_used_list;
56 } else if (n < 50 && !list_empty(&c->erasable_list)) {
57 /* Note that most of them will have gone directly to be erased.
58 So don't favour the erasable_list _too_ much. */
59 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
60 nextlist = &c->erasable_list;
61 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
62 /* Most of the time, pick one off the very_dirty list */
63 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
64 nextlist = &c->very_dirty_list;
65 } else if (n < 126 && !list_empty(&c->dirty_list)) {
66 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
67 nextlist = &c->dirty_list;
68 } else if (!list_empty(&c->clean_list)) {
69 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
70 nextlist = &c->clean_list;
71 } else if (!list_empty(&c->dirty_list)) {
72 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
74 nextlist = &c->dirty_list;
75 } else if (!list_empty(&c->very_dirty_list)) {
76 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
77 nextlist = &c->very_dirty_list;
78 } else if (!list_empty(&c->erasable_list)) {
79 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
81 nextlist = &c->erasable_list;
82 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
83 /* There are blocks are wating for the wbuf sync */
84 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
85 spin_unlock(&c->erase_completion_lock);
86 jffs2_flush_wbuf_pad(c);
87 spin_lock(&c->erase_completion_lock);
88 goto again;
89 } else {
90 /* Eep. All were empty */
91 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
92 return NULL;
95 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
96 list_del(&ret->list);
97 c->gcblock = ret;
98 ret->gc_node = ret->first_node;
99 if (!ret->gc_node) {
100 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
101 BUG();
104 /* Have we accidentally picked a clean block with wasted space ? */
105 if (ret->wasted_size) {
106 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
107 ret->dirty_size += ret->wasted_size;
108 c->wasted_size -= ret->wasted_size;
109 c->dirty_size += ret->wasted_size;
110 ret->wasted_size = 0;
113 return ret;
116 /* jffs2_garbage_collect_pass
117 * Make a single attempt to progress GC. Move one node, and possibly
118 * start erasing one eraseblock.
120 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
122 struct jffs2_inode_info *f;
123 struct jffs2_inode_cache *ic;
124 struct jffs2_eraseblock *jeb;
125 struct jffs2_raw_node_ref *raw;
126 uint32_t gcblock_dirty;
127 int ret = 0, inum, nlink;
128 int xattr = 0;
130 if (mutex_lock_interruptible(&c->alloc_sem))
131 return -EINTR;
133 for (;;) {
134 spin_lock(&c->erase_completion_lock);
135 if (!c->unchecked_size)
136 break;
138 /* We can't start doing GC yet. We haven't finished checking
139 the node CRCs etc. Do it now. */
141 /* checked_ino is protected by the alloc_sem */
142 if (c->checked_ino > c->highest_ino && xattr) {
143 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
144 c->unchecked_size);
145 jffs2_dbg_dump_block_lists_nolock(c);
146 spin_unlock(&c->erase_completion_lock);
147 mutex_unlock(&c->alloc_sem);
148 return -ENOSPC;
151 spin_unlock(&c->erase_completion_lock);
153 if (!xattr)
154 xattr = jffs2_verify_xattr(c);
156 spin_lock(&c->inocache_lock);
158 ic = jffs2_get_ino_cache(c, c->checked_ino++);
160 if (!ic) {
161 spin_unlock(&c->inocache_lock);
162 continue;
165 if (!ic->pino_nlink) {
166 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink/pino zero\n",
167 ic->ino));
168 spin_unlock(&c->inocache_lock);
169 jffs2_xattr_delete_inode(c, ic);
170 continue;
172 switch(ic->state) {
173 case INO_STATE_CHECKEDABSENT:
174 case INO_STATE_PRESENT:
175 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
176 spin_unlock(&c->inocache_lock);
177 continue;
179 case INO_STATE_GC:
180 case INO_STATE_CHECKING:
181 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
182 spin_unlock(&c->inocache_lock);
183 BUG();
185 case INO_STATE_READING:
186 /* We need to wait for it to finish, lest we move on
187 and trigger the BUG() above while we haven't yet
188 finished checking all its nodes */
189 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
190 /* We need to come back again for the _same_ inode. We've
