RDS: Fix locking in send on m_rs_lock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / rds / send.c
blob725fb0419797863b5af6f27ff9b19e1b8bf9fc87
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
35 #include <net/sock.h>
36 #include <linux/in.h>
37 #include <linux/list.h>
39 #include "rds.h"
40 #include "rdma.h"
42 /* When transmitting messages in rds_send_xmit, we need to emerge from
43 * time to time and briefly release the CPU. Otherwise the softlock watchdog
44 * will kick our shin.
45 * Also, it seems fairer to not let one busy connection stall all the
46 * others.
48 * send_batch_count is the number of times we'll loop in send_xmit. Setting
49 * it to 0 will restore the old behavior (where we looped until we had
50 * drained the queue).
52 static int send_batch_count = 64;
53 module_param(send_batch_count, int, 0444);
54 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
57 * Reset the send state. Caller must hold c_send_lock when calling here.
59 void rds_send_reset(struct rds_connection *conn)
61 struct rds_message *rm, *tmp;
62 unsigned long flags;
64 if (conn->c_xmit_rm) {
65 /* Tell the user the RDMA op is no longer mapped by the
66 * transport. This isn't entirely true (it's flushed out
67 * independently) but as the connection is down, there's
68 * no ongoing RDMA to/from that memory */
69 rds_message_unmapped(conn->c_xmit_rm);
70 rds_message_put(conn->c_xmit_rm);
71 conn->c_xmit_rm = NULL;
73 conn->c_xmit_sg = 0;
74 conn->c_xmit_hdr_off = 0;
75 conn->c_xmit_data_off = 0;
76 conn->c_xmit_rdma_sent = 0;
78 conn->c_map_queued = 0;
80 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
81 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
83 /* Mark messages as retransmissions, and move them to the send q */
84 spin_lock_irqsave(&conn->c_lock, flags);
85 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
86 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
87 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
89 list_splice_init(&conn->c_retrans, &conn->c_send_queue);
90 spin_unlock_irqrestore(&conn->c_lock, flags);
94 * We're making the concious trade-off here to only send one message
95 * down the connection at a time.
96 * Pro:
97 * - tx queueing is a simple fifo list
98 * - reassembly is optional and easily done by transports per conn
99 * - no per flow rx lookup at all, straight to the socket
100 * - less per-frag memory and wire overhead
101 * Con:
102 * - queued acks can be delayed behind large messages
103 * Depends:
104 * - small message latency is higher behind queued large messages
105 * - large message latency isn't starved by intervening small sends
107 int rds_send_xmit(struct rds_connection *conn)
109 struct rds_message *rm;
110 unsigned long flags;
111 unsigned int tmp;
112 unsigned int send_quota = send_batch_count;
113 struct scatterlist *sg;
114 int ret = 0;
115 int was_empty = 0;
116 LIST_HEAD(to_be_dropped);
119 * sendmsg calls here after having queued its message on the send
120 * queue. We only have one task feeding the connection at a time. If
121 * another thread is already feeding the queue then we back off. This
122 * avoids blocking the caller and trading per-connection data between
123 * caches per message.
125 * The sem holder will issue a retry if they notice that someone queued
126 * a message after they stopped walking the send queue but before they
127 * dropped the sem.
129 if (!mutex_trylock(&conn->c_send_lock)) {
130 rds_stats_inc(s_send_sem_contention);
131 ret = -ENOMEM;
132 goto out;
135 if (conn->c_trans->xmit_prepare)
136 conn->c_trans->xmit_prepare(conn);
139 * spin trying to push headers and data down the connection until
140 * the connection doens't make forward progress.
142 while (--send_quota) {
144 * See if need to send a congestion map update if we're
145 * between sending messages. The send_sem protects our sole
146 * use of c_map_offset and _bytes.
147 * Note this is used only by transports that define a special
148 * xmit_cong_map function. For all others, we create allocate
149 * a cong_map message and treat it just like any other send.
