KVM: x86 emulator: fold decode_cache into x86_emulate_ctxt
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / x86.c
blob694538a043e711504df8cc113fcb7cc5b3a8c6f5
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
62 #define MAX_IO_MSRS 256
63 #define KVM_MAX_MCE_BANKS 32
64 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
66 #define emul_to_vcpu(ctxt) \
67 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
69 /* EFER defaults:
70 * - enable syscall per default because its emulated by KVM
71 * - enable LME and LMA per default on 64 bit KVM
73 #ifdef CONFIG_X86_64
74 static
75 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
76 #else
77 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
78 #endif
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
85 struct kvm_cpuid_entry2 __user *entries);
87 struct kvm_x86_ops *kvm_x86_ops;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90 int ignore_msrs = 0;
91 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
93 bool kvm_has_tsc_control;
94 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
95 u32 kvm_max_guest_tsc_khz;
96 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
98 #define KVM_NR_SHARED_MSRS 16
100 struct kvm_shared_msrs_global {
101 int nr;
102 u32 msrs[KVM_NR_SHARED_MSRS];
105 struct kvm_shared_msrs {
106 struct user_return_notifier urn;
107 bool registered;
108 struct kvm_shared_msr_values {
109 u64 host;
110 u64 curr;
111 } values[KVM_NR_SHARED_MSRS];
114 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
115 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
117 struct kvm_stats_debugfs_item debugfs_entries[] = {
118 { "pf_fixed", VCPU_STAT(pf_fixed) },
119 { "pf_guest", VCPU_STAT(pf_guest) },
120 { "tlb_flush", VCPU_STAT(tlb_flush) },
121 { "invlpg", VCPU_STAT(invlpg) },
122 { "exits", VCPU_STAT(exits) },
123 { "io_exits", VCPU_STAT(io_exits) },
124 { "mmio_exits", VCPU_STAT(mmio_exits) },
125 { "signal_exits", VCPU_STAT(signal_exits) },
126 { "irq_window", VCPU_STAT(irq_window_exits) },
127 { "nmi_window", VCPU_STAT(nmi_window_exits) },
128 { "halt_exits", VCPU_STAT(halt_exits) },
129 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
130 { "hypercalls", VCPU_STAT(hypercalls) },
131 { "request_irq", VCPU_STAT(request_irq_exits) },
132 { "irq_exits", VCPU_STAT(irq_exits) },
133 { "host_state_reload", VCPU_STAT(host_state_reload) },
134 { "efer_reload", VCPU_STAT(efer_reload) },
135 { "fpu_reload", VCPU_STAT(fpu_reload) },
136 { "insn_emulation", VCPU_STAT(insn_emulation) },
137 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
138 { "irq_injections", VCPU_STAT(irq_injections) },
139 { "nmi_injections", VCPU_STAT(nmi_injections) },
140 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
141 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
142 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
143 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
144 { "mmu_flooded", VM_STAT(mmu_flooded) },
145 { "mmu_recycled", VM_STAT(mmu_recycled) },
146 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
147 { "mmu_unsync", VM_STAT(mmu_unsync) },
148 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
149 { "largepages", VM_STAT(lpages) },
150 { NULL }
153 u64 __read_mostly host_xcr0;
155 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
157 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
159 int i;
160 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
161 vcpu->arch.apf.gfns[i] = ~0;
164 static void kvm_on_user_return(struct user_return_notifier *urn)
166 unsigned slot;
167 struct kvm_shared_msrs *locals
168 = container_of(urn, struct kvm_shared_msrs, urn);
169 struct kvm_shared_msr_values *values;
171 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
172 values = &locals->values[slot];
173 if (values->host != values->curr) {
174 wrmsrl(shared_msrs_global.msrs[slot], values->host);
175 values->curr = values->host;
178 locals->registered = false;
179 user_return_notifier_unregister(urn);
182 static void shared_msr_update(unsigned slot, u32 msr)
184 struct kvm_shared_msrs *smsr;
185 u64 value;
187 smsr = &__get_cpu_var(shared_msrs);
188 /* only read, and nobody should modify it at this time,
189 * so don't need lock */
190 if (slot >= shared_msrs_global.nr) {
191 printk(KERN_ERR "kvm: invalid MSR slot!");
192 return;
194 rdmsrl_safe(msr, &value);
195 smsr->values[slot].host = value;
196 smsr->values[slot].curr = value;
199 void kvm_define_shared_msr(unsigned slot, u32 msr)
201 if (slot >= shared_msrs_global.nr)
202 shared_msrs_global.nr = slot + 1;
203 shared_msrs_global.msrs[slot] = msr;
204 /* we need ensured the shared_msr_global have been updated */
205 smp_wmb();
207 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
209 static void kvm_shared_msr_cpu_online(void)
211 unsigned i;
213 for (i = 0; i < shared_msrs_global.nr; ++i)
214 shared_msr_update(i, shared_msrs_global.msrs[i]);
217 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
219 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221 if (((value ^ smsr->values[slot].curr) & mask) == 0)
222 return;
223 smsr->values[slot].curr = value;
224 wrmsrl(shared_msrs_global.msrs[slot], value);
225 if (!smsr->registered) {
226 smsr->urn.on_user_return = kvm_on_user_return;
227 user_return_notifier_register(&smsr->urn);
228 smsr->registered = true;
231 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
233 static void drop_user_return_notifiers(void *ignore)
235 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
237 if (smsr->registered)
238 kvm_on_user_return(&smsr->urn);
241 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
243 if (irqchip_in_kernel(vcpu->kvm))
244 return vcpu->arch.apic_base;
245 else
246 return vcpu->arch.apic_base;
248 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
250 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
252 /* TODO: reserve bits check */
253 if (irqchip_in_kernel(vcpu->kvm))
254 kvm_lapic_set_base(vcpu, data);
255 else
256 vcpu->arch.apic_base = data;
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
260 #define EXCPT_BENIGN 0
261 #define EXCPT_CONTRIBUTORY 1
262 #define EXCPT_PF 2
264 static int exception_class(int vector)
266 switch (vector) {
267 case PF_VECTOR:
268 return EXCPT_PF;
269 case DE_VECTOR:
270 case TS_VECTOR:
271 case NP_VECTOR:
272 case SS_VECTOR:
273 case GP_VECTOR:
274 return EXCPT_CONTRIBUTORY;
275 default:
276 break;
278 return EXCPT_BENIGN;
281 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
282 unsigned nr, bool has_error, u32 error_code,
283 bool reinject)
285 u32 prev_nr;
286 int class1, class2;
288 kvm_make_request(KVM_REQ_EVENT, vcpu);
290 if (!vcpu->arch.exception.pending) {
291 queue:
292 vcpu->arch.exception.pending = true;
293 vcpu->arch.exception.has_error_code = has_error;
294 vcpu->arch.exception.nr = nr;
295 vcpu->arch.exception.error_code = error_code;
296 vcpu->arch.exception.reinject = reinject;
297 return;
300 /* to check exception */
301 prev_nr = vcpu->arch.exception.nr;
302 if (prev_nr == DF_VECTOR) {
303 /* triple fault -> shutdown */
304 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
305 return;
307 class1 = exception_class(prev_nr);
308 class2 = exception_class(nr);
309 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
310 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
311 /* generate double fault per SDM Table 5-5 */
312 vcpu->arch.exception.pending = true;
313 vcpu->arch.exception.has_error_code = true;
314 vcpu->arch.exception.nr = DF_VECTOR;
315 vcpu->arch.exception.error_code = 0;
316 } else
317 /* replace previous exception with a new one in a hope
318 that instruction re-execution will regenerate lost
319 exception */
320 goto queue;
323 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
325 kvm_multiple_exception(vcpu, nr, false, 0, false);
327 EXPORT_SYMBOL_GPL(kvm_queue_exception);
329 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 kvm_multiple_exception(vcpu, nr, false, 0, true);
333 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
335 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
337 if (err)
338 kvm_inject_gp(vcpu, 0);
339 else
340 kvm_x86_ops->skip_emulated_instruction(vcpu);
342 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
344 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
346 ++vcpu->stat.pf_guest;
347 vcpu->arch.cr2 = fault->address;
348 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
350 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
352 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
354 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
355 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
356 else
357 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
360 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
362 kvm_make_request(KVM_REQ_EVENT, vcpu);
363 vcpu->arch.nmi_pending = 1;
365 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
367 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
369 kvm_multiple_exception(vcpu, nr, true, error_code, false);
371 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
373 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 kvm_multiple_exception(vcpu, nr, true, error_code, true);
377 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
380 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
381 * a #GP and return false.
383 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
385 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
386 return true;
387 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
388 return false;
390 EXPORT_SYMBOL_GPL(kvm_require_cpl);
393 * This function will be used to read from the physical memory of the currently
394 * running guest. The difference to kvm_read_guest_page is that this function
395 * can read from guest physical or from the guest's guest physical memory.
397 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
398 gfn_t ngfn, void *data, int offset, int len,
399 u32 access)
401 gfn_t real_gfn;
402 gpa_t ngpa;
404 ngpa = gfn_to_gpa(ngfn);
405 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
406 if (real_gfn == UNMAPPED_GVA)
407 return -EFAULT;
409 real_gfn = gpa_to_gfn(real_gfn);
411 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
413 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
415 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
416 void *data, int offset, int len, u32 access)
418 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
419 data, offset, len, access);
423 * Load the pae pdptrs. Return true is they are all valid.
425 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
427 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
428 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
429 int i;
430 int ret;
431 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
433 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
434 offset * sizeof(u64), sizeof(pdpte),
435 PFERR_USER_MASK|PFERR_WRITE_MASK);
436 if (ret < 0) {
437 ret = 0;
438 goto out;
440 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
441 if (is_present_gpte(pdpte[i]) &&
442 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
443 ret = 0;
444 goto out;
447 ret = 1;
449 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
450 __set_bit(VCPU_EXREG_PDPTR,
451 (unsigned long *)&vcpu->arch.regs_avail);
452 __set_bit(VCPU_EXREG_PDPTR,
453 (unsigned long *)&vcpu->arch.regs_dirty);
454 out:
456 return ret;
458 EXPORT_SYMBOL_GPL(load_pdptrs);
460 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
462 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
463 bool changed = true;
464 int offset;
465 gfn_t gfn;
466 int r;
468 if (is_long_mode(vcpu) || !is_pae(vcpu))
469 return false;
471 if (!test_bit(VCPU_EXREG_PDPTR,
472 (unsigned long *)&vcpu->arch.regs_avail))
473 return true;
475 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
476 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
477 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
478 PFERR_USER_MASK | PFERR_WRITE_MASK);
479 if (r < 0)
480 goto out;
481 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
482 out:
484 return changed;
487 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
489 unsigned long old_cr0 = kvm_read_cr0(vcpu);
490 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
491 X86_CR0_CD | X86_CR0_NW;
493 cr0 |= X86_CR0_ET;
495 #ifdef CONFIG_X86_64
496 if (cr0 & 0xffffffff00000000UL)
497 return 1;
498 #endif
500 cr0 &= ~CR0_RESERVED_BITS;
502 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
503 return 1;
505 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
506 return 1;
508 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
509 #ifdef CONFIG_X86_64
510 if ((vcpu->arch.efer & EFER_LME)) {
511 int cs_db, cs_l;
513 if (!is_pae(vcpu))
514 return 1;
515 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
516 if (cs_l)
517 return 1;
518 } else
519 #endif
520 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
521 kvm_read_cr3(vcpu)))
522 return 1;
525 kvm_x86_ops->set_cr0(vcpu, cr0);
527 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
528 kvm_clear_async_pf_completion_queue(vcpu);
529 kvm_async_pf_hash_reset(vcpu);
532 if ((cr0 ^ old_cr0) & update_bits)
533 kvm_mmu_reset_context(vcpu);
534 return 0;
536 EXPORT_SYMBOL_GPL(kvm_set_cr0);
538 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
540 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
542 EXPORT_SYMBOL_GPL(kvm_lmsw);
544 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
546 u64 xcr0;
548 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
549 if (index != XCR_XFEATURE_ENABLED_MASK)
550 return 1;
551 xcr0 = xcr;
552 if (kvm_x86_ops->get_cpl(vcpu) != 0)
553 return 1;
554 if (!(xcr0 & XSTATE_FP))
555 return 1;
556 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
557 return 1;
558 if (xcr0 & ~host_xcr0)
559 return 1;
560 vcpu->arch.xcr0 = xcr0;
561 vcpu->guest_xcr0_loaded = 0;
562 return 0;
565 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
567 if (__kvm_set_xcr(vcpu, index, xcr)) {
568 kvm_inject_gp(vcpu, 0);
569 return 1;
571 return 0;
573 EXPORT_SYMBOL_GPL(kvm_set_xcr);
575 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
577 struct kvm_cpuid_entry2 *best;
579 best = kvm_find_cpuid_entry(vcpu, 1, 0);
580 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
583 static void update_cpuid(struct kvm_vcpu *vcpu)
585 struct kvm_cpuid_entry2 *best;
587 best = kvm_find_cpuid_entry(vcpu, 1, 0);
588 if (!best)
589 return;
591 /* Update OSXSAVE bit */
592 if (cpu_has_xsave && best->function == 0x1) {
593 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
594 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
595 best->ecx |= bit(X86_FEATURE_OSXSAVE);
599 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
601 unsigned long old_cr4 = kvm_read_cr4(vcpu);
602 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
604 if (cr4 & CR4_RESERVED_BITS)
605 return 1;
607 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
608 return 1;
610 if (is_long_mode(vcpu)) {
611 if (!(cr4 & X86_CR4_PAE))
612 return 1;
613 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
614 && ((cr4 ^ old_cr4) & pdptr_bits)
615 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
616 kvm_read_cr3(vcpu)))
617 return 1;
619 if (kvm_x86_ops->set_cr4(vcpu, cr4))
620 return 1;
622 if ((cr4 ^ old_cr4) & pdptr_bits)
623 kvm_mmu_reset_context(vcpu);
625 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
626 update_cpuid(vcpu);
628 return 0;
630 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
635 kvm_mmu_sync_roots(vcpu);
636 kvm_mmu_flush_tlb(vcpu);
637 return 0;
640 if (is_long_mode(vcpu)) {
641 if (cr3 & CR3_L_MODE_RESERVED_BITS)
642 return 1;
643 } else {
644 if (is_pae(vcpu)) {
645 if (cr3 & CR3_PAE_RESERVED_BITS)
646 return 1;
647 if (is_paging(vcpu) &&
648 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
649 return 1;
652 * We don't check reserved bits in nonpae mode, because
653 * this isn't enforced, and VMware depends on this.
658 * Does the new cr3 value map to physical memory? (Note, we
659 * catch an invalid cr3 even in real-mode, because it would
660 * cause trouble later on when we turn on paging anyway.)
662 * A real CPU would silently accept an invalid cr3 and would
663 * attempt to use it - with largely undefined (and often hard
664 * to debug) behavior on the guest side.
666 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
667 return 1;
668 vcpu->arch.cr3 = cr3;
669 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
670 vcpu->arch.mmu.new_cr3(vcpu);
671 return 0;
673 EXPORT_SYMBOL_GPL(kvm_set_cr3);
675 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
677 if (cr8 & CR8_RESERVED_BITS)
678 return 1;
679 if (irqchip_in_kernel(vcpu->kvm))
680 kvm_lapic_set_tpr(vcpu, cr8);
681 else
682 vcpu->arch.cr8 = cr8;
683 return 0;
685 EXPORT_SYMBOL_GPL(kvm_set_cr8);
687 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
689 if (irqchip_in_kernel(vcpu->kvm))
690 return kvm_lapic_get_cr8(vcpu);
691 else
692 return vcpu->arch.cr8;
694 EXPORT_SYMBOL_GPL(kvm_get_cr8);
696 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
698 switch (dr) {
699 case 0 ... 3:
700 vcpu->arch.db[dr] = val;
701 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
702 vcpu->arch.eff_db[dr] = val;
703 break;
704 case 4:
705 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
706 return 1; /* #UD */
707 /* fall through */
708 case 6:
709 if (val & 0xffffffff00000000ULL)
710 return -1; /* #GP */
711 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
712 break;
713 case 5:
714 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
715 return 1; /* #UD */
716 /* fall through */
717 default: /* 7 */
718 if (val & 0xffffffff00000000ULL)
719 return -1; /* #GP */
720 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
721 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
722 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
723 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
725 break;
728 return 0;
731 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
733 int res;
735 res = __kvm_set_dr(vcpu, dr, val);
736 if (res > 0)
737 kvm_queue_exception(vcpu, UD_VECTOR);
738 else if (res < 0)
739 kvm_inject_gp(vcpu, 0);
741 return res;
743 EXPORT_SYMBOL_GPL(kvm_set_dr);
745 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
747 switch (dr) {
748 case 0 ... 3:
749 *val = vcpu->arch.db[dr];
750 break;
751 case 4:
752 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
753 return 1;
754 /* fall through */
755 case 6:
756 *val = vcpu->arch.dr6;
757 break;
758 case 5:
759 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
760 return 1;
761 /* fall through */
762 default: /* 7 */
763 *val = vcpu->arch.dr7;
764 break;
767 return 0;
770 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
772 if (_kvm_get_dr(vcpu, dr, val)) {
773 kvm_queue_exception(vcpu, UD_VECTOR);
774 return 1;
776 return 0;
778 EXPORT_SYMBOL_GPL(kvm_get_dr);
781 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
782 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
784 * This list is modified at module load time to reflect the
785 * capabilities of the host cpu. This capabilities test skips MSRs that are
786 * kvm-specific. Those are put in the beginning of the list.
789 #define KVM_SAVE_MSRS_BEGIN 8
790 static u32 msrs_to_save[] = {
791 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
792 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
793 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
794 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
795 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
796 MSR_STAR,
797 #ifdef CONFIG_X86_64
798 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
799 #endif
800 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
803 static unsigned num_msrs_to_save;
805 static u32 emulated_msrs[] = {
806 MSR_IA32_MISC_ENABLE,
807 MSR_IA32_MCG_STATUS,
808 MSR_IA32_MCG_CTL,
811 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
813 u64 old_efer = vcpu->arch.efer;
815 if (efer & efer_reserved_bits)
816 return 1;
818 if (is_paging(vcpu)
819 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
820 return 1;
822 if (efer & EFER_FFXSR) {
823 struct kvm_cpuid_entry2 *feat;
825 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
826 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
827 return 1;
830 if (efer & EFER_SVME) {
831 struct kvm_cpuid_entry2 *feat;
833 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
834 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
835 return 1;
838 efer &= ~EFER_LMA;
839 efer |= vcpu->arch.efer & EFER_LMA;
841 kvm_x86_ops->set_efer(vcpu, efer);
843 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
845 /* Update reserved bits */
846 if ((efer ^ old_efer) & EFER_NX)
847 kvm_mmu_reset_context(vcpu);
849 return 0;
852 void kvm_enable_efer_bits(u64 mask)
854 efer_reserved_bits &= ~mask;
856 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
860 * Writes msr value into into the appropriate "register".
861 * Returns 0 on success, non-0 otherwise.
862 * Assumes vcpu_load() was already called.
864 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
866 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
870 * Adapt set_msr() to msr_io()'s calling convention
872 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
874 return kvm_set_msr(vcpu, index, *data);
877 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
879 int version;
880 int r;
881 struct pvclock_wall_clock wc;
882 struct timespec boot;
884 if (!wall_clock)
885 return;
887 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
888 if (r)
889 return;
891 if (version & 1)
892 ++version; /* first time write, random junk */
894 ++version;
896 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
899 * The guest calculates current wall clock time by adding
900 * system time (updated by kvm_guest_time_update below) to the
901 * wall clock specified here. guest system time equals host
902 * system time for us, thus we must fill in host boot time here.