191 made no progress in this case, but that should be OK */
192 c->checked_ino--;
194 mutex_unlock(&c->alloc_sem);
195 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
196 return 0;
198 default:
199 BUG();
201 case INO_STATE_UNCHECKED:
204 ic->state = INO_STATE_CHECKING;
205 spin_unlock(&c->inocache_lock);
207 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
209 ret = jffs2_do_crccheck_inode(c, ic);
210 if (ret)
211 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
213 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
214 mutex_unlock(&c->alloc_sem);
215 return ret;
218 /* If there are any blocks which need erasing, erase them now */
219 if (!list_empty(&c->erase_complete_list) ||
220 !list_empty(&c->erase_pending_list)) {
221 spin_unlock(&c->erase_completion_lock);
222 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() erasing pending blocks\n"));
223 if (jffs2_erase_pending_blocks(c, 1)) {
224 mutex_unlock(&c->alloc_sem);
225 return 0;
227 D1(printk(KERN_DEBUG "No progress from erasing blocks; doing GC anyway\n"));
228 spin_lock(&c->erase_completion_lock);
231 /* First, work out which block we're garbage-collecting */
232 jeb = c->gcblock;
234 if (!jeb)
235 jeb = jffs2_find_gc_block(c);
237 if (!jeb) {
238 /* Couldn't find a free block. But maybe we can just erase one and make 'progress'? */
239 if (c->nr_erasing_blocks) {
240 spin_unlock(&c->erase_completion_lock);
241 mutex_unlock(&c->alloc_sem);
242 return -EAGAIN;
244 D1(printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
245 spin_unlock(&c->erase_completion_lock);
246 mutex_unlock(&c->alloc_sem);
247 return -EIO;
250 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
251 D1(if (c->nextblock)
252 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
254 if (!jeb->used_size) {
255 mutex_unlock(&c->alloc_sem);
256 goto eraseit;
259 raw = jeb->gc_node;
260 gcblock_dirty = jeb->dirty_size;
262 while(ref_obsolete(raw)) {
263 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
264 raw = ref_next(raw);
265 if (unlikely(!raw)) {
266 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
267 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
268 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
269 jeb->gc_node = raw;
270 spin_unlock(&c->erase_completion_lock);
271 mutex_unlock(&c->alloc_sem);
272 BUG();
275 jeb->gc_node = raw;
277 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
279 if (!raw->next_in_ino) {
280 /* Inode-less node. Clean marker, snapshot or something like that */
281 spin_unlock(&c->erase_completion_lock);
282 if (ref_flags(raw) == REF_PRISTINE) {
283 /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
284 jffs2_garbage_collect_pristine(c, NULL, raw);
285 } else {
286 /* Just mark it obsolete */
287 jffs2_mark_node_obsolete(c, raw);
289 mutex_unlock(&c->alloc_sem);
290 goto eraseit_lock;
293 ic = jffs2_raw_ref_to_ic(raw);
295 #ifdef CONFIG_JFFS2_FS_XATTR
296 /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
297 * We can decide whether this node is inode or xattr by ic->class. */
298 if (ic->class == RAWNODE_CLASS_XATTR_DATUM
299 || ic->class == RAWNODE_CLASS_XATTR_REF) {
300 spin_unlock(&c->erase_completion_lock);
302 if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
303 ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
304 } else {
305 ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
307 goto test_gcnode;
309 #endif
311 /* We need to hold the inocache. Either the erase_completion_lock or
312 the inocache_lock are sufficient; we trade down since the inocache_lock
313 causes less contention. */
314 spin_lock(&c->inocache_lock);
316 spin_unlock(&c->erase_completion_lock);
318 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
320 /* Three possibilities:
321 1. Inode is already in-core. We must iget it and do proper
322 updating to its fragtree, etc.
323 2. Inode is not in-core, node is REF_PRISTINE. We lock the
324 inocache to prevent a read_inode(), copy the node intact.
325 3. Inode is not in-core, node is not pristine. We must iget()
326 and take the slow path.
329 switch(ic->state) {
330 case INO_STATE_CHECKEDABSENT:
331 /* It's been checked, but it's not currently in-core.