151 if (conn->c_map_bytes) {
152 ret = conn->c_trans->xmit_cong_map(conn, conn->c_lcong,
153 conn->c_map_offset);
154 if (ret <= 0)
155 break;
157 conn->c_map_offset += ret;
158 conn->c_map_bytes -= ret;
159 if (conn->c_map_bytes)
160 continue;
163 /* If we're done sending the current message, clear the
164 * offset and S/G temporaries.
166 rm = conn->c_xmit_rm;
167 if (rm != NULL &&
168 conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
169 conn->c_xmit_sg == rm->m_nents) {
170 conn->c_xmit_rm = NULL;
171 conn->c_xmit_sg = 0;
172 conn->c_xmit_hdr_off = 0;
173 conn->c_xmit_data_off = 0;
174 conn->c_xmit_rdma_sent = 0;
176 /* Release the reference to the previous message. */
177 rds_message_put(rm);
178 rm = NULL;
181 /* If we're asked to send a cong map update, do so.
183 if (rm == NULL && test_and_clear_bit(0, &conn->c_map_queued)) {
184 if (conn->c_trans->xmit_cong_map != NULL) {
185 conn->c_map_offset = 0;
186 conn->c_map_bytes = sizeof(struct rds_header) +
187 RDS_CONG_MAP_BYTES;
188 continue;
191 rm = rds_cong_update_alloc(conn);
192 if (IS_ERR(rm)) {
193 ret = PTR_ERR(rm);
194 break;
197 conn->c_xmit_rm = rm;
201 * Grab the next message from the send queue, if there is one.
203 * c_xmit_rm holds a ref while we're sending this message down
204 * the connction. We can use this ref while holding the
205 * send_sem.. rds_send_reset() is serialized with it.
207 if (rm == NULL) {
208 unsigned int len;
210 spin_lock_irqsave(&conn->c_lock, flags);
212 if (!list_empty(&conn->c_send_queue)) {
213 rm = list_entry(conn->c_send_queue.next,
214 struct rds_message,
215 m_conn_item);
216 rds_message_addref(rm);
219 * Move the message from the send queue to the retransmit
220 * list right away.
222 list_move_tail(&rm->m_conn_item, &conn->c_retrans);
225 spin_unlock_irqrestore(&conn->c_lock, flags);
227 if (rm == NULL) {
228 was_empty = 1;
229 break;
232 /* Unfortunately, the way Infiniband deals with
233 * RDMA to a bad MR key is by moving the entire
234 * queue pair to error state. We cold possibly
235 * recover from that, but right now we drop the
236 * connection.
237 * Therefore, we never retransmit messages with RDMA ops.
239 if (rm->m_rdma_op &&
240 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
241 spin_lock_irqsave(&conn->c_lock, flags);
242 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
243 list_move(&rm->m_conn_item, &to_be_dropped);
244 spin_unlock_irqrestore(&conn->c_lock, flags);
245 rds_message_put(rm);
246 continue;
249 /* Require an ACK every once in a while */
250 len = ntohl(rm->m_inc.i_hdr.h_len);
251 if (conn->c_unacked_packets == 0 ||
252 conn->c_unacked_bytes < len) {
253 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
255 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
256 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
257 rds_stats_inc(s_send_ack_required);
258 } else {
259 conn->c_unacked_bytes -= len;
260 conn->c_unacked_packets--;
263 conn->c_xmit_rm = rm;
267 * Try and send an rdma message. Let's see if we can
268 * keep this simple and require that the transport either
269 * send the whole rdma or none of it.
271 if (rm->m_rdma_op && !conn->c_xmit_rdma_sent) {
272 ret = conn->c_trans->xmit_rdma(conn, rm->m_rdma_op);
273 if (ret)
274 break;
275 conn->c_xmit_rdma_sent = 1;
276 /* The transport owns the mapped memory for now.