904 getboottime(&boot);
906 wc.sec = boot.tv_sec;
907 wc.nsec = boot.tv_nsec;
908 wc.version = version;
910 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
912 version++;
913 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
916 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
918 uint32_t quotient, remainder;
920 /* Don't try to replace with do_div(), this one calculates
921 * "(dividend << 32) / divisor" */
922 __asm__ ( "divl %4"
923 : "=a" (quotient), "=d" (remainder)
924 : "0" (0), "1" (dividend), "r" (divisor) );
925 return quotient;
928 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
929 s8 *pshift, u32 *pmultiplier)
931 uint64_t scaled64;
932 int32_t shift = 0;
933 uint64_t tps64;
934 uint32_t tps32;
936 tps64 = base_khz * 1000LL;
937 scaled64 = scaled_khz * 1000LL;
938 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
939 tps64 >>= 1;
940 shift--;
943 tps32 = (uint32_t)tps64;
944 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
945 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
946 scaled64 >>= 1;
947 else
948 tps32 <<= 1;
949 shift++;
952 *pshift = shift;
953 *pmultiplier = div_frac(scaled64, tps32);
955 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
956 __func__, base_khz, scaled_khz, shift, *pmultiplier);
959 static inline u64 get_kernel_ns(void)
961 struct timespec ts;
963 WARN_ON(preemptible());
964 ktime_get_ts(&ts);
965 monotonic_to_bootbased(&ts);
966 return timespec_to_ns(&ts);
969 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
970 unsigned long max_tsc_khz;
972 static inline int kvm_tsc_changes_freq(void)
974 int cpu = get_cpu();
975 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
976 cpufreq_quick_get(cpu) != 0;
977 put_cpu();
978 return ret;
981 static u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
983 if (vcpu->arch.virtual_tsc_khz)
984 return vcpu->arch.virtual_tsc_khz;
985 else
986 return __this_cpu_read(cpu_tsc_khz);
989 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
991 u64 ret;
993 WARN_ON(preemptible());
994 if (kvm_tsc_changes_freq())
995 printk_once(KERN_WARNING
996 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
997 ret = nsec * vcpu_tsc_khz(vcpu);
998 do_div(ret, USEC_PER_SEC);
999 return ret;
1002 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1004 /* Compute a scale to convert nanoseconds in TSC cycles */
1005 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1006 &vcpu->arch.tsc_catchup_shift,
1007 &vcpu->arch.tsc_catchup_mult);
1010 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1012 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1013 vcpu->arch.tsc_catchup_mult,
1014 vcpu->arch.tsc_catchup_shift);
1015 tsc += vcpu->arch.last_tsc_write;
1016 return tsc;
1019 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1021 struct kvm *kvm = vcpu->kvm;
1022 u64 offset, ns, elapsed;
1023 unsigned long flags;
1024 s64 sdiff;
1026 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1027 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1028 ns = get_kernel_ns();
1029 elapsed = ns - kvm->arch.last_tsc_nsec;
1030 sdiff = data - kvm->arch.last_tsc_write;
1031 if (sdiff < 0)
1032 sdiff = -sdiff;
1035 * Special case: close write to TSC within 5 seconds of
1036 * another CPU is interpreted as an attempt to synchronize
1037 * The 5 seconds is to accommodate host load / swapping as
1038 * well as any reset of TSC during the boot process.
1040 * In that case, for a reliable TSC, we can match TSC offsets,
1041 * or make a best guest using elapsed value.
1043 if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1044 elapsed < 5ULL * NSEC_PER_SEC) {
1045 if (!check_tsc_unstable()) {
1046 offset = kvm->arch.last_tsc_offset;
1047 pr_debug("kvm: matched tsc offset for %llu\n", data);
1048 } else {
1049 u64 delta = nsec_to_cycles(vcpu, elapsed);
1050 offset += delta;
1051 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1053 ns = kvm->arch.last_tsc_nsec;
1055 kvm->arch.last_tsc_nsec = ns;
1056 kvm->arch.last_tsc_write = data;
1057 kvm->arch.last_tsc_offset = offset;
1058 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1059 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1061 /* Reset of TSC must disable overshoot protection below */
1062 vcpu->arch.hv_clock.tsc_timestamp = 0;
1063 vcpu->arch.last_tsc_write = data;
1064 vcpu->arch.last_tsc_nsec = ns;
1066 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1068 static int kvm_guest_time_update(struct kvm_vcpu *v)
1070 unsigned long flags;
1071 struct kvm_vcpu_arch *vcpu = &v->arch;
1072 void *shared_kaddr;
1073 unsigned long this_tsc_khz;
1074 s64 kernel_ns, max_kernel_ns;
1075 u64 tsc_timestamp;
1077 /* Keep irq disabled to prevent changes to the clock */
1078 local_irq_save(flags);
1079 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1080 kernel_ns = get_kernel_ns();
1081 this_tsc_khz = vcpu_tsc_khz(v);
1082 if (unlikely(this_tsc_khz == 0)) {
1083 local_irq_restore(flags);
1084 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1085 return 1;
1089 * We may have to catch up the TSC to match elapsed wall clock
1090 * time for two reasons, even if kvmclock is used.
1091 * 1) CPU could have been running below the maximum TSC rate
1092 * 2) Broken TSC compensation resets the base at each VCPU
1093 * entry to avoid unknown leaps of TSC even when running
1094 * again on the same CPU. This may cause apparent elapsed
1095 * time to disappear, and the guest to stand still or run
1096 * very slowly.
1098 if (vcpu->tsc_catchup) {
1099 u64 tsc = compute_guest_tsc(v, kernel_ns);
1100 if (tsc > tsc_timestamp) {
1101 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1102 tsc_timestamp = tsc;
1106 local_irq_restore(flags);
1108 if (!vcpu->time_page)
1109 return 0;
1112 * Time as measured by the TSC may go backwards when resetting the base
1113 * tsc_timestamp. The reason for this is that the TSC resolution is
1114 * higher than the resolution of the other clock scales. Thus, many
1115 * possible measurments of the TSC correspond to one measurement of any
1116 * other clock, and so a spread of values is possible. This is not a
1117 * problem for the computation of the nanosecond clock; with TSC rates
1118 * around 1GHZ, there can only be a few cycles which correspond to one
1119 * nanosecond value, and any path through this code will inevitably
1120 * take longer than that. However, with the kernel_ns value itself,
1121 * the precision may be much lower, down to HZ granularity. If the
1122 * first sampling of TSC against kernel_ns ends in the low part of the
1123 * range, and the second in the high end of the range, we can get:
1125 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1127 * As the sampling errors potentially range in the thousands of cycles,
1128 * it is possible such a time value has already been observed by the
1129 * guest. To protect against this, we must compute the system time as
1130 * observed by the guest and ensure the new system time is greater.
1132 max_kernel_ns = 0;
1133 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1134 max_kernel_ns = vcpu->last_guest_tsc -
1135 vcpu->hv_clock.tsc_timestamp;
1136 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1137 vcpu->hv_clock.tsc_to_system_mul,
1138 vcpu->hv_clock.tsc_shift);
1139 max_kernel_ns += vcpu->last_kernel_ns;
1142 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1143 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1144 &vcpu->hv_clock.tsc_shift,
1145 &vcpu->hv_clock.tsc_to_system_mul);
1146 vcpu->hw_tsc_khz = this_tsc_khz;
1149 if (max_kernel_ns > kernel_ns)
1150 kernel_ns = max_kernel_ns;
1152 /* With all the info we got, fill in the values */
1153 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1154 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1155 vcpu->last_kernel_ns = kernel_ns;
1156 vcpu->last_guest_tsc = tsc_timestamp;
1157 vcpu->hv_clock.flags = 0;
1160 * The interface expects us to write an even number signaling that the
1161 * update is finished. Since the guest won't see the intermediate
1162 * state, we just increase by 2 at the end.
1164 vcpu->hv_clock.version += 2;
1166 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1168 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1169 sizeof(vcpu->hv_clock));
1171 kunmap_atomic(shared_kaddr, KM_USER0);
1173 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1174 return 0;
1177 static bool msr_mtrr_valid(unsigned msr)
1179 switch (msr) {
1180 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1181 case MSR_MTRRfix64K_00000:
1182 case MSR_MTRRfix16K_80000:
1183 case MSR_MTRRfix16K_A0000:
1184 case MSR_MTRRfix4K_C0000:
1185 case MSR_MTRRfix4K_C8000:
1186 case MSR_MTRRfix4K_D0000:
1187 case MSR_MTRRfix4K_D8000:
1188 case MSR_MTRRfix4K_E0000:
1189 case MSR_MTRRfix4K_E8000:
1190 case MSR_MTRRfix4K_F0000:
1191 case MSR_MTRRfix4K_F8000:
1192 case MSR_MTRRdefType:
1193 case MSR_IA32_CR_PAT:
1194 return true;
1195 case 0x2f8:
1196 return true;
1198 return false;
1201 static bool valid_pat_type(unsigned t)
1203 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1206 static bool valid_mtrr_type(unsigned t)
1208 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1211 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1213 int i;
1215 if (!msr_mtrr_valid(msr))
1216 return false;
1218 if (msr == MSR_IA32_CR_PAT) {
1219 for (i = 0; i < 8; i++)
1220 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1221 return false;
1222 return true;
1223 } else if (msr == MSR_MTRRdefType) {
1224 if (data & ~0xcff)
1225 return false;
1226 return valid_mtrr_type(data & 0xff);
1227 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1228 for (i = 0; i < 8 ; i++)
1229 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1230 return false;
1231 return true;
1234 /* variable MTRRs */
1235 return valid_mtrr_type(data & 0xff);
1238 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1240 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1242 if (!mtrr_valid(vcpu, msr, data))
1243 return 1;
1245 if (msr == MSR_MTRRdefType) {
1246 vcpu->arch.mtrr_state.def_type = data;
1247 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1248 } else if (msr == MSR_MTRRfix64K_00000)
1249 p[0] = data;
1250 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1251 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1252 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1253 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1254 else if (msr == MSR_IA32_CR_PAT)
1255 vcpu->arch.pat = data;
1256 else { /* Variable MTRRs */
1257 int idx, is_mtrr_mask;
1258 u64 *pt;
1260 idx = (msr - 0x200) / 2;
1261 is_mtrr_mask = msr - 0x200 - 2 * idx;
1262 if (!is_mtrr_mask)
1263 pt =
1264 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1265 else
1266 pt =
1267 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1268 *pt = data;
1271 kvm_mmu_reset_context(vcpu);
1272 return 0;
1275 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1277 u64 mcg_cap = vcpu->arch.mcg_cap;
1278 unsigned bank_num = mcg_cap & 0xff;
1280 switch (msr) {
1281 case MSR_IA32_MCG_STATUS:
1282 vcpu->arch.mcg_status = data;
1283 break;
1284 case MSR_IA32_MCG_CTL:
1285 if (!(mcg_cap & MCG_CTL_P))
1286 return 1;
1287 if (data != 0 && data != ~(u64)0)
1288 return -1;
1289 vcpu->arch.mcg_ctl = data;
1290 break;
1291 default:
1292 if (msr >= MSR_IA32_MC0_CTL &&
1293 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1294 u32 offset = msr - MSR_IA32_MC0_CTL;
1295 /* only 0 or all 1s can be written to IA32_MCi_CTL
1296 * some Linux kernels though clear bit 10 in bank 4 to
1297 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1298 * this to avoid an uncatched #GP in the guest
1300 if ((offset & 0x3) == 0 &&
1301 data != 0 && (data | (1 << 10)) != ~(u64)0)
1302 return -1;
1303 vcpu->arch.mce_banks[offset] = data;
1304 break;
1306 return 1;
1308 return 0;
1311 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1313 struct kvm *kvm = vcpu->kvm;
1314 int lm = is_long_mode(vcpu);
1315 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1316 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1317 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1318 : kvm->arch.xen_hvm_config.blob_size_32;
1319 u32 page_num = data & ~PAGE_MASK;
1320 u64 page_addr = data & PAGE_MASK;
1321 u8 *page;
1322 int r;
1324 r = -E2BIG;
1325 if (page_num >= blob_size)
1326 goto out;
1327 r = -ENOMEM;
1328 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1329 if (!page)
1330 goto out;
1331 r = -EFAULT;
1332 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1333 goto out_free;
1334 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1335 goto out_free;
1336 r = 0;
1337 out_free:
1338 kfree(page);
1339 out:
1340 return r;
1343 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1345 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1348 static bool kvm_hv_msr_partition_wide(u32 msr)
1350 bool r = false;
1351 switch (msr) {
1352 case HV_X64_MSR_GUEST_OS_ID:
1353 case HV_X64_MSR_HYPERCALL:
1354 r = true;
1355 break;
1358 return r;
1361 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1363 struct kvm *kvm = vcpu->kvm;
1365 switch (msr) {
1366 case HV_X64_MSR_GUEST_OS_ID:
1367 kvm->arch.hv_guest_os_id = data;
1368 /* setting guest os id to zero disables hypercall page */
1369 if (!kvm->arch.hv_guest_os_id)
1370 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1371 break;
1372 case HV_X64_MSR_HYPERCALL: {
1373 u64 gfn;
1374 unsigned long addr;
1375 u8 instructions[4];
1377 /* if guest os id is not set hypercall should remain disabled */
1378 if (!kvm->arch.hv_guest_os_id)
1379 break;
1380 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1381 kvm->arch.hv_hypercall = data;
1382 break;
1384 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1385 addr = gfn_to_hva(kvm, gfn);
1386 if (kvm_is_error_hva(addr))
1387 return 1;
1388 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1389 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1390 if (__copy_to_user((void __user *)addr, instructions, 4))
1391 return 1;
1392 kvm->arch.hv_hypercall = data;
1393 break;
1395 default:
1396 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1397 "data 0x%llx\n", msr, data);
1398 return 1;
1400 return 0;
1403 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1405 switch (msr) {
1406 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1407 unsigned long addr;
1409 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1410 vcpu->arch.hv_vapic = data;
1411 break;
1413 addr = gfn_to_hva(vcpu->kvm, data >>
1414 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1415 if (kvm_is_error_hva(addr))
1416 return 1;
1417 if (__clear_user((void __user *)addr, PAGE_SIZE))
1418 return 1;
1419 vcpu->arch.hv_vapic = data;
1420 break;
1422 case HV_X64_MSR_EOI:
1423 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1424 case HV_X64_MSR_ICR:
1425 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1426 case HV_X64_MSR_TPR:
1427 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1428 default:
1429 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1430 "data 0x%llx\n", msr, data);
1431 return 1;
1434 return 0;
1437 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1439 gpa_t gpa = data & ~0x3f;
1441 /* Bits 2:5 are resrved, Should be zero */
1442 if (data & 0x3c)
1443 return 1;
1445 vcpu->arch.apf.msr_val = data;
1447 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1448 kvm_clear_async_pf_completion_queue(vcpu);
1449 kvm_async_pf_hash_reset(vcpu);
1450 return 0;
1453 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1454 return 1;
1456 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1457 kvm_async_pf_wakeup_all(vcpu);
1458 return 0;
1461 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1463 if (vcpu->arch.time_page) {
1464 kvm_release_page_dirty(vcpu->arch.time_page);
1465 vcpu->arch.time_page = NULL;
1469 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1471 switch (msr) {
1472 case MSR_EFER:
1473 return set_efer(vcpu, data);
1474 case MSR_K7_HWCR:
1475 data &= ~(u64)0x40; /* ignore flush filter disable */
1476 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1477 if (data != 0) {
1478 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1479 data);
1480 return 1;
1482 break;
1483 case MSR_FAM10H_MMIO_CONF_BASE:
1484 if (data != 0) {
1485 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1486 "0x%llx\n", data);
1487 return 1;
1489 break;
1490 case MSR_AMD64_NB_CFG:
1491 break;
1492 case MSR_IA32_DEBUGCTLMSR:
1493 if (!data) {
1494 /* We support the non-activated case already */
1495 break;
1496 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1497 /* Values other than LBR and BTF are vendor-specific,
1498 thus reserved and should throw a #GP */
1499 return 1;
1501 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1502 __func__, data);
1503 break;
1504 case MSR_IA32_UCODE_REV:
1505 case MSR_IA32_UCODE_WRITE:
1506 case MSR_VM_HSAVE_PA:
1507 case MSR_AMD64_PATCH_LOADER:
1508 break;
1509 case 0x200 ... 0x2ff:
1510 return set_msr_mtrr(vcpu, msr, data);
1511 case MSR_IA32_APICBASE:
1512 kvm_set_apic_base(vcpu, data);
1513 break;
1514 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1515 return kvm_x2apic_msr_write(vcpu, msr, data);
1516 case MSR_IA32_MISC_ENABLE:
1517 vcpu->arch.ia32_misc_enable_msr = data;
1518 break;
1519 case MSR_KVM_WALL_CLOCK_NEW:
1520 case MSR_KVM_WALL_CLOCK:
1521 vcpu->kvm->arch.wall_clock = data;
1522 kvm_write_wall_clock(vcpu->kvm, data);
1523 break;
1524 case MSR_KVM_SYSTEM_TIME_NEW:
1525 case MSR_KVM_SYSTEM_TIME: {
1526 kvmclock_reset(vcpu);
1528 vcpu->arch.time = data;
1529 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1531 /* we verify if the enable bit is set... */
1532 if (!(data & 1))
1533 break;
1535 /* ...but clean it before doing the actual write */
1536 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1538 vcpu->arch.time_page =
1539 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1541 if (is_error_page(vcpu->arch.time_page)) {
1542 kvm_release_page_clean(vcpu->arch.time_page);
1543 vcpu->arch.time_page = NULL;
1545 break;
1547 case MSR_KVM_ASYNC_PF_EN:
1548 if (kvm_pv_enable_async_pf(vcpu, data))
1549 return 1;
1550 break;
1551 case MSR_IA32_MCG_CTL:
1552 case MSR_IA32_MCG_STATUS:
1553 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1554 return set_msr_mce(vcpu, msr, data);
1556 /* Performance counters are not protected by a CPUID bit,
1557 * so we should check all of them in the generic path for the sake of
1558 * cross vendor migration.
1559 * Writing a zero into the event select MSRs disables them,
1560 * which we perfectly emulate ;-). Any other value should be at least
1561 * reported, some guests depend on them.
1563 case MSR_P6_EVNTSEL0:
1564 case MSR_P6_EVNTSEL1:
1565 case MSR_K7_EVNTSEL0:
1566 case MSR_K7_EVNTSEL1:
1567 case MSR_K7_EVNTSEL2:
1568 case MSR_K7_EVNTSEL3:
1569 if (data != 0)
1570 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1571 "0x%x data 0x%llx\n", msr, data);
1572 break;
1573 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1574 * so we ignore writes to make it happy.
1576 case MSR_P6_PERFCTR0:
1577 case MSR_P6_PERFCTR1:
1578 case MSR_K7_PERFCTR0:
1579 case MSR_K7_PERFCTR1:
1580 case MSR_K7_PERFCTR2:
1581 case MSR_K7_PERFCTR3:
1582 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1583 "0x%x data 0x%llx\n", msr, data);
1584 break;
1585 case MSR_K7_CLK_CTL:
1587 * Ignore all writes to this no longer documented MSR.
1588 * Writes are only relevant for old K7 processors,
1589 * all pre-dating SVM, but a recommended workaround from
1590 * AMD for these chips. It is possible to speicify the
1591 * affected processor models on the command line, hence
1592 * the need to ignore the workaround.
1594 break;
1595 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1596 if (kvm_hv_msr_partition_wide(msr)) {
1597 int r;
1598 mutex_lock(&vcpu->kvm->lock);
1599 r = set_msr_hyperv_pw(vcpu, msr, data);
1600 mutex_unlock(&vcpu->kvm->lock);
1601 return r;
1602 } else
1603 return set_msr_hyperv(vcpu, msr, data);
1604 break;
1605 case MSR_IA32_BBL_CR_CTL3:
1606 /* Drop writes to this legacy MSR -- see rdmsr
1607 * counterpart for further detail.
1609 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1610 break;
1611 default:
1612 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1613 return xen_hvm_config(vcpu, data);
1614 if (!ignore_msrs) {
1615 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1616 msr, data);
1617 return 1;
1618 } else {
1619 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1620 msr, data);
1621 break;
1624 return 0;
1626 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1630 * Reads an msr value (of 'msr_index') into 'pdata'.
1631 * Returns 0 on success, non-0 otherwise.
1632 * Assumes vcpu_load() was already called.
