1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2008 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/zlib.h>
50 #include <linux/log2.h>
56 #define FW_BUF_SIZE 0x10000
58 #define DRV_MODULE_NAME "bnx2"
59 #define PFX DRV_MODULE_NAME ": "
60 #define DRV_MODULE_VERSION "1.8.0"
61 #define DRV_MODULE_RELDATE "Aug 14, 2008"
63 #define RUN_AT(x) (jiffies + (x))
65 /* Time in jiffies before concluding the transmitter is hung. */
66 #define TX_TIMEOUT (5*HZ)
68 static char version
[] __devinitdata
=
69 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
71 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
72 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709 Driver");
73 MODULE_LICENSE("GPL");
74 MODULE_VERSION(DRV_MODULE_VERSION
);
76 static int disable_msi
= 0;
78 module_param(disable_msi
, int, 0);
79 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
94 /* indexed by board_t, above */
97 } board_info
[] __devinitdata
= {
98 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
99 { "HP NC370T Multifunction Gigabit Server Adapter" },
100 { "HP NC370i Multifunction Gigabit Server Adapter" },
101 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
102 { "HP NC370F Multifunction Gigabit Server Adapter" },
103 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
104 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
105 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
106 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
107 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
110 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
111 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
112 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
113 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
114 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
115 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
116 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
117 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
118 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
119 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
120 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
121 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
122 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
123 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
124 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
125 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
126 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
127 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
128 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
129 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
134 static struct flash_spec flash_table
[] =
136 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
137 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
139 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
140 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
141 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
143 /* Expansion entry 0001 */
144 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
145 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
146 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
148 /* Saifun SA25F010 (non-buffered flash) */
149 /* strap, cfg1, & write1 need updates */
150 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
151 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
152 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
153 "Non-buffered flash (128kB)"},
154 /* Saifun SA25F020 (non-buffered flash) */
155 /* strap, cfg1, & write1 need updates */
156 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
157 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
158 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
159 "Non-buffered flash (256kB)"},
160 /* Expansion entry 0100 */
161 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
162 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
163 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
165 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
166 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
168 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
169 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
170 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
171 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
172 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
173 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
174 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
175 /* Saifun SA25F005 (non-buffered flash) */
176 /* strap, cfg1, & write1 need updates */
177 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
178 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
179 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
180 "Non-buffered flash (64kB)"},
182 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
183 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
184 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
186 /* Expansion entry 1001 */
187 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
189 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
191 /* Expansion entry 1010 */
192 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
194 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
196 /* ATMEL AT45DB011B (buffered flash) */
197 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
198 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
199 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
200 "Buffered flash (128kB)"},
201 /* Expansion entry 1100 */
202 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
204 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
206 /* Expansion entry 1101 */
207 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
208 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
209 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
211 /* Ateml Expansion entry 1110 */
212 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
213 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
214 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
215 "Entry 1110 (Atmel)"},
216 /* ATMEL AT45DB021B (buffered flash) */
217 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
218 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
219 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
220 "Buffered flash (256kB)"},
223 static struct flash_spec flash_5709
= {
224 .flags
= BNX2_NV_BUFFERED
,
225 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
226 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
227 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
228 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
229 .name
= "5709 Buffered flash (256kB)",
232 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
234 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
240 /* The ring uses 256 indices for 255 entries, one of them
241 * needs to be skipped.
243 diff
= txr
->tx_prod
- txr
->tx_cons
;
244 if (unlikely(diff
>= TX_DESC_CNT
)) {
246 if (diff
== TX_DESC_CNT
)
247 diff
= MAX_TX_DESC_CNT
;
249 return (bp
->tx_ring_size
- diff
);
253 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
257 spin_lock_bh(&bp
->indirect_lock
);
258 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
259 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
260 spin_unlock_bh(&bp
->indirect_lock
);
265 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
267 spin_lock_bh(&bp
->indirect_lock
);
268 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
269 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
270 spin_unlock_bh(&bp
->indirect_lock
);
274 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
276 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
280 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
282 return (bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
));
286 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
289 spin_lock_bh(&bp
->indirect_lock
);
290 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
293 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
294 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
295 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
296 for (i
= 0; i
< 5; i
++) {
297 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
298 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
303 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
304 REG_WR(bp
, BNX2_CTX_DATA
, val
);
306 spin_unlock_bh(&bp
->indirect_lock
);
310 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
315 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
316 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
317 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
319 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
320 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
325 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
326 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
327 BNX2_EMAC_MDIO_COMM_START_BUSY
;
328 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
330 for (i
= 0; i
< 50; i
++) {
333 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
334 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
337 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
338 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
344 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
353 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
354 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
355 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
357 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
358 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
367 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
372 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
373 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
374 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
376 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
377 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
382 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
383 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
384 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
385 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
387 for (i
= 0; i
< 50; i
++) {
390 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
391 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
397 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
402 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
403 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
404 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
406 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
407 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
416 bnx2_disable_int(struct bnx2
*bp
)
419 struct bnx2_napi
*bnapi
;
421 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
422 bnapi
= &bp
->bnx2_napi
[i
];
423 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
424 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
426 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
430 bnx2_enable_int(struct bnx2
*bp
)
433 struct bnx2_napi
*bnapi
;
435 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
436 bnapi
= &bp
->bnx2_napi
[i
];
438 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
439 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
440 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
441 bnapi
->last_status_idx
);
443 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
444 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
445 bnapi
->last_status_idx
);
447 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
451 bnx2_disable_int_sync(struct bnx2
*bp
)
455 atomic_inc(&bp
->intr_sem
);
456 bnx2_disable_int(bp
);
457 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
458 synchronize_irq(bp
->irq_tbl
[i
].vector
);
462 bnx2_napi_disable(struct bnx2
*bp
)
466 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
467 napi_disable(&bp
->bnx2_napi
[i
].napi
);
471 bnx2_napi_enable(struct bnx2
*bp
)
475 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
476 napi_enable(&bp
->bnx2_napi
[i
].napi
);
480 bnx2_netif_stop(struct bnx2
*bp
)
482 bnx2_disable_int_sync(bp
);
483 if (netif_running(bp
->dev
)) {
484 bnx2_napi_disable(bp
);
485 netif_tx_disable(bp
->dev
);
486 bp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
491 bnx2_netif_start(struct bnx2
*bp
)
493 if (atomic_dec_and_test(&bp
->intr_sem
)) {
494 if (netif_running(bp
->dev
)) {
495 netif_tx_wake_all_queues(bp
->dev
);
496 bnx2_napi_enable(bp
);
503 bnx2_free_tx_mem(struct bnx2
*bp
)
507 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
508 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
509 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
511 if (txr
->tx_desc_ring
) {
512 pci_free_consistent(bp
->pdev
, TXBD_RING_SIZE
,
514 txr
->tx_desc_mapping
);
515 txr
->tx_desc_ring
= NULL
;
517 kfree(txr
->tx_buf_ring
);
518 txr
->tx_buf_ring
= NULL
;
523 bnx2_free_rx_mem(struct bnx2
*bp
)
527 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
528 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
529 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
532 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
533 if (rxr
->rx_desc_ring
[j
])
534 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
535 rxr
->rx_desc_ring
[j
],
536 rxr
->rx_desc_mapping
[j
]);
537 rxr
->rx_desc_ring
[j
] = NULL
;
539 if (rxr
->rx_buf_ring
)
540 vfree(rxr
->rx_buf_ring
);
541 rxr
->rx_buf_ring
= NULL
;
543 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
544 if (rxr
->rx_pg_desc_ring
[j
])
545 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
546 rxr
->rx_pg_desc_ring
[i
],
547 rxr
->rx_pg_desc_mapping
[i
]);
548 rxr
->rx_pg_desc_ring
[i
] = NULL
;
551 vfree(rxr
->rx_pg_ring
);
552 rxr
->rx_pg_ring
= NULL
;
557 bnx2_alloc_tx_mem(struct bnx2
*bp
)
561 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
562 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
563 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
565 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
566 if (txr
->tx_buf_ring
== NULL
)
570 pci_alloc_consistent(bp
->pdev
, TXBD_RING_SIZE
,
571 &txr
->tx_desc_mapping
);
572 if (txr
->tx_desc_ring
== NULL
)
579 bnx2_alloc_rx_mem(struct bnx2
*bp
)
583 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
584 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
585 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
589 vmalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
590 if (rxr
->rx_buf_ring
== NULL
)
593 memset(rxr
->rx_buf_ring
, 0,
594 SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
596 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
597 rxr
->rx_desc_ring
[j
] =
598 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
599 &rxr
->rx_desc_mapping
[j
]);
600 if (rxr
->rx_desc_ring
[j
] == NULL
)
605 if (bp
->rx_pg_ring_size
) {
606 rxr
->rx_pg_ring
= vmalloc(SW_RXPG_RING_SIZE
*
608 if (rxr
->rx_pg_ring
== NULL
)
611 memset(rxr
->rx_pg_ring
, 0, SW_RXPG_RING_SIZE
*
615 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
616 rxr
->rx_pg_desc_ring
[j
] =
617 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
618 &rxr
->rx_pg_desc_mapping
[j
]);
619 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
628 bnx2_free_mem(struct bnx2
*bp
)
631 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
633 bnx2_free_tx_mem(bp
);
634 bnx2_free_rx_mem(bp
);
636 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
637 if (bp
->ctx_blk
[i
]) {
638 pci_free_consistent(bp
->pdev
, BCM_PAGE_SIZE
,
640 bp
->ctx_blk_mapping
[i
]);
641 bp
->ctx_blk
[i
] = NULL
;
644 if (bnapi
->status_blk
.msi
) {
645 pci_free_consistent(bp
->pdev
, bp
->status_stats_size
,
646 bnapi
->status_blk
.msi
,
647 bp
->status_blk_mapping
);
648 bnapi
->status_blk
.msi
= NULL
;
649 bp
->stats_blk
= NULL
;
654 bnx2_alloc_mem(struct bnx2
*bp
)
656 int i
, status_blk_size
, err
;
657 struct bnx2_napi
*bnapi
;
660 /* Combine status and statistics blocks into one allocation. */
661 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
662 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
663 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
664 BNX2_SBLK_MSIX_ALIGN_SIZE
);
665 bp
->status_stats_size
= status_blk_size
+
666 sizeof(struct statistics_block
);
668 status_blk
= pci_alloc_consistent(bp
->pdev
, bp
->status_stats_size
,
669 &bp
->status_blk_mapping
);
670 if (status_blk
== NULL
)
673 memset(status_blk
, 0, bp
->status_stats_size
);
675 bnapi
= &bp
->bnx2_napi
[0];
676 bnapi
->status_blk
.msi
= status_blk
;
677 bnapi
->hw_tx_cons_ptr
=
678 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
679 bnapi
->hw_rx_cons_ptr
=
680 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
681 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
682 for (i
= 1; i
< BNX2_MAX_MSIX_VEC
; i
++) {
683 struct status_block_msix
*sblk
;
685 bnapi
= &bp
->bnx2_napi
[i
];
687 sblk
= (void *) (status_blk
+
688 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
689 bnapi
->status_blk
.msix
= sblk
;
690 bnapi
->hw_tx_cons_ptr
=
691 &sblk
->status_tx_quick_consumer_index
;
692 bnapi
->hw_rx_cons_ptr
=
693 &sblk
->status_rx_quick_consumer_index
;
694 bnapi
->int_num
= i
<< 24;
698 bp
->stats_blk
= status_blk
+ status_blk_size
;
700 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
702 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
703 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
704 if (bp
->ctx_pages
== 0)
706 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
707 bp
->ctx_blk
[i
] = pci_alloc_consistent(bp
->pdev
,
709 &bp
->ctx_blk_mapping
[i
]);
710 if (bp
->ctx_blk
[i
] == NULL
)
715 err
= bnx2_alloc_rx_mem(bp
);
719 err
= bnx2_alloc_tx_mem(bp
);
731 bnx2_report_fw_link(struct bnx2
*bp
)
733 u32 fw_link_status
= 0;
735 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
741 switch (bp
->line_speed
) {
743 if (bp
->duplex
== DUPLEX_HALF
)
744 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
746 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
749 if (bp
->duplex
== DUPLEX_HALF
)
750 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
752 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
755 if (bp
->duplex
== DUPLEX_HALF
)
756 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
758 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
761 if (bp
->duplex
== DUPLEX_HALF
)
762 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
764 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
768 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
771 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
773 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
774 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
776 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
777 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
778 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
780 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
784 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
786 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
790 bnx2_xceiver_str(struct bnx2
*bp
)
792 return ((bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
793 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
798 bnx2_report_link(struct bnx2
*bp
)
801 netif_carrier_on(bp
->dev
);
802 printk(KERN_INFO PFX
"%s NIC %s Link is Up, ", bp
->dev
->name
,
803 bnx2_xceiver_str(bp
));
805 printk("%d Mbps ", bp
->line_speed
);
807 if (bp
->duplex
== DUPLEX_FULL
)
808 printk("full duplex");
810 printk("half duplex");
813 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
814 printk(", receive ");
815 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
816 printk("& transmit ");
819 printk(", transmit ");
821 printk("flow control ON");
826 netif_carrier_off(bp
->dev
);
827 printk(KERN_ERR PFX
"%s NIC %s Link is Down\n", bp
->dev
->name
,
828 bnx2_xceiver_str(bp
));
831 bnx2_report_fw_link(bp
);
835 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
837 u32 local_adv
, remote_adv
;
840 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
841 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
843 if (bp
->duplex
== DUPLEX_FULL
) {
844 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
849 if (bp
->duplex
!= DUPLEX_FULL
) {
853 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
854 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
857 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
858 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
859 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
860 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
861 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
865 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
866 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
868 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
869 u32 new_local_adv
= 0;
870 u32 new_remote_adv
= 0;
872 if (local_adv
& ADVERTISE_1000XPAUSE
)
873 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
874 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
875 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
876 if (remote_adv
& ADVERTISE_1000XPAUSE
)
877 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
878 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
879 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
881 local_adv
= new_local_adv
;
882 remote_adv
= new_remote_adv
;
885 /* See Table 28B-3 of 802.3ab-1999 spec. */
886 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
887 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
888 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
889 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
891 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
892 bp
->flow_ctrl
= FLOW_CTRL_RX
;
896 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
897 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
901 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
902 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
903 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
905 bp
->flow_ctrl
= FLOW_CTRL_TX
;
911 bnx2_5709s_linkup(struct bnx2
*bp
)
917 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
918 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
919 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
921 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
922 bp
->line_speed
= bp
->req_line_speed
;
923 bp
->duplex
= bp
->req_duplex
;
926 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
928 case MII_BNX2_GP_TOP_AN_SPEED_10
:
929 bp
->line_speed
= SPEED_10
;
931 case MII_BNX2_GP_TOP_AN_SPEED_100
:
932 bp
->line_speed
= SPEED_100
;
934 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
935 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
936 bp
->line_speed
= SPEED_1000
;
938 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
939 bp
->line_speed
= SPEED_2500
;
942 if (val
& MII_BNX2_GP_TOP_AN_FD
)
943 bp
->duplex
= DUPLEX_FULL
;
945 bp
->duplex
= DUPLEX_HALF
;
950 bnx2_5708s_linkup(struct bnx2
*bp
)
955 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
956 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
957 case BCM5708S_1000X_STAT1_SPEED_10
:
958 bp
->line_speed
= SPEED_10
;
960 case BCM5708S_1000X_STAT1_SPEED_100
:
961 bp
->line_speed
= SPEED_100
;
963 case BCM5708S_1000X_STAT1_SPEED_1G
:
964 bp
->line_speed
= SPEED_1000
;
966 case BCM5708S_1000X_STAT1_SPEED_2G5
:
967 bp
->line_speed
= SPEED_2500
;
970 if (val
& BCM5708S_1000X_STAT1_FD
)
971 bp
->duplex
= DUPLEX_FULL
;
973 bp
->duplex
= DUPLEX_HALF
;
979 bnx2_5706s_linkup(struct bnx2
*bp
)
981 u32 bmcr
, local_adv
, remote_adv
, common
;
984 bp
->line_speed
= SPEED_1000
;
986 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
987 if (bmcr
& BMCR_FULLDPLX
) {
988 bp
->duplex
= DUPLEX_FULL
;
991 bp
->duplex
= DUPLEX_HALF
;
994 if (!(bmcr
& BMCR_ANENABLE
)) {
998 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
999 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1001 common
= local_adv
& remote_adv
;
1002 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1004 if (common
& ADVERTISE_1000XFULL
) {
1005 bp
->duplex
= DUPLEX_FULL
;
1008 bp
->duplex
= DUPLEX_HALF
;
1016 bnx2_copper_linkup(struct bnx2
*bp
)
1020 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1021 if (bmcr
& BMCR_ANENABLE
) {