332 We can just copy any pristine nodes, but have
333 to prevent anyone else from doing read_inode() while
334 we're at it, so we set the state accordingly */
335 if (ref_flags(raw) == REF_PRISTINE)
336 ic->state = INO_STATE_GC;
337 else {
338 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
339 ic->ino));
341 break;
343 case INO_STATE_PRESENT:
344 /* It's in-core. GC must iget() it. */
345 break;
347 case INO_STATE_UNCHECKED:
348 case INO_STATE_CHECKING:
349 case INO_STATE_GC:
350 /* Should never happen. We should have finished checking
351 by the time we actually start doing any GC, and since
352 we're holding the alloc_sem, no other garbage collection
353 can happen.
355 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
356 ic->ino, ic->state);
357 mutex_unlock(&c->alloc_sem);
358 spin_unlock(&c->inocache_lock);
359 BUG();
361 case INO_STATE_READING:
362 /* Someone's currently trying to read it. We must wait for
363 them to finish and then go through the full iget() route
364 to do the GC. However, sometimes read_inode() needs to get
365 the alloc_sem() (for marking nodes invalid) so we must
366 drop the alloc_sem before sleeping. */
368 mutex_unlock(&c->alloc_sem);
369 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
370 ic->ino, ic->state));
371 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
372 /* And because we dropped the alloc_sem we must start again from the
373 beginning. Ponder chance of livelock here -- we're returning success
374 without actually making any progress.
376 Q: What are the chances that the inode is back in INO_STATE_READING
377 again by the time we next enter this function? And that this happens
378 enough times to cause a real delay?
380 A: Small enough that I don't care :)
382 return 0;
385 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
386 node intact, and we don't have to muck about with the fragtree etc.
387 because we know it's not in-core. If it _was_ in-core, we go through
388 all the iget() crap anyway */
390 if (ic->state == INO_STATE_GC) {
391 spin_unlock(&c->inocache_lock);
393 ret = jffs2_garbage_collect_pristine(c, ic, raw);
395 spin_lock(&c->inocache_lock);
396 ic->state = INO_STATE_CHECKEDABSENT;
397 wake_up(&c->inocache_wq);
399 if (ret != -EBADFD) {
400 spin_unlock(&c->inocache_lock);
401 goto test_gcnode;
404 /* Fall through if it wanted us to, with inocache_lock held */
407 /* Prevent the fairly unlikely race where the gcblock is
408 entirely obsoleted by the final close of a file which had
409 the only valid nodes in the block, followed by erasure,
410 followed by freeing of the ic because the erased block(s)
411 held _all_ the nodes of that inode.... never been seen but
412 it's vaguely possible. */
414 inum = ic->ino;
415 nlink = ic->pino_nlink;
416 spin_unlock(&c->inocache_lock);
418 f = jffs2_gc_fetch_inode(c, inum, !nlink);
419 if (IS_ERR(f)) {
420 ret = PTR_ERR(f);
421 goto release_sem;
423 if (!f) {
424 ret = 0;
425 goto release_sem;
428 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
430 jffs2_gc_release_inode(c, f);
432 test_gcnode:
433 if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) {
434 /* Eep. This really should never happen. GC is broken */
435 printk(KERN_ERR "Error garbage collecting node at %08x!\n", ref_offset(jeb->gc_node));
436 ret = -ENOSPC;
438 release_sem:
439 mutex_unlock(&c->alloc_sem);
441 eraseit_lock:
442 /* If we've finished this block, start it erasing */
443 spin_lock(&c->erase_completion_lock);
445 eraseit:
446 if (c->gcblock && !c->gcblock->used_size) {
447 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
448 /* We're GC'ing an empty block? */
449 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
450 c->gcblock = NULL;
451 c->nr_erasing_blocks++;
452 jffs2_garbage_collect_trigger(c);
454 spin_unlock(&c->erase_completion_lock);
456 return ret;
459 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
460 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
462 struct jffs2_node_frag *frag;
463 struct jffs2_full_dnode *fn = NULL;
464 struct jffs2_full_dirent *fd;
465 uint32_t start = 0, end = 0, nrfrags = 0;
466 int ret = 0;
468 mutex_lock(&f->sem);
470 /* Now we have the lock for this inode. Check that it's still the one at the head
471 of the list. */
473 spin_lock(&c->erase_completion_lock);
475 if (c->gcblock != jeb) {
476 spin_unlock(&c->erase_completion_lock);
477 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
478 goto upnout;
480 if (ref_obsolete(raw)) {
481 spin_unlock(&c->erase_completion_lock);
482 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
483 /* They'll call again */
484 goto upnout;
486 spin_unlock(&c->erase_completion_lock);
488 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
489 if (f->metadata && f->metadata->raw == raw) {
490 fn = f->metadata;
491 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
492 goto upnout;
495 /* FIXME. Read node and do lookup? */
496 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
497 if (frag->node && frag->node->raw == raw) {
498 fn = frag->node;
499 end = frag->ofs + frag->size;
500 if (!nrfrags++)
