drm/i915: Rephrase pwrite bounds checking to avoid any potential overflow
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_inode.c
blob8f43babc3346224928ecff998a3b4d0ebf13e068
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_filestream.h"
53 #include "xfs_vnodeops.h"
55 kmem_zone_t *xfs_ifork_zone;
56 kmem_zone_t *xfs_inode_zone;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 #ifdef DEBUG
71 * Make sure that the extents in the given memory buffer
72 * are valid.
74 STATIC void
75 xfs_validate_extents(
76 xfs_ifork_t *ifp,
77 int nrecs,
78 xfs_exntfmt_t fmt)
80 xfs_bmbt_irec_t irec;
81 xfs_bmbt_rec_host_t rec;
82 int i;
84 for (i = 0; i < nrecs; i++) {
85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 rec.l0 = get_unaligned(&ep->l0);
87 rec.l1 = get_unaligned(&ep->l1);
88 xfs_bmbt_get_all(&rec, &irec);
89 if (fmt == XFS_EXTFMT_NOSTATE)
90 ASSERT(irec.br_state == XFS_EXT_NORM);
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 xfs_mount_t *mp,
105 xfs_buf_t *bp)
107 int i;
108 int j;
109 xfs_dinode_t *dip;
111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113 for (i = 0; i < j; i++) {
114 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 i * mp->m_sb.sb_inodesize);
116 if (!dip->di_next_unlinked) {
117 xfs_fs_cmn_err(CE_ALERT, mp,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
119 bp);
120 ASSERT(dip->di_next_unlinked);
124 #endif
127 * Find the buffer associated with the given inode map
128 * We do basic validation checks on the buffer once it has been
129 * retrieved from disk.
131 STATIC int
132 xfs_imap_to_bp(
133 xfs_mount_t *mp,
134 xfs_trans_t *tp,
135 struct xfs_imap *imap,
136 xfs_buf_t **bpp,
137 uint buf_flags,
138 uint iget_flags)
140 int error;
141 int i;
142 int ni;
143 xfs_buf_t *bp;
145 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
146 (int)imap->im_len, buf_flags, &bp);
147 if (error) {
148 if (error != EAGAIN) {
149 cmn_err(CE_WARN,
150 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
151 "an error %d on %s. Returning error.",
152 error, mp->m_fsname);
153 } else {
154 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
156 return error;
160 * Validate the magic number and version of every inode in the buffer
161 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 #ifdef DEBUG
164 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
165 #else /* usual case */
166 ni = 1;
167 #endif
169 for (i = 0; i < ni; i++) {
170 int di_ok;
171 xfs_dinode_t *dip;
173 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
174 (i << mp->m_sb.sb_inodelog));
175 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
176 XFS_DINODE_GOOD_VERSION(dip->di_version);
177 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
178 XFS_ERRTAG_ITOBP_INOTOBP,
179 XFS_RANDOM_ITOBP_INOTOBP))) {
180 if (iget_flags & XFS_IGET_UNTRUSTED) {
181 xfs_trans_brelse(tp, bp);
182 return XFS_ERROR(EINVAL);
184 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
185 XFS_ERRLEVEL_HIGH, mp, dip);
186 #ifdef DEBUG
187 cmn_err(CE_PANIC,
188 "Device %s - bad inode magic/vsn "
189 "daddr %lld #%d (magic=%x)",
190 XFS_BUFTARG_NAME(mp->m_ddev_targp),
191 (unsigned long long)imap->im_blkno, i,
192 be16_to_cpu(dip->di_magic));
193 #endif
194 xfs_trans_brelse(tp, bp);
195 return XFS_ERROR(EFSCORRUPTED);
199 xfs_inobp_check(mp, bp);
202 * Mark the buffer as an inode buffer now that it looks good
204 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206 *bpp = bp;
207 return 0;
211 * This routine is called to map an inode number within a file
212 * system to the buffer containing the on-disk version of the
213 * inode. It returns a pointer to the buffer containing the
214 * on-disk inode in the bpp parameter, and in the dip parameter
215 * it returns a pointer to the on-disk inode within that buffer.
217 * If a non-zero error is returned, then the contents of bpp and
218 * dipp are undefined.
220 * Use xfs_imap() to determine the size and location of the
221 * buffer to read from disk.
224 xfs_inotobp(
225 xfs_mount_t *mp,
226 xfs_trans_t *tp,
227 xfs_ino_t ino,
228 xfs_dinode_t **dipp,
229 xfs_buf_t **bpp,
230 int *offset,
231 uint imap_flags)
233 struct xfs_imap imap;
234 xfs_buf_t *bp;
235 int error;
237 imap.im_blkno = 0;
238 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
239 if (error)
240 return error;
242 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
243 if (error)
244 return error;
246 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 *bpp = bp;
248 *offset = imap.im_boffset;
249 return 0;
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
258 * that buffer.
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
263 * The inode is expected to already been mapped to its buffer and read
264 * in once, thus we can use the mapping information stored in the inode
265 * rather than calling xfs_imap(). This allows us to avoid the overhead
266 * of looking at the inode btree for small block file systems
267 * (see xfs_imap()).
270 xfs_itobp(
271 xfs_mount_t *mp,
272 xfs_trans_t *tp,
273 xfs_inode_t *ip,
274 xfs_dinode_t **dipp,
275 xfs_buf_t **bpp,
276 uint buf_flags)
278 xfs_buf_t *bp;
279 int error;
281 ASSERT(ip->i_imap.im_blkno != 0);
283 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
284 if (error)
285 return error;
287 if (!bp) {
288 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
289 ASSERT(tp == NULL);
290 *bpp = NULL;
291 return EAGAIN;
294 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
295 *bpp = bp;
296 return 0;
300 * Move inode type and inode format specific information from the
301 * on-disk inode to the in-core inode. For fifos, devs, and sockets
302 * this means set if_rdev to the proper value. For files, directories,
303 * and symlinks this means to bring in the in-line data or extent
304 * pointers. For a file in B-tree format, only the root is immediately
305 * brought in-core. The rest will be in-lined in if_extents when it
306 * is first referenced (see xfs_iread_extents()).
308 STATIC int
309 xfs_iformat(
310 xfs_inode_t *ip,
311 xfs_dinode_t *dip)
313 xfs_attr_shortform_t *atp;
314 int size;
315 int error;
316 xfs_fsize_t di_size;
317 ip->i_df.if_ext_max =
318 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
319 error = 0;
321 if (unlikely(be32_to_cpu(dip->di_nextents) +
322 be16_to_cpu(dip->di_anextents) >
323 be64_to_cpu(dip->di_nblocks))) {
324 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
325 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
326 (unsigned long long)ip->i_ino,
327 (int)(be32_to_cpu(dip->di_nextents) +
328 be16_to_cpu(dip->di_anextents)),
329 (unsigned long long)
330 be64_to_cpu(dip->di_nblocks));
331 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
332 ip->i_mount, dip);
333 return XFS_ERROR(EFSCORRUPTED);
336 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
337 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
338 "corrupt dinode %Lu, forkoff = 0x%x.",
339 (unsigned long long)ip->i_ino,
340 dip->di_forkoff);
341 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
342 ip->i_mount, dip);
343 return XFS_ERROR(EFSCORRUPTED);
346 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
347 !ip->i_mount->m_rtdev_targp)) {
348 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
349 "corrupt dinode %Lu, has realtime flag set.",
350 ip->i_ino);
351 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
352 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
353 return XFS_ERROR(EFSCORRUPTED);
356 switch (ip->i_d.di_mode & S_IFMT) {
357 case S_IFIFO:
358 case S_IFCHR:
359 case S_IFBLK:
360 case S_IFSOCK:
361 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
362 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
363 ip->i_mount, dip);
364 return XFS_ERROR(EFSCORRUPTED);
366 ip->i_d.di_size = 0;
367 ip->i_size = 0;
368 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
369 break;
371 case S_IFREG:
372 case S_IFLNK:
373 case S_IFDIR:
374 switch (dip->di_format) {
375 case XFS_DINODE_FMT_LOCAL:
377 * no local regular files yet
379 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
380 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
381 "corrupt inode %Lu "
382 "(local format for regular file).",
383 (unsigned long long) ip->i_ino);
384 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
385 XFS_ERRLEVEL_LOW,
386 ip->i_mount, dip);
387 return XFS_ERROR(EFSCORRUPTED);
390 di_size = be64_to_cpu(dip->di_size);
391 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
392 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
393 "corrupt inode %Lu "
394 "(bad size %Ld for local inode).",
395 (unsigned long long) ip->i_ino,
396 (long long) di_size);
397 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
398 XFS_ERRLEVEL_LOW,
399 ip->i_mount, dip);
400 return XFS_ERROR(EFSCORRUPTED);
403 size = (int)di_size;
404 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
405 break;
406 case XFS_DINODE_FMT_EXTENTS:
407 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
408 break;
409 case XFS_DINODE_FMT_BTREE:
410 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
411 break;
412 default:
413 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
414 ip->i_mount);
415 return XFS_ERROR(EFSCORRUPTED);
417 break;
419 default:
420 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
421 return XFS_ERROR(EFSCORRUPTED);
423 if (error) {
424 return error;
426 if (!XFS_DFORK_Q(dip))
427 return 0;
428 ASSERT(ip->i_afp == NULL);
429 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
430 ip->i_afp->if_ext_max =
431 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
432 switch (dip->di_aformat) {
433 case XFS_DINODE_FMT_LOCAL:
434 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
435 size = be16_to_cpu(atp->hdr.totsize);
437 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
438 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
439 "corrupt inode %Lu "
440 "(bad attr fork size %Ld).",
441 (unsigned long long) ip->i_ino,
442 (long long) size);
443 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
444 XFS_ERRLEVEL_LOW,
445 ip->i_mount, dip);
446 return XFS_ERROR(EFSCORRUPTED);
449 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
450 break;
451 case XFS_DINODE_FMT_EXTENTS:
452 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
453 break;
454 case XFS_DINODE_FMT_BTREE:
455 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
456 break;
457 default:
458 error = XFS_ERROR(EFSCORRUPTED);
459 break;
461 if (error) {
462 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
463 ip->i_afp = NULL;
464 xfs_idestroy_fork(ip, XFS_DATA_FORK);
466 return error;
470 * The file is in-lined in the on-disk inode.
471 * If it fits into if_inline_data, then copy
472 * it there, otherwise allocate a buffer for it
473 * and copy the data there. Either way, set
474 * if_data to point at the data.
475 * If we allocate a buffer for the data, make
476 * sure that its size is a multiple of 4 and
477 * record the real size in i_real_bytes.
479 STATIC int
480 xfs_iformat_local(
481 xfs_inode_t *ip,
482 xfs_dinode_t *dip,
483 int whichfork,
484 int size)
486 xfs_ifork_t *ifp;
487 int real_size;
490 * If the size is unreasonable, then something
491 * is wrong and we just bail out rather than crash in
492 * kmem_alloc() or memcpy() below.
494 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
495 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
496 "corrupt inode %Lu "
497 "(bad size %d for local fork, size = %d).",
498 (unsigned long long) ip->i_ino, size,
499 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
500 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
501 ip->i_mount, dip);
502 return XFS_ERROR(EFSCORRUPTED);
504 ifp = XFS_IFORK_PTR(ip, whichfork);
505 real_size = 0;
506 if (size == 0)
507 ifp->if_u1.if_data = NULL;
508 else if (size <= sizeof(ifp->if_u2.if_inline_data))
509 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
510 else {
511 real_size = roundup(size, 4);
512 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
514 ifp->if_bytes = size;
515 ifp->if_real_bytes = real_size;
516 if (size)
517 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
518 ifp->if_flags &= ~XFS_IFEXTENTS;
519 ifp->if_flags |= XFS_IFINLINE;
520 return 0;
524 * The file consists of a set of extents all
525 * of which fit into the on-disk inode.
526 * If there are few enough extents to fit into
527 * the if_inline_ext, then copy them there.
528 * Otherwise allocate a buffer for them and copy
529 * them into it. Either way, set if_extents
530 * to point at the extents.
532 STATIC int
533 xfs_iformat_extents(
534 xfs_inode_t *ip,
535 xfs_dinode_t *dip,
536 int whichfork)
538 xfs_bmbt_rec_t *dp;
539 xfs_ifork_t *ifp;
540 int nex;
541 int size;
542 int i;
544 ifp = XFS_IFORK_PTR(ip, whichfork);
545 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
546 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
549 * If the number of extents is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu ((a)extents = %d).",
556 (unsigned long long) ip->i_ino, nex);
557 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
558 ip->i_mount, dip);
559 return XFS_ERROR(EFSCORRUPTED);
562 ifp->if_real_bytes = 0;
563 if (nex == 0)
564 ifp->if_u1.if_extents = NULL;
565 else if (nex <= XFS_INLINE_EXTS)
566 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
567 else
568 xfs_iext_add(ifp, 0, nex);
570 ifp->if_bytes = size;
571 if (size) {
572 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
573 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
574 for (i = 0; i < nex; i++, dp++) {
575 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
576 ep->l0 = get_unaligned_be64(&dp->l0);
577 ep->l1 = get_unaligned_be64(&dp->l1);
579 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
580 if (whichfork != XFS_DATA_FORK ||
581 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
582 if (unlikely(xfs_check_nostate_extents(
583 ifp, 0, nex))) {
584 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
585 XFS_ERRLEVEL_LOW,
586 ip->i_mount);
587 return XFS_ERROR(EFSCORRUPTED);
590 ifp->if_flags |= XFS_IFEXTENTS;
591 return 0;
595 * The file has too many extents to fit into
596 * the inode, so they are in B-tree format.
597 * Allocate a buffer for the root of the B-tree
598 * and copy the root into it. The i_extents
599 * field will remain NULL until all of the
600 * extents are read in (when they are needed).
602 STATIC int
603 xfs_iformat_btree(
604 xfs_inode_t *ip,
605 xfs_dinode_t *dip,
606 int whichfork)
608 xfs_bmdr_block_t *dfp;
609 xfs_ifork_t *ifp;
610 /* REFERENCED */
611 int nrecs;
612 int size;
614 ifp = XFS_IFORK_PTR(ip, whichfork);
615 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
616 size = XFS_BMAP_BROOT_SPACE(dfp);
617 nrecs = be16_to_cpu(dfp->bb_numrecs);
620 * blow out if -- fork has less extents than can fit in
621 * fork (fork shouldn't be a btree format), root btree
622 * block has more records than can fit into the fork,
623 * or the number of extents is greater than the number of
624 * blocks.
626 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
627 || XFS_BMDR_SPACE_CALC(nrecs) >
628 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
629 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
630 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
631 "corrupt inode %Lu (btree).",
632 (unsigned long long) ip->i_ino);
633 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
634 ip->i_mount);
635 return XFS_ERROR(EFSCORRUPTED);
638 ifp->if_broot_bytes = size;
639 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
640 ASSERT(ifp->if_broot != NULL);
642 * Copy and convert from the on-disk structure
643 * to the in-memory structure.
