drm/i915: Rephrase pwrite bounds checking to avoid any potential overflow
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / transaction.c
blobb640fba11b48234f3d6cd21750d145fecea52175
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
30 #define BTRFS_ROOT_TRANS_TAG 0
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 WARN_ON(transaction->use_count == 0);
35 transaction->use_count--;
36 if (transaction->use_count == 0) {
37 list_del_init(&transaction->list);
38 memset(transaction, 0, sizeof(*transaction));
39 kmem_cache_free(btrfs_transaction_cachep, transaction);
43 static noinline void switch_commit_root(struct btrfs_root *root)
45 free_extent_buffer(root->commit_root);
46 root->commit_root = btrfs_root_node(root);
50 * either allocate a new transaction or hop into the existing one
52 static noinline int join_transaction(struct btrfs_root *root)
54 struct btrfs_transaction *cur_trans;
55 cur_trans = root->fs_info->running_transaction;
56 if (!cur_trans) {
57 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58 GFP_NOFS);
59 BUG_ON(!cur_trans);
60 root->fs_info->generation++;
61 cur_trans->num_writers = 1;
62 cur_trans->num_joined = 0;
63 cur_trans->transid = root->fs_info->generation;
64 init_waitqueue_head(&cur_trans->writer_wait);
65 init_waitqueue_head(&cur_trans->commit_wait);
66 cur_trans->in_commit = 0;
67 cur_trans->blocked = 0;
68 cur_trans->use_count = 1;
69 cur_trans->commit_done = 0;
70 cur_trans->start_time = get_seconds();
72 cur_trans->delayed_refs.root.rb_node = NULL;
73 cur_trans->delayed_refs.num_entries = 0;
74 cur_trans->delayed_refs.num_heads_ready = 0;
75 cur_trans->delayed_refs.num_heads = 0;
76 cur_trans->delayed_refs.flushing = 0;
77 cur_trans->delayed_refs.run_delayed_start = 0;
78 spin_lock_init(&cur_trans->delayed_refs.lock);
80 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82 extent_io_tree_init(&cur_trans->dirty_pages,
83 root->fs_info->btree_inode->i_mapping,
84 GFP_NOFS);
85 spin_lock(&root->fs_info->new_trans_lock);
86 root->fs_info->running_transaction = cur_trans;
87 spin_unlock(&root->fs_info->new_trans_lock);
88 } else {
89 cur_trans->num_writers++;
90 cur_trans->num_joined++;
93 return 0;
97 * this does all the record keeping required to make sure that a reference
98 * counted root is properly recorded in a given transaction. This is required
99 * to make sure the old root from before we joined the transaction is deleted
100 * when the transaction commits
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root)
105 if (root->ref_cows && root->last_trans < trans->transid) {
106 WARN_ON(root == root->fs_info->extent_root);
107 WARN_ON(root->commit_root != root->node);
109 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110 (unsigned long)root->root_key.objectid,
111 BTRFS_ROOT_TRANS_TAG);
112 root->last_trans = trans->transid;
113 btrfs_init_reloc_root(trans, root);
115 return 0;
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119 struct btrfs_root *root)
121 if (!root->ref_cows)
122 return 0;
124 mutex_lock(&root->fs_info->trans_mutex);
125 if (root->last_trans == trans->transid) {
126 mutex_unlock(&root->fs_info->trans_mutex);
127 return 0;
130 record_root_in_trans(trans, root);
131 mutex_unlock(&root->fs_info->trans_mutex);
132 return 0;
135 /* wait for commit against the current transaction to become unblocked
136 * when this is done, it is safe to start a new transaction, but the current
137 * transaction might not be fully on disk.
