1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
137 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
138 * - Stratus87247: protect MDI control register manipulations
141 #include <linux/config.h>
142 #include <linux/module.h>
143 #include <linux/moduleparam.h>
144 #include <linux/kernel.h>
145 #include <linux/types.h>
146 #include <linux/slab.h>
147 #include <linux/delay.h>
148 #include <linux/init.h>
149 #include <linux/pci.h>
150 #include <linux/dma-mapping.h>
151 #include <linux/netdevice.h>
152 #include <linux/etherdevice.h>
153 #include <linux/mii.h>
154 #include <linux/if_vlan.h>
155 #include <linux/skbuff.h>
156 #include <linux/ethtool.h>
157 #include <linux/string.h>
158 #include <asm/unaligned.h>
161 #define DRV_NAME "e100"
162 #define DRV_EXT "-NAPI"
163 #define DRV_VERSION "3.5.10-k2"DRV_EXT
164 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
165 #define DRV_COPYRIGHT "Copyright(c) 1999-2005 Intel Corporation"
166 #define PFX DRV_NAME ": "
168 #define E100_WATCHDOG_PERIOD (2 * HZ)
169 #define E100_NAPI_WEIGHT 16
171 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
172 MODULE_AUTHOR(DRV_COPYRIGHT
);
173 MODULE_LICENSE("GPL");
174 MODULE_VERSION(DRV_VERSION
);
176 static int debug
= 3;
177 module_param(debug
, int, 0);
178 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
179 #define DPRINTK(nlevel, klevel, fmt, args...) \
180 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
181 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
182 __FUNCTION__ , ## args))
184 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
185 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
186 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
187 static struct pci_device_id e100_id_table
[] = {
188 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
189 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
190 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
191 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
192 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
193 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
194 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
195 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
197 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
198 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
199 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
200 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
201 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
205 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
206 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
207 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
208 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
209 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
210 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
214 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
215 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
216 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
217 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
218 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
219 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
220 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
221 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
222 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
223 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
224 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
225 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
226 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
227 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
228 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
231 MODULE_DEVICE_TABLE(pci
, e100_id_table
);
234 mac_82557_D100_A
= 0,
235 mac_82557_D100_B
= 1,
236 mac_82557_D100_C
= 2,
237 mac_82558_D101_A4
= 4,
238 mac_82558_D101_B0
= 5,
242 mac_82550_D102_C
= 13,
250 phy_100a
= 0x000003E0,
251 phy_100c
= 0x035002A8,
252 phy_82555_tx
= 0x015002A8,
253 phy_nsc_tx