645 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
646 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
647 ifp->if_broot, size);
648 ifp->if_flags &= ~XFS_IFEXTENTS;
649 ifp->if_flags |= XFS_IFBROOT;
651 return 0;
654 STATIC void
655 xfs_dinode_from_disk(
656 xfs_icdinode_t *to,
657 xfs_dinode_t *from)
659 to->di_magic = be16_to_cpu(from->di_magic);
660 to->di_mode = be16_to_cpu(from->di_mode);
661 to->di_version = from ->di_version;
662 to->di_format = from->di_format;
663 to->di_onlink = be16_to_cpu(from->di_onlink);
664 to->di_uid = be32_to_cpu(from->di_uid);
665 to->di_gid = be32_to_cpu(from->di_gid);
666 to->di_nlink = be32_to_cpu(from->di_nlink);
667 to->di_projid = be16_to_cpu(from->di_projid);
668 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
669 to->di_flushiter = be16_to_cpu(from->di_flushiter);
670 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
671 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
672 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
673 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
674 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
675 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
676 to->di_size = be64_to_cpu(from->di_size);
677 to->di_nblocks = be64_to_cpu(from->di_nblocks);
678 to->di_extsize = be32_to_cpu(from->di_extsize);
679 to->di_nextents = be32_to_cpu(from->di_nextents);
680 to->di_anextents = be16_to_cpu(from->di_anextents);
681 to->di_forkoff = from->di_forkoff;
682 to->di_aformat = from->di_aformat;
683 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
684 to->di_dmstate = be16_to_cpu(from->di_dmstate);
685 to->di_flags = be16_to_cpu(from->di_flags);
686 to->di_gen = be32_to_cpu(from->di_gen);
689 void
690 xfs_dinode_to_disk(
691 xfs_dinode_t *to,
692 xfs_icdinode_t *from)
694 to->di_magic = cpu_to_be16(from->di_magic);
695 to->di_mode = cpu_to_be16(from->di_mode);
696 to->di_version = from ->di_version;
697 to->di_format = from->di_format;
698 to->di_onlink = cpu_to_be16(from->di_onlink);
699 to->di_uid = cpu_to_be32(from->di_uid);
700 to->di_gid = cpu_to_be32(from->di_gid);
701 to->di_nlink = cpu_to_be32(from->di_nlink);
702 to->di_projid = cpu_to_be16(from->di_projid);
703 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
704 to->di_flushiter = cpu_to_be16(from->di_flushiter);
705 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
706 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
707 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
708 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
709 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
710 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
711 to->di_size = cpu_to_be64(from->di_size);
712 to->di_nblocks = cpu_to_be64(from->di_nblocks);
713 to->di_extsize = cpu_to_be32(from->di_extsize);
714 to->di_nextents = cpu_to_be32(from->di_nextents);
715 to->di_anextents = cpu_to_be16(from->di_anextents);
716 to->di_forkoff = from->di_forkoff;
717 to->di_aformat = from->di_aformat;
718 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
719 to->di_dmstate = cpu_to_be16(from->di_dmstate);
720 to->di_flags = cpu_to_be16(from->di_flags);
721 to->di_gen = cpu_to_be32(from->di_gen);
724 STATIC uint
725 _xfs_dic2xflags(
726 __uint16_t di_flags)
728 uint flags = 0;
730 if (di_flags & XFS_DIFLAG_ANY) {
731 if (di_flags & XFS_DIFLAG_REALTIME)
732 flags |= XFS_XFLAG_REALTIME;
733 if (di_flags & XFS_DIFLAG_PREALLOC)
734 flags |= XFS_XFLAG_PREALLOC;
735 if (di_flags & XFS_DIFLAG_IMMUTABLE)
736 flags |= XFS_XFLAG_IMMUTABLE;
737 if (di_flags & XFS_DIFLAG_APPEND)
738 flags |= XFS_XFLAG_APPEND;
739 if (di_flags & XFS_DIFLAG_SYNC)
740 flags |= XFS_XFLAG_SYNC;
741 if (di_flags & XFS_DIFLAG_NOATIME)
742 flags |= XFS_XFLAG_NOATIME;
743 if (di_flags & XFS_DIFLAG_NODUMP)
744 flags |= XFS_XFLAG_NODUMP;
745 if (di_flags & XFS_DIFLAG_RTINHERIT)
746 flags |= XFS_XFLAG_RTINHERIT;
747 if (di_flags & XFS_DIFLAG_PROJINHERIT)
748 flags |= XFS_XFLAG_PROJINHERIT;
749 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
750 flags |= XFS_XFLAG_NOSYMLINKS;
751 if (di_flags & XFS_DIFLAG_EXTSIZE)
752 flags |= XFS_XFLAG_EXTSIZE;
753 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
754 flags |= XFS_XFLAG_EXTSZINHERIT;
755 if (di_flags & XFS_DIFLAG_NODEFRAG)
756 flags |= XFS_XFLAG_NODEFRAG;
757 if (di_flags & XFS_DIFLAG_FILESTREAM)
758 flags |= XFS_XFLAG_FILESTREAM;
761 return flags;
764 uint
765 xfs_ip2xflags(
766 xfs_inode_t *ip)
768 xfs_icdinode_t *dic = &ip->i_d;
770 return _xfs_dic2xflags(dic->di_flags) |
771 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
774 uint
775 xfs_dic2xflags(
776 xfs_dinode_t *dip)
778 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
779 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
783 * Read the disk inode attributes into the in-core inode structure.
786 xfs_iread(
787 xfs_mount_t *mp,
788 xfs_trans_t *tp,
789 xfs_inode_t *ip,
790 uint iget_flags)
792 xfs_buf_t *bp;
793 xfs_dinode_t *dip;
794 int error;
797 * Fill in the location information in the in-core inode.
799 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
800 if (error)
801 return error;
804 * Get pointers to the on-disk inode and the buffer containing it.
806 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
807 XFS_BUF_LOCK, iget_flags);
808 if (error)
809 return error;
810 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
813 * If we got something that isn't an inode it means someone
814 * (nfs or dmi) has a stale handle.
816 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
817 #ifdef DEBUG
818 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
819 "dip->di_magic (0x%x) != "
820 "XFS_DINODE_MAGIC (0x%x)",
821 be16_to_cpu(dip->di_magic),
822 XFS_DINODE_MAGIC);
823 #endif /* DEBUG */
824 error = XFS_ERROR(EINVAL);
825 goto out_brelse;
829 * If the on-disk inode is already linked to a directory
830 * entry, copy all of the inode into the in-core inode.
831 * xfs_iformat() handles copying in the inode format
832 * specific information.
833 * Otherwise, just get the truly permanent information.
835 if (dip->di_mode) {
836 xfs_dinode_from_disk(&ip->i_d, dip);
837 error = xfs_iformat(ip, dip);
838 if (error) {
839 #ifdef DEBUG
840 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
841 "xfs_iformat() returned error %d",
842 error);
843 #endif /* DEBUG */
844 goto out_brelse;
846 } else {
847 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
848 ip->i_d.di_version = dip->di_version;
849 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
850 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
852 * Make sure to pull in the mode here as well in
853 * case the inode is released without being used.
854 * This ensures that xfs_inactive() will see that
855 * the inode is already free and not try to mess
856 * with the uninitialized part of it.
858 ip->i_d.di_mode = 0;
860 * Initialize the per-fork minima and maxima for a new
861 * inode here. xfs_iformat will do it for old inodes.
863 ip->i_df.if_ext_max =
864 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
868 * The inode format changed when we moved the link count and
869 * made it 32 bits long. If this is an old format inode,
870 * convert it in memory to look like a new one. If it gets
871 * flushed to disk we will convert back before flushing or
872 * logging it. We zero out the new projid field and the old link
873 * count field. We'll handle clearing the pad field (the remains
874 * of the old uuid field) when we actually convert the inode to
875 * the new format. We don't change the version number so that we
876 * can distinguish this from a real new format inode.
878 if (ip->i_d.di_version == 1) {
879 ip->i_d.di_nlink = ip->i_d.di_onlink;
880 ip->i_d.di_onlink = 0;
881 ip->i_d.di_projid = 0;
884 ip->i_delayed_blks = 0;
885 ip->i_size = ip->i_d.di_size;
888 * Mark the buffer containing the inode as something to keep
889 * around for a while. This helps to keep recently accessed
890 * meta-data in-core longer.
892 XFS_BUF_SET_REF(bp, XFS_INO_REF);
895 * Use xfs_trans_brelse() to release the buffer containing the
896 * on-disk inode, because it was acquired with xfs_trans_read_buf()
897 * in xfs_itobp() above. If tp is NULL, this is just a normal
898 * brelse(). If we're within a transaction, then xfs_trans_brelse()
899 * will only release the buffer if it is not dirty within the
900 * transaction. It will be OK to release the buffer in this case,
901 * because inodes on disk are never destroyed and we will be
902 * locking the new in-core inode before putting it in the hash
903 * table where other processes can find it. Thus we don't have
904 * to worry about the inode being changed just because we released
905 * the buffer.
907 out_brelse:
908 xfs_trans_brelse(tp, bp);
909 return error;
913 * Read in extents from a btree-format inode.
914 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
917 xfs_iread_extents(
918 xfs_trans_t *tp,
919 xfs_inode_t *ip,
920 int whichfork)
922 int error;
923 xfs_ifork_t *ifp;
924 xfs_extnum_t nextents;
925 size_t size;
927 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
928 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
929 ip->i_mount);
930 return XFS_ERROR(EFSCORRUPTED);
932 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
933 size = nextents * sizeof(xfs_bmbt_rec_t);
934 ifp = XFS_IFORK_PTR(ip, whichfork);
937 * We know that the size is valid (it's checked in iformat_btree)
939 ifp->if_lastex = NULLEXTNUM;
940 ifp->if_bytes = ifp->if_real_bytes = 0;
941 ifp->if_flags |= XFS_IFEXTENTS;
942 xfs_iext_add(ifp, 0, nextents);
943 error = xfs_bmap_read_extents(tp, ip, whichfork);
944 if (error) {
945 xfs_iext_destroy(ifp);
946 ifp->if_flags &= ~XFS_IFEXTENTS;
947 return error;
949 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
950 return 0;
954 * Allocate an inode on disk and return a copy of its in-core version.
955 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
956 * appropriately within the inode. The uid and gid for the inode are
957 * set according to the contents of the given cred structure.
959 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
960 * has a free inode available, call xfs_iget()
961 * to obtain the in-core version of the allocated inode. Finally,
962 * fill in the inode and log its initial contents. In this case,
963 * ialloc_context would be set to NULL and call_again set to false.
965 * If xfs_dialloc() does not have an available inode,
966 * it will replenish its supply by doing an allocation. Since we can
967 * only do one allocation within a transaction without deadlocks, we
968 * must commit the current transaction before returning the inode itself.
969 * In this case, therefore, we will set call_again to true and return.
970 * The caller should then commit the current transaction, start a new
971 * transaction, and call xfs_ialloc() again to actually get the inode.
973 * To ensure that some other process does not grab the inode that
974 * was allocated during the first call to xfs_ialloc(), this routine
975 * also returns the [locked] bp pointing to the head of the freelist
976 * as ialloc_context. The caller should hold this buffer across
977 * the commit and pass it back into this routine on the second call.
979 * If we are allocating quota inodes, we do not have a parent inode
980 * to attach to or associate with (i.e. pip == NULL) because they
981 * are not linked into the directory structure - they are attached
982 * directly to the superblock - and so have no parent.
985 xfs_ialloc(
986 xfs_trans_t *tp,
987 xfs_inode_t *pip,
988 mode_t mode,
989 xfs_nlink_t nlink,
990 xfs_dev_t rdev,
991 cred_t *cr,
992 xfs_prid_t prid,
993 int okalloc,
994 xfs_buf_t **ialloc_context,
995 boolean_t *call_again,
996 xfs_inode_t **ipp)
998 xfs_ino_t ino;
999 xfs_inode_t *ip;
1000 uint flags;
1001 int error;
1002 timespec_t tv;
1003 int filestreams = 0;
1006 * Call the space management code to pick
1007 * the on-disk inode to be allocated.
1009 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1010 ialloc_context, call_again, &ino);
1011 if (error)
1012 return error;
1013 if (*call_again || ino == NULLFSINO) {
1014 *ipp = NULL;
1015 return 0;
1017 ASSERT(*ialloc_context == NULL);
1020 * Get the in-core inode with the lock held exclusively.
1021 * This is because we're setting fields here we need
1022 * to prevent others from looking at until we're done.
1024 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1025 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1026 if (error)
1027 return error;
1028 ASSERT(ip != NULL);
1030 ip->i_d.di_mode = (__uint16_t)mode;
1031 ip->i_d.di_onlink = 0;
1032 ip->i_d.di_nlink = nlink;
1033 ASSERT(ip->i_d.di_nlink == nlink);
1034 ip->i_d.di_uid = current_fsuid();
1035 ip->i_d.di_gid = current_fsgid();
1036 ip->i_d.di_projid = prid;
1037 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1040 * If the superblock version is up to where we support new format
1041 * inodes and this is currently an old format inode, then change
1042 * the inode version number now. This way we only do the conversion
1043 * here rather than here and in the flush/logging code.
1045 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1046 ip->i_d.di_version == 1) {
1047 ip->i_d.di_version = 2;
1049 * We've already zeroed the old link count, the projid field,
1050 * and the pad field.
1055 * Project ids won't be stored on disk if we are using a version 1 inode.
1057 if ((prid != 0) && (ip->i_d.di_version == 1))
1058 xfs_bump_ino_vers2(tp, ip);
1060 if (pip && XFS_INHERIT_GID(pip)) {
1061 ip->i_d.di_gid = pip->i_d.di_gid;
1062 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1063 ip->i_d.di_mode |= S_ISGID;
1068 * If the group ID of the new file does not match the effective group
1069 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1070 * (and only if the irix_sgid_inherit compatibility variable is set).
1072 if ((irix_sgid_inherit) &&
1073 (ip->i_d.di_mode & S_ISGID) &&
1074 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1075 ip->i_d.di_mode &= ~S_ISGID;
1078 ip->i_d.di_size = 0;
1079 ip->i_size = 0;
1080 ip->i_d.di_nextents = 0;
1081 ASSERT(ip->i_d.di_nblocks == 0);
1083 nanotime(&tv);
1084 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1085 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1086 ip->i_d.di_atime = ip->i_d.di_mtime;
1087 ip->i_d.di_ctime = ip->i_d.di_mtime;
1090 * di_gen will have been taken care of in xfs_iread.
1092 ip->i_d.di_extsize = 0;
1093 ip->i_d.di_dmevmask = 0;
1094 ip->i_d.di_dmstate = 0;
1095 ip->i_d.di_flags = 0;
1096 flags = XFS_ILOG_CORE;
1097 switch (mode & S_IFMT) {
1098 case S_IFIFO:
1099 case S_IFCHR:
1100 case S_IFBLK:
1101 case S_IFSOCK:
1102 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1103 ip->i_df.if_u2.if_rdev = rdev;
1104 ip->i_df.if_flags = 0;
1105 flags |= XFS_ILOG_DEV;
1106 break;
1107 case S_IFREG:
1109 * we can't set up filestreams until after the VFS inode
1110 * is set up properly.