1022 u32 local_adv
, remote_adv
, common
;
1024 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1025 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1027 common
= local_adv
& (remote_adv
>> 2);
1028 if (common
& ADVERTISE_1000FULL
) {
1029 bp
->line_speed
= SPEED_1000
;
1030 bp
->duplex
= DUPLEX_FULL
;
1032 else if (common
& ADVERTISE_1000HALF
) {
1033 bp
->line_speed
= SPEED_1000
;
1034 bp
->duplex
= DUPLEX_HALF
;
1037 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1038 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1040 common
= local_adv
& remote_adv
;
1041 if (common
& ADVERTISE_100FULL
) {
1042 bp
->line_speed
= SPEED_100
;
1043 bp
->duplex
= DUPLEX_FULL
;
1045 else if (common
& ADVERTISE_100HALF
) {
1046 bp
->line_speed
= SPEED_100
;
1047 bp
->duplex
= DUPLEX_HALF
;
1049 else if (common
& ADVERTISE_10FULL
) {
1050 bp
->line_speed
= SPEED_10
;
1051 bp
->duplex
= DUPLEX_FULL
;
1053 else if (common
& ADVERTISE_10HALF
) {
1054 bp
->line_speed
= SPEED_10
;
1055 bp
->duplex
= DUPLEX_HALF
;
1064 if (bmcr
& BMCR_SPEED100
) {
1065 bp
->line_speed
= SPEED_100
;
1068 bp
->line_speed
= SPEED_10
;
1070 if (bmcr
& BMCR_FULLDPLX
) {
1071 bp
->duplex
= DUPLEX_FULL
;
1074 bp
->duplex
= DUPLEX_HALF
;
1082 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1084 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1086 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1087 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1090 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1091 u32 lo_water
, hi_water
;
1093 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1094 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DEFAULT
;
1096 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DIS
;
1097 if (lo_water
>= bp
->rx_ring_size
)
1100 hi_water
= bp
->rx_ring_size
/ 4;
1102 if (hi_water
<= lo_water
)
1105 hi_water
/= BNX2_L2CTX_HI_WATER_MARK_SCALE
;
1106 lo_water
/= BNX2_L2CTX_LO_WATER_MARK_SCALE
;
1110 else if (hi_water
== 0)
1112 val
|= lo_water
| (hi_water
<< BNX2_L2CTX_HI_WATER_MARK_SHIFT
);
1114 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1118 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1123 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1126 bnx2_init_rx_context(bp
, cid
);
1131 bnx2_set_mac_link(struct bnx2
*bp
)
1135 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1136 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1137 (bp
->duplex
== DUPLEX_HALF
)) {
1138 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1141 /* Configure the EMAC mode register. */
1142 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1144 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1145 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1146 BNX2_EMAC_MODE_25G_MODE
);
1149 switch (bp
->line_speed
) {
1151 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1152 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1157 val
|= BNX2_EMAC_MODE_PORT_MII
;
1160 val
|= BNX2_EMAC_MODE_25G_MODE
;
1163 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1168 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1171 /* Set the MAC to operate in the appropriate duplex mode. */
1172 if (bp
->duplex
== DUPLEX_HALF
)
1173 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1174 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1176 /* Enable/disable rx PAUSE. */
1177 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1179 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1180 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1181 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1183 /* Enable/disable tx PAUSE. */
1184 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1185 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1187 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1188 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1189 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1191 /* Acknowledge the interrupt. */
1192 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1194 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1195 bnx2_init_all_rx_contexts(bp
);
1201 bnx2_enable_bmsr1(struct bnx2
*bp
)
1203 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1204 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1205 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1206 MII_BNX2_BLK_ADDR_GP_STATUS
);
1210 bnx2_disable_bmsr1(struct bnx2
*bp
)
1212 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1213 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1214 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1215 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1219 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1224 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1227 if (bp
->autoneg
& AUTONEG_SPEED
)
1228 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1230 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1231 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1233 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1234 if (!(up1
& BCM5708S_UP1_2G5
)) {
1235 up1
|= BCM5708S_UP1_2G5
;
1236 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1240 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1241 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1242 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1248 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1253 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1256 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1257 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1259 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1260 if (up1
& BCM5708S_UP1_2G5
) {
1261 up1
&= ~BCM5708S_UP1_2G5
;
1262 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1266 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1267 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1268 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1274 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1278 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1281 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1284 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1285 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1286 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1287 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1288 val
|= MII_BNX2_SD_MISC1_FORCE
| MII_BNX2_SD_MISC1_FORCE_2_5G
;
1289 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1291 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1292 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1293 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1295 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1296 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1297 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1300 if (bp
->autoneg
& AUTONEG_SPEED
) {
1301 bmcr
&= ~BMCR_ANENABLE
;
1302 if (bp
->req_duplex
== DUPLEX_FULL
)
1303 bmcr
|= BMCR_FULLDPLX
;
1305 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1309 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1313 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1316 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1319 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1320 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1321 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1322 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1323 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1325 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1326 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1327 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1329 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1330 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1331 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1334 if (bp
->autoneg
& AUTONEG_SPEED
)
1335 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1336 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1340 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1344 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1345 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1347 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1349 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1353 bnx2_set_link(struct bnx2
*bp
)
1358 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1363 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1366 link_up
= bp
->link_up
;
1368 bnx2_enable_bmsr1(bp
);
1369 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1370 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1371 bnx2_disable_bmsr1(bp
);
1373 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1374 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1377 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1378 bnx2_5706s_force_link_dn(bp
, 0);
1379 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1381 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1383 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1384 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1385 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1387 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1388 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1389 bmsr
|= BMSR_LSTATUS
;
1391 bmsr
&= ~BMSR_LSTATUS
;
1394 if (bmsr
& BMSR_LSTATUS
) {
1397 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1398 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1399 bnx2_5706s_linkup(bp
);
1400 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1401 bnx2_5708s_linkup(bp
);
1402 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1403 bnx2_5709s_linkup(bp
);
1406 bnx2_copper_linkup(bp
);
1408 bnx2_resolve_flow_ctrl(bp
);
1411 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1412 (bp
->autoneg
& AUTONEG_SPEED
))
1413 bnx2_disable_forced_2g5(bp
);
1415 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1418 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1419 bmcr
|= BMCR_ANENABLE
;
1420 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1422 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1427 if (bp
->link_up
!= link_up
) {
1428 bnx2_report_link(bp
);
1431 bnx2_set_mac_link(bp
);
1437 bnx2_reset_phy(struct bnx2
*bp
)
1442 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1444 #define PHY_RESET_MAX_WAIT 100
1445 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1448 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1449 if (!(reg
& BMCR_RESET
)) {
1454 if (i
== PHY_RESET_MAX_WAIT
) {
1461 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1465 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1466 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1468 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1469 adv
= ADVERTISE_1000XPAUSE
;
1472 adv
= ADVERTISE_PAUSE_CAP
;
1475 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1476 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1477 adv
= ADVERTISE_1000XPSE_ASYM
;
1480 adv
= ADVERTISE_PAUSE_ASYM
;
1483 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1484 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1485 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1488 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1494 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1497 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1499 u32 speed_arg
= 0, pause_adv
;
1501 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1503 if (bp
->autoneg
& AUTONEG_SPEED
) {
1504 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1505 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1506 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1507 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1508 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1509 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1510 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1511 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1512 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1513 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1514 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1515 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1516 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1518 if (bp
->req_line_speed
== SPEED_2500
)
1519 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1520 else if (bp
->req_line_speed
== SPEED_1000
)
1521 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1522 else if (bp
->req_line_speed
== SPEED_100
) {
1523 if (bp
->req_duplex
== DUPLEX_FULL
)
1524 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1526 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1527 } else if (bp
->req_line_speed
== SPEED_10
) {
1528 if (bp
->req_duplex
== DUPLEX_FULL
)
1529 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1531 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1535 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1536 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1537 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1538 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1540 if (port
== PORT_TP
)
1541 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1542 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1544 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1546 spin_unlock_bh(&bp
->phy_lock
);
1547 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1548 spin_lock_bh(&bp
->phy_lock
);
1554 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1559 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1560 return (bnx2_setup_remote_phy(bp
, port
));
1562 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1564 int force_link_down
= 0;
1566 if (bp
->req_line_speed
== SPEED_2500
) {
1567 if (!bnx2_test_and_enable_2g5(bp
))
1568 force_link_down
= 1;
1569 } else if (bp
->req_line_speed
== SPEED_1000
) {
1570 if (bnx2_test_and_disable_2g5(bp
))
1571 force_link_down
= 1;
1573 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1574 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1576 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1577 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1578 new_bmcr
|= BMCR_SPEED1000
;
1580 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1581 if (bp
->req_line_speed
== SPEED_2500
)
1582 bnx2_enable_forced_2g5(bp
);
1583 else if (bp
->req_line_speed
== SPEED_1000
) {
1584 bnx2_disable_forced_2g5(bp
);
1585 new_bmcr
&= ~0x2000;
1588 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1589 if (bp
->req_line_speed
== SPEED_2500
)
1590 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1592 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1595 if (bp
->req_duplex
== DUPLEX_FULL
) {
1596 adv
|= ADVERTISE_1000XFULL
;
1597 new_bmcr
|= BMCR_FULLDPLX
;
1600 adv
|= ADVERTISE_1000XHALF
;
1601 new_bmcr
&= ~BMCR_FULLDPLX
;
1603 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1604 /* Force a link down visible on the other side */
1606 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1607 ~(ADVERTISE_1000XFULL
|
1608 ADVERTISE_1000XHALF
));
1609 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1610 BMCR_ANRESTART
| BMCR_ANENABLE
);
1613 netif_carrier_off(bp
->dev
);
1614 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1615 bnx2_report_link(bp
);
1617 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1618 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1620 bnx2_resolve_flow_ctrl(bp
);
1621 bnx2_set_mac_link(bp
);
1626 bnx2_test_and_enable_2g5(bp
);
1628 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1629 new_adv
|= ADVERTISE_1000XFULL
;
1631 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1633 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1634 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1636 bp
->serdes_an_pending
= 0;
1637 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1638 /* Force a link down visible on the other side */
1640 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1641 spin_unlock_bh(&bp
->phy_lock
);
1643 spin_lock_bh(&bp
->phy_lock
);
1646 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1647 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1649 /* Speed up link-up time when the link partner
1650 * does not autonegotiate which is very common
1651 * in blade servers. Some blade servers use
1652 * IPMI for kerboard input and it's important
1653 * to minimize link disruptions. Autoneg. involves
1654 * exchanging base pages plus 3 next pages and
1655 * normally completes in about 120 msec.
1657 bp
->current_interval
= SERDES_AN_TIMEOUT
;
1658 bp
->serdes_an_pending
= 1;
1659 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1661 bnx2_resolve_flow_ctrl(bp
);
1662 bnx2_set_mac_link(bp
);
1668 #define ETHTOOL_ALL_FIBRE_SPEED \
1669 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1670 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1671 (ADVERTISED_1000baseT_Full)
1673 #define ETHTOOL_ALL_COPPER_SPEED \
1674 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1675 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1676 ADVERTISED_1000baseT_Full)
1678 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1679 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1681 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1684 bnx2_set_default_remote_link(struct bnx2
*bp
)
1688 if (bp
->phy_port
== PORT_TP
)
1689 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1691 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1693 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1694 bp
->req_line_speed
= 0;
1695 bp
->autoneg
|= AUTONEG_SPEED
;
1696 bp
->advertising
= ADVERTISED_Autoneg
;
1697 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1698 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1699 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1700 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1701 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1702 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1703 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1704 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1705 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1706 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1707 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1708 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1711 bp
->advertising
= 0;
1712 bp
->req_duplex
= DUPLEX_FULL
;
1713 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1714 bp
->req_line_speed
= SPEED_10
;
1715 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1716 bp
->req_duplex
= DUPLEX_HALF
;
1718 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1719 bp
->req_line_speed
= SPEED_100
;
1720 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1721 bp
->req_duplex
= DUPLEX_HALF
;
1723 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1724 bp
->req_line_speed
= SPEED_1000
;
1725 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1726 bp
->req_line_speed
= SPEED_2500
;
1731 bnx2_set_default_link(struct bnx2
*bp
)
1733 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1734 bnx2_set_default_remote_link(bp
);
1738 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1739 bp
->req_line_speed
= 0;
1740 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1743 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1745 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1746 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1747 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1749 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1750 bp
->req_duplex
= DUPLEX_FULL
;
1753 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1757 bnx2_send_heart_beat(struct bnx2
*bp
)
1762 spin_lock(&bp
->indirect_lock
);
1763 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1764 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1765 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1766 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1767 spin_unlock(&bp
->indirect_lock
);
1771 bnx2_remote_phy_event(struct bnx2
*bp
)
1774 u8 link_up
= bp
->link_up
;
1777 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1779 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1780 bnx2_send_heart_beat(bp
);
1782 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1784 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1790 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1791 bp
->duplex
= DUPLEX_FULL
;
1793 case BNX2_LINK_STATUS_10HALF
:
1794 bp
->duplex
= DUPLEX_HALF
;
1795 case BNX2_LINK_STATUS_10FULL
:
1796 bp
->line_speed
= SPEED_10
;
1798 case BNX2_LINK_STATUS_100HALF
:
1799 bp
->duplex
= DUPLEX_HALF
;
1800 case BNX2_LINK_STATUS_100BASE_T4
:
1801 case BNX2_LINK_STATUS_100FULL
:
1802 bp
->line_speed
= SPEED_100
;
1804 case BNX2_LINK_STATUS_1000HALF
:
1805 bp
->duplex
= DUPLEX_HALF
;
1806 case BNX2_LINK_STATUS_1000FULL
:
1807 bp
->line_speed
= SPEED_1000
;
1809 case BNX2_LINK_STATUS_2500HALF
:
1810 bp
->duplex
= DUPLEX_HALF
;
1811 case BNX2_LINK_STATUS_2500FULL
:
1812 bp
->line_speed
= SPEED_2500
;
1820 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1821 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1822 if (bp
->duplex
== DUPLEX_FULL
)
1823 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1825 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
1826 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1827 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
1828 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1831 old_port
= bp
->phy_port
;
1832 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
1833 bp
->phy_port
= PORT_FIBRE
;
1835 bp
->phy_port
= PORT_TP
;
1837 if (old_port
!= bp
->phy_port
)
1838 bnx2_set_default_link(bp
);
1841 if (bp
->link_up
!= link_up
)
1842 bnx2_report_link(bp
);
1844 bnx2_set_mac_link(bp
);
1848 bnx2_set_remote_link(struct bnx2
*bp
)
1852 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
1854 case BNX2_FW_EVT_CODE_LINK_EVENT
:
1855 bnx2_remote_phy_event(bp
);
1857 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
1859 bnx2_send_heart_beat(bp
);
1866 bnx2_setup_copper_phy(struct bnx2
*bp
)
1871 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1873 if (bp
->autoneg
& AUTONEG_SPEED
) {
1874 u32 adv_reg
, adv1000_reg
;
1875 u32 new_adv_reg
= 0;
1876 u32 new_adv1000_reg
= 0;
1878 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
1879 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
1880 ADVERTISE_PAUSE_ASYM
);
1882 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
1883 adv1000_reg
&= PHY_ALL_1000_SPEED
;
1885 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1886 new_adv_reg
|= ADVERTISE_10HALF
;
1887 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1888 new_adv_reg
|= ADVERTISE_10FULL
;
1889 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1890 new_adv_reg
|= ADVERTISE_100HALF
;
1891 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1892 new_adv_reg
|= ADVERTISE_100FULL
;
1893 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1894 new_adv1000_reg
|= ADVERTISE_1000FULL
;
1896 new_adv_reg
|= ADVERTISE_CSMA
;
1898 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
1900 if ((adv1000_reg
!= new_adv1000_reg
) ||
1901 (adv_reg
!= new_adv_reg
) ||
1902 ((bmcr
& BMCR_ANENABLE
) == 0)) {
1904 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
1905 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
1906 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
1909 else if (bp
->link_up
) {
1910 /* Flow ctrl may have changed from auto to forced */
1911 /* or vice-versa. */
1913 bnx2_resolve_flow_ctrl(bp
);
1914 bnx2_set_mac_link(bp
);
1920 if (bp
->req_line_speed
== SPEED_100
) {
1921 new_bmcr
|= BMCR_SPEED100
;
1923 if (bp
->req_duplex
== DUPLEX_FULL
) {
1924 new_bmcr
|= BMCR_FULLDPLX
;
1926 if (new_bmcr
!= bmcr
) {
1929 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1930 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1932 if (bmsr
& BMSR_LSTATUS
) {
1933 /* Force link down */
1934 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1935 spin_unlock_bh(&bp
->phy_lock
);
1937 spin_lock_bh(&bp
->phy_lock
);
1939 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1940 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1943 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1945 /* Normally, the new speed is setup after the link has
1946 * gone down and up again. In some cases, link will not go
1947 * down so we need to set up the new speed here.
