2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. This method will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
81 #include <linux/platform_device.h>
83 #include <linux/tcp.h>
84 #include <linux/udp.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
97 #include "gianfar_mii.h"
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
103 const char gfar_driver_name
[] = "Gianfar Ethernet";
104 const char gfar_driver_version
[] = "1.3";
106 static int gfar_enet_open(struct net_device
*dev
);
107 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
108 static void gfar_timeout(struct net_device
*dev
);
109 static int gfar_close(struct net_device
*dev
);
110 struct sk_buff
*gfar_new_skb(struct net_device
*dev
);
111 static void gfar_new_rxbdp(struct net_device
*dev
, struct rxbd8
*bdp
,
112 struct sk_buff
*skb
);
113 static int gfar_set_mac_address(struct net_device
*dev
);
114 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
115 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
116 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
117 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
118 static void adjust_link(struct net_device
*dev
);
119 static void init_registers(struct net_device
*dev
);
120 static int init_phy(struct net_device
*dev
);
121 static int gfar_probe(struct platform_device
*pdev
);
122 static int gfar_remove(struct platform_device
*pdev
);
123 static void free_skb_resources(struct gfar_private
*priv
);
124 static void gfar_set_multi(struct net_device
*dev
);
125 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
126 static void gfar_configure_serdes(struct net_device
*dev
);
127 static int gfar_poll(struct napi_struct
*napi
, int budget
);
128 #ifdef CONFIG_NET_POLL_CONTROLLER
129 static void gfar_netpoll(struct net_device
*dev
);
131 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
132 static int gfar_clean_tx_ring(struct net_device
*dev
);
133 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
, int length
);
134 static void gfar_vlan_rx_register(struct net_device
*netdev
,
135 struct vlan_group
*grp
);
136 void gfar_halt(struct net_device
*dev
);
137 static void gfar_halt_nodisable(struct net_device
*dev
);
138 void gfar_start(struct net_device
*dev
);
139 static void gfar_clear_exact_match(struct net_device
*dev
);
140 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
142 extern const struct ethtool_ops gfar_ethtool_ops
;
144 MODULE_AUTHOR("Freescale Semiconductor, Inc");
145 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
146 MODULE_LICENSE("GPL");
148 /* Returns 1 if incoming frames use an FCB */
149 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
151 return (priv
->vlan_enable
|| priv
->rx_csum_enable
);
154 /* Set up the ethernet device structure, private data,
155 * and anything else we need before we start */
156 static int gfar_probe(struct platform_device
*pdev
)
159 struct net_device
*dev
= NULL
;
160 struct gfar_private
*priv
= NULL
;
161 struct gianfar_platform_data
*einfo
;
164 DECLARE_MAC_BUF(mac
);
166 einfo
= (struct gianfar_platform_data
*) pdev
->dev
.platform_data
;
169 printk(KERN_ERR
"gfar %d: Missing additional data!\n",
175 /* Create an ethernet device instance */
176 dev
= alloc_etherdev(sizeof (*priv
));
181 priv
= netdev_priv(dev
);
184 /* Set the info in the priv to the current info */
187 /* fill out IRQ fields */
188 if (einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
189 priv
->interruptTransmit
= platform_get_irq_byname(pdev
, "tx");
190 priv
->interruptReceive
= platform_get_irq_byname(pdev
, "rx");
191 priv
->interruptError
= platform_get_irq_byname(pdev
, "error");
192 if (priv
->interruptTransmit
< 0 || priv
->interruptReceive
< 0 || priv
->interruptError
< 0)
195 priv
->interruptTransmit
= platform_get_irq(pdev
, 0);
196 if (priv
->interruptTransmit
< 0)
200 /* get a pointer to the register memory */
201 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
202 priv
->regs
= ioremap(r
->start
, sizeof (struct gfar
));
204 if (NULL
== priv
->regs
) {
209 spin_lock_init(&priv
->txlock
);
210 spin_lock_init(&priv
->rxlock
);
211 spin_lock_init(&priv
->bflock
);
213 platform_set_drvdata(pdev
, dev
);
215 /* Stop the DMA engine now, in case it was running before */
216 /* (The firmware could have used it, and left it running). */
217 /* To do this, we write Graceful Receive Stop and Graceful */
218 /* Transmit Stop, and then wait until the corresponding bits */
219 /* in IEVENT indicate the stops have completed. */
220 tempval
= gfar_read(&priv
->regs
->dmactrl
);
221 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
222 gfar_write(&priv
->regs
->dmactrl
, tempval
);
224 tempval
= gfar_read(&priv
->regs
->dmactrl
);
225 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
226 gfar_write(&priv
->regs
->dmactrl
, tempval
);
228 while (!(gfar_read(&priv
->regs
->ievent
) & (IEVENT_GRSC
| IEVENT_GTSC
)))
231 /* Reset MAC layer */
232 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
234 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
235 gfar_write(&priv
->regs
->maccfg1
, tempval
);
237 /* Initialize MACCFG2. */
238 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
240 /* Initialize ECNTRL */
241 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
243 /* Copy the station address into the dev structure, */
244 memcpy(dev
->dev_addr
, einfo
->mac_addr
, MAC_ADDR_LEN
);
246 /* Set the dev->base_addr to the gfar reg region */
247 dev
->base_addr
= (unsigned long) (priv
->regs
);
249 SET_NETDEV_DEV(dev
, &pdev
->dev
);
251 /* Fill in the dev structure */
252 dev
->open
= gfar_enet_open
;
253 dev
->hard_start_xmit
= gfar_start_xmit
;
254 dev
->tx_timeout
= gfar_timeout
;
255 dev
->watchdog_timeo
= TX_TIMEOUT
;
256 netif_napi_add(dev
, &priv
->napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
257 #ifdef CONFIG_NET_POLL_CONTROLLER
258 dev
->poll_controller
= gfar_netpoll
;
260 dev
->stop
= gfar_close
;
261 dev
->change_mtu
= gfar_change_mtu
;
263 dev
->set_multicast_list
= gfar_set_multi
;
265 dev
->ethtool_ops
= &gfar_ethtool_ops
;
267 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
268 priv
->rx_csum_enable
= 1;
269 dev
->features
|= NETIF_F_IP_CSUM
;
271 priv
->rx_csum_enable
= 0;
275 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
276 dev
->vlan_rx_register
= gfar_vlan_rx_register
;
278 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
280 priv
->vlan_enable
= 1;
283 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
284 priv
->extended_hash
= 1;
285 priv
->hash_width
= 9;
287 priv
->hash_regs
[0] = &priv
->regs
->igaddr0
;
288 priv
->hash_regs
[1] = &priv
->regs
->igaddr1
;
289 priv
->hash_regs
[2] = &priv
->regs
->igaddr2
;
290 priv
->hash_regs
[3] = &priv
->regs
->igaddr3
;
291 priv
->hash_regs
[4] = &priv
->regs
->igaddr4
;
292 priv
->hash_regs
[5] = &priv
->regs
->igaddr5
;
293 priv
->hash_regs
[6] = &priv
->regs
->igaddr6
;
294 priv
->hash_regs
[7] = &priv
->regs