1112 if (pip && xfs_inode_is_filestream(pip))
1113 filestreams = 1;
1114 /* fall through */
1115 case S_IFDIR:
1116 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1117 uint di_flags = 0;
1119 if ((mode & S_IFMT) == S_IFDIR) {
1120 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1121 di_flags |= XFS_DIFLAG_RTINHERIT;
1122 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1123 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1124 ip->i_d.di_extsize = pip->i_d.di_extsize;
1126 } else if ((mode & S_IFMT) == S_IFREG) {
1127 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1128 di_flags |= XFS_DIFLAG_REALTIME;
1129 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1130 di_flags |= XFS_DIFLAG_EXTSIZE;
1131 ip->i_d.di_extsize = pip->i_d.di_extsize;
1134 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1135 xfs_inherit_noatime)
1136 di_flags |= XFS_DIFLAG_NOATIME;
1137 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1138 xfs_inherit_nodump)
1139 di_flags |= XFS_DIFLAG_NODUMP;
1140 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1141 xfs_inherit_sync)
1142 di_flags |= XFS_DIFLAG_SYNC;
1143 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1144 xfs_inherit_nosymlinks)
1145 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1146 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1147 di_flags |= XFS_DIFLAG_PROJINHERIT;
1148 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1149 xfs_inherit_nodefrag)
1150 di_flags |= XFS_DIFLAG_NODEFRAG;
1151 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1152 di_flags |= XFS_DIFLAG_FILESTREAM;
1153 ip->i_d.di_flags |= di_flags;
1155 /* FALLTHROUGH */
1156 case S_IFLNK:
1157 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1158 ip->i_df.if_flags = XFS_IFEXTENTS;
1159 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1160 ip->i_df.if_u1.if_extents = NULL;
1161 break;
1162 default:
1163 ASSERT(0);
1166 * Attribute fork settings for new inode.
1168 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1169 ip->i_d.di_anextents = 0;
1172 * Log the new values stuffed into the inode.
1174 xfs_trans_log_inode(tp, ip, flags);
1176 /* now that we have an i_mode we can setup inode ops and unlock */
1177 xfs_setup_inode(ip);
1179 /* now we have set up the vfs inode we can associate the filestream */
1180 if (filestreams) {
1181 error = xfs_filestream_associate(pip, ip);
1182 if (error < 0)
1183 return -error;
1184 if (!error)
1185 xfs_iflags_set(ip, XFS_IFILESTREAM);
1188 *ipp = ip;
1189 return 0;
1193 * Check to make sure that there are no blocks allocated to the
1194 * file beyond the size of the file. We don't check this for
1195 * files with fixed size extents or real time extents, but we
1196 * at least do it for regular files.
1198 #ifdef DEBUG
1199 void
1200 xfs_isize_check(
1201 xfs_mount_t *mp,
1202 xfs_inode_t *ip,
1203 xfs_fsize_t isize)
1205 xfs_fileoff_t map_first;
1206 int nimaps;
1207 xfs_bmbt_irec_t imaps[2];
1209 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1210 return;
1212 if (XFS_IS_REALTIME_INODE(ip))
1213 return;
1215 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1216 return;
1218 nimaps = 2;
1219 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1221 * The filesystem could be shutting down, so bmapi may return
1222 * an error.
1224 if (xfs_bmapi(NULL, ip, map_first,
1225 (XFS_B_TO_FSB(mp,
1226 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1227 map_first),
1228 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1229 NULL, NULL))
1230 return;
1231 ASSERT(nimaps == 1);
1232 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1234 #endif /* DEBUG */
1237 * Calculate the last possible buffered byte in a file. This must
1238 * include data that was buffered beyond the EOF by the write code.
1239 * This also needs to deal with overflowing the xfs_fsize_t type
1240 * which can happen for sizes near the limit.
1242 * We also need to take into account any blocks beyond the EOF. It
1243 * may be the case that they were buffered by a write which failed.
1244 * In that case the pages will still be in memory, but the inode size
1245 * will never have been updated.
1247 STATIC xfs_fsize_t
1248 xfs_file_last_byte(
1249 xfs_inode_t *ip)
1251 xfs_mount_t *mp;
1252 xfs_fsize_t last_byte;
1253 xfs_fileoff_t last_block;
1254 xfs_fileoff_t size_last_block;
1255 int error;
1257 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1259 mp = ip->i_mount;
1261 * Only check for blocks beyond the EOF if the extents have
1262 * been read in. This eliminates the need for the inode lock,
1263 * and it also saves us from looking when it really isn't
1264 * necessary.
1266 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1267 xfs_ilock(ip, XFS_ILOCK_SHARED);
1268 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1269 XFS_DATA_FORK);
1270 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1271 if (error) {
1272 last_block = 0;
1274 } else {
1275 last_block = 0;
1277 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1278 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1280 last_byte = XFS_FSB_TO_B(mp, last_block);
1281 if (last_byte < 0) {
1282 return XFS_MAXIOFFSET(mp);
1284 last_byte += (1 << mp->m_writeio_log);
1285 if (last_byte < 0) {
1286 return XFS_MAXIOFFSET(mp);
1288 return last_byte;
1291 #if defined(XFS_RW_TRACE)
1292 STATIC void
1293 xfs_itrunc_trace(
1294 int tag,
1295 xfs_inode_t *ip,
1296 int flag,
1297 xfs_fsize_t new_size,
1298 xfs_off_t toss_start,
1299 xfs_off_t toss_finish)
1301 if (ip->i_rwtrace == NULL) {
1302 return;
1305 ktrace_enter(ip->i_rwtrace,
1306 (void*)((long)tag),
1307 (void*)ip,
1308 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1309 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1310 (void*)((long)flag),
1311 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1312 (void*)(unsigned long)(new_size & 0xffffffff),
1313 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1314 (void*)(unsigned long)(toss_start & 0xffffffff),
1315 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1316 (void*)(unsigned long)(toss_finish & 0xffffffff),
1317 (void*)(unsigned long)current_cpu(),
1318 (void*)(unsigned long)current_pid(),
1319 (void*)NULL,
1320 (void*)NULL,
1321 (void*)NULL);
1323 #else
1324 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1325 #endif
1328 * Start the truncation of the file to new_size. The new size
1329 * must be smaller than the current size. This routine will
1330 * clear the buffer and page caches of file data in the removed
1331 * range, and xfs_itruncate_finish() will remove the underlying
1332 * disk blocks.
1334 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1335 * must NOT have the inode lock held at all. This is because we're
1336 * calling into the buffer/page cache code and we can't hold the
1337 * inode lock when we do so.
1339 * We need to wait for any direct I/Os in flight to complete before we
1340 * proceed with the truncate. This is needed to prevent the extents
1341 * being read or written by the direct I/Os from being removed while the
1342 * I/O is in flight as there is no other method of synchronising
1343 * direct I/O with the truncate operation. Also, because we hold
1344 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1345 * started until the truncate completes and drops the lock. Essentially,
1346 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1347 * ordering between direct I/Os and the truncate operation.
1349 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1350 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1351 * in the case that the caller is locking things out of order and
1352 * may not be able to call xfs_itruncate_finish() with the inode lock
1353 * held without dropping the I/O lock. If the caller must drop the
1354 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1355 * must be called again with all the same restrictions as the initial
1356 * call.
1359 xfs_itruncate_start(
1360 xfs_inode_t *ip,
1361 uint flags,
1362 xfs_fsize_t new_size)
1364 xfs_fsize_t last_byte;
1365 xfs_off_t toss_start;
1366 xfs_mount_t *mp;
1367 int error = 0;
1369 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1370 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1371 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1372 (flags == XFS_ITRUNC_MAYBE));
1374 mp = ip->i_mount;
1376 /* wait for the completion of any pending DIOs */
1377 if (new_size == 0 || new_size < ip->i_size)
1378 xfs_ioend_wait(ip);
1381 * Call toss_pages or flushinval_pages to get rid of pages
1382 * overlapping the region being removed. We have to use
1383 * the less efficient flushinval_pages in the case that the
1384 * caller may not be able to finish the truncate without
1385 * dropping the inode's I/O lock. Make sure
1386 * to catch any pages brought in by buffers overlapping
1387 * the EOF by searching out beyond the isize by our
1388 * block size. We round new_size up to a block boundary
1389 * so that we don't toss things on the same block as
1390 * new_size but before it.
1392 * Before calling toss_page or flushinval_pages, make sure to
1393 * call remapf() over the same region if the file is mapped.
1394 * This frees up mapped file references to the pages in the
1395 * given range and for the flushinval_pages case it ensures
1396 * that we get the latest mapped changes flushed out.
1398 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1399 toss_start = XFS_FSB_TO_B(mp, toss_start);
1400 if (toss_start < 0) {
1402 * The place to start tossing is beyond our maximum
1403 * file size, so there is no way that the data extended
1404 * out there.
1406 return 0;
1408 last_byte = xfs_file_last_byte(ip);
1409 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1410 last_byte);
1411 if (last_byte > toss_start) {
1412 if (flags & XFS_ITRUNC_DEFINITE) {
1413 xfs_tosspages(ip, toss_start,
1414 -1, FI_REMAPF_LOCKED);
1415 } else {
1416 error = xfs_flushinval_pages(ip, toss_start,
1417 -1, FI_REMAPF_LOCKED);
1421 #ifdef DEBUG
1422 if (new_size == 0) {
1423 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1425 #endif
1426 return error;
1430 * Shrink the file to the given new_size. The new size must be smaller than
1431 * the current size. This will free up the underlying blocks in the removed
1432 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1434 * The transaction passed to this routine must have made a permanent log
1435 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1436 * given transaction and start new ones, so make sure everything involved in
1437 * the transaction is tidy before calling here. Some transaction will be
1438 * returned to the caller to be committed. The incoming transaction must
1439 * already include the inode, and both inode locks must be held exclusively.
1440 * The inode must also be "held" within the transaction. On return the inode
1441 * will be "held" within the returned transaction. This routine does NOT
1442 * require any disk space to be reserved for it within the transaction.
1444 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1445 * indicates the fork which is to be truncated. For the attribute fork we only
1446 * support truncation to size 0.
1448 * We use the sync parameter to indicate whether or not the first transaction
1449 * we perform might have to be synchronous. For the attr fork, it needs to be
1450 * so if the unlink of the inode is not yet known to be permanent in the log.
1451 * This keeps us from freeing and reusing the blocks of the attribute fork
1452 * before the unlink of the inode becomes permanent.
1454 * For the data fork, we normally have to run synchronously if we're being
1455 * called out of the inactive path or we're being called out of the create path
1456 * where we're truncating an existing file. Either way, the truncate needs to
1457 * be sync so blocks don't reappear in the file with altered data in case of a
1458 * crash. wsync filesystems can run the first case async because anything that
1459 * shrinks the inode has to run sync so by the time we're called here from
1460 * inactive, the inode size is permanently set to 0.
1462 * Calls from the truncate path always need to be sync unless we're in a wsync
1463 * filesystem and the file has already been unlinked.
1465 * The caller is responsible for correctly setting the sync parameter. It gets
1466 * too hard for us to guess here which path we're being called out of just
1467 * based on inode state.
1469 * If we get an error, we must return with the inode locked and linked into the
1470 * current transaction. This keeps things simple for the higher level code,
1471 * because it always knows that the inode is locked and held in the transaction
1472 * that returns to it whether errors occur or not. We don't mark the inode
1473 * dirty on error so that transactions can be easily aborted if possible.
1476 xfs_itruncate_finish(
1477 xfs_trans_t **tp,
1478 xfs_inode_t *ip,
1479 xfs_fsize_t new_size,
1480 int fork,
1481 int sync)
1483 xfs_fsblock_t first_block;
1484 xfs_fileoff_t first_unmap_block;
1485 xfs_fileoff_t last_block;
1486 xfs_filblks_t unmap_len=0;
1487 xfs_mount_t *mp;
1488 xfs_trans_t *ntp;
1489 int done;
1490 int committed;
1491 xfs_bmap_free_t free_list;
1492 int error;
1494 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1495 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1496 ASSERT(*tp != NULL);
1497 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1498 ASSERT(ip->i_transp == *tp);
1499 ASSERT(ip->i_itemp != NULL);
1500 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1503 ntp = *tp;
1504 mp = (ntp)->t_mountp;
1505 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1508 * We only support truncating the entire attribute fork.
1510 if (fork == XFS_ATTR_FORK) {
1511 new_size = 0LL;
1513 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1514 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1516 * The first thing we do is set the size to new_size permanently
1517 * on disk. This way we don't have to worry about anyone ever
1518 * being able to look at the data being freed even in the face
1519 * of a crash. What we're getting around here is the case where
1520 * we free a block, it is allocated to another file, it is written
1521 * to, and then we crash. If the new data gets written to the
1522 * file but the log buffers containing the free and reallocation
1523 * don't, then we'd end up with garbage in the blocks being freed.
1524 * As long as we make the new_size permanent before actually
1525 * freeing any blocks it doesn't matter if they get writtten to.
1527 * The callers must signal into us whether or not the size
1528 * setting here must be synchronous. There are a few cases
1529 * where it doesn't have to be synchronous. Those cases
1530 * occur if the file is unlinked and we know the unlink is
1531 * permanent or if the blocks being truncated are guaranteed
1532 * to be beyond the inode eof (regardless of the link count)
1533 * and the eof value is permanent. Both of these cases occur
1534 * only on wsync-mounted filesystems. In those cases, we're
1535 * guaranteed that no user will ever see the data in the blocks
1536 * that are being truncated so the truncate can run async.
1537 * In the free beyond eof case, the file may wind up with
1538 * more blocks allocated to it than it needs if we crash
1539 * and that won't get fixed until the next time the file
1540 * is re-opened and closed but that's ok as that shouldn't
1541 * be too many blocks.
1543 * However, we can't just make all wsync xactions run async
1544 * because there's one call out of the create path that needs
1545 * to run sync where it's truncating an existing file to size
1546 * 0 whose size is > 0.
1548 * It's probably possible to come up with a test in this
1549 * routine that would correctly distinguish all the above
1550 * cases from the values of the function parameters and the
1551 * inode state but for sanity's sake, I've decided to let the
1552 * layers above just tell us. It's simpler to correctly figure
1553 * out in the layer above exactly under what conditions we
1554 * can run async and I think it's easier for others read and
1555 * follow the logic in case something has to be changed.
1556 * cscope is your friend -- rcc.
1558 * The attribute fork is much simpler.
1560 * For the attribute fork we allow the caller to tell us whether
1561 * the unlink of the inode that led to this call is yet permanent
1562 * in the on disk log. If it is not and we will be freeing extents
1563 * in this inode then we make the first transaction synchronous
1564 * to make sure that the unlink is permanent by the time we free
1565 * the blocks.
1567 if (fork == XFS_DATA_FORK) {
1568 if (ip->i_d.di_nextents > 0) {
1570 * If we are not changing the file size then do
1571 * not update the on-disk file size - we may be
1572 * called from xfs_inactive_free_eofblocks(). If we
1573 * update the on-disk file size and then the system
1574 * crashes before the contents of the file are
1575 * flushed to disk then the files may be full of
1576 * holes (ie NULL files bug).
1578 if (ip->i_size != new_size) {
1579 ip->i_d.di_size = new_size;
1580 ip->i_size = new_size;
1581 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1584 } else if (sync) {
1585 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1586 if (ip->i_d.di_anextents > 0)
1587 xfs_trans_set_sync(ntp);
1589 ASSERT(fork == XFS_DATA_FORK ||
1590 (fork == XFS_ATTR_FORK &&
1591 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1592 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1595 * Since it is possible for space to become allocated beyond
1596 * the end of the file (in a crash where the space is allocated
1597 * but the inode size is not yet updated), simply remove any
1598 * blocks which show up between the new EOF and the maximum
1599 * possible file size. If the first block to be removed is
1600 * beyond the maximum file size (ie it is the same as last_block),
1601 * then there is nothing to do.