501 start = frag->ofs;
502 if (nrfrags == frag->node->frags)
503 break; /* We've found them all */
506 if (fn) {
507 if (ref_flags(raw) == REF_PRISTINE) {
508 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
509 if (!ret) {
510 /* Urgh. Return it sensibly. */
511 frag->node->raw = f->inocache->nodes;
513 if (ret != -EBADFD)
514 goto upnout;
516 /* We found a datanode. Do the GC */
517 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
518 /* It crosses a page boundary. Therefore, it must be a hole. */
519 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
520 } else {
521 /* It could still be a hole. But we GC the page this way anyway */
522 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
524 goto upnout;
527 /* Wasn't a dnode. Try dirent */
528 for (fd = f->dents; fd; fd=fd->next) {
529 if (fd->raw == raw)
530 break;
533 if (fd && fd->ino) {
534 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
535 } else if (fd) {
536 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
537 } else {
538 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
539 ref_offset(raw), f->inocache->ino);
540 if (ref_obsolete(raw)) {
541 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
542 } else {
543 jffs2_dbg_dump_node(c, ref_offset(raw));
544 BUG();
547 upnout:
548 mutex_unlock(&f->sem);
550 return ret;
553 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
554 struct jffs2_inode_cache *ic,
555 struct jffs2_raw_node_ref *raw)
557 union jffs2_node_union *node;
558 size_t retlen;
559 int ret;
560 uint32_t phys_ofs, alloclen;
561 uint32_t crc, rawlen;
562 int retried = 0;
564 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
566 alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
568 /* Ask for a small amount of space (or the totlen if smaller) because we
569 don't want to force wastage of the end of a block if splitting would
570 work. */
571 if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
572 alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
574 ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
575 /* 'rawlen' is not the exact summary size; it is only an upper estimation */
577 if (ret)
578 return ret;
580 if (alloclen < rawlen) {
581 /* Doesn't fit untouched. We'll go the old route and split it */
582 return -EBADFD;
585 node = kmalloc(rawlen, GFP_KERNEL);
586 if (!node)
587 return -ENOMEM;
589 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
590 if (!ret && retlen != rawlen)
591 ret = -EIO;
592 if (ret)
593 goto out_node;
595 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
596 if (je32_to_cpu(node->u.hdr_crc) != crc) {
597 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
598 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
599 goto bail;
602 switch(je16_to_cpu(node->u.nodetype)) {
603 case JFFS2_NODETYPE_INODE:
604 crc = crc32(0, node, sizeof(node->i)-8);
605 if (je32_to_cpu(node->i.node_crc) != crc) {
606 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
607 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
608 goto bail;
611 if (je32_to_cpu(node->i.dsize)) {
612 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
613 if (je32_to_cpu(node->i.data_crc) != crc) {
614 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
615 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
616 goto bail;
619 break;
621 case JFFS2_NODETYPE_DIRENT:
622 crc = crc32(0, node, sizeof(node->d)-8);
623 if (je32_to_cpu(node->d.node_crc) != crc) {
624 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
625 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
626 goto bail;
629 if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) {
630 printk(KERN_WARNING "Name in dirent node at 0x%08x contains zeroes\n", ref_offset(raw));
631 goto bail;
634 if (node->d.nsize) {
635 crc = crc32(0, node->d.name, node->d.nsize);
636 if (je32_to_cpu(node->d.name_crc) != crc) {
637 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
638 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
639 goto bail;
642 break;
643 default:
644 /* If it's inode-less, we don't _know_ what it is. Just copy it intact */
645 if (ic) {
646 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
647 ref_offset(raw), je16_to_cpu(node->u.nodetype));
648 goto bail;
652 /* OK, all the CRCs are good; this node can just be copied as-is. */
653 retry:
654 phys_ofs = write_ofs(c);
656 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
658 if (ret || (retlen != rawlen)) {
659 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
660 rawlen, phys_ofs, ret, retlen);
661 if (retlen) {
662 jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
663 } else {
664 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
666 if (!retried) {
667 /* Try to reallocate space and retry */
668 uint32_t dummy;
669 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
671 retried = 1;
673 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
675 jffs2_dbg_acct_sanity_check(c,jeb);
676 jffs2_dbg_acct_paranoia_check(c, jeb);
678 ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
679 /* this is not the exact summary size of it,