->igaddr7
;
295 priv
->hash_regs
[8] = &priv
->regs
->gaddr0
;
296 priv
->hash_regs
[9] = &priv
->regs
->gaddr1
;
297 priv
->hash_regs
[10] = &priv
->regs
->gaddr2
;
298 priv
->hash_regs
[11] = &priv
->regs
->gaddr3
;
299 priv
->hash_regs
[12] = &priv
->regs
->gaddr4
;
300 priv
->hash_regs
[13] = &priv
->regs
->gaddr5
;
301 priv
->hash_regs
[14] = &priv
->regs
->gaddr6
;
302 priv
->hash_regs
[15] = &priv
->regs
->gaddr7
;
305 priv
->extended_hash
= 0;
306 priv
->hash_width
= 8;
308 priv
->hash_regs
[0] = &priv
->regs
->gaddr0
;
309 priv
->hash_regs
[1] = &priv
->regs
->gaddr1
;
310 priv
->hash_regs
[2] = &priv
->regs
->gaddr2
;
311 priv
->hash_regs
[3] = &priv
->regs
->gaddr3
;
312 priv
->hash_regs
[4] = &priv
->regs
->gaddr4
;
313 priv
->hash_regs
[5] = &priv
->regs
->gaddr5
;
314 priv
->hash_regs
[6] = &priv
->regs
->gaddr6
;
315 priv
->hash_regs
[7] = &priv
->regs
->gaddr7
;
318 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
319 priv
->padding
= DEFAULT_PADDING
;
323 if (dev
->features
& NETIF_F_IP_CSUM
)
324 dev
->hard_header_len
+= GMAC_FCB_LEN
;
326 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
327 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
328 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
330 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
331 priv
->txcount
= DEFAULT_TXCOUNT
;
332 priv
->txtime
= DEFAULT_TXTIME
;
333 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
334 priv
->rxcount
= DEFAULT_RXCOUNT
;
335 priv
->rxtime
= DEFAULT_RXTIME
;
337 /* Enable most messages by default */
338 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
340 err
= register_netdev(dev
);
343 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
348 /* Create all the sysfs files */
349 gfar_init_sysfs(dev
);
351 /* Print out the device info */
352 printk(KERN_INFO DEVICE_NAME
"%s\n",
353 dev
->name
, print_mac(mac
, dev
->dev_addr
));
355 /* Even more device info helps when determining which kernel */
356 /* provided which set of benchmarks. */
357 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
358 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
359 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
370 static int gfar_remove(struct platform_device
*pdev
)
372 struct net_device
*dev
= platform_get_drvdata(pdev
);
373 struct gfar_private
*priv
= netdev_priv(dev
);
375 platform_set_drvdata(pdev
, NULL
);
384 static int gfar_suspend(struct platform_device
*pdev
, pm_message_t state
)
386 struct net_device
*dev
= platform_get_drvdata(pdev
);
387 struct gfar_private
*priv
= netdev_priv(dev
);
391 int magic_packet
= priv
->wol_en
&&
392 (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
394 netif_device_detach(dev
);
396 if (netif_running(dev
)) {
397 spin_lock_irqsave(&priv
->txlock
, flags
);
398 spin_lock(&priv
->rxlock
);
400 gfar_halt_nodisable(dev
);
402 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
403 tempval
= gfar_read(&priv
->regs
->maccfg1
);
405 tempval
&= ~MACCFG1_TX_EN
;
408 tempval
&= ~MACCFG1_RX_EN
;
410 gfar_write(&priv
->regs
->maccfg1
, tempval
);
412 spin_unlock(&priv
->rxlock
);
413 spin_unlock_irqrestore(&priv
->txlock
, flags
);
415 napi_disable(&priv
->napi
);
418 /* Enable interrupt on Magic Packet */
419 gfar_write(&priv
->regs
->imask
, IMASK_MAG
);
421 /* Enable Magic Packet mode */
422 tempval
= gfar_read(&priv
->regs
->maccfg2
);
423 tempval
|= MACCFG2_MPEN
;
424 gfar_write(&priv
->regs
->maccfg2
, tempval
);
426 phy_stop(priv
->phydev
);
433 static int gfar_resume(struct platform_device
*pdev
)
435 struct net_device
*dev
= platform_get_drvdata(pdev
);
436 struct gfar_private
*priv
= netdev_priv(dev
);
439 int magic_packet
= priv
->wol_en
&&
440 (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
442 if (!netif_running(dev
)) {
443 netif_device_attach(dev
);
447 if (!magic_packet
&& priv
->phydev
)
448 phy_start(priv
->phydev
);
450 /* Disable Magic Packet mode, in case something
454 spin_lock_irqsave(&priv
->txlock
, flags
);
455 spin_lock(&priv
->rxlock
);
457 tempval
= gfar_read(&priv
->regs
->maccfg2
);
458 tempval
&= ~MACCFG2_MPEN
;
459 gfar_write(&priv
->regs
->maccfg2
, tempval
);
463 spin_unlock(&priv
->rxlock
);
464 spin_unlock_irqrestore(&priv
->txlock
, flags
);
466 netif_device_attach(dev
);
468 napi_enable(&priv
->napi
);
473 #define gfar_suspend NULL
474 #define gfar_resume NULL
477 /* Reads the controller's registers to determine what interface
478 * connects it to the PHY.
480 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
482 struct gfar_private
*priv
= netdev_priv(dev
);
483 u32 ecntrl
= gfar_read(&priv
->regs
->ecntrl
);
485 if (ecntrl
& ECNTRL_SGMII_MODE
)
486 return PHY_INTERFACE_MODE_SGMII
;
488 if (ecntrl
& ECNTRL_TBI_MODE
) {
489 if (ecntrl
& ECNTRL_REDUCED_MODE
)
490 return PHY_INTERFACE_MODE_RTBI
;
492 return PHY_INTERFACE_MODE_TBI
;
495 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
496 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
497 return PHY_INTERFACE_MODE_RMII
;
499 phy_interface_t interface
= priv
->einfo
->interface
;
502 * This isn't autodetected right now, so it must
503 * be set by the device tree or platform code.
505 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
506 return PHY_INTERFACE_MODE_RGMII_ID
;
508 return PHY_INTERFACE_MODE_RGMII
;
512 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
513 return PHY_INTERFACE_MODE_GMII
;
515 return PHY_INTERFACE_MODE_MII
;
519 /* Initializes driver's PHY state, and attaches to the PHY.
520 * Returns 0 on success.
522 static int init_phy(struct net_device
*dev
)
524 struct gfar_private
*priv
= netdev_priv(dev
);
525 uint gigabit_support
=
526 priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
527 SUPPORTED_1000baseT_Full
: 0;
528 struct phy_device
*phydev
;
529 char phy_id
[BUS_ID_SIZE
];
530 phy_interface_t interface
;
534 priv
->oldduplex
= -1;
536 snprintf(phy_id
, BUS_ID_SIZE
, PHY_ID_FMT
, priv
->einfo
->bus_id
, priv
->einfo
->phy_id
);
538 interface
= gfar_get_interface(dev
);
540 phydev
= phy_connect(dev
, phy_id
, &adjust_link
, 0, interface
);
542 if (interface
== PHY_INTERFACE_MODE_SGMII
)
543 gfar_configure_serdes(dev
);
545 if (IS_ERR(phydev
)) {
546 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
547 return PTR_ERR(phydev
);
550 /* Remove any features not supported by the controller */
551 phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
552 phydev
->advertising
= phydev
->supported
;
554 priv
->phydev
= phydev
;
560 * Initialize TBI PHY interface for communicating with the
561 * SERDES lynx PHY on the chip. We communicate with this PHY
562 * through the MDIO bus on each controller, treating it as a
563 * "normal" PHY at the address found in the TBIPA register. We assume
564 * that the TBIPA register is valid. Either the MDIO bus code will set
565 * it to a value that doesn't conflict with other PHYs on the bus, or the
566 * value doesn't matter, as there are no other PHYs on the bus.