1949 if (bmsr
& BMSR_LSTATUS
) {
1950 bp
->line_speed
= bp
->req_line_speed
;
1951 bp
->duplex
= bp
->req_duplex
;
1952 bnx2_resolve_flow_ctrl(bp
);
1953 bnx2_set_mac_link(bp
);
1956 bnx2_resolve_flow_ctrl(bp
);
1957 bnx2_set_mac_link(bp
);
1963 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
1965 if (bp
->loopback
== MAC_LOOPBACK
)
1968 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1969 return (bnx2_setup_serdes_phy(bp
, port
));
1972 return (bnx2_setup_copper_phy(bp
));
1977 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
1981 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
1982 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
1983 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
1984 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
1985 bp
->mii_lpa
= MII_LPA
+ 0x10;
1986 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
1988 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
1989 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
1991 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1995 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
1997 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
1998 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
1999 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2000 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2002 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2003 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2004 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2005 val
|= BCM5708S_UP1_2G5
;
2007 val
&= ~BCM5708S_UP1_2G5
;
2008 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2010 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2011 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2012 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2013 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2015 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2017 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2018 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2019 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2021 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2027 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2034 bp
->mii_up1
= BCM5708S_UP1
;
2036 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2037 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2038 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2040 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2041 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2042 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2044 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2045 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2046 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2048 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2049 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2050 val
|= BCM5708S_UP1_2G5
;
2051 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2054 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2055 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2056 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2057 /* increase tx signal amplitude */
2058 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2059 BCM5708S_BLK_ADDR_TX_MISC
);
2060 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2061 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2062 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2063 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2066 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2067 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2072 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2073 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2074 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2075 BCM5708S_BLK_ADDR_TX_MISC
);
2076 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2077 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2078 BCM5708S_BLK_ADDR_DIG
);
2085 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2090 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2092 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2093 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2095 if (bp
->dev
->mtu
> 1500) {
2098 /* Set extended packet length bit */
2099 bnx2_write_phy(bp
, 0x18, 0x7);
2100 bnx2_read_phy(bp
, 0x18, &val
);
2101 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2103 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2104 bnx2_read_phy(bp
, 0x1c, &val
);
2105 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2110 bnx2_write_phy(bp
, 0x18, 0x7);
2111 bnx2_read_phy(bp
, 0x18, &val
);
2112 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2114 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2115 bnx2_read_phy(bp
, 0x1c, &val
);
2116 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2123 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2130 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2131 bnx2_write_phy(bp
, 0x18, 0x0c00);
2132 bnx2_write_phy(bp
, 0x17, 0x000a);
2133 bnx2_write_phy(bp
, 0x15, 0x310b);
2134 bnx2_write_phy(bp
, 0x17, 0x201f);
2135 bnx2_write_phy(bp
, 0x15, 0x9506);
2136 bnx2_write_phy(bp
, 0x17, 0x401f);
2137 bnx2_write_phy(bp
, 0x15, 0x14e2);
2138 bnx2_write_phy(bp
, 0x18, 0x0400);
2141 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2142 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2143 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2144 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2146 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2149 if (bp
->dev
->mtu
> 1500) {
2150 /* Set extended packet length bit */
2151 bnx2_write_phy(bp
, 0x18, 0x7);
2152 bnx2_read_phy(bp
, 0x18, &val
);
2153 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2155 bnx2_read_phy(bp
, 0x10, &val
);
2156 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2159 bnx2_write_phy(bp
, 0x18, 0x7);
2160 bnx2_read_phy(bp
, 0x18, &val
);
2161 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2163 bnx2_read_phy(bp
, 0x10, &val
);
2164 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2167 /* ethernet@wirespeed */
2168 bnx2_write_phy(bp
, 0x18, 0x7007);
2169 bnx2_read_phy(bp
, 0x18, &val
);
2170 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2176 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2181 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2182 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2184 bp
->mii_bmcr
= MII_BMCR
;
2185 bp
->mii_bmsr
= MII_BMSR
;
2186 bp
->mii_bmsr1
= MII_BMSR
;
2187 bp
->mii_adv
= MII_ADVERTISE
;
2188 bp
->mii_lpa
= MII_LPA
;
2190 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2192 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2195 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2196 bp
->phy_id
= val
<< 16;
2197 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2198 bp
->phy_id
|= val
& 0xffff;
2200 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2201 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2202 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2203 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2204 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2205 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2206 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2209 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2214 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2220 bnx2_set_mac_loopback(struct bnx2
*bp
)
2224 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2225 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2226 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2227 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2232 static int bnx2_test_link(struct bnx2
*);
2235 bnx2_set_phy_loopback(struct bnx2
*bp
)
2240 spin_lock_bh(&bp
->phy_lock
);
2241 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2243 spin_unlock_bh(&bp
->phy_lock
);
2247 for (i
= 0; i
< 10; i
++) {
2248 if (bnx2_test_link(bp
) == 0)
2253 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2254 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2255 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2256 BNX2_EMAC_MODE_25G_MODE
);
2258 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2259 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2265 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2271 msg_data
|= bp
->fw_wr_seq
;
2273 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2278 /* wait for an acknowledgement. */
2279 for (i
= 0; i
< (FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2282 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2284 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2287 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2290 /* If we timed out, inform the firmware that this is the case. */
2291 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2293 printk(KERN_ERR PFX
"fw sync timeout, reset code = "
2296 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2297 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2299 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2304 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2311 bnx2_init_5709_context(struct bnx2
*bp
)
2316 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2317 val
|= (BCM_PAGE_BITS
- 8) << 16;
2318 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2319 for (i
= 0; i
< 10; i
++) {
2320 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2321 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2325 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2328 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2332 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2336 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2337 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2338 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2339 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2340 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2341 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2342 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2343 for (j
= 0; j
< 10; j
++) {
2345 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2346 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2350 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2359 bnx2_init_context(struct bnx2
*bp
)
2365 u32 vcid_addr
, pcid_addr
, offset
;
2370 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2373 vcid_addr
= GET_PCID_ADDR(vcid
);
2375 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2380 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2383 vcid_addr
= GET_CID_ADDR(vcid
);
2384 pcid_addr
= vcid_addr
;
2387 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2388 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2389 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2391 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2392 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2394 /* Zero out the context. */
2395 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2396 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2402 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2408 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2409 if (good_mbuf
== NULL
) {
2410 printk(KERN_ERR PFX
"Failed to allocate memory in "
2411 "bnx2_alloc_bad_rbuf\n");
2415 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2416 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2420 /* Allocate a bunch of mbufs and save the good ones in an array. */
2421 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2422 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2423 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2424 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2426 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2428 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2430 /* The addresses with Bit 9 set are bad memory blocks. */
2431 if (!(val
& (1 << 9))) {
2432 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2436 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2439 /* Free the good ones back to the mbuf pool thus discarding
2440 * all the bad ones. */
2441 while (good_mbuf_cnt
) {
2444 val
= good_mbuf
[good_mbuf_cnt
];
2445 val
= (val
<< 9) | val
| 1;
2447 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2454 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2458 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2460 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2462 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2463 (mac_addr
[4] << 8) | mac_addr
[5];
2465 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2469 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2472 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2473 struct rx_bd
*rxbd
=
2474 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2475 struct page
*page
= alloc_page(GFP_ATOMIC
);
2479 mapping
= pci_map_page(bp
->pdev
, page
, 0, PAGE_SIZE
,
2480 PCI_DMA_FROMDEVICE
);
2482 pci_unmap_addr_set(rx_pg
, mapping
, mapping
);
2483 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2484 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2489 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2491 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2492 struct page
*page
= rx_pg
->page
;
2497 pci_unmap_page(bp
->pdev
, pci_unmap_addr(rx_pg
, mapping
), PAGE_SIZE
,
2498 PCI_DMA_FROMDEVICE
);
2505 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2507 struct sk_buff
*skb
;
2508 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2510 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2511 unsigned long align
;
2513 skb
= netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
);
2518 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2519 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2521 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
2522 PCI_DMA_FROMDEVICE
);
2525 pci_unmap_addr_set(rx_buf
, mapping
, mapping
);
2527 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2528 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2530 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2536 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2538 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2539 u32 new_link_state
, old_link_state
;
2542 new_link_state
= sblk
->status_attn_bits
& event
;
2543 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2544 if (new_link_state
!= old_link_state
) {
2546 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2548 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2556 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2558 spin_lock(&bp
->phy_lock
);
2560 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2562 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2563 bnx2_set_remote_link(bp
);
2565 spin_unlock(&bp
->phy_lock
);
2570 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2574 /* Tell compiler that status block fields can change. */
2576 cons
= *bnapi
->hw_tx_cons_ptr
;
2577 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2583 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2585 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2586 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2587 int tx_pkt
= 0, index
;
2588 struct netdev_queue
*txq
;
2590 index
= (bnapi
- bp
->bnx2_napi
);
2591 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2593 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2594 sw_cons
= txr
->tx_cons
;
2596 while (sw_cons
!= hw_cons
) {
2597 struct sw_bd
*tx_buf
;
2598 struct sk_buff
*skb
;
2601 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2603 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2606 /* partial BD completions possible with TSO packets */
2607 if (skb_is_gso(skb
)) {
2608 u16 last_idx
, last_ring_idx
;
2610 last_idx
= sw_cons
+
2611 skb_shinfo(skb
)->nr_frags
+ 1;
2612 last_ring_idx
= sw_ring_cons
+
2613 skb_shinfo(skb
)->nr_frags
+ 1;
2614 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2617 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2622 pci_unmap_single(bp
->pdev
, pci_unmap_addr(tx_buf
, mapping
),
2623 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2626 last
= skb_shinfo(skb
)->nr_frags
;
2628 for (i
= 0; i
< last
; i
++) {
2629 sw_cons
= NEXT_TX_BD(sw_cons
);
2631 pci_unmap_page(bp
->pdev
,
2633 &txr
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
2635 skb_shinfo(skb
)->frags
[i
].size
,
2639 sw_cons
= NEXT_TX_BD(sw_cons
);
2643 if (tx_pkt
== budget
)
2646 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2649 txr
->hw_tx_cons
= hw_cons
;
2650 txr
->tx_cons
= sw_cons
;
2652 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2653 * before checking for netif_tx_queue_stopped(). Without the
2654 * memory barrier, there is a small possibility that bnx2_start_xmit()
2655 * will miss it and cause the queue to be stopped forever.
2659 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2660 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2661 __netif_tx_lock(txq
, smp_processor_id());
2662 if ((netif_tx_queue_stopped(txq
)) &&
2663 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2664 netif_tx_wake_queue(txq
);
2665 __netif_tx_unlock(txq
);
2672 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2673 struct sk_buff
*skb
, int count
)
2675 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2676 struct rx_bd
*cons_bd
, *prod_bd
;
2679 u16 hw_prod
= rxr
->rx_pg_prod
, prod
;
2680 u16 cons
= rxr
->rx_pg_cons
;
2682 for (i
= 0; i
< count
; i
++) {
2683 prod
= RX_PG_RING_IDX(hw_prod
);
2685 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2686 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2687 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2688 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2690 if (i
== 0 && skb
) {
2692 struct skb_shared_info
*shinfo
;
2694 shinfo
= skb_shinfo(skb
);
2696 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2697 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2698 mapping
= pci_map_page(bp
->pdev
, page
, 0, PAGE_SIZE
,
2699 PCI_DMA_FROMDEVICE
);
2700 cons_rx_pg
->page
= page
;
2701 pci_unmap_addr_set(cons_rx_pg
, mapping
, mapping
);
2705 prod_rx_pg
->page
= cons_rx_pg
->page
;
2706 cons_rx_pg
->page
= NULL
;
2707 pci_unmap_addr_set(prod_rx_pg
, mapping
,
2708 pci_unmap_addr(cons_rx_pg
, mapping
));
2710 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2711 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2714 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2715 hw_prod
= NEXT_RX_BD(hw_prod
);
2717 rxr
->rx_pg_prod
= hw_prod
;
2718 rxr
->rx_pg_cons
= cons
;
2722 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2723 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2725 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2726 struct rx_bd
*cons_bd
, *prod_bd
;
2728 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2729 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2731 pci_dma_sync_single_for_device(bp
->pdev
,
2732 pci_unmap_addr(cons_rx_buf
, mapping
),
2733 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2735 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2737 prod_rx_buf
->skb
= skb
;
2742 pci_unmap_addr_set(prod_rx_buf
, mapping
,
2743 pci_unmap_addr(cons_rx_buf
, mapping
));
2745 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2746 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2747 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2748 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2752 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
2753 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2757 u16 prod
= ring_idx
& 0xffff;
2759 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
);
2760 if (unlikely(err
)) {
2761 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
2763 unsigned int raw_len
= len
+ 4;
2764 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2766 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2771 skb_reserve(skb
, BNX2_RX_OFFSET
);
2772 pci_unmap_single(bp
->pdev
, dma_addr
, bp
->rx_buf_use_size
,
2773 PCI_DMA_FROMDEVICE
);
2779 unsigned int i
, frag_len
, frag_size
, pages
;
2780 struct sw_pg
*rx_pg
;
2781 u16 pg_cons
= rxr
->rx_pg_cons
;
2782 u16 pg_prod
= rxr
->rx_pg_prod
;
2784 frag_size
= len
+ 4 - hdr_len
;
2785 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
2786 skb_put(skb
, hdr_len
);
2788 for (i
= 0; i
< pages
; i
++) {
2789 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
2790 if (unlikely(frag_len
<= 4)) {
2791 unsigned int tail
= 4 - frag_len
;
2793 rxr
->rx_pg_cons
= pg_cons
;
2794 rxr
->rx_pg_prod
= pg_prod
;
2795 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
2802 &skb_shinfo(skb
)->frags
[i
- 1];
2804 skb
->data_len
-= tail
;
2805 skb
->truesize
-= tail
;
2809 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
2811 pci_unmap_page(bp
->pdev
, pci_unmap_addr(rx_pg
, mapping
),
2812 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2817 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
2820 err
= bnx2_alloc_rx_page(bp
, rxr
,
2821 RX_PG_RING_IDX(pg_prod
));
2822 if (unlikely(err
)) {
2823 rxr
->rx_pg_cons
= pg_cons
;
2824 rxr
->rx_pg_prod
= pg_prod
;
2825 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
2830 frag_size
-= frag_len
;
2831 skb
->data_len
+= frag_len
;
2832 skb
->truesize
+= frag_len
;
2833 skb
->len
+= frag_len
;
2835 pg_prod
= NEXT_RX_BD(pg_prod
);
2836 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
2838 rxr
->rx_pg_prod
= pg_prod
;
2839 rxr
->rx_pg_cons
= pg_cons
;
2845 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
2849 /* Tell compiler that status block fields can change. */
2851 cons
= *bnapi
->hw_rx_cons_ptr
;
2852 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
2858 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2860 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
2861 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
2862 struct l2_fhdr
*rx_hdr
;
2863 int rx_pkt
= 0, pg_ring_used
= 0;
2865 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
2866 sw_cons
= rxr
->rx_cons
;
2867 sw_prod
= rxr
->rx_prod
;
2869 /* Memory barrier necessary as speculative reads of the rx
2870 * buffer can be ahead of the index in the status block
2873 while (sw_cons
!= hw_cons
) {
2874 unsigned int len
, hdr_len
;
2876 struct sw_bd
*rx_buf
;
2877 struct sk_buff
*skb
;
2878 dma_addr_t dma_addr
;
2880 int hw_vlan __maybe_unused
= 0;
2882 sw_ring_cons
= RX_RING_IDX(sw_cons
);
2883 sw_ring_prod
= RX_RING_IDX(sw_prod
);
2885 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
2890 dma_addr
= pci_unmap_addr(rx_buf
, mapping
);
2892 pci_dma_sync_single_for_cpu(bp
->pdev
, dma_addr
,
2893 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
2894 PCI_DMA_FROMDEVICE
);
2896 rx_hdr
= (struct l2_fhdr
*) skb
->data
;
2897 len
= rx_hdr
->l2_fhdr_pkt_len
;
2899 if ((status
= rx_hdr
->l2_fhdr_status
) &
2900 (L2_FHDR_ERRORS_BAD_CRC
|
2901 L2_FHDR_ERRORS_PHY_DECODE
|
2902 L2_FHDR_ERRORS_ALIGNMENT
|
2903 L2_FHDR_ERRORS_TOO_SHORT
|
2904 L2_FHDR_ERRORS_GIANT_FRAME
)) {
2906 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
2911 if (status
& L2_FHDR_STATUS_SPLIT
) {
2912 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
2914 } else if (len
> bp
->rx_jumbo_thresh
) {
2915 hdr_len
= bp
->rx_jumbo_thresh
;
2921 if (len
<= bp
->rx_copy_thresh
) {
2922 struct sk_buff
*new_skb
;
2924 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
2925 if (new_skb
== NULL
) {
2926 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
2932 skb_copy_from_linear_data_offset(skb
,
2934 new_skb
->data
, len
+ 6);
2935 skb_reserve(new_skb
, 6);
2936 skb_put(new_skb
, len
);
2938 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
2939 sw_ring_cons
, sw_ring_prod
);
2942 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
2943 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
2946 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
2947 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) {
2948 vtag
= rx_hdr
->l2_fhdr_vlan_tag
;
2955 struct vlan_ethhdr
*ve
= (struct vlan_ethhdr
*)
2958 memmove(ve
, skb
->data
+ 4, ETH_ALEN
* 2);
2959 ve
->h_vlan_proto
= htons(ETH_P_8021Q
);
2960 ve
->h_vlan_TCI
= htons(vtag
);
2965 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
2967 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
2968 (ntohs(skb
->protocol
) != 0x8100)) {
2975 skb
->ip_summed
= CHECKSUM_NONE
;
2977 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
2978 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
2980 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
2981 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
2982 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2987 vlan_hwaccel_receive_skb(skb
, bp
->vlgrp
, vtag
);
2990 netif_receive_skb(skb
);
2992 bp
->dev
->last_rx
= jiffies
;
2996 sw_cons
= NEXT_RX_BD(sw_cons
);
2997 sw_prod
= NEXT_RX_BD(sw_prod
);
2999 if ((rx_pkt
== budget
))
3002 /* Refresh hw_cons to see if there is new work */
3003 if (sw_cons
== hw_cons
) {
3004 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3008 rxr
->rx_cons
= sw_cons
;
3009 rxr
->rx_prod
= sw_prod
;
3012 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3014 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3016 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3024 /* MSI ISR - The only difference between this and the INTx ISR
3025 * is that the MSI interrupt is always serviced.
3028 bnx2_msi(int irq
, void *dev_instance
)
3030 struct bnx2_napi
*bnapi
= dev_instance
;
3031 struct bnx2
*bp
= bnapi
->bp
;
3032 struct net_device
*dev
= bp
->dev
;
3034 prefetch(bnapi
->status_blk
.msi
);
3035 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3036 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3037 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3039 /* Return here if interrupt is disabled. */
3040 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3043 netif_rx_schedule(dev
, &bnapi
->napi
);
3049 bnx2_msi_1shot(int irq
, void *dev_instance
)
3051 struct bnx2_napi
*bnapi
= dev_instance
;
3052 struct bnx2
*bp
= bnapi
->bp
;
3053 struct net_device
*dev
= bp
->dev
;
3055 prefetch(bnapi
->status_blk
.msi
);
3057 /* Return here if interrupt is disabled. */
3058 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3061 netif_rx_schedule(dev
, &bnapi
->napi
);
3067 bnx2_interrupt(int irq
, void *dev_instance
)
3069 struct bnx2_napi
*bnapi
= dev_instance
;
3070 struct bnx2
*bp
= bnapi
->bp
;
3071 struct net_device
*dev
= bp
->dev
;
3072 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3074 /* When using INTx, it is possible for the interrupt to arrive
3075 * at the CPU before the status block posted prior to the
3076 * interrupt. Reading a register will flush the status block.
3077 * When using MSI, the MSI message will always complete after
3078 * the status block write.
3080 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3081 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3082 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3085 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3086 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3087 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3089 /* Read back to deassert IRQ immediately to avoid too many
3090 * spurious interrupts.
3092 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3094 /* Return here if interrupt is shared and is disabled. */
3095 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3098 if (netif_rx_schedule_prep(dev
, &bnapi
->napi
)) {
3099 bnapi
->last_status_idx
= sblk
->status_idx
;
3100 __netif_rx_schedule(dev
, &bnapi
->napi
);
3107 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3109 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3110 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3112 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3113 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3118 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3119 STATUS_ATTN_BITS_TIMER_ABORT)
3122 bnx2_has_work(struct bnx2_napi
*bnapi
)
3124 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3126 if (bnx2_has_fast_work(bnapi
))
3129 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3130 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3136 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3138 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3139 u32 status_attn_bits
= sblk
->status_attn_bits
;
3140 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3142 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3143 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3145 bnx2_phy_int(bp
, bnapi
);
3147 /* This is needed to take care of transient status
3148 * during link changes.
3150 REG_WR(bp
, BNX2_HC_COMMAND
,
3151 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3152 REG_RD(bp
, BNX2_HC_COMMAND
);
3156 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3157 int work_done
, int budget
)
3159 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3160 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3162 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3163 bnx2_tx_int(bp
, bnapi
, 0);
3165 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3166 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3171 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3173 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3174 struct bnx2
*bp
= bnapi
->bp
;
3176 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3179 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3180 if (unlikely(work_done
>= budget
))
3183 bnapi
->last_status_idx
= sblk
->status_idx
;
3184 /* status idx must be read before checking for more work. */
3186 if (likely(!bnx2_has_fast_work(bnapi
))) {
3188 netif_rx_complete(bp
->dev
, napi
);
3189 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3190 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3191 bnapi
->last_status_idx
);
3198 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3200 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3201 struct bnx2
*bp
= bnapi
->bp
;
3203 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3206 bnx2_poll_link(bp
, bnapi
);
3208 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3210 if (unlikely(work_done
>= budget
))
3213 /* bnapi->last_status_idx is used below to tell the hw how
3214 * much work has been processed, so we must read it before
3215 * checking for more work.
3217 bnapi
->last_status_idx
= sblk
->status_idx
;
3219 if (likely(!bnx2_has_work(bnapi
))) {
3220 netif_rx_complete(bp
->dev
, napi
);
3221 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3222 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3223 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3224 bnapi
->last_status_idx
);
3227 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3228 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3229 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3230 bnapi
->last_status_idx
);
3232 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3233 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3234 bnapi
->last_status_idx
);
3242 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3243 * from set_multicast.