139 static void wait_current_trans(struct btrfs_root *root)
141 struct btrfs_transaction *cur_trans;
143 cur_trans = root->fs_info->running_transaction;
144 if (cur_trans && cur_trans->blocked) {
145 DEFINE_WAIT(wait);
146 cur_trans->use_count++;
147 while (1) {
148 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149 TASK_UNINTERRUPTIBLE);
150 if (cur_trans->blocked) {
151 mutex_unlock(&root->fs_info->trans_mutex);
152 schedule();
153 mutex_lock(&root->fs_info->trans_mutex);
154 finish_wait(&root->fs_info->transaction_wait,
155 &wait);
156 } else {
157 finish_wait(&root->fs_info->transaction_wait,
158 &wait);
159 break;
162 put_transaction(cur_trans);
166 enum btrfs_trans_type {
167 TRANS_START,
168 TRANS_JOIN,
169 TRANS_USERSPACE,
172 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
173 int num_blocks, int type)
175 struct btrfs_trans_handle *h =
176 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
177 int ret;
179 mutex_lock(&root->fs_info->trans_mutex);
180 if (!root->fs_info->log_root_recovering &&
181 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
182 type == TRANS_USERSPACE))
183 wait_current_trans(root);
184 ret = join_transaction(root);
185 BUG_ON(ret);
187 h->transid = root->fs_info->running_transaction->transid;
188 h->transaction = root->fs_info->running_transaction;
189 h->blocks_reserved = num_blocks;
190 h->blocks_used = 0;
191 h->block_group = 0;
192 h->alloc_exclude_nr = 0;
193 h->alloc_exclude_start = 0;
194 h->delayed_ref_updates = 0;
196 if (!current->journal_info && type != TRANS_USERSPACE)
197 current->journal_info = h;
199 root->fs_info->running_transaction->use_count++;
200 record_root_in_trans(h, root);
201 mutex_unlock(&root->fs_info->trans_mutex);
202 return h;
205 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
206 int num_blocks)
208 return start_transaction(root, num_blocks, TRANS_START);
210 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
211 int num_blocks)
213 return start_transaction(root, num_blocks, TRANS_JOIN);
216 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
217 int num_blocks)
219 return start_transaction(r, num_blocks, TRANS_USERSPACE);
222 /* wait for a transaction commit to be fully complete */
223 static noinline int wait_for_commit(struct btrfs_root *root,
224 struct btrfs_transaction *commit)
226 DEFINE_WAIT(wait);
227 mutex_lock(&root->fs_info->trans_mutex);
228 while (!commit->commit_done) {
229 prepare_to_wait(&commit->commit_wait, &wait,
230 TASK_UNINTERRUPTIBLE);
231 if (commit->commit_done)
232 break;
233 mutex_unlock(&root->fs_info->trans_mutex);
234 schedule();
235 mutex_lock(&root->fs_info->trans_mutex);
237 mutex_unlock(&root->fs_info->trans_mutex);
238 finish_wait(&commit->commit_wait, &wait);
239 return 0;
242 #if 0
244 * rate limit against the drop_snapshot code. This helps to slow down new
245 * operations if the drop_snapshot code isn't able to keep up.
247 static void throttle_on_drops(struct btrfs_root *root)
249 struct btrfs_fs_info *info = root->fs_info;
250 int harder_count = 0;
252 harder:
253 if (atomic_read(&info->throttles)) {
254 DEFINE_WAIT(wait);
255 int thr;
256 thr = atomic_read(&info->throttle_gen);
258 do {
259 prepare_to_wait(&info->transaction_throttle,
260 &wait, TASK_UNINTERRUPTIBLE);
261 if (!atomic_read(&info->throttles)) {
262 finish_wait(&info->transaction_throttle, &wait);
263 break;
265 schedule();
266 finish_wait(&info->transaction_throttle, &wait);
267 } while (thr == atomic_read(&info->throttle_gen));
268 harder_count++;
270 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
271 harder_count < 2)
272 goto harder;
274 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
275 harder_count < 10)
276 goto harder;
278 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
279 harder_count < 20)
280 goto harder;
283 #endif
285 void btrfs_throttle(struct btrfs_root *root)
287 mutex_lock(&root->fs_info->trans_mutex);
288 if (!root->fs_info->open_ioctl_trans)
289 wait_current_trans(root);
290 mutex_unlock(&root->fs_info->trans_mutex);
293 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
294 struct btrfs_root *root, int throttle)
296 struct btrfs_transaction *cur_trans;
297 struct btrfs_fs_info *info = root->fs_info;
298 int count = 0;
300 while (count < 4) {
301 unsigned long cur = trans->delayed_ref_updates;
302 trans->delayed_ref_updates = 0;
303 if (cur &&
304 trans->transaction->delayed_refs.num_heads_ready > 64) {
305 trans->delayed_ref_updates = 0;
308 * do a full flush if the transaction is trying