1603 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1604 ASSERT(first_unmap_block <= last_block);
1605 done = 0;
1606 if (last_block == first_unmap_block) {
1607 done = 1;
1608 } else {
1609 unmap_len = last_block - first_unmap_block + 1;
1611 while (!done) {
1613 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1614 * will tell us whether it freed the entire range or
1615 * not. If this is a synchronous mount (wsync),
1616 * then we can tell bunmapi to keep all the
1617 * transactions asynchronous since the unlink
1618 * transaction that made this inode inactive has
1619 * already hit the disk. There's no danger of
1620 * the freed blocks being reused, there being a
1621 * crash, and the reused blocks suddenly reappearing
1622 * in this file with garbage in them once recovery
1623 * runs.
1625 xfs_bmap_init(&free_list, &first_block);
1626 error = xfs_bunmapi(ntp, ip,
1627 first_unmap_block, unmap_len,
1628 xfs_bmapi_aflag(fork) |
1629 (sync ? 0 : XFS_BMAPI_ASYNC),
1630 XFS_ITRUNC_MAX_EXTENTS,
1631 &first_block, &free_list,
1632 NULL, &done);
1633 if (error) {
1635 * If the bunmapi call encounters an error,
1636 * return to the caller where the transaction
1637 * can be properly aborted. We just need to
1638 * make sure we're not holding any resources
1639 * that we were not when we came in.
1641 xfs_bmap_cancel(&free_list);
1642 return error;
1646 * Duplicate the transaction that has the permanent
1647 * reservation and commit the old transaction.
1649 error = xfs_bmap_finish(tp, &free_list, &committed);
1650 ntp = *tp;
1651 if (committed) {
1652 /* link the inode into the next xact in the chain */
1653 xfs_trans_ijoin(ntp, ip,
1654 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1655 xfs_trans_ihold(ntp, ip);
1658 if (error) {
1660 * If the bmap finish call encounters an error, return
1661 * to the caller where the transaction can be properly
1662 * aborted. We just need to make sure we're not
1663 * holding any resources that we were not when we came
1664 * in.
1666 * Aborting from this point might lose some blocks in
1667 * the file system, but oh well.
1669 xfs_bmap_cancel(&free_list);
1670 return error;
1673 if (committed) {
1675 * Mark the inode dirty so it will be logged and
1676 * moved forward in the log as part of every commit.
1678 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1681 ntp = xfs_trans_dup(ntp);
1682 error = xfs_trans_commit(*tp, 0);
1683 *tp = ntp;
1685 /* link the inode into the next transaction in the chain */
1686 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1687 xfs_trans_ihold(ntp, ip);
1689 if (error)
1690 return error;
1692 * transaction commit worked ok so we can drop the extra ticket
1693 * reference that we gained in xfs_trans_dup()
1695 xfs_log_ticket_put(ntp->t_ticket);
1696 error = xfs_trans_reserve(ntp, 0,
1697 XFS_ITRUNCATE_LOG_RES(mp), 0,
1698 XFS_TRANS_PERM_LOG_RES,
1699 XFS_ITRUNCATE_LOG_COUNT);
1700 if (error)
1701 return error;
1704 * Only update the size in the case of the data fork, but
1705 * always re-log the inode so that our permanent transaction
1706 * can keep on rolling it forward in the log.
1708 if (fork == XFS_DATA_FORK) {
1709 xfs_isize_check(mp, ip, new_size);
1711 * If we are not changing the file size then do
1712 * not update the on-disk file size - we may be
1713 * called from xfs_inactive_free_eofblocks(). If we
1714 * update the on-disk file size and then the system
1715 * crashes before the contents of the file are
1716 * flushed to disk then the files may be full of
1717 * holes (ie NULL files bug).
1719 if (ip->i_size != new_size) {
1720 ip->i_d.di_size = new_size;
1721 ip->i_size = new_size;
1724 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1725 ASSERT((new_size != 0) ||
1726 (fork == XFS_ATTR_FORK) ||
1727 (ip->i_delayed_blks == 0));
1728 ASSERT((new_size != 0) ||
1729 (fork == XFS_ATTR_FORK) ||
1730 (ip->i_d.di_nextents == 0));
1731 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1732 return 0;
1736 * This is called when the inode's link count goes to 0.
1737 * We place the on-disk inode on a list in the AGI. It
1738 * will be pulled from this list when the inode is freed.
1741 xfs_iunlink(
1742 xfs_trans_t *tp,
1743 xfs_inode_t *ip)
1745 xfs_mount_t *mp;
1746 xfs_agi_t *agi;
1747 xfs_dinode_t *dip;
1748 xfs_buf_t *agibp;
1749 xfs_buf_t *ibp;
1750 xfs_agino_t agino;
1751 short bucket_index;
1752 int offset;
1753 int error;
1755 ASSERT(ip->i_d.di_nlink == 0);
1756 ASSERT(ip->i_d.di_mode != 0);
1757 ASSERT(ip->i_transp == tp);
1759 mp = tp->t_mountp;
1762 * Get the agi buffer first. It ensures lock ordering
1763 * on the list.
1765 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1766 if (error)
1767 return error;
1768 agi = XFS_BUF_TO_AGI(agibp);
1771 * Get the index into the agi hash table for the
1772 * list this inode will go on.
1774 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1775 ASSERT(agino != 0);
1776 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1777 ASSERT(agi->agi_unlinked[bucket_index]);
1778 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1780 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1782 * There is already another inode in the bucket we need
1783 * to add ourselves to. Add us at the front of the list.
1784 * Here we put the head pointer into our next pointer,
1785 * and then we fall through to point the head at us.
1787 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1788 if (error)
1789 return error;
1791 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1792 /* both on-disk, don't endian flip twice */
1793 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1794 offset = ip->i_imap.im_boffset +
1795 offsetof(xfs_dinode_t, di_next_unlinked);
1796 xfs_trans_inode_buf(tp, ibp);
1797 xfs_trans_log_buf(tp, ibp, offset,
1798 (offset + sizeof(xfs_agino_t) - 1));
1799 xfs_inobp_check(mp, ibp);
1803 * Point the bucket head pointer at the inode being inserted.
1805 ASSERT(agino != 0);
1806 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1807 offset = offsetof(xfs_agi_t, agi_unlinked) +
1808 (sizeof(xfs_agino_t) * bucket_index);
1809 xfs_trans_log_buf(tp, agibp, offset,
1810 (offset + sizeof(xfs_agino_t) - 1));
1811 return 0;
1815 * Pull the on-disk inode from the AGI unlinked list.
1817 STATIC int
1818 xfs_iunlink_remove(
1819 xfs_trans_t *tp,
1820 xfs_inode_t *ip)
1822 xfs_ino_t next_ino;
1823 xfs_mount_t *mp;
1824 xfs_agi_t *agi;
1825 xfs_dinode_t *dip;
1826 xfs_buf_t *agibp;
1827 xfs_buf_t *ibp;
1828 xfs_agnumber_t agno;
1829 xfs_agino_t agino;
1830 xfs_agino_t next_agino;
1831 xfs_buf_t *last_ibp;
1832 xfs_dinode_t *last_dip = NULL;
1833 short bucket_index;
1834 int offset, last_offset = 0;
1835 int error;
1837 mp = tp->t_mountp;
1838 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1841 * Get the agi buffer first. It ensures lock ordering
1842 * on the list.
1844 error = xfs_read_agi(mp, tp, agno, &agibp);
1845 if (error)
1846 return error;
1848 agi = XFS_BUF_TO_AGI(agibp);
1851 * Get the index into the agi hash table for the
1852 * list this inode will go on.
1854 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1855 ASSERT(agino != 0);
1856 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1857 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1858 ASSERT(agi->agi_unlinked[bucket_index]);
1860 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1862 * We're at the head of the list. Get the inode's
1863 * on-disk buffer to see if there is anyone after us
1864 * on the list. Only modify our next pointer if it
1865 * is not already NULLAGINO. This saves us the overhead
1866 * of dealing with the buffer when there is no need to
1867 * change it.
1869 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1870 if (error) {
1871 cmn_err(CE_WARN,
1872 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1873 error, mp->m_fsname);
1874 return error;
1876 next_agino = be32_to_cpu(dip->di_next_unlinked);
1877 ASSERT(next_agino != 0);
1878 if (next_agino != NULLAGINO) {
1879 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1880 offset = ip->i_imap.im_boffset +
1881 offsetof(xfs_dinode_t, di_next_unlinked);
1882 xfs_trans_inode_buf(tp, ibp);
1883 xfs_trans_log_buf(tp, ibp, offset,
1884 (offset + sizeof(xfs_agino_t) - 1));
1885 xfs_inobp_check(mp, ibp);
1886 } else {
1887 xfs_trans_brelse(tp, ibp);
1890 * Point the bucket head pointer at the next inode.
1892 ASSERT(next_agino != 0);
1893 ASSERT(next_agino != agino);
1894 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1895 offset = offsetof(xfs_agi_t, agi_unlinked) +
1896 (sizeof(xfs_agino_t) * bucket_index);
1897 xfs_trans_log_buf(tp, agibp, offset,
1898 (offset + sizeof(xfs_agino_t) - 1));
1899 } else {
1901 * We need to search the list for the inode being freed.
1903 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1904 last_ibp = NULL;
1905 while (next_agino != agino) {
1907 * If the last inode wasn't the one pointing to
1908 * us, then release its buffer since we're not
1909 * going to do anything with it.
1911 if (last_ibp != NULL) {
1912 xfs_trans_brelse(tp, last_ibp);
1914 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1915 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1916 &last_ibp, &last_offset, 0);
1917 if (error) {
1918 cmn_err(CE_WARN,
1919 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1920 error, mp->m_fsname);
1921 return error;
1923 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1924 ASSERT(next_agino != NULLAGINO);
1925 ASSERT(next_agino != 0);
1928 * Now last_ibp points to the buffer previous to us on
1929 * the unlinked list. Pull us from the list.
1931 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1932 if (error) {
1933 cmn_err(CE_WARN,
1934 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1935 error, mp->m_fsname);
1936 return error;
1938 next_agino = be32_to_cpu(dip->di_next_unlinked);
1939 ASSERT(next_agino != 0);
1940 ASSERT(next_agino != agino);
1941 if (next_agino != NULLAGINO) {
1942 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1943 offset = ip->i_imap.im_boffset +
1944 offsetof(xfs_dinode_t, di_next_unlinked);
1945 xfs_trans_inode_buf(tp, ibp);
1946 xfs_trans_log_buf(tp, ibp, offset,
1947 (offset + sizeof(xfs_agino_t) - 1));
1948 xfs_inobp_check(mp, ibp);
1949 } else {
1950 xfs_trans_brelse(tp, ibp);
1953 * Point the previous inode on the list to the next inode.
1955 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1956 ASSERT(next_agino != 0);
1957 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1958 xfs_trans_inode_buf(tp, last_ibp);
1959 xfs_trans_log_buf(tp, last_ibp, offset,
1960 (offset + sizeof(xfs_agino_t) - 1));
1961 xfs_inobp_check(mp, last_ibp);
1963 return 0;
1966 STATIC void
1967 xfs_ifree_cluster(
1968 xfs_inode_t *free_ip,
1969 xfs_trans_t *tp,
1970 xfs_ino_t inum)
1972 xfs_mount_t *mp = free_ip->i_mount;
1973 int blks_per_cluster;
1974 int nbufs;
1975 int ninodes;
1976 int i, j, found, pre_flushed;
1977 xfs_daddr_t blkno;
1978 xfs_buf_t *bp;
1979 xfs_inode_t *ip, **ip_found;
1980 xfs_inode_log_item_t *iip;
1981 xfs_log_item_t *lip;
1982 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1984 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1985 blks_per_cluster = 1;
1986 ninodes = mp->m_sb.sb_inopblock;
1987 nbufs = XFS_IALLOC_BLOCKS(mp);
1988 } else {
1989 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1990 mp->m_sb.sb_blocksize;
1991 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1992 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1995 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
1997 for (j = 0; j < nbufs; j++, inum += ninodes) {
1998 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1999 XFS_INO_TO_AGBNO(mp, inum));
2003 * Look for each inode in memory and attempt to lock it,
2004 * we can be racing with flush and tail pushing here.
2005 * any inode we get the locks on, add to an array of
2006 * inode items to process later.
2008 * The get the buffer lock, we could beat a flush
2009 * or tail pushing thread to the lock here, in which
2010 * case they will go looking for the inode buffer
2011 * and fail, we need some other form of interlock
2012 * here.
2014 found = 0;
2015 for (i = 0; i < ninodes; i++) {
2016 read_lock(&pag->pag_ici_lock);
2017 ip = radix_tree_lookup(&pag->pag_ici_root,
2018 XFS_INO_TO_AGINO(mp, (inum + i)));
2020 /* Inode not in memory or we found it already,
2021 * nothing to do
2023 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2024 read_unlock(&pag->pag_ici_lock);
2025 continue;
2028 if (xfs_inode_clean(ip)) {
2029 read_unlock(&pag->pag_ici_lock);
2030 continue;
2033 /* If we can get the locks then add it to the
2034 * list, otherwise by the time we get the bp lock
2035 * below it will already be attached to the
2036 * inode buffer.
2039 /* This inode will already be locked - by us, lets
2040 * keep it that way.
2043 if (ip == free_ip) {
2044 if (xfs_iflock_nowait(ip)) {
2045 xfs_iflags_set(ip, XFS_ISTALE);
2046 if (xfs_inode_clean(ip)) {
2047 xfs_ifunlock(ip);
2048 } else {
2049 ip_found[found++] = ip;
2052 read_unlock(&pag->pag_ici_lock);
2053 continue;
2056 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2057 if (xfs_iflock_nowait(ip)) {
2058 xfs_iflags_set(ip, XFS_ISTALE);
2060 if (xfs_inode_clean(ip)) {
2061 xfs_ifunlock(ip);
2062 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2063 } else {
2064 ip_found[found++] = ip;
2066 } else {
2067 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2070 read_unlock(&pag->pag_ici_lock);
2073 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2074 mp->m_bsize * blks_per_cluster,
2075 XFS_BUF_LOCK);
2077 pre_flushed = 0;
2078 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2079 while (lip) {
2080 if (lip->li_type == XFS_LI_INODE) {
2081 iip = (xfs_inode_log_item_t *)lip;
2082 ASSERT(iip->ili_logged == 1);
2083 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2084 xfs_trans_ail_copy_lsn(mp->m_ail,
2085 &iip->ili_flush_lsn,
2086 &iip->ili_item.li_lsn);
2087 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2088 pre_flushed++;
2090 lip = lip->li_bio_list;
2093 for (i = 0; i < found; i++) {
2094 ip = ip_found[i];
2095 iip = ip->i_itemp;
2097 if (!iip) {
2098 ip->i_update_core = 0;
2099 xfs_ifunlock(ip);
2100 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2101 continue;
2104 iip->ili_last_fields = iip->ili_format.ilf_fields;
2105 iip->ili_format.ilf_fields = 0;
2106 iip->ili_logged = 1;
2107 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2108 &iip->ili_item.li_lsn);
2110 xfs_buf_attach_iodone(bp,
2111 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2112 xfs_istale_done, (xfs_log_item_t *)iip);
2113 if (ip != free_ip) {
2114 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2118 if (found || pre_flushed)
2119 xfs_trans_stale_inode_buf(tp, bp);
2120 xfs_trans_binval(tp, bp);
2123 kmem_free(ip_found);
2124 xfs_put_perag(mp, pag);
2128 * This is called to return an inode to the inode free list.
2129 * The inode should already be truncated to 0 length and have
2130 * no pages associated with it. This routine also assumes that
2131 * the inode is already a part of the transaction.