3246 bnx2_set_rx_mode(struct net_device
*dev
)
3248 struct bnx2
*bp
= netdev_priv(dev
);
3249 u32 rx_mode
, sort_mode
;
3250 struct dev_addr_list
*uc_ptr
;
3253 spin_lock_bh(&bp
->phy_lock
);
3255 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3256 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3257 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3259 if (!bp
->vlgrp
&& (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3260 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3262 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
3263 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3265 if (dev
->flags
& IFF_PROMISC
) {
3266 /* Promiscuous mode. */
3267 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3268 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3269 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3271 else if (dev
->flags
& IFF_ALLMULTI
) {
3272 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3273 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3276 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3279 /* Accept one or more multicast(s). */
3280 struct dev_mc_list
*mclist
;
3281 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3286 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3288 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
3289 i
++, mclist
= mclist
->next
) {
3291 crc
= ether_crc_le(ETH_ALEN
, mclist
->dmi_addr
);
3293 regidx
= (bit
& 0xe0) >> 5;
3295 mc_filter
[regidx
] |= (1 << bit
);
3298 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3299 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3303 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3307 if (dev
->uc_count
> BNX2_MAX_UNICAST_ADDRESSES
) {
3308 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3309 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3310 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3311 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3312 uc_ptr
= dev
->uc_list
;
3314 /* Add all entries into to the match filter list */
3315 for (i
= 0; i
< dev
->uc_count
; i
++) {
3316 bnx2_set_mac_addr(bp
, uc_ptr
->da_addr
,
3317 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3319 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3320 uc_ptr
= uc_ptr
->next
;
3325 if (rx_mode
!= bp
->rx_mode
) {
3326 bp
->rx_mode
= rx_mode
;
3327 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3330 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3331 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3332 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3334 spin_unlock_bh(&bp
->phy_lock
);
3338 load_rv2p_fw(struct bnx2
*bp
, __le32
*rv2p_code
, u32 rv2p_code_len
,
3344 if (rv2p_proc
== RV2P_PROC2
&& CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3345 val
= le32_to_cpu(rv2p_code
[XI_RV2P_PROC2_MAX_BD_PAGE_LOC
]);
3346 val
&= ~XI_RV2P_PROC2_BD_PAGE_SIZE_MSK
;
3347 val
|= XI_RV2P_PROC2_BD_PAGE_SIZE
;
3348 rv2p_code
[XI_RV2P_PROC2_MAX_BD_PAGE_LOC
] = cpu_to_le32(val
);
3351 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3352 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, le32_to_cpu(*rv2p_code
));
3354 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, le32_to_cpu(*rv2p_code
));
3357 if (rv2p_proc
== RV2P_PROC1
) {
3358 val
= (i
/ 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3359 REG_WR(bp
, BNX2_RV2P_PROC1_ADDR_CMD
, val
);
3362 val
= (i
/ 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3363 REG_WR(bp
, BNX2_RV2P_PROC2_ADDR_CMD
, val
);
3367 /* Reset the processor, un-stall is done later. */
3368 if (rv2p_proc
== RV2P_PROC1
) {
3369 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3372 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3377 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
, struct fw_info
*fw
)
3384 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3385 val
|= cpu_reg
->mode_value_halt
;
3386 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3387 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3389 /* Load the Text area. */
3390 offset
= cpu_reg
->spad_base
+ (fw
->text_addr
- cpu_reg
->mips_view_base
);
3394 rc
= zlib_inflate_blob(fw
->text
, FW_BUF_SIZE
, fw
->gz_text
,
3399 for (j
= 0; j
< (fw
->text_len
/ 4); j
++, offset
+= 4) {
3400 bnx2_reg_wr_ind(bp
, offset
, le32_to_cpu(fw
->text
[j
]));
3404 /* Load the Data area. */
3405 offset
= cpu_reg
->spad_base
+ (fw
->data_addr
- cpu_reg
->mips_view_base
);
3409 for (j
= 0; j
< (fw
->data_len
/ 4); j
++, offset
+= 4) {
3410 bnx2_reg_wr_ind(bp
, offset
, fw
->data
[j
]);
3414 /* Load the SBSS area. */
3415 offset
= cpu_reg
->spad_base
+ (fw
->sbss_addr
- cpu_reg
->mips_view_base
);
3419 for (j
= 0; j
< (fw
->sbss_len
/ 4); j
++, offset
+= 4) {
3420 bnx2_reg_wr_ind(bp
, offset
, 0);
3424 /* Load the BSS area. */
3425 offset
= cpu_reg
->spad_base
+ (fw
->bss_addr
- cpu_reg
->mips_view_base
);
3429 for (j
= 0; j
< (fw
->bss_len
/4); j
++, offset
+= 4) {
3430 bnx2_reg_wr_ind(bp
, offset
, 0);
3434 /* Load the Read-Only area. */
3435 offset
= cpu_reg
->spad_base
+
3436 (fw
->rodata_addr
- cpu_reg
->mips_view_base
);
3440 for (j
= 0; j
< (fw
->rodata_len
/ 4); j
++, offset
+= 4) {
3441 bnx2_reg_wr_ind(bp
, offset
, fw
->rodata
[j
]);
3445 /* Clear the pre-fetch instruction. */
3446 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3447 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, fw
->start_addr
);
3449 /* Start the CPU. */
3450 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3451 val
&= ~cpu_reg
->mode_value_halt
;
3452 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3453 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3459 bnx2_init_cpus(struct bnx2
*bp
)
3465 /* Initialize the RV2P processor. */
3466 text
= vmalloc(FW_BUF_SIZE
);
3469 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3470 rv2p
= bnx2_xi_rv2p_proc1
;
3471 rv2p_len
= sizeof(bnx2_xi_rv2p_proc1
);
3473 rv2p
= bnx2_rv2p_proc1
;
3474 rv2p_len
= sizeof(bnx2_rv2p_proc1
);
3476 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, rv2p
, rv2p_len
);
3480 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC1
);
3482 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3483 rv2p
= bnx2_xi_rv2p_proc2
;
3484 rv2p_len
= sizeof(bnx2_xi_rv2p_proc2
);
3486 rv2p
= bnx2_rv2p_proc2
;
3487 rv2p_len
= sizeof(bnx2_rv2p_proc2
);
3489 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, rv2p
, rv2p_len
);
3493 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC2
);
3495 /* Initialize the RX Processor. */
3496 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3497 fw
= &bnx2_rxp_fw_09
;
3499 fw
= &bnx2_rxp_fw_06
;
3502 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, fw
);
3506 /* Initialize the TX Processor. */
3507 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3508 fw
= &bnx2_txp_fw_09
;
3510 fw
= &bnx2_txp_fw_06
;
3513 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, fw
);
3517 /* Initialize the TX Patch-up Processor. */
3518 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3519 fw
= &bnx2_tpat_fw_09
;
3521 fw
= &bnx2_tpat_fw_06
;
3524 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, fw
);
3528 /* Initialize the Completion Processor. */
3529 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3530 fw
= &bnx2_com_fw_09
;
3532 fw
= &bnx2_com_fw_06
;
3535 rc
= load_cpu_fw(bp
, &cpu_reg_com
, fw
);
3539 /* Initialize the Command Processor. */
3540 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3541 fw
= &bnx2_cp_fw_09
;
3543 fw
= &bnx2_cp_fw_06
;
3546 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, fw
);
3554 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3558 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3564 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3565 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3566 PCI_PM_CTRL_PME_STATUS
);
3568 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3569 /* delay required during transition out of D3hot */
3572 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3573 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3574 val
&= ~BNX2_EMAC_MODE_MPKT
;
3575 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3577 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3578 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3579 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3590 autoneg
= bp
->autoneg
;
3591 advertising
= bp
->advertising
;
3593 if (bp
->phy_port
== PORT_TP
) {
3594 bp
->autoneg
= AUTONEG_SPEED
;
3595 bp
->advertising
= ADVERTISED_10baseT_Half
|
3596 ADVERTISED_10baseT_Full
|
3597 ADVERTISED_100baseT_Half
|
3598 ADVERTISED_100baseT_Full
|
3602 spin_lock_bh(&bp
->phy_lock
);
3603 bnx2_setup_phy(bp
, bp
->phy_port
);
3604 spin_unlock_bh(&bp
->phy_lock
);
3606 bp
->autoneg
= autoneg
;
3607 bp
->advertising
= advertising
;
3609 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3611 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3613 /* Enable port mode. */
3614 val
&= ~BNX2_EMAC_MODE_PORT
;
3615 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3616 BNX2_EMAC_MODE_ACPI_RCVD
|
3617 BNX2_EMAC_MODE_MPKT
;
3618 if (bp
->phy_port
== PORT_TP
)
3619 val
|= BNX2_EMAC_MODE_PORT_MII
;
3621 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3622 if (bp
->line_speed
== SPEED_2500
)
3623 val
|= BNX2_EMAC_MODE_25G_MODE
;
3626 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3628 /* receive all multicast */
3629 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3630 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3633 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3634 BNX2_EMAC_RX_MODE_SORT_MODE
);
3636 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3637 BNX2_RPM_SORT_USER0_MC_EN
;
3638 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3639 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3640 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3641 BNX2_RPM_SORT_USER0_ENA
);
3643 /* Need to enable EMAC and RPM for WOL. */
3644 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3645 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3646 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3647 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3649 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3650 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3651 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3653 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3656 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3659 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
3660 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
3663 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3664 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3665 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3674 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3676 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3679 /* No more memory access after this point until
3680 * device is brought back to D0.
3692 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
3697 /* Request access to the flash interface. */
3698 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
3699 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3700 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3701 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
3707 if (j
>= NVRAM_TIMEOUT_COUNT
)
3714 bnx2_release_nvram_lock(struct bnx2
*bp
)
3719 /* Relinquish nvram interface. */
3720 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
3722 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3723 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3724 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
3730 if (j
>= NVRAM_TIMEOUT_COUNT
)
3738 bnx2_enable_nvram_write(struct bnx2
*bp
)
3742 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3743 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
3745 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
3748 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3749 REG_WR(bp
, BNX2_NVM_COMMAND
,
3750 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
3752 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3755 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3756 if (val
& BNX2_NVM_COMMAND_DONE
)
3760 if (j
>= NVRAM_TIMEOUT_COUNT
)
3767 bnx2_disable_nvram_write(struct bnx2
*bp
)
3771 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3772 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
3777 bnx2_enable_nvram_access(struct bnx2
*bp
)
3781 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3782 /* Enable both bits, even on read. */
3783 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3784 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
3788 bnx2_disable_nvram_access(struct bnx2
*bp
)
3792 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3793 /* Disable both bits, even after read. */
3794 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3795 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
3796 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
3800 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
3805 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
3806 /* Buffered flash, no erase needed */
3809 /* Build an erase command */
3810 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
3811 BNX2_NVM_COMMAND_DOIT
;
3813 /* Need to clear DONE bit separately. */
3814 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3816 /* Address of the NVRAM to read from. */
3817 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3819 /* Issue an erase command. */
3820 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3822 /* Wait for completion. */
3823 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3828 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3829 if (val
& BNX2_NVM_COMMAND_DONE
)
3833 if (j
>= NVRAM_TIMEOUT_COUNT
)
3840 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
3845 /* Build the command word. */
3846 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
3848 /* Calculate an offset of a buffered flash, not needed for 5709. */
3849 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3850 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3851 bp
->flash_info
->page_bits
) +
3852 (offset
% bp
->flash_info
->page_size
);
3855 /* Need to clear DONE bit separately. */
3856 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3858 /* Address of the NVRAM to read from. */
3859 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3861 /* Issue a read command. */
3862 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3864 /* Wait for completion. */
3865 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3870 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3871 if (val
& BNX2_NVM_COMMAND_DONE
) {
3872 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
3873 memcpy(ret_val
, &v
, 4);
3877 if (j
>= NVRAM_TIMEOUT_COUNT
)
3885 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
3891 /* Build the command word. */
3892 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
3894 /* Calculate an offset of a buffered flash, not needed for 5709. */
3895 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3896 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3897 bp
->flash_info
->page_bits
) +
3898 (offset
% bp
->flash_info
->page_size
);
3901 /* Need to clear DONE bit separately. */
3902 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3904 memcpy(&val32
, val
, 4);
3906 /* Write the data. */
3907 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
3909 /* Address of the NVRAM to write to. */
3910 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3912 /* Issue the write command. */
3913 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3915 /* Wait for completion. */
3916 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3919 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
3922 if (j
>= NVRAM_TIMEOUT_COUNT
)
3929 bnx2_init_nvram(struct bnx2
*bp
)
3932 int j
, entry_count
, rc
= 0;
3933 struct flash_spec
*flash
;
3935 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3936 bp
->flash_info
= &flash_5709
;
3937 goto get_flash_size
;
3940 /* Determine the selected interface. */
3941 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
3943 entry_count
= ARRAY_SIZE(flash_table
);
3945 if (val
& 0x40000000) {
3947 /* Flash interface has been reconfigured */
3948 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
3950 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
3951 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
3952 bp
->flash_info
= flash
;
3959 /* Not yet been reconfigured */
3961 if (val
& (1 << 23))
3962 mask
= FLASH_BACKUP_STRAP_MASK
;
3964 mask
= FLASH_STRAP_MASK
;
3966 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
3969 if ((val
& mask
) == (flash
->strapping
& mask
)) {
3970 bp
->flash_info
= flash
;
3972 /* Request access to the flash interface. */
3973 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
3976 /* Enable access to flash interface */
3977 bnx2_enable_nvram_access(bp
);
3979 /* Reconfigure the flash interface */
3980 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
3981 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
3982 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
3983 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
3985 /* Disable access to flash interface */
3986 bnx2_disable_nvram_access(bp
);
3987 bnx2_release_nvram_lock(bp
);
3992 } /* if (val & 0x40000000) */
3994 if (j
== entry_count
) {
3995 bp
->flash_info
= NULL
;
3996 printk(KERN_ALERT PFX
"Unknown flash/EEPROM type.\n");
4001 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4002 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4004 bp
->flash_size
= val
;
4006 bp
->flash_size
= bp
->flash_info
->total_size
;
4012 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4016 u32 cmd_flags
, offset32
, len32
, extra
;
4021 /* Request access to the flash interface. */
4022 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4025 /* Enable access to flash interface */
4026 bnx2_enable_nvram_access(bp
);
4039 pre_len
= 4 - (offset
& 3);
4041 if (pre_len
>= len32
) {
4043 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4044 BNX2_NVM_COMMAND_LAST
;
4047 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4050 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4055 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4062 extra
= 4 - (len32
& 3);
4063 len32
= (len32
+ 4) & ~3;
4070 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4072 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4073 BNX2_NVM_COMMAND_LAST
;
4075 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4077 memcpy(ret_buf
, buf
, 4 - extra
);
4079 else if (len32
> 0) {
4082 /* Read the first word. */
4086 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4088 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4090 /* Advance to the next dword. */
4095 while (len32
> 4 && rc
== 0) {
4096 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4098 /* Advance to the next dword. */
4107 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4108 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4110 memcpy(ret_buf
, buf
, 4 - extra
);
4113 /* Disable access to flash interface */
4114 bnx2_disable_nvram_access(bp
);
4116 bnx2_release_nvram_lock(bp
);
4122 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4125 u32 written
, offset32
, len32
;
4126 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4128 int align_start
, align_end
;
4133 align_start
= align_end
= 0;
4135 if ((align_start
= (offset32
& 3))) {
4137 len32
+= align_start
;
4140 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4145 align_end
= 4 - (len32
& 3);
4147 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4151 if (align_start
|| align_end
) {
4152 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4153 if (align_buf
== NULL
)
4156 memcpy(align_buf
, start
, 4);
4159 memcpy(align_buf
+ len32
- 4, end
, 4);
4161 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4165 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4166 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4167 if (flash_buffer
== NULL
) {
4169 goto nvram_write_end
;
4174 while ((written
< len32
) && (rc
== 0)) {
4175 u32 page_start
, page_end
, data_start
, data_end
;
4176 u32 addr
, cmd_flags
;
4179 /* Find the page_start addr */
4180 page_start
= offset32
+ written
;
4181 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4182 /* Find the page_end addr */
4183 page_end
= page_start
+ bp
->flash_info
->page_size
;
4184 /* Find the data_start addr */
4185 data_start
= (written
== 0) ? offset32
: page_start
;
4186 /* Find the data_end addr */
4187 data_end
= (page_end
> offset32
+ len32
) ?
4188 (offset32
+ len32
) : page_end
;
4190 /* Request access to the flash interface. */
4191 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4192 goto nvram_write_end
;
4194 /* Enable access to flash interface */
4195 bnx2_enable_nvram_access(bp
);
4197 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4198 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4201 /* Read the whole page into the buffer
4202 * (non-buffer flash only) */
4203 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4204 if (j
== (bp
->flash_info
->page_size
- 4)) {
4205 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4207 rc
= bnx2_nvram_read_dword(bp
,
4213 goto nvram_write_end
;
4219 /* Enable writes to flash interface (unlock write-protect) */
4220 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4221 goto nvram_write_end
;
4223 /* Loop to write back the buffer data from page_start to
4226 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4227 /* Erase the page */
4228 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4229 goto nvram_write_end
;
4231 /* Re-enable the write again for the actual write */
4232 bnx2_enable_nvram_write(bp
);
4234 for (addr
= page_start
; addr
< data_start
;
4235 addr
+= 4, i
+= 4) {
4237 rc
= bnx2_nvram_write_dword(bp
, addr
,
4238 &flash_buffer
[i
], cmd_flags
);
4241 goto nvram_write_end
;
4247 /* Loop to write the new data from data_start to data_end */
4248 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4249 if ((addr
== page_end
- 4) ||
4250 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4251 (addr
== data_end
- 4))) {
4253 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4255 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4259 goto nvram_write_end
;
4265 /* Loop to write back the buffer data from data_end
4267 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4268 for (addr
= data_end
; addr
< page_end
;
4269 addr
+= 4, i
+= 4) {
4271 if (addr
== page_end
-4) {
4272 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4274 rc
= bnx2_nvram_write_dword(bp
, addr
,
4275 &flash_buffer
[i
], cmd_flags
);
4278 goto nvram_write_end
;
4284 /* Disable writes to flash interface (lock write-protect) */
4285 bnx2_disable_nvram_write(bp
);
4287 /* Disable access to flash interface */
4288 bnx2_disable_nvram_access(bp
);
4289 bnx2_release_nvram_lock(bp
);
4291 /* Increment written */
4292 written
+= data_end
- data_start
;
4296 kfree(flash_buffer
);
4302 bnx2_init_fw_cap(struct bnx2
*bp
)
4306 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4307 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4309 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4310 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4312 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4313 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4316 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4317 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4318 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4321 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4322 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4325 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4327 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4328 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4329 bp
->phy_port
= PORT_FIBRE
;
4331 bp
->phy_port
= PORT_TP
;
4333 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4334 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4337 if (netif_running(bp
->dev
) && sig
)
4338 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4342 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4344 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4346 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4347 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4351 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4357 /* Wait for the current PCI transaction to complete before
4358 * issuing a reset. */
4359 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4360 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4361 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4362 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4363 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4364 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4367 /* Wait for the firmware to tell us it is ok to issue a reset. */
4368 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4370 /* Deposit a driver reset signature so the firmware knows that
4371 * this is a soft reset. */
4372 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4373 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4375 /* Do a dummy read to force the chip to complete all current transaction
4376 * before we issue a reset. */
4377 val
= REG_RD(bp
, BNX2_MISC_ID
);
4379 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4380 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4381 REG_RD(bp
, BNX2_MISC_COMMAND
);
4384 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4385 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4387 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
4390 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4391 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4392 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4395 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4397 /* Reading back any register after chip reset will hang the
4398 * bus on 5706 A0 and A1. The msleep below provides plenty
4399 * of margin for write posting.