= 0x5C002000,
254 phy_82562_et
= 0x033002A8,
255 phy_82562_em
= 0x032002A8,
256 phy_82562_ek
= 0x031002A8,
257 phy_82562_eh
= 0x017002A8,
258 phy_unknown
= 0xFFFFFFFF,
261 /* CSR (Control/Status Registers) */
286 RU_UNINITIALIZED
= -1,
290 stat_ack_not_ours
= 0x00,
291 stat_ack_sw_gen
= 0x04,
293 stat_ack_cu_idle
= 0x20,
294 stat_ack_frame_rx
= 0x40,
295 stat_ack_cu_cmd_done
= 0x80,
296 stat_ack_not_present
= 0xFF,
297 stat_ack_rx
= (stat_ack_sw_gen
| stat_ack_rnr
| stat_ack_frame_rx
),
298 stat_ack_tx
= (stat_ack_cu_idle
| stat_ack_cu_cmd_done
),
302 irq_mask_none
= 0x00,
310 ruc_load_base
= 0x06,
313 cuc_dump_addr
= 0x40,
314 cuc_dump_stats
= 0x50,
315 cuc_load_base
= 0x60,
316 cuc_dump_reset
= 0x70,
320 cuc_dump_complete
= 0x0000A005,
321 cuc_dump_reset_complete
= 0x0000A007,
325 software_reset
= 0x0000,
327 selective_reset
= 0x0002,
330 enum eeprom_ctrl_lo
{
338 mdi_write
= 0x04000000,
339 mdi_read
= 0x08000000,
340 mdi_ready
= 0x10000000,
350 enum eeprom_offsets
{
351 eeprom_cnfg_mdix
= 0x03,
353 eeprom_config_asf
= 0x0D,
354 eeprom_smbus_addr
= 0x90,
357 enum eeprom_cnfg_mdix
{
358 eeprom_mdix_enabled
= 0x0080,
362 eeprom_id_wol
= 0x0020,
365 enum eeprom_config_asf
{
371 cb_complete
= 0x8000,
400 struct rx
*next
, *prev
;
405 #if defined(__BIG_ENDIAN_BITFIELD)
411 /*0*/ u8
X(byte_count
:6, pad0
:2);
412 /*1*/ u8
X(X(rx_fifo_limit
:4, tx_fifo_limit
:3), pad1
:1);
413 /*2*/ u8 adaptive_ifs
;
414 /*3*/ u8
X(X(X(X(mwi_enable
:1, type_enable
:1), read_align_enable
:1),
415 term_write_cache_line
:1), pad3
:4);
416 /*4*/ u8
X(rx_dma_max_count
:7, pad4
:1);
417 /*5*/ u8
X(tx_dma_max_count
:7, dma_max_count_enable
:1);
418 /*6*/ u8
X(X(X(X(X(X(X(late_scb_update
:1, direct_rx_dma
:1),
419 tno_intr
:1), cna_intr
:1), standard_tcb
:1), standard_stat_counter
:1),
420 rx_discard_overruns
:1), rx_save_bad_frames
:1);
421 /*7*/ u8
X(X(X(X(X(rx_discard_short_frames
:1, tx_underrun_retry
:2),
422 pad7
:2), rx_extended_rfd
:1), tx_two_frames_in_fifo
:1),
424 /*8*/ u8
X(X(mii_mode
:1, pad8
:6), csma_disabled
:1);
425 /*9*/ u8
X(X(X(X(X(rx_tcpudp_checksum
:1, pad9
:3), vlan_arp_tco
:1),
426 link_status_wake
:1), arp_wake
:1), mcmatch_wake
:1);
427 /*10*/ u8
X(X(X(pad10
:3, no_source_addr_insertion
:1), preamble_length
:2),
429 /*11*/ u8
X(linear_priority
:3, pad11
:5);
430 /*12*/ u8
X(X(linear_priority_mode
:1, pad12
:3), ifs
:4);
431 /*13*/ u8 ip_addr_lo
;
432 /*14*/ u8 ip_addr_hi
;
433 /*15*/ u8
X(X(X(X(X(X(X(promiscuous_mode
:1, broadcast_disabled
:1),
434 wait_after_win
:1), pad15_1
:1), ignore_ul_bit
:1), crc_16_bit
:1),
435 pad15_2
:1), crs_or_cdt
:1);
436 /*16*/ u8 fc_delay_lo
;
437 /*17*/ u8 fc_delay_hi
;
438 /*18*/ u8
X(X(X(X(X(rx_stripping
:1, tx_padding
:1), rx_crc_transfer
:1),
439 rx_long_ok
:1), fc_priority_threshold
:3), pad18
:1);
440 /*19*/ u8
X(X(X(X(X(X(X(addr_wake
:1, magic_packet_disable
:1),
441 fc_disable
:1), fc_restop
:1), fc_restart
:1), fc_reject
:1),
442 full_duplex_force
:1), full_duplex_pin
:1);
443 /*20*/ u8
X(X(X(pad20_1
:5, fc_priority_location
:1), multi_ia
:1), pad20_2
:1);
444 /*21*/ u8
X(X(pad21_1
:3, multicast_all
:1), pad21_2
:4);
445 /*22*/ u8
X(X(rx_d102_mode
:1, rx_vlan_drop
:1), pad22
:6);
449 #define E100_MAX_MULTICAST_ADDRS 64
452 u8 addr
[E100_MAX_MULTICAST_ADDRS
* ETH_ALEN
+ 2/*pad*/];
455 /* Important: keep total struct u32-aligned */
456 #define UCODE_SIZE 134
463 u32 ucode
[UCODE_SIZE
];
464 struct config config
;
477 u32 dump_buffer_addr
;
479 struct cb
*next
, *prev
;
485 lb_none
= 0, lb_mac
= 1, lb_phy
= 3,
489 u32 tx_good_frames
, tx_max_collisions
, tx_late_collisions
,
490 tx_underruns
, tx_lost_crs
, tx_deferred
, tx_single_collisions
,
491 tx_multiple_collisions
, tx_total_collisions
;
492 u32 rx_good_frames
, rx_crc_errors
, rx_alignment_errors
,
493 rx_resource_errors
, rx_overrun_errors
, rx_cdt_errors
,
494 rx_short_frame_errors
;
495 u32 fc_xmt_pause
, fc_rcv_pause
, fc_rcv_unsupported
;
496 u16 xmt_tco_frames
, rcv_tco_frames
;
516 struct param_range rfds
;
517 struct param_range cbs
;