680 it is only an upper estimation */
682 if (!ret) {
683 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
685 jffs2_dbg_acct_sanity_check(c,jeb);
686 jffs2_dbg_acct_paranoia_check(c, jeb);
688 goto retry;
690 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
693 if (!ret)
694 ret = -EIO;
695 goto out_node;
697 jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
699 jffs2_mark_node_obsolete(c, raw);
700 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
702 out_node:
703 kfree(node);
704 return ret;
705 bail:
706 ret = -EBADFD;
707 goto out_node;
710 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
711 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
713 struct jffs2_full_dnode *new_fn;
714 struct jffs2_raw_inode ri;
715 struct jffs2_node_frag *last_frag;
716 union jffs2_device_node dev;
717 char *mdata = NULL;
718 int mdatalen = 0;
719 uint32_t alloclen, ilen;
720 int ret;
722 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
723 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
724 /* For these, we don't actually need to read the old node */
725 mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
726 mdata = (char *)&dev;
727 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
728 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
729 mdatalen = fn->size;
730 mdata = kmalloc(fn->size, GFP_KERNEL);
731 if (!mdata) {
732 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
733 return -ENOMEM;
735 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
736 if (ret) {
737 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
738 kfree(mdata);
739 return ret;
741 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
745 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
746 JFFS2_SUMMARY_INODE_SIZE);
747 if (ret) {
748 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
749 sizeof(ri)+ mdatalen, ret);
750 goto out;
753 last_frag = frag_last(&f->fragtree);
754 if (last_frag)
755 /* Fetch the inode length from the fragtree rather then
756 * from i_size since i_size may have not been updated yet */
757 ilen = last_frag->ofs + last_frag->size;
758 else
759 ilen = JFFS2_F_I_SIZE(f);
761 memset(&ri, 0, sizeof(ri));
762 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
763 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
764 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
765 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
767 ri.ino = cpu_to_je32(f->inocache->ino);
768 ri.version = cpu_to_je32(++f->highest_version);
769 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
770 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
771 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
772 ri.isize = cpu_to_je32(ilen);
773 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
774 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
775 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
776 ri.offset = cpu_to_je32(0);
777 ri.csize = cpu_to_je32(mdatalen);
778 ri.dsize = cpu_to_je32(mdatalen);
779 ri.compr = JFFS2_COMPR_NONE;
780 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
781 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
783 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
785 if (IS_ERR(new_fn)) {
786 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
787 ret = PTR_ERR(new_fn);
788 goto out;
790 jffs2_mark_node_obsolete(c, fn->raw);
791 jffs2_free_full_dnode(fn);
792 f->metadata = new_fn;
793 out:
794 if (S_ISLNK(JFFS2_F_I_MODE(f)))
795 kfree(mdata);
796 return ret;
799 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
800 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
802 struct jffs2_full_dirent *new_fd;
803 struct jffs2_raw_dirent rd;
804 uint32_t alloclen;
805 int ret;
807 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
808 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
809 rd.nsize = strlen(fd->name);
810 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
811 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
813 rd.pino = cpu_to_je32(f->inocache->ino);
814 rd.version = cpu_to_je32(++f->highest_version);
815 rd.ino = cpu_to_je32(fd->ino);
816 /* If the times on this inode were set by explicit utime() they can be different,
817 so refrain from splatting them. */
818 if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
819 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
820 else
821 rd.mctime = cpu_to_je32(0);
822 rd.type = fd->type;
823 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
824 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
826 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
827 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
828 if (ret) {
829 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
830 sizeof(rd)+rd.nsize, ret);
831 return ret;
833 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
835 if (IS_ERR(new_fd)) {
836 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
837 return PTR_ERR(new_fd);
839 jffs2_add_fd_to_list(c, new_fd, &f->dents);
840 return 0;
843 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