309 * to close
311 if (trans->transaction->delayed_refs.flushing)
312 cur = 0;
313 btrfs_run_delayed_refs(trans, root, cur);
314 } else {
315 break;
317 count++;
320 mutex_lock(&info->trans_mutex);
321 cur_trans = info->running_transaction;
322 WARN_ON(cur_trans != trans->transaction);
323 WARN_ON(cur_trans->num_writers < 1);
324 cur_trans->num_writers--;
326 if (waitqueue_active(&cur_trans->writer_wait))
327 wake_up(&cur_trans->writer_wait);
328 put_transaction(cur_trans);
329 mutex_unlock(&info->trans_mutex);
331 if (current->journal_info == trans)
332 current->journal_info = NULL;
333 memset(trans, 0, sizeof(*trans));
334 kmem_cache_free(btrfs_trans_handle_cachep, trans);
336 if (throttle)
337 btrfs_run_delayed_iputs(root);
339 return 0;
342 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
343 struct btrfs_root *root)
345 return __btrfs_end_transaction(trans, root, 0);
348 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
349 struct btrfs_root *root)
351 return __btrfs_end_transaction(trans, root, 1);
355 * when btree blocks are allocated, they have some corresponding bits set for
356 * them in one of two extent_io trees. This is used to make sure all of
357 * those extents are sent to disk but does not wait on them
359 int btrfs_write_marked_extents(struct btrfs_root *root,
360 struct extent_io_tree *dirty_pages, int mark)
362 int ret;
363 int err = 0;
364 int werr = 0;
365 struct page *page;
366 struct inode *btree_inode = root->fs_info->btree_inode;
367 u64 start = 0;
368 u64 end;
369 unsigned long index;
371 while (1) {
372 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
373 mark);
374 if (ret)
375 break;
376 while (start <= end) {
377 cond_resched();
379 index = start >> PAGE_CACHE_SHIFT;
380 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
381 page = find_get_page(btree_inode->i_mapping, index);
382 if (!page)
383 continue;
385 btree_lock_page_hook(page);
386 if (!page->mapping) {
387 unlock_page(page);
388 page_cache_release(page);
389 continue;
392 if (PageWriteback(page)) {
393 if (PageDirty(page))
394 wait_on_page_writeback(page);
395 else {
396 unlock_page(page);
397 page_cache_release(page);
398 continue;
401 err = write_one_page(page, 0);
402 if (err)
403 werr = err;
404 page_cache_release(page);
407 if (err)
408 werr = err;
409 return werr;
413 * when btree blocks are allocated, they have some corresponding bits set for
414 * them in one of two extent_io trees. This is used to make sure all of
415 * those extents are on disk for transaction or log commit. We wait
416 * on all the pages and clear them from the dirty pages state tree
418 int btrfs_wait_marked_extents(struct btrfs_root *root,
419 struct extent_io_tree *dirty_pages, int mark)
421 int ret;
422 int err = 0;
423 int werr = 0;
424 struct page *page;
425 struct inode *btree_inode = root->fs_info->btree_inode;
426 u64 start = 0;
427 u64 end;
428 unsigned long index;
430 while (1) {
431 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
432 mark);
433 if (ret)
434 break;
436 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
437 while (start <= end) {
438 index = start >> PAGE_CACHE_SHIFT;
439 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
440 page = find_get_page(btree_inode->i_mapping, index);
441 if (!page)
442 continue;
443 if (PageDirty(page)) {
444 btree_lock_page_hook(page);
445 wait_on_page_writeback(page);
446 err = write_one_page(page, 0);
447 if (err)
448 werr = err;
450 wait_on_page_writeback(page);
451 page_cache_release(page);
452 cond_resched();
455 if (err)
456 werr = err;
457 return werr;
461 * when btree blocks are allocated, they have some corresponding bits set for
462 * them in one of two extent_io trees. This is used to make sure all of
463 * those extents are on disk for transaction or log commit
465 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
466 struct extent_io_tree *dirty_pages, int mark)
468 int ret;
469 int ret2;
471 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
472 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
473 return ret || ret2;
476 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
477 struct btrfs_root *root)
479 if (!trans || !trans->transaction) {
480 struct inode *btree_inode;
481 btree_inode = root->fs_info->btree_inode;
482 return filemap_write_and_wait(btree_inode->i_mapping);
484 return btrfs_write_and_wait_marked_extents(root,
485 &trans->transaction->dirty_pages,
486 EXTENT_DIRTY);
490 * this is used to update the root pointer in the tree of tree roots.