277 * You can't unmap it while it's on the send queue */
278 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
281 if (conn->c_xmit_hdr_off < sizeof(struct rds_header) ||
282 conn->c_xmit_sg < rm->m_nents) {
283 ret = conn->c_trans->xmit(conn, rm,
284 conn->c_xmit_hdr_off,
285 conn->c_xmit_sg,
286 conn->c_xmit_data_off);
287 if (ret <= 0)
288 break;
290 if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
291 tmp = min_t(int, ret,
292 sizeof(struct rds_header) -
293 conn->c_xmit_hdr_off);
294 conn->c_xmit_hdr_off += tmp;
295 ret -= tmp;
298 sg = &rm->m_sg[conn->c_xmit_sg];
299 while (ret) {
300 tmp = min_t(int, ret, sg->length -
301 conn->c_xmit_data_off);
302 conn->c_xmit_data_off += tmp;
303 ret -= tmp;
304 if (conn->c_xmit_data_off == sg->length) {
305 conn->c_xmit_data_off = 0;
306 sg++;
307 conn->c_xmit_sg++;
308 BUG_ON(ret != 0 &&
309 conn->c_xmit_sg == rm->m_nents);
315 /* Nuke any messages we decided not to retransmit. */
316 if (!list_empty(&to_be_dropped))
317 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
319 if (conn->c_trans->xmit_complete)
320 conn->c_trans->xmit_complete(conn);
323 * We might be racing with another sender who queued a message but
324 * backed off on noticing that we held the c_send_lock. If we check
325 * for queued messages after dropping the sem then either we'll
326 * see the queued message or the queuer will get the sem. If we
327 * notice the queued message then we trigger an immediate retry.
329 * We need to be careful only to do this when we stopped processing
330 * the send queue because it was empty. It's the only way we
331 * stop processing the loop when the transport hasn't taken
332 * responsibility for forward progress.
334 mutex_unlock(&conn->c_send_lock);
336 if (conn->c_map_bytes || (send_quota == 0 && !was_empty)) {
337 /* We exhausted the send quota, but there's work left to
338 * do. Return and (re-)schedule the send worker.
340 ret = -EAGAIN;
343 if (ret == 0 && was_empty) {
344 /* A simple bit test would be way faster than taking the
345 * spin lock */
346 spin_lock_irqsave(&conn->c_lock, flags);
347 if (!list_empty(&conn->c_send_queue)) {
348 rds_stats_inc(s_send_sem_queue_raced);
349 ret = -EAGAIN;
351 spin_unlock_irqrestore(&conn->c_lock, flags);
353 out:
354 return ret;
357 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
359 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
361 assert_spin_locked(&rs->rs_lock);
363 BUG_ON(rs->rs_snd_bytes < len);
364 rs->rs_snd_bytes -= len;
366 if (rs->rs_snd_bytes == 0)
367 rds_stats_inc(s_send_queue_empty);
370 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
371 is_acked_func is_acked)
373 if (is_acked)
374 return is_acked(rm, ack);
375 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
379 * Returns true if there are no messages on the send and retransmit queues
380 * which have a sequence number greater than or equal to the given sequence
381 * number.
383 int rds_send_acked_before(struct rds_connection *conn, u64 seq)
385 struct rds_message *rm, *tmp;
386 int ret = 1;
388 spin_lock(&conn->c_lock);
390 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
391 if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
392 ret = 0;
393 break;
396 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
397 if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
398 ret = 0;
399 break;
402 spin_unlock(&conn->c_lock);
404 return ret;
408 * This is pretty similar to what happens below in the ACK
409 * handling code - except that we call here as soon as we get
410 * the IB send completion on the RDMA op and the accompanying
411 * message.