1634 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1636 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1639 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1641 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1643 if (!msr_mtrr_valid(msr))
1644 return 1;
1646 if (msr == MSR_MTRRdefType)
1647 *pdata = vcpu->arch.mtrr_state.def_type +
1648 (vcpu->arch.mtrr_state.enabled << 10);
1649 else if (msr == MSR_MTRRfix64K_00000)
1650 *pdata = p[0];
1651 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1652 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1653 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1654 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1655 else if (msr == MSR_IA32_CR_PAT)
1656 *pdata = vcpu->arch.pat;
1657 else { /* Variable MTRRs */
1658 int idx, is_mtrr_mask;
1659 u64 *pt;
1661 idx = (msr - 0x200) / 2;
1662 is_mtrr_mask = msr - 0x200 - 2 * idx;
1663 if (!is_mtrr_mask)
1664 pt =
1665 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1666 else
1667 pt =
1668 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1669 *pdata = *pt;
1672 return 0;
1675 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1677 u64 data;
1678 u64 mcg_cap = vcpu->arch.mcg_cap;
1679 unsigned bank_num = mcg_cap & 0xff;
1681 switch (msr) {
1682 case MSR_IA32_P5_MC_ADDR:
1683 case MSR_IA32_P5_MC_TYPE:
1684 data = 0;
1685 break;
1686 case MSR_IA32_MCG_CAP:
1687 data = vcpu->arch.mcg_cap;
1688 break;
1689 case MSR_IA32_MCG_CTL:
1690 if (!(mcg_cap & MCG_CTL_P))
1691 return 1;
1692 data = vcpu->arch.mcg_ctl;
1693 break;
1694 case MSR_IA32_MCG_STATUS:
1695 data = vcpu->arch.mcg_status;
1696 break;
1697 default:
1698 if (msr >= MSR_IA32_MC0_CTL &&
1699 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1700 u32 offset = msr - MSR_IA32_MC0_CTL;
1701 data = vcpu->arch.mce_banks[offset];
1702 break;
1704 return 1;
1706 *pdata = data;
1707 return 0;
1710 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1712 u64 data = 0;
1713 struct kvm *kvm = vcpu->kvm;
1715 switch (msr) {
1716 case HV_X64_MSR_GUEST_OS_ID:
1717 data = kvm->arch.hv_guest_os_id;
1718 break;
1719 case HV_X64_MSR_HYPERCALL:
1720 data = kvm->arch.hv_hypercall;
1721 break;
1722 default:
1723 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1724 return 1;
1727 *pdata = data;
1728 return 0;
1731 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1733 u64 data = 0;
1735 switch (msr) {
1736 case HV_X64_MSR_VP_INDEX: {
1737 int r;
1738 struct kvm_vcpu *v;
1739 kvm_for_each_vcpu(r, v, vcpu->kvm)
1740 if (v == vcpu)
1741 data = r;
1742 break;
1744 case HV_X64_MSR_EOI:
1745 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1746 case HV_X64_MSR_ICR:
1747 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1748 case HV_X64_MSR_TPR:
1749 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1750 default:
1751 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1752 return 1;
1754 *pdata = data;
1755 return 0;
1758 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1760 u64 data;
1762 switch (msr) {
1763 case MSR_IA32_PLATFORM_ID:
1764 case MSR_IA32_UCODE_REV:
1765 case MSR_IA32_EBL_CR_POWERON:
1766 case MSR_IA32_DEBUGCTLMSR:
1767 case MSR_IA32_LASTBRANCHFROMIP:
1768 case MSR_IA32_LASTBRANCHTOIP:
1769 case MSR_IA32_LASTINTFROMIP:
1770 case MSR_IA32_LASTINTTOIP:
1771 case MSR_K8_SYSCFG:
1772 case MSR_K7_HWCR:
1773 case MSR_VM_HSAVE_PA:
1774 case MSR_P6_PERFCTR0:
1775 case MSR_P6_PERFCTR1:
1776 case MSR_P6_EVNTSEL0:
1777 case MSR_P6_EVNTSEL1:
1778 case MSR_K7_EVNTSEL0:
1779 case MSR_K7_PERFCTR0:
1780 case MSR_K8_INT_PENDING_MSG:
1781 case MSR_AMD64_NB_CFG:
1782 case MSR_FAM10H_MMIO_CONF_BASE:
1783 data = 0;
1784 break;
1785 case MSR_MTRRcap:
1786 data = 0x500 | KVM_NR_VAR_MTRR;
1787 break;
1788 case 0x200 ... 0x2ff:
1789 return get_msr_mtrr(vcpu, msr, pdata);
1790 case 0xcd: /* fsb frequency */
1791 data = 3;
1792 break;
1794 * MSR_EBC_FREQUENCY_ID
1795 * Conservative value valid for even the basic CPU models.
1796 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1797 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1798 * and 266MHz for model 3, or 4. Set Core Clock
1799 * Frequency to System Bus Frequency Ratio to 1 (bits
1800 * 31:24) even though these are only valid for CPU
1801 * models > 2, however guests may end up dividing or
1802 * multiplying by zero otherwise.
1804 case MSR_EBC_FREQUENCY_ID:
1805 data = 1 << 24;
1806 break;
1807 case MSR_IA32_APICBASE:
1808 data = kvm_get_apic_base(vcpu);
1809 break;
1810 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1811 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1812 break;
1813 case MSR_IA32_MISC_ENABLE:
1814 data = vcpu->arch.ia32_misc_enable_msr;
1815 break;
1816 case MSR_IA32_PERF_STATUS:
1817 /* TSC increment by tick */
1818 data = 1000ULL;
1819 /* CPU multiplier */
1820 data |= (((uint64_t)4ULL) << 40);
1821 break;
1822 case MSR_EFER:
1823 data = vcpu->arch.efer;
1824 break;
1825 case MSR_KVM_WALL_CLOCK:
1826 case MSR_KVM_WALL_CLOCK_NEW:
1827 data = vcpu->kvm->arch.wall_clock;
1828 break;
1829 case MSR_KVM_SYSTEM_TIME:
1830 case MSR_KVM_SYSTEM_TIME_NEW:
1831 data = vcpu->arch.time;
1832 break;
1833 case MSR_KVM_ASYNC_PF_EN:
1834 data = vcpu->arch.apf.msr_val;
1835 break;
1836 case MSR_IA32_P5_MC_ADDR:
1837 case MSR_IA32_P5_MC_TYPE:
1838 case MSR_IA32_MCG_CAP:
1839 case MSR_IA32_MCG_CTL:
1840 case MSR_IA32_MCG_STATUS:
1841 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1842 return get_msr_mce(vcpu, msr, pdata);
1843 case MSR_K7_CLK_CTL:
1845 * Provide expected ramp-up count for K7. All other
1846 * are set to zero, indicating minimum divisors for
1847 * every field.
1849 * This prevents guest kernels on AMD host with CPU
1850 * type 6, model 8 and higher from exploding due to
1851 * the rdmsr failing.
1853 data = 0x20000000;
1854 break;
1855 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1856 if (kvm_hv_msr_partition_wide(msr)) {
1857 int r;
1858 mutex_lock(&vcpu->kvm->lock);
1859 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1860 mutex_unlock(&vcpu->kvm->lock);
1861 return r;
1862 } else
1863 return get_msr_hyperv(vcpu, msr, pdata);
1864 break;
1865 case MSR_IA32_BBL_CR_CTL3:
1866 /* This legacy MSR exists but isn't fully documented in current
1867 * silicon. It is however accessed by winxp in very narrow
1868 * scenarios where it sets bit #19, itself documented as
1869 * a "reserved" bit. Best effort attempt to source coherent
1870 * read data here should the balance of the register be
1871 * interpreted by the guest:
1873 * L2 cache control register 3: 64GB range, 256KB size,
1874 * enabled, latency 0x1, configured
1876 data = 0xbe702111;
1877 break;
1878 default:
1879 if (!ignore_msrs) {
1880 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1881 return 1;
1882 } else {
1883 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1884 data = 0;
1886 break;
1888 *pdata = data;
1889 return 0;
1891 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1894 * Read or write a bunch of msrs. All parameters are kernel addresses.
1896 * @return number of msrs set successfully.
1898 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1899 struct kvm_msr_entry *entries,
1900 int (*do_msr)(struct kvm_vcpu *vcpu,
1901 unsigned index, u64 *data))
1903 int i, idx;
1905 idx = srcu_read_lock(&vcpu->kvm->srcu);
1906 for (i = 0; i < msrs->nmsrs; ++i)
1907 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1908 break;
1909 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1911 return i;
1915 * Read or write a bunch of msrs. Parameters are user addresses.
1917 * @return number of msrs set successfully.
1919 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1920 int (*do_msr)(struct kvm_vcpu *vcpu,
1921 unsigned index, u64 *data),
1922 int writeback)
1924 struct kvm_msrs msrs;
1925 struct kvm_msr_entry *entries;
1926 int r, n;
1927 unsigned size;
1929 r = -EFAULT;
1930 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1931 goto out;
1933 r = -E2BIG;
1934 if (msrs.nmsrs >= MAX_IO_MSRS)
1935 goto out;
1937 r = -ENOMEM;
1938 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1939 entries = kmalloc(size, GFP_KERNEL);
1940 if (!entries)
1941 goto out;
1943 r = -EFAULT;
1944 if (copy_from_user(entries, user_msrs->entries, size))
1945 goto out_free;
1947 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1948 if (r < 0)
1949 goto out_free;
1951 r = -EFAULT;
1952 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1953 goto out_free;
1955 r = n;
1957 out_free:
1958 kfree(entries);
1959 out:
1960 return r;
1963 int kvm_dev_ioctl_check_extension(long ext)
1965 int r;
1967 switch (ext) {
1968 case KVM_CAP_IRQCHIP:
1969 case KVM_CAP_HLT:
1970 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1971 case KVM_CAP_SET_TSS_ADDR:
1972 case KVM_CAP_EXT_CPUID:
1973 case KVM_CAP_CLOCKSOURCE:
1974 case KVM_CAP_PIT:
1975 case KVM_CAP_NOP_IO_DELAY:
1976 case KVM_CAP_MP_STATE:
1977 case KVM_CAP_SYNC_MMU:
1978 case KVM_CAP_USER_NMI:
1979 case KVM_CAP_REINJECT_CONTROL:
1980 case KVM_CAP_IRQ_INJECT_STATUS:
1981 case KVM_CAP_ASSIGN_DEV_IRQ:
1982 case KVM_CAP_IRQFD:
1983 case KVM_CAP_IOEVENTFD:
1984 case KVM_CAP_PIT2:
1985 case KVM_CAP_PIT_STATE2:
1986 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1987 case KVM_CAP_XEN_HVM:
1988 case KVM_CAP_ADJUST_CLOCK:
1989 case KVM_CAP_VCPU_EVENTS:
1990 case KVM_CAP_HYPERV:
1991 case KVM_CAP_HYPERV_VAPIC:
1992 case KVM_CAP_HYPERV_SPIN:
1993 case KVM_CAP_PCI_SEGMENT:
1994 case KVM_CAP_DEBUGREGS:
1995 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1996 case KVM_CAP_XSAVE:
1997 case KVM_CAP_ASYNC_PF:
1998 case KVM_CAP_GET_TSC_KHZ:
1999 r = 1;
2000 break;
2001 case KVM_CAP_COALESCED_MMIO:
2002 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2003 break;
2004 case KVM_CAP_VAPIC:
2005 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2006 break;
2007 case KVM_CAP_NR_VCPUS:
2008 r = KVM_MAX_VCPUS;
2009 break;
2010 case KVM_CAP_NR_MEMSLOTS:
2011 r = KVM_MEMORY_SLOTS;
2012 break;
2013 case KVM_CAP_PV_MMU: /* obsolete */
2014 r = 0;
2015 break;
2016 case KVM_CAP_IOMMU:
2017 r = iommu_found();
2018 break;
2019 case KVM_CAP_MCE:
2020 r = KVM_MAX_MCE_BANKS;
2021 break;
2022 case KVM_CAP_XCRS:
2023 r = cpu_has_xsave;
2024 break;
2025 case KVM_CAP_TSC_CONTROL:
2026 r = kvm_has_tsc_control;
2027 break;
2028 default:
2029 r = 0;
2030 break;
2032 return r;
2036 long kvm_arch_dev_ioctl(struct file *filp,
2037 unsigned int ioctl, unsigned long arg)
2039 void __user *argp = (void __user *)arg;
2040 long r;
2042 switch (ioctl) {
2043 case KVM_GET_MSR_INDEX_LIST: {
2044 struct kvm_msr_list __user *user_msr_list = argp;
2045 struct kvm_msr_list msr_list;
2046 unsigned n;
2048 r = -EFAULT;
2049 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2050 goto out;
2051 n = msr_list.nmsrs;
2052 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2053 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2054 goto out;
2055 r = -E2BIG;
2056 if (n < msr_list.nmsrs)
2057 goto out;
2058 r = -EFAULT;
2059 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2060 num_msrs_to_save * sizeof(u32)))
2061 goto out;
2062 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2063 &emulated_msrs,
2064 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2065 goto out;
2066 r = 0;
2067 break;
2069 case KVM_GET_SUPPORTED_CPUID: {
2070 struct kvm_cpuid2 __user *cpuid_arg = argp;
2071 struct kvm_cpuid2 cpuid;
2073 r = -EFAULT;
2074 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2075 goto out;
2076 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2077 cpuid_arg->entries);
2078 if (r)
2079 goto out;
2081 r = -EFAULT;
2082 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2083 goto out;
2084 r = 0;
2085 break;
2087 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2088 u64 mce_cap;
2090 mce_cap = KVM_MCE_CAP_SUPPORTED;
2091 r = -EFAULT;
2092 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2093 goto out;
2094 r = 0;
2095 break;
2097 default:
2098 r = -EINVAL;
2100 out:
2101 return r;
2104 static void wbinvd_ipi(void *garbage)
2106 wbinvd();
2109 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2111 return vcpu->kvm->arch.iommu_domain &&
2112 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2115 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2117 /* Address WBINVD may be executed by guest */
2118 if (need_emulate_wbinvd(vcpu)) {
2119 if (kvm_x86_ops->has_wbinvd_exit())
2120 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2121 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2122 smp_call_function_single(vcpu->cpu,
2123 wbinvd_ipi, NULL, 1);
2126 kvm_x86_ops->vcpu_load(vcpu, cpu);
2127 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2128 /* Make sure TSC doesn't go backwards */
2129 s64 tsc_delta;
2130 u64 tsc;
2132 kvm_get_msr(vcpu, MSR_IA32_TSC, &tsc);
2133 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2134 tsc - vcpu->arch.last_guest_tsc;
2136 if (tsc_delta < 0)
2137 mark_tsc_unstable("KVM discovered backwards TSC");
2138 if (check_tsc_unstable()) {
2139 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2140 vcpu->arch.tsc_catchup = 1;
2142 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2143 if (vcpu->cpu != cpu)
2144 kvm_migrate_timers(vcpu);
2145 vcpu->cpu = cpu;
2149 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2151 kvm_x86_ops->vcpu_put(vcpu);
2152 kvm_put_guest_fpu(vcpu);
2153 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
2156 static int is_efer_nx(void)
2158 unsigned long long efer = 0;
2160 rdmsrl_safe(MSR_EFER, &efer);
2161 return efer & EFER_NX;
2164 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2166 int i;
2167 struct kvm_cpuid_entry2 *e, *entry;
2169 entry = NULL;
2170 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2171 e = &vcpu->arch.cpuid_entries[i];
2172 if (e->function == 0x80000001) {
2173 entry = e;
2174 break;
2177 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2178 entry->edx &= ~(1 << 20);
2179 printk(KERN_INFO "kvm: guest NX capability removed\n");
2183 /* when an old userspace process fills a new kernel module */
2184 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2185 struct kvm_cpuid *cpuid,
2186 struct kvm_cpuid_entry __user *entries)
2188 int r, i;
2189 struct kvm_cpuid_entry *cpuid_entries;
2191 r = -E2BIG;
2192 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2193 goto out;
2194 r = -ENOMEM;
2195 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2196 if (!cpuid_entries)
2197 goto out;
2198 r = -EFAULT;
2199 if (copy_from_user(cpuid_entries, entries,
2200 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2201 goto out_free;
2202 for (i = 0; i < cpuid->nent; i++) {
2203 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2204 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2205 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2206 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2207 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2208 vcpu->arch.cpuid_entries[i].index = 0;
2209 vcpu->arch.cpuid_entries[i].flags = 0;
2210 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2211 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2212 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2214 vcpu->arch.cpuid_nent = cpuid->nent;
2215 cpuid_fix_nx_cap(vcpu);
2216 r = 0;
2217 kvm_apic_set_version(vcpu);
2218 kvm_x86_ops->cpuid_update(vcpu);
2219 update_cpuid(vcpu);
2221 out_free:
2222 vfree(cpuid_entries);
2223 out:
2224 return r;
2227 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2228 struct kvm_cpuid2 *cpuid,
2229 struct kvm_cpuid_entry2 __user *entries)
2231 int r;
2233 r = -E2BIG;
2234 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2235 goto out;
2236 r = -EFAULT;
2237 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2238 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2239 goto out;
2240 vcpu->arch.cpuid_nent = cpuid->nent;
2241 kvm_apic_set_version(vcpu);
2242 kvm_x86_ops->cpuid_update(vcpu);
2243 update_cpuid(vcpu);
2244 return 0;
2246 out:
2247 return r;
2250 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2251 struct kvm_cpuid2 *cpuid,
2252 struct kvm_cpuid_entry2 __user *entries)
2254 int r;
2256 r = -E2BIG;
2257 if (cpuid->nent < vcpu->arch.cpuid_nent)
2258 goto out;
2259 r = -EFAULT;
2260 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2261 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2262 goto out;
2263 return 0;
2265 out:
2266 cpuid->nent = vcpu->arch.cpuid_nent;
2267 return r;
2270 static void cpuid_mask(u32 *word, int wordnum)
2272 *word &= boot_cpu_data.x86_capability[wordnum];
2275 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2276 u32 index)
2278 entry->function = function;
2279 entry->index = index;
2280 cpuid_count(entry->function, entry->index,
2281 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2282 entry->flags = 0;
2285 static bool supported_xcr0_bit(unsigned bit)
2287 u64 mask = ((u64)1 << bit);
2289 return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
2292 #define F(x) bit(X86_FEATURE_##x)
2294 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2295 u32 index, int *nent, int maxnent)
2297 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2298 #ifdef CONFIG_X86_64
2299 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2300 ? F(GBPAGES) : 0;
2301 unsigned f_lm = F(LM);
2302 #else
2303 unsigned f_gbpages = 0;
2304 unsigned f_lm = 0;
2305 #endif
2306 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2308 /* cpuid 1.edx */
2309 const u32 kvm_supported_word0_x86_features =
2310 F(FPU) | F(VME) | F(DE) | F(PSE) |
2311 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2312 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2313 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2314 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2315 0 /* Reserved, DS, ACPI */ | F(MMX) |
2316 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2317 0 /* HTT, TM, Reserved, PBE */;
2318 /* cpuid 0x80000001.edx */
2319 const u32 kvm_supported_word1_x86_features =
2320 F(FPU) | F(VME) | F(DE) | F(PSE) |
2321 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2322 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2323 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2324 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2325 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2326 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2327 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2328 /* cpuid 1.ecx */
2329 const u32 kvm_supported_word4_x86_features =
2330 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2331 0 /* DS-CPL, VMX, SMX, EST */ |
2332 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2333 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2334 0 /* Reserved, DCA */ | F(XMM4_1) |
2335 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2336 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2337 F(F16C);
2338 /* cpuid 0x80000001.ecx */
2339 const u32 kvm_supported_word6_x86_features =
2340 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2341 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2342 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2343 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2345 /* cpuid 0xC0000001.edx */
2346 const u32 kvm_supported_word5_x86_features =
2347 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
2348 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
2349 F(PMM) | F(PMM_EN);
2351 /* all calls to cpuid_count() should be made on the same cpu */
2352 get_cpu();
2353 do_cpuid_1_ent(entry, function, index);
2354 ++*nent;
2356 switch (function) {
2357 case 0:
2358 entry->eax = min(entry->eax, (u32)0xd);
2359 break;
2360 case 1:
2361 entry->edx &= kvm_supported_word0_x86_features;
2362 cpuid_mask(&entry->edx, 0);
2363 entry->ecx &= kvm_supported_word4_x86_features;
2364 cpuid_mask(&entry->ecx, 4);
2365 /* we support x2apic emulation even if host does not support
2366 * it since we emulate x2apic in software */
2367 entry->ecx |= F(X2APIC);
2368 break;
2369 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2370 * may return different values. This forces us to get_cpu() before
2371 * issuing the first command, and also to emulate this annoying behavior
2372 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2373 case 2: {
2374 int t, times = entry->eax & 0xff;
2376 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2377 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2378 for (t = 1; t < times && *nent < maxnent; ++t) {
2379 do_cpuid_1_ent(&entry[t], function, 0);
2380 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2381 ++*nent;
2383 break;
2385 /* function 4 and 0xb have additional index. */
2386 case 4: {
2387 int i, cache_type;
2389 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2390 /* read more entries until cache_type is zero */
2391 for (i = 1; *nent < maxnent; ++i) {
2392 cache_type = entry[i - 1].eax & 0x1f;
2393 if (!cache_type)
2394 break;
2395 do_cpuid_1_ent(&entry[i], function, i);
2396 entry[i].flags |=
2397 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2398 ++*nent;
2400 break;
2402 case 9:
2403 break;
2404 case 0xb: {
2405 int i, level_type;
2407 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2408 /* read more entries until level_type is zero */
2409 for (i = 1; *nent < maxnent; ++i) {
2410 level_type = entry[i - 1].ecx & 0xff00;
2411 if (!level_type)
2412 break;
2413 do_cpuid_1_ent(&entry[i], function, i);
2414 entry[i].flags |=
2415 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2416 ++*nent;
2418 break;
2420 case 0xd: {
2421 int i;
2423 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2424 for (i = 1; *nent < maxnent && i < 64; ++i) {
2425 if (entry[i].eax == 0 || !supported_xcr0_bit(i))
2426 continue;
2427 do_cpuid_1_ent(&entry[i], function, i);
2428 entry[i].flags |=
2429 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2430 ++*nent;
2432 break;
2434 case KVM_CPUID_SIGNATURE: {
2435 char signature[12] = "KVMKVMKVM\0\0";
2436 u32 *sigptr = (u32 *)signature;
2437 entry->eax = 0;
2438 entry->ebx = sigptr[0];
2439 entry->ecx = sigptr[1];
2440 entry->edx = sigptr[2];
2441 break;
2443 case KVM_CPUID_FEATURES:
2444 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2445 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2446 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2447 (1 << KVM_FEATURE_ASYNC_PF) |