4401 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4402 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4405 /* Reset takes approximate 30 usec */
4406 for (i
= 0; i
< 10; i
++) {
4407 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4408 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4409 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4414 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4415 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4416 printk(KERN_ERR PFX
"Chip reset did not complete\n");
4421 /* Make sure byte swapping is properly configured. */
4422 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4423 if (val
!= 0x01020304) {
4424 printk(KERN_ERR PFX
"Chip not in correct endian mode\n");
4428 /* Wait for the firmware to finish its initialization. */
4429 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4433 spin_lock_bh(&bp
->phy_lock
);
4434 old_port
= bp
->phy_port
;
4435 bnx2_init_fw_cap(bp
);
4436 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4437 old_port
!= bp
->phy_port
)
4438 bnx2_set_default_remote_link(bp
);
4439 spin_unlock_bh(&bp
->phy_lock
);
4441 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4442 /* Adjust the voltage regular to two steps lower. The default
4443 * of this register is 0x0000000e. */
4444 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4446 /* Remove bad rbuf memory from the free pool. */
4447 rc
= bnx2_alloc_bad_rbuf(bp
);
4450 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
4451 bnx2_setup_msix_tbl(bp
);
4457 bnx2_init_chip(struct bnx2
*bp
)
4462 /* Make sure the interrupt is not active. */
4463 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4465 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4466 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4468 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4470 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4471 DMA_READ_CHANS
<< 12 |
4472 DMA_WRITE_CHANS
<< 16;
4474 val
|= (0x2 << 20) | (1 << 11);
4476 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4479 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4480 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4481 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4483 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4485 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4486 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4487 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4488 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4491 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4494 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4496 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4497 val16
& ~PCI_X_CMD_ERO
);
4500 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4501 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4502 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4503 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4505 /* Initialize context mapping and zero out the quick contexts. The
4506 * context block must have already been enabled. */
4507 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4508 rc
= bnx2_init_5709_context(bp
);
4512 bnx2_init_context(bp
);
4514 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4517 bnx2_init_nvram(bp
);
4519 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4521 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4522 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4523 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4524 if (CHIP_ID(bp
) == CHIP_ID_5709_A0
|| CHIP_ID(bp
) == CHIP_ID_5709_A1
)
4525 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4527 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4529 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4530 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4531 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4533 val
= (BCM_PAGE_BITS
- 8) << 24;
4534 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4536 /* Configure page size. */
4537 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4538 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4539 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4540 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4542 val
= bp
->mac_addr
[0] +
4543 (bp
->mac_addr
[1] << 8) +
4544 (bp
->mac_addr
[2] << 16) +
4546 (bp
->mac_addr
[4] << 8) +
4547 (bp
->mac_addr
[5] << 16);
4548 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4550 /* Program the MTU. Also include 4 bytes for CRC32. */
4551 val
= bp
->dev
->mtu
+ ETH_HLEN
+ 4;
4552 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4553 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4554 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4556 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4557 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4559 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4561 /* Set up how to generate a link change interrupt. */
4562 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4564 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4565 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4566 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4568 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4569 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4570 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4571 (u64
) bp
->stats_blk_mapping
>> 32);
4573 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4574 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4576 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4577 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4579 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4580 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4582 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4584 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4586 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4587 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4589 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4590 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4592 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
4593 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4595 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4596 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4598 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4599 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4601 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4602 BNX2_HC_CONFIG_COLLECT_STATS
;
4605 if (bp
->irq_nvecs
> 1) {
4606 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4607 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4609 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4612 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4613 val
|= BNX2_HC_CONFIG_ONE_SHOT
;
4615 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4617 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
4618 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
4619 BNX2_HC_SB_CONFIG_1
;
4622 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4623 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
4624 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4626 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
4627 (bp
->tx_quick_cons_trip_int
<< 16) |
4628 bp
->tx_quick_cons_trip
);
4630 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
4631 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4633 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
4634 (bp
->rx_quick_cons_trip_int
<< 16) |
4635 bp
->rx_quick_cons_trip
);
4637 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
4638 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4641 /* Clear internal stats counters. */
4642 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4644 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4646 /* Initialize the receive filter. */
4647 bnx2_set_rx_mode(bp
->dev
);
4649 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4650 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4651 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4652 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4654 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4657 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4658 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
4662 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
4668 bnx2_clear_ring_states(struct bnx2
*bp
)
4670 struct bnx2_napi
*bnapi
;
4671 struct bnx2_tx_ring_info
*txr
;
4672 struct bnx2_rx_ring_info
*rxr
;
4675 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
4676 bnapi
= &bp
->bnx2_napi
[i
];
4677 txr
= &bnapi
->tx_ring
;
4678 rxr
= &bnapi
->rx_ring
;
4681 txr
->hw_tx_cons
= 0;
4682 rxr
->rx_prod_bseq
= 0;
4685 rxr
->rx_pg_prod
= 0;
4686 rxr
->rx_pg_cons
= 0;
4691 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
4693 u32 val
, offset0
, offset1
, offset2
, offset3
;
4694 u32 cid_addr
= GET_CID_ADDR(cid
);
4696 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4697 offset0
= BNX2_L2CTX_TYPE_XI
;
4698 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
4699 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
4700 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
4702 offset0
= BNX2_L2CTX_TYPE
;
4703 offset1
= BNX2_L2CTX_CMD_TYPE
;
4704 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
4705 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
4707 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
4708 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
4710 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
4711 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
4713 val
= (u64
) txr
->tx_desc_mapping
>> 32;
4714 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
4716 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
4717 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
4721 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
4725 struct bnx2_napi
*bnapi
;
4726 struct bnx2_tx_ring_info
*txr
;
4728 bnapi
= &bp
->bnx2_napi
[ring_num
];
4729 txr
= &bnapi
->tx_ring
;
4734 cid
= TX_TSS_CID
+ ring_num
- 1;
4736 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
4738 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
4740 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
4741 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
4744 txr
->tx_prod_bseq
= 0;
4746 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
4747 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
4749 bnx2_init_tx_context(bp
, cid
, txr
);
4753 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
4759 for (i
= 0; i
< num_rings
; i
++) {
4762 rxbd
= &rx_ring
[i
][0];
4763 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
4764 rxbd
->rx_bd_len
= buf_size
;
4765 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
4767 if (i
== (num_rings
- 1))
4771 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
4772 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
4777 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
4780 u16 prod
, ring_prod
;
4781 u32 cid
, rx_cid_addr
, val
;
4782 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
4783 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
4788 cid
= RX_RSS_CID
+ ring_num
- 1;
4790 rx_cid_addr
= GET_CID_ADDR(cid
);
4792 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
4793 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
4795 bnx2_init_rx_context(bp
, cid
);
4797 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4798 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
4799 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
4802 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
4803 if (bp
->rx_pg_ring_size
) {
4804 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
4805 rxr
->rx_pg_desc_mapping
,
4806 PAGE_SIZE
, bp
->rx_max_pg_ring
);
4807 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
4808 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
4809 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
4810 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
4812 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
4813 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
4815 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
4816 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
4818 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
4819 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
4822 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
4823 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
4825 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
4826 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
4828 ring_prod
= prod
= rxr
->rx_pg_prod
;
4829 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
4830 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
) < 0)
4832 prod
= NEXT_RX_BD(prod
);
4833 ring_prod
= RX_PG_RING_IDX(prod
);
4835 rxr
->rx_pg_prod
= prod
;
4837 ring_prod
= prod
= rxr
->rx_prod
;
4838 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
4839 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
) < 0)
4841 prod
= NEXT_RX_BD(prod
);
4842 ring_prod
= RX_RING_IDX(prod
);
4844 rxr
->rx_prod
= prod
;
4846 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
4847 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
4848 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
4850 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
4851 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
4853 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
4857 bnx2_init_all_rings(struct bnx2
*bp
)
4862 bnx2_clear_ring_states(bp
);
4864 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
4865 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
4866 bnx2_init_tx_ring(bp
, i
);
4868 if (bp
->num_tx_rings
> 1)
4869 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
4872 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
4873 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
4875 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
4876 bnx2_init_rx_ring(bp
, i
);
4878 if (bp
->num_rx_rings
> 1) {
4880 u8
*tbl
= (u8
*) &tbl_32
;
4882 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
,
4883 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
);
4885 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
4886 tbl
[i
% 4] = i
% (bp
->num_rx_rings
- 1);
4889 BNX2_RXP_SCRATCH_RSS_TBL
+ i
,
4890 cpu_to_be32(tbl_32
));
4893 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
4894 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
4896 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
4901 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
4903 u32 max
, num_rings
= 1;
4905 while (ring_size
> MAX_RX_DESC_CNT
) {
4906 ring_size
-= MAX_RX_DESC_CNT
;
4909 /* round to next power of 2 */
4911 while ((max
& num_rings
) == 0)
4914 if (num_rings
!= max
)
4921 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
4923 u32 rx_size
, rx_space
, jumbo_size
;
4925 /* 8 for CRC and VLAN */
4926 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
4928 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
4929 sizeof(struct skb_shared_info
);
4931 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
4932 bp
->rx_pg_ring_size
= 0;
4933 bp
->rx_max_pg_ring
= 0;
4934 bp
->rx_max_pg_ring_idx
= 0;
4935 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
4936 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
4938 jumbo_size
= size
* pages
;
4939 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
4940 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
4942 bp
->rx_pg_ring_size
= jumbo_size
;
4943 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
4945 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
4946 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
4947 bp
->rx_copy_thresh
= 0;
4950 bp
->rx_buf_use_size
= rx_size
;
4952 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
4953 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
4954 bp
->rx_ring_size
= size
;
4955 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
4956 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
4960 bnx2_free_tx_skbs(struct bnx2
*bp
)
4964 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
4965 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
4966 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
4969 if (txr
->tx_buf_ring
== NULL
)
4972 for (j
= 0; j
< TX_DESC_CNT
; ) {
4973 struct sw_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
4974 struct sk_buff
*skb
= tx_buf
->skb
;
4982 pci_unmap_single(bp
->pdev
,
4983 pci_unmap_addr(tx_buf
, mapping
),
4984 skb_headlen(skb
), PCI_DMA_TODEVICE
);
4988 last
= skb_shinfo(skb
)->nr_frags
;
4989 for (k
= 0; k
< last
; k
++) {
4990 tx_buf
= &txr
->tx_buf_ring
[j
+ k
+ 1];
4991 pci_unmap_page(bp
->pdev
,
4992 pci_unmap_addr(tx_buf
, mapping
),
4993 skb_shinfo(skb
)->frags
[j
].size
,
5003 bnx2_free_rx_skbs(struct bnx2
*bp
)
5007 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5008 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5009 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5012 if (rxr
->rx_buf_ring
== NULL
)
5015 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5016 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5017 struct sk_buff
*skb
= rx_buf
->skb
;
5022 pci_unmap_single(bp
->pdev
,
5023 pci_unmap_addr(rx_buf
, mapping
),
5024 bp
->rx_buf_use_size
,
5025 PCI_DMA_FROMDEVICE
);
5031 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5032 bnx2_free_rx_page(bp
, rxr
, j
);
5037 bnx2_free_skbs(struct bnx2
*bp
)
5039 bnx2_free_tx_skbs(bp
);
5040 bnx2_free_rx_skbs(bp
);
5044 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5048 rc
= bnx2_reset_chip(bp
, reset_code
);
5053 if ((rc
= bnx2_init_chip(bp
)) != 0)
5056 bnx2_init_all_rings(bp
);
5061 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5065 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5068 spin_lock_bh(&bp
->phy_lock
);
5069 bnx2_init_phy(bp
, reset_phy
);
5071 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5072 bnx2_remote_phy_event(bp
);
5073 spin_unlock_bh(&bp
->phy_lock
);
5078 bnx2_test_registers(struct bnx2
*bp
)
5082 static const struct {
5085 #define BNX2_FL_NOT_5709 1
5089 { 0x006c, 0, 0x00000000, 0x0000003f },
5090 { 0x0090, 0, 0xffffffff, 0x00000000 },
5091 { 0x0094, 0, 0x00000000, 0x00000000 },
5093 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5094 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5095 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5096 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5097 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5098 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5099 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5100 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5101 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5103 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5104 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5105 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5106 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5107 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5108 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5110 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5111 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5112 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5114 { 0x1000, 0, 0x00000000, 0x00000001 },
5115 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5117 { 0x1408, 0, 0x01c00800, 0x00000000 },
5118 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5119 { 0x14a8, 0, 0x00000000, 0x000001ff },
5120 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5121 { 0x14b0, 0, 0x00000002, 0x00000001 },
5122 { 0x14b8, 0, 0x00000000, 0x00000000 },
5123 { 0x14c0, 0, 0x00000000, 0x00000009 },
5124 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5125 { 0x14cc, 0, 0x00000000, 0x00000001 },
5126 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5128 { 0x1800, 0, 0x00000000, 0x00000001 },
5129 { 0x1804, 0, 0x00000000, 0x00000003 },
5131 { 0x2800, 0, 0x00000000, 0x00000001 },
5132 { 0x2804, 0, 0x00000000, 0x00003f01 },
5133 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5134 { 0x2810, 0, 0xffff0000, 0x00000000 },
5135 { 0x2814, 0, 0xffff0000, 0x00000000 },
5136 { 0x2818, 0, 0xffff0000, 0x00000000 },
5137 { 0x281c, 0, 0xffff0000, 0x00000000 },
5138 { 0x2834, 0, 0xffffffff, 0x00000000 },
5139 { 0x2840, 0, 0x00000000, 0xffffffff },
5140 { 0x2844, 0, 0x00000000, 0xffffffff },
5141 { 0x2848, 0, 0xffffffff, 0x00000000 },
5142 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5144 { 0x2c00, 0, 0x00000000, 0x00000011 },
5145 { 0x2c04, 0, 0x00000000, 0x00030007 },
5147 { 0x3c00, 0, 0x00000000, 0x00000001 },
5148 { 0x3c04, 0, 0x00000000, 0x00070000 },
5149 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5150 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5151 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5152 { 0x3c14, 0, 0x00000000, 0xffffffff },
5153 { 0x3c18, 0, 0x00000000, 0xffffffff },
5154 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5155 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5157 { 0x5004, 0, 0x00000000, 0x0000007f },
5158 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5160 { 0x5c00, 0, 0x00000000, 0x00000001 },
5161 { 0x5c04, 0, 0x00000000, 0x0003000f },
5162 { 0x5c08, 0, 0x00000003, 0x00000000 },
5163 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5164 { 0x5c10, 0, 0x00000000, 0xffffffff },
5165 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5166 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5167 { 0x5c88, 0, 0x00000000, 0x00077373 },
5168 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5170 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5171 { 0x680c, 0, 0xffffffff, 0x00000000 },
5172 { 0x6810, 0, 0xffffffff, 0x00000000 },
5173 { 0x6814, 0, 0xffffffff, 0x00000000 },
5174 { 0x6818, 0, 0xffffffff, 0x00000000 },
5175 { 0x681c, 0, 0xffffffff, 0x00000000 },
5176 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5177 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5178 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5179 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5180 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5181 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5182 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5183 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5184 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5185 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5186 { 0x684c, 0, 0xffffffff, 0x00000000 },
5187 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5188 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5189 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5190 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5191 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5192 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5194 { 0xffff, 0, 0x00000000, 0x00000000 },
5199 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5202 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5203 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5204 u16 flags
= reg_tbl
[i
].flags
;
5206 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5209 offset
= (u32
) reg_tbl
[i
].offset
;
5210 rw_mask
= reg_tbl
[i
].rw_mask
;
5211 ro_mask
= reg_tbl
[i
].ro_mask
;
5213 save_val
= readl(bp
->regview
+ offset
);
5215 writel(0, bp
->regview
+ offset
);
5217 val
= readl(bp
->regview
+ offset
);
5218 if ((val
& rw_mask
) != 0) {
5222 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5226 writel(0xffffffff, bp
->regview
+ offset
);
5228 val
= readl(bp
->regview
+ offset
);
5229 if ((val
& rw_mask
) != rw_mask
) {
5233 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5237 writel(save_val
, bp
->regview
+ offset
);
5241 writel(save_val
, bp
->regview
+ offset
);
5249 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5251 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5252 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5255 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5258 for (offset