413 void rds_rdma_send_complete(struct rds_message *rm, int status)
415 struct rds_sock *rs = NULL;
416 struct rds_rdma_op *ro;
417 struct rds_notifier *notifier;
418 unsigned long flags;
420 spin_lock_irqsave(&rm->m_rs_lock, flags);
422 ro = rm->m_rdma_op;
423 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
424 ro && ro->r_notify && ro->r_notifier) {
425 notifier = ro->r_notifier;
426 rs = rm->m_rs;
427 sock_hold(rds_rs_to_sk(rs));
429 notifier->n_status = status;
430 spin_lock(&rs->rs_lock);
431 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
432 spin_unlock(&rs->rs_lock);
434 ro->r_notifier = NULL;
437 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
439 if (rs) {
440 rds_wake_sk_sleep(rs);
441 sock_put(rds_rs_to_sk(rs));
444 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
447 * This is the same as rds_rdma_send_complete except we
448 * don't do any locking - we have all the ingredients (message,
449 * socket, socket lock) and can just move the notifier.
451 static inline void
452 __rds_rdma_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
454 struct rds_rdma_op *ro;
456 ro = rm->m_rdma_op;
457 if (ro && ro->r_notify && ro->r_notifier) {
458 ro->r_notifier->n_status = status;
459 list_add_tail(&ro->r_notifier->n_list, &rs->rs_notify_queue);
460 ro->r_notifier = NULL;
463 /* No need to wake the app - caller does this */
467 * This is called from the IB send completion when we detect
468 * a RDMA operation that failed with remote access error.
469 * So speed is not an issue here.
471 struct rds_message *rds_send_get_message(struct rds_connection *conn,
472 struct rds_rdma_op *op)
474 struct rds_message *rm, *tmp, *found = NULL;
475 unsigned long flags;
477 spin_lock_irqsave(&conn->c_lock, flags);
479 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
480 if (rm->m_rdma_op == op) {
481 atomic_inc(&rm->m_refcount);
482 found = rm;
483 goto out;
487 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
488 if (rm->m_rdma_op == op) {
489 atomic_inc(&rm->m_refcount);
490 found = rm;
491 break;
495 out:
496 spin_unlock_irqrestore(&conn->c_lock, flags);
498 return found;
500 EXPORT_SYMBOL_GPL(rds_send_get_message);
503 * This removes messages from the socket's list if they're on it. The list
504 * argument must be private to the caller, we must be able to modify it
505 * without locks. The messages must have a reference held for their
506 * position on the list. This function will drop that reference after
507 * removing the messages from the 'messages' list regardless of if it found
508 * the messages on the socket list or not.
510 void rds_send_remove_from_sock(struct list_head *messages, int status)
512 unsigned long flags;
513 struct rds_sock *rs = NULL;
514 struct rds_message *rm;
516 while (!list_empty(messages)) {
517 int was_on_sock = 0;
519 rm = list_entry(messages->next, struct rds_message,
520 m_conn_item);
521 list_del_init(&rm->m_conn_item);
524 * If we see this flag cleared then we're *sure* that someone
525 * else beat us to removing it from the sock. If we race
526 * with their flag update we'll get the lock and then really
527 * see that the flag has been cleared.
529 * The message spinlock makes sure nobody clears rm->m_rs
530 * while we're messing with it. It does not prevent the
531 * message from being removed from the socket, though.