492 * But, in the case of the extent allocation tree, updating the root
493 * pointer may allocate blocks which may change the root of the extent
494 * allocation tree.
496 * So, this loops and repeats and makes sure the cowonly root didn't
497 * change while the root pointer was being updated in the metadata.
499 static int update_cowonly_root(struct btrfs_trans_handle *trans,
500 struct btrfs_root *root)
502 int ret;
503 u64 old_root_bytenr;
504 u64 old_root_used;
505 struct btrfs_root *tree_root = root->fs_info->tree_root;
507 old_root_used = btrfs_root_used(&root->root_item);
508 btrfs_write_dirty_block_groups(trans, root);
510 while (1) {
511 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
512 if (old_root_bytenr == root->node->start &&
513 old_root_used == btrfs_root_used(&root->root_item))
514 break;
516 btrfs_set_root_node(&root->root_item, root->node);
517 ret = btrfs_update_root(trans, tree_root,
518 &root->root_key,
519 &root->root_item);
520 BUG_ON(ret);
522 old_root_used = btrfs_root_used(&root->root_item);
523 ret = btrfs_write_dirty_block_groups(trans, root);
524 BUG_ON(ret);
527 if (root != root->fs_info->extent_root)
528 switch_commit_root(root);
530 return 0;
534 * update all the cowonly tree roots on disk
536 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
537 struct btrfs_root *root)
539 struct btrfs_fs_info *fs_info = root->fs_info;
540 struct list_head *next;
541 struct extent_buffer *eb;
542 int ret;
544 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
545 BUG_ON(ret);
547 eb = btrfs_lock_root_node(fs_info->tree_root);
548 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
549 btrfs_tree_unlock(eb);
550 free_extent_buffer(eb);
552 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
553 BUG_ON(ret);
555 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
556 next = fs_info->dirty_cowonly_roots.next;
557 list_del_init(next);
558 root = list_entry(next, struct btrfs_root, dirty_list);
560 update_cowonly_root(trans, root);
563 down_write(&fs_info->extent_commit_sem);
564 switch_commit_root(fs_info->extent_root);
565 up_write(&fs_info->extent_commit_sem);
567 return 0;
571 * dead roots are old snapshots that need to be deleted. This allocates
572 * a dirty root struct and adds it into the list of dead roots that need to
573 * be deleted
575 int btrfs_add_dead_root(struct btrfs_root *root)
577 mutex_lock(&root->fs_info->trans_mutex);
578 list_add(&root->root_list, &root->fs_info->dead_roots);
579 mutex_unlock(&root->fs_info->trans_mutex);
580 return 0;
584 * update all the cowonly tree roots on disk
586 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
587 struct btrfs_root *root)
589 struct btrfs_root *gang[8];
590 struct btrfs_fs_info *fs_info = root->fs_info;
591 int i;
592 int ret;
593 int err = 0;
595 while (1) {
596 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
597 (void **)gang, 0,
598 ARRAY_SIZE(gang),
599 BTRFS_ROOT_TRANS_TAG);
600 if (ret == 0)
601 break;
602 for (i = 0; i < ret; i++) {
603 root = gang[i];
604 radix_tree_tag_clear(&fs_info->fs_roots_radix,
605 (unsigned long)root->root_key.objectid,
606 BTRFS_ROOT_TRANS_TAG);
608 btrfs_free_log(trans, root);
609 btrfs_update_reloc_root(trans, root);
611 if (root->commit_root != root->node) {
612 switch_commit_root(root);
613 btrfs_set_root_node(&root->root_item,
614 root->node);
617 err = btrfs_update_root(trans, fs_info->tree_root,
618 &root->root_key,
619 &root->root_item);
620 if (err)
621 break;
624 return err;
628 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
629 * otherwise every leaf in the btree is read and defragged.