2133 * The on-disk copy of the inode will have been added to the list
2134 * of unlinked inodes in the AGI. We need to remove the inode from
2135 * that list atomically with respect to freeing it here.
2138 xfs_ifree(
2139 xfs_trans_t *tp,
2140 xfs_inode_t *ip,
2141 xfs_bmap_free_t *flist)
2143 int error;
2144 int delete;
2145 xfs_ino_t first_ino;
2146 xfs_dinode_t *dip;
2147 xfs_buf_t *ibp;
2149 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2150 ASSERT(ip->i_transp == tp);
2151 ASSERT(ip->i_d.di_nlink == 0);
2152 ASSERT(ip->i_d.di_nextents == 0);
2153 ASSERT(ip->i_d.di_anextents == 0);
2154 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2155 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2156 ASSERT(ip->i_d.di_nblocks == 0);
2159 * Pull the on-disk inode from the AGI unlinked list.
2161 error = xfs_iunlink_remove(tp, ip);
2162 if (error != 0) {
2163 return error;
2166 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2167 if (error != 0) {
2168 return error;
2170 ip->i_d.di_mode = 0; /* mark incore inode as free */
2171 ip->i_d.di_flags = 0;
2172 ip->i_d.di_dmevmask = 0;
2173 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2174 ip->i_df.if_ext_max =
2175 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2176 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2177 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2179 * Bump the generation count so no one will be confused
2180 * by reincarnations of this inode.
2182 ip->i_d.di_gen++;
2184 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2186 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
2187 if (error)
2188 return error;
2191 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2192 * from picking up this inode when it is reclaimed (its incore state
2193 * initialzed but not flushed to disk yet). The in-core di_mode is
2194 * already cleared and a corresponding transaction logged.
2195 * The hack here just synchronizes the in-core to on-disk
2196 * di_mode value in advance before the actual inode sync to disk.
2197 * This is OK because the inode is already unlinked and would never
2198 * change its di_mode again for this inode generation.
2199 * This is a temporary hack that would require a proper fix
2200 * in the future.
2202 dip->di_mode = 0;
2204 if (delete) {
2205 xfs_ifree_cluster(ip, tp, first_ino);
2208 return 0;
2212 * Reallocate the space for if_broot based on the number of records
2213 * being added or deleted as indicated in rec_diff. Move the records
2214 * and pointers in if_broot to fit the new size. When shrinking this
2215 * will eliminate holes between the records and pointers created by
2216 * the caller. When growing this will create holes to be filled in
2217 * by the caller.
2219 * The caller must not request to add more records than would fit in
2220 * the on-disk inode root. If the if_broot is currently NULL, then
2221 * if we adding records one will be allocated. The caller must also
2222 * not request that the number of records go below zero, although
2223 * it can go to zero.
2225 * ip -- the inode whose if_broot area is changing
2226 * ext_diff -- the change in the number of records, positive or negative,
2227 * requested for the if_broot array.
2229 void
2230 xfs_iroot_realloc(
2231 xfs_inode_t *ip,
2232 int rec_diff,
2233 int whichfork)
2235 struct xfs_mount *mp = ip->i_mount;
2236 int cur_max;
2237 xfs_ifork_t *ifp;
2238 struct xfs_btree_block *new_broot;
2239 int new_max;
2240 size_t new_size;
2241 char *np;
2242 char *op;
2245 * Handle the degenerate case quietly.
2247 if (rec_diff == 0) {
2248 return;
2251 ifp = XFS_IFORK_PTR(ip, whichfork);
2252 if (rec_diff > 0) {
2254 * If there wasn't any memory allocated before, just
2255 * allocate it now and get out.
2257 if (ifp->if_broot_bytes == 0) {
2258 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2259 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2260 ifp->if_broot_bytes = (int)new_size;
2261 return;
2265 * If there is already an existing if_broot, then we need
2266 * to realloc() it and shift the pointers to their new
2267 * location. The records don't change location because
2268 * they are kept butted up against the btree block header.
2270 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2271 new_max = cur_max + rec_diff;
2272 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2273 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2274 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2275 KM_SLEEP);
2276 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2277 ifp->if_broot_bytes);
2278 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2279 (int)new_size);
2280 ifp->if_broot_bytes = (int)new_size;
2281 ASSERT(ifp->if_broot_bytes <=
2282 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2283 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2284 return;
2288 * rec_diff is less than 0. In this case, we are shrinking the
2289 * if_broot buffer. It must already exist. If we go to zero
2290 * records, just get rid of the root and clear the status bit.
2292 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2293 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2294 new_max = cur_max + rec_diff;
2295 ASSERT(new_max >= 0);
2296 if (new_max > 0)
2297 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2298 else
2299 new_size = 0;
2300 if (new_size > 0) {
2301 new_broot = kmem_alloc(new_size, KM_SLEEP);
2303 * First copy over the btree block header.
2305 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2306 } else {
2307 new_broot = NULL;
2308 ifp->if_flags &= ~XFS_IFBROOT;
2312 * Only copy the records and pointers if there are any.
2314 if (new_max > 0) {
2316 * First copy the records.
2318 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2319 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2320 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2323 * Then copy the pointers.
2325 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2326 ifp->if_broot_bytes);
2327 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2328 (int)new_size);
2329 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2331 kmem_free(ifp->if_broot);
2332 ifp->if_broot = new_broot;
2333 ifp->if_broot_bytes = (int)new_size;
2334 ASSERT(ifp->if_broot_bytes <=
2335 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2336 return;
2341 * This is called when the amount of space needed for if_data
2342 * is increased or decreased. The change in size is indicated by
2343 * the number of bytes that need to be added or deleted in the
2344 * byte_diff parameter.
2346 * If the amount of space needed has decreased below the size of the
2347 * inline buffer, then switch to using the inline buffer. Otherwise,
2348 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2349 * to what is needed.
2351 * ip -- the inode whose if_data area is changing
2352 * byte_diff -- the change in the number of bytes, positive or negative,
2353 * requested for the if_data array.
2355 void
2356 xfs_idata_realloc(
2357 xfs_inode_t *ip,
2358 int byte_diff,
2359 int whichfork)
2361 xfs_ifork_t *ifp;
2362 int new_size;
2363 int real_size;
2365 if (byte_diff == 0) {
2366 return;
2369 ifp = XFS_IFORK_PTR(ip, whichfork);
2370 new_size = (int)ifp->if_bytes + byte_diff;
2371 ASSERT(new_size >= 0);
2373 if (new_size == 0) {
2374 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2375 kmem_free(ifp->if_u1.if_data);
2377 ifp->if_u1.if_data = NULL;
2378 real_size = 0;
2379 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2381 * If the valid extents/data can fit in if_inline_ext/data,
2382 * copy them from the malloc'd vector and free it.
2384 if (ifp->if_u1.if_data == NULL) {
2385 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2386 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2387 ASSERT(ifp->if_real_bytes != 0);
2388 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2389 new_size);
2390 kmem_free(ifp->if_u1.if_data);
2391 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2393 real_size = 0;
2394 } else {
2396 * Stuck with malloc/realloc.
2397 * For inline data, the underlying buffer must be
2398 * a multiple of 4 bytes in size so that it can be
2399 * logged and stay on word boundaries. We enforce
2400 * that here.
2402 real_size = roundup(new_size, 4);
2403 if (ifp->if_u1.if_data == NULL) {
2404 ASSERT(ifp->if_real_bytes == 0);
2405 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2406 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2408 * Only do the realloc if the underlying size
2409 * is really changing.
2411 if (ifp->if_real_bytes != real_size) {
2412 ifp->if_u1.if_data =
2413 kmem_realloc(ifp->if_u1.if_data,
2414 real_size,
2415 ifp->if_real_bytes,
2416 KM_SLEEP);
2418 } else {
2419 ASSERT(ifp->if_real_bytes == 0);
2420 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2421 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2422 ifp->if_bytes);
2425 ifp->if_real_bytes = real_size;
2426 ifp->if_bytes = new_size;
2427 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2430 void
2431 xfs_idestroy_fork(
2432 xfs_inode_t *ip,
2433 int whichfork)
2435 xfs_ifork_t *ifp;
2437 ifp = XFS_IFORK_PTR(ip, whichfork);
2438 if (ifp->if_broot != NULL) {
2439 kmem_free(ifp->if_broot);
2440 ifp->if_broot = NULL;
2444 * If the format is local, then we can't have an extents
2445 * array so just look for an inline data array. If we're
2446 * not local then we may or may not have an extents list,
2447 * so check and free it up if we do.
2449 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2450 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2451 (ifp->if_u1.if_data != NULL)) {
2452 ASSERT(ifp->if_real_bytes != 0);
2453 kmem_free(ifp->if_u1.if_data);
2454 ifp->if_u1.if_data = NULL;
2455 ifp->if_real_bytes = 0;
2457 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2458 ((ifp->if_flags & XFS_IFEXTIREC) ||
2459 ((ifp->if_u1.if_extents != NULL) &&
2460 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2461 ASSERT(ifp->if_real_bytes != 0);
2462 xfs_iext_destroy(ifp);
2464 ASSERT(ifp->if_u1.if_extents == NULL ||
2465 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2466 ASSERT(ifp->if_real_bytes == 0);
2467 if (whichfork == XFS_ATTR_FORK) {
2468 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2469 ip->i_afp = NULL;
2474 * Increment the pin count of the given buffer.
2475 * This value is protected by ipinlock spinlock in the mount structure.
2477 void
2478 xfs_ipin(
2479 xfs_inode_t *ip)
2481 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2483 atomic_inc(&ip->i_pincount);
2487 * Decrement the pin count of the given inode, and wake up
2488 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2489 * inode must have been previously pinned with a call to xfs_ipin().
2491 void
2492 xfs_iunpin(
2493 xfs_inode_t *ip)
2495 ASSERT(atomic_read(&ip->i_pincount) > 0);
2497 if (atomic_dec_and_test(&ip->i_pincount))
2498 wake_up(&ip->i_ipin_wait);
2502 * This is called to unpin an inode. It can be directed to wait or to return
2503 * immediately without waiting for the inode to be unpinned. The caller must
2504 * have the inode locked in at least shared mode so that the buffer cannot be
2505 * subsequently pinned once someone is waiting for it to be unpinned.
2507 STATIC void
2508 __xfs_iunpin_wait(
2509 xfs_inode_t *ip,
2510 int wait)
2512 xfs_inode_log_item_t *iip = ip->i_itemp;
2514 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2515 if (atomic_read(&ip->i_pincount) == 0)
2516 return;
2518 /* Give the log a push to start the unpinning I/O */
2519 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2520 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2521 if (wait)
2522 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2525 static inline void
2526 xfs_iunpin_wait(
2527 xfs_inode_t *ip)
2529 __xfs_iunpin_wait(ip, 1);
2532 static inline void
2533 xfs_iunpin_nowait(
2534 xfs_inode_t *ip)
2536 __xfs_iunpin_wait(ip, 0);
2541 * xfs_iextents_copy()
2543 * This is called to copy the REAL extents (as opposed to the delayed
2544 * allocation extents) from the inode into the given buffer. It
2545 * returns the number of bytes copied into the buffer.
2547 * If there are no delayed allocation extents, then we can just
2548 * memcpy() the extents into the buffer. Otherwise, we need to
2549 * examine each extent in turn and skip those which are delayed.
2552 xfs_iextents_copy(
2553 xfs_inode_t *ip,
2554 xfs_bmbt_rec_t *dp,
2555 int whichfork)
2557 int copied;
2558 int i;
2559 xfs_ifork_t *ifp;
2560 int nrecs;
2561 xfs_fsblock_t start_block;
2563 ifp = XFS_IFORK_PTR(ip, whichfork);
2564 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2565 ASSERT(ifp->if_bytes > 0);
2567 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2568 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2569 ASSERT(nrecs > 0);
2572 * There are some delayed allocation extents in the
2573 * inode, so copy the extents one at a time and skip
2574 * the delayed ones. There must be at least one
2575 * non-delayed extent.
2577 copied = 0;
2578 for (i = 0; i < nrecs; i++) {
2579 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2580 start_block = xfs_bmbt_get_startblock(ep);
2581 if (isnullstartblock(start_block)) {
2583 * It's a delayed allocation extent, so skip it.
2585 continue;
2588 /* Translate to on disk format */
2589 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2590 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2591 dp++;
2592 copied++;
2594 ASSERT(copied != 0);
2595 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2597 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2601 * Each of the following cases stores data into the same region
2602 * of the on-disk inode, so only one of them can be valid at
2603 * any given time. While it is possible to have conflicting formats
2604 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2605 * in EXTENTS format, this can only happen when the fork has
2606 * changed formats after being modified but before being flushed.
2607 * In these cases, the format always takes precedence, because the
2608 * format indicates the current state of the fork.
2610 /*ARGSUSED*/
2611 STATIC void
2612 xfs_iflush_fork(
2613 xfs_inode_t *ip,
2614 xfs_dinode_t *dip,
2615 xfs_inode_log_item_t *iip,
2616 int whichfork,
2617 xfs_buf_t *bp)
2619 char *cp;
2620 xfs_ifork_t *ifp;
2621 xfs_mount_t *mp;
2622 #ifdef XFS_TRANS_DEBUG
2623 int first;
2624 #endif
2625 static const short brootflag[2] =
2626 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2627 static const short dataflag[2] =
2628 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2629 static const short extflag[2] =
2630 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2632 if (!iip)
2633 return;
2634 ifp = XFS_IFORK_PTR(ip, whichfork);
2636 * This can happen if we gave up in iformat in an error path,
2637 * for the attribute fork.
2639 if (!ifp) {
2640 ASSERT(whichfork == XFS_ATTR_FORK);
2641 return;
2643 cp = XFS_DFORK_PTR(dip, whichfork);
2644 mp = ip->i_mount;
2645 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2646 case XFS_DINODE_FMT_LOCAL:
2647 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2648 (ifp->if_bytes > 0)) {
2649 ASSERT(ifp->if_u1.if_data != NULL);
2650 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2651 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2653 break;
2655 case XFS_DINODE_FMT_EXTENTS:
2656 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2657 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2658 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2659 (ifp->if_bytes == 0));
2660 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2661 (ifp->if_bytes > 0));
2662 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2663 (ifp->if_bytes > 0)) {
2664 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2665 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2666 whichfork);
2668 break;
2670 case XFS_DINODE_FMT_BTREE:
2671 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2672 (ifp->if_broot_bytes > 0)) {
2673 ASSERT(ifp->if_broot != NULL);
2674 ASSERT(ifp->if_broot_bytes <=
2675 (XFS_IFORK_SIZE(ip, whichfork) +
2676 XFS_BROOT_SIZE_ADJ));
2677 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2678 (xfs_bmdr_block_t *)cp,
2679 XFS_DFORK_SIZE(dip, mp, whichfork));
2681 break;
2683 case XFS_DINODE_FMT_DEV:
2684 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2685 ASSERT(whichfork == XFS_DATA_FORK);
2686 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2688 break;
2690 case XFS_DINODE_FMT_UUID:
2691 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2692 ASSERT(whichfork == XFS_DATA_FORK);
2693 memcpy(XFS_DFORK_DPTR(dip),
2694 &ip->i_df.if_u2.if_uuid,
2695 sizeof(uuid_t));
2697 break;
2699 default:
2700 ASSERT(0);
2701 break;
2705 STATIC int
2706 xfs_iflush_cluster(
2707 xfs_inode_t *ip,
2708 xfs_buf_t *bp)
2710 xfs_mount_t *mp = ip->i_mount;
2711 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2712 unsigned long first_index, mask;
2713 unsigned long inodes_per_cluster;
2714 int ilist_size;
2715 xfs_inode_t **ilist;
2716 xfs_inode_t *iq;
2717 int nr_found;
2718 int clcount = 0;
2719 int bufwasdelwri;
2720 int i;
2722 ASSERT(pag->pagi_inodeok);
2723 ASSERT(pag->pag_ici_init);
2725 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2726 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2727 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2728 if (!ilist)
2729 return 0;
2731 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2732 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2733 read_lock(&pag->pag_ici_lock);
2734 /* really need a gang lookup range call here */
2735 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2736 first_index, inodes_per_cluster);
2737 if (nr_found == 0)
2738 goto out_free;
2740 for (i = 0; i < nr_found; i++) {
2741 iq = ilist[i];
2742 if (iq == ip)
2743 continue;
2744 /* if the inode lies outside this cluster, we're done. */
2745 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2746 break;
2748 * Do an un-protected check to see if the inode is dirty and
2749 * is a candidate for flushing. These checks will be repeated
2750 * later after the appropriate locks are acquired.