533 spin_lock_irqsave(&rm->m_rs_lock, flags);
534 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
535 goto unlock_and_drop;
537 if (rs != rm->m_rs) {
538 if (rs) {
539 rds_wake_sk_sleep(rs);
540 sock_put(rds_rs_to_sk(rs));
542 rs = rm->m_rs;
543 sock_hold(rds_rs_to_sk(rs));
545 spin_lock(&rs->rs_lock);
547 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
548 struct rds_rdma_op *ro = rm->m_rdma_op;
549 struct rds_notifier *notifier;
551 list_del_init(&rm->m_sock_item);
552 rds_send_sndbuf_remove(rs, rm);
554 if (ro && ro->r_notifier && (status || ro->r_notify)) {
555 notifier = ro->r_notifier;
556 list_add_tail(&notifier->n_list,
557 &rs->rs_notify_queue);
558 if (!notifier->n_status)
559 notifier->n_status = status;
560 rm->m_rdma_op->r_notifier = NULL;
562 was_on_sock = 1;
563 rm->m_rs = NULL;
565 spin_unlock(&rs->rs_lock);
567 unlock_and_drop:
568 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
569 rds_message_put(rm);
570 if (was_on_sock)
571 rds_message_put(rm);
574 if (rs) {
575 rds_wake_sk_sleep(rs);
576 sock_put(rds_rs_to_sk(rs));
581 * Transports call here when they've determined that the receiver queued
582 * messages up to, and including, the given sequence number. Messages are
583 * moved to the retrans queue when rds_send_xmit picks them off the send
584 * queue. This means that in the TCP case, the message may not have been
585 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
586 * checks the RDS_MSG_HAS_ACK_SEQ bit.
588 * XXX It's not clear to me how this is safely serialized with socket
589 * destruction. Maybe it should bail if it sees SOCK_DEAD.
591 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
592 is_acked_func is_acked)
594 struct rds_message *rm, *tmp;
595 unsigned long flags;
596 LIST_HEAD(list);
598 spin_lock_irqsave(&conn->c_lock, flags);
600 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
601 if (!rds_send_is_acked(rm, ack, is_acked))
602 break;
604 list_move(&rm->m_conn_item, &list);
605 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
608 /* order flag updates with spin locks */
609 if (!list_empty(&list))
610 smp_mb__after_clear_bit();
612 spin_unlock_irqrestore(&conn->c_lock, flags);
614 /* now remove the messages from the sock list as needed */
615 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
617 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
619 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
621 struct rds_message *rm, *tmp;
622 struct rds_connection *conn;
623 unsigned long flags;
624 LIST_HEAD(list);
626 /* get all the messages we're dropping under the rs lock */
627 spin_lock_irqsave(&rs->rs_lock, flags);
629 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
630 if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
631 dest->sin_port != rm->m_inc.i_hdr.h_dport))
632 continue;
634 list_move(&rm->m_sock_item, &list);
635 rds_send_sndbuf_remove(rs, rm);
636 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
639 /* order flag updates with the rs lock */
640 smp_mb__after_clear_bit();
642 spin_unlock_irqrestore(&rs->rs_lock, flags);
644 if (list_empty(&list))
645 return;
647 /* Remove the messages from the conn */
648 list_for_each_entry(rm, &list, m_sock_item) {
650 conn = rm->m_inc.i_conn;
652 spin_lock_irqsave(&conn->c_lock, flags);
654 * Maybe someone else beat us to removing rm from the conn.
655 * If we race with their flag update we'll get the lock and
656 * then really see that the flag has been cleared.
658 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
659 spin_unlock_irqrestore(&conn->c_lock, flags);
660 continue;
662 list_del_init(&rm->m_conn_item);
663 spin_unlock_irqrestore(&conn->c_lock, flags);
666 * Couldn't grab m_rs_lock in top loop (lock ordering),
667 * but we can now.
669 spin_lock_irqsave(&rm->m_rs_lock, flags);
671 spin_lock(&rs->rs_lock);
672 __rds_rdma_send_complete(rs, rm, RDS_RDMA_CANCELED);
673 spin_unlock(&rs->rs_lock);
675 rm->m_rs = NULL;
676 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
678 rds_message_put(rm);
681 rds_wake_sk_sleep(rs);
683 while (!list_empty(&list)) {
684 rm = list_entry(list.next, struct rds_message, m_sock_item);
685 list_del_init(&rm->m_sock_item);
687 rds_message_wait(rm);
688 rds_message_put(rm);
693 * we only want this to fire once so we use the callers 'queued'. It's
694 * possible that another thread can race with us and remove the
695 * message from the flow with RDS_CANCEL_SENT_TO.