2448 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2449 entry->ebx = 0;
2450 entry->ecx = 0;
2451 entry->edx = 0;
2452 break;
2453 case 0x80000000:
2454 entry->eax = min(entry->eax, 0x8000001a);
2455 break;
2456 case 0x80000001:
2457 entry->edx &= kvm_supported_word1_x86_features;
2458 cpuid_mask(&entry->edx, 1);
2459 entry->ecx &= kvm_supported_word6_x86_features;
2460 cpuid_mask(&entry->ecx, 6);
2461 break;
2462 case 0x80000008: {
2463 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
2464 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
2465 unsigned phys_as = entry->eax & 0xff;
2467 if (!g_phys_as)
2468 g_phys_as = phys_as;
2469 entry->eax = g_phys_as | (virt_as << 8);
2470 entry->ebx = entry->edx = 0;
2471 break;
2473 case 0x80000019:
2474 entry->ecx = entry->edx = 0;
2475 break;
2476 case 0x8000001a:
2477 break;
2478 case 0x8000001d:
2479 break;
2480 /*Add support for Centaur's CPUID instruction*/
2481 case 0xC0000000:
2482 /*Just support up to 0xC0000004 now*/
2483 entry->eax = min(entry->eax, 0xC0000004);
2484 break;
2485 case 0xC0000001:
2486 entry->edx &= kvm_supported_word5_x86_features;
2487 cpuid_mask(&entry->edx, 5);
2488 break;
2489 case 3: /* Processor serial number */
2490 case 5: /* MONITOR/MWAIT */
2491 case 6: /* Thermal management */
2492 case 0xA: /* Architectural Performance Monitoring */
2493 case 0x80000007: /* Advanced power management */
2494 case 0xC0000002:
2495 case 0xC0000003:
2496 case 0xC0000004:
2497 default:
2498 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
2499 break;
2502 kvm_x86_ops->set_supported_cpuid(function, entry);
2504 put_cpu();
2507 #undef F
2509 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2510 struct kvm_cpuid_entry2 __user *entries)
2512 struct kvm_cpuid_entry2 *cpuid_entries;
2513 int limit, nent = 0, r = -E2BIG;
2514 u32 func;
2516 if (cpuid->nent < 1)
2517 goto out;
2518 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2519 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2520 r = -ENOMEM;
2521 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2522 if (!cpuid_entries)
2523 goto out;
2525 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2526 limit = cpuid_entries[0].eax;
2527 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2528 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2529 &nent, cpuid->nent);
2530 r = -E2BIG;
2531 if (nent >= cpuid->nent)
2532 goto out_free;
2534 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2535 limit = cpuid_entries[nent - 1].eax;
2536 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2537 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2538 &nent, cpuid->nent);
2542 r = -E2BIG;
2543 if (nent >= cpuid->nent)
2544 goto out_free;
2546 /* Add support for Centaur's CPUID instruction. */
2547 if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR) {
2548 do_cpuid_ent(&cpuid_entries[nent], 0xC0000000, 0,
2549 &nent, cpuid->nent);
2551 r = -E2BIG;
2552 if (nent >= cpuid->nent)
2553 goto out_free;
2555 limit = cpuid_entries[nent - 1].eax;
2556 for (func = 0xC0000001;
2557 func <= limit && nent < cpuid->nent; ++func)
2558 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2559 &nent, cpuid->nent);
2561 r = -E2BIG;
2562 if (nent >= cpuid->nent)
2563 goto out_free;
2566 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2567 cpuid->nent);
2569 r = -E2BIG;
2570 if (nent >= cpuid->nent)
2571 goto out_free;
2573 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2574 cpuid->nent);
2576 r = -E2BIG;
2577 if (nent >= cpuid->nent)
2578 goto out_free;
2580 r = -EFAULT;
2581 if (copy_to_user(entries, cpuid_entries,
2582 nent * sizeof(struct kvm_cpuid_entry2)))
2583 goto out_free;
2584 cpuid->nent = nent;
2585 r = 0;
2587 out_free:
2588 vfree(cpuid_entries);
2589 out:
2590 return r;
2593 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2594 struct kvm_lapic_state *s)
2596 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2598 return 0;
2601 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2602 struct kvm_lapic_state *s)
2604 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2605 kvm_apic_post_state_restore(vcpu);
2606 update_cr8_intercept(vcpu);
2608 return 0;
2611 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2612 struct kvm_interrupt *irq)
2614 if (irq->irq < 0 || irq->irq >= 256)
2615 return -EINVAL;
2616 if (irqchip_in_kernel(vcpu->kvm))
2617 return -ENXIO;
2619 kvm_queue_interrupt(vcpu, irq->irq, false);
2620 kvm_make_request(KVM_REQ_EVENT, vcpu);
2622 return 0;
2625 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2627 kvm_inject_nmi(vcpu);
2629 return 0;
2632 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2633 struct kvm_tpr_access_ctl *tac)
2635 if (tac->flags)
2636 return -EINVAL;
2637 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2638 return 0;
2641 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2642 u64 mcg_cap)
2644 int r;
2645 unsigned bank_num = mcg_cap & 0xff, bank;
2647 r = -EINVAL;
2648 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2649 goto out;
2650 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2651 goto out;
2652 r = 0;
2653 vcpu->arch.mcg_cap = mcg_cap;
2654 /* Init IA32_MCG_CTL to all 1s */
2655 if (mcg_cap & MCG_CTL_P)
2656 vcpu->arch.mcg_ctl = ~(u64)0;
2657 /* Init IA32_MCi_CTL to all 1s */
2658 for (bank = 0; bank < bank_num; bank++)
2659 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2660 out:
2661 return r;
2664 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2665 struct kvm_x86_mce *mce)
2667 u64 mcg_cap = vcpu->arch.mcg_cap;
2668 unsigned bank_num = mcg_cap & 0xff;
2669 u64 *banks = vcpu->arch.mce_banks;
2671 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2672 return -EINVAL;
2674 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2675 * reporting is disabled
2677 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2678 vcpu->arch.mcg_ctl != ~(u64)0)
2679 return 0;
2680 banks += 4 * mce->bank;
2682 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2683 * reporting is disabled for the bank
2685 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2686 return 0;
2687 if (mce->status & MCI_STATUS_UC) {
2688 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2689 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2690 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2691 return 0;
2693 if (banks[1] & MCI_STATUS_VAL)
2694 mce->status |= MCI_STATUS_OVER;
2695 banks[2] = mce->addr;
2696 banks[3] = mce->misc;
2697 vcpu->arch.mcg_status = mce->mcg_status;
2698 banks[1] = mce->status;
2699 kvm_queue_exception(vcpu, MC_VECTOR);
2700 } else if (!(banks[1] & MCI_STATUS_VAL)
2701 || !(banks[1] & MCI_STATUS_UC)) {
2702 if (banks[1] & MCI_STATUS_VAL)
2703 mce->status |= MCI_STATUS_OVER;
2704 banks[2] = mce->addr;
2705 banks[3] = mce->misc;
2706 banks[1] = mce->status;
2707 } else
2708 banks[1] |= MCI_STATUS_OVER;
2709 return 0;
2712 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2713 struct kvm_vcpu_events *events)
2715 events->exception.injected =
2716 vcpu->arch.exception.pending &&
2717 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2718 events->exception.nr = vcpu->arch.exception.nr;
2719 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2720 events->exception.pad = 0;
2721 events->exception.error_code = vcpu->arch.exception.error_code;
2723 events->interrupt.injected =
2724 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2725 events->interrupt.nr = vcpu->arch.interrupt.nr;
2726 events->interrupt.soft = 0;
2727 events->interrupt.shadow =
2728 kvm_x86_ops->get_interrupt_shadow(vcpu,
2729 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2731 events->nmi.injected = vcpu->arch.nmi_injected;
2732 events->nmi.pending = vcpu->arch.nmi_pending;
2733 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2734 events->nmi.pad = 0;
2736 events->sipi_vector = vcpu->arch.sipi_vector;
2738 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2739 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2740 | KVM_VCPUEVENT_VALID_SHADOW);
2741 memset(&events->reserved, 0, sizeof(events->reserved));
2744 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2745 struct kvm_vcpu_events *events)
2747 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2748 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2749 | KVM_VCPUEVENT_VALID_SHADOW))
2750 return -EINVAL;
2752 vcpu->arch.exception.pending = events->exception.injected;
2753 vcpu->arch.exception.nr = events->exception.nr;
2754 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2755 vcpu->arch.exception.error_code = events->exception.error_code;
2757 vcpu->arch.interrupt.pending = events->interrupt.injected;
2758 vcpu->arch.interrupt.nr = events->interrupt.nr;
2759 vcpu->arch.interrupt.soft = events->interrupt.soft;
2760 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2761 kvm_x86_ops->set_interrupt_shadow(vcpu,
2762 events->interrupt.shadow);
2764 vcpu->arch.nmi_injected = events->nmi.injected;
2765 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2766 vcpu->arch.nmi_pending = events->nmi.pending;
2767 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2769 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2770 vcpu->arch.sipi_vector = events->sipi_vector;
2772 kvm_make_request(KVM_REQ_EVENT, vcpu);
2774 return 0;
2777 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2778 struct kvm_debugregs *dbgregs)
2780 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2781 dbgregs->dr6 = vcpu->arch.dr6;
2782 dbgregs->dr7 = vcpu->arch.dr7;
2783 dbgregs->flags = 0;
2784 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2787 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2788 struct kvm_debugregs *dbgregs)
2790 if (dbgregs->flags)
2791 return -EINVAL;
2793 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2794 vcpu->arch.dr6 = dbgregs->dr6;
2795 vcpu->arch.dr7 = dbgregs->dr7;
2797 return 0;
2800 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2801 struct kvm_xsave *guest_xsave)
2803 if (cpu_has_xsave)
2804 memcpy(guest_xsave->region,
2805 &vcpu->arch.guest_fpu.state->xsave,
2806 xstate_size);
2807 else {
2808 memcpy(guest_xsave->region,
2809 &vcpu->arch.guest_fpu.state->fxsave,
2810 sizeof(struct i387_fxsave_struct));
2811 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2812 XSTATE_FPSSE;
2816 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2817 struct kvm_xsave *guest_xsave)
2819 u64 xstate_bv =
2820 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2822 if (cpu_has_xsave)
2823 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2824 guest_xsave->region, xstate_size);
2825 else {
2826 if (xstate_bv & ~XSTATE_FPSSE)
2827 return -EINVAL;
2828 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2829 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2831 return 0;
2834 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2835 struct kvm_xcrs *guest_xcrs)
2837 if (!cpu_has_xsave) {
2838 guest_xcrs->nr_xcrs = 0;
2839 return;
2842 guest_xcrs->nr_xcrs = 1;
2843 guest_xcrs->flags = 0;
2844 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2845 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2848 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2849 struct kvm_xcrs *guest_xcrs)
2851 int i, r = 0;
2853 if (!cpu_has_xsave)
2854 return -EINVAL;
2856 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2857 return -EINVAL;
2859 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2860 /* Only support XCR0 currently */
2861 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2862 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2863 guest_xcrs->xcrs[0].value);
2864 break;
2866 if (r)
2867 r = -EINVAL;
2868 return r;
2871 long kvm_arch_vcpu_ioctl(struct file *filp,
2872 unsigned int ioctl, unsigned long arg)
2874 struct kvm_vcpu *vcpu = filp->private_data;
2875 void __user *argp = (void __user *)arg;
2876 int r;
2877 union {
2878 struct kvm_lapic_state *lapic;
2879 struct kvm_xsave *xsave;
2880 struct kvm_xcrs *xcrs;
2881 void *buffer;
2882 } u;
2884 u.buffer = NULL;
2885 switch (ioctl) {
2886 case KVM_GET_LAPIC: {
2887 r = -EINVAL;
2888 if (!vcpu->arch.apic)
2889 goto out;
2890 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2892 r = -ENOMEM;
2893 if (!u.lapic)
2894 goto out;
2895 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2896 if (r)
2897 goto out;
2898 r = -EFAULT;
2899 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2900 goto out;
2901 r = 0;
2902 break;
2904 case KVM_SET_LAPIC: {
2905 r = -EINVAL;
2906 if (!vcpu->arch.apic)
2907 goto out;
2908 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2909 r = -ENOMEM;
2910 if (!u.lapic)
2911 goto out;
2912 r = -EFAULT;
2913 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2914 goto out;
2915 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2916 if (r)
2917 goto out;
2918 r = 0;
2919 break;
2921 case KVM_INTERRUPT: {
2922 struct kvm_interrupt irq;
2924 r = -EFAULT;
2925 if (copy_from_user(&irq, argp, sizeof irq))
2926 goto out;
2927 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2928 if (r)
2929 goto out;
2930 r = 0;
2931 break;
2933 case KVM_NMI: {
2934 r = kvm_vcpu_ioctl_nmi(vcpu);
2935 if (r)
2936 goto out;
2937 r = 0;
2938 break;
2940 case KVM_SET_CPUID: {
2941 struct kvm_cpuid __user *cpuid_arg = argp;
2942 struct kvm_cpuid cpuid;
2944 r = -EFAULT;
2945 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2946 goto out;
2947 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2948 if (r)
2949 goto out;
2950 break;
2952 case KVM_SET_CPUID2: {
2953 struct kvm_cpuid2 __user *cpuid_arg = argp;
2954 struct kvm_cpuid2 cpuid;
2956 r = -EFAULT;
2957 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2958 goto out;
2959 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2960 cpuid_arg->entries);
2961 if (r)
2962 goto out;
2963 break;
2965 case KVM_GET_CPUID2: {
2966 struct kvm_cpuid2 __user *cpuid_arg = argp;
2967 struct kvm_cpuid2 cpuid;
2969 r = -EFAULT;
2970 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2971 goto out;
2972 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2973 cpuid_arg->entries);
2974 if (r)
2975 goto out;
2976 r = -EFAULT;
2977 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2978 goto out;
2979 r = 0;
2980 break;
2982 case KVM_GET_MSRS:
2983 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2984 break;
2985 case KVM_SET_MSRS:
2986 r = msr_io(vcpu, argp, do_set_msr, 0);
2987 break;
2988 case KVM_TPR_ACCESS_REPORTING: {
2989 struct kvm_tpr_access_ctl tac;
2991 r = -EFAULT;
2992 if (copy_from_user(&tac, argp, sizeof tac))
2993 goto out;
2994 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2995 if (r)
2996 goto out;
2997 r = -EFAULT;
2998 if (copy_to_user(argp, &tac, sizeof tac))
2999 goto out;
3000 r = 0;
3001 break;
3003 case KVM_SET_VAPIC_ADDR: {
3004 struct kvm_vapic_addr va;
3006 r = -EINVAL;
3007 if (!irqchip_in_kernel(vcpu->kvm))
3008 goto out;
3009 r = -EFAULT;
3010 if (copy_from_user(&va, argp, sizeof va))
3011 goto out;
3012 r = 0;
3013 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3014 break;
3016 case KVM_X86_SETUP_MCE: {
3017 u64 mcg_cap;
3019 r = -EFAULT;
3020 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3021 goto out;
3022 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3023 break;
3025 case KVM_X86_SET_MCE: {
3026 struct kvm_x86_mce mce;
3028 r = -EFAULT;
3029 if (copy_from_user(&mce, argp, sizeof mce))
3030 goto out;
3031 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3032 break;
3034 case KVM_GET_VCPU_EVENTS: {
3035 struct kvm_vcpu_events events;
3037 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3039 r = -EFAULT;
3040 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3041 break;
3042 r = 0;
3043 break;
3045 case KVM_SET_VCPU_EVENTS: {
3046 struct kvm_vcpu_events events;
3048 r = -EFAULT;
3049 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3050 break;
3052 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3053 break;
3055 case KVM_GET_DEBUGREGS: {
3056 struct kvm_debugregs dbgregs;
3058 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3060 r = -EFAULT;
3061 if (copy_to_user(argp, &dbgregs,
3062 sizeof(struct kvm_debugregs)))
3063 break;
3064 r = 0;
3065 break;
3067 case KVM_SET_DEBUGREGS: {
3068 struct kvm_debugregs dbgregs;
3070 r = -EFAULT;
3071 if (copy_from_user(&dbgregs, argp,
3072 sizeof(struct kvm_debugregs)))
3073 break;
3075 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3076 break;
3078 case KVM_GET_XSAVE: {
3079 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3080 r = -ENOMEM;
3081 if (!u.xsave)
3082 break;
3084 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3086 r = -EFAULT;
3087 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3088 break;
3089 r = 0;
3090 break;
3092 case KVM_SET_XSAVE: {
3093 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3094 r = -ENOMEM;
3095 if (!u.xsave)
3096 break;
3098 r = -EFAULT;
3099 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3100 break;
3102 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3103 break;
3105 case KVM_GET_XCRS: {
3106 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3107 r = -ENOMEM;
3108 if (!u.xcrs)
3109 break;
3111 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3113 r = -EFAULT;
3114 if (copy_to_user(argp, u.xcrs,
3115 sizeof(struct kvm_xcrs)))
3116 break;
3117 r = 0;
3118 break;
3120 case KVM_SET_XCRS: {
3121 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3122 r = -ENOMEM;
3123 if (!u.xcrs)
3124 break;
3126 r = -EFAULT;
3127 if (copy_from_user(u.xcrs, argp,
3128 sizeof(struct kvm_xcrs)))
3129 break;
3131 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3132 break;
3134 case KVM_SET_TSC_KHZ: {
3135 u32 user_tsc_khz;
3137 r = -EINVAL;
3138 if (!kvm_has_tsc_control)
3139 break;
3141 user_tsc_khz = (u32)arg;
3143 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3144 goto out;
3146 kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
3148 r = 0;
3149 goto out;
3151 case KVM_GET_TSC_KHZ: {
3152 r = -EIO;
3153 if (check_tsc_unstable())
3154 goto out;
3156 r = vcpu_tsc_khz(vcpu);
3158 goto out;
3160 default:
3161 r = -EINVAL;
3163 out:
3164 kfree(u.buffer);
3165 return r;
3168 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3170 int ret;
3172 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3173 return -1;
3174 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3175 return ret;
3178 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3179 u64 ident_addr)
3181 kvm->arch.ept_identity_map_addr = ident_addr;
3182 return 0;
3185 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3186 u32 kvm_nr_mmu_pages)
3188 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3189 return -EINVAL;
3191 mutex_lock(&kvm->slots_lock);
3192 spin_lock(&kvm->mmu_lock);
3194 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3195 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3197 spin_unlock(&kvm->mmu_lock);
3198 mutex_unlock(&kvm->slots_lock);
3199 return 0;
3202 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3204 return kvm->arch.n_max_mmu_pages;
3207 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3209 int r;
3211 r = 0;
3212 switch (chip->chip_id) {
3213 case KVM_IRQCHIP_PIC_MASTER:
3214 memcpy(&chip->chip.pic,
3215 &pic_irqchip(kvm)->pics[0],
3216 sizeof(struct kvm_pic_state));
3217 break;
3218 case KVM_IRQCHIP_PIC_SLAVE:
3219 memcpy(&chip->chip.pic,
3220 &pic_irqchip(kvm)->pics[1],
3221 sizeof(struct kvm_pic_state));
3222 break;
3223 case KVM_IRQCHIP_IOAPIC:
3224 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3225 break;
3226 default:
3227 r = -EINVAL;
3228 break;
3230 return r;
3233 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3235 int r;
3237 r = 0;
3238 switch (chip->chip_id) {
3239 case KVM_IRQCHIP_PIC_MASTER:
3240 spin_lock(&pic_irqchip(kvm)->lock);
3241 memcpy(&pic_irqchip(kvm)->pics[0],
3242 &chip->chip.pic,
3243 sizeof(struct kvm_pic_state));
3244 spin_unlock(&pic_irqchip(kvm)->lock);
3245 break;
3246 case KVM_IRQCHIP_PIC_SLAVE:
3247 spin_lock(&pic_irqchip(kvm)->lock);
3248 memcpy(&pic_irqchip(kvm)->pics[1],
3249 &chip->chip.pic,
3250 sizeof(struct kvm_pic_state));
3251 spin_unlock(&pic_irqchip(kvm)->lock);
3252 break;
3253 case KVM_IRQCHIP_IOAPIC:
3254 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3255 break;
3256 default:
3257 r = -EINVAL;
3258 break;
3260 kvm_pic_update_irq(pic_irqchip(kvm));
3261 return r;
3264 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3266 int r = 0;
3268 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3269 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3270 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3271 return r;
3274 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3276 int r = 0;
3278 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3279 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3280 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3281 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3282 return r;
3285 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3287 int r = 0;
3289 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3290 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3291 sizeof(ps->channels));
3292 ps->flags = kvm->arch.vpit->pit_state.flags;
3293 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3294 memset(&ps->reserved, 0, sizeof(ps->reserved));
3295 return r;
3298 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3300 int r = 0, start = 0;
3301 u32 prev_legacy, cur_legacy;
3302 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3303 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3304 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3305 if (!prev_legacy && cur_legacy)
3306 start = 1;
3307 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3308 sizeof(kvm->arch.vpit->pit_state.channels));
3309 kvm->arch.vpit->pit_state.flags = ps->flags;
3310 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3311 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3312 return r;
3315 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3316 struct kvm_reinject_control *control)
3318 if (!kvm->arch.vpit)
3319 return -ENXIO;
3320 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3321 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3322 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3323 return 0;
3327 * Get (and clear) the dirty memory log for a memory slot.
