x86: Fix size for ex trampoline with 32bit
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / e820.c
bloba1a7876cadcbfa2b0fdbfa9d9416ee62c14cd85c
1 /*
2 * Handle the memory map.
3 * The functions here do the job until bootmem takes over.
5 * Getting sanitize_e820_map() in sync with i386 version by applying change:
6 * - Provisions for empty E820 memory regions (reported by certain BIOSes).
7 * Alex Achenbach <xela@slit.de>, December 2002.
8 * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/ioport.h>
16 #include <linux/string.h>
17 #include <linux/kexec.h>
18 #include <linux/module.h>
19 #include <linux/mm.h>
20 #include <linux/pfn.h>
21 #include <linux/suspend.h>
22 #include <linux/firmware-map.h>
24 #include <asm/pgtable.h>
25 #include <asm/page.h>
26 #include <asm/e820.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/trampoline.h>
32 * The e820 map is the map that gets modified e.g. with command line parameters
33 * and that is also registered with modifications in the kernel resource tree
34 * with the iomem_resource as parent.
36 * The e820_saved is directly saved after the BIOS-provided memory map is
37 * copied. It doesn't get modified afterwards. It's registered for the
38 * /sys/firmware/memmap interface.
40 * That memory map is not modified and is used as base for kexec. The kexec'd
41 * kernel should get the same memory map as the firmware provides. Then the
42 * user can e.g. boot the original kernel with mem=1G while still booting the
43 * next kernel with full memory.
45 struct e820map e820;
46 struct e820map e820_saved;
48 /* For PCI or other memory-mapped resources */
49 unsigned long pci_mem_start = 0xaeedbabe;
50 #ifdef CONFIG_PCI
51 EXPORT_SYMBOL(pci_mem_start);
52 #endif
55 * This function checks if any part of the range <start,end> is mapped
56 * with type.
58 int
59 e820_any_mapped(u64 start, u64 end, unsigned type)
61 int i;
63 for (i = 0; i < e820.nr_map; i++) {
64 struct e820entry *ei = &e820.map[i];
66 if (type && ei->type != type)
67 continue;
68 if (ei->addr >= end || ei->addr + ei->size <= start)
69 continue;
70 return 1;
72 return 0;
74 EXPORT_SYMBOL_GPL(e820_any_mapped);
77 * This function checks if the entire range <start,end> is mapped with type.
79 * Note: this function only works correct if the e820 table is sorted and
80 * not-overlapping, which is the case
82 int __init e820_all_mapped(u64 start, u64 end, unsigned type)
84 int i;
86 for (i = 0; i < e820.nr_map; i++) {
87 struct e820entry *ei = &e820.map[i];
89 if (type && ei->type != type)
90 continue;
91 /* is the region (part) in overlap with the current region ?*/
92 if (ei->addr >= end || ei->addr + ei->size <= start)
93 continue;
95 /* if the region is at the beginning of <start,end> we move
96 * start to the end of the region since it's ok until there
98 if (ei->addr <= start)
99 start = ei->addr + ei->size;
101 * if start is now at or beyond end, we're done, full
102 * coverage
104 if (start >= end)
105 return 1;
107 return 0;
111 * Add a memory region to the kernel e820 map.
113 static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
114 int type)
116 int x = e820x->nr_map;
118 if (x >= ARRAY_SIZE(e820x->map)) {
119 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
120 return;
123 e820x->map[x].addr = start;
124 e820x->map[x].size = size;
125 e820x->map[x].type = type;
126 e820x->nr_map++;
129 void __init e820_add_region(u64 start, u64 size, int type)
131 __e820_add_region(&e820, start, size, type);
134 static void __init e820_print_type(u32 type)
136 switch (type) {
137 case E820_RAM:
138 case E820_RESERVED_KERN:
139 printk(KERN_CONT "(usable)");
140 break;
141 case E820_RESERVED:
142 printk(KERN_CONT "(reserved)");
143 break;
144 case E820_ACPI:
145 printk(KERN_CONT "(ACPI data)");
146 break;
147 case E820_NVS:
148 printk(KERN_CONT "(ACPI NVS)");
149 break;
150 case E820_UNUSABLE:
151 printk(KERN_CONT "(unusable)");
152 break;
153 default:
154 printk(KERN_CONT "type %u", type);
155 break;
159 void __init e820_print_map(char *who)
161 int i;
163 for (i = 0; i < e820.nr_map; i++) {
164 printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
165 (unsigned long long) e820.map[i].addr,
166 (unsigned long long)
167 (e820.map[i].addr + e820.map[i].size));
168 e820_print_type(e820.map[i].type);
169 printk(KERN_CONT "\n");
174 * Sanitize the BIOS e820 map.
176 * Some e820 responses include overlapping entries. The following
177 * replaces the original e820 map with a new one, removing overlaps,
178 * and resolving conflicting memory types in favor of highest
179 * numbered type.
181 * The input parameter biosmap points to an array of 'struct
182 * e820entry' which on entry has elements in the range [0, *pnr_map)
183 * valid, and which has space for up to max_nr_map entries.
184 * On return, the resulting sanitized e820 map entries will be in
185 * overwritten in the same location, starting at biosmap.