568 static void gfar_configure_serdes(struct net_device
*dev
)
570 struct gfar_private
*priv
= netdev_priv(dev
);
571 struct gfar_mii __iomem
*regs
=
572 (void __iomem
*)&priv
->regs
->gfar_mii_regs
;
573 int tbipa
= gfar_read(&priv
->regs
->tbipa
);
575 /* Single clk mode, mii mode off(for serdes communication) */
576 gfar_local_mdio_write(regs
, tbipa
, MII_TBICON
, TBICON_CLK_SELECT
);
578 gfar_local_mdio_write(regs
, tbipa
, MII_ADVERTISE
,
579 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
580 ADVERTISE_1000XPSE_ASYM
);
582 gfar_local_mdio_write(regs
, tbipa
, MII_BMCR
, BMCR_ANENABLE
|
583 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
586 static void init_registers(struct net_device
*dev
)
588 struct gfar_private
*priv
= netdev_priv(dev
);
591 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
593 /* Initialize IMASK */
594 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
596 /* Init hash registers to zero */
597 gfar_write(&priv
->regs
->igaddr0
, 0);
598 gfar_write(&priv
->regs
->igaddr1
, 0);
599 gfar_write(&priv
->regs
->igaddr2
, 0);
600 gfar_write(&priv
->regs
->igaddr3
, 0);
601 gfar_write(&priv
->regs
->igaddr4
, 0);
602 gfar_write(&priv
->regs
->igaddr5
, 0);
603 gfar_write(&priv
->regs
->igaddr6
, 0);
604 gfar_write(&priv
->regs
->igaddr7
, 0);
606 gfar_write(&priv
->regs
->gaddr0
, 0);
607 gfar_write(&priv
->regs
->gaddr1
, 0);
608 gfar_write(&priv
->regs
->gaddr2
, 0);
609 gfar_write(&priv
->regs
->gaddr3
, 0);
610 gfar_write(&priv
->regs
->gaddr4
, 0);
611 gfar_write(&priv
->regs
->gaddr5
, 0);
612 gfar_write(&priv
->regs
->gaddr6
, 0);
613 gfar_write(&priv
->regs
->gaddr7
, 0);
615 /* Zero out the rmon mib registers if it has them */
616 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
617 memset_io(&(priv
->regs
->rmon
), 0, sizeof (struct rmon_mib
));
619 /* Mask off the CAM interrupts */
620 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
621 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
624 /* Initialize the max receive buffer length */
625 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
627 /* Initialize the Minimum Frame Length Register */
628 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
632 /* Halt the receive and transmit queues */
633 static void gfar_halt_nodisable(struct net_device
*dev
)
635 struct gfar_private
*priv
= netdev_priv(dev
);
636 struct gfar __iomem
*regs
= priv
->regs
;
639 /* Mask all interrupts */
640 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
642 /* Clear all interrupts */
643 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
645 /* Stop the DMA, and wait for it to stop */
646 tempval
= gfar_read(&priv
->regs
->dmactrl
);
647 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
648 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
649 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
650 gfar_write(&priv
->regs
->dmactrl
, tempval
);
652 while (!(gfar_read(&priv
->regs
->ievent
) &
653 (IEVENT_GRSC
| IEVENT_GTSC
)))
658 /* Halt the receive and transmit queues */
659 void gfar_halt(struct net_device
*dev
)
661 struct gfar_private
*priv
= netdev_priv(dev
);
662 struct gfar __iomem
*regs
= priv
->regs
;
665 gfar_halt_nodisable(dev
);
667 /* Disable Rx and Tx */
668 tempval
= gfar_read(®s
->maccfg1
);
669 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
670 gfar_write(®s
->maccfg1
, tempval
);
673 void stop_gfar(struct net_device
*dev
)
675 struct gfar_private
*priv
= netdev_priv(dev
);
676 struct gfar __iomem
*regs
= priv
->regs
;
679 phy_stop(priv
->phydev
);
682 spin_lock_irqsave(&priv
->txlock
, flags
);
683 spin_lock(&priv
->rxlock
);
687 spin_unlock(&priv
->rxlock
);
688 spin_unlock_irqrestore(&priv
->txlock
, flags
);
691 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
692 free_irq(priv
->interruptError
, dev
);
693 free_irq(priv
->interruptTransmit
, dev
);
694 free_irq(priv
->interruptReceive
, dev
);
696 free_irq(priv
->interruptTransmit
, dev
);
699 free_skb_resources(priv
);
701 dma_free_coherent(&dev
->dev
,
702 sizeof(struct txbd8
)*priv
->tx_ring_size
703 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
705 gfar_read(®s
->tbase0
));
708 /* If there are any tx skbs or rx skbs still around, free them.
709 * Then free tx_skbuff and rx_skbuff */
710 static void free_skb_resources(struct gfar_private
*priv
)
716 /* Go through all the buffer descriptors and free their data buffers */
717 txbdp
= priv
->tx_bd_base
;
719 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
721 if (priv
->tx_skbuff
[i
]) {
722 dma_unmap_single(&priv
->dev
->dev
, txbdp
->bufPtr
,
725 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
726 priv
->tx_skbuff
[i
] = NULL
;
732 kfree(priv
->tx_skbuff
);
734 rxbdp
= priv
->rx_bd_base
;
736 /* rx_skbuff is not guaranteed to be allocated, so only
737 * free it and its contents if it is allocated */
738 if(priv
->rx_skbuff
!= NULL
) {
739 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
740 if (priv
->rx_skbuff
[i
]) {
741 dma_unmap_single(&priv
->dev
->dev
, rxbdp
->bufPtr
,
742 priv
->rx_buffer_size
,
745 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
746 priv
->rx_skbuff
[i
] = NULL
;
756 kfree(priv
->rx_skbuff
);
760 void gfar_start(struct net_device
*dev
)
762 struct gfar_private
*priv
= netdev_priv(dev
);
763 struct gfar __iomem
*regs
= priv
->regs
;
766 /* Enable Rx and Tx in MACCFG1 */
767 tempval
= gfar_read(®s
->maccfg1
);
768 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
769 gfar_write(®s
->maccfg1
, tempval
);
771 /* Initialize DMACTRL to have WWR and WOP */
772 tempval
= gfar_read(&priv
->regs
->dmactrl
);
773 tempval
|= DMACTRL_INIT_SETTINGS
;
774 gfar_write(&priv
->regs
->dmactrl
, tempval
);
776 /* Make sure we aren't stopped */
777 tempval
= gfar_read(&priv
->regs
->dmactrl
);
778 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
779 gfar_write(&priv
->regs
->dmactrl
, tempval
);
781 /* Clear THLT/RHLT, so that the DMA starts polling now */
782 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
783 gfar_write(®s
->rstat
, RSTAT_CLEAR_RHALT
);
785 /* Unmask the interrupts we look for */
786 gfar_write(®s
->imask
, IMASK_DEFAULT
);
789 /* Bring the controller up and running */
790 int startup_gfar(struct net_device
*dev
)
797 struct gfar_private
*priv
= netdev_priv(dev
);
798 struct gfar __iomem
*regs
= priv
->regs
;
803 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
805 /* Allocate memory for the buffer descriptors */