3329 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3330 struct kvm_dirty_log *log)
3332 int r, i;
3333 struct kvm_memory_slot *memslot;
3334 unsigned long n;
3335 unsigned long is_dirty = 0;
3337 mutex_lock(&kvm->slots_lock);
3339 r = -EINVAL;
3340 if (log->slot >= KVM_MEMORY_SLOTS)
3341 goto out;
3343 memslot = &kvm->memslots->memslots[log->slot];
3344 r = -ENOENT;
3345 if (!memslot->dirty_bitmap)
3346 goto out;
3348 n = kvm_dirty_bitmap_bytes(memslot);
3350 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3351 is_dirty = memslot->dirty_bitmap[i];
3353 /* If nothing is dirty, don't bother messing with page tables. */
3354 if (is_dirty) {
3355 struct kvm_memslots *slots, *old_slots;
3356 unsigned long *dirty_bitmap;
3358 dirty_bitmap = memslot->dirty_bitmap_head;
3359 if (memslot->dirty_bitmap == dirty_bitmap)
3360 dirty_bitmap += n / sizeof(long);
3361 memset(dirty_bitmap, 0, n);
3363 r = -ENOMEM;
3364 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3365 if (!slots)
3366 goto out;
3367 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3368 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3369 slots->generation++;
3371 old_slots = kvm->memslots;
3372 rcu_assign_pointer(kvm->memslots, slots);
3373 synchronize_srcu_expedited(&kvm->srcu);
3374 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3375 kfree(old_slots);
3377 spin_lock(&kvm->mmu_lock);
3378 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3379 spin_unlock(&kvm->mmu_lock);
3381 r = -EFAULT;
3382 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3383 goto out;
3384 } else {
3385 r = -EFAULT;
3386 if (clear_user(log->dirty_bitmap, n))
3387 goto out;
3390 r = 0;
3391 out:
3392 mutex_unlock(&kvm->slots_lock);
3393 return r;
3396 long kvm_arch_vm_ioctl(struct file *filp,
3397 unsigned int ioctl, unsigned long arg)
3399 struct kvm *kvm = filp->private_data;
3400 void __user *argp = (void __user *)arg;
3401 int r = -ENOTTY;
3403 * This union makes it completely explicit to gcc-3.x
3404 * that these two variables' stack usage should be
3405 * combined, not added together.
3407 union {
3408 struct kvm_pit_state ps;
3409 struct kvm_pit_state2 ps2;
3410 struct kvm_pit_config pit_config;
3411 } u;
3413 switch (ioctl) {
3414 case KVM_SET_TSS_ADDR:
3415 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3416 if (r < 0)
3417 goto out;
3418 break;
3419 case KVM_SET_IDENTITY_MAP_ADDR: {
3420 u64 ident_addr;
3422 r = -EFAULT;
3423 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3424 goto out;
3425 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3426 if (r < 0)
3427 goto out;
3428 break;
3430 case KVM_SET_NR_MMU_PAGES:
3431 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3432 if (r)
3433 goto out;
3434 break;
3435 case KVM_GET_NR_MMU_PAGES:
3436 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3437 break;
3438 case KVM_CREATE_IRQCHIP: {
3439 struct kvm_pic *vpic;
3441 mutex_lock(&kvm->lock);
3442 r = -EEXIST;
3443 if (kvm->arch.vpic)
3444 goto create_irqchip_unlock;
3445 r = -ENOMEM;
3446 vpic = kvm_create_pic(kvm);
3447 if (vpic) {
3448 r = kvm_ioapic_init(kvm);
3449 if (r) {
3450 mutex_lock(&kvm->slots_lock);
3451 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3452 &vpic->dev);
3453 mutex_unlock(&kvm->slots_lock);
3454 kfree(vpic);
3455 goto create_irqchip_unlock;
3457 } else
3458 goto create_irqchip_unlock;
3459 smp_wmb();
3460 kvm->arch.vpic = vpic;
3461 smp_wmb();
3462 r = kvm_setup_default_irq_routing(kvm);
3463 if (r) {
3464 mutex_lock(&kvm->slots_lock);
3465 mutex_lock(&kvm->irq_lock);
3466 kvm_ioapic_destroy(kvm);
3467 kvm_destroy_pic(kvm);
3468 mutex_unlock(&kvm->irq_lock);
3469 mutex_unlock(&kvm->slots_lock);
3471 create_irqchip_unlock:
3472 mutex_unlock(&kvm->lock);
3473 break;
3475 case KVM_CREATE_PIT:
3476 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3477 goto create_pit;
3478 case KVM_CREATE_PIT2:
3479 r = -EFAULT;
3480 if (copy_from_user(&u.pit_config, argp,
3481 sizeof(struct kvm_pit_config)))
3482 goto out;
3483 create_pit:
3484 mutex_lock(&kvm->slots_lock);
3485 r = -EEXIST;
3486 if (kvm->arch.vpit)
3487 goto create_pit_unlock;
3488 r = -ENOMEM;
3489 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3490 if (kvm->arch.vpit)
3491 r = 0;
3492 create_pit_unlock:
3493 mutex_unlock(&kvm->slots_lock);
3494 break;
3495 case KVM_IRQ_LINE_STATUS:
3496 case KVM_IRQ_LINE: {
3497 struct kvm_irq_level irq_event;
3499 r = -EFAULT;
3500 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3501 goto out;
3502 r = -ENXIO;
3503 if (irqchip_in_kernel(kvm)) {
3504 __s32 status;
3505 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3506 irq_event.irq, irq_event.level);
3507 if (ioctl == KVM_IRQ_LINE_STATUS) {
3508 r = -EFAULT;
3509 irq_event.status = status;
3510 if (copy_to_user(argp, &irq_event,
3511 sizeof irq_event))
3512 goto out;
3514 r = 0;
3516 break;
3518 case KVM_GET_IRQCHIP: {
3519 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3520 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3522 r = -ENOMEM;
3523 if (!chip)
3524 goto out;
3525 r = -EFAULT;
3526 if (copy_from_user(chip, argp, sizeof *chip))
3527 goto get_irqchip_out;
3528 r = -ENXIO;
3529 if (!irqchip_in_kernel(kvm))
3530 goto get_irqchip_out;
3531 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3532 if (r)
3533 goto get_irqchip_out;
3534 r = -EFAULT;
3535 if (copy_to_user(argp, chip, sizeof *chip))
3536 goto get_irqchip_out;
3537 r = 0;
3538 get_irqchip_out:
3539 kfree(chip);
3540 if (r)
3541 goto out;
3542 break;
3544 case KVM_SET_IRQCHIP: {
3545 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3546 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3548 r = -ENOMEM;
3549 if (!chip)
3550 goto out;
3551 r = -EFAULT;
3552 if (copy_from_user(chip, argp, sizeof *chip))
3553 goto set_irqchip_out;
3554 r = -ENXIO;
3555 if (!irqchip_in_kernel(kvm))
3556 goto set_irqchip_out;
3557 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3558 if (r)
3559 goto set_irqchip_out;
3560 r = 0;
3561 set_irqchip_out:
3562 kfree(chip);
3563 if (r)
3564 goto out;
3565 break;
3567 case KVM_GET_PIT: {
3568 r = -EFAULT;
3569 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3570 goto out;
3571 r = -ENXIO;
3572 if (!kvm->arch.vpit)
3573 goto out;
3574 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3575 if (r)
3576 goto out;
3577 r = -EFAULT;
3578 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3579 goto out;
3580 r = 0;
3581 break;
3583 case KVM_SET_PIT: {
3584 r = -EFAULT;
3585 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3586 goto out;
3587 r = -ENXIO;
3588 if (!kvm->arch.vpit)
3589 goto out;
3590 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3591 if (r)
3592 goto out;
3593 r = 0;
3594 break;
3596 case KVM_GET_PIT2: {
3597 r = -ENXIO;
3598 if (!kvm->arch.vpit)
3599 goto out;
3600 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3601 if (r)
3602 goto out;
3603 r = -EFAULT;
3604 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3605 goto out;
3606 r = 0;
3607 break;
3609 case KVM_SET_PIT2: {
3610 r = -EFAULT;
3611 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3612 goto out;
3613 r = -ENXIO;
3614 if (!kvm->arch.vpit)
3615 goto out;
3616 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3617 if (r)
3618 goto out;
3619 r = 0;
3620 break;
3622 case KVM_REINJECT_CONTROL: {
3623 struct kvm_reinject_control control;
3624 r = -EFAULT;
3625 if (copy_from_user(&control, argp, sizeof(control)))
3626 goto out;
3627 r = kvm_vm_ioctl_reinject(kvm, &control);
3628 if (r)
3629 goto out;
3630 r = 0;
3631 break;
3633 case KVM_XEN_HVM_CONFIG: {
3634 r = -EFAULT;
3635 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3636 sizeof(struct kvm_xen_hvm_config)))
3637 goto out;
3638 r = -EINVAL;
3639 if (kvm->arch.xen_hvm_config.flags)
3640 goto out;
3641 r = 0;
3642 break;
3644 case KVM_SET_CLOCK: {
3645 struct kvm_clock_data user_ns;
3646 u64 now_ns;
3647 s64 delta;
3649 r = -EFAULT;
3650 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3651 goto out;
3653 r = -EINVAL;
3654 if (user_ns.flags)
3655 goto out;
3657 r = 0;
3658 local_irq_disable();
3659 now_ns = get_kernel_ns();
3660 delta = user_ns.clock - now_ns;
3661 local_irq_enable();
3662 kvm->arch.kvmclock_offset = delta;
3663 break;
3665 case KVM_GET_CLOCK: {
3666 struct kvm_clock_data user_ns;
3667 u64 now_ns;
3669 local_irq_disable();
3670 now_ns = get_kernel_ns();
3671 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3672 local_irq_enable();
3673 user_ns.flags = 0;
3674 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3676 r = -EFAULT;
3677 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3678 goto out;
3679 r = 0;
3680 break;
3683 default:
3686 out:
3687 return r;
3690 static void kvm_init_msr_list(void)
3692 u32 dummy[2];
3693 unsigned i, j;
3695 /* skip the first msrs in the list. KVM-specific */
3696 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3697 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3698 continue;
3699 if (j < i)
3700 msrs_to_save[j] = msrs_to_save[i];
3701 j++;
3703 num_msrs_to_save = j;
3706 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3707 const void *v)
3709 int handled = 0;
3710 int n;
3712 do {
3713 n = min(len, 8);
3714 if (!(vcpu->arch.apic &&
3715 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3716 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3717 break;
3718 handled += n;
3719 addr += n;
3720 len -= n;
3721 v += n;
3722 } while (len);
3724 return handled;
3727 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3729 int handled = 0;
3730 int n;
3732 do {
3733 n = min(len, 8);
3734 if (!(vcpu->arch.apic &&
3735 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3736 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3737 break;
3738 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3739 handled += n;
3740 addr += n;
3741 len -= n;
3742 v += n;
3743 } while (len);
3745 return handled;
3748 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3749 struct kvm_segment *var, int seg)
3751 kvm_x86_ops->set_segment(vcpu, var, seg);
3754 void kvm_get_segment(struct kvm_vcpu *vcpu,
3755 struct kvm_segment *var, int seg)
3757 kvm_x86_ops->get_segment(vcpu, var, seg);
3760 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3762 return gpa;
3765 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3767 gpa_t t_gpa;
3768 struct x86_exception exception;
3770 BUG_ON(!mmu_is_nested(vcpu));
3772 /* NPT walks are always user-walks */
3773 access |= PFERR_USER_MASK;
3774 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3776 return t_gpa;
3779 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3780 struct x86_exception *exception)
3782 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3783 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3786 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3787 struct x86_exception *exception)
3789 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3790 access |= PFERR_FETCH_MASK;
3791 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3794 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3795 struct x86_exception *exception)
3797 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3798 access |= PFERR_WRITE_MASK;
3799 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3802 /* uses this to access any guest's mapped memory without checking CPL */
3803 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3804 struct x86_exception *exception)
3806 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3809 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3810 struct kvm_vcpu *vcpu, u32 access,
3811 struct x86_exception *exception)
3813 void *data = val;
3814 int r = X86EMUL_CONTINUE;
3816 while (bytes) {
3817 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3818 exception);
3819 unsigned offset = addr & (PAGE_SIZE-1);
3820 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3821 int ret;
3823 if (gpa == UNMAPPED_GVA)
3824 return X86EMUL_PROPAGATE_FAULT;
3825 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3826 if (ret < 0) {
3827 r = X86EMUL_IO_NEEDED;
3828 goto out;
3831 bytes -= toread;
3832 data += toread;
3833 addr += toread;
3835 out:
3836 return r;
3839 /* used for instruction fetching */
3840 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3841 gva_t addr, void *val, unsigned int bytes,
3842 struct x86_exception *exception)
3844 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3845 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3847 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3848 access | PFERR_FETCH_MASK,
3849 exception);
3852 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3853 gva_t addr, void *val, unsigned int bytes,
3854 struct x86_exception *exception)
3856 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3857 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3859 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3860 exception);
3862 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3864 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3865 gva_t addr, void *val, unsigned int bytes,
3866 struct x86_exception *exception)
3868 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3869 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3872 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3873 gva_t addr, void *val,
3874 unsigned int bytes,
3875 struct x86_exception *exception)
3877 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3878 void *data = val;
3879 int r = X86EMUL_CONTINUE;
3881 while (bytes) {
3882 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3883 PFERR_WRITE_MASK,
3884 exception);
3885 unsigned offset = addr & (PAGE_SIZE-1);
3886 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3887 int ret;
3889 if (gpa == UNMAPPED_GVA)
3890 return X86EMUL_PROPAGATE_FAULT;
3891 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3892 if (ret < 0) {
3893 r = X86EMUL_IO_NEEDED;
3894 goto out;
3897 bytes -= towrite;
3898 data += towrite;
3899 addr += towrite;
3901 out:
3902 return r;
3904 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3906 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3907 unsigned long addr,
3908 void *val,
3909 unsigned int bytes,
3910 struct x86_exception *exception)
3912 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3913 gpa_t gpa;
3914 int handled;
3916 if (vcpu->mmio_read_completed) {
3917 memcpy(val, vcpu->mmio_data, bytes);
3918 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3919 vcpu->mmio_phys_addr, *(u64 *)val);
3920 vcpu->mmio_read_completed = 0;
3921 return X86EMUL_CONTINUE;
3924 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3926 if (gpa == UNMAPPED_GVA)
3927 return X86EMUL_PROPAGATE_FAULT;
3929 /* For APIC access vmexit */
3930 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3931 goto mmio;
3933 if (kvm_read_guest_virt(ctxt, addr, val, bytes, exception)
3934 == X86EMUL_CONTINUE)
3935 return X86EMUL_CONTINUE;
3937 mmio:
3939 * Is this MMIO handled locally?
3941 handled = vcpu_mmio_read(vcpu, gpa, bytes, val);
3943 if (handled == bytes)
3944 return X86EMUL_CONTINUE;
3946 gpa += handled;
3947 bytes -= handled;
3948 val += handled;
3950 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3952 vcpu->mmio_needed = 1;
3953 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3954 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3955 vcpu->mmio_size = bytes;
3956 vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3957 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3958 vcpu->mmio_index = 0;
3960 return X86EMUL_IO_NEEDED;
3963 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3964 const void *val, int bytes)
3966 int ret;
3968 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3969 if (ret < 0)
3970 return 0;
3971 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3972 return 1;
3975 static int emulator_write_emulated_onepage(unsigned long addr,
3976 const void *val,
3977 unsigned int bytes,
3978 struct x86_exception *exception,
3979 struct kvm_vcpu *vcpu)
3981 gpa_t gpa;
3982 int handled;
3984 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3986 if (gpa == UNMAPPED_GVA)
3987 return X86EMUL_PROPAGATE_FAULT;
3989 /* For APIC access vmexit */
3990 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3991 goto mmio;
3993 if (emulator_write_phys(vcpu, gpa, val, bytes))
3994 return X86EMUL_CONTINUE;
3996 mmio:
3997 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3999 * Is this MMIO handled locally?