844 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
846 struct jffs2_full_dirent **fdp = &f->dents;
847 int found = 0;
849 /* On a medium where we can't actually mark nodes obsolete
850 pernamently, such as NAND flash, we need to work out
851 whether this deletion dirent is still needed to actively
852 delete a 'real' dirent with the same name that's still
853 somewhere else on the flash. */
854 if (!jffs2_can_mark_obsolete(c)) {
855 struct jffs2_raw_dirent *rd;
856 struct jffs2_raw_node_ref *raw;
857 int ret;
858 size_t retlen;
859 int name_len = strlen(fd->name);
860 uint32_t name_crc = crc32(0, fd->name, name_len);
861 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
863 rd = kmalloc(rawlen, GFP_KERNEL);
864 if (!rd)
865 return -ENOMEM;
867 /* Prevent the erase code from nicking the obsolete node refs while
868 we're looking at them. I really don't like this extra lock but
869 can't see any alternative. Suggestions on a postcard to... */
870 mutex_lock(&c->erase_free_sem);
872 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
874 cond_resched();
876 /* We only care about obsolete ones */
877 if (!(ref_obsolete(raw)))
878 continue;
880 /* Any dirent with the same name is going to have the same length... */
881 if (ref_totlen(c, NULL, raw) != rawlen)
882 continue;
884 /* Doesn't matter if there's one in the same erase block. We're going to
885 delete it too at the same time. */
886 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
887 continue;
889 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
891 /* This is an obsolete node belonging to the same directory, and it's of the right
892 length. We need to take a closer look...*/
893 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
894 if (ret) {
895 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
896 /* If we can't read it, we don't need to continue to obsolete it. Continue */
897 continue;
899 if (retlen != rawlen) {
900 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
901 retlen, rawlen, ref_offset(raw));
902 continue;
905 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
906 continue;
908 /* If the name CRC doesn't match, skip */
909 if (je32_to_cpu(rd->name_crc) != name_crc)
910 continue;
912 /* If the name length doesn't match, or it's another deletion dirent, skip */
913 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
914 continue;
916 /* OK, check the actual name now */
917 if (memcmp(rd->name, fd->name, name_len))
918 continue;
920 /* OK. The name really does match. There really is still an older node on
921 the flash which our deletion dirent obsoletes. So we have to write out
922 a new deletion dirent to replace it */
923 mutex_unlock(&c->erase_free_sem);
925 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
926 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
927 kfree(rd);
929 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
932 mutex_unlock(&c->erase_free_sem);
933 kfree(rd);
936 /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
937 we should update the metadata node with those times accordingly */
939 /* No need for it any more. Just mark it obsolete and remove it from the list */
940 while (*fdp) {
941 if ((*fdp) == fd) {
942 found = 1;
943 *fdp = fd->next;
944 break;
946 fdp = &(*fdp)->next;
948 if (!found) {
949 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
951 jffs2_mark_node_obsolete(c, fd->raw);
952 jffs2_free_full_dirent(fd);
953 return 0;
956 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
957 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
958 uint32_t start, uint32_t end)
960 struct jffs2_raw_inode ri;
961 struct jffs2_node_frag *frag;
962 struct jffs2_full_dnode *new_fn;
963 uint32_t alloclen, ilen;
964 int ret;
966 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
967 f->inocache->ino, start, end));
969 memset(&ri, 0, sizeof(ri));
971 if(fn->frags > 1) {
972 size_t readlen;
973 uint32_t crc;
974 /* It's partially obsoleted by a later write. So we have to
975 write it out again with the _same_ version as before */
976 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
977 if (readlen != sizeof(ri) || ret) {
978 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
979 goto fill;
981 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
982 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
983 ref_offset(fn->raw),
984 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
985 return -EIO;
987 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
988 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
989 ref_offset(fn->raw),
990 je32_to_cpu(ri.totlen), sizeof(ri));
991 return -EIO;
993 crc = crc32(0, &ri, sizeof(ri)-8);
994 if (crc != je32_to_cpu(ri.node_crc)) {
995 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
996 ref_offset(fn->raw),
997 je32_to_cpu(ri.node_crc), crc);
998 /* FIXME: We could possibly deal with this by writing new holes for each frag */
999 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1000 start, end, f->inocache->ino);
1001 goto fill;
1003 if (ri.compr != JFFS2_COMPR_ZERO) {