806 vaddr
= (unsigned long) dma_alloc_coherent(&dev
->dev
,
807 sizeof (struct txbd8
) * priv
->tx_ring_size
+
808 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
812 if (netif_msg_ifup(priv
))
813 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
818 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
820 /* enet DMA only understands physical addresses */
821 gfar_write(®s
->tbase0
, addr
);
823 /* Start the rx descriptor ring where the tx ring leaves off */
824 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
825 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
826 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
827 gfar_write(®s
->rbase0
, addr
);
829 /* Setup the skbuff rings */
831 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
832 priv
->tx_ring_size
, GFP_KERNEL
);
834 if (NULL
== priv
->tx_skbuff
) {
835 if (netif_msg_ifup(priv
))
836 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
842 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
843 priv
->tx_skbuff
[i
] = NULL
;
846 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
847 priv
->rx_ring_size
, GFP_KERNEL
);
849 if (NULL
== priv
->rx_skbuff
) {
850 if (netif_msg_ifup(priv
))
851 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
857 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
858 priv
->rx_skbuff
[i
] = NULL
;
860 /* Initialize some variables in our dev structure */
861 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
862 priv
->cur_rx
= priv
->rx_bd_base
;
863 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
866 /* Initialize Transmit Descriptor Ring */
867 txbdp
= priv
->tx_bd_base
;
868 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
875 /* Set the last descriptor in the ring to indicate wrap */
877 txbdp
->status
|= TXBD_WRAP
;
879 rxbdp
= priv
->rx_bd_base
;
880 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
883 skb
= gfar_new_skb(dev
);
886 printk(KERN_ERR
"%s: Can't allocate RX buffers\n",
889 goto err_rxalloc_fail
;
892 priv
->rx_skbuff
[i
] = skb
;
894 gfar_new_rxbdp(dev
, rxbdp
, skb
);
899 /* Set the last descriptor in the ring to wrap */
901 rxbdp
->status
|= RXBD_WRAP
;
903 /* If the device has multiple interrupts, register for
904 * them. Otherwise, only register for the one */
905 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
906 /* Install our interrupt handlers for Error,
907 * Transmit, and Receive */
908 if (request_irq(priv
->interruptError
, gfar_error
,
909 0, "enet_error", dev
) < 0) {
910 if (netif_msg_intr(priv
))
911 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
912 dev
->name
, priv
->interruptError
);
918 if (request_irq(priv
->interruptTransmit
, gfar_transmit
,
919 0, "enet_tx", dev
) < 0) {
920 if (netif_msg_intr(priv
))
921 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
922 dev
->name
, priv
->interruptTransmit
);
929 if (request_irq(priv
->interruptReceive
, gfar_receive
,
930 0, "enet_rx", dev
) < 0) {
931 if (netif_msg_intr(priv
))
932 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
933 dev
->name
, priv
->interruptReceive
);
939 if (request_irq(priv
->interruptTransmit
, gfar_interrupt
,
940 0, "gfar_interrupt", dev
) < 0) {
941 if (netif_msg_intr(priv
))
942 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
943 dev
->name
, priv
->interruptError
);
950 phy_start(priv
->phydev
);
952 /* Configure the coalescing support */
953 if (priv
->txcoalescing
)
954 gfar_write(®s
->txic
,
955 mk_ic_value(priv
->txcount
, priv
->txtime
));
957 gfar_write(®s
->txic
, 0);
959 if (priv
->rxcoalescing
)
960 gfar_write(®s
->rxic
,
961 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
963 gfar_write(®s
->rxic
, 0);
965 if (priv
->rx_csum_enable
)
966 rctrl
|= RCTRL_CHECKSUMMING
;
968 if (priv
->extended_hash
) {
969 rctrl
|= RCTRL_EXTHASH
;
971 gfar_clear_exact_match(dev
);
975 if (priv
->vlan_enable
)
979 rctrl
&= ~RCTRL_PAL_MASK
;
980 rctrl
|= RCTRL_PADDING(priv
->padding
);
983 /* Init rctrl based on our settings */
984 gfar_write(&priv
->regs
->rctrl
, rctrl
);
986 if (dev
->features
& NETIF_F_IP_CSUM
)
987 gfar_write(&priv
->regs
->tctrl
, TCTRL_INIT_CSUM
);
989 /* Set the extraction length and index */
990 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
991 ATTRELI_EI(priv
->rx_stash_index
);
993 gfar_write(&priv
->regs
->attreli
, attrs
);
995 /* Start with defaults, and add stashing or locking
996 * depending on the approprate variables */
997 attrs
= ATTR_INIT_SETTINGS
;
999 if (priv
->bd_stash_en
)
1000 attrs
|= ATTR_BDSTASH
;
1002 if (priv
->rx_stash_size
!= 0)
1003 attrs
|= ATTR_BUFSTASH
;
1005 gfar_write(&priv
->regs
->attr
, attrs
);
1007 gfar_write(&priv
->regs
->fifo_tx_thr
, priv
->fifo_threshold
);
1008 gfar_write(&priv
->regs
->fifo_tx_starve
, priv
->fifo_starve
);
1009 gfar_write(&priv
->regs
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
1011 /* Start the controller */
1017 free_irq(priv
->interruptTransmit
, dev
);
1019 free_irq(priv
->interruptError
, dev
);
1023 free_skb_resources(priv
);
1025 dma_free_coherent(&dev
->dev
,
1026 sizeof(struct txbd8
)*priv
->tx_ring_size
1027 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
1029 gfar_read(®s
->tbase0
));
1034 /* Called when something needs to use the ethernet device */
1035 /* Returns 0 for success. */
1036 static int gfar_enet_open(struct net_device
*dev
)
1038 struct gfar_private
*priv
= netdev_priv(dev
);
1041 napi_enable(&priv
->napi
);
1043 /* Initialize a bunch of registers */
1044 init_registers(dev
);
1046 gfar_set_mac_address(dev
);
1048 err
= init_phy(dev
);
1051 napi_disable(&priv
->napi
);
1055 err
= startup_gfar(dev
);
1057 napi_disable(&priv
->napi
);
1061 netif_start_queue(dev
);
1066 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
, struct txbd8
*bdp
)
1068 struct txfcb
*fcb
= (struct txfcb
*)skb_push (skb
, GMAC_FCB_LEN
);
1070 memset(fcb
, 0, GMAC_FCB_LEN
);
1075 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
1079 /* If we're here, it's a IP packet with a TCP or UDP
1080 * payload. We set it to checksum, using a pseudo-header
1083 flags
= TXFCB_DEFAULT
;
1085 /* Tell the controller what the protocol is */
1086 /* And provide the already calculated phcs */
1087 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
1089 fcb
->phcs
= udp_hdr(skb
)->check
;
1091 fcb
->phcs
= tcp_hdr(skb
)->check
;
1093 /* l3os is the distance between the start of the
1094 * frame (skb->data) and the start of the IP hdr.