2752 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2753 continue;
2756 * Try to get locks. If any are unavailable or it is pinned,
2757 * then this inode cannot be flushed and is skipped.
2760 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2761 continue;
2762 if (!xfs_iflock_nowait(iq)) {
2763 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2764 continue;
2766 if (xfs_ipincount(iq)) {
2767 xfs_ifunlock(iq);
2768 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2769 continue;
2773 * arriving here means that this inode can be flushed. First
2774 * re-check that it's dirty before flushing.
2776 if (!xfs_inode_clean(iq)) {
2777 int error;
2778 error = xfs_iflush_int(iq, bp);
2779 if (error) {
2780 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2781 goto cluster_corrupt_out;
2783 clcount++;
2784 } else {
2785 xfs_ifunlock(iq);
2787 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2790 if (clcount) {
2791 XFS_STATS_INC(xs_icluster_flushcnt);
2792 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2795 out_free:
2796 read_unlock(&pag->pag_ici_lock);
2797 kmem_free(ilist);
2798 return 0;
2801 cluster_corrupt_out:
2803 * Corruption detected in the clustering loop. Invalidate the
2804 * inode buffer and shut down the filesystem.
2806 read_unlock(&pag->pag_ici_lock);
2808 * Clean up the buffer. If it was B_DELWRI, just release it --
2809 * brelse can handle it with no problems. If not, shut down the
2810 * filesystem before releasing the buffer.
2812 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2813 if (bufwasdelwri)
2814 xfs_buf_relse(bp);
2816 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2818 if (!bufwasdelwri) {
2820 * Just like incore_relse: if we have b_iodone functions,
2821 * mark the buffer as an error and call them. Otherwise
2822 * mark it as stale and brelse.
2824 if (XFS_BUF_IODONE_FUNC(bp)) {
2825 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2826 XFS_BUF_UNDONE(bp);
2827 XFS_BUF_STALE(bp);
2828 XFS_BUF_ERROR(bp,EIO);
2829 xfs_biodone(bp);
2830 } else {
2831 XFS_BUF_STALE(bp);
2832 xfs_buf_relse(bp);
2837 * Unlocks the flush lock
2839 xfs_iflush_abort(iq);
2840 kmem_free(ilist);
2841 return XFS_ERROR(EFSCORRUPTED);
2845 * xfs_iflush() will write a modified inode's changes out to the
2846 * inode's on disk home. The caller must have the inode lock held
2847 * in at least shared mode and the inode flush completion must be
2848 * active as well. The inode lock will still be held upon return from
2849 * the call and the caller is free to unlock it.
2850 * The inode flush will be completed when the inode reaches the disk.
2851 * The flags indicate how the inode's buffer should be written out.
2854 xfs_iflush(
2855 xfs_inode_t *ip,
2856 uint flags)
2858 xfs_inode_log_item_t *iip;
2859 xfs_buf_t *bp;
2860 xfs_dinode_t *dip;
2861 xfs_mount_t *mp;
2862 int error;
2863 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
2864 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
2866 XFS_STATS_INC(xs_iflush_count);
2868 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2869 ASSERT(!completion_done(&ip->i_flush));
2870 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2871 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2873 iip = ip->i_itemp;
2874 mp = ip->i_mount;
2877 * If the inode isn't dirty, then just release the inode flush lock and
2878 * do nothing.
2880 if (xfs_inode_clean(ip)) {
2881 xfs_ifunlock(ip);
2882 return 0;
2886 * We can't flush the inode until it is unpinned, so wait for it if we
2887 * are allowed to block. We know noone new can pin it, because we are
2888 * holding the inode lock shared and you need to hold it exclusively to
2889 * pin the inode.
2891 * If we are not allowed to block, force the log out asynchronously so
2892 * that when we come back the inode will be unpinned. If other inodes
2893 * in the same cluster are dirty, they will probably write the inode
2894 * out for us if they occur after the log force completes.
2896 if (noblock && xfs_ipincount(ip)) {
2897 xfs_iunpin_nowait(ip);
2898 xfs_ifunlock(ip);
2899 return EAGAIN;
2901 xfs_iunpin_wait(ip);
2904 * For stale inodes we cannot rely on the backing buffer remaining
2905 * stale in cache for the remaining life of the stale inode and so
2906 * xfs_itobp() below may give us a buffer that no longer contains
2907 * inodes below. We have to check this after ensuring the inode is
2908 * unpinned so that it is safe to reclaim the stale inode after the
2909 * flush call.
2911 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2912 xfs_ifunlock(ip);
2913 return 0;
2917 * This may have been unpinned because the filesystem is shutting
2918 * down forcibly. If that's the case we must not write this inode
2919 * to disk, because the log record didn't make it to disk!
2921 if (XFS_FORCED_SHUTDOWN(mp)) {
2922 ip->i_update_core = 0;
2923 if (iip)
2924 iip->ili_format.ilf_fields = 0;
2925 xfs_ifunlock(ip);
2926 return XFS_ERROR(EIO);
2930 * Decide how buffer will be flushed out. This is done before
2931 * the call to xfs_iflush_int because this field is zeroed by it.
2933 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2935 * Flush out the inode buffer according to the directions
2936 * of the caller. In the cases where the caller has given
2937 * us a choice choose the non-delwri case. This is because
2938 * the inode is in the AIL and we need to get it out soon.
2940 switch (flags) {
2941 case XFS_IFLUSH_SYNC:
2942 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2943 flags = 0;
2944 break;
2945 case XFS_IFLUSH_ASYNC_NOBLOCK:
2946 case XFS_IFLUSH_ASYNC:
2947 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2948 flags = INT_ASYNC;
2949 break;
2950 case XFS_IFLUSH_DELWRI:
2951 flags = INT_DELWRI;
2952 break;
2953 default:
2954 ASSERT(0);
2955 flags = 0;
2956 break;
2958 } else {
2959 switch (flags) {
2960 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2961 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2962 case XFS_IFLUSH_DELWRI:
2963 flags = INT_DELWRI;
2964 break;
2965 case XFS_IFLUSH_ASYNC_NOBLOCK:
2966 case XFS_IFLUSH_ASYNC:
2967 flags = INT_ASYNC;
2968 break;
2969 case XFS_IFLUSH_SYNC:
2970 flags = 0;
2971 break;
2972 default:
2973 ASSERT(0);
2974 flags = 0;
2975 break;
2980 * Get the buffer containing the on-disk inode.
2982 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2983 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
2984 if (error || !bp) {
2985 xfs_ifunlock(ip);
2986 return error;
2990 * First flush out the inode that xfs_iflush was called with.
2992 error = xfs_iflush_int(ip, bp);
2993 if (error)
2994 goto corrupt_out;
2997 * If the buffer is pinned then push on the log now so we won't
2998 * get stuck waiting in the write for too long.
3000 if (XFS_BUF_ISPINNED(bp))
3001 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3004 * inode clustering:
3005 * see if other inodes can be gathered into this write
3007 error = xfs_iflush_cluster(ip, bp);
3008 if (error)
3009 goto cluster_corrupt_out;
3011 if (flags & INT_DELWRI) {
3012 xfs_bdwrite(mp, bp);
3013 } else if (flags & INT_ASYNC) {
3014 error = xfs_bawrite(mp, bp);
3015 } else {
3016 error = xfs_bwrite(mp, bp);
3018 return error;
3020 corrupt_out:
3021 xfs_buf_relse(bp);
3022 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3023 cluster_corrupt_out:
3025 * Unlocks the flush lock
3027 xfs_iflush_abort(ip);
3028 return XFS_ERROR(EFSCORRUPTED);
3032 STATIC int
3033 xfs_iflush_int(
3034 xfs_inode_t *ip,
3035 xfs_buf_t *bp)
3037 xfs_inode_log_item_t *iip;
3038 xfs_dinode_t *dip;
3039 xfs_mount_t *mp;
3040 #ifdef XFS_TRANS_DEBUG
3041 int first;
3042 #endif
3044 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3045 ASSERT(!completion_done(&ip->i_flush));
3046 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3047 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3049 iip = ip->i_itemp;
3050 mp = ip->i_mount;
3054 * If the inode isn't dirty, then just release the inode
3055 * flush lock and do nothing.
3057 if (xfs_inode_clean(ip)) {
3058 xfs_ifunlock(ip);
3059 return 0;
3062 /* set *dip = inode's place in the buffer */
3063 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3066 * Clear i_update_core before copying out the data.
3067 * This is for coordination with our timestamp updates
3068 * that don't hold the inode lock. They will always
3069 * update the timestamps BEFORE setting i_update_core,
3070 * so if we clear i_update_core after they set it we
3071 * are guaranteed to see their updates to the timestamps.
3072 * I believe that this depends on strongly ordered memory
3073 * semantics, but we have that. We use the SYNCHRONIZE
3074 * macro to make sure that the compiler does not reorder
3075 * the i_update_core access below the data copy below.
3077 ip->i_update_core = 0;
3078 SYNCHRONIZE();
3081 * Make sure to get the latest timestamps from the Linux inode.
3083 xfs_synchronize_times(ip);
3085 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
3086 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3087 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3088 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3089 ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3090 goto corrupt_out;
3092 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3093 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3094 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3095 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3096 ip->i_ino, ip, ip->i_d.di_magic);
3097 goto corrupt_out;
3099 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3100 if (XFS_TEST_ERROR(
3101 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3102 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3103 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3104 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3105 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3106 ip->i_ino, ip);
3107 goto corrupt_out;
3109 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3110 if (XFS_TEST_ERROR(
3111 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3112 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3113 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3114 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3115 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3116 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3117 ip->i_ino, ip);
3118 goto corrupt_out;
3121 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3122 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3123 XFS_RANDOM_IFLUSH_5)) {
3124 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3125 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3126 ip->i_ino,
3127 ip->i_d.di_nextents + ip->i_d.di_anextents,
3128 ip->i_d.di_nblocks,
3129 ip);
3130 goto corrupt_out;
3132 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3133 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3134 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3135 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3136 ip->i_ino, ip->i_d.di_forkoff, ip);
3137 goto corrupt_out;
3140 * bump the flush iteration count, used to detect flushes which
3141 * postdate a log record during recovery.
3144 ip->i_d.di_flushiter++;
3147 * Copy the dirty parts of the inode into the on-disk
3148 * inode. We always copy out the core of the inode,
3149 * because if the inode is dirty at all the core must
3150 * be.
3152 xfs_dinode_to_disk(dip, &ip->i_d);
3154 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3155 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3156 ip->i_d.di_flushiter = 0;
3159 * If this is really an old format inode and the superblock version
3160 * has not been updated to support only new format inodes, then
3161 * convert back to the old inode format. If the superblock version
3162 * has been updated, then make the conversion permanent.
3164 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3165 if (ip->i_d.di_version == 1) {
3166 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3168 * Convert it back.
3170 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3171 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3172 } else {
3174 * The superblock version has already been bumped,
3175 * so just make the conversion to the new inode
3176 * format permanent.
3178 ip->i_d.di_version = 2;
3179 dip->di_version = 2;
3180 ip->i_d.di_onlink = 0;
3181 dip->di_onlink = 0;
3182 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3183 memset(&(dip->di_pad[0]), 0,
3184 sizeof(dip->di_pad));
3185 ASSERT(ip->i_d.di_projid == 0);
3189 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3190 if (XFS_IFORK_Q(ip))
3191 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3192 xfs_inobp_check(mp, bp);
3195 * We've recorded everything logged in the inode, so we'd
3196 * like to clear the ilf_fields bits so we don't log and
3197 * flush things unnecessarily. However, we can't stop
3198 * logging all this information until the data we've copied
3199 * into the disk buffer is written to disk. If we did we might
3200 * overwrite the copy of the inode in the log with all the
3201 * data after re-logging only part of it, and in the face of
3202 * a crash we wouldn't have all the data we need to recover.
3204 * What we do is move the bits to the ili_last_fields field.
3205 * When logging the inode, these bits are moved back to the
3206 * ilf_fields field. In the xfs_iflush_done() routine we
3207 * clear ili_last_fields, since we know that the information
3208 * those bits represent is permanently on disk. As long as
3209 * the flush completes before the inode is logged again, then
3210 * both ilf_fields and ili_last_fields will be cleared.
3212 * We can play with the ilf_fields bits here, because the inode
3213 * lock must be held exclusively in order to set bits there
3214 * and the flush lock protects the ili_last_fields bits.
3215 * Set ili_logged so the flush done
3216 * routine can tell whether or not to look in the AIL.
3217 * Also, store the current LSN of the inode so that we can tell
3218 * whether the item has moved in the AIL from xfs_iflush_done().
3219 * In order to read the lsn we need the AIL lock, because
3220 * it is a 64 bit value that cannot be read atomically.
3222 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3223 iip->ili_last_fields = iip->ili_format.ilf_fields;
3224 iip->ili_format.ilf_fields = 0;
3225 iip->ili_logged = 1;
3227 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3228 &iip->ili_item.li_lsn);
3231 * Attach the function xfs_iflush_done to the inode's
3232 * buffer. This will remove the inode from the AIL
3233 * and unlock the inode's flush lock when the inode is
3234 * completely written to disk.
3236 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3237 xfs_iflush_done, (xfs_log_item_t *)iip);
3239 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3240 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3241 } else {
3243 * We're flushing an inode which is not in the AIL and has
3244 * not been logged but has i_update_core set. For this
3245 * case we can use a B_DELWRI flush and immediately drop
3246 * the inode flush lock because we can avoid the whole
3247 * AIL state thing. It's OK to drop the flush lock now,
3248 * because we've already locked the buffer and to do anything
3249 * you really need both.
3251 if (iip != NULL) {
3252 ASSERT(iip->ili_logged == 0);
3253 ASSERT(iip->ili_last_fields == 0);
3254 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3256 xfs_ifunlock(ip);
3259 return 0;
3261 corrupt_out:
3262 return XFS_ERROR(EFSCORRUPTED);
3267 #ifdef XFS_ILOCK_TRACE
3268 void
3269 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3271 ktrace_enter(ip->i_lock_trace,
3272 (void *)ip,
3273 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3274 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3275 (void *)ra, /* caller of ilock */
3276 (void *)(unsigned long)current_cpu(),
3277 (void *)(unsigned long)current_pid(),
3278 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3280 #endif
3283 * Return a pointer to the extent record at file index idx.