= 0; offset
< size
; offset
+= 4) {
5260 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5262 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5272 bnx2_test_memory(struct bnx2
*bp
)
5276 static struct mem_entry
{
5279 } mem_tbl_5706
[] = {
5280 { 0x60000, 0x4000 },
5281 { 0xa0000, 0x3000 },
5282 { 0xe0000, 0x4000 },
5283 { 0x120000, 0x4000 },
5284 { 0x1a0000, 0x4000 },
5285 { 0x160000, 0x4000 },
5289 { 0x60000, 0x4000 },
5290 { 0xa0000, 0x3000 },
5291 { 0xe0000, 0x4000 },
5292 { 0x120000, 0x4000 },
5293 { 0x1a0000, 0x4000 },
5296 struct mem_entry
*mem_tbl
;
5298 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5299 mem_tbl
= mem_tbl_5709
;
5301 mem_tbl
= mem_tbl_5706
;
5303 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5304 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5305 mem_tbl
[i
].len
)) != 0) {
5313 #define BNX2_MAC_LOOPBACK 0
5314 #define BNX2_PHY_LOOPBACK 1
5317 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5319 unsigned int pkt_size
, num_pkts
, i
;
5320 struct sk_buff
*skb
, *rx_skb
;
5321 unsigned char *packet
;
5322 u16 rx_start_idx
, rx_idx
;
5325 struct sw_bd
*rx_buf
;
5326 struct l2_fhdr
*rx_hdr
;
5328 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5329 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5330 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5334 txr
= &tx_napi
->tx_ring
;
5335 rxr
= &bnapi
->rx_ring
;
5336 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5337 bp
->loopback
= MAC_LOOPBACK
;
5338 bnx2_set_mac_loopback(bp
);
5340 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5341 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5344 bp
->loopback
= PHY_LOOPBACK
;
5345 bnx2_set_phy_loopback(bp
);
5350 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5351 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5354 packet
= skb_put(skb
, pkt_size
);
5355 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5356 memset(packet
+ 6, 0x0, 8);
5357 for (i
= 14; i
< pkt_size
; i
++)
5358 packet
[i
] = (unsigned char) (i
& 0xff);
5360 map
= pci_map_single(bp
->pdev
, skb
->data
, pkt_size
,
5363 REG_WR(bp
, BNX2_HC_COMMAND
,
5364 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5366 REG_RD(bp
, BNX2_HC_COMMAND
);
5369 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5373 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5375 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5376 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5377 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5378 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5381 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5382 txr
->tx_prod_bseq
+= pkt_size
;
5384 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5385 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5389 REG_WR(bp
, BNX2_HC_COMMAND
,
5390 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5392 REG_RD(bp
, BNX2_HC_COMMAND
);
5396 pci_unmap_single(bp
->pdev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5399 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5400 goto loopback_test_done
;
5402 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5403 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5404 goto loopback_test_done
;
5407 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5408 rx_skb
= rx_buf
->skb
;
5410 rx_hdr
= (struct l2_fhdr
*) rx_skb
->data
;
5411 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5413 pci_dma_sync_single_for_cpu(bp
->pdev
,
5414 pci_unmap_addr(rx_buf
, mapping
),
5415 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5417 if (rx_hdr
->l2_fhdr_status
&
5418 (L2_FHDR_ERRORS_BAD_CRC
|
5419 L2_FHDR_ERRORS_PHY_DECODE
|
5420 L2_FHDR_ERRORS_ALIGNMENT
|
5421 L2_FHDR_ERRORS_TOO_SHORT
|
5422 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5424 goto loopback_test_done
;
5427 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5428 goto loopback_test_done
;
5431 for (i
= 14; i
< pkt_size
; i
++) {
5432 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5433 goto loopback_test_done
;
5444 #define BNX2_MAC_LOOPBACK_FAILED 1
5445 #define BNX2_PHY_LOOPBACK_FAILED 2
5446 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5447 BNX2_PHY_LOOPBACK_FAILED)
5450 bnx2_test_loopback(struct bnx2
*bp
)
5454 if (!netif_running(bp
->dev
))
5455 return BNX2_LOOPBACK_FAILED
;
5457 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5458 spin_lock_bh(&bp
->phy_lock
);
5459 bnx2_init_phy(bp
, 1);
5460 spin_unlock_bh(&bp
->phy_lock
);
5461 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5462 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5463 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5464 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5468 #define NVRAM_SIZE 0x200
5469 #define CRC32_RESIDUAL 0xdebb20e3
5472 bnx2_test_nvram(struct bnx2
*bp
)
5474 __be32 buf
[NVRAM_SIZE
/ 4];
5475 u8
*data
= (u8
*) buf
;
5479 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5480 goto test_nvram_done
;
5482 magic
= be32_to_cpu(buf
[0]);
5483 if (magic
!= 0x669955aa) {
5485 goto test_nvram_done
;
5488 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5489 goto test_nvram_done
;
5491 csum
= ether_crc_le(0x100, data
);
5492 if (csum
!= CRC32_RESIDUAL
) {
5494 goto test_nvram_done
;
5497 csum
= ether_crc_le(0x100, data
+ 0x100);
5498 if (csum
!= CRC32_RESIDUAL
) {
5507 bnx2_test_link(struct bnx2
*bp
)
5511 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5516 spin_lock_bh(&bp
->phy_lock
);
5517 bnx2_enable_bmsr1(bp
);
5518 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5519 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5520 bnx2_disable_bmsr1(bp
);
5521 spin_unlock_bh(&bp
->phy_lock
);
5523 if (bmsr
& BMSR_LSTATUS
) {
5530 bnx2_test_intr(struct bnx2
*bp
)
5535 if (!netif_running(bp
->dev
))
5538 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5540 /* This register is not touched during run-time. */
5541 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5542 REG_RD(bp
, BNX2_HC_COMMAND
);
5544 for (i
= 0; i
< 10; i
++) {
5545 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5551 msleep_interruptible(10);
5559 /* Determining link for parallel detection. */
5561 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5563 u32 mode_ctl
, an_dbg
, exp
;
5565 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5568 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5569 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5571 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5574 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5575 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5576 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5578 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
5581 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5582 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5583 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5585 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5592 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5596 spin_lock(&bp
->phy_lock
);
5597 if (bp
->serdes_an_pending
) {
5598 bp
->serdes_an_pending
--;
5600 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5603 bp
->current_interval
= bp
->timer_interval
;
5605 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5607 if (bmcr
& BMCR_ANENABLE
) {
5608 if (bnx2_5706_serdes_has_link(bp
)) {
5609 bmcr
&= ~BMCR_ANENABLE
;
5610 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5611 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5612 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
5616 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
5617 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
5620 bnx2_write_phy(bp
, 0x17, 0x0f01);
5621 bnx2_read_phy(bp
, 0x15, &phy2
);
5625 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5626 bmcr
|= BMCR_ANENABLE
;
5627 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5629 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
5632 bp
->current_interval
= bp
->timer_interval
;
5637 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5638 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5639 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5641 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
5642 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
5643 bnx2_5706s_force_link_dn(bp
, 1);
5644 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
5647 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
5650 spin_unlock(&bp
->phy_lock
);
5654 bnx2_5708_serdes_timer(struct bnx2
*bp
)
5656 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5659 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
5660 bp
->serdes_an_pending
= 0;
5664 spin_lock(&bp
->phy_lock
);
5665 if (bp
->serdes_an_pending
)
5666 bp
->serdes_an_pending
--;
5667 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5670 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5671 if (bmcr
& BMCR_ANENABLE
) {
5672 bnx2_enable_forced_2g5(bp
);
5673 bp
->current_interval
= SERDES_FORCED_TIMEOUT
;
5675 bnx2_disable_forced_2g5(bp
);
5676 bp
->serdes_an_pending
= 2;
5677 bp
->current_interval
= bp
->timer_interval
;
5681 bp
->current_interval
= bp
->timer_interval
;
5683 spin_unlock(&bp
->phy_lock
);
5687 bnx2_timer(unsigned long data
)
5689 struct bnx2
*bp
= (struct bnx2
*) data
;
5691 if (!netif_running(bp
->dev
))
5694 if (atomic_read(&bp
->intr_sem
) != 0)
5695 goto bnx2_restart_timer
;
5697 bnx2_send_heart_beat(bp
);
5699 bp
->stats_blk
->stat_FwRxDrop
=
5700 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
5702 /* workaround occasional corrupted counters */
5703 if (CHIP_NUM(bp
) == CHIP_NUM_5708
&& bp
->stats_ticks
)
5704 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
5705 BNX2_HC_COMMAND_STATS_NOW
);
5707 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
5708 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
5709 bnx2_5706_serdes_timer(bp
);
5711 bnx2_5708_serdes_timer(bp
);
5715 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5719 bnx2_request_irq(struct bnx2
*bp
)
5721 unsigned long flags
;
5722 struct bnx2_irq
*irq
;
5725 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
5728 flags
= IRQF_SHARED
;
5730 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
5731 irq
= &bp
->irq_tbl
[i
];
5732 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
5742 bnx2_free_irq(struct bnx2
*bp
)
5744 struct bnx2_irq
*irq
;
5747 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
5748 irq
= &bp
->irq_tbl
[i
];
5750 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
5753 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
5754 pci_disable_msi(bp
->pdev
);
5755 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
5756 pci_disable_msix(bp
->pdev
);
5758 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
5762 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
5765 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
5767 bnx2_setup_msix_tbl(bp
);
5768 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
5769 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
5770 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
5772 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5773 msix_ent
[i
].entry
= i
;
5774 msix_ent
[i
].vector
= 0;
5776 strcpy(bp
->irq_tbl
[i
].name
, bp
->dev
->name
);
5777 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
5780 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, BNX2_MAX_MSIX_VEC
);
5784 bp
->irq_nvecs
= msix_vecs
;
5785 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
5786 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
5787 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
5791 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
5793 int cpus
= num_online_cpus();
5794 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
5796 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
5797 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
5799 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
5801 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
&& cpus
> 1)
5802 bnx2_enable_msix(bp
, msix_vecs
);
5804 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
5805 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
5806 if (pci_enable_msi(bp
->pdev
) == 0) {
5807 bp
->flags
|= BNX2_FLAG_USING_MSI
;
5808 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5809 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
5810 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
5812 bp
->irq_tbl
[0].handler
= bnx2_msi
;
5814 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
5818 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
5819 bp
->dev
->real_num_tx_queues
= bp
->num_tx_rings
;
5821 bp
->num_rx_rings
= bp
->irq_nvecs
;
5824 /* Called with rtnl_lock */
5826 bnx2_open(struct net_device
*dev
)
5828 struct bnx2
*bp
= netdev_priv(dev
);
5831 netif_carrier_off(dev
);
5833 bnx2_set_power_state(bp
, PCI_D0
);
5834 bnx2_disable_int(bp
);
5836 bnx2_setup_int_mode(bp
, disable_msi
);
5837 bnx2_napi_enable(bp
);
5838 rc
= bnx2_alloc_mem(bp
);
5842 rc
= bnx2_request_irq(bp
);
5846 rc
= bnx2_init_nic(bp
, 1);
5850 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5852 atomic_set(&bp
->intr_sem
, 0);
5854 bnx2_enable_int(bp
);
5856 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
5857 /* Test MSI to make sure it is working
5858 * If MSI test fails, go back to INTx mode
5860 if (bnx2_test_intr(bp
) != 0) {
5861 printk(KERN_WARNING PFX
"%s: No interrupt was generated"
5862 " using MSI, switching to INTx mode. Please"
5863 " report this failure to the PCI maintainer"
5864 " and include system chipset information.\n",
5867 bnx2_disable_int(bp
);
5870 bnx2_setup_int_mode(bp
, 1);
5872 rc
= bnx2_init_nic(bp
, 0);
5875 rc
= bnx2_request_irq(bp
);
5878 del_timer_sync(&bp
->timer
);
5881 bnx2_enable_int(bp
);
5884 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
5885 printk(KERN_INFO PFX
"%s: using MSI\n", dev
->name
);
5886 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
5887 printk(KERN_INFO PFX
"%s: using MSIX\n", dev
->name
);
5889 netif_tx_start_all_queues(dev
);
5894 bnx2_napi_disable(bp
);
5902 bnx2_reset_task(struct work_struct
*work
)
5904 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
5906 if (!netif_running(bp
->dev
))
5909 bnx2_netif_stop(bp
);
5911 bnx2_init_nic(bp
, 1);
5913 atomic_set(&bp
->intr_sem
, 1);
5914 bnx2_netif_start(bp
);
5918 bnx2_tx_timeout(struct net_device
*dev
)
5920 struct bnx2
*bp
= netdev_priv(dev
);
5922 /* This allows the netif to be shutdown gracefully before resetting */
5923 schedule_work(&bp
->reset_task
);
5927 /* Called with rtnl_lock */
5929 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
5931 struct bnx2
*bp
= netdev_priv(dev
);
5933 bnx2_netif_stop(bp
);
5936 bnx2_set_rx_mode(dev
);
5937 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
5938 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
5940 bnx2_netif_start(bp
);
5944 /* Called with netif_tx_lock.
5945 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
5946 * netif_wake_queue().
5949 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
5951 struct bnx2
*bp
= netdev_priv(dev
);
5954 struct sw_bd
*tx_buf
;
5955 u32 len
, vlan_tag_flags
, last_frag
, mss
;
5956 u16 prod
, ring_prod
;
5958 struct bnx2_napi
*bnapi
;
5959 struct bnx2_tx_ring_info
*txr
;
5960 struct netdev_queue
*txq
;
5962 /* Determine which tx ring we will be placed on */
5963 i
= skb_get_queue_mapping(skb
);
5964 bnapi
= &bp
->bnx2_napi
[i
];
5965 txr
= &bnapi
->tx_ring
;
5966 txq
= netdev_get_tx_queue(dev
, i
);
5968 if (unlikely(bnx2_tx_avail(bp
, txr
) <
5969 (skb_shinfo(skb
)->nr_frags
+ 1))) {
5970 netif_tx_stop_queue(txq
);
5971 printk(KERN_ERR PFX
"%s: BUG! Tx ring full when queue awake!\n",
5974 return NETDEV_TX_BUSY
;
5976 len
= skb_headlen(skb
);
5977 prod
= txr
->tx_prod
;
5978 ring_prod
= TX_RING_IDX(prod
);
5981 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
5982 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
5986 if (bp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
5988 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
5991 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
5992 u32 tcp_opt_len
, ip_tcp_len
;
5995 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
5997 tcp_opt_len
= tcp_optlen(skb
);
5999 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6000 u32 tcp_off
= skb_transport_offset(skb
) -
6001 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6003 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6004 TX_BD_FLAGS_SW_FLAGS
;
6005 if (likely(tcp_off
== 0))
6006 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6009 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6010 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6011 ((tcp_off
& 0x10) <<
6012 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6013 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6016 if (skb_header_cloned(skb
) &&
6017 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
)) {
6019 return NETDEV_TX_OK
;
6022 ip_tcp_len
= ip_hdrlen(skb
) + sizeof(struct tcphdr
);
6026 iph
->tot_len
= htons(mss
+ ip_tcp_len
+ tcp_opt_len
);
6027 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
6031 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6032 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6033 (tcp_opt_len
>> 2)) << 8;
6039 mapping
= pci_map_single(bp
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6041 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6043 pci_unmap_addr_set(tx_buf
, mapping
, mapping
);
6045 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6047 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6048 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6049 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6050 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6052 last_frag
= skb_shinfo(skb
)->nr_frags
;
6054 for (i
= 0; i
< last_frag
; i
++) {
6055 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6057 prod
= NEXT_TX_BD(prod
);
6058 ring_prod
= TX_RING_IDX(prod
);
6059 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6062 mapping
= pci_map_page(bp
->pdev
, frag
->page
, frag
->page_offset
,
6063 len
, PCI_DMA_TODEVICE
);
6064 pci_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
],
6067 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6068 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6069 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6070 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6073 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6075 prod
= NEXT_TX_BD(prod
);
6076 txr
->tx_prod_bseq
+= skb
->len
;
6078 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6079 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6083 txr
->tx_prod
= prod
;
6084 dev
->trans_start
= jiffies
;
6086 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6087 netif_tx_stop_queue(txq
);
6088 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6089 netif_tx_wake_queue(txq
);
6092 return NETDEV_TX_OK
;
6095 /* Called with rtnl_lock */
6097 bnx2_close(struct net_device
*dev
)
6099 struct bnx2
*bp
= netdev_priv(dev
);
6102 cancel_work_sync(&bp
->reset_task
);
6104 bnx2_disable_int_sync(bp
);
6105 bnx2_napi_disable(bp
);
6106 del_timer_sync(&bp
->timer
);
6107 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6108 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
6110 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
6112 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
6113 bnx2_reset_chip(bp
, reset_code
);
6118 netif_carrier_off(bp
->dev
);
6119 bnx2_set_power_state(bp
, PCI_D3hot
);
6123 #define GET_NET_STATS64(ctr) \
6124 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6125 (unsigned long) (ctr##_lo)
6127 #define GET_NET_STATS32(ctr) \
6130 #if (BITS_PER_LONG == 64)
6131 #define GET_NET_STATS GET_NET_STATS64
6133 #define GET_NET_STATS GET_NET_STATS32
6136 static struct net_device_stats
*
6137 bnx2_get_stats(struct net_device
*dev
)
6139 struct bnx2
*bp
= netdev_priv(dev
);
6140 struct statistics_block
*stats_blk
= bp
->stats_blk
;
6141 struct net_device_stats
*net_stats
= &bp
->net_stats
;
6143 if (bp
->stats_blk
== NULL
) {
6146 net_stats
->rx_packets
=
6147 GET_NET_STATS(stats_blk
->stat_IfHCInUcastPkts
) +
6148 GET_NET_STATS(stats_blk
->stat_IfHCInMulticastPkts
) +
6149 GET_NET_STATS(stats_blk
->stat_IfHCInBroadcastPkts
);
6151 net_stats
->tx_packets
=
6152 GET_NET_STATS(stats_blk
->stat_IfHCOutUcastPkts
) +
6153 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
) +
6154 GET_NET_STATS(stats_blk
->stat_IfHCOutBroadcastPkts
);
6156 net_stats
->rx_bytes
=
6157 GET_NET_STATS(stats_blk
->stat_IfHCInOctets
);
6159 net_stats
->tx_bytes
=
6160 GET_NET_STATS(stats_blk
->stat_IfHCOutOctets
);
6162 net_stats
->multicast
=
6163 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
);
6165 net_stats
->collisions
=
6166 (unsigned long) stats_blk
->stat_EtherStatsCollisions
;
6168 net_stats
->rx_length_errors
=
6169 (unsigned long) (stats_blk
->stat_EtherStatsUndersizePkts
+
6170 stats_blk
->stat_EtherStatsOverrsizePkts
);
6172 net_stats
->rx_over_errors
=
6173 (unsigned long) stats_blk
->stat_IfInMBUFDiscards
;
6175 net_stats
->rx_frame_errors
=
6176 (unsigned long) stats_blk
->stat_Dot3StatsAlignmentErrors
;
6178 net_stats
->rx_crc_errors
=
6179 (unsigned long) stats_blk
->stat_Dot3StatsFCSErrors
;
6181 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6182 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6183 net_stats
->rx_crc_errors
;
6185 net_stats
->tx_aborted_errors
=
6186 (unsigned long) (stats_blk
->stat_Dot3StatsExcessiveCollisions
+
6187 stats_blk
->stat_Dot3StatsLateCollisions
);
6189 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6190 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6191 net_stats
->tx_carrier_errors
= 0;
6193 net_stats
->tx_carrier_errors
=
6195 stats_blk
->stat_Dot3StatsCarrierSenseErrors
;
6198 net_stats
->tx_errors
=
6200 stats_blk
->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6202 net_stats
->tx_aborted_errors
+
6203 net_stats
->tx_carrier_errors
;
6205 net_stats
->rx_missed_errors
=
6206 (unsigned long) (stats_blk
->stat_IfInMBUFDiscards
+
6207 stats_blk
->stat_FwRxDrop
);
6212 /* All ethtool functions called with rtnl_lock */
6215 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6217 struct bnx2
*bp
= netdev_priv(dev
);
6218 int support_serdes
= 0, support_copper
= 0;
6220 cmd
->supported
= SUPPORTED_Autoneg
;
6221 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6224 } else if (bp
->phy_port
== PORT_FIBRE
)
6229 if (support_serdes
) {
6230 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6232 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6233 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6236 if (support_copper
) {
6237 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6238 SUPPORTED_10baseT_Full
|
6239 SUPPORTED_100baseT_Half
|
6240 SUPPORTED_100baseT_Full
|
6241 SUPPORTED_1000baseT_Full
|
6246 spin_lock_bh(&bp
->phy_lock
);
6247 cmd
->port
= bp
->phy_port
;
6248 cmd
->advertising
= bp
->advertising
;
6250 if (bp
->autoneg
& AUTONEG_SPEED
) {
6251 cmd
->autoneg
= AUTONEG_ENABLE
;
6254 cmd
->autoneg
= AUTONEG_DISABLE
;
6257 if (netif_carrier_ok(dev
)) {
6258 cmd
->speed
= bp
->line_speed
;
6259 cmd
->duplex
= bp
->duplex
;
6265 spin_unlock_bh(&bp
->phy_lock
);
6267 cmd
->transceiver
= XCVR_INTERNAL
;
6268 cmd
->phy_address
= bp
->phy_addr
;
6274 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6276 struct bnx2
*bp
= netdev_priv(dev
);
6277 u8 autoneg
= bp
->autoneg
;
6278 u8 req_duplex
= bp
->req_duplex
;
6279 u16 req_line_speed
= bp
->req_line_speed
;
6280 u32 advertising
= bp
->advertising
;
6283 spin_lock_bh(&bp
->phy_lock
);
6285 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6286 goto err_out_unlock
;
6288 if (cmd
->port
!= bp
->phy_port
&&
6289 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6290 goto err_out_unlock
;
6292 /* If device is down, we can store the settings only if the user
6293 * is setting the currently active port.