187 * The integer pointed to by pnr_map must be valid on entry (the
188 * current number of valid entries located at biosmap) and will
189 * be updated on return, with the new number of valid entries
190 * (something no more than max_nr_map.)
192 * The return value from sanitize_e820_map() is zero if it
193 * successfully 'sanitized' the map entries passed in, and is -1
194 * if it did nothing, which can happen if either of (1) it was
195 * only passed one map entry, or (2) any of the input map entries
196 * were invalid (start + size < start, meaning that the size was
197 * so big the described memory range wrapped around through zero.)
199 * Visually we're performing the following
200 * (1,2,3,4 = memory types)...
202 * Sample memory map (w/overlaps):
203 * ____22__________________
204 * ______________________4_
205 * ____1111________________
206 * _44_____________________
207 * 11111111________________
208 * ____________________33__
209 * ___________44___________
210 * __________33333_________
211 * ______________22________
212 * ___________________2222_
213 * _________111111111______
214 * _____________________11_
215 * _________________4______
217 * Sanitized equivalent (no overlap):
218 * 1_______________________
219 * _44_____________________
220 * ___1____________________
221 * ____22__________________
222 * ______11________________
223 * _________1______________
224 * __________3_____________
225 * ___________44___________
226 * _____________33_________
227 * _______________2________
228 * ________________1_______
229 * _________________4______
230 * ___________________2____
231 * ____________________33__
232 * ______________________4_
235 int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
236 u32 *pnr_map)
238 struct change_member {
239 struct e820entry *pbios; /* pointer to original bios entry */
240 unsigned long long addr; /* address for this change point */
242 static struct change_member change_point_list[2*E820_X_MAX] __initdata;
243 static struct change_member *change_point[2*E820_X_MAX] __initdata;
244 static struct e820entry *overlap_list[E820_X_MAX] __initdata;
245 static struct e820entry new_bios[E820_X_MAX] __initdata;
246 struct change_member *change_tmp;
247 unsigned long current_type, last_type;
248 unsigned long long last_addr;
249 int chgidx, still_changing;
250 int overlap_entries;
251 int new_bios_entry;
252 int old_nr, new_nr, chg_nr;
253 int i;
255 /* if there's only one memory region, don't bother */
256 if (*pnr_map < 2)
257 return -1;
259 old_nr = *pnr_map;
260 BUG_ON(old_nr > max_nr_map);
262 /* bail out if we find any unreasonable addresses in bios map */
263 for (i = 0; i < old_nr; i++)
264 if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
265 return -1;
267 /* create pointers for initial change-point information (for sorting) */
268 for (i = 0; i < 2 * old_nr; i++)
269 change_point[i] = &change_point_list[i];
271 /* record all known change-points (starting and ending addresses),
272 omitting those that are for empty memory regions */
273 chgidx = 0;
274 for (i = 0; i < old_nr; i++) {
275 if (biosmap[i].size != 0) {
276 change_point[chgidx]->addr = biosmap[i].addr;
277 change_point[chgidx++]->pbios = &biosmap[i];
278 change_point[chgidx]->addr = biosmap[i].addr +
279 biosmap[i].size;
280 change_point[chgidx++]->pbios = &biosmap[i];
283 chg_nr = chgidx;
285 /* sort change-point list by memory addresses (low -> high) */
286 still_changing = 1;
287 while (still_changing) {
288 still_changing = 0;
289 for (i = 1; i < chg_nr; i++) {
290 unsigned long long curaddr, lastaddr;
291 unsigned long long curpbaddr, lastpbaddr;
293 curaddr = change_point[i]->addr;
294 lastaddr = change_point[i - 1]->addr;
295 curpbaddr = change_point[i]->pbios->addr;
296 lastpbaddr = change_point[i - 1]->pbios->addr;
299 * swap entries, when:
301 * curaddr > lastaddr or
302 * curaddr == lastaddr and curaddr == curpbaddr and
303 * lastaddr != lastpbaddr
305 if (curaddr < lastaddr ||
306 (curaddr == lastaddr && curaddr == curpbaddr &&
307 lastaddr != lastpbaddr)) {
308 change_tmp = change_point[i];
309 change_point[i] = change_point[i-1];
310 change_point[i-1] = change_tmp;
311 still_changing = 1;
316 /* create a new bios memory map, removing overlaps */
317 overlap_entries = 0; /* number of entries in the overlap table */
318 new_bios_entry = 0; /* index for creating new bios map entries */
319 last_type = 0; /* start with undefined memory type */
320 last_addr = 0; /* start with 0 as last starting address */
322 /* loop through change-points, determining affect on the new bios map */
323 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
324 /* keep track of all overlapping bios entries */
325 if (change_point[chgidx]->addr ==
326 change_point[chgidx]->pbios->addr) {
328 * add map entry to overlap list (> 1 entry
329 * implies an overlap)
331 overlap_list[overlap_entries++] =
332 change_point[chgidx]->pbios;
333 } else {
335 * remove entry from list (order independent,
336 * so swap with last)
338 for (i = 0; i < overlap_entries; i++) {
339 if (overlap_list[i] ==
340 change_point[chgidx]->pbios)
341 overlap_list[i] =
342 overlap_list[overlap_entries-1];
344 overlap_entries--;
347 * if there are overlapping entries, decide which
348 * "type" to use (larger value takes precedence --
349 * 1=usable, 2,3,4,4+=unusable)
351 current_type = 0;
352 for (i = 0; i < overlap_entries; i++)
353 if (overlap_list[i]->type > current_type)
354 current_type = overlap_list[i]->type;
356 * continue building up new bios map based on this
357 * information
359 if (current_type != last_type) {
360 if (last_type != 0) {
361 new_bios[new_bios_entry].size =
362 change_point[chgidx]->addr - last_addr;
364 * move forward only if the new size
365 * was non-zero
367 if (new_bios[new_bios_entry].size != 0)
369 * no more space left for new
370 * bios entries ?