631 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
633 struct btrfs_fs_info *info = root->fs_info;
634 int ret;
635 struct btrfs_trans_handle *trans;
636 unsigned long nr;
638 smp_mb();
639 if (root->defrag_running)
640 return 0;
641 trans = btrfs_start_transaction(root, 1);
642 while (1) {
643 root->defrag_running = 1;
644 ret = btrfs_defrag_leaves(trans, root, cacheonly);
645 nr = trans->blocks_used;
646 btrfs_end_transaction(trans, root);
647 btrfs_btree_balance_dirty(info->tree_root, nr);
648 cond_resched();
650 trans = btrfs_start_transaction(root, 1);
651 if (root->fs_info->closing || ret != -EAGAIN)
652 break;
654 root->defrag_running = 0;
655 smp_mb();
656 btrfs_end_transaction(trans, root);
657 return 0;
660 #if 0
662 * when dropping snapshots, we generate a ton of delayed refs, and it makes
663 * sense not to join the transaction while it is trying to flush the current
664 * queue of delayed refs out.
666 * This is used by the drop snapshot code only
668 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
670 DEFINE_WAIT(wait);
672 mutex_lock(&info->trans_mutex);
673 while (info->running_transaction &&
674 info->running_transaction->delayed_refs.flushing) {
675 prepare_to_wait(&info->transaction_wait, &wait,
676 TASK_UNINTERRUPTIBLE);
677 mutex_unlock(&info->trans_mutex);
679 schedule();
681 mutex_lock(&info->trans_mutex);
682 finish_wait(&info->transaction_wait, &wait);
684 mutex_unlock(&info->trans_mutex);
685 return 0;
689 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
690 * all of them
692 int btrfs_drop_dead_root(struct btrfs_root *root)
694 struct btrfs_trans_handle *trans;
695 struct btrfs_root *tree_root = root->fs_info->tree_root;
696 unsigned long nr;
697 int ret;
699 while (1) {
701 * we don't want to jump in and create a bunch of
702 * delayed refs if the transaction is starting to close
704 wait_transaction_pre_flush(tree_root->fs_info);
705 trans = btrfs_start_transaction(tree_root, 1);
708 * we've joined a transaction, make sure it isn't
709 * closing right now
711 if (trans->transaction->delayed_refs.flushing) {
712 btrfs_end_transaction(trans, tree_root);
713 continue;
716 ret = btrfs_drop_snapshot(trans, root);
717 if (ret != -EAGAIN)
718 break;
720 ret = btrfs_update_root(trans, tree_root,
721 &root->root_key,
722 &root->root_item);
723 if (ret)
724 break;
726 nr = trans->blocks_used;
727 ret = btrfs_end_transaction(trans, tree_root);
728 BUG_ON(ret);
730 btrfs_btree_balance_dirty(tree_root, nr);
731 cond_resched();
733 BUG_ON(ret);
735 ret = btrfs_del_root(trans, tree_root, &root->root_key);
736 BUG_ON(ret);
738 nr = trans->blocks_used;
739 ret = btrfs_end_transaction(trans, tree_root);
740 BUG_ON(ret);
742 free_extent_buffer(root->node);
743 free_extent_buffer(root->commit_root);
744 kfree(root);
746 btrfs_btree_balance_dirty(tree_root, nr);
747 return ret;
749 #endif
752 * new snapshots need to be created at a very specific time in the
753 * transaction commit. This does the actual creation
755 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
756 struct btrfs_fs_info *fs_info,
757 struct btrfs_pending_snapshot *pending)
759 struct btrfs_key key;
760 struct btrfs_root_item *new_root_item;
761 struct btrfs_root *tree_root = fs_info->tree_root;
762 struct btrfs_root *root = pending->root;
763 struct extent_buffer *tmp;
764 struct extent_buffer *old;
765 int ret;
766 u64 objectid;
768 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
769 if (!new_root_item) {
770 ret = -ENOMEM;
771 goto fail;
773 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
774 if (ret)
775 goto fail;
777 record_root_in_trans(trans, root);
778 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
779 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
780 btrfs_check_and_init_root_item(new_root_item);
782 key.objectid = objectid;
783 /* record when the snapshot was created in key.offset */
784 key.offset = trans->transid;
785 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
787 old = btrfs_lock_root_node(root);
788 btrfs_cow_block(trans, root, old, NULL, 0, &old);