1004 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
1005 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1006 start, end, f->inocache->ino);
1007 goto fill;
1009 } else {
1010 fill:
1011 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1012 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1013 ri.totlen = cpu_to_je32(sizeof(ri));
1014 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1016 ri.ino = cpu_to_je32(f->inocache->ino);
1017 ri.version = cpu_to_je32(++f->highest_version);
1018 ri.offset = cpu_to_je32(start);
1019 ri.dsize = cpu_to_je32(end - start);
1020 ri.csize = cpu_to_je32(0);
1021 ri.compr = JFFS2_COMPR_ZERO;
1024 frag = frag_last(&f->fragtree);
1025 if (frag)
1026 /* Fetch the inode length from the fragtree rather then
1027 * from i_size since i_size may have not been updated yet */
1028 ilen = frag->ofs + frag->size;
1029 else
1030 ilen = JFFS2_F_I_SIZE(f);
1032 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1033 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1034 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1035 ri.isize = cpu_to_je32(ilen);
1036 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1037 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1038 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1039 ri.data_crc = cpu_to_je32(0);
1040 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1042 ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1043 JFFS2_SUMMARY_INODE_SIZE);
1044 if (ret) {
1045 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1046 sizeof(ri), ret);
1047 return ret;
1049 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1051 if (IS_ERR(new_fn)) {
1052 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1053 return PTR_ERR(new_fn);
1055 if (je32_to_cpu(ri.version) == f->highest_version) {
1056 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1057 if (f->metadata) {
1058 jffs2_mark_node_obsolete(c, f->metadata->raw);
1059 jffs2_free_full_dnode(f->metadata);
1060 f->metadata = NULL;
1062 return 0;
1066 * We should only get here in the case where the node we are
1067 * replacing had more than one frag, so we kept the same version
1068 * number as before. (Except in case of error -- see 'goto fill;'
1069 * above.)
1071 D1(if(unlikely(fn->frags <= 1)) {
1072 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1073 fn->frags, je32_to_cpu(ri.version), f->highest_version,
1074 je32_to_cpu(ri.ino));
1077 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1078 mark_ref_normal(new_fn->raw);
1080 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1081 frag; frag = frag_next(frag)) {
1082 if (frag->ofs > fn->size + fn->ofs)
1083 break;
1084 if (frag->node == fn) {
1085 frag->node = new_fn;
1086 new_fn->frags++;
1087 fn->frags--;
1090 if (fn->frags) {
1091 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1092 BUG();
1094 if (!new_fn->frags) {
1095 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1096 BUG();
1099 jffs2_mark_node_obsolete(c, fn->raw);
1100 jffs2_free_full_dnode(fn);
1102 return 0;
1105 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *orig_jeb,
1106 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1107 uint32_t start, uint32_t end)
1109 struct jffs2_full_dnode *new_fn;
1110 struct jffs2_raw_inode ri;
1111 uint32_t alloclen, offset, orig_end, orig_start;
1112 int ret = 0;
1113 unsigned char *comprbuf = NULL, *writebuf;
1114 unsigned long pg;
1115 unsigned char *pg_ptr;
1117 memset(&ri, 0, sizeof(ri));
1119 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1120 f->inocache->ino, start, end));
1122 orig_end = end;
1123 orig_start = start;
1125 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1126 /* Attempt to do some merging. But only expand to cover logically
1127 adjacent frags if the block containing them is already considered
1128 to be dirty. Otherwise we end up with GC just going round in
1129 circles dirtying the nodes it already wrote out, especially
1130 on NAND where we have small eraseblocks and hence a much higher
1131 chance of nodes having to be split to cross boundaries. */
1133 struct jffs2_node_frag *frag;
1134 uint32_t min, max;
1136 min = start & ~(PAGE_CACHE_SIZE-1);
1137 max = min + PAGE_CACHE_SIZE;
1139 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1141 /* BUG_ON(!frag) but that'll happen anyway... */
1143 BUG_ON(frag->ofs != start);
1145 /* First grow down... */
1146 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1148 /* If the previous frag doesn't even reach the beginning, there's
1149 excessive fragmentation. Just merge. */
1150 if (frag->ofs > min) {
1151 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1152 frag->ofs, frag->ofs+frag->size));
1153 start = frag->ofs;
1154 continue;
1156 /* OK. This frag holds the first byte of the page. */
1157 if (!frag->node || !frag->node->raw) {
1158 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1159 frag->ofs, frag->ofs+frag->size));
1160 break;
1161 } else {
1163 /* OK, it's a frag which extends to the beginning of the page. Does it live
1164 in a block which is still considered clean? If so, don't obsolete it.