372 if (++new_bios_entry >= max_nr_map)
373 break;
375 if (current_type != 0) {
376 new_bios[new_bios_entry].addr =
377 change_point[chgidx]->addr;
378 new_bios[new_bios_entry].type = current_type;
379 last_addr = change_point[chgidx]->addr;
381 last_type = current_type;
384 /* retain count for new bios entries */
385 new_nr = new_bios_entry;
387 /* copy new bios mapping into original location */
388 memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
389 *pnr_map = new_nr;
391 return 0;
394 static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
396 while (nr_map) {
397 u64 start = biosmap->addr;
398 u64 size = biosmap->size;
399 u64 end = start + size;
400 u32 type = biosmap->type;
402 /* Overflow in 64 bits? Ignore the memory map. */
403 if (start > end)
404 return -1;
406 e820_add_region(start, size, type);
408 biosmap++;
409 nr_map--;
411 return 0;
415 * Copy the BIOS e820 map into a safe place.
417 * Sanity-check it while we're at it..
419 * If we're lucky and live on a modern system, the setup code
420 * will have given us a memory map that we can use to properly
421 * set up memory. If we aren't, we'll fake a memory map.
423 static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
425 /* Only one memory region (or negative)? Ignore it */
426 if (nr_map < 2)
427 return -1;
429 return __append_e820_map(biosmap, nr_map);
432 static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
433 u64 size, unsigned old_type,
434 unsigned new_type)
436 u64 end;
437 unsigned int i;
438 u64 real_updated_size = 0;
440 BUG_ON(old_type == new_type);
442 if (size > (ULLONG_MAX - start))
443 size = ULLONG_MAX - start;
445 end = start + size;
446 printk(KERN_DEBUG "e820 update range: %016Lx - %016Lx ",
447 (unsigned long long) start,
448 (unsigned long long) end);
449 e820_print_type(old_type);
450 printk(KERN_CONT " ==> ");
451 e820_print_type(new_type);
452 printk(KERN_CONT "\n");
454 for (i = 0; i < e820x->nr_map; i++) {
455 struct e820entry *ei = &e820x->map[i];
456 u64 final_start, final_end;
457 u64 ei_end;
459 if (ei->type != old_type)
460 continue;
462 ei_end = ei->addr + ei->size;
463 /* totally covered by new range? */
464 if (ei->addr >= start && ei_end <= end) {
465 ei->type = new_type;
466 real_updated_size += ei->size;
467 continue;
470 /* new range is totally covered? */
471 if (ei->addr < start && ei_end > end) {
472 __e820_add_region(e820x, start, size, new_type);
473 __e820_add_region(e820x, end, ei_end - end, ei->type);
474 ei->size = start - ei->addr;
475 real_updated_size += size;
476 continue;
479 /* partially covered */
480 final_start = max(start, ei->addr);
481 final_end = min(end, ei_end);
482 if (final_start >= final_end)
483 continue;
485 __e820_add_region(e820x, final_start, final_end - final_start,
486 new_type);
488 real_updated_size += final_end - final_start;
491 * left range could be head or tail, so need to update
492 * size at first.
494 ei->size -= final_end - final_start;
495 if (ei->addr < final_start)
496 continue;
497 ei->addr = final_end;
499 return real_updated_size;
502 u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
503 unsigned new_type)
505 return __e820_update_range(&e820, start, size, old_type, new_type);
508 static u64 __init e820_update_range_saved(u64 start, u64 size,
509 unsigned old_type, unsigned new_type)
511 return __e820_update_range(&e820_saved, start, size, old_type,
512 new_type);
515 /* make e820 not cover the range */
516 u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
517 int checktype)
519 int i;
520 u64 real_removed_size = 0;
522 if (size > (ULLONG_MAX - start))
523 size = ULLONG_MAX - start;
525 for (i = 0; i < e820.nr_map; i++) {
526 struct e820entry *ei = &e820.map[i];
527 u64 final_start, final_end;
529 if (checktype && ei->type != old_type)
530 continue;
531 /* totally covered? */
532 if (ei->addr >= start &&
533 (ei->addr + ei->size) <= (start + size)) {
534 real_removed_size += ei->size;
535 memset(ei, 0, sizeof(struct e820entry));
536 continue;
538 /* partially covered */
539 final_start = max(start, ei->addr);
540 final_end = min(start + size, ei->addr + ei->size);
541 if (final_start >= final_end)
542 continue;
543 real_removed_size += final_end - final_start;
545 ei->size -= final_end - final_start;
546 if (ei->addr < final_start)
547 continue;
548 ei->addr = final_end;
550 return real_removed_size;
553 void __init update_e820(void)
555 u32 nr_map;
557 nr_map = e820.nr_map;
558 if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
559 return;
560 e820.nr_map = nr_map;
561 printk(KERN_INFO "modified physical RAM map:\n");
562 e820_print_map("modified");
564 static void __init update_e820_saved(void)
566 u32 nr_map;
568 nr_map = e820_saved.nr_map;
569 if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
570 return;
571 e820_saved.nr_map = nr_map;
573 #define MAX_GAP_END 0x100000000ull
575 * Search for a gap in the e820 memory space from start_addr to end_addr.