789 btrfs_set_lock_blocking(old);
791 btrfs_copy_root(trans, root, old, &tmp, objectid);
792 btrfs_tree_unlock(old);
793 free_extent_buffer(old);
795 btrfs_set_root_node(new_root_item, tmp);
796 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
797 new_root_item);
798 btrfs_tree_unlock(tmp);
799 free_extent_buffer(tmp);
800 if (ret)
801 goto fail;
803 key.offset = (u64)-1;
804 memcpy(&pending->root_key, &key, sizeof(key));
805 fail:
806 kfree(new_root_item);
807 return ret;
810 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
811 struct btrfs_pending_snapshot *pending)
813 int ret;
814 int namelen;
815 u64 index = 0;
816 struct btrfs_trans_handle *trans;
817 struct inode *parent_inode;
818 struct btrfs_root *parent_root;
820 parent_inode = pending->dentry->d_parent->d_inode;
821 parent_root = BTRFS_I(parent_inode)->root;
822 trans = btrfs_join_transaction(parent_root, 1);
825 * insert the directory item
827 namelen = strlen(pending->name);
828 ret = btrfs_set_inode_index(parent_inode, &index);
829 ret = btrfs_insert_dir_item(trans, parent_root,
830 pending->name, namelen,
831 parent_inode->i_ino,
832 &pending->root_key, BTRFS_FT_DIR, index);
834 if (ret)
835 goto fail;
837 btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
838 ret = btrfs_update_inode(trans, parent_root, parent_inode);
839 BUG_ON(ret);
841 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
842 pending->root_key.objectid,
843 parent_root->root_key.objectid,
844 parent_inode->i_ino, index, pending->name,
845 namelen);
847 BUG_ON(ret);
849 fail:
850 btrfs_end_transaction(trans, fs_info->fs_root);
851 return ret;
855 * create all the snapshots we've scheduled for creation
857 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
858 struct btrfs_fs_info *fs_info)
860 struct btrfs_pending_snapshot *pending;
861 struct list_head *head = &trans->transaction->pending_snapshots;
862 int ret;
864 list_for_each_entry(pending, head, list) {
865 ret = create_pending_snapshot(trans, fs_info, pending);
866 BUG_ON(ret);
868 return 0;
871 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
872 struct btrfs_fs_info *fs_info)
874 struct btrfs_pending_snapshot *pending;
875 struct list_head *head = &trans->transaction->pending_snapshots;
876 int ret;
878 while (!list_empty(head)) {
879 pending = list_entry(head->next,
880 struct btrfs_pending_snapshot, list);
881 ret = finish_pending_snapshot(fs_info, pending);
882 BUG_ON(ret);
883 list_del(&pending->list);
884 kfree(pending->name);
885 kfree(pending);
887 return 0;
890 static void update_super_roots(struct btrfs_root *root)
892 struct btrfs_root_item *root_item;
893 struct btrfs_super_block *super;
895 super = &root->fs_info->super_copy;
897 root_item = &root->fs_info->chunk_root->root_item;
898 super->chunk_root = root_item->bytenr;
899 super->chunk_root_generation = root_item->generation;
900 super->chunk_root_level = root_item->level;
902 root_item = &root->fs_info->tree_root->root_item;
903 super->root = root_item->bytenr;
904 super->generation = root_item->generation;
905 super->root_level = root_item->level;
908 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
910 int ret = 0;
911 spin_lock(&info->new_trans_lock);
912 if (info->running_transaction)
913 ret = info->running_transaction->in_commit;
914 spin_unlock(&info->new_trans_lock);
915 return ret;
918 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
919 struct btrfs_root *root)
921 unsigned long joined = 0;
922 unsigned long timeout = 1;
923 struct btrfs_transaction *cur_trans;
924 struct btrfs_transaction *prev_trans = NULL;
925 DEFINE_WAIT(wait);
926 int ret;
927 int should_grow = 0;
928 unsigned long now = get_seconds();
929 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
931 btrfs_run_ordered_operations(root, 0);
933 /* make a pass through all the delayed refs we have so far
934 * any runnings procs may add more while we are here
936 ret = btrfs_run_delayed_refs(trans, root, 0);
937 BUG_ON(ret);
939 cur_trans = trans->transaction;
941 * set the flushing flag so procs in this transaction have to
942 * start sending their work down.