1095 * l4os is the distance between the start of the
1096 * l3 hdr and the l4 hdr */
1097 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
1098 fcb
->l4os
= skb_network_header_len(skb
);
1103 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
1105 fcb
->flags
|= TXFCB_VLN
;
1106 fcb
->vlctl
= vlan_tx_tag_get(skb
);
1109 /* This is called by the kernel when a frame is ready for transmission. */
1110 /* It is pointed to by the dev->hard_start_xmit function pointer */
1111 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1113 struct gfar_private
*priv
= netdev_priv(dev
);
1114 struct txfcb
*fcb
= NULL
;
1115 struct txbd8
*txbdp
;
1117 unsigned long flags
;
1119 /* Update transmit stats */
1120 dev
->stats
.tx_bytes
+= skb
->len
;
1123 spin_lock_irqsave(&priv
->txlock
, flags
);
1125 /* Point at the first free tx descriptor */
1126 txbdp
= priv
->cur_tx
;
1128 /* Clear all but the WRAP status flags */
1129 status
= txbdp
->status
& TXBD_WRAP
;
1131 /* Set up checksumming */
1132 if (likely((dev
->features
& NETIF_F_IP_CSUM
)
1133 && (CHECKSUM_PARTIAL
== skb
->ip_summed
))) {
1134 fcb
= gfar_add_fcb(skb
, txbdp
);
1136 gfar_tx_checksum(skb
, fcb
);
1139 if (priv
->vlan_enable
&&
1140 unlikely(priv
->vlgrp
&& vlan_tx_tag_present(skb
))) {
1141 if (unlikely(NULL
== fcb
)) {
1142 fcb
= gfar_add_fcb(skb
, txbdp
);
1146 gfar_tx_vlan(skb
, fcb
);
1149 /* Set buffer length and pointer */
1150 txbdp
->length
= skb
->len
;
1151 txbdp
->bufPtr
= dma_map_single(&dev
->dev
, skb
->data
,
1152 skb
->len
, DMA_TO_DEVICE
);
1154 /* Save the skb pointer so we can free it later */
1155 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
1157 /* Update the current skb pointer (wrapping if this was the last) */
1159 (priv
->skb_curtx
+ 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1161 /* Flag the BD as interrupt-causing */
1162 status
|= TXBD_INTERRUPT
;
1164 /* Flag the BD as ready to go, last in frame, and */
1165 /* in need of CRC */
1166 status
|= (TXBD_READY
| TXBD_LAST
| TXBD_CRC
);
1168 dev
->trans_start
= jiffies
;
1170 /* The powerpc-specific eieio() is used, as wmb() has too strong
1171 * semantics (it requires synchronization between cacheable and
1172 * uncacheable mappings, which eieio doesn't provide and which we
1173 * don't need), thus requiring a more expensive sync instruction. At
1174 * some point, the set of architecture-independent barrier functions
1175 * should be expanded to include weaker barriers.
1179 txbdp
->status
= status
;
1181 /* If this was the last BD in the ring, the next one */
1182 /* is at the beginning of the ring */
1183 if (txbdp
->status
& TXBD_WRAP
)
1184 txbdp
= priv
->tx_bd_base
;
1188 /* If the next BD still needs to be cleaned up, then the bds
1189 are full. We need to tell the kernel to stop sending us stuff. */
1190 if (txbdp
== priv
->dirty_tx
) {
1191 netif_stop_queue(dev
);
1193 dev
->stats
.tx_fifo_errors
++;
1196 /* Update the current txbd to the next one */
1197 priv
->cur_tx
= txbdp
;
1199 /* Tell the DMA to go go go */
1200 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1203 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1208 /* Stops the kernel queue, and halts the controller */
1209 static int gfar_close(struct net_device
*dev
)
1211 struct gfar_private
*priv
= netdev_priv(dev
);
1213 napi_disable(&priv
->napi
);
1217 /* Disconnect from the PHY */
1218 phy_disconnect(priv
->phydev
);
1219 priv
->phydev
= NULL
;
1221 netif_stop_queue(dev
);
1226 /* Changes the mac address if the controller is not running. */
1227 static int gfar_set_mac_address(struct net_device
*dev
)
1229 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
1235 /* Enables and disables VLAN insertion/extraction */
1236 static void gfar_vlan_rx_register(struct net_device
*dev
,
1237 struct vlan_group
*grp
)
1239 struct gfar_private
*priv
= netdev_priv(dev
);
1240 unsigned long flags
;
1243 spin_lock_irqsave(&priv
->rxlock
, flags
);
1248 /* Enable VLAN tag insertion */
1249 tempval
= gfar_read(&priv
->regs
->tctrl
);
1250 tempval
|= TCTRL_VLINS
;
1252 gfar_write(&priv
->regs
->tctrl
, tempval
);
1254 /* Enable VLAN tag extraction */
1255 tempval
= gfar_read(&priv
->regs
->rctrl
);
1256 tempval
|= RCTRL_VLEX
;
1257 gfar_write(&priv
->regs
->rctrl
, tempval
);
1259 /* Disable VLAN tag insertion */
1260 tempval
= gfar_read(&priv
->regs
->tctrl
);
1261 tempval
&= ~TCTRL_VLINS
;
1262 gfar_write(&priv
->regs
->tctrl
, tempval
);
1264 /* Disable VLAN tag extraction */
1265 tempval
= gfar_read(&priv
->regs
->rctrl
);
1266 tempval
&= ~RCTRL_VLEX
;
1267 gfar_write(&priv
->regs
->rctrl
, tempval
);
1270 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1273 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
1275 int tempsize
, tempval
;
1276 struct gfar_private
*priv
= netdev_priv(dev
);
1277 int oldsize
= priv
->rx_buffer_size
;
1278 int frame_size
= new_mtu
+ ETH_HLEN
;
1280 if (priv
->vlan_enable
)
1281 frame_size
+= VLAN_HLEN
;
1283 if (gfar_uses_fcb(priv
))
1284 frame_size
+= GMAC_FCB_LEN
;
1286 frame_size
+= priv
->padding
;
1288 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
1289 if (netif_msg_drv(priv
))
1290 printk(KERN_ERR
"%s: Invalid MTU setting\n",
1296 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
1297 INCREMENTAL_BUFFER_SIZE
;
1299 /* Only stop and start the controller if it isn't already
1300 * stopped, and we changed something */
1301 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1304 priv
->rx_buffer_size
= tempsize
;
1308 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1309 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1311 /* If the mtu is larger than the max size for standard
1312 * ethernet frames (ie, a jumbo frame), then set maccfg2
1313 * to allow huge frames, and to check the length */
1314 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1316 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1317 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1319 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1321 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1323 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1329 /* gfar_timeout gets called when a packet has not been
1330 * transmitted after a set amount of time.