577 __init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
578 unsigned long start_addr, unsigned long long end_addr)
580 unsigned long long last;
581 int i = e820.nr_map;
582 int found = 0;
584 last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
586 while (--i >= 0) {
587 unsigned long long start = e820.map[i].addr;
588 unsigned long long end = start + e820.map[i].size;
590 if (end < start_addr)
591 continue;
594 * Since "last" is at most 4GB, we know we'll
595 * fit in 32 bits if this condition is true
597 if (last > end) {
598 unsigned long gap = last - end;
600 if (gap >= *gapsize) {
601 *gapsize = gap;
602 *gapstart = end;
603 found = 1;
606 if (start < last)
607 last = start;
609 return found;
613 * Search for the biggest gap in the low 32 bits of the e820
614 * memory space. We pass this space to PCI to assign MMIO resources
615 * for hotplug or unconfigured devices in.
616 * Hopefully the BIOS let enough space left.
618 __init void e820_setup_gap(void)
620 unsigned long gapstart, gapsize;
621 int found;
623 gapstart = 0x10000000;
624 gapsize = 0x400000;
625 found = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
627 #ifdef CONFIG_X86_64
628 if (!found) {
629 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
630 printk(KERN_ERR
631 "PCI: Warning: Cannot find a gap in the 32bit address range\n"
632 "PCI: Unassigned devices with 32bit resource registers may break!\n");
634 #endif
637 * e820_reserve_resources_late protect stolen RAM already
639 pci_mem_start = gapstart;
641 printk(KERN_INFO
642 "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
643 pci_mem_start, gapstart, gapsize);
647 * Because of the size limitation of struct boot_params, only first
648 * 128 E820 memory entries are passed to kernel via
649 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
650 * linked list of struct setup_data, which is parsed here.
652 void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data)
654 u32 map_len;
655 int entries;
656 struct e820entry *extmap;
658 entries = sdata->len / sizeof(struct e820entry);
659 map_len = sdata->len + sizeof(struct setup_data);
660 if (map_len > PAGE_SIZE)
661 sdata = early_ioremap(pa_data, map_len);
662 extmap = (struct e820entry *)(sdata->data);
663 __append_e820_map(extmap, entries);
664 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
665 if (map_len > PAGE_SIZE)
666 early_iounmap(sdata, map_len);
667 printk(KERN_INFO "extended physical RAM map:\n");
668 e820_print_map("extended");
671 #if defined(CONFIG_X86_64) || \
672 (defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
674 * Find the ranges of physical addresses that do not correspond to
675 * e820 RAM areas and mark the corresponding pages as nosave for
676 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
678 * This function requires the e820 map to be sorted and without any
679 * overlapping entries and assumes the first e820 area to be RAM.
681 void __init e820_mark_nosave_regions(unsigned long limit_pfn)
683 int i;
684 unsigned long pfn;
686 pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
687 for (i = 1; i < e820.nr_map; i++) {
688 struct e820entry *ei = &e820.map[i];
690 if (pfn < PFN_UP(ei->addr))
691 register_nosave_region(pfn, PFN_UP(ei->addr));
693 pfn = PFN_DOWN(ei->addr + ei->size);
694 if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
695 register_nosave_region(PFN_UP(ei->addr), pfn);
697 if (pfn >= limit_pfn)
698 break;
701 #endif
703 #ifdef CONFIG_HIBERNATION
705 * Mark ACPI NVS memory region, so that we can save/restore it during
706 * hibernation and the subsequent resume.
708 static int __init e820_mark_nvs_memory(void)
710 int i;
712 for (i = 0; i < e820.nr_map; i++) {
713 struct e820entry *ei = &e820.map[i];
715 if (ei->type == E820_NVS)
716 hibernate_nvs_register(ei->addr, ei->size);
719 return 0;
721 core_initcall(e820_mark_nvs_memory);
722 #endif
725 * Early reserved memory areas.