4001 handled = vcpu_mmio_write(vcpu, gpa, bytes, val);
4002 if (handled == bytes)
4003 return X86EMUL_CONTINUE;
4005 gpa += handled;
4006 bytes -= handled;
4007 val += handled;
4009 vcpu->mmio_needed = 1;
4010 memcpy(vcpu->mmio_data, val, bytes);
4011 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4012 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
4013 vcpu->mmio_size = bytes;
4014 vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
4015 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
4016 memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
4017 vcpu->mmio_index = 0;
4019 return X86EMUL_CONTINUE;
4022 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4023 unsigned long addr,
4024 const void *val,
4025 unsigned int bytes,
4026 struct x86_exception *exception)
4028 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4030 /* Crossing a page boundary? */
4031 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4032 int rc, now;
4034 now = -addr & ~PAGE_MASK;
4035 rc = emulator_write_emulated_onepage(addr, val, now, exception,
4036 vcpu);
4037 if (rc != X86EMUL_CONTINUE)
4038 return rc;
4039 addr += now;
4040 val += now;
4041 bytes -= now;
4043 return emulator_write_emulated_onepage(addr, val, bytes, exception,
4044 vcpu);
4047 #define CMPXCHG_TYPE(t, ptr, old, new) \
4048 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4050 #ifdef CONFIG_X86_64
4051 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4052 #else
4053 # define CMPXCHG64(ptr, old, new) \
4054 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4055 #endif
4057 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4058 unsigned long addr,
4059 const void *old,
4060 const void *new,
4061 unsigned int bytes,
4062 struct x86_exception *exception)
4064 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4065 gpa_t gpa;
4066 struct page *page;
4067 char *kaddr;
4068 bool exchanged;
4070 /* guests cmpxchg8b have to be emulated atomically */
4071 if (bytes > 8 || (bytes & (bytes - 1)))
4072 goto emul_write;
4074 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4076 if (gpa == UNMAPPED_GVA ||
4077 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4078 goto emul_write;
4080 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4081 goto emul_write;
4083 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4084 if (is_error_page(page)) {
4085 kvm_release_page_clean(page);
4086 goto emul_write;
4089 kaddr = kmap_atomic(page, KM_USER0);
4090 kaddr += offset_in_page(gpa);
4091 switch (bytes) {
4092 case 1:
4093 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4094 break;
4095 case 2:
4096 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4097 break;
4098 case 4:
4099 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4100 break;
4101 case 8:
4102 exchanged = CMPXCHG64(kaddr, old, new);
4103 break;
4104 default:
4105 BUG();
4107 kunmap_atomic(kaddr, KM_USER0);
4108 kvm_release_page_dirty(page);
4110 if (!exchanged)
4111 return X86EMUL_CMPXCHG_FAILED;
4113 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
4115 return X86EMUL_CONTINUE;
4117 emul_write:
4118 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4120 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4123 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4125 /* TODO: String I/O for in kernel device */
4126 int r;
4128 if (vcpu->arch.pio.in)
4129 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4130 vcpu->arch.pio.size, pd);
4131 else
4132 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4133 vcpu->arch.pio.port, vcpu->arch.pio.size,
4134 pd);
4135 return r;
4139 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4140 int size, unsigned short port, void *val,
4141 unsigned int count)
4143 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4145 if (vcpu->arch.pio.count)
4146 goto data_avail;
4148 trace_kvm_pio(0, port, size, count);
4150 vcpu->arch.pio.port = port;
4151 vcpu->arch.pio.in = 1;
4152 vcpu->arch.pio.count = count;
4153 vcpu->arch.pio.size = size;
4155 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4156 data_avail:
4157 memcpy(val, vcpu->arch.pio_data, size * count);
4158 vcpu->arch.pio.count = 0;
4159 return 1;
4162 vcpu->run->exit_reason = KVM_EXIT_IO;
4163 vcpu->run->io.direction = KVM_EXIT_IO_IN;
4164 vcpu->run->io.size = size;
4165 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4166 vcpu->run->io.count = count;
4167 vcpu->run->io.port = port;
4169 return 0;
4172 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4173 int size, unsigned short port,
4174 const void *val, unsigned int count)
4176 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4178 trace_kvm_pio(1, port, size, count);
4180 vcpu->arch.pio.port = port;
4181 vcpu->arch.pio.in = 0;
4182 vcpu->arch.pio.count = count;
4183 vcpu->arch.pio.size = size;
4185 memcpy(vcpu->arch.pio_data, val, size * count);
4187 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4188 vcpu->arch.pio.count = 0;
4189 return 1;
4192 vcpu->run->exit_reason = KVM_EXIT_IO;
4193 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4194 vcpu->run->io.size = size;
4195 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4196 vcpu->run->io.count = count;
4197 vcpu->run->io.port = port;
4199 return 0;
4202 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4204 return kvm_x86_ops->get_segment_base(vcpu, seg);
4207 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4209 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4212 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4214 if (!need_emulate_wbinvd(vcpu))
4215 return X86EMUL_CONTINUE;
4217 if (kvm_x86_ops->has_wbinvd_exit()) {
4218 int cpu = get_cpu();
4220 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4221 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4222 wbinvd_ipi, NULL, 1);
4223 put_cpu();
4224 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4225 } else
4226 wbinvd();
4227 return X86EMUL_CONTINUE;
4229 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4231 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4233 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4236 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4238 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4241 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4244 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4247 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4249 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4252 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4254 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4255 unsigned long value;
4257 switch (cr) {
4258 case 0:
4259 value = kvm_read_cr0(vcpu);
4260 break;
4261 case 2:
4262 value = vcpu->arch.cr2;
4263 break;
4264 case 3:
4265 value = kvm_read_cr3(vcpu);
4266 break;
4267 case 4:
4268 value = kvm_read_cr4(vcpu);
4269 break;
4270 case 8:
4271 value = kvm_get_cr8(vcpu);
4272 break;
4273 default:
4274 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4275 return 0;
4278 return value;
4281 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4283 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4284 int res = 0;
4286 switch (cr) {
4287 case 0:
4288 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4289 break;
4290 case 2:
4291 vcpu->arch.cr2 = val;
4292 break;
4293 case 3:
4294 res = kvm_set_cr3(vcpu, val);
4295 break;
4296 case 4:
4297 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4298 break;
4299 case 8:
4300 res = kvm_set_cr8(vcpu, val);
4301 break;
4302 default:
4303 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4304 res = -1;
4307 return res;
4310 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4312 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4315 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4317 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4320 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4322 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4325 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4327 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4330 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4332 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4335 static unsigned long emulator_get_cached_segment_base(
4336 struct x86_emulate_ctxt *ctxt, int seg)
4338 return get_segment_base(emul_to_vcpu(ctxt), seg);
4341 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4342 struct desc_struct *desc, u32 *base3,
4343 int seg)
4345 struct kvm_segment var;
4347 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4348 *selector = var.selector;
4350 if (var.unusable)
4351 return false;
4353 if (var.g)
4354 var.limit >>= 12;
4355 set_desc_limit(desc, var.limit);
4356 set_desc_base(desc, (unsigned long)var.base);
4357 #ifdef CONFIG_X86_64
4358 if (base3)
4359 *base3 = var.base >> 32;
4360 #endif
4361 desc->type = var.type;
4362 desc->s = var.s;
4363 desc->dpl = var.dpl;
4364 desc->p = var.present;
4365 desc->avl = var.avl;
4366 desc->l = var.l;
4367 desc->d = var.db;
4368 desc->g = var.g;
4370 return true;
4373 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4374 struct desc_struct *desc, u32 base3,
4375 int seg)
4377 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4378 struct kvm_segment var;
4380 var.selector = selector;
4381 var.base = get_desc_base(desc);
4382 #ifdef CONFIG_X86_64
4383 var.base |= ((u64)base3) << 32;
4384 #endif
4385 var.limit = get_desc_limit(desc);
4386 if (desc->g)
4387 var.limit = (var.limit << 12) | 0xfff;
4388 var.type = desc->type;
4389 var.present = desc->p;
4390 var.dpl = desc->dpl;
4391 var.db = desc->d;
4392 var.s = desc->s;
4393 var.l = desc->l;
4394 var.g = desc->g;
4395 var.avl = desc->avl;
4396 var.present = desc->p;
4397 var.unusable = !var.present;
4398 var.padding = 0;
4400 kvm_set_segment(vcpu, &var, seg);
4401 return;
4404 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4405 u32 msr_index, u64 *pdata)
4407 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4410 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4411 u32 msr_index, u64 data)
4413 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4416 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4418 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4421 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4423 preempt_disable();
4424 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4426 * CR0.TS may reference the host fpu state, not the guest fpu state,
4427 * so it may be clear at this point.
4429 clts();
4432 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4434 preempt_enable();
4437 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4438 struct x86_instruction_info *info,
4439 enum x86_intercept_stage stage)
4441 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4444 static struct x86_emulate_ops emulate_ops = {
4445 .read_std = kvm_read_guest_virt_system,
4446 .write_std = kvm_write_guest_virt_system,
4447 .fetch = kvm_fetch_guest_virt,
4448 .read_emulated = emulator_read_emulated,
4449 .write_emulated = emulator_write_emulated,
4450 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4451 .invlpg = emulator_invlpg,
4452 .pio_in_emulated = emulator_pio_in_emulated,
4453 .pio_out_emulated = emulator_pio_out_emulated,
4454 .get_segment = emulator_get_segment,
4455 .set_segment = emulator_set_segment,
4456 .get_cached_segment_base = emulator_get_cached_segment_base,
4457 .get_gdt = emulator_get_gdt,
4458 .get_idt = emulator_get_idt,
4459 .set_gdt = emulator_set_gdt,
4460 .set_idt = emulator_set_idt,
4461 .get_cr = emulator_get_cr,
4462 .set_cr = emulator_set_cr,
4463 .cpl = emulator_get_cpl,
4464 .get_dr = emulator_get_dr,
4465 .set_dr = emulator_set_dr,
4466 .set_msr = emulator_set_msr,
4467 .get_msr = emulator_get_msr,
4468 .halt = emulator_halt,
4469 .wbinvd = emulator_wbinvd,
4470 .fix_hypercall = emulator_fix_hypercall,
4471 .get_fpu = emulator_get_fpu,
4472 .put_fpu = emulator_put_fpu,
4473 .intercept = emulator_intercept,
4476 static void cache_all_regs(struct kvm_vcpu *vcpu)
4478 kvm_register_read(vcpu, VCPU_REGS_RAX);
4479 kvm_register_read(vcpu, VCPU_REGS_RSP);
4480 kvm_register_read(vcpu, VCPU_REGS_RIP);
4481 vcpu->arch.regs_dirty = ~0;
4484 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4486 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4488 * an sti; sti; sequence only disable interrupts for the first
4489 * instruction. So, if the last instruction, be it emulated or
4490 * not, left the system with the INT_STI flag enabled, it
4491 * means that the last instruction is an sti. We should not
4492 * leave the flag on in this case. The same goes for mov ss
4494 if (!(int_shadow & mask))
4495 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4498 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4500 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4501 if (ctxt->exception.vector == PF_VECTOR)
4502 kvm_propagate_fault(vcpu, &ctxt->exception);
4503 else if (ctxt->exception.error_code_valid)
4504 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4505 ctxt->exception.error_code);
4506 else
4507 kvm_queue_exception(vcpu, ctxt->exception.vector);
4510 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4511 const unsigned long *regs)
4513 memset(&ctxt->twobyte, 0,
4514 (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4515 memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4517 ctxt->fetch.start = 0;
4518 ctxt->fetch.end = 0;
4519 ctxt->io_read.pos = 0;
4520 ctxt->io_read.end = 0;
4521 ctxt->mem_read.pos = 0;
4522 ctxt->mem_read.end = 0;
4525 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4527 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4528 int cs_db, cs_l;
4531 * TODO: fix emulate.c to use guest_read/write_register
4532 * instead of direct ->regs accesses, can save hundred cycles
4533 * on Intel for instructions that don't read/change RSP, for
4534 * for example.
4536 cache_all_regs(vcpu);
4538 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4540 ctxt->eflags = kvm_get_rflags(vcpu);
4541 ctxt->eip = kvm_rip_read(vcpu);
4542 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4543 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4544 cs_l ? X86EMUL_MODE_PROT64 :
4545 cs_db ? X86EMUL_MODE_PROT32 :
4546 X86EMUL_MODE_PROT16;
4547 ctxt->guest_mode = is_guest_mode(vcpu);
4549 init_decode_cache(ctxt, vcpu->arch.regs);
4550 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4553 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4555 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4556 int ret;
4558 init_emulate_ctxt(vcpu);
4560 ctxt->op_bytes = 2;
4561 ctxt->ad_bytes = 2;
4562 ctxt->_eip = ctxt->eip + inc_eip;
4563 ret = emulate_int_real(ctxt, irq);
4565 if (ret != X86EMUL_CONTINUE)
4566 return EMULATE_FAIL;
4568 ctxt->eip = ctxt->_eip;
4569 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4570 kvm_rip_write(vcpu, ctxt->eip);
4571 kvm_set_rflags(vcpu, ctxt->eflags);
4573 if (irq == NMI_VECTOR)
4574 vcpu->arch.nmi_pending = false;
4575 else
4576 vcpu->arch.interrupt.pending = false;
4578 return EMULATE_DONE;
4580 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4582 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4584 int r = EMULATE_DONE;
4586 ++vcpu->stat.insn_emulation_fail;
4587 trace_kvm_emulate_insn_failed(vcpu);
4588 if (!is_guest_mode(vcpu)) {
4589 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4590 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4591 vcpu->run->internal.ndata = 0;
4592 r = EMULATE_FAIL;
4594 kvm_queue_exception(vcpu, UD_VECTOR);
4596 return r;
4599 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4601 gpa_t gpa;
4603 if (tdp_enabled)
4604 return false;
4607 * if emulation was due to access to shadowed page table
4608 * and it failed try to unshadow page and re-entetr the
4609 * guest to let CPU execute the instruction.
4611 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4612 return true;
4614 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4616 if (gpa == UNMAPPED_GVA)
4617 return true; /* let cpu generate fault */
4619 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4620 return true;
4622 return false;
4625 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4626 unsigned long cr2,
4627 int emulation_type,
4628 void *insn,
4629 int insn_len)
4631 int r;
4632 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4633 bool writeback = true;
4635 kvm_clear_exception_queue(vcpu);
4637 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4638 init_emulate_ctxt(vcpu);
4639 ctxt->interruptibility = 0;
4640 ctxt->have_exception = false;
4641 ctxt->perm_ok = false;
4643 ctxt->only_vendor_specific_insn
4644 = emulation_type & EMULTYPE_TRAP_UD;
4646 r = x86_decode_insn(ctxt, insn, insn_len);
4648 trace_kvm_emulate_insn_start(vcpu);
4649 ++vcpu->stat.insn_emulation;
4650 if (r) {
4651 if (emulation_type & EMULTYPE_TRAP_UD)
4652 return EMULATE_FAIL;
4653 if (reexecute_instruction(vcpu, cr2))
4654 return EMULATE_DONE;
4655 if (emulation_type & EMULTYPE_SKIP)
4656 return EMULATE_FAIL;
4657 return handle_emulation_failure(vcpu);
4661 if (emulation_type & EMULTYPE_SKIP) {
4662 kvm_rip_write(vcpu, ctxt->_eip);
4663 return EMULATE_DONE;
4666 /* this is needed for vmware backdoor interface to work since it
4667 changes registers values during IO operation */
4668 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4669 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4670 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4673 restart:
4674 r = x86_emulate_insn(ctxt);
4676 if (r == EMULATION_INTERCEPTED)
4677 return EMULATE_DONE;
4679 if (r == EMULATION_FAILED) {
4680 if (reexecute_instruction(vcpu, cr2))
4681 return EMULATE_DONE;
4683 return handle_emulation_failure(vcpu);
4686 if (ctxt->have_exception) {
4687 inject_emulated_exception(vcpu);
4688 r = EMULATE_DONE;
4689 } else if (vcpu->arch.pio.count) {
4690 if (!vcpu->arch.pio.in)
4691 vcpu->arch.pio.count = 0;
4692 else
4693 writeback = false;
4694 r = EMULATE_DO_MMIO;
4695 } else if (vcpu->mmio_needed) {
4696 if (!vcpu->mmio_is_write)
4697 writeback = false;
4698 r = EMULATE_DO_MMIO;
4699 } else if (r == EMULATION_RESTART)
4700 goto restart;
4701 else
4702 r = EMULATE_DONE;
4704 if (writeback) {
4705 toggle_interruptibility(vcpu, ctxt->interruptibility);
4706 kvm_set_rflags(vcpu, ctxt->eflags);
4707 kvm_make_request(KVM_REQ_EVENT, vcpu);
4708 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4709 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4710 kvm_rip_write(vcpu, ctxt->eip);
4711 } else
4712 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4714 return r;
4716 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4718 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4720 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4721 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4722 size, port, &val, 1);
4723 /* do not return to emulator after return from userspace */
4724 vcpu->arch.pio.count = 0;
4725 return ret;
4727 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4729 static void tsc_bad(void *info)
4731 __this_cpu_write(cpu_tsc_khz, 0);
4734 static void tsc_khz_changed(void *data)
4736 struct cpufreq_freqs *freq = data;
4737 unsigned long khz = 0;
4739 if (data)
4740 khz = freq->new;
4741 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4742 khz = cpufreq_quick_get(raw_smp_processor_id());
4743 if (!khz)
4744 khz = tsc_khz;
4745 __this_cpu_write(cpu_tsc_khz, khz);
4748 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4749 void *data)
4751 struct cpufreq_freqs *freq = data;
4752 struct kvm *kvm;
4753 struct kvm_vcpu *vcpu;
4754 int i, send_ipi = 0;
4757 * We allow guests to temporarily run on slowing clocks,
4758 * provided we notify them after, or to run on accelerating
4759 * clocks, provided we notify them before. Thus time never
4760 * goes backwards.
4762 * However, we have a problem. We can't atomically update
4763 * the frequency of a given CPU from this function; it is
4764 * merely a notifier, which can be called from any CPU.
4765 * Changing the TSC frequency at arbitrary points in time
4766 * requires a recomputation of local variables related to
4767 * the TSC for each VCPU. We must flag these local variables
4768 * to be updated and be sure the update takes place with the
4769 * new frequency before any guests proceed.
4771 * Unfortunately, the combination of hotplug CPU and frequency
4772 * change creates an intractable locking scenario; the order
4773 * of when these callouts happen is undefined with respect to
4774 * CPU hotplug, and they can race with each other. As such,
4775 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4776 * undefined; you can actually have a CPU frequency change take
4777 * place in between the computation of X and the setting of the
4778 * variable. To protect against this problem, all updates of
4779 * the per_cpu tsc_khz variable are done in an interrupt
4780 * protected IPI, and all callers wishing to update the value
4781 * must wait for a synchronous IPI to complete (which is trivial
4782 * if the caller is on the CPU already). This establishes the
4783 * necessary total order on variable updates.
4785 * Note that because a guest time update may take place
4786 * anytime after the setting of the VCPU's request bit, the
4787 * correct TSC value must be set before the request. However,
4788 * to ensure the update actually makes it to any guest which
4789 * starts running in hardware virtualization between the set
4790 * and the acquisition of the spinlock, we must also ping the
4791 * CPU after setting the request bit.
4795 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4796 return 0;
4797 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4798 return 0;
4800 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4802 raw_spin_lock(&kvm_lock);
4803 list_for_each_entry(kvm, &vm_list, vm_list) {
4804 kvm_for_each_vcpu(i, vcpu, kvm) {
4805 if (vcpu->cpu != freq->cpu)
4806 continue;
4807 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4808 if (vcpu->cpu != smp_processor_id())
4809 send_ipi = 1;
4812 raw_spin_unlock(&kvm_lock);
4814 if (freq->old < freq->new && send_ipi) {
4816 * We upscale the frequency. Must make the guest
4817 * doesn't see old kvmclock values while running with
4818 * the new frequency, otherwise we risk the guest sees
4819 * time go backwards.
4821 * In case we update the frequency for another cpu
4822 * (which might be in guest context) send an interrupt
4823 * to kick the cpu out of guest context. Next time
4824 * guest context is entered kvmclock will be updated,
4825 * so the guest will not see stale values.