1331 * For now, assume that clearing out all the structures, and
1332 * starting over will fix the problem. */
1333 static void gfar_timeout(struct net_device
*dev
)
1335 dev
->stats
.tx_errors
++;
1337 if (dev
->flags
& IFF_UP
) {
1342 netif_tx_schedule_all(dev
);
1345 /* Interrupt Handler for Transmit complete */
1346 static int gfar_clean_tx_ring(struct net_device
*dev
)
1349 struct gfar_private
*priv
= netdev_priv(dev
);
1352 bdp
= priv
->dirty_tx
;
1353 while ((bdp
->status
& TXBD_READY
) == 0) {
1354 /* If dirty_tx and cur_tx are the same, then either the */
1355 /* ring is empty or full now (it could only be full in the beginning, */
1356 /* obviously). If it is empty, we are done. */
1357 if ((bdp
== priv
->cur_tx
) && (netif_queue_stopped(dev
) == 0))
1362 /* Deferred means some collisions occurred during transmit, */
1363 /* but we eventually sent the packet. */
1364 if (bdp
->status
& TXBD_DEF
)
1365 dev
->stats
.collisions
++;
1367 /* Free the sk buffer associated with this TxBD */
1368 dev_kfree_skb_irq(priv
->tx_skbuff
[priv
->skb_dirtytx
]);
1370 priv
->tx_skbuff
[priv
->skb_dirtytx
] = NULL
;
1372 (priv
->skb_dirtytx
+
1373 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1375 /* Clean BD length for empty detection */
1378 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1379 if (bdp
->status
& TXBD_WRAP
)
1380 bdp
= priv
->tx_bd_base
;
1384 /* Move dirty_tx to be the next bd */
1385 priv
->dirty_tx
= bdp
;
1387 /* We freed a buffer, so now we can restart transmission */
1388 if (netif_queue_stopped(dev
))
1389 netif_wake_queue(dev
);
1390 } /* while ((bdp->status & TXBD_READY) == 0) */
1392 dev
->stats
.tx_packets
+= howmany
;
1397 /* Interrupt Handler for Transmit complete */
1398 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
)
1400 struct net_device
*dev
= (struct net_device
*) dev_id
;
1401 struct gfar_private
*priv
= netdev_priv(dev
);
1404 gfar_write(&priv
->regs
->ievent
, IEVENT_TX_MASK
);
1407 spin_lock(&priv
->txlock
);
1409 gfar_clean_tx_ring(dev
);
1411 /* If we are coalescing the interrupts, reset the timer */
1412 /* Otherwise, clear it */
1413 if (likely(priv
->txcoalescing
)) {
1414 gfar_write(&priv
->regs
->txic
, 0);
1415 gfar_write(&priv
->regs
->txic
,
1416 mk_ic_value(priv
->txcount
, priv
->txtime
));
1419 spin_unlock(&priv
->txlock
);
1424 static void gfar_new_rxbdp(struct net_device
*dev
, struct rxbd8
*bdp
,
1425 struct sk_buff
*skb
)
1427 struct gfar_private
*priv
= netdev_priv(dev
);
1428 u32
* status_len
= (u32
*)bdp
;
1431 bdp
->bufPtr
= dma_map_single(&dev
->dev
, skb
->data
,
1432 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1434 flags
= RXBD_EMPTY
| RXBD_INTERRUPT
;
1436 if (bdp
== priv
->rx_bd_base
+ priv
->rx_ring_size
- 1)
1441 *status_len
= (u32
)flags
<< 16;
1445 struct sk_buff
* gfar_new_skb(struct net_device
*dev
)
1447 unsigned int alignamount
;
1448 struct gfar_private
*priv
= netdev_priv(dev
);
1449 struct sk_buff
*skb
= NULL
;
1451 /* We have to allocate the skb, so keep trying till we succeed */
1452 skb
= netdev_alloc_skb(dev
, priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1457 alignamount
= RXBUF_ALIGNMENT
-
1458 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
1460 /* We need the data buffer to be aligned properly. We will reserve
1461 * as many bytes as needed to align the data properly
1463 skb_reserve(skb
, alignamount
);
1468 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
1470 struct gfar_private
*priv
= netdev_priv(dev
);
1471 struct net_device_stats
*stats
= &dev
->stats
;
1472 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1474 /* If the packet was truncated, none of the other errors
1476 if (status
& RXBD_TRUNCATED
) {
1477 stats
->rx_length_errors
++;
1483 /* Count the errors, if there were any */
1484 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1485 stats
->rx_length_errors
++;
1487 if (status
& RXBD_LARGE
)
1492 if (status
& RXBD_NONOCTET
) {
1493 stats
->rx_frame_errors
++;
1494 estats
->rx_nonoctet
++;
1496 if (status
& RXBD_CRCERR
) {
1497 estats
->rx_crcerr
++;
1498 stats
->rx_crc_errors
++;
1500 if (status
& RXBD_OVERRUN
) {
1501 estats
->rx_overrun
++;
1502 stats
->rx_crc_errors
++;
1506 irqreturn_t
gfar_receive(int irq
, void *dev_id
)
1508 struct net_device
*dev
= (struct net_device
*) dev_id
;
1509 struct gfar_private
*priv
= netdev_priv(dev
);
1513 /* Clear IEVENT, so interrupts aren't called again
1514 * because of the packets that have already arrived */
1515 gfar_write(&priv
->regs
->ievent
, IEVENT_RTX_MASK
);
1517 if (netif_rx_schedule_prep(dev
, &priv
->napi
)) {
1518 tempval
= gfar_read(&priv
->regs
->imask
);
1519 tempval
&= IMASK_RTX_DISABLED
;
1520 gfar_write(&priv
->regs
->imask
, tempval
);
1522 __netif_rx_schedule(dev
, &priv
->napi
);
1524 if (netif_msg_rx_err(priv
))
1525 printk(KERN_DEBUG
"%s: receive called twice (%x)[%x]\n",
1526 dev
->name
, gfar_read(&priv
->regs
->ievent
),
1527 gfar_read(&priv
->regs
->imask
));
1533 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
1535 /* If valid headers were found, and valid sums
1536 * were verified, then we tell the kernel that no
1537 * checksumming is necessary. Otherwise, it is */
1538 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
1539 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1541 skb
->ip_summed
= CHECKSUM_NONE
;
1545 static inline struct rxfcb
*gfar_get_fcb(struct sk_buff
*skb
)
1547 struct rxfcb
*fcb
= (struct rxfcb
*)skb
->data
;
1549 /* Remove the FCB from the skb */
1550 skb_pull(skb
, GMAC_FCB_LEN
);
1555 /* gfar_process_frame() -- handle one incoming packet if skb
1557 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1560 struct gfar_private
*priv
= netdev_priv(dev
);
1561 struct rxfcb
*fcb
= NULL
;
1564 if (netif_msg_rx_err(priv
))
1565 printk(KERN_WARNING
"%s: Missing skb!!.\n", dev
->name
);
1566 dev
->stats
.rx_dropped
++;
1567 priv
->extra_stats
.rx_skbmissing
++;
1571 /* Prep the skb for the packet */
1572 skb_put(skb
, length
);
1574 /* Grab the FCB if there is one */
1575 if (gfar_uses_fcb(priv
))
1576 fcb
= gfar_get_fcb(skb
);
1578 /* Remove the padded bytes, if there are any */
1580 skb_pull(skb
, priv
->padding
);
1582 if (priv
->rx_csum_enable
)
1583 gfar_rx_checksum(skb
, fcb
);
1585 /* Tell the skb what kind of packet this is */
1586 skb
->protocol
= eth_type_trans(skb
, dev
);
1588 /* Send the packet up the stack */
1589 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
))) {
1590 ret
= vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
,
1593 ret
= netif_receive_skb(skb
);
1595 if (NET_RX_DROP
== ret
)
1596 priv
->extra_stats
.kernel_dropped
++;
1602 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1603 * until the budget/quota has been reached. Returns the number