727 #define MAX_EARLY_RES 32
729 struct early_res {
730 u64 start, end;
731 char name[16];
732 char overlap_ok;
734 static struct early_res early_res[MAX_EARLY_RES] __initdata = {
735 { 0, PAGE_SIZE, "BIOS data page", 1 }, /* BIOS data page */
736 #if defined(CONFIG_X86_32) && defined(CONFIG_X86_TRAMPOLINE)
738 * But first pinch a few for the stack/trampoline stuff
739 * FIXME: Don't need the extra page at 4K, but need to fix
740 * trampoline before removing it. (see the GDT stuff)
742 { PAGE_SIZE, PAGE_SIZE + PAGE_SIZE, "EX TRAMPOLINE", 1 },
743 #endif
748 static int __init find_overlapped_early(u64 start, u64 end)
750 int i;
751 struct early_res *r;
753 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
754 r = &early_res[i];
755 if (end > r->start && start < r->end)
756 break;
759 return i;
763 * Drop the i-th range from the early reservation map,
764 * by copying any higher ranges down one over it, and
765 * clearing what had been the last slot.
767 static void __init drop_range(int i)
769 int j;
771 for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++)
774 memmove(&early_res[i], &early_res[i + 1],
775 (j - 1 - i) * sizeof(struct early_res));
777 early_res[j - 1].end = 0;
781 * Split any existing ranges that:
782 * 1) are marked 'overlap_ok', and
783 * 2) overlap with the stated range [start, end)
784 * into whatever portion (if any) of the existing range is entirely
785 * below or entirely above the stated range. Drop the portion
786 * of the existing range that overlaps with the stated range,
787 * which will allow the caller of this routine to then add that
788 * stated range without conflicting with any existing range.
790 static void __init drop_overlaps_that_are_ok(u64 start, u64 end)
792 int i;
793 struct early_res *r;
794 u64 lower_start, lower_end;
795 u64 upper_start, upper_end;
796 char name[16];
798 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
799 r = &early_res[i];
801 /* Continue past non-overlapping ranges */
802 if (end <= r->start || start >= r->end)
803 continue;
806 * Leave non-ok overlaps as is; let caller
807 * panic "Overlapping early reservations"
808 * when it hits this overlap.
810 if (!r->overlap_ok)
811 return;
814 * We have an ok overlap. We will drop it from the early
815 * reservation map, and add back in any non-overlapping
816 * portions (lower or upper) as separate, overlap_ok,
817 * non-overlapping ranges.
820 /* 1. Note any non-overlapping (lower or upper) ranges. */
821 strncpy(name, r->name, sizeof(name) - 1);
823 lower_start = lower_end = 0;
824 upper_start = upper_end = 0;
825 if (r->start < start) {
826 lower_start = r->start;
827 lower_end = start;
829 if (r->end > end) {
830 upper_start = end;
831 upper_end = r->end;
834 /* 2. Drop the original ok overlapping range */
835 drop_range(i);
837 i--; /* resume for-loop on copied down entry */
839 /* 3. Add back in any non-overlapping ranges. */
840 if (lower_end)
841 reserve_early_overlap_ok(lower_start, lower_end, name);
842 if (upper_end)
843 reserve_early_overlap_ok(upper_start, upper_end, name);
847 static void __init __reserve_early(u64 start, u64 end, char *name,
848 int overlap_ok)
850 int i;
851 struct early_res *r;
853 i = find_overlapped_early(start, end);
854 if (i >= MAX_EARLY_RES)
855 panic("Too many early reservations");
856 r = &early_res[i];
857 if (r->end)
858 panic("Overlapping early reservations "
859 "%llx-%llx %s to %llx-%llx %s\n",
860 start, end - 1, name?name:"", r->start,
861 r->end - 1, r->name);
862 r->start = start;
863 r->end = end;
864 r->overlap_ok = overlap_ok;
865 if (name)
866 strncpy(r->name, name, sizeof(r->name) - 1);
870 * A few early reservtations come here.
872 * The 'overlap_ok' in the name of this routine does -not- mean it
873 * is ok for these reservations to overlap an earlier reservation.
874 * Rather it means that it is ok for subsequent reservations to
875 * overlap this one.
877 * Use this entry point to reserve early ranges when you are doing
878 * so out of "Paranoia", reserving perhaps more memory than you need,
879 * just in case, and don't mind a subsequent overlapping reservation
880 * that is known to be needed.
882 * The drop_overlaps_that_are_ok() call here isn't really needed.
883 * It would be needed if we had two colliding 'overlap_ok'
884 * reservations, so that the second such would not panic on the
885 * overlap with the first. We don't have any such as of this
886 * writing, but might as well tolerate such if it happens in
887 * the future.
889 void __init reserve_early_overlap_ok(u64 start, u64 end, char *name)
891 drop_overlaps_that_are_ok(start, end);
892 __reserve_early(start, end, name, 1);
896 * Most early reservations come here.
898 * We first have drop_overlaps_that_are_ok() drop any pre-existing
899 * 'overlap_ok' ranges, so that we can then reserve this memory
900 * range without risk of panic'ing on an overlapping overlap_ok
901 * early reservation.