6295 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6296 goto err_out_unlock
;
6298 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6299 autoneg
|= AUTONEG_SPEED
;
6301 cmd
->advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6303 /* allow advertising 1 speed */
6304 if ((cmd
->advertising
== ADVERTISED_10baseT_Half
) ||
6305 (cmd
->advertising
== ADVERTISED_10baseT_Full
) ||
6306 (cmd
->advertising
== ADVERTISED_100baseT_Half
) ||
6307 (cmd
->advertising
== ADVERTISED_100baseT_Full
)) {
6309 if (cmd
->port
== PORT_FIBRE
)
6310 goto err_out_unlock
;
6312 advertising
= cmd
->advertising
;
6314 } else if (cmd
->advertising
== ADVERTISED_2500baseX_Full
) {
6315 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) ||
6316 (cmd
->port
== PORT_TP
))
6317 goto err_out_unlock
;
6318 } else if (cmd
->advertising
== ADVERTISED_1000baseT_Full
)
6319 advertising
= cmd
->advertising
;
6320 else if (cmd
->advertising
== ADVERTISED_1000baseT_Half
)
6321 goto err_out_unlock
;
6323 if (cmd
->port
== PORT_FIBRE
)
6324 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6326 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6328 advertising
|= ADVERTISED_Autoneg
;
6331 if (cmd
->port
== PORT_FIBRE
) {
6332 if ((cmd
->speed
!= SPEED_1000
&&
6333 cmd
->speed
!= SPEED_2500
) ||
6334 (cmd
->duplex
!= DUPLEX_FULL
))
6335 goto err_out_unlock
;
6337 if (cmd
->speed
== SPEED_2500
&&
6338 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6339 goto err_out_unlock
;
6341 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
6342 goto err_out_unlock
;
6344 autoneg
&= ~AUTONEG_SPEED
;
6345 req_line_speed
= cmd
->speed
;
6346 req_duplex
= cmd
->duplex
;
6350 bp
->autoneg
= autoneg
;
6351 bp
->advertising
= advertising
;
6352 bp
->req_line_speed
= req_line_speed
;
6353 bp
->req_duplex
= req_duplex
;
6356 /* If device is down, the new settings will be picked up when it is
6359 if (netif_running(dev
))
6360 err
= bnx2_setup_phy(bp
, cmd
->port
);
6363 spin_unlock_bh(&bp
->phy_lock
);
6369 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6371 struct bnx2
*bp
= netdev_priv(dev
);
6373 strcpy(info
->driver
, DRV_MODULE_NAME
);
6374 strcpy(info
->version
, DRV_MODULE_VERSION
);
6375 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6376 strcpy(info
->fw_version
, bp
->fw_version
);
6379 #define BNX2_REGDUMP_LEN (32 * 1024)
6382 bnx2_get_regs_len(struct net_device
*dev
)
6384 return BNX2_REGDUMP_LEN
;
6388 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6390 u32
*p
= _p
, i
, offset
;
6392 struct bnx2
*bp
= netdev_priv(dev
);
6393 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6394 0x0800, 0x0880, 0x0c00, 0x0c10,
6395 0x0c30, 0x0d08, 0x1000, 0x101c,
6396 0x1040, 0x1048, 0x1080, 0x10a4,
6397 0x1400, 0x1490, 0x1498, 0x14f0,
6398 0x1500, 0x155c, 0x1580, 0x15dc,
6399 0x1600, 0x1658, 0x1680, 0x16d8,
6400 0x1800, 0x1820, 0x1840, 0x1854,
6401 0x1880, 0x1894, 0x1900, 0x1984,
6402 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6403 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6404 0x2000, 0x2030, 0x23c0, 0x2400,
6405 0x2800, 0x2820, 0x2830, 0x2850,
6406 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6407 0x3c00, 0x3c94, 0x4000, 0x4010,
6408 0x4080, 0x4090, 0x43c0, 0x4458,
6409 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6410 0x4fc0, 0x5010, 0x53c0, 0x5444,
6411 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6412 0x5fc0, 0x6000, 0x6400, 0x6428,
6413 0x6800, 0x6848, 0x684c, 0x6860,
6414 0x6888, 0x6910, 0x8000 };
6418 memset(p
, 0, BNX2_REGDUMP_LEN
);
6420 if (!netif_running(bp
->dev
))
6424 offset
= reg_boundaries
[0];
6426 while (offset
< BNX2_REGDUMP_LEN
) {
6427 *p
++ = REG_RD(bp
, offset
);
6429 if (offset
== reg_boundaries
[i
+ 1]) {
6430 offset
= reg_boundaries
[i
+ 2];
6431 p
= (u32
*) (orig_p
+ offset
);
6438 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6440 struct bnx2
*bp
= netdev_priv(dev
);
6442 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6447 wol
->supported
= WAKE_MAGIC
;
6449 wol
->wolopts
= WAKE_MAGIC
;
6453 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6457 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6459 struct bnx2
*bp
= netdev_priv(dev
);
6461 if (wol
->wolopts
& ~WAKE_MAGIC
)
6464 if (wol
->wolopts
& WAKE_MAGIC
) {
6465 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6477 bnx2_nway_reset(struct net_device
*dev
)
6479 struct bnx2
*bp
= netdev_priv(dev
);
6482 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6486 spin_lock_bh(&bp
->phy_lock
);
6488 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6491 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6492 spin_unlock_bh(&bp
->phy_lock
);
6496 /* Force a link down visible on the other side */
6497 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6498 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6499 spin_unlock_bh(&bp
->phy_lock
);
6503 spin_lock_bh(&bp
->phy_lock
);
6505 bp
->current_interval
= SERDES_AN_TIMEOUT
;
6506 bp
->serdes_an_pending
= 1;
6507 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6510 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6511 bmcr
&= ~BMCR_LOOPBACK
;
6512 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6514 spin_unlock_bh(&bp
->phy_lock
);
6520 bnx2_get_eeprom_len(struct net_device
*dev
)
6522 struct bnx2
*bp
= netdev_priv(dev
);
6524 if (bp
->flash_info
== NULL
)
6527 return (int) bp
->flash_size
;
6531 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6534 struct bnx2
*bp
= netdev_priv(dev
);
6537 /* parameters already validated in ethtool_get_eeprom */
6539 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6545 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6548 struct bnx2
*bp
= netdev_priv(dev
);
6551 /* parameters already validated in ethtool_set_eeprom */
6553 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6559 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6561 struct bnx2
*bp
= netdev_priv(dev
);
6563 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
6565 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
6566 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
6567 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
6568 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
6570 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
6571 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
6572 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
6573 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
6575 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
6581 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6583 struct bnx2
*bp
= netdev_priv(dev
);
6585 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
6586 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
6588 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
6589 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
6591 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
6592 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
6594 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
6595 if (bp
->rx_quick_cons_trip_int
> 0xff)
6596 bp
->rx_quick_cons_trip_int
= 0xff;
6598 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
6599 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
6601 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
6602 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
6604 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
6605 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
6607 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
6608 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
6611 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
6612 if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
6613 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
6614 bp
->stats_ticks
= USEC_PER_SEC
;
6616 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
6617 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6618 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6620 if (netif_running(bp
->dev
)) {
6621 bnx2_netif_stop(bp
);
6622 bnx2_init_nic(bp
, 0);
6623 bnx2_netif_start(bp
);
6630 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6632 struct bnx2
*bp
= netdev_priv(dev
);
6634 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
6635 ering
->rx_mini_max_pending
= 0;
6636 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
6638 ering
->rx_pending
= bp
->rx_ring_size
;
6639 ering
->rx_mini_pending
= 0;
6640 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
6642 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
6643 ering
->tx_pending
= bp
->tx_ring_size
;
6647 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
6649 if (netif_running(bp
->dev
)) {
6650 bnx2_netif_stop(bp
);
6651 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
6656 bnx2_set_rx_ring_size(bp
, rx
);
6657 bp
->tx_ring_size
= tx
;
6659 if (netif_running(bp
->dev
)) {
6662 rc
= bnx2_alloc_mem(bp
);
6665 bnx2_init_nic(bp
, 0);
6666 bnx2_netif_start(bp
);
6672 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6674 struct bnx2
*bp
= netdev_priv(dev
);
6677 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
6678 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
6679 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
6683 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
6688 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
6690 struct bnx2
*bp
= netdev_priv(dev
);
6692 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
6693 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
6694 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
6698 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
6700 struct bnx2
*bp
= netdev_priv(dev
);
6702 bp
->req_flow_ctrl
= 0;
6703 if (epause
->rx_pause
)
6704 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
6705 if (epause
->tx_pause
)
6706 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
6708 if (epause
->autoneg
) {
6709 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
6712 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
6715 spin_lock_bh(&bp
->phy_lock
);
6717 bnx2_setup_phy(bp
, bp
->phy_port
);
6719 spin_unlock_bh(&bp
->phy_lock
);
6725 bnx2_get_rx_csum(struct net_device
*dev
)
6727 struct bnx2
*bp
= netdev_priv(dev
);
6733 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
6735 struct bnx2
*bp
= netdev_priv(dev
);
6742 bnx2_set_tso(struct net_device
*dev
, u32 data
)
6744 struct bnx2
*bp
= netdev_priv(dev
);
6747 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
6748 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
6749 dev
->features
|= NETIF_F_TSO6
;
6751 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
6756 #define BNX2_NUM_STATS 46
6759 char string
[ETH_GSTRING_LEN
];
6760 } bnx2_stats_str_arr
[BNX2_NUM_STATS
] = {
6762 { "rx_error_bytes" },
6764 { "tx_error_bytes" },
6765 { "rx_ucast_packets" },
6766 { "rx_mcast_packets" },
6767 { "rx_bcast_packets" },
6768 { "tx_ucast_packets" },
6769 { "tx_mcast_packets" },
6770 { "tx_bcast_packets" },
6771 { "tx_mac_errors" },
6772 { "tx_carrier_errors" },
6773 { "rx_crc_errors" },
6774 { "rx_align_errors" },
6775 { "tx_single_collisions" },
6776 { "tx_multi_collisions" },
6778 { "tx_excess_collisions" },
6779 { "tx_late_collisions" },
6780 { "tx_total_collisions" },
6783 { "rx_undersize_packets" },
6784 { "rx_oversize_packets" },
6785 { "rx_64_byte_packets" },
6786 { "rx_65_to_127_byte_packets" },
6787 { "rx_128_to_255_byte_packets" },
6788 { "rx_256_to_511_byte_packets" },
6789 { "rx_512_to_1023_byte_packets" },
6790 { "rx_1024_to_1522_byte_packets" },
6791 { "rx_1523_to_9022_byte_packets" },
6792 { "tx_64_byte_packets" },
6793 { "tx_65_to_127_byte_packets" },
6794 { "tx_128_to_255_byte_packets" },
6795 { "tx_256_to_511_byte_packets" },
6796 { "tx_512_to_1023_byte_packets" },
6797 { "tx_1024_to_1522_byte_packets" },
6798 { "tx_1523_to_9022_byte_packets" },
6799 { "rx_xon_frames" },
6800 { "rx_xoff_frames" },
6801 { "tx_xon_frames" },
6802 { "tx_xoff_frames" },
6803 { "rx_mac_ctrl_frames" },
6804 { "rx_filtered_packets" },
6806 { "rx_fw_discards" },
6809 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
6811 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
6812 STATS_OFFSET32(stat_IfHCInOctets_hi
),
6813 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
6814 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
6815 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
6816 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
6817 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
6818 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
6819 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
6820 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
6821 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
6822 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
6823 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
6824 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
6825 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
6826 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
6827 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
6828 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
6829 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
6830 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
6831 STATS_OFFSET32(stat_EtherStatsCollisions
),
6832 STATS_OFFSET32(stat_EtherStatsFragments
),
6833 STATS_OFFSET32(stat_EtherStatsJabbers
),
6834 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
6835 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
6836 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
6837 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
6838 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
6839 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
6840 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
6841 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
6842 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
6843 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
6844 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
6845 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
6846 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
6847 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
6848 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
6849 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
6850 STATS_OFFSET32(stat_XonPauseFramesReceived
),
6851 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
6852 STATS_OFFSET32(stat_OutXonSent
),
6853 STATS_OFFSET32(stat_OutXoffSent
),
6854 STATS_OFFSET32(stat_MacControlFramesReceived
),
6855 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
6856 STATS_OFFSET32(stat_IfInMBUFDiscards
),
6857 STATS_OFFSET32(stat_FwRxDrop
),
6860 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
6861 * skipped because of errata.