1606 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1609 struct sk_buff
*skb
;
1612 struct gfar_private
*priv
= netdev_priv(dev
);
1614 /* Get the first full descriptor */
1617 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1618 struct sk_buff
*newskb
;
1621 /* Add another skb for the future */
1622 newskb
= gfar_new_skb(dev
);
1624 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1626 /* We drop the frame if we failed to allocate a new buffer */
1627 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
1628 bdp
->status
& RXBD_ERR
)) {
1629 count_errors(bdp
->status
, dev
);
1631 if (unlikely(!newskb
))
1635 dma_unmap_single(&priv
->dev
->dev
,
1637 priv
->rx_buffer_size
,
1640 dev_kfree_skb_any(skb
);
1643 /* Increment the number of packets */
1644 dev
->stats
.rx_packets
++;
1647 /* Remove the FCS from the packet length */
1648 pkt_len
= bdp
->length
- 4;
1650 gfar_process_frame(dev
, skb
, pkt_len
);
1652 dev
->stats
.rx_bytes
+= pkt_len
;
1655 dev
->last_rx
= jiffies
;
1657 priv
->rx_skbuff
[priv
->skb_currx
] = newskb
;
1659 /* Setup the new bdp */
1660 gfar_new_rxbdp(dev
, bdp
, newskb
);
1662 /* Update to the next pointer */
1663 if (bdp
->status
& RXBD_WRAP
)
1664 bdp
= priv
->rx_bd_base
;
1668 /* update to point at the next skb */
1670 (priv
->skb_currx
+ 1) &
1671 RX_RING_MOD_MASK(priv
->rx_ring_size
);
1674 /* Update the current rxbd pointer to be the next one */
1680 static int gfar_poll(struct napi_struct
*napi
, int budget
)
1682 struct gfar_private
*priv
= container_of(napi
, struct gfar_private
, napi
);
1683 struct net_device
*dev
= priv
->dev
;
1685 unsigned long flags
;
1687 /* If we fail to get the lock, don't bother with the TX BDs */
1688 if (spin_trylock_irqsave(&priv
->txlock
, flags
)) {
1689 gfar_clean_tx_ring(dev
);
1690 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1693 howmany
= gfar_clean_rx_ring(dev
, budget
);
1695 if (howmany
< budget
) {
1696 netif_rx_complete(dev
, napi
);
1698 /* Clear the halt bit in RSTAT */
1699 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1701 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1703 /* If we are coalescing interrupts, update the timer */
1704 /* Otherwise, clear it */
1705 if (likely(priv
->rxcoalescing
)) {
1706 gfar_write(&priv
->regs
->rxic
, 0);
1707 gfar_write(&priv
->regs
->rxic
,
1708 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1715 #ifdef CONFIG_NET_POLL_CONTROLLER
1717 * Polling 'interrupt' - used by things like netconsole to send skbs
1718 * without having to re-enable interrupts. It's not called while
1719 * the interrupt routine is executing.
1721 static void gfar_netpoll(struct net_device
*dev
)
1723 struct gfar_private
*priv
= netdev_priv(dev
);
1725 /* If the device has multiple interrupts, run tx/rx */
1726 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1727 disable_irq(priv
->interruptTransmit
);
1728 disable_irq(priv
->interruptReceive
);
1729 disable_irq(priv
->interruptError
);
1730 gfar_interrupt(priv
->interruptTransmit
, dev
);
1731 enable_irq(priv
->interruptError
);
1732 enable_irq(priv
->interruptReceive
);
1733 enable_irq(priv
->interruptTransmit
);
1735 disable_irq(priv
->interruptTransmit
);
1736 gfar_interrupt(priv
->interruptTransmit
, dev
);
1737 enable_irq(priv
->interruptTransmit
);
1742 /* The interrupt handler for devices with one interrupt */
1743 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
)
1745 struct net_device
*dev
= dev_id
;
1746 struct gfar_private
*priv
= netdev_priv(dev
);
1748 /* Save ievent for future reference */
1749 u32 events
= gfar_read(&priv
->regs
->ievent
);
1751 /* Check for reception */
1752 if (events
& IEVENT_RX_MASK
)
1753 gfar_receive(irq
, dev_id
);
1755 /* Check for transmit completion */
1756 if (events
& IEVENT_TX_MASK
)
1757 gfar_transmit(irq
, dev_id
);
1759 /* Check for errors */
1760 if (events
& IEVENT_ERR_MASK
)
1761 gfar_error(irq
, dev_id
);
1766 /* Called every time the controller might need to be made
1767 * aware of new link state. The PHY code conveys this
1768 * information through variables in the phydev structure, and this
1769 * function converts those variables into the appropriate
1770 * register values, and can bring down the device if needed.
1772 static void adjust_link(struct net_device
*dev
)
1774 struct gfar_private
*priv
= netdev_priv(dev
);
1775 struct gfar __iomem
*regs
= priv
->regs
;
1776 unsigned long flags
;
1777 struct phy_device
*phydev
= priv
->phydev
;
1780 spin_lock_irqsave(&priv
->txlock
, flags
);
1782 u32 tempval
= gfar_read(®s
->maccfg2
);
1783 u32 ecntrl
= gfar_read(®s
->ecntrl
);
1785 /* Now we make sure that we can be in full duplex mode.
1786 * If not, we operate in half-duplex mode. */
1787 if (phydev
->duplex
!= priv
->oldduplex
) {
1789 if (!(phydev
->duplex
))
1790 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
1792 tempval
|= MACCFG2_FULL_DUPLEX
;
1794 priv
->oldduplex
= phydev
->duplex
;
1797 if (phydev
->speed
!= priv
->oldspeed
) {
1799 switch (phydev
->speed
) {
1802 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
1807 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
1809 /* Reduced mode distinguishes
1810 * between 10 and 100 */
1811 if (phydev
->speed
== SPEED_100
)
1812 ecntrl
|= ECNTRL_R100
;
1814 ecntrl
&= ~(ECNTRL_R100
);
1817 if (netif_msg_link(priv
))
1819 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1820 dev
->name
, phydev
->speed
);
1824 priv
->oldspeed
= phydev
->speed
;
1827 gfar_write(®s
->maccfg2
, tempval
);
1828 gfar_write(®s
->ecntrl
, ecntrl
);
1830 if (!priv
->oldlink
) {
1834 } else if (priv
->oldlink
) {
1838 priv
->oldduplex
= -1;
1841 if (new_state
&& netif_msg_link(priv
))
1842 phy_print_status(phydev
);
1844 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1847 /* Update the hash table based on the current list of multicast
1848 * addresses we subscribe to. Also, change the promiscuity of
1849 * the device based on the flags (this function is called
1850 * whenever dev->flags is changed */
1851 static void gfar_set_multi(struct net_device
*dev
)
1853 struct dev_mc_list
*mc_ptr
;
1854 struct gfar_private
*priv
= netdev_priv(dev
);
1855 struct gfar __iomem
*regs
= priv
->regs
;
1858 if(dev
->flags
& IFF_PROMISC
) {
1859 /* Set RCTRL to PROM */
1860 tempval
= gfar_read(®s
->rctrl
);
1861 tempval
|= RCTRL_PROM
;
1862 gfar_write(®s
->rctrl
, tempval
);
1864 /* Set RCTRL to not PROM */
1865 tempval
= gfar_read(®s
->rctrl
);
1866 tempval
&= ~(RCTRL_PROM
);
1867 gfar_write(®s
->rctrl
, tempval
);
1870 if(dev
->flags
& IFF_ALLMULTI
) {
1871 /* Set the hash to rx all multicast frames */
1872 gfar_write(®s
->igaddr0
, 0xffffffff);
1873 gfar_write(®s
->igaddr1
, 0xffffffff);
1874 gfar_write(®s
->igaddr2
, 0xffffffff);