903 void __init reserve_early(u64 start, u64 end, char *name)
905 if (start >= end)
906 return;
908 drop_overlaps_that_are_ok(start, end);
909 __reserve_early(start, end, name, 0);
912 void __init free_early(u64 start, u64 end)
914 struct early_res *r;
915 int i;
917 i = find_overlapped_early(start, end);
918 r = &early_res[i];
919 if (i >= MAX_EARLY_RES || r->end != end || r->start != start)
920 panic("free_early on not reserved area: %llx-%llx!",
921 start, end - 1);
923 drop_range(i);
926 void __init early_res_to_bootmem(u64 start, u64 end)
928 int i, count;
929 u64 final_start, final_end;
931 count = 0;
932 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++)
933 count++;
935 printk(KERN_INFO "(%d early reservations) ==> bootmem [%010llx - %010llx]\n",
936 count, start, end);
937 for (i = 0; i < count; i++) {
938 struct early_res *r = &early_res[i];
939 printk(KERN_INFO " #%d [%010llx - %010llx] %16s", i,
940 r->start, r->end, r->name);
941 final_start = max(start, r->start);
942 final_end = min(end, r->end);
943 if (final_start >= final_end) {
944 printk(KERN_CONT "\n");
945 continue;
947 printk(KERN_CONT " ==> [%010llx - %010llx]\n",
948 final_start, final_end);
949 reserve_bootmem_generic(final_start, final_end - final_start,
950 BOOTMEM_DEFAULT);
954 /* Check for already reserved areas */
955 static inline int __init bad_addr(u64 *addrp, u64 size, u64 align)
957 int i;
958 u64 addr = *addrp;
959 int changed = 0;
960 struct early_res *r;
961 again:
962 i = find_overlapped_early(addr, addr + size);
963 r = &early_res[i];
964 if (i < MAX_EARLY_RES && r->end) {
965 *addrp = addr = round_up(r->end, align);
966 changed = 1;
967 goto again;
969 return changed;
972 /* Check for already reserved areas */
973 static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align)
975 int i;
976 u64 addr = *addrp, last;
977 u64 size = *sizep;
978 int changed = 0;
979 again:
980 last = addr + size;
981 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
982 struct early_res *r = &early_res[i];
983 if (last > r->start && addr < r->start) {
984 size = r->start - addr;
985 changed = 1;
986 goto again;
988 if (last > r->end && addr < r->end) {
989 addr = round_up(r->end, align);
990 size = last - addr;
991 changed = 1;
992 goto again;
994 if (last <= r->end && addr >= r->start) {
995 (*sizep)++;
996 return 0;
999 if (changed) {
1000 *addrp = addr;
1001 *sizep = size;
1003 return changed;
1007 * Find a free area with specified alignment in a specific range.
1009 u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align)
1011 int i;
1013 for (i = 0; i < e820.nr_map; i++) {
1014 struct e820entry *ei = &e820.map[i];
1015 u64 addr, last;
1016 u64 ei_last;
1018 if (ei->type != E820_RAM)
1019 continue;
1020 addr = round_up(ei->addr, align);
1021 ei_last = ei->addr + ei->size;
1022 if (addr < start)
1023 addr = round_up(start, align);
1024 if (addr >= ei_last)
1025 continue;
1026 while (bad_addr(&addr, size, align) && addr+size <= ei_last)
1028 last = addr + size;
1029 if (last > ei_last)
1030 continue;
1031 if (last > end)
1032 continue;
1033 return addr;
1035 return -1ULL;
1039 * Find next free range after *start
1041 u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align)
1043 int i;
1045 for (i = 0; i < e820.nr_map; i++) {
1046 struct e820entry *ei = &e820.map[i];
1047 u64 addr, last;
1048 u64 ei_last;
1050 if (ei->type != E820_RAM)
1051 continue;
1052 addr = round_up(ei->addr, align);
1053 ei_last = ei->addr + ei->size;
1054 if (addr < start)
1055 addr = round_up(start, align);
1056 if (addr >= ei_last)
1057 continue;
1058 *sizep = ei_last - addr;
1059 while (bad_addr_size(&addr, sizep, align) &&
1060 addr + *sizep <= ei_last)
1062 last = addr + *sizep;
1063 if (last > ei_last)
1064 continue;
1065 return addr;
1068 return -1ULL;
1072 * pre allocated 4k and reserved it in e820
1074 u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
1076 u64 size = 0;
1077 u64 addr;
1078 u64 start;
1080 for (start = startt; ; start += size) {
1081 start = find_e820_area_size(start, &size, align);
1082 if (!(start + 1))
1083 return 0;
1084 if (size >= sizet)
1085 break;
1088 #ifdef CONFIG_X86_32
1089 if (start >= MAXMEM)
1090 return 0;
1091 if (start + size > MAXMEM)
1092 size = MAXMEM - start;
1093 #endif
1095 addr = round_down(start + size - sizet, align);
1096 if (addr < start)
1097 return 0;
1098 e820_update_range(addr, sizet, E820_RAM, E820_RESERVED);
1099 e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
1100 printk(KERN_INFO "update e820 for early_reserve_e820\n");
1101 update_e820();
1102 update_e820_saved();
1104 return addr;
1107 #ifdef CONFIG_X86_32
1108 # ifdef CONFIG_X86_PAE
1109 # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT))
1110 # else
1111 # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT))
1112 # endif
1113 #else /* CONFIG_X86_32 */
1114 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
1115 #endif
1118 * Find the highest page frame number we have available
1120 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
1122 int i;
1123 unsigned long last_pfn = 0;
1124 unsigned long max_arch_pfn = MAX_ARCH_PFN;
1126 for (i = 0; i < e820.nr_map; i++) {
1127 struct e820entry *ei = &e820.map[i];
1128 unsigned long start_pfn;
1129 unsigned long end_pfn;
1131 if (ei->type != type)
1132 continue;
1134 start_pfn = ei->addr >> PAGE_SHIFT;
1135 end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
1137 if (start_pfn >= limit_pfn)
1138 continue;
1139 if (end_pfn > limit_pfn) {
1140 last_pfn = limit_pfn;
1141 break;
1143 if (end_pfn > last_pfn)
1144 last_pfn = end_pfn;
1147 if (last_pfn > max_arch_pfn)
1148 last_pfn = max_arch_pfn;
1150 printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
1151 last_pfn, max_arch_pfn);
1152 return last_pfn;
1154 unsigned long __init e820_end_of_ram_pfn(void)
1156 return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
1159 unsigned long __init e820_end_of_low_ram_pfn(void)
1161 return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
1164 * Finds an active region in the address range from start_pfn to last_pfn and
1165 * returns its range in ei_startpfn and ei_endpfn for the e820 entry.