6863 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
6864 8,0,8,8,8,8,8,8,8,8,
6865 4,0,4,4,4,4,4,4,4,4,
6866 4,4,4,4,4,4,4,4,4,4,
6867 4,4,4,4,4,4,4,4,4,4,
6871 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
6872 8,0,8,8,8,8,8,8,8,8,
6873 4,4,4,4,4,4,4,4,4,4,
6874 4,4,4,4,4,4,4,4,4,4,
6875 4,4,4,4,4,4,4,4,4,4,
6879 #define BNX2_NUM_TESTS 6
6882 char string
[ETH_GSTRING_LEN
];
6883 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
6884 { "register_test (offline)" },
6885 { "memory_test (offline)" },
6886 { "loopback_test (offline)" },
6887 { "nvram_test (online)" },
6888 { "interrupt_test (online)" },
6889 { "link_test (online)" },
6893 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
6897 return BNX2_NUM_TESTS
;
6899 return BNX2_NUM_STATS
;
6906 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
6908 struct bnx2
*bp
= netdev_priv(dev
);
6910 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
6911 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
6914 bnx2_netif_stop(bp
);
6915 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
6918 if (bnx2_test_registers(bp
) != 0) {
6920 etest
->flags
|= ETH_TEST_FL_FAILED
;
6922 if (bnx2_test_memory(bp
) != 0) {
6924 etest
->flags
|= ETH_TEST_FL_FAILED
;
6926 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
6927 etest
->flags
|= ETH_TEST_FL_FAILED
;
6929 if (!netif_running(bp
->dev
)) {
6930 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
6933 bnx2_init_nic(bp
, 1);
6934 bnx2_netif_start(bp
);
6937 /* wait for link up */
6938 for (i
= 0; i
< 7; i
++) {
6941 msleep_interruptible(1000);
6945 if (bnx2_test_nvram(bp
) != 0) {
6947 etest
->flags
|= ETH_TEST_FL_FAILED
;
6949 if (bnx2_test_intr(bp
) != 0) {
6951 etest
->flags
|= ETH_TEST_FL_FAILED
;
6954 if (bnx2_test_link(bp
) != 0) {
6956 etest
->flags
|= ETH_TEST_FL_FAILED
;
6962 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
6964 switch (stringset
) {
6966 memcpy(buf
, bnx2_stats_str_arr
,
6967 sizeof(bnx2_stats_str_arr
));
6970 memcpy(buf
, bnx2_tests_str_arr
,
6971 sizeof(bnx2_tests_str_arr
));
6977 bnx2_get_ethtool_stats(struct net_device
*dev
,
6978 struct ethtool_stats
*stats
, u64
*buf
)
6980 struct bnx2
*bp
= netdev_priv(dev
);
6982 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6983 u8
*stats_len_arr
= NULL
;
6985 if (hw_stats
== NULL
) {
6986 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
6990 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
6991 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
6992 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
6993 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6994 stats_len_arr
= bnx2_5706_stats_len_arr
;
6996 stats_len_arr
= bnx2_5708_stats_len_arr
;
6998 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
6999 if (stats_len_arr
[i
] == 0) {
7000 /* skip this counter */
7004 if (stats_len_arr
[i
] == 4) {
7005 /* 4-byte counter */
7007 *(hw_stats
+ bnx2_stats_offset_arr
[i
]);
7010 /* 8-byte counter */
7011 buf
[i
] = (((u64
) *(hw_stats
+
7012 bnx2_stats_offset_arr
[i
])) << 32) +
7013 *(hw_stats
+ bnx2_stats_offset_arr
[i
] + 1);
7018 bnx2_phys_id(struct net_device
*dev
, u32 data
)
7020 struct bnx2
*bp
= netdev_priv(dev
);
7027 save
= REG_RD(bp
, BNX2_MISC_CFG
);
7028 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7030 for (i
= 0; i
< (data
* 2); i
++) {
7032 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7035 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7036 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7037 BNX2_EMAC_LED_100MB_OVERRIDE
|
7038 BNX2_EMAC_LED_10MB_OVERRIDE
|
7039 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7040 BNX2_EMAC_LED_TRAFFIC
);
7042 msleep_interruptible(500);
7043 if (signal_pending(current
))
7046 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7047 REG_WR(bp
, BNX2_MISC_CFG
, save
);
7052 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
7054 struct bnx2
*bp
= netdev_priv(dev
);
7056 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7057 return (ethtool_op_set_tx_ipv6_csum(dev
, data
));
7059 return (ethtool_op_set_tx_csum(dev
, data
));
7062 static const struct ethtool_ops bnx2_ethtool_ops
= {
7063 .get_settings
= bnx2_get_settings
,
7064 .set_settings
= bnx2_set_settings
,
7065 .get_drvinfo
= bnx2_get_drvinfo
,
7066 .get_regs_len
= bnx2_get_regs_len
,
7067 .get_regs
= bnx2_get_regs
,
7068 .get_wol
= bnx2_get_wol
,
7069 .set_wol
= bnx2_set_wol
,
7070 .nway_reset
= bnx2_nway_reset
,
7071 .get_link
= ethtool_op_get_link
,
7072 .get_eeprom_len
= bnx2_get_eeprom_len
,
7073 .get_eeprom
= bnx2_get_eeprom
,
7074 .set_eeprom
= bnx2_set_eeprom
,
7075 .get_coalesce
= bnx2_get_coalesce
,
7076 .set_coalesce
= bnx2_set_coalesce
,
7077 .get_ringparam
= bnx2_get_ringparam
,
7078 .set_ringparam
= bnx2_set_ringparam
,
7079 .get_pauseparam
= bnx2_get_pauseparam
,
7080 .set_pauseparam
= bnx2_set_pauseparam
,
7081 .get_rx_csum
= bnx2_get_rx_csum
,
7082 .set_rx_csum
= bnx2_set_rx_csum
,
7083 .set_tx_csum
= bnx2_set_tx_csum
,
7084 .set_sg
= ethtool_op_set_sg
,
7085 .set_tso
= bnx2_set_tso
,
7086 .self_test
= bnx2_self_test
,
7087 .get_strings
= bnx2_get_strings
,
7088 .phys_id
= bnx2_phys_id
,
7089 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7090 .get_sset_count
= bnx2_get_sset_count
,
7093 /* Called with rtnl_lock */
7095 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7097 struct mii_ioctl_data
*data
= if_mii(ifr
);
7098 struct bnx2
*bp
= netdev_priv(dev
);
7103 data
->phy_id
= bp
->phy_addr
;
7109 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7112 if (!netif_running(dev
))
7115 spin_lock_bh(&bp
->phy_lock
);
7116 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7117 spin_unlock_bh(&bp
->phy_lock
);
7119 data
->val_out
= mii_regval
;
7125 if (!capable(CAP_NET_ADMIN
))
7128 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7131 if (!netif_running(dev
))
7134 spin_lock_bh(&bp
->phy_lock
);
7135 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7136 spin_unlock_bh(&bp
->phy_lock
);
7147 /* Called with rtnl_lock */
7149 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7151 struct sockaddr
*addr
= p
;
7152 struct bnx2
*bp
= netdev_priv(dev
);
7154 if (!is_valid_ether_addr(addr
->sa_data
))
7157 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7158 if (netif_running(dev
))
7159 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7164 /* Called with rtnl_lock */
7166 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7168 struct bnx2
*bp
= netdev_priv(dev
);
7170 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7171 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7175 return (bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
));
7178 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7180 poll_bnx2(struct net_device
*dev
)
7182 struct bnx2
*bp
= netdev_priv(dev
);
7184 disable_irq(bp
->pdev
->irq
);
7185 bnx2_interrupt(bp
->pdev
->irq
, dev
);
7186 enable_irq(bp
->pdev
->irq
);
7190 static void __devinit
7191 bnx2_get_5709_media(struct bnx2
*bp
)
7193 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7194 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7197 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7199 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7200 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7204 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7205 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7207 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7209 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7214 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7222 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7228 static void __devinit
7229 bnx2_get_pci_speed(struct bnx2
*bp
)
7233 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7234 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7237 bp
->flags
|= BNX2_FLAG_PCIX
;
7239 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7241 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7243 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7244 bp
->bus_speed_mhz
= 133;
7247 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7248 bp
->bus_speed_mhz
= 100;
7251 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7252 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7253 bp
->bus_speed_mhz
= 66;
7256 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7257 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7258 bp
->bus_speed_mhz
= 50;
7261 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7262 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7263 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7264 bp
->bus_speed_mhz
= 33;
7269 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7270 bp
->bus_speed_mhz
= 66;
7272 bp
->bus_speed_mhz
= 33;
7275 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7276 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7280 static int __devinit
7281 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7284 unsigned long mem_len
;
7287 u64 dma_mask
, persist_dma_mask
;
7289 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7290 bp
= netdev_priv(dev
);
7295 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7296 rc
= pci_enable_device(pdev
);
7298 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting.\n");
7302 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7304 "Cannot find PCI device base address, aborting.\n");
7306 goto err_out_disable
;
7309 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7311 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting.\n");
7312 goto err_out_disable
;
7315 pci_set_master(pdev
);
7316 pci_save_state(pdev
);
7318 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7319 if (bp
->pm_cap
== 0) {
7321 "Cannot find power management capability, aborting.\n");
7323 goto err_out_release
;
7329 spin_lock_init(&bp
->phy_lock
);
7330 spin_lock_init(&bp
->indirect_lock
);
7331 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7333 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7334 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
);
7335 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7336 dev
->irq
= pdev
->irq
;
7338 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7341 dev_err(&pdev
->dev
, "Cannot map register space, aborting.\n");
7343 goto err_out_release
;
7346 /* Configure byte swap and enable write to the reg_window registers.
7347 * Rely on CPU to do target byte swapping on big endian systems
7348 * The chip's target access swapping will not swap all accesses
7350 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
7351 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7352 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7354 bnx2_set_power_state(bp
, PCI_D0
);
7356 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7358 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7359 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7361 "Cannot find PCIE capability, aborting.\n");
7365 bp
->flags
|= BNX2_FLAG_PCIE
;
7366 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7367 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7369 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7370 if (bp
->pcix_cap
== 0) {
7372 "Cannot find PCIX capability, aborting.\n");
7378 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7379 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7380 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
7383 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
7384 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
7385 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
7388 /* 5708 cannot support DMA addresses > 40-bit. */
7389 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
7390 persist_dma_mask
= dma_mask
= DMA_40BIT_MASK
;
7392 persist_dma_mask
= dma_mask
= DMA_64BIT_MASK
;
7394 /* Configure DMA attributes. */
7395 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
7396 dev
->features
|= NETIF_F_HIGHDMA
;
7397 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
7400 "pci_set_consistent_dma_mask failed, aborting.\n");
7403 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) != 0) {
7404 dev_err(&pdev
->dev
, "System does not support DMA, aborting.\n");
7408 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
7409 bnx2_get_pci_speed(bp
);
7411 /* 5706A0 may falsely detect SERR and PERR. */
7412 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7413 reg
= REG_RD(bp
, PCI_COMMAND
);
7414 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
7415 REG_WR(bp
, PCI_COMMAND
, reg
);
7417 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
7418 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
7421 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7425 bnx2_init_nvram(bp
);
7427 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
7429 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
7430 BNX2_SHM_HDR_SIGNATURE_SIG
) {
7431 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
7433 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
7435 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
7437 /* Get the permanent MAC address. First we need to make sure the
7438 * firmware is actually running.
7440 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
7442 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
7443 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
7444 dev_err(&pdev
->dev
, "Firmware not running, aborting.\n");
7449 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
7450 for (i
= 0, j
= 0; i
< 3; i
++) {
7453 num
= (u8
) (reg
>> (24 - (i
* 8)));
7454 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
7455 if (num
>= k
|| !skip0
|| k
== 1) {
7456 bp
->fw_version
[j
++] = (num
/ k
) + '0';
7461 bp
->fw_version
[j
++] = '.';
7463 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
7464 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
7467 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
7468 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
7470 for (i
= 0; i
< 30; i
++) {
7471 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7472 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
7477 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7478 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
7479 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
7480 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
7481 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
7483 bp
->fw_version
[j
++] = ' ';
7484 for (i
= 0; i
< 3; i
++) {
7485 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
7487 memcpy(&bp
->fw_version
[j
], ®
, 4);
7492 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
7493 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
7494 bp
->mac_addr
[1] = (u8
) reg
;
7496 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
7497 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
7498 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
7499 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
7500 bp
->mac_addr
[5] = (u8
) reg
;
7502 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
7503 bnx2_set_rx_ring_size(bp
, 255);
7507 bp
->tx_quick_cons_trip_int
= 20;
7508 bp
->tx_quick_cons_trip
= 20;
7509 bp
->tx_ticks_int
= 80;
7512 bp
->rx_quick_cons_trip_int
= 6;
7513 bp
->rx_quick_cons_trip
= 6;
7514 bp
->rx_ticks_int
= 18;
7517 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7519 bp
->timer_interval
= HZ
;
7520 bp
->current_interval
= HZ
;
7524 /* Disable WOL support if we are running on a SERDES chip. */
7525 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7526 bnx2_get_5709_media(bp
);
7527 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
7528 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7530 bp
->phy_port
= PORT_TP
;
7531 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7532 bp
->phy_port
= PORT_FIBRE
;
7533 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
7534 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
7535 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7538 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
7539 /* Don't do parallel detect on this board because of
7540 * some board problems. The link will not go down
7541 * if we do parallel detect.
7543 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
7544 pdev
->subsystem_device
== 0x310c)
7545 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
7548 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
7549 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
7551 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
7552 CHIP_NUM(bp
) == CHIP_NUM_5708
)
7553 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
7554 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
7555 (CHIP_REV(bp
) == CHIP_REV_Ax
||
7556 CHIP_REV(bp
) == CHIP_REV_Bx
))
7557 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
7559 bnx2_init_fw_cap(bp
);
7561 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
7562 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
7563 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
7564 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7568 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7569 bp
->tx_quick_cons_trip_int
=
7570 bp
->tx_quick_cons_trip
;
7571 bp
->tx_ticks_int
= bp
->tx_ticks
;
7572 bp
->rx_quick_cons_trip_int
=
7573 bp
->rx_quick_cons_trip
;
7574 bp
->rx_ticks_int
= bp
->rx_ticks
;
7575 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
7576 bp
->com_ticks_int
= bp
->com_ticks
;
7577 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
7580 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7582 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7583 * with byte enables disabled on the unused 32-bit word. This is legal
7584 * but causes problems on the AMD 8132 which will eventually stop
7585 * responding after a while.
7587 * AMD believes this incompatibility is unique to the 5706, and
7588 * prefers to locally disable MSI rather than globally disabling it.
7590 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
7591 struct pci_dev
*amd_8132
= NULL
;
7593 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
7594 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
7597 if (amd_8132
->revision
>= 0x10 &&
7598 amd_8132
->revision
<= 0x13) {
7600 pci_dev_put(amd_8132
);
7606 bnx2_set_default_link(bp
);
7607 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
7609 init_timer(&bp
->timer
);
7610 bp
->timer
.expires
= RUN_AT(bp
->timer_interval
);
7611 bp
->timer
.data
= (unsigned long) bp
;
7612 bp
->timer
.function
= bnx2_timer
;
7618 iounmap(bp
->regview
);
7623 pci_release_regions(pdev
);
7626 pci_disable_device(pdev
);
7627 pci_set_drvdata(pdev
, NULL
);
7633 static char * __devinit
7634 bnx2_bus_string(struct bnx2
*bp
, char *str
)
7638 if (bp
->flags
& BNX2_FLAG_PCIE
) {
7639 s
+= sprintf(s
, "PCI Express");
7641 s
+= sprintf(s
, "PCI");
7642 if (bp
->flags
& BNX2_FLAG_PCIX
)
7643 s
+= sprintf(s
, "-X");
7644 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
7645 s
+= sprintf(s
, " 32-bit");
7647 s
+= sprintf(s
, " 64-bit");
7648 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
7653 static void __devinit
7654 bnx2_init_napi(struct bnx2
*bp
)
7658 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
7659 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
7660 int (*poll
)(struct napi_struct
*, int);
7665 poll
= bnx2_poll_msix
;
7667 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
7672 static int __devinit
7673 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
7675 static int version_printed
= 0;
7676 struct net_device
*dev
= NULL
;
7680 DECLARE_MAC_BUF(mac
);
7682 if (version_printed
++ == 0)
7683 printk(KERN_INFO
"%s", version
);
7685 /* dev zeroed in init_etherdev */
7686 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
7691 rc
= bnx2_init_board(pdev
, dev
);
7697 dev
->open
= bnx2_open
;
7698 dev
->hard_start_xmit
= bnx2_start_xmit
;
7699 dev
->stop
= bnx2_close
;
7700 dev
->get_stats
= bnx2_get_stats
;
7701 dev
->set_rx_mode
= bnx2_set_rx_mode
;
7702 dev
->do_ioctl
= bnx2_ioctl
;
7703 dev
->set_mac_address
= bnx2_change_mac_addr
;
7704 dev
->change_mtu
= bnx2_change_mtu
;
7705 dev
->tx_timeout
= bnx2_tx_timeout
;
7706 dev
->watchdog_timeo
= TX_TIMEOUT
;
7708 dev
->vlan_rx_register
= bnx2_vlan_rx_register
;
7710 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
7712 bp
= netdev_priv(dev
);
7715 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7716 dev
->poll_controller
= poll_bnx2
;
7719 pci_set_drvdata(pdev
, dev
);
7721 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
7722 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
7723 bp
->name
= board_info
[ent
->driver_data
].name
;
7725 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
7726 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7727 dev
->features
|= NETIF_F_IPV6_CSUM
;
7730 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7732 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
7733 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7734 dev
->features
|= NETIF_F_TSO6
;
7736 if ((rc
= register_netdev(dev
))) {
7737 dev_err(&pdev
->dev
, "Cannot register net device\n");
7739 iounmap(bp
->regview
);
7740 pci_release_regions(pdev
);
7741 pci_disable_device(pdev
);
7742 pci_set_drvdata(pdev
, NULL
);
7747 printk(KERN_INFO
"%s: %s (%c%d) %s found at mem %lx, "
7748 "IRQ %d, node addr %s\n",
7751 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
7752 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
7753 bnx2_bus_string(bp
, str
),
7755 bp
->pdev
->irq
, print_mac(mac
, dev
->dev_addr
));
7760 static void __devexit
7761 bnx2_remove_one(struct pci_dev
*pdev
)
7763 struct net_device
*dev
= pci_get_drvdata(pdev
);
7764 struct bnx2
*bp
= netdev_priv(dev
);
7766 flush_scheduled_work();
7768 unregister_netdev(dev
);
7771 iounmap(bp
->regview
);
7774 pci_release_regions(pdev
);
7775 pci_disable_device(pdev
);
7776 pci_set_drvdata(pdev
, NULL
);
7780 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
7782 struct net_device
*dev
= pci_get_drvdata(pdev
);
7783 struct bnx2
*bp
= netdev_priv(dev
);
7786 /* PCI register 4 needs to be saved whether netif_running() or not.
7787 * MSI address and data need to be saved if using MSI and
7790 pci_save_state(pdev
);
7791 if (!netif_running(dev
))
7794 flush_scheduled_work();
7795 bnx2_netif_stop(bp
);
7796 netif_device_detach(dev
);
7797 del_timer_sync(&bp
->timer
);
7798 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
7799 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
7801 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
7803 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
7804 bnx2_reset_chip(bp
, reset_code
);
7806 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
7811 bnx2_resume(struct pci_dev
*pdev
)
7813 struct net_device
*dev
= pci_get_drvdata(pdev
);
7814 struct bnx2
*bp
= netdev_priv(dev
);
7816 pci_restore_state(pdev
);
7817 if (!netif_running(dev
))
7820 bnx2_set_power_state(bp
, PCI_D0
);
7821 netif_device_attach(dev
);
7822 bnx2_init_nic(bp
, 1);
7823 bnx2_netif_start(bp
);
7828 * bnx2_io_error_detected - called when PCI error is detected
7829 * @pdev: Pointer to PCI device
7830 * @state: The current pci connection state
7832 * This function is called after a PCI bus error affecting
7833 * this device has been detected.
7835 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
7836 pci_channel_state_t state
)
7838 struct net_device
*dev
= pci_get_drvdata(pdev
);
7839 struct bnx2
*bp
= netdev_priv(dev
);
7842 netif_device_detach(dev
);
7844 if (netif_running(dev
)) {
7845 bnx2_netif_stop(bp
);
7846 del_timer_sync(&bp
->timer
);
7847 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
7850 pci_disable_device(pdev
);
7853 /* Request a slot slot reset. */
7854 return PCI_ERS_RESULT_NEED_RESET
;
7858 * bnx2_io_slot_reset - called after the pci bus has been reset.
7859 * @pdev: Pointer to PCI device
7861 * Restart the card from scratch, as if from a cold-boot.
7863 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
7865 struct net_device
*dev
= pci_get_drvdata(pdev
);
7866 struct bnx2
*bp
= netdev_priv(dev
);
7869 if (pci_enable_device(pdev
)) {
7871 "Cannot re-enable PCI device after reset.\n");
7873 return PCI_ERS_RESULT_DISCONNECT
;
7875 pci_set_master(pdev
);
7876 pci_restore_state(pdev
);
7878 if (netif_running(dev
)) {
7879 bnx2_set_power_state(bp
, PCI_D0
);
7880 bnx2_init_nic(bp
, 1);
7884 return PCI_ERS_RESULT_RECOVERED
;
7888 * bnx2_io_resume - called when traffic can start flowing again.
7889 * @pdev: Pointer to PCI device
7891 * This callback is called when the error recovery driver tells us that
7892 * its OK to resume normal operation.
7894 static void bnx2_io_resume(struct pci_dev
*pdev
)
7896 struct net_device
*dev
= pci_get_drvdata(pdev
);
7897 struct bnx2
*bp
= netdev_priv(dev
);
7900 if (netif_running(dev
))
7901 bnx2_netif_start(bp
);
7903 netif_device_attach(dev
);
7907 static struct pci_error_handlers bnx2_err_handler
= {
7908 .error_detected
= bnx2_io_error_detected
,
7909 .slot_reset
= bnx2_io_slot_reset
,
7910 .resume
= bnx2_io_resume
,
7913 static struct pci_driver bnx2_pci_driver
= {
7914 .name
= DRV_MODULE_NAME
,
7915 .id_table
= bnx2_pci_tbl
,
7916 .probe
= bnx2_init_one
,
7917 .remove
= __devexit_p(bnx2_remove_one
),
7918 .suspend
= bnx2_suspend
,
7919 .resume
= bnx2_resume
,
7920 .err_handler
= &bnx2_err_handler
,
7923 static int __init
bnx2_init(void)
7925 return pci_register_driver(&bnx2_pci_driver
);
7928 static void __exit
bnx2_cleanup(void)
7930 pci_unregister_driver(&bnx2_pci_driver
);
7933 module_init(bnx2_init
);
7934 module_exit(bnx2_cleanup
);