697 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
698 struct rds_message *rm, __be16 sport,
699 __be16 dport, int *queued)
701 unsigned long flags;
702 u32 len;
704 if (*queued)
705 goto out;
707 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
709 /* this is the only place which holds both the socket's rs_lock
710 * and the connection's c_lock */
711 spin_lock_irqsave(&rs->rs_lock, flags);
714 * If there is a little space in sndbuf, we don't queue anything,
715 * and userspace gets -EAGAIN. But poll() indicates there's send
716 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
717 * freed up by incoming acks. So we check the *old* value of
718 * rs_snd_bytes here to allow the last msg to exceed the buffer,
719 * and poll() now knows no more data can be sent.
721 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
722 rs->rs_snd_bytes += len;
724 /* let recv side know we are close to send space exhaustion.
725 * This is probably not the optimal way to do it, as this
726 * means we set the flag on *all* messages as soon as our
727 * throughput hits a certain threshold.
729 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
730 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
732 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
733 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
734 rds_message_addref(rm);
735 rm->m_rs = rs;
737 /* The code ordering is a little weird, but we're
738 trying to minimize the time we hold c_lock */
739 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
740 rm->m_inc.i_conn = conn;
741 rds_message_addref(rm);
743 spin_lock(&conn->c_lock);
744 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
745 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
746 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
747 spin_unlock(&conn->c_lock);
749 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
750 rm, len, rs, rs->rs_snd_bytes,
751 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
753 *queued = 1;
756 spin_unlock_irqrestore(&rs->rs_lock, flags);
757 out:
758 return *queued;
761 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
762 struct msghdr *msg, int *allocated_mr)
764 struct cmsghdr *cmsg;
765 int ret = 0;
767 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
768 if (!CMSG_OK(msg, cmsg))
769 return -EINVAL;
771 if (cmsg->cmsg_level != SOL_RDS)
772 continue;
774 /* As a side effect, RDMA_DEST and RDMA_MAP will set
775 * rm->m_rdma_cookie and rm->m_rdma_mr.
777 switch (cmsg->cmsg_type) {
778 case RDS_CMSG_RDMA_ARGS:
779 ret = rds_cmsg_rdma_args(rs, rm, cmsg);
780 break;
782 case RDS_CMSG_RDMA_DEST:
783 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
784 break;
786 case RDS_CMSG_RDMA_MAP:
787 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
788 if (!ret)
789 *allocated_mr = 1;
790 break;
792 default:
793 return -EINVAL;
796 if (ret)
797 break;
800 return ret;
803 int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
804 size_t payload_len)
806 struct sock *sk = sock->sk;
807 struct rds_sock *rs = rds_sk_to_rs(sk);
808 struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
809 __be32 daddr;
810 __be16 dport;
811 struct rds_message *rm = NULL;
812 struct rds_connection *conn;
813 int ret = 0;
814 int queued = 0, allocated_mr = 0;
815 int nonblock = msg->msg_flags & MSG_DONTWAIT;
816 long timeo = sock_sndtimeo(sk, nonblock);
818 /* Mirror Linux UDP mirror of BSD error message compatibility */
819 /* XXX: Perhaps MSG_MORE someday */
820 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
821 printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags);
822 ret = -EOPNOTSUPP;
823 goto out;
826 if (msg->msg_namelen) {
827 /* XXX fail non-unicast destination IPs? */
828 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
829 ret = -EINVAL;
830 goto out;
832 daddr = usin->sin_addr.s_addr;
833 dport = usin->sin_port;
834 } else {
835 /* We only care about consistency with ->connect() */
836 lock_sock(sk);
837 daddr = rs->rs_conn_addr;
838 dport = rs->rs_conn_port;
839 release_sock(sk);
842 /* racing with another thread binding seems ok here */
843 if (daddr == 0 || rs->rs_bound_addr == 0) {
844 ret = -ENOTCONN; /* XXX not a great errno */
845 goto out;
848 rm = rds_message_copy_from_user(msg->msg_iov, payload_len);
849 if (IS_ERR(rm)) {
850 ret = PTR_ERR(rm);
851 rm = NULL;
852 goto out;
855 rm->m_daddr = daddr;
857 /* rds_conn_create has a spinlock that runs with IRQ off.