1167 int __init e820_find_active_region(const struct e820entry *ei,
1168 unsigned long start_pfn,
1169 unsigned long last_pfn,
1170 unsigned long *ei_startpfn,
1171 unsigned long *ei_endpfn)
1173 u64 align = PAGE_SIZE;
1175 *ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT;
1176 *ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT;
1178 /* Skip map entries smaller than a page */
1179 if (*ei_startpfn >= *ei_endpfn)
1180 return 0;
1182 /* Skip if map is outside the node */
1183 if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
1184 *ei_startpfn >= last_pfn)
1185 return 0;
1187 /* Check for overlaps */
1188 if (*ei_startpfn < start_pfn)
1189 *ei_startpfn = start_pfn;
1190 if (*ei_endpfn > last_pfn)
1191 *ei_endpfn = last_pfn;
1193 return 1;
1196 /* Walk the e820 map and register active regions within a node */
1197 void __init e820_register_active_regions(int nid, unsigned long start_pfn,
1198 unsigned long last_pfn)
1200 unsigned long ei_startpfn;
1201 unsigned long ei_endpfn;
1202 int i;
1204 for (i = 0; i < e820.nr_map; i++)
1205 if (e820_find_active_region(&e820.map[i],
1206 start_pfn, last_pfn,
1207 &ei_startpfn, &ei_endpfn))
1208 add_active_range(nid, ei_startpfn, ei_endpfn);
1212 * Find the hole size (in bytes) in the memory range.
1213 * @start: starting address of the memory range to scan
1214 * @end: ending address of the memory range to scan
1216 u64 __init e820_hole_size(u64 start, u64 end)
1218 unsigned long start_pfn = start >> PAGE_SHIFT;
1219 unsigned long last_pfn = end >> PAGE_SHIFT;
1220 unsigned long ei_startpfn, ei_endpfn, ram = 0;
1221 int i;
1223 for (i = 0; i < e820.nr_map; i++) {
1224 if (e820_find_active_region(&e820.map[i],
1225 start_pfn, last_pfn,
1226 &ei_startpfn, &ei_endpfn))
1227 ram += ei_endpfn - ei_startpfn;
1229 return end - start - ((u64)ram << PAGE_SHIFT);
1232 static void early_panic(char *msg)
1234 early_printk(msg);
1235 panic(msg);
1238 static int userdef __initdata;
1240 /* "mem=nopentium" disables the 4MB page tables. */
1241 static int __init parse_memopt(char *p)
1243 u64 mem_size;
1245 if (!p)
1246 return -EINVAL;
1248 #ifdef CONFIG_X86_32
1249 if (!strcmp(p, "nopentium")) {
1250 setup_clear_cpu_cap(X86_FEATURE_PSE);
1251 return 0;
1253 #endif
1255 userdef = 1;
1256 mem_size = memparse(p, &p);
1257 e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1259 return 0;
1261 early_param("mem", parse_memopt);
1263 static int __init parse_memmap_opt(char *p)
1265 char *oldp;
1266 u64 start_at, mem_size;
1268 if (!p)
1269 return -EINVAL;
1271 if (!strncmp(p, "exactmap", 8)) {
1272 #ifdef CONFIG_CRASH_DUMP
1274 * If we are doing a crash dump, we still need to know
1275 * the real mem size before original memory map is
1276 * reset.