4827 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4829 return 0;
4832 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4833 .notifier_call = kvmclock_cpufreq_notifier
4836 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4837 unsigned long action, void *hcpu)
4839 unsigned int cpu = (unsigned long)hcpu;
4841 switch (action) {
4842 case CPU_ONLINE:
4843 case CPU_DOWN_FAILED:
4844 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4845 break;
4846 case CPU_DOWN_PREPARE:
4847 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4848 break;
4850 return NOTIFY_OK;
4853 static struct notifier_block kvmclock_cpu_notifier_block = {
4854 .notifier_call = kvmclock_cpu_notifier,
4855 .priority = -INT_MAX
4858 static void kvm_timer_init(void)
4860 int cpu;
4862 max_tsc_khz = tsc_khz;
4863 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4864 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4865 #ifdef CONFIG_CPU_FREQ
4866 struct cpufreq_policy policy;
4867 memset(&policy, 0, sizeof(policy));
4868 cpu = get_cpu();
4869 cpufreq_get_policy(&policy, cpu);
4870 if (policy.cpuinfo.max_freq)
4871 max_tsc_khz = policy.cpuinfo.max_freq;
4872 put_cpu();
4873 #endif
4874 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4875 CPUFREQ_TRANSITION_NOTIFIER);
4877 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4878 for_each_online_cpu(cpu)
4879 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4882 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4884 static int kvm_is_in_guest(void)
4886 return percpu_read(current_vcpu) != NULL;
4889 static int kvm_is_user_mode(void)
4891 int user_mode = 3;
4893 if (percpu_read(current_vcpu))
4894 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4896 return user_mode != 0;
4899 static unsigned long kvm_get_guest_ip(void)
4901 unsigned long ip = 0;
4903 if (percpu_read(current_vcpu))
4904 ip = kvm_rip_read(percpu_read(current_vcpu));
4906 return ip;
4909 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4910 .is_in_guest = kvm_is_in_guest,
4911 .is_user_mode = kvm_is_user_mode,
4912 .get_guest_ip = kvm_get_guest_ip,
4915 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4917 percpu_write(current_vcpu, vcpu);
4919 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4921 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4923 percpu_write(current_vcpu, NULL);
4925 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4927 int kvm_arch_init(void *opaque)
4929 int r;
4930 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4932 if (kvm_x86_ops) {
4933 printk(KERN_ERR "kvm: already loaded the other module\n");
4934 r = -EEXIST;
4935 goto out;
4938 if (!ops->cpu_has_kvm_support()) {
4939 printk(KERN_ERR "kvm: no hardware support\n");
4940 r = -EOPNOTSUPP;
4941 goto out;
4943 if (ops->disabled_by_bios()) {
4944 printk(KERN_ERR "kvm: disabled by bios\n");
4945 r = -EOPNOTSUPP;
4946 goto out;
4949 r = kvm_mmu_module_init();
4950 if (r)
4951 goto out;
4953 kvm_init_msr_list();
4955 kvm_x86_ops = ops;
4956 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4957 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4958 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4960 kvm_timer_init();
4962 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4964 if (cpu_has_xsave)
4965 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4967 return 0;
4969 out:
4970 return r;
4973 void kvm_arch_exit(void)
4975 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4977 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4978 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4979 CPUFREQ_TRANSITION_NOTIFIER);
4980 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4981 kvm_x86_ops = NULL;
4982 kvm_mmu_module_exit();
4985 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4987 ++vcpu->stat.halt_exits;
4988 if (irqchip_in_kernel(vcpu->kvm)) {
4989 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4990 return 1;
4991 } else {
4992 vcpu->run->exit_reason = KVM_EXIT_HLT;
4993 return 0;
4996 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4998 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4999 unsigned long a1)
5001 if (is_long_mode(vcpu))
5002 return a0;
5003 else
5004 return a0 | ((gpa_t)a1 << 32);
5007 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5009 u64 param, ingpa, outgpa, ret;
5010 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5011 bool fast, longmode;
5012 int cs_db, cs_l;
5015 * hypercall generates UD from non zero cpl and real mode
5016 * per HYPER-V spec
5018 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5019 kvm_queue_exception(vcpu, UD_VECTOR);
5020 return 0;
5023 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5024 longmode = is_long_mode(vcpu) && cs_l == 1;
5026 if (!longmode) {
5027 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5028 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5029 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5030 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5031 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5032 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5034 #ifdef CONFIG_X86_64
5035 else {
5036 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5037 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5038 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5040 #endif
5042 code = param & 0xffff;
5043 fast = (param >> 16) & 0x1;
5044 rep_cnt = (param >> 32) & 0xfff;
5045 rep_idx = (param >> 48) & 0xfff;
5047 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5049 switch (code) {
5050 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5051 kvm_vcpu_on_spin(vcpu);
5052 break;
5053 default:
5054 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5055 break;
5058 ret = res | (((u64)rep_done & 0xfff) << 32);
5059 if (longmode) {
5060 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5061 } else {
5062 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5063 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5066 return 1;
5069 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5071 unsigned long nr, a0, a1, a2, a3, ret;
5072 int r = 1;
5074 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5075 return kvm_hv_hypercall(vcpu);
5077 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5078 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5079 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5080 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5081 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5083 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5085 if (!is_long_mode(vcpu)) {
5086 nr &= 0xFFFFFFFF;
5087 a0 &= 0xFFFFFFFF;
5088 a1 &= 0xFFFFFFFF;
5089 a2 &= 0xFFFFFFFF;
5090 a3 &= 0xFFFFFFFF;
5093 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5094 ret = -KVM_EPERM;
5095 goto out;
5098 switch (nr) {
5099 case KVM_HC_VAPIC_POLL_IRQ:
5100 ret = 0;
5101 break;
5102 case KVM_HC_MMU_OP:
5103 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
5104 break;
5105 default:
5106 ret = -KVM_ENOSYS;
5107 break;
5109 out:
5110 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5111 ++vcpu->stat.hypercalls;
5112 return r;
5114 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5116 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5118 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5119 char instruction[3];
5120 unsigned long rip = kvm_rip_read(vcpu);
5123 * Blow out the MMU to ensure that no other VCPU has an active mapping
5124 * to ensure that the updated hypercall appears atomically across all
5125 * VCPUs.
5127 kvm_mmu_zap_all(vcpu->kvm);
5129 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5131 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5134 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
5136 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
5137 int j, nent = vcpu->arch.cpuid_nent;
5139 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
5140 /* when no next entry is found, the current entry[i] is reselected */
5141 for (j = i + 1; ; j = (j + 1) % nent) {
5142 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
5143 if (ej->function == e->function) {
5144 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
5145 return j;
5148 return 0; /* silence gcc, even though control never reaches here */
5151 /* find an entry with matching function, matching index (if needed), and that
5152 * should be read next (if it's stateful) */
5153 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
5154 u32 function, u32 index)
5156 if (e->function != function)
5157 return 0;
5158 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
5159 return 0;
5160 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
5161 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
5162 return 0;
5163 return 1;
5166 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
5167 u32 function, u32 index)
5169 int i;
5170 struct kvm_cpuid_entry2 *best = NULL;
5172 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
5173 struct kvm_cpuid_entry2 *e;
5175 e = &vcpu->arch.cpuid_entries[i];
5176 if (is_matching_cpuid_entry(e, function, index)) {
5177 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
5178 move_to_next_stateful_cpuid_entry(vcpu, i);
5179 best = e;
5180 break;
5183 return best;
5185 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
5187 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
5189 struct kvm_cpuid_entry2 *best;
5191 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
5192 if (!best || best->eax < 0x80000008)
5193 goto not_found;
5194 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
5195 if (best)
5196 return best->eax & 0xff;
5197 not_found:
5198 return 36;
5202 * If no match is found, check whether we exceed the vCPU's limit
5203 * and return the content of the highest valid _standard_ leaf instead.
5204 * This is to satisfy the CPUID specification.
5206 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
5207 u32 function, u32 index)
5209 struct kvm_cpuid_entry2 *maxlevel;
5211 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
5212 if (!maxlevel || maxlevel->eax >= function)
5213 return NULL;
5214 if (function & 0x80000000) {
5215 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
5216 if (!maxlevel)
5217 return NULL;
5219 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
5222 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5224 u32 function, index;
5225 struct kvm_cpuid_entry2 *best;
5227 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5228 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5229 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5230 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5231 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5232 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5233 best = kvm_find_cpuid_entry(vcpu, function, index);
5235 if (!best)
5236 best = check_cpuid_limit(vcpu, function, index);
5238 if (best) {
5239 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5240 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5241 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5242 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5244 kvm_x86_ops->skip_emulated_instruction(vcpu);
5245 trace_kvm_cpuid(function,
5246 kvm_register_read(vcpu, VCPU_REGS_RAX),
5247 kvm_register_read(vcpu, VCPU_REGS_RBX),
5248 kvm_register_read(vcpu, VCPU_REGS_RCX),
5249 kvm_register_read(vcpu, VCPU_REGS_RDX));
5251 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5254 * Check if userspace requested an interrupt window, and that the
5255 * interrupt window is open.
5257 * No need to exit to userspace if we already have an interrupt queued.
5259 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5261 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5262 vcpu->run->request_interrupt_window &&
5263 kvm_arch_interrupt_allowed(vcpu));
5266 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5268 struct kvm_run *kvm_run = vcpu->run;
5270 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5271 kvm_run->cr8 = kvm_get_cr8(vcpu);
5272 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5273 if (irqchip_in_kernel(vcpu->kvm))
5274 kvm_run->ready_for_interrupt_injection = 1;
5275 else
5276 kvm_run->ready_for_interrupt_injection =
5277 kvm_arch_interrupt_allowed(vcpu) &&
5278 !kvm_cpu_has_interrupt(vcpu) &&
5279 !kvm_event_needs_reinjection(vcpu);
5282 static void vapic_enter(struct kvm_vcpu *vcpu)
5284 struct kvm_lapic *apic = vcpu->arch.apic;
5285 struct page *page;
5287 if (!apic || !apic->vapic_addr)
5288 return;
5290 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5292 vcpu->arch.apic->vapic_page = page;
5295 static void vapic_exit(struct kvm_vcpu *vcpu)
5297 struct kvm_lapic *apic = vcpu->arch.apic;
5298 int idx;
5300 if (!apic || !apic->vapic_addr)
5301 return;
5303 idx = srcu_read_lock(&vcpu->kvm->srcu);
5304 kvm_release_page_dirty(apic->vapic_page);
5305 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5306 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5309 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5311 int max_irr, tpr;
5313 if (!kvm_x86_ops->update_cr8_intercept)
5314 return;
5316 if (!vcpu->arch.apic)
5317 return;
5319 if (!vcpu->arch.apic->vapic_addr)
5320 max_irr = kvm_lapic_find_highest_irr(vcpu);
5321 else
5322 max_irr = -1;
5324 if (max_irr != -1)
5325 max_irr >>= 4;
5327 tpr = kvm_lapic_get_cr8(vcpu);
5329 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5332 static void inject_pending_event(struct kvm_vcpu *vcpu)
5334 /* try to reinject previous events if any */
5335 if (vcpu->arch.exception.pending) {
5336 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5337 vcpu->arch.exception.has_error_code,
5338 vcpu->arch.exception.error_code);
5339 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5340 vcpu->arch.exception.has_error_code,
5341 vcpu->arch.exception.error_code,
5342 vcpu->arch.exception.reinject);
5343 return;
5346 if (vcpu->arch.nmi_injected) {
5347 kvm_x86_ops->set_nmi(vcpu);
5348 return;
5351 if (vcpu->arch.interrupt.pending) {
5352 kvm_x86_ops->set_irq(vcpu);
5353 return;
5356 /* try to inject new event if pending */
5357 if (vcpu->arch.nmi_pending) {
5358 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5359 vcpu->arch.nmi_pending = false;
5360 vcpu->arch.nmi_injected = true;
5361 kvm_x86_ops->set_nmi(vcpu);
5363 } else if (kvm_cpu_has_interrupt(vcpu)) {
5364 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5365 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5366 false);
5367 kvm_x86_ops->set_irq(vcpu);
5372 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5374 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5375 !vcpu->guest_xcr0_loaded) {
5376 /* kvm_set_xcr() also depends on this */
5377 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5378 vcpu->guest_xcr0_loaded = 1;
5382 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5384 if (vcpu->guest_xcr0_loaded) {
5385 if (vcpu->arch.xcr0 != host_xcr0)
5386 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5387 vcpu->guest_xcr0_loaded = 0;
5391 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5393 int r;
5394 bool nmi_pending;
5395 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5396 vcpu->run->request_interrupt_window;
5398 if (vcpu->requests) {
5399 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5400 kvm_mmu_unload(vcpu);
5401 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5402 __kvm_migrate_timers(vcpu);
5403 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5404 r = kvm_guest_time_update(vcpu);
5405 if (unlikely(r))
5406 goto out;
5408 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5409 kvm_mmu_sync_roots(vcpu);
5410 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5411 kvm_x86_ops->tlb_flush(vcpu);
5412 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5413 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5414 r = 0;
5415 goto out;
5417 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5418 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5419 r = 0;
5420 goto out;
5422 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5423 vcpu->fpu_active = 0;
5424 kvm_x86_ops->fpu_deactivate(vcpu);
5426 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5427 /* Page is swapped out. Do synthetic halt */
5428 vcpu->arch.apf.halted = true;
5429 r = 1;
5430 goto out;
5434 r = kvm_mmu_reload(vcpu);
5435 if (unlikely(r))
5436 goto out;
5439 * An NMI can be injected between local nmi_pending read and
5440 * vcpu->arch.nmi_pending read inside inject_pending_event().
5441 * But in that case, KVM_REQ_EVENT will be set, which makes
5442 * the race described above benign.
5444 nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
5446 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5447 inject_pending_event(vcpu);
5449 /* enable NMI/IRQ window open exits if needed */
5450 if (nmi_pending)
5451 kvm_x86_ops->enable_nmi_window(vcpu);
5452 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5453 kvm_x86_ops->enable_irq_window(vcpu);
5455 if (kvm_lapic_enabled(vcpu)) {
5456 update_cr8_intercept(vcpu);
5457 kvm_lapic_sync_to_vapic(vcpu);
5461 preempt_disable();
5463 kvm_x86_ops->prepare_guest_switch(vcpu);
5464 if (vcpu->fpu_active)
5465 kvm_load_guest_fpu(vcpu);
5466 kvm_load_guest_xcr0(vcpu);
5468 vcpu->mode = IN_GUEST_MODE;
5470 /* We should set ->mode before check ->requests,
5471 * see the comment in make_all_cpus_request.
5473 smp_mb();
5475 local_irq_disable();
5477 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5478 || need_resched() || signal_pending(current)) {
5479 vcpu->mode = OUTSIDE_GUEST_MODE;
5480 smp_wmb();
5481 local_irq_enable();
5482 preempt_enable();
5483 kvm_x86_ops->cancel_injection(vcpu);
5484 r = 1;
5485 goto out;
5488 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5490 kvm_guest_enter();
5492 if (unlikely(vcpu->arch.switch_db_regs)) {
5493 set_debugreg(0, 7);
5494 set_debugreg(vcpu->arch.eff_db[0], 0);
5495 set_debugreg(vcpu->arch.eff_db[1], 1);
5496 set_debugreg(vcpu->arch.eff_db[2], 2);
5497 set_debugreg(vcpu->arch.eff_db[3], 3);
5500 trace_kvm_entry(vcpu->vcpu_id);
5501 kvm_x86_ops->run(vcpu);
5504 * If the guest has used debug registers, at least dr7
5505 * will be disabled while returning to the host.
5506 * If we don't have active breakpoints in the host, we don't
5507 * care about the messed up debug address registers. But if
5508 * we have some of them active, restore the old state.
5510 if (hw_breakpoint_active())
5511 hw_breakpoint_restore();
5513 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5515 vcpu->mode = OUTSIDE_GUEST_MODE;
5516 smp_wmb();
5517 local_irq_enable();
5519 ++vcpu->stat.exits;
5522 * We must have an instruction between local_irq_enable() and
5523 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5524 * the interrupt shadow. The stat.exits increment will do nicely.
5525 * But we need to prevent reordering, hence this barrier():
5527 barrier();
5529 kvm_guest_exit();
5531 preempt_enable();
5533 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5536 * Profile KVM exit RIPs:
5538 if (unlikely(prof_on == KVM_PROFILING)) {
5539 unsigned long rip = kvm_rip_read(vcpu);
5540 profile_hit(KVM_PROFILING, (void *)rip);
5544 kvm_lapic_sync_from_vapic(vcpu);
5546 r = kvm_x86_ops->handle_exit(vcpu);
5547 out:
5548 return r;
5552 static int __vcpu_run(struct kvm_vcpu *vcpu)
5554 int r;
5555 struct kvm *kvm = vcpu->kvm;
5557 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5558 pr_debug("vcpu %d received sipi with vector # %x\n",
5559 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5560 kvm_lapic_reset(vcpu);
5561 r = kvm_arch_vcpu_reset(vcpu);
5562 if (r)
5563 return r;
5564 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5567 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5568 vapic_enter(vcpu);
5570 r = 1;
5571 while (r > 0) {
5572 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5573 !vcpu->arch.apf.halted)
5574 r = vcpu_enter_guest(vcpu);
5575 else {
5576 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5577 kvm_vcpu_block(vcpu);
5578 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5579 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5581 switch(vcpu->arch.mp_state) {
5582 case KVM_MP_STATE_HALTED:
5583 vcpu->arch.mp_state =
5584 KVM_MP_STATE_RUNNABLE;
5585 case KVM_MP_STATE_RUNNABLE:
5586 vcpu->arch.apf.halted = false;
5587 break;
5588 case KVM_MP_STATE_SIPI_RECEIVED:
5589 default:
5590 r = -EINTR;
5591 break;
5596 if (r <= 0)
5597 break;
5599 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5600 if (kvm_cpu_has_pending_timer(vcpu))
5601 kvm_inject_pending_timer_irqs(vcpu);
5603 if (dm_request_for_irq_injection(vcpu)) {
5604 r = -EINTR;
5605 vcpu->run->exit_reason = KVM_EXIT_INTR;
5606 ++vcpu->stat.request_irq_exits;
5609 kvm_check_async_pf_completion(vcpu);
5611 if (signal_pending(current)) {
5612 r = -EINTR;
5613 vcpu->run->exit_reason = KVM_EXIT_INTR;
5614 ++vcpu->stat.signal_exits;
5616 if (need_resched()) {
5617 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5618 kvm_resched(vcpu);
5619 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5623 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5625 vapic_exit(vcpu);
5627 return r;
5630 static int complete_mmio(struct kvm_vcpu *vcpu)
5632 struct kvm_run *run = vcpu->run;
5633 int r;
5635 if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5636 return 1;
5638 if (vcpu->mmio_needed) {
5639 vcpu->mmio_needed = 0;
5640 if (!vcpu->mmio_is_write)
5641 memcpy(vcpu->mmio_data + vcpu->mmio_index,
5642 run->mmio.data, 8);
5643 vcpu->mmio_index += 8;
5644 if (vcpu->mmio_index < vcpu->mmio_size) {
5645 run->exit_reason = KVM_EXIT_MMIO;
5646 run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5647 memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5648 run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5649 run->mmio.is_write = vcpu->mmio_is_write;
5650 vcpu->mmio_needed = 1;
5651 return 0;
5653 if (vcpu->mmio_is_write)
5654 return 1;
5655 vcpu->mmio_read_completed = 1;
5657 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5658 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5659 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5660 if (r != EMULATE_DONE)
5661 return 0;
5662 return 1;
5665 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5667 int r;
5668 sigset_t sigsaved;
5670 if (!tsk_used_math(current) && init_fpu(current))
5671 return -ENOMEM;
5673 if (vcpu->sigset_active)
5674 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5676 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5677 kvm_vcpu_block(vcpu);
5678 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5679 r = -EAGAIN;
5680 goto out;
5683 /* re-sync apic's tpr */
5684 if (!irqchip_in_kernel(vcpu->kvm)) {
5685 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5686 r = -EINVAL;
5687 goto out;
5691 r = complete_mmio(vcpu);
5692 if (r <= 0)
5693 goto out;
5695 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5696 kvm_register_write(vcpu, VCPU_REGS_RAX,
5697 kvm_run->hypercall.ret);
5699 r = __vcpu_run(vcpu);
5701 out:
5702 post_kvm_run_save(vcpu);
5703 if (vcpu->sigset_active)
5704 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5706 return r;
5709 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5711 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5713 * We are here if userspace calls get_regs() in the middle of
5714 * instruction emulation. Registers state needs to be copied
5715 * back from emulation context to vcpu. Usrapace shouldn't do
5716 * that usually, but some bad designed PV devices (vmware
5717 * backdoor interface) need this to work
5719 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5720 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5721 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5723 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5724 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5725 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5726 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5727 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5728 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5729 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5730 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5731 #ifdef CONFIG_X86_64
5732 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5733 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5734 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5735 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5736 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5737 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5738 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5739 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5740 #endif
5742 regs->rip = kvm_rip_read(vcpu);
5743 regs->rflags = kvm_get_rflags(vcpu);
5745 return 0;
5748 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5750 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5751 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5753 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5754 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5755 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5756 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5757 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5758 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5759 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5760 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5761 #ifdef CONFIG_X86_64
5762 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5763 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5764 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5765 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5766 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5767 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5768 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5769 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5770 #endif
5772 kvm_rip_write(vcpu, regs->rip);
5773 kvm_set_rflags(vcpu, regs->rflags);
5775 vcpu->arch.exception.pending = false;
5777 kvm_make_request(KVM_REQ_EVENT, vcpu);
5779 return 0;
5782 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5784 struct kvm_segment cs;
5786 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5787 *db = cs.db;
5788 *l = cs.l;
5790 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5792 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5793 struct kvm_sregs *sregs)
5795 struct desc_ptr dt;
5797 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5798 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5799 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5800 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5801 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5802 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5804 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5805 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5807 kvm_x86_ops->get_idt(vcpu, &dt);
5808 sregs->idt.limit = dt.size;
5809 sregs->idt.base = dt.address;
5810 kvm_x86_ops->get_gdt(vcpu, &dt);
5811 sregs->gdt.limit = dt.size;
5812 sregs->gdt.base = dt.address;
5814 sregs->cr0 = kvm_read_cr0(vcpu);
5815 sregs->cr2 = vcpu->arch.cr2;
5816 sregs->cr3 = kvm_read_cr3(vcpu);
5817 sregs->cr4 = kvm_read_cr4(vcpu);
5818 sregs->cr8 = kvm_get_cr8(vcpu);
5819 sregs->efer = vcpu->arch.efer;
5820 sregs->apic_base = kvm_get_apic_base(vcpu);
5822 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5824 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5825 set_bit(vcpu->arch.interrupt.nr,
5826 (unsigned long *)sregs->interrupt_bitmap);
5828 return 0;
5831 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5832 struct kvm_mp_state *mp_state)
5834 mp_state->mp_state = vcpu->arch.mp_state;
5835 return 0;
5838 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5839 struct kvm_mp_state *mp_state)
5841 vcpu->arch.mp_state = mp_state->mp_state;
5842 kvm_make_request(KVM_REQ_EVENT, vcpu);
5843 return 0;
5846 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5847 bool has_error_code, u32 error_code)
5849 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5850 int ret;
5852 init_emulate_ctxt(vcpu);
5854 ret = emulator_task_switch(ctxt, tss_selector, reason,
5855 has_error_code, error_code);
5857 if (ret)
5858 return EMULATE_FAIL;
5860 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5861 kvm_rip_write(vcpu, ctxt->eip);
5862 kvm_set_rflags(vcpu, ctxt->eflags);
5863 kvm_make_request(KVM_REQ_EVENT, vcpu);
5864 return EMULATE_DONE;
5866 EXPORT_SYMBOL_GPL(kvm_task_switch);
5868 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5869 struct kvm_sregs *sregs)
5871 int mmu_reset_needed = 0;
5872 int pending_vec, max_bits, idx;
5873 struct desc_ptr dt;
5875 dt.size = sregs->idt.limit;
5876 dt.address = sregs->idt.base;
5877 kvm_x86_ops->set_idt(vcpu, &dt);
5878 dt.size = sregs->gdt.limit;
5879 dt.address = sregs->gdt.base;
5880 kvm_x86_ops->set_gdt(vcpu, &dt);
5882 vcpu->arch.cr2 = sregs->cr2;
5883 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5884 vcpu->arch.cr3 = sregs->cr3;
5885 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5887 kvm_set_cr8(vcpu, sregs->cr8);
5889 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5890 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5891 kvm_set_apic_base(vcpu, sregs->apic_base);
5893 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5894 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5895 vcpu->arch.cr0 = sregs->cr0;
5897 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5898 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5899 if (sregs->cr4 & X86_CR4_OSXSAVE)
5900 update_cpuid(vcpu);
5902 idx = srcu_read_lock(&vcpu->kvm->srcu);
5903 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5904 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5905 mmu_reset_needed = 1;
5907 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5909 if (mmu_reset_needed)
5910 kvm_mmu_reset_context(vcpu);
5912 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5913 pending_vec = find_first_bit(
5914 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5915 if (pending_vec < max_bits) {
5916 kvm_queue_interrupt(vcpu, pending_vec, false);
5917 pr_debug("Set back pending irq %d\n", pending_vec);
5920 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5921 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5922 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5923 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5924 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5925 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5927 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5928 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5930 update_cr8_intercept(vcpu);
5932 /* Older userspace won't unhalt the vcpu on reset. */
5933 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5934 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5935 !is_protmode(vcpu))
5936 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5938 kvm_make_request(KVM_REQ_EVENT, vcpu);
5940 return 0;
5943 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5944 struct kvm_guest_debug *dbg)
5946 unsigned long rflags;
5947 int i, r;
5949 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5950 r = -EBUSY;
5951 if (vcpu->arch.exception.pending)
5952 goto out;
5953 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5954 kvm_queue_exception(vcpu, DB_VECTOR);
5955 else
5956 kvm_queue_exception(vcpu, BP_VECTOR);
5960 * Read rflags as long as potentially injected trace flags are still
5961 * filtered out.