3285 xfs_bmbt_rec_host_t *
3286 xfs_iext_get_ext(
3287 xfs_ifork_t *ifp, /* inode fork pointer */
3288 xfs_extnum_t idx) /* index of target extent */
3290 ASSERT(idx >= 0);
3291 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3292 return ifp->if_u1.if_ext_irec->er_extbuf;
3293 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3294 xfs_ext_irec_t *erp; /* irec pointer */
3295 int erp_idx = 0; /* irec index */
3296 xfs_extnum_t page_idx = idx; /* ext index in target list */
3298 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3299 return &erp->er_extbuf[page_idx];
3300 } else if (ifp->if_bytes) {
3301 return &ifp->if_u1.if_extents[idx];
3302 } else {
3303 return NULL;
3308 * Insert new item(s) into the extent records for incore inode
3309 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3311 void
3312 xfs_iext_insert(
3313 xfs_ifork_t *ifp, /* inode fork pointer */
3314 xfs_extnum_t idx, /* starting index of new items */
3315 xfs_extnum_t count, /* number of inserted items */
3316 xfs_bmbt_irec_t *new) /* items to insert */
3318 xfs_extnum_t i; /* extent record index */
3320 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3321 xfs_iext_add(ifp, idx, count);
3322 for (i = idx; i < idx + count; i++, new++)
3323 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3327 * This is called when the amount of space required for incore file
3328 * extents needs to be increased. The ext_diff parameter stores the
3329 * number of new extents being added and the idx parameter contains
3330 * the extent index where the new extents will be added. If the new
3331 * extents are being appended, then we just need to (re)allocate and
3332 * initialize the space. Otherwise, if the new extents are being
3333 * inserted into the middle of the existing entries, a bit more work
3334 * is required to make room for the new extents to be inserted. The
3335 * caller is responsible for filling in the new extent entries upon
3336 * return.
3338 void
3339 xfs_iext_add(
3340 xfs_ifork_t *ifp, /* inode fork pointer */
3341 xfs_extnum_t idx, /* index to begin adding exts */
3342 int ext_diff) /* number of extents to add */
3344 int byte_diff; /* new bytes being added */
3345 int new_size; /* size of extents after adding */
3346 xfs_extnum_t nextents; /* number of extents in file */
3348 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3349 ASSERT((idx >= 0) && (idx <= nextents));
3350 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3351 new_size = ifp->if_bytes + byte_diff;
3353 * If the new number of extents (nextents + ext_diff)
3354 * fits inside the inode, then continue to use the inline
3355 * extent buffer.
3357 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3358 if (idx < nextents) {
3359 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3360 &ifp->if_u2.if_inline_ext[idx],
3361 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3362 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3364 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3365 ifp->if_real_bytes = 0;
3366 ifp->if_lastex = nextents + ext_diff;
3369 * Otherwise use a linear (direct) extent list.
3370 * If the extents are currently inside the inode,
3371 * xfs_iext_realloc_direct will switch us from
3372 * inline to direct extent allocation mode.
3374 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3375 xfs_iext_realloc_direct(ifp, new_size);
3376 if (idx < nextents) {
3377 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3378 &ifp->if_u1.if_extents[idx],
3379 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3380 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3383 /* Indirection array */
3384 else {
3385 xfs_ext_irec_t *erp;
3386 int erp_idx = 0;
3387 int page_idx = idx;
3389 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3390 if (ifp->if_flags & XFS_IFEXTIREC) {
3391 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3392 } else {
3393 xfs_iext_irec_init(ifp);
3394 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3395 erp = ifp->if_u1.if_ext_irec;
3397 /* Extents fit in target extent page */
3398 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3399 if (page_idx < erp->er_extcount) {
3400 memmove(&erp->er_extbuf[page_idx + ext_diff],
3401 &erp->er_extbuf[page_idx],
3402 (erp->er_extcount - page_idx) *
3403 sizeof(xfs_bmbt_rec_t));
3404 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3406 erp->er_extcount += ext_diff;
3407 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3409 /* Insert a new extent page */
3410 else if (erp) {
3411 xfs_iext_add_indirect_multi(ifp,
3412 erp_idx, page_idx, ext_diff);
3415 * If extent(s) are being appended to the last page in
3416 * the indirection array and the new extent(s) don't fit
3417 * in the page, then erp is NULL and erp_idx is set to
3418 * the next index needed in the indirection array.
3420 else {
3421 int count = ext_diff;
3423 while (count) {
3424 erp = xfs_iext_irec_new(ifp, erp_idx);
3425 erp->er_extcount = count;
3426 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3427 if (count) {
3428 erp_idx++;
3433 ifp->if_bytes = new_size;
3437 * This is called when incore extents are being added to the indirection
3438 * array and the new extents do not fit in the target extent list. The
3439 * erp_idx parameter contains the irec index for the target extent list
3440 * in the indirection array, and the idx parameter contains the extent
3441 * index within the list. The number of extents being added is stored
3442 * in the count parameter.
3444 * |-------| |-------|
3445 * | | | | idx - number of extents before idx
3446 * | idx | | count |
3447 * | | | | count - number of extents being inserted at idx
3448 * |-------| |-------|
3449 * | count | | nex2 | nex2 - number of extents after idx + count
3450 * |-------| |-------|
3452 void
3453 xfs_iext_add_indirect_multi(
3454 xfs_ifork_t *ifp, /* inode fork pointer */
3455 int erp_idx, /* target extent irec index */
3456 xfs_extnum_t idx, /* index within target list */
3457 int count) /* new extents being added */
3459 int byte_diff; /* new bytes being added */
3460 xfs_ext_irec_t *erp; /* pointer to irec entry */
3461 xfs_extnum_t ext_diff; /* number of extents to add */
3462 xfs_extnum_t ext_cnt; /* new extents still needed */
3463 xfs_extnum_t nex2; /* extents after idx + count */
3464 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3465 int nlists; /* number of irec's (lists) */
3467 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3468 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3469 nex2 = erp->er_extcount - idx;
3470 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3473 * Save second part of target extent list
3474 * (all extents past */
3475 if (nex2) {
3476 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3477 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3478 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3479 erp->er_extcount -= nex2;
3480 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3481 memset(&erp->er_extbuf[idx], 0, byte_diff);
3485 * Add the new extents to the end of the target
3486 * list, then allocate new irec record(s) and
3487 * extent buffer(s) as needed to store the rest
3488 * of the new extents.
3490 ext_cnt = count;
3491 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3492 if (ext_diff) {
3493 erp->er_extcount += ext_diff;
3494 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3495 ext_cnt -= ext_diff;
3497 while (ext_cnt) {
3498 erp_idx++;
3499 erp = xfs_iext_irec_new(ifp, erp_idx);
3500 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3501 erp->er_extcount = ext_diff;
3502 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3503 ext_cnt -= ext_diff;
3506 /* Add nex2 extents back to indirection array */
3507 if (nex2) {
3508 xfs_extnum_t ext_avail;
3509 int i;
3511 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3512 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3513 i = 0;
3515 * If nex2 extents fit in the current page, append
3516 * nex2_ep after the new extents.
3518 if (nex2 <= ext_avail) {
3519 i = erp->er_extcount;
3522 * Otherwise, check if space is available in the
3523 * next page.
3525 else if ((erp_idx < nlists - 1) &&
3526 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3527 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3528 erp_idx++;
3529 erp++;
3530 /* Create a hole for nex2 extents */
3531 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3532 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3535 * Final choice, create a new extent page for
3536 * nex2 extents.
3538 else {
3539 erp_idx++;
3540 erp = xfs_iext_irec_new(ifp, erp_idx);
3542 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3543 kmem_free(nex2_ep);
3544 erp->er_extcount += nex2;
3545 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3550 * This is called when the amount of space required for incore file
3551 * extents needs to be decreased. The ext_diff parameter stores the
3552 * number of extents to be removed and the idx parameter contains
3553 * the extent index where the extents will be removed from.
3555 * If the amount of space needed has decreased below the linear
3556 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3557 * extent array. Otherwise, use kmem_realloc() to adjust the
3558 * size to what is needed.
3560 void
3561 xfs_iext_remove(
3562 xfs_ifork_t *ifp, /* inode fork pointer */
3563 xfs_extnum_t idx, /* index to begin removing exts */
3564 int ext_diff) /* number of extents to remove */
3566 xfs_extnum_t nextents; /* number of extents in file */
3567 int new_size; /* size of extents after removal */
3569 ASSERT(ext_diff > 0);
3570 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3571 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3573 if (new_size == 0) {
3574 xfs_iext_destroy(ifp);
3575 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3576 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3577 } else if (ifp->if_real_bytes) {
3578 xfs_iext_remove_direct(ifp, idx, ext_diff);
3579 } else {
3580 xfs_iext_remove_inline(ifp, idx, ext_diff);
3582 ifp->if_bytes = new_size;
3586 * This removes ext_diff extents from the inline buffer, beginning
3587 * at extent index idx.
3589 void
3590 xfs_iext_remove_inline(
3591 xfs_ifork_t *ifp, /* inode fork pointer */
3592 xfs_extnum_t idx, /* index to begin removing exts */
3593 int ext_diff) /* number of extents to remove */
3595 int nextents; /* number of extents in file */
3597 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3598 ASSERT(idx < XFS_INLINE_EXTS);
3599 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3600 ASSERT(((nextents - ext_diff) > 0) &&
3601 (nextents - ext_diff) < XFS_INLINE_EXTS);
3603 if (idx + ext_diff < nextents) {
3604 memmove(&ifp->if_u2.if_inline_ext[idx],
3605 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3606 (nextents - (idx + ext_diff)) *
3607 sizeof(xfs_bmbt_rec_t));
3608 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3609 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3610 } else {
3611 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3612 ext_diff * sizeof(xfs_bmbt_rec_t));
3617 * This removes ext_diff extents from a linear (direct) extent list,
3618 * beginning at extent index idx. If the extents are being removed
3619 * from the end of the list (ie. truncate) then we just need to re-
3620 * allocate the list to remove the extra space. Otherwise, if the
3621 * extents are being removed from the middle of the existing extent
3622 * entries, then we first need to move the extent records beginning
3623 * at idx + ext_diff up in the list to overwrite the records being
3624 * removed, then remove the extra space via kmem_realloc.
3626 void
3627 xfs_iext_remove_direct(
3628 xfs_ifork_t *ifp, /* inode fork pointer */
3629 xfs_extnum_t idx, /* index to begin removing exts */
3630 int ext_diff) /* number of extents to remove */
3632 xfs_extnum_t nextents; /* number of extents in file */
3633 int new_size; /* size of extents after removal */
3635 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3636 new_size = ifp->if_bytes -
3637 (ext_diff * sizeof(xfs_bmbt_rec_t));
3638 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3640 if (new_size == 0) {
3641 xfs_iext_destroy(ifp);
3642 return;
3644 /* Move extents up in the list (if needed) */
3645 if (idx + ext_diff < nextents) {
3646 memmove(&ifp->if_u1.if_extents[idx],
3647 &ifp->if_u1.if_extents[idx + ext_diff],
3648 (nextents - (idx + ext_diff)) *
3649 sizeof(xfs_bmbt_rec_t));
3651 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3652 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3654 * Reallocate the direct extent list. If the extents
3655 * will fit inside the inode then xfs_iext_realloc_direct
3656 * will switch from direct to inline extent allocation
3657 * mode for us.
3659 xfs_iext_realloc_direct(ifp, new_size);
3660 ifp->if_bytes = new_size;
3664 * This is called when incore extents are being removed from the
3665 * indirection array and the extents being removed span multiple extent
3666 * buffers. The idx parameter contains the file extent index where we
3667 * want to begin removing extents, and the count parameter contains
3668 * how many extents need to be removed.
3670 * |-------| |-------|
3671 * | nex1 | | | nex1 - number of extents before idx
3672 * |-------| | count |
3673 * | | | | count - number of extents being removed at idx
3674 * | count | |-------|
3675 * | | | nex2 | nex2 - number of extents after idx + count
3676 * |-------| |-------|
3678 void
3679 xfs_iext_remove_indirect(
3680 xfs_ifork_t *ifp, /* inode fork pointer */
3681 xfs_extnum_t idx, /* index to begin removing extents */
3682 int count) /* number of extents to remove */
3684 xfs_ext_irec_t *erp; /* indirection array pointer */
3685 int erp_idx = 0; /* indirection array index */
3686 xfs_extnum_t ext_cnt; /* extents left to remove */
3687 xfs_extnum_t ext_diff; /* extents to remove in current list */
3688 xfs_extnum_t nex1; /* number of extents before idx */
3689 xfs_extnum_t nex2; /* extents after idx + count */
3690 int nlists; /* entries in indirection array */
3691 int page_idx = idx; /* index in target extent list */
3693 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3694 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3695 ASSERT(erp != NULL);
3696 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3697 nex1 = page_idx;
3698 ext_cnt = count;
3699 while (ext_cnt) {
3700 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3701 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3703 * Check for deletion of entire list;
3704 * xfs_iext_irec_remove() updates extent offsets.
3706 if (ext_diff == erp->er_extcount) {
3707 xfs_iext_irec_remove(ifp, erp_idx);
3708 ext_cnt -= ext_diff;
3709 nex1 = 0;
3710 if (ext_cnt) {
3711 ASSERT(erp_idx < ifp->if_real_bytes /
3712 XFS_IEXT_BUFSZ);
3713 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3714 nex1 = 0;
3715 continue;
3716 } else {
3717 break;
3720 /* Move extents up (if needed) */
3721 if (nex2) {
3722 memmove(&erp->er_extbuf[nex1],
3723 &erp->er_extbuf[nex1 + ext_diff],
3724 nex2 * sizeof(xfs_bmbt_rec_t));
3726 /* Zero out rest of page */
3727 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3728 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3729 /* Update remaining counters */
3730 erp->er_extcount -= ext_diff;
3731 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3732 ext_cnt -= ext_diff;
3733 nex1 = 0;
3734 erp_idx++;
3735 erp++;
3737 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3738 xfs_iext_irec_compact(ifp);
3742 * Create, destroy, or resize a linear (direct) block of extents.
3744 void
3745 xfs_iext_realloc_direct(
3746 xfs_ifork_t *ifp, /* inode fork pointer */
3747 int new_size) /* new size of extents */
3749 int rnew_size; /* real new size of extents */
3751 rnew_size = new_size;
3753 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3754 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3755 (new_size != ifp->if_real_bytes)));
3757 /* Free extent records */
3758 if (new_size == 0) {
3759 xfs_iext_destroy(ifp);
3761 /* Resize direct extent list and zero any new bytes */
3762 else if (ifp->if_real_bytes) {
3763 /* Check if extents will fit inside the inode */
3764 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3765 xfs_iext_direct_to_inline(ifp, new_size /
3766 (uint)sizeof(xfs_bmbt_rec_t));
3767 ifp->if_bytes = new_size;
3768 return;
3770 if (!is_power_of_2(new_size)){
3771 rnew_size = roundup_pow_of_two(new_size);
3773 if (rnew_size != ifp->if_real_bytes) {
3774 ifp->if_u1.if_extents =
3775 kmem_realloc(ifp->if_u1.if_extents,
3776 rnew_size,
3777 ifp->if_real_bytes, KM_NOFS);
3779 if (rnew_size > ifp->if_real_bytes) {
3780 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3781 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3782 rnew_size - ifp->if_real_bytes);
3786 * Switch from the inline extent buffer to a direct
3787 * extent list. Be sure to include the inline extent
3788 * bytes in new_size.