1875 gfar_write(®s
->igaddr3
, 0xffffffff);
1876 gfar_write(®s
->igaddr4
, 0xffffffff);
1877 gfar_write(®s
->igaddr5
, 0xffffffff);
1878 gfar_write(®s
->igaddr6
, 0xffffffff);
1879 gfar_write(®s
->igaddr7
, 0xffffffff);
1880 gfar_write(®s
->gaddr0
, 0xffffffff);
1881 gfar_write(®s
->gaddr1
, 0xffffffff);
1882 gfar_write(®s
->gaddr2
, 0xffffffff);
1883 gfar_write(®s
->gaddr3
, 0xffffffff);
1884 gfar_write(®s
->gaddr4
, 0xffffffff);
1885 gfar_write(®s
->gaddr5
, 0xffffffff);
1886 gfar_write(®s
->gaddr6
, 0xffffffff);
1887 gfar_write(®s
->gaddr7
, 0xffffffff);
1892 /* zero out the hash */
1893 gfar_write(®s
->igaddr0
, 0x0);
1894 gfar_write(®s
->igaddr1
, 0x0);
1895 gfar_write(®s
->igaddr2
, 0x0);
1896 gfar_write(®s
->igaddr3
, 0x0);
1897 gfar_write(®s
->igaddr4
, 0x0);
1898 gfar_write(®s
->igaddr5
, 0x0);
1899 gfar_write(®s
->igaddr6
, 0x0);
1900 gfar_write(®s
->igaddr7
, 0x0);
1901 gfar_write(®s
->gaddr0
, 0x0);
1902 gfar_write(®s
->gaddr1
, 0x0);
1903 gfar_write(®s
->gaddr2
, 0x0);
1904 gfar_write(®s
->gaddr3
, 0x0);
1905 gfar_write(®s
->gaddr4
, 0x0);
1906 gfar_write(®s
->gaddr5
, 0x0);
1907 gfar_write(®s
->gaddr6
, 0x0);
1908 gfar_write(®s
->gaddr7
, 0x0);
1910 /* If we have extended hash tables, we need to
1911 * clear the exact match registers to prepare for
1913 if (priv
->extended_hash
) {
1914 em_num
= GFAR_EM_NUM
+ 1;
1915 gfar_clear_exact_match(dev
);
1922 if(dev
->mc_count
== 0)
1925 /* Parse the list, and set the appropriate bits */
1926 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
1928 gfar_set_mac_for_addr(dev
, idx
,
1932 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
1940 /* Clears each of the exact match registers to zero, so they
1941 * don't interfere with normal reception */
1942 static void gfar_clear_exact_match(struct net_device
*dev
)
1945 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
1947 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
1948 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
1951 /* Set the appropriate hash bit for the given addr */
1952 /* The algorithm works like so:
1953 * 1) Take the Destination Address (ie the multicast address), and
1954 * do a CRC on it (little endian), and reverse the bits of the
1956 * 2) Use the 8 most significant bits as a hash into a 256-entry
1957 * table. The table is controlled through 8 32-bit registers:
1958 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1959 * gaddr7. This means that the 3 most significant bits in the
1960 * hash index which gaddr register to use, and the 5 other bits
1961 * indicate which bit (assuming an IBM numbering scheme, which
1962 * for PowerPC (tm) is usually the case) in the register holds
1964 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
1967 struct gfar_private
*priv
= netdev_priv(dev
);
1968 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
1969 int width
= priv
->hash_width
;
1970 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
1971 u8 whichreg
= result
>> (32 - width
+ 5);
1972 u32 value
= (1 << (31-whichbit
));
1974 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
1976 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
1982 /* There are multiple MAC Address register pairs on some controllers
1983 * This function sets the numth pair to a given address
1985 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
1987 struct gfar_private
*priv
= netdev_priv(dev
);
1989 char tmpbuf
[MAC_ADDR_LEN
];
1991 u32 __iomem
*macptr
= &priv
->regs
->macstnaddr1
;
1995 /* Now copy it into the mac registers backwards, cuz */
1996 /* little endian is silly */
1997 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
1998 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
2000 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
2002 tempval
= *((u32
*) (tmpbuf
+ 4));
2004 gfar_write(macptr
+1, tempval
);
2007 /* GFAR error interrupt handler */
2008 static irqreturn_t
gfar_error(int irq
, void *dev_id
)
2010 struct net_device
*dev
= dev_id
;
2011 struct gfar_private
*priv
= netdev_priv(dev
);
2013 /* Save ievent for future reference */
2014 u32 events
= gfar_read(&priv
->regs
->ievent
);
2017 gfar_write(&priv
->regs
->ievent
, events
& IEVENT_ERR_MASK
);
2019 /* Magic Packet is not an error. */
2020 if ((priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
2021 (events
& IEVENT_MAG
))
2022 events
&= ~IEVENT_MAG
;
2025 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
2026 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2027 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
2029 /* Update the error counters */
2030 if (events
& IEVENT_TXE
) {
2031 dev
->stats
.tx_errors
++;
2033 if (events
& IEVENT_LC
)
2034 dev
->stats
.tx_window_errors
++;
2035 if (events
& IEVENT_CRL
)
2036 dev
->stats
.tx_aborted_errors
++;
2037 if (events
& IEVENT_XFUN
) {
2038 if (netif_msg_tx_err(priv
))
2039 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
2040 "packet dropped.\n", dev
->name
);
2041 dev
->stats
.tx_dropped
++;
2042 priv
->extra_stats
.tx_underrun
++;
2044 /* Reactivate the Tx Queues */
2045 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
2047 if (netif_msg_tx_err(priv
))
2048 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
2050 if (events
& IEVENT_BSY
) {
2051 dev
->stats
.rx_errors
++;
2052 priv
->extra_stats
.rx_bsy
++;
2054 gfar_receive(irq
, dev_id
);
2056 if (netif_msg_rx_err(priv
))
2057 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
2058 dev
->name
, gfar_read(&priv
->regs
->rstat
));
2060 if (events
& IEVENT_BABR
) {
2061 dev
->stats
.rx_errors
++;
2062 priv
->extra_stats
.rx_babr
++;
2064 if (netif_msg_rx_err(priv
))
2065 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
2067 if (events
& IEVENT_EBERR
) {
2068 priv
->extra_stats
.eberr
++;
2069 if (netif_msg_rx_err(priv
))
2070 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
2072 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
2073 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
2075 if (events
& IEVENT_BABT
) {
2076 priv
->extra_stats
.tx_babt
++;
2077 if (netif_msg_tx_err(priv
))
2078 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
2083 /* work with hotplug and coldplug */
2084 MODULE_ALIAS("platform:fsl-gianfar");
2086 /* Structure for a device driver */
2087 static struct platform_driver gfar_driver
= {
2088 .probe
= gfar_probe
,
2089 .remove
= gfar_remove
,
2090 .suspend
= gfar_suspend
,
2091 .resume
= gfar_resume
,
2093 .name
= "fsl-gianfar",
2094 .owner
= THIS_MODULE
,
2098 static int __init
gfar_init(void)
2100 int err
= gfar_mdio_init();
2105 err
= platform_driver_register(&gfar_driver
);
2113 static void __exit
gfar_exit(void)
2115 platform_driver_unregister(&gfar_driver
);
2119 module_init(gfar_init
);
2120 module_exit(gfar_exit
);