5963 rflags = kvm_get_rflags(vcpu);
5965 vcpu->guest_debug = dbg->control;
5966 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5967 vcpu->guest_debug = 0;
5969 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5970 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5971 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5972 vcpu->arch.switch_db_regs =
5973 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5974 } else {
5975 for (i = 0; i < KVM_NR_DB_REGS; i++)
5976 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5977 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5980 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5981 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5982 get_segment_base(vcpu, VCPU_SREG_CS);
5985 * Trigger an rflags update that will inject or remove the trace
5986 * flags.
5988 kvm_set_rflags(vcpu, rflags);
5990 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5992 r = 0;
5994 out:
5996 return r;
6000 * Translate a guest virtual address to a guest physical address.
6002 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6003 struct kvm_translation *tr)
6005 unsigned long vaddr = tr->linear_address;
6006 gpa_t gpa;
6007 int idx;
6009 idx = srcu_read_lock(&vcpu->kvm->srcu);
6010 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6011 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6012 tr->physical_address = gpa;
6013 tr->valid = gpa != UNMAPPED_GVA;
6014 tr->writeable = 1;
6015 tr->usermode = 0;
6017 return 0;
6020 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6022 struct i387_fxsave_struct *fxsave =
6023 &vcpu->arch.guest_fpu.state->fxsave;
6025 memcpy(fpu->fpr, fxsave->st_space, 128);
6026 fpu->fcw = fxsave->cwd;
6027 fpu->fsw = fxsave->swd;
6028 fpu->ftwx = fxsave->twd;
6029 fpu->last_opcode = fxsave->fop;
6030 fpu->last_ip = fxsave->rip;
6031 fpu->last_dp = fxsave->rdp;
6032 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6034 return 0;
6037 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6039 struct i387_fxsave_struct *fxsave =
6040 &vcpu->arch.guest_fpu.state->fxsave;
6042 memcpy(fxsave->st_space, fpu->fpr, 128);
6043 fxsave->cwd = fpu->fcw;
6044 fxsave->swd = fpu->fsw;
6045 fxsave->twd = fpu->ftwx;
6046 fxsave->fop = fpu->last_opcode;
6047 fxsave->rip = fpu->last_ip;
6048 fxsave->rdp = fpu->last_dp;
6049 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6051 return 0;
6054 int fx_init(struct kvm_vcpu *vcpu)
6056 int err;
6058 err = fpu_alloc(&vcpu->arch.guest_fpu);
6059 if (err)
6060 return err;
6062 fpu_finit(&vcpu->arch.guest_fpu);
6065 * Ensure guest xcr0 is valid for loading
6067 vcpu->arch.xcr0 = XSTATE_FP;
6069 vcpu->arch.cr0 |= X86_CR0_ET;
6071 return 0;
6073 EXPORT_SYMBOL_GPL(fx_init);
6075 static void fx_free(struct kvm_vcpu *vcpu)
6077 fpu_free(&vcpu->arch.guest_fpu);
6080 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6082 if (vcpu->guest_fpu_loaded)
6083 return;
6086 * Restore all possible states in the guest,
6087 * and assume host would use all available bits.
6088 * Guest xcr0 would be loaded later.
6090 kvm_put_guest_xcr0(vcpu);
6091 vcpu->guest_fpu_loaded = 1;
6092 unlazy_fpu(current);
6093 fpu_restore_checking(&vcpu->arch.guest_fpu);
6094 trace_kvm_fpu(1);
6097 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6099 kvm_put_guest_xcr0(vcpu);
6101 if (!vcpu->guest_fpu_loaded)
6102 return;
6104 vcpu->guest_fpu_loaded = 0;
6105 fpu_save_init(&vcpu->arch.guest_fpu);
6106 ++vcpu->stat.fpu_reload;
6107 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6108 trace_kvm_fpu(0);
6111 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6113 kvmclock_reset(vcpu);
6115 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6116 fx_free(vcpu);
6117 kvm_x86_ops->vcpu_free(vcpu);
6120 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6121 unsigned int id)
6123 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6124 printk_once(KERN_WARNING
6125 "kvm: SMP vm created on host with unstable TSC; "
6126 "guest TSC will not be reliable\n");
6127 return kvm_x86_ops->vcpu_create(kvm, id);
6130 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6132 int r;
6134 vcpu->arch.mtrr_state.have_fixed = 1;
6135 vcpu_load(vcpu);
6136 r = kvm_arch_vcpu_reset(vcpu);
6137 if (r == 0)
6138 r = kvm_mmu_setup(vcpu);
6139 vcpu_put(vcpu);
6141 return r;
6144 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6146 vcpu->arch.apf.msr_val = 0;
6148 vcpu_load(vcpu);
6149 kvm_mmu_unload(vcpu);
6150 vcpu_put(vcpu);
6152 fx_free(vcpu);
6153 kvm_x86_ops->vcpu_free(vcpu);
6156 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6158 vcpu->arch.nmi_pending = false;
6159 vcpu->arch.nmi_injected = false;
6161 vcpu->arch.switch_db_regs = 0;
6162 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6163 vcpu->arch.dr6 = DR6_FIXED_1;
6164 vcpu->arch.dr7 = DR7_FIXED_1;
6166 kvm_make_request(KVM_REQ_EVENT, vcpu);
6167 vcpu->arch.apf.msr_val = 0;
6169 kvmclock_reset(vcpu);
6171 kvm_clear_async_pf_completion_queue(vcpu);
6172 kvm_async_pf_hash_reset(vcpu);
6173 vcpu->arch.apf.halted = false;
6175 return kvm_x86_ops->vcpu_reset(vcpu);
6178 int kvm_arch_hardware_enable(void *garbage)
6180 struct kvm *kvm;
6181 struct kvm_vcpu *vcpu;
6182 int i;
6184 kvm_shared_msr_cpu_online();
6185 list_for_each_entry(kvm, &vm_list, vm_list)
6186 kvm_for_each_vcpu(i, vcpu, kvm)
6187 if (vcpu->cpu == smp_processor_id())
6188 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6189 return kvm_x86_ops->hardware_enable(garbage);
6192 void kvm_arch_hardware_disable(void *garbage)
6194 kvm_x86_ops->hardware_disable(garbage);
6195 drop_user_return_notifiers(garbage);
6198 int kvm_arch_hardware_setup(void)
6200 return kvm_x86_ops->hardware_setup();
6203 void kvm_arch_hardware_unsetup(void)
6205 kvm_x86_ops->hardware_unsetup();
6208 void kvm_arch_check_processor_compat(void *rtn)
6210 kvm_x86_ops->check_processor_compatibility(rtn);
6213 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6215 struct page *page;
6216 struct kvm *kvm;
6217 int r;
6219 BUG_ON(vcpu->kvm == NULL);
6220 kvm = vcpu->kvm;
6222 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6223 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
6224 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
6225 vcpu->arch.mmu.translate_gpa = translate_gpa;
6226 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6227 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6228 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6229 else
6230 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6232 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6233 if (!page) {
6234 r = -ENOMEM;
6235 goto fail;
6237 vcpu->arch.pio_data = page_address(page);
6239 kvm_init_tsc_catchup(vcpu, max_tsc_khz);
6241 r = kvm_mmu_create(vcpu);
6242 if (r < 0)
6243 goto fail_free_pio_data;
6245 if (irqchip_in_kernel(kvm)) {
6246 r = kvm_create_lapic(vcpu);
6247 if (r < 0)
6248 goto fail_mmu_destroy;
6251 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6252 GFP_KERNEL);
6253 if (!vcpu->arch.mce_banks) {
6254 r = -ENOMEM;
6255 goto fail_free_lapic;
6257 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6259 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6260 goto fail_free_mce_banks;
6262 kvm_async_pf_hash_reset(vcpu);
6264 return 0;
6265 fail_free_mce_banks:
6266 kfree(vcpu->arch.mce_banks);
6267 fail_free_lapic:
6268 kvm_free_lapic(vcpu);
6269 fail_mmu_destroy:
6270 kvm_mmu_destroy(vcpu);
6271 fail_free_pio_data:
6272 free_page((unsigned long)vcpu->arch.pio_data);
6273 fail:
6274 return r;
6277 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6279 int idx;
6281 kfree(vcpu->arch.mce_banks);
6282 kvm_free_lapic(vcpu);
6283 idx = srcu_read_lock(&vcpu->kvm->srcu);
6284 kvm_mmu_destroy(vcpu);
6285 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6286 free_page((unsigned long)vcpu->arch.pio_data);
6289 int kvm_arch_init_vm(struct kvm *kvm)
6291 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6292 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6294 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6295 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6297 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6299 return 0;
6302 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6304 vcpu_load(vcpu);
6305 kvm_mmu_unload(vcpu);
6306 vcpu_put(vcpu);
6309 static void kvm_free_vcpus(struct kvm *kvm)
6311 unsigned int i;
6312 struct kvm_vcpu *vcpu;
6315 * Unpin any mmu pages first.
6317 kvm_for_each_vcpu(i, vcpu, kvm) {
6318 kvm_clear_async_pf_completion_queue(vcpu);
6319 kvm_unload_vcpu_mmu(vcpu);
6321 kvm_for_each_vcpu(i, vcpu, kvm)
6322 kvm_arch_vcpu_free(vcpu);
6324 mutex_lock(&kvm->lock);
6325 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6326 kvm->vcpus[i] = NULL;
6328 atomic_set(&kvm->online_vcpus, 0);
6329 mutex_unlock(&kvm->lock);
6332 void kvm_arch_sync_events(struct kvm *kvm)
6334 kvm_free_all_assigned_devices(kvm);
6335 kvm_free_pit(kvm);
6338 void kvm_arch_destroy_vm(struct kvm *kvm)
6340 kvm_iommu_unmap_guest(kvm);
6341 kfree(kvm->arch.vpic);
6342 kfree(kvm->arch.vioapic);
6343 kvm_free_vcpus(kvm);
6344 if (kvm->arch.apic_access_page)
6345 put_page(kvm->arch.apic_access_page);
6346 if (kvm->arch.ept_identity_pagetable)
6347 put_page(kvm->arch.ept_identity_pagetable);
6350 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6351 struct kvm_memory_slot *memslot,
6352 struct kvm_memory_slot old,
6353 struct kvm_userspace_memory_region *mem,
6354 int user_alloc)
6356 int npages = memslot->npages;
6357 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6359 /* Prevent internal slot pages from being moved by fork()/COW. */
6360 if (memslot->id >= KVM_MEMORY_SLOTS)
6361 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6363 /*To keep backward compatibility with older userspace,
6364 *x86 needs to hanlde !user_alloc case.
6366 if (!user_alloc) {
6367 if (npages && !old.rmap) {
6368 unsigned long userspace_addr;
6370 down_write(&current->mm->mmap_sem);
6371 userspace_addr = do_mmap(NULL, 0,
6372 npages * PAGE_SIZE,
6373 PROT_READ | PROT_WRITE,
6374 map_flags,
6376 up_write(&current->mm->mmap_sem);
6378 if (IS_ERR((void *)userspace_addr))
6379 return PTR_ERR((void *)userspace_addr);
6381 memslot->userspace_addr = userspace_addr;
6386 return 0;
6389 void kvm_arch_commit_memory_region(struct kvm *kvm,
6390 struct kvm_userspace_memory_region *mem,
6391 struct kvm_memory_slot old,
6392 int user_alloc)
6395 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6397 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6398 int ret;
6400 down_write(&current->mm->mmap_sem);
6401 ret = do_munmap(current->mm, old.userspace_addr,
6402 old.npages * PAGE_SIZE);
6403 up_write(&current->mm->mmap_sem);
6404 if (ret < 0)
6405 printk(KERN_WARNING
6406 "kvm_vm_ioctl_set_memory_region: "
6407 "failed to munmap memory\n");
6410 if (!kvm->arch.n_requested_mmu_pages)
6411 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6413 spin_lock(&kvm->mmu_lock);
6414 if (nr_mmu_pages)
6415 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6416 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6417 spin_unlock(&kvm->mmu_lock);
6420 void kvm_arch_flush_shadow(struct kvm *kvm)
6422 kvm_mmu_zap_all(kvm);
6423 kvm_reload_remote_mmus(kvm);
6426 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6428 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6429 !vcpu->arch.apf.halted)
6430 || !list_empty_careful(&vcpu->async_pf.done)
6431 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6432 || vcpu->arch.nmi_pending ||
6433 (kvm_arch_interrupt_allowed(vcpu) &&
6434 kvm_cpu_has_interrupt(vcpu));
6437 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6439 int me;
6440 int cpu = vcpu->cpu;
6442 if (waitqueue_active(&vcpu->wq)) {
6443 wake_up_interruptible(&vcpu->wq);
6444 ++vcpu->stat.halt_wakeup;
6447 me = get_cpu();
6448 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6449 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6450 smp_send_reschedule(cpu);
6451 put_cpu();
6454 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6456 return kvm_x86_ops->interrupt_allowed(vcpu);
6459 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6461 unsigned long current_rip = kvm_rip_read(vcpu) +
6462 get_segment_base(vcpu, VCPU_SREG_CS);
6464 return current_rip == linear_rip;
6466 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6468 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6470 unsigned long rflags;
6472 rflags = kvm_x86_ops->get_rflags(vcpu);
6473 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6474 rflags &= ~X86_EFLAGS_TF;
6475 return rflags;
6477 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6479 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6481 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6482 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6483 rflags |= X86_EFLAGS_TF;
6484 kvm_x86_ops->set_rflags(vcpu, rflags);
6485 kvm_make_request(KVM_REQ_EVENT, vcpu);
6487 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6489 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6491 int r;
6493 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6494 is_error_page(work->page))
6495 return;
6497 r = kvm_mmu_reload(vcpu);
6498 if (unlikely(r))
6499 return;
6501 if (!vcpu->arch.mmu.direct_map &&
6502 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6503 return;
6505 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6508 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6510 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6513 static inline u32 kvm_async_pf_next_probe(u32 key)
6515 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6518 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6520 u32 key = kvm_async_pf_hash_fn(gfn);
6522 while (vcpu->arch.apf.gfns[key] != ~0)
6523 key = kvm_async_pf_next_probe(key);
6525 vcpu->arch.apf.gfns[key] = gfn;
6528 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6530 int i;
6531 u32 key = kvm_async_pf_hash_fn(gfn);
6533 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6534 (vcpu->arch.apf.gfns[key] != gfn &&
6535 vcpu->arch.apf.gfns[key] != ~0); i++)
6536 key = kvm_async_pf_next_probe(key);
6538 return key;
6541 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6543 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6546 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6548 u32 i, j, k;
6550 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6551 while (true) {
6552 vcpu->arch.apf.gfns[i] = ~0;
6553 do {
6554 j = kvm_async_pf_next_probe(j);
6555 if (vcpu->arch.apf.gfns[j] == ~0)
6556 return;
6557 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6559 * k lies cyclically in ]i,j]
6560 * | i.k.j |
6561 * |....j i.k.| or |.k..j i...|
6563 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6564 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6565 i = j;
6569 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6572 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6573 sizeof(val));
6576 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6577 struct kvm_async_pf *work)
6579 struct x86_exception fault;
6581 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6582 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6584 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6585 (vcpu->arch.apf.send_user_only &&
6586 kvm_x86_ops->get_cpl(vcpu) == 0))
6587 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6588 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6589 fault.vector = PF_VECTOR;
6590 fault.error_code_valid = true;
6591 fault.error_code = 0;
6592 fault.nested_page_fault = false;
6593 fault.address = work->arch.token;
6594 kvm_inject_page_fault(vcpu, &fault);
6598 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6599 struct kvm_async_pf *work)
6601 struct x86_exception fault;
6603 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6604 if (is_error_page(work->page))
6605 work->arch.token = ~0; /* broadcast wakeup */
6606 else
6607 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6609 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6610 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6611 fault.vector = PF_VECTOR;
6612 fault.error_code_valid = true;
6613 fault.error_code = 0;
6614 fault.nested_page_fault = false;
6615 fault.address = work->arch.token;
6616 kvm_inject_page_fault(vcpu, &fault);
6618 vcpu->arch.apf.halted = false;
6621 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6623 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6624 return true;
6625 else
6626 return !kvm_event_needs_reinjection(vcpu) &&
6627 kvm_x86_ops->interrupt_allowed(vcpu);
6630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);