3790 else {
3791 new_size += ifp->if_bytes;
3792 if (!is_power_of_2(new_size)) {
3793 rnew_size = roundup_pow_of_two(new_size);
3795 xfs_iext_inline_to_direct(ifp, rnew_size);
3797 ifp->if_real_bytes = rnew_size;
3798 ifp->if_bytes = new_size;
3802 * Switch from linear (direct) extent records to inline buffer.
3804 void
3805 xfs_iext_direct_to_inline(
3806 xfs_ifork_t *ifp, /* inode fork pointer */
3807 xfs_extnum_t nextents) /* number of extents in file */
3809 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3810 ASSERT(nextents <= XFS_INLINE_EXTS);
3812 * The inline buffer was zeroed when we switched
3813 * from inline to direct extent allocation mode,
3814 * so we don't need to clear it here.
3816 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3817 nextents * sizeof(xfs_bmbt_rec_t));
3818 kmem_free(ifp->if_u1.if_extents);
3819 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3820 ifp->if_real_bytes = 0;
3824 * Switch from inline buffer to linear (direct) extent records.
3825 * new_size should already be rounded up to the next power of 2
3826 * by the caller (when appropriate), so use new_size as it is.
3827 * However, since new_size may be rounded up, we can't update
3828 * if_bytes here. It is the caller's responsibility to update
3829 * if_bytes upon return.
3831 void
3832 xfs_iext_inline_to_direct(
3833 xfs_ifork_t *ifp, /* inode fork pointer */
3834 int new_size) /* number of extents in file */
3836 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3837 memset(ifp->if_u1.if_extents, 0, new_size);
3838 if (ifp->if_bytes) {
3839 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3840 ifp->if_bytes);
3841 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3842 sizeof(xfs_bmbt_rec_t));
3844 ifp->if_real_bytes = new_size;
3848 * Resize an extent indirection array to new_size bytes.
3850 STATIC void
3851 xfs_iext_realloc_indirect(
3852 xfs_ifork_t *ifp, /* inode fork pointer */
3853 int new_size) /* new indirection array size */
3855 int nlists; /* number of irec's (ex lists) */
3856 int size; /* current indirection array size */
3858 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3859 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3860 size = nlists * sizeof(xfs_ext_irec_t);
3861 ASSERT(ifp->if_real_bytes);
3862 ASSERT((new_size >= 0) && (new_size != size));
3863 if (new_size == 0) {
3864 xfs_iext_destroy(ifp);
3865 } else {
3866 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3867 kmem_realloc(ifp->if_u1.if_ext_irec,
3868 new_size, size, KM_NOFS);
3873 * Switch from indirection array to linear (direct) extent allocations.
3875 STATIC void
3876 xfs_iext_indirect_to_direct(
3877 xfs_ifork_t *ifp) /* inode fork pointer */
3879 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3880 xfs_extnum_t nextents; /* number of extents in file */
3881 int size; /* size of file extents */
3883 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3884 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3885 ASSERT(nextents <= XFS_LINEAR_EXTS);
3886 size = nextents * sizeof(xfs_bmbt_rec_t);
3888 xfs_iext_irec_compact_pages(ifp);
3889 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3891 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3892 kmem_free(ifp->if_u1.if_ext_irec);
3893 ifp->if_flags &= ~XFS_IFEXTIREC;
3894 ifp->if_u1.if_extents = ep;
3895 ifp->if_bytes = size;
3896 if (nextents < XFS_LINEAR_EXTS) {
3897 xfs_iext_realloc_direct(ifp, size);
3902 * Free incore file extents.
3904 void
3905 xfs_iext_destroy(
3906 xfs_ifork_t *ifp) /* inode fork pointer */
3908 if (ifp->if_flags & XFS_IFEXTIREC) {
3909 int erp_idx;
3910 int nlists;
3912 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3913 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3914 xfs_iext_irec_remove(ifp, erp_idx);
3916 ifp->if_flags &= ~XFS_IFEXTIREC;
3917 } else if (ifp->if_real_bytes) {
3918 kmem_free(ifp->if_u1.if_extents);
3919 } else if (ifp->if_bytes) {
3920 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3921 sizeof(xfs_bmbt_rec_t));
3923 ifp->if_u1.if_extents = NULL;
3924 ifp->if_real_bytes = 0;
3925 ifp->if_bytes = 0;
3929 * Return a pointer to the extent record for file system block bno.
3931 xfs_bmbt_rec_host_t * /* pointer to found extent record */
3932 xfs_iext_bno_to_ext(
3933 xfs_ifork_t *ifp, /* inode fork pointer */
3934 xfs_fileoff_t bno, /* block number to search for */
3935 xfs_extnum_t *idxp) /* index of target extent */
3937 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3938 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3939 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3940 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3941 int high; /* upper boundary in search */
3942 xfs_extnum_t idx = 0; /* index of target extent */
3943 int low; /* lower boundary in search */
3944 xfs_extnum_t nextents; /* number of file extents */
3945 xfs_fileoff_t startoff = 0; /* start offset of extent */
3947 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3948 if (nextents == 0) {
3949 *idxp = 0;
3950 return NULL;
3952 low = 0;
3953 if (ifp->if_flags & XFS_IFEXTIREC) {
3954 /* Find target extent list */
3955 int erp_idx = 0;
3956 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3957 base = erp->er_extbuf;
3958 high = erp->er_extcount - 1;
3959 } else {
3960 base = ifp->if_u1.if_extents;
3961 high = nextents - 1;
3963 /* Binary search extent records */
3964 while (low <= high) {
3965 idx = (low + high) >> 1;
3966 ep = base + idx;
3967 startoff = xfs_bmbt_get_startoff(ep);
3968 blockcount = xfs_bmbt_get_blockcount(ep);
3969 if (bno < startoff) {
3970 high = idx - 1;
3971 } else if (bno >= startoff + blockcount) {
3972 low = idx + 1;
3973 } else {
3974 /* Convert back to file-based extent index */
3975 if (ifp->if_flags & XFS_IFEXTIREC) {
3976 idx += erp->er_extoff;
3978 *idxp = idx;
3979 return ep;
3982 /* Convert back to file-based extent index */
3983 if (ifp->if_flags & XFS_IFEXTIREC) {
3984 idx += erp->er_extoff;
3986 if (bno >= startoff + blockcount) {
3987 if (++idx == nextents) {
3988 ep = NULL;
3989 } else {
3990 ep = xfs_iext_get_ext(ifp, idx);
3993 *idxp = idx;
3994 return ep;
3998 * Return a pointer to the indirection array entry containing the
3999 * extent record for filesystem block bno. Store the index of the
4000 * target irec in *erp_idxp.
4002 xfs_ext_irec_t * /* pointer to found extent record */
4003 xfs_iext_bno_to_irec(
4004 xfs_ifork_t *ifp, /* inode fork pointer */
4005 xfs_fileoff_t bno, /* block number to search for */
4006 int *erp_idxp) /* irec index of target ext list */
4008 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4009 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4010 int erp_idx; /* indirection array index */
4011 int nlists; /* number of extent irec's (lists) */
4012 int high; /* binary search upper limit */
4013 int low; /* binary search lower limit */
4015 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4016 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4017 erp_idx = 0;
4018 low = 0;
4019 high = nlists - 1;
4020 while (low <= high) {
4021 erp_idx = (low + high) >> 1;
4022 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4023 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4024 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4025 high = erp_idx - 1;
4026 } else if (erp_next && bno >=
4027 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4028 low = erp_idx + 1;
4029 } else {
4030 break;
4033 *erp_idxp = erp_idx;
4034 return erp;
4038 * Return a pointer to the indirection array entry containing the
4039 * extent record at file extent index *idxp. Store the index of the
4040 * target irec in *erp_idxp and store the page index of the target
4041 * extent record in *idxp.
4043 xfs_ext_irec_t *
4044 xfs_iext_idx_to_irec(
4045 xfs_ifork_t *ifp, /* inode fork pointer */
4046 xfs_extnum_t *idxp, /* extent index (file -> page) */
4047 int *erp_idxp, /* pointer to target irec */
4048 int realloc) /* new bytes were just added */
4050 xfs_ext_irec_t *prev; /* pointer to previous irec */
4051 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4052 int erp_idx; /* indirection array index */
4053 int nlists; /* number of irec's (ex lists) */
4054 int high; /* binary search upper limit */
4055 int low; /* binary search lower limit */
4056 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4058 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4059 ASSERT(page_idx >= 0 && page_idx <=
4060 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4061 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4062 erp_idx = 0;
4063 low = 0;
4064 high = nlists - 1;
4066 /* Binary search extent irec's */
4067 while (low <= high) {
4068 erp_idx = (low + high) >> 1;
4069 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4070 prev = erp_idx > 0 ? erp - 1 : NULL;
4071 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4072 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4073 high = erp_idx - 1;
4074 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4075 (page_idx == erp->er_extoff + erp->er_extcount &&
4076 !realloc)) {
4077 low = erp_idx + 1;
4078 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4079 erp->er_extcount == XFS_LINEAR_EXTS) {
4080 ASSERT(realloc);
4081 page_idx = 0;
4082 erp_idx++;
4083 erp = erp_idx < nlists ? erp + 1 : NULL;
4084 break;
4085 } else {
4086 page_idx -= erp->er_extoff;
4087 break;
4090 *idxp = page_idx;
4091 *erp_idxp = erp_idx;
4092 return(erp);
4096 * Allocate and initialize an indirection array once the space needed
4097 * for incore extents increases above XFS_IEXT_BUFSZ.
4099 void
4100 xfs_iext_irec_init(
4101 xfs_ifork_t *ifp) /* inode fork pointer */
4103 xfs_ext_irec_t *erp; /* indirection array pointer */
4104 xfs_extnum_t nextents; /* number of extents in file */
4106 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4107 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4108 ASSERT(nextents <= XFS_LINEAR_EXTS);
4110 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
4112 if (nextents == 0) {
4113 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4114 } else if (!ifp->if_real_bytes) {
4115 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4116 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4117 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4119 erp->er_extbuf = ifp->if_u1.if_extents;
4120 erp->er_extcount = nextents;
4121 erp->er_extoff = 0;
4123 ifp->if_flags |= XFS_IFEXTIREC;
4124 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4125 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4126 ifp->if_u1.if_ext_irec = erp;
4128 return;
4132 * Allocate and initialize a new entry in the indirection array.
4134 xfs_ext_irec_t *
4135 xfs_iext_irec_new(
4136 xfs_ifork_t *ifp, /* inode fork pointer */
4137 int erp_idx) /* index for new irec */
4139 xfs_ext_irec_t *erp; /* indirection array pointer */
4140 int i; /* loop counter */
4141 int nlists; /* number of irec's (ex lists) */
4143 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4144 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4146 /* Resize indirection array */
4147 xfs_iext_realloc_indirect(ifp, ++nlists *
4148 sizeof(xfs_ext_irec_t));
4150 * Move records down in the array so the
4151 * new page can use erp_idx.
4153 erp = ifp->if_u1.if_ext_irec;
4154 for (i = nlists - 1; i > erp_idx; i--) {
4155 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4157 ASSERT(i == erp_idx);
4159 /* Initialize new extent record */
4160 erp = ifp->if_u1.if_ext_irec;
4161 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4162 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4163 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4164 erp[erp_idx].er_extcount = 0;
4165 erp[erp_idx].er_extoff = erp_idx > 0 ?
4166 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4167 return (&erp[erp_idx]);
4171 * Remove a record from the indirection array.
4173 void
4174 xfs_iext_irec_remove(
4175 xfs_ifork_t *ifp, /* inode fork pointer */
4176 int erp_idx) /* irec index to remove */
4178 xfs_ext_irec_t *erp; /* indirection array pointer */
4179 int i; /* loop counter */
4180 int nlists; /* number of irec's (ex lists) */
4182 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4183 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4184 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4185 if (erp->er_extbuf) {
4186 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4187 -erp->er_extcount);
4188 kmem_free(erp->er_extbuf);
4190 /* Compact extent records */
4191 erp = ifp->if_u1.if_ext_irec;
4192 for (i = erp_idx; i < nlists - 1; i++) {
4193 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4196 * Manually free the last extent record from the indirection
4197 * array. A call to xfs_iext_realloc_indirect() with a size
4198 * of zero would result in a call to xfs_iext_destroy() which
4199 * would in turn call this function again, creating a nasty
4200 * infinite loop.
4202 if (--nlists) {
4203 xfs_iext_realloc_indirect(ifp,
4204 nlists * sizeof(xfs_ext_irec_t));
4205 } else {
4206 kmem_free(ifp->if_u1.if_ext_irec);
4208 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4212 * This is called to clean up large amounts of unused memory allocated
4213 * by the indirection array. Before compacting anything though, verify
4214 * that the indirection array is still needed and switch back to the
4215 * linear extent list (or even the inline buffer) if possible. The
4216 * compaction policy is as follows:
4218 * Full Compaction: Extents fit into a single page (or inline buffer)
4219 * Partial Compaction: Extents occupy less than 50% of allocated space
4220 * No Compaction: Extents occupy at least 50% of allocated space
4222 void
4223 xfs_iext_irec_compact(
4224 xfs_ifork_t *ifp) /* inode fork pointer */
4226 xfs_extnum_t nextents; /* number of extents in file */
4227 int nlists; /* number of irec's (ex lists) */
4229 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4230 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4231 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4233 if (nextents == 0) {
4234 xfs_iext_destroy(ifp);
4235 } else if (nextents <= XFS_INLINE_EXTS) {
4236 xfs_iext_indirect_to_direct(ifp);
4237 xfs_iext_direct_to_inline(ifp, nextents);
4238 } else if (nextents <= XFS_LINEAR_EXTS) {
4239 xfs_iext_indirect_to_direct(ifp);
4240 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4241 xfs_iext_irec_compact_pages(ifp);
4246 * Combine extents from neighboring extent pages.
4248 void
4249 xfs_iext_irec_compact_pages(
4250 xfs_ifork_t *ifp) /* inode fork pointer */
4252 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4253 int erp_idx = 0; /* indirection array index */
4254 int nlists; /* number of irec's (ex lists) */
4256 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4257 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4258 while (erp_idx < nlists - 1) {
4259 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4260 erp_next = erp + 1;
4261 if (erp_next->er_extcount <=
4262 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4263 memcpy(&erp->er_extbuf[erp->er_extcount],
4264 erp_next->er_extbuf, erp_next->er_extcount *
4265 sizeof(xfs_bmbt_rec_t));
4266 erp->er_extcount += erp_next->er_extcount;
4268 * Free page before removing extent record
4269 * so er_extoffs don't get modified in
4270 * xfs_iext_irec_remove.
4272 kmem_free(erp_next->er_extbuf);
4273 erp_next->er_extbuf = NULL;
4274 xfs_iext_irec_remove(ifp, erp_idx + 1);
4275 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4276 } else {
4277 erp_idx++;
4283 * This is called to update the er_extoff field in the indirection
4284 * array when extents have been added or removed from one of the
4285 * extent lists. erp_idx contains the irec index to begin updating
4286 * at and ext_diff contains the number of extents that were added
4287 * or removed.
4289 void
4290 xfs_iext_irec_update_extoffs(
4291 xfs_ifork_t *ifp, /* inode fork pointer */
4292 int erp_idx, /* irec index to update */
4293 int ext_diff) /* number of new extents */
4295 int i; /* loop counter */
4296 int nlists; /* number of irec's (ex lists */
4298 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4299 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4300 for (i = erp_idx; i < nlists; i++) {
4301 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;