1278 saved_max_pfn = e820_end_of_ram_pfn();
1279 #endif
1280 e820.nr_map = 0;
1281 userdef = 1;
1282 return 0;
1285 oldp = p;
1286 mem_size = memparse(p, &p);
1287 if (p == oldp)
1288 return -EINVAL;
1290 userdef = 1;
1291 if (*p == '@') {
1292 start_at = memparse(p+1, &p);
1293 e820_add_region(start_at, mem_size, E820_RAM);
1294 } else if (*p == '#') {
1295 start_at = memparse(p+1, &p);
1296 e820_add_region(start_at, mem_size, E820_ACPI);
1297 } else if (*p == '$') {
1298 start_at = memparse(p+1, &p);
1299 e820_add_region(start_at, mem_size, E820_RESERVED);
1300 } else
1301 e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1303 return *p == '\0' ? 0 : -EINVAL;
1305 early_param("memmap", parse_memmap_opt);
1307 void __init finish_e820_parsing(void)
1309 if (userdef) {
1310 u32 nr = e820.nr_map;
1312 if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
1313 early_panic("Invalid user supplied memory map");
1314 e820.nr_map = nr;
1316 printk(KERN_INFO "user-defined physical RAM map:\n");
1317 e820_print_map("user");
1321 static inline const char *e820_type_to_string(int e820_type)
1323 switch (e820_type) {
1324 case E820_RESERVED_KERN:
1325 case E820_RAM: return "System RAM";
1326 case E820_ACPI: return "ACPI Tables";
1327 case E820_NVS: return "ACPI Non-volatile Storage";
1328 case E820_UNUSABLE: return "Unusable memory";
1329 default: return "reserved";
1334 * Mark e820 reserved areas as busy for the resource manager.
1336 static struct resource __initdata *e820_res;
1337 void __init e820_reserve_resources(void)
1339 int i;
1340 struct resource *res;
1341 u64 end;
1343 res = alloc_bootmem(sizeof(struct resource) * e820.nr_map);
1344 e820_res = res;
1345 for (i = 0; i < e820.nr_map; i++) {
1346 end = e820.map[i].addr + e820.map[i].size - 1;
1347 if (end != (resource_size_t)end) {
1348 res++;
1349 continue;
1351 res->name = e820_type_to_string(e820.map[i].type);
1352 res->start = e820.map[i].addr;
1353 res->end = end;
1355 res->flags = IORESOURCE_MEM;
1358 * don't register the region that could be conflicted with
1359 * pci device BAR resource and insert them later in
1360 * pcibios_resource_survey()
1362 if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) {
1363 res->flags |= IORESOURCE_BUSY;
1364 insert_resource(&iomem_resource, res);
1366 res++;
1369 for (i = 0; i < e820_saved.nr_map; i++) {
1370 struct e820entry *entry = &e820_saved.map[i];
1371 firmware_map_add_early(entry->addr,
1372 entry->addr + entry->size - 1,
1373 e820_type_to_string(entry->type));
1377 /* How much should we pad RAM ending depending on where it is? */
1378 static unsigned long ram_alignment(resource_size_t pos)
1380 unsigned long mb = pos >> 20;
1382 /* To 64kB in the first megabyte */
1383 if (!mb)
1384 return 64*1024;
1386 /* To 1MB in the first 16MB */
1387 if (mb < 16)
1388 return 1024*1024;
1390 /* To 64MB for anything above that */
1391 return 64*1024*1024;
1394 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1396 void __init e820_reserve_resources_late(void)
1398 int i;
1399 struct resource *res;
1401 res = e820_res;
1402 for (i = 0; i < e820.nr_map; i++) {
1403 if (!res->parent && res->end)
1404 insert_resource_expand_to_fit(&iomem_resource, res);
1405 res++;
1409 * Try to bump up RAM regions to reasonable boundaries to
1410 * avoid stolen RAM:
1412 for (i = 0; i < e820.nr_map; i++) {
1413 struct e820entry *entry = &e820.map[i];
1414 u64 start, end;
1416 if (entry->type != E820_RAM)
1417 continue;
1418 start = entry->addr + entry->size;
1419 end = round_up(start, ram_alignment(start)) - 1;
1420 if (end > MAX_RESOURCE_SIZE)
1421 end = MAX_RESOURCE_SIZE;
1422 if (start >= end)
1423 continue;
1424 reserve_region_with_split(&iomem_resource, start, end,
1425 "RAM buffer");
1429 char *__init default_machine_specific_memory_setup(void)
1431 char *who = "BIOS-e820";
1432 u32 new_nr;
1434 * Try to copy the BIOS-supplied E820-map.
1436 * Otherwise fake a memory map; one section from 0k->640k,
1437 * the next section from 1mb->appropriate_mem_k
1439 new_nr = boot_params.e820_entries;
1440 sanitize_e820_map(boot_params.e820_map,
1441 ARRAY_SIZE(boot_params.e820_map),
1442 &new_nr);
1443 boot_params.e820_entries = new_nr;
1444 if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1445 < 0) {
1446 u64 mem_size;
1448 /* compare results from other methods and take the greater */
1449 if (boot_params.alt_mem_k
1450 < boot_params.screen_info.ext_mem_k) {
1451 mem_size = boot_params.screen_info.ext_mem_k;
1452 who = "BIOS-88";
1453 } else {
1454 mem_size = boot_params.alt_mem_k;
1455 who = "BIOS-e801";
1458 e820.nr_map = 0;
1459 e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1460 e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1463 /* In case someone cares... */
1464 return who;
1467 void __init setup_memory_map(void)
1469 char *who;
1471 who = x86_init.resources.memory_setup();
1472 memcpy(&e820_saved, &e820, sizeof(struct e820map));
1473 printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1474 e820_print_map(who);