858 * Caching the conn in the socket helps a lot. */
859 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
860 conn = rs->rs_conn;
861 else {
862 conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
863 rs->rs_transport,
864 sock->sk->sk_allocation);
865 if (IS_ERR(conn)) {
866 ret = PTR_ERR(conn);
867 goto out;
869 rs->rs_conn = conn;
872 /* Parse any control messages the user may have included. */
873 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
874 if (ret)
875 goto out;
877 if ((rm->m_rdma_cookie || rm->m_rdma_op) &&
878 conn->c_trans->xmit_rdma == NULL) {
879 if (printk_ratelimit())
880 printk(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
881 rm->m_rdma_op, conn->c_trans->xmit_rdma);
882 ret = -EOPNOTSUPP;
883 goto out;
886 /* If the connection is down, trigger a connect. We may
887 * have scheduled a delayed reconnect however - in this case
888 * we should not interfere.
890 if (rds_conn_state(conn) == RDS_CONN_DOWN &&
891 !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags))
892 queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
894 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
895 if (ret) {
896 rs->rs_seen_congestion = 1;
897 goto out;
900 while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
901 dport, &queued)) {
902 rds_stats_inc(s_send_queue_full);
903 /* XXX make sure this is reasonable */
904 if (payload_len > rds_sk_sndbuf(rs)) {
905 ret = -EMSGSIZE;
906 goto out;
908 if (nonblock) {
909 ret = -EAGAIN;
910 goto out;
913 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
914 rds_send_queue_rm(rs, conn, rm,
915 rs->rs_bound_port,
916 dport,
917 &queued),
918 timeo);
919 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
920 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
921 continue;
923 ret = timeo;
924 if (ret == 0)
925 ret = -ETIMEDOUT;
926 goto out;
930 * By now we've committed to the send. We reuse rds_send_worker()
931 * to retry sends in the rds thread if the transport asks us to.
933 rds_stats_inc(s_send_queued);
935 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
936 rds_send_worker(&conn->c_send_w.work);
938 rds_message_put(rm);
939 return payload_len;
941 out:
942 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
943 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
944 * or in any other way, we need to destroy the MR again */
945 if (allocated_mr)
946 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
948 if (rm)
949 rds_message_put(rm);
950 return ret;
954 * Reply to a ping packet.
957 rds_send_pong(struct rds_connection *conn, __be16 dport)
959 struct rds_message *rm;
960 unsigned long flags;
961 int ret = 0;
963 rm = rds_message_alloc(0, GFP_ATOMIC);
964 if (rm == NULL) {
965 ret = -ENOMEM;
966 goto out;
969 rm->m_daddr = conn->c_faddr;
971 /* If the connection is down, trigger a connect. We may
972 * have scheduled a delayed reconnect however - in this case
973 * we should not interfere.
975 if (rds_conn_state(conn) == RDS_CONN_DOWN &&
976 !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags))
977 queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
979 ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
980 if (ret)
981 goto out;
983 spin_lock_irqsave(&conn->c_lock, flags);
984 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
985 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
986 rds_message_addref(rm);
987 rm->m_inc.i_conn = conn;
989 rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
990 conn->c_next_tx_seq);
991 conn->c_next_tx_seq++;
992 spin_unlock_irqrestore(&conn->c_lock, flags);
994 rds_stats_inc(s_send_queued);
995 rds_stats_inc(s_send_pong);
997 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
998 rds_message_put(rm);
999 return 0;
1001 out:
1002 if (rm)
1003 rds_message_put(rm);
1004 return ret;