944 cur_trans->delayed_refs.flushing = 1;
946 ret = btrfs_run_delayed_refs(trans, root, 0);
947 BUG_ON(ret);
949 mutex_lock(&root->fs_info->trans_mutex);
950 if (cur_trans->in_commit) {
951 cur_trans->use_count++;
952 mutex_unlock(&root->fs_info->trans_mutex);
953 btrfs_end_transaction(trans, root);
955 ret = wait_for_commit(root, cur_trans);
956 BUG_ON(ret);
958 mutex_lock(&root->fs_info->trans_mutex);
959 put_transaction(cur_trans);
960 mutex_unlock(&root->fs_info->trans_mutex);
962 return 0;
965 trans->transaction->in_commit = 1;
966 trans->transaction->blocked = 1;
967 if (cur_trans->list.prev != &root->fs_info->trans_list) {
968 prev_trans = list_entry(cur_trans->list.prev,
969 struct btrfs_transaction, list);
970 if (!prev_trans->commit_done) {
971 prev_trans->use_count++;
972 mutex_unlock(&root->fs_info->trans_mutex);
974 wait_for_commit(root, prev_trans);
976 mutex_lock(&root->fs_info->trans_mutex);
977 put_transaction(prev_trans);
981 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
982 should_grow = 1;
984 do {
985 int snap_pending = 0;
986 joined = cur_trans->num_joined;
987 if (!list_empty(&trans->transaction->pending_snapshots))
988 snap_pending = 1;
990 WARN_ON(cur_trans != trans->transaction);
991 prepare_to_wait(&cur_trans->writer_wait, &wait,
992 TASK_UNINTERRUPTIBLE);
994 if (cur_trans->num_writers > 1)
995 timeout = MAX_SCHEDULE_TIMEOUT;
996 else if (should_grow)
997 timeout = 1;
999 mutex_unlock(&root->fs_info->trans_mutex);
1001 if (flush_on_commit) {
1002 btrfs_start_delalloc_inodes(root, 1);
1003 ret = btrfs_wait_ordered_extents(root, 0, 1);
1004 BUG_ON(ret);
1005 } else if (snap_pending) {
1006 ret = btrfs_wait_ordered_extents(root, 0, 1);
1007 BUG_ON(ret);
1011 * rename don't use btrfs_join_transaction, so, once we
1012 * set the transaction to blocked above, we aren't going
1013 * to get any new ordered operations. We can safely run
1014 * it here and no for sure that nothing new will be added
1015 * to the list
1017 btrfs_run_ordered_operations(root, 1);
1019 smp_mb();
1020 if (cur_trans->num_writers > 1 || should_grow)
1021 schedule_timeout(timeout);
1023 mutex_lock(&root->fs_info->trans_mutex);
1024 finish_wait(&cur_trans->writer_wait, &wait);
1025 } while (cur_trans->num_writers > 1 ||
1026 (should_grow && cur_trans->num_joined != joined));
1028 ret = create_pending_snapshots(trans, root->fs_info);
1029 BUG_ON(ret);
1031 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1032 BUG_ON(ret);
1034 WARN_ON(cur_trans != trans->transaction);
1036 /* btrfs_commit_tree_roots is responsible for getting the
1037 * various roots consistent with each other. Every pointer
1038 * in the tree of tree roots has to point to the most up to date
1039 * root for every subvolume and other tree. So, we have to keep
1040 * the tree logging code from jumping in and changing any
1041 * of the trees.