1165 If not, cover it anyway. */
1167 struct jffs2_raw_node_ref *raw = frag->node->raw;
1168 struct jffs2_eraseblock *jeb;
1170 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1172 if (jeb == c->gcblock) {
1173 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1174 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1175 start = frag->ofs;
1176 break;
1178 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1179 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1180 frag->ofs, frag->ofs+frag->size, jeb->offset));
1181 break;
1184 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1185 frag->ofs, frag->ofs+frag->size, jeb->offset));
1186 start = frag->ofs;
1187 break;
1191 /* ... then up */
1193 /* Find last frag which is actually part of the node we're to GC. */
1194 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1196 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1198 /* If the previous frag doesn't even reach the beginning, there's lots
1199 of fragmentation. Just merge. */
1200 if (frag->ofs+frag->size < max) {
1201 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1202 frag->ofs, frag->ofs+frag->size));
1203 end = frag->ofs + frag->size;
1204 continue;
1207 if (!frag->node || !frag->node->raw) {
1208 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1209 frag->ofs, frag->ofs+frag->size));
1210 break;
1211 } else {
1213 /* OK, it's a frag which extends to the beginning of the page. Does it live
1214 in a block which is still considered clean? If so, don't obsolete it.
1215 If not, cover it anyway. */
1217 struct jffs2_raw_node_ref *raw = frag->node->raw;
1218 struct jffs2_eraseblock *jeb;
1220 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1222 if (jeb == c->gcblock) {
1223 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1224 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1225 end = frag->ofs + frag->size;
1226 break;
1228 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1229 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1230 frag->ofs, frag->ofs+frag->size, jeb->offset));
1231 break;
1234 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1235 frag->ofs, frag->ofs+frag->size, jeb->offset));
1236 end = frag->ofs + frag->size;
1237 break;
1240 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1241 orig_start, orig_end, start, end));
1243 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1244 BUG_ON(end < orig_end);
1245 BUG_ON(start > orig_start);
1248 /* First, use readpage() to read the appropriate page into the page cache */
1249 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1250 * triggered garbage collection in the first place?
1251 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1252 * page OK. We'll actually write it out again in commit_write, which is a little
1253 * suboptimal, but at least we're correct.
1255 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1257 if (IS_ERR(pg_ptr)) {
1258 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1259 return PTR_ERR(pg_ptr);
1262 offset = start;
1263 while(offset < orig_end) {
1264 uint32_t datalen;
1265 uint32_t cdatalen;
1266 uint16_t comprtype = JFFS2_COMPR_NONE;
1268 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
1269 &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1271 if (ret) {
1272 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1273 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1274 break;
1276 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1277 datalen = end - offset;
1279 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1281 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1283 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1284 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1285 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1286 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1288 ri.ino = cpu_to_je32(f->inocache->ino);
1289 ri.version = cpu_to_je32(++f->highest_version);
1290 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1291 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1292 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1293 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1294 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1295 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1296 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1297 ri.offset = cpu_to_je32(offset);
1298 ri.csize = cpu_to_je32(cdatalen);
1299 ri.dsize = cpu_to_je32(datalen);
1300 ri.compr = comprtype & 0xff;
1301 ri.usercompr = (comprtype >> 8) & 0xff;
1302 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1303 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1305 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1307 jffs2_free_comprbuf(comprbuf, writebuf);
1309 if (IS_ERR(new_fn)) {
1310 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1311 ret = PTR_ERR(new_fn);
1312 break;
1314 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1315 offset += datalen;
1316 if (f->metadata) {
1317 jffs2_mark_node_obsolete(c, f->metadata->raw);
1318 jffs2_free_full_dnode(f->metadata);
1319 f->metadata = NULL;
1323 jffs2_gc_release_page(c, pg_ptr, &pg);
1324 return ret;