1043 * At this point in the commit, there can't be any tree-log
1044 * writers, but a little lower down we drop the trans mutex
1045 * and let new people in. By holding the tree_log_mutex
1046 * from now until after the super is written, we avoid races
1047 * with the tree-log code.
1049 mutex_lock(&root->fs_info->tree_log_mutex);
1051 ret = commit_fs_roots(trans, root);
1052 BUG_ON(ret);
1054 /* commit_fs_roots gets rid of all the tree log roots, it is now
1055 * safe to free the root of tree log roots
1057 btrfs_free_log_root_tree(trans, root->fs_info);
1059 ret = commit_cowonly_roots(trans, root);
1060 BUG_ON(ret);
1062 btrfs_prepare_extent_commit(trans, root);
1064 cur_trans = root->fs_info->running_transaction;
1065 spin_lock(&root->fs_info->new_trans_lock);
1066 root->fs_info->running_transaction = NULL;
1067 spin_unlock(&root->fs_info->new_trans_lock);
1069 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1070 root->fs_info->tree_root->node);
1071 switch_commit_root(root->fs_info->tree_root);
1073 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1074 root->fs_info->chunk_root->node);
1075 switch_commit_root(root->fs_info->chunk_root);
1077 update_super_roots(root);
1079 if (!root->fs_info->log_root_recovering) {
1080 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1081 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1084 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1085 sizeof(root->fs_info->super_copy));
1087 trans->transaction->blocked = 0;
1089 wake_up(&root->fs_info->transaction_wait);
1091 mutex_unlock(&root->fs_info->trans_mutex);
1092 ret = btrfs_write_and_wait_transaction(trans, root);
1093 BUG_ON(ret);
1094 write_ctree_super(trans, root, 0);
1097 * the super is written, we can safely allow the tree-loggers
1098 * to go about their business
1100 mutex_unlock(&root->fs_info->tree_log_mutex);
1102 btrfs_finish_extent_commit(trans, root);
1104 /* do the directory inserts of any pending snapshot creations */
1105 finish_pending_snapshots(trans, root->fs_info);
1107 mutex_lock(&root->fs_info->trans_mutex);
1109 cur_trans->commit_done = 1;
1111 root->fs_info->last_trans_committed = cur_trans->transid;
1113 wake_up(&cur_trans->commit_wait);
1115 put_transaction(cur_trans);
1116 put_transaction(cur_trans);
1118 mutex_unlock(&root->fs_info->trans_mutex);
1120 if (current->journal_info == trans)
1121 current->journal_info = NULL;
1123 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1125 if (current != root->fs_info->transaction_kthread)
1126 btrfs_run_delayed_iputs(root);
1128 return ret;
1132 * interface function to delete all the snapshots we have scheduled for deletion
1134 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1136 LIST_HEAD(list);
1137 struct btrfs_fs_info *fs_info = root->fs_info;
1139 mutex_lock(&fs_info->trans_mutex);
1140 list_splice_init(&fs_info->dead_roots, &list);
1141 mutex_unlock(&fs_info->trans_mutex);
1143 while (!list_empty(&list)) {
1144 root = list_entry(list.next, struct btrfs_root, root_list);
1145 list_del(&root->root_list);
1147 if (btrfs_header_backref_rev(root->node) <
1148 BTRFS_MIXED_BACKREF_REV)
1149 btrfs_drop_snapshot(root, 0);
1150 else
1151 btrfs_drop_snapshot(root, 1);
1153 return 0;