521 /* Begin: frequently used values: keep adjacent for cache effect */
522 u32 msg_enable ____cacheline_aligned
;
523 struct net_device
*netdev
;
524 struct pci_dev
*pdev
;
526 struct rx
*rxs ____cacheline_aligned
;
527 struct rx
*rx_to_use
;
528 struct rx
*rx_to_clean
;
529 struct rfd blank_rfd
;
530 enum ru_state ru_running
;
532 spinlock_t cb_lock ____cacheline_aligned
;
534 struct csr __iomem
*csr
;
535 enum scb_cmd_lo cuc_cmd
;
536 unsigned int cbs_avail
;
538 struct cb
*cb_to_use
;
539 struct cb
*cb_to_send
;
540 struct cb
*cb_to_clean
;
542 /* End: frequently used values: keep adjacent for cache effect */
546 promiscuous
= (1 << 1),
547 multicast_all
= (1 << 2),
548 wol_magic
= (1 << 3),
549 ich_10h_workaround
= (1 << 4),
550 } flags ____cacheline_aligned
;
554 struct params params
;
555 struct net_device_stats net_stats
;
556 struct timer_list watchdog
;
557 struct timer_list blink_timer
;
558 struct mii_if_info mii
;
559 struct work_struct tx_timeout_task
;
560 enum loopback loopback
;
565 dma_addr_t cbs_dma_addr
;
571 u32 tx_single_collisions
;
572 u32 tx_multiple_collisions
;
577 u32 rx_fc_unsupported
;
579 u32 rx_over_length_errors
;
585 spinlock_t mdio_lock
;
588 static inline void e100_write_flush(struct nic
*nic
)
590 /* Flush previous PCI writes through intermediate bridges
591 * by doing a benign read */
592 (void)readb(&nic
->csr
->scb
.status
);
595 static void e100_enable_irq(struct nic
*nic
)
599 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
600 writeb(irq_mask_none
, &nic
->csr
->scb
.cmd_hi
);
601 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
602 e100_write_flush(nic
);
605 static void e100_disable_irq(struct nic
*nic
)
609 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
610 writeb(irq_mask_all
, &nic
->csr
->scb
.cmd_hi
);
611 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
612 e100_write_flush(nic
);
615 static void e100_hw_reset(struct nic
*nic
)
617 /* Put CU and RU into idle with a selective reset to get
618 * device off of PCI bus */
619 writel(selective_reset
, &nic
->csr
->port
);
620 e100_write_flush(nic
); udelay(20);
622 /* Now fully reset device */
623 writel(software_reset
, &nic
->csr
->port
);
624 e100_write_flush(nic
); udelay(20);
626 /* Mask off our interrupt line - it's unmasked after reset */
627 e100_disable_irq(nic
);
630 static int e100_self_test(struct nic
*nic
)
632 u32 dma_addr
= nic
->dma_addr
+ offsetof(struct mem
, selftest
);
634 /* Passing the self-test is a pretty good indication
635 * that the device can DMA to/from host memory */
637 nic
->mem
->selftest
.signature
= 0;
638 nic
->mem
->selftest
.result
= 0xFFFFFFFF;
640 writel(selftest
| dma_addr
, &nic
->csr
->port
);
641 e100_write_flush(nic
);
642 /* Wait 10 msec for self-test to complete */
645 /* Interrupts are enabled after self-test */
646 e100_disable_irq(nic
);
648 /* Check results of self-test */
649 if(nic
->mem
->selftest
.result
!= 0) {
650 DPRINTK(HW
, ERR
, "Self-test failed: result=0x%08X\n",
651 nic
->mem
->selftest
.result
);
654 if(nic
->mem
->selftest
.signature
== 0) {
655 DPRINTK(HW
, ERR
, "Self-test failed: timed out\n");
662 static void e100_eeprom_write(struct nic
*nic
, u16 addr_len
, u16 addr
, u16 data
)
664 u32 cmd_addr_data
[3];
668 /* Three cmds: write/erase enable, write data, write/erase disable */
669 cmd_addr_data
[0] = op_ewen
<< (addr_len
- 2);
670 cmd_addr_data
[1] = (((op_write
<< addr_len
) | addr
) << 16) |
672 cmd_addr_data
[2] = op_ewds
<< (addr_len
- 2);
674 /* Bit-bang cmds to write word to eeprom */
675 for(j
= 0; j
< 3; j
++) {
678 writeb(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
679 e100_write_flush(nic
); udelay(4);
681 for(i
= 31; i
>= 0; i
--) {
682 ctrl
= (cmd_addr_data
[j
] & (1 << i
)) ?
684 writeb(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
685 e100_write_flush(nic
); udelay(4);
687 writeb(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
688 e100_write_flush(nic
); udelay(4);
690 /* Wait 10 msec for cmd to complete */
694 writeb(0, &nic
->csr
->eeprom_ctrl_lo
);
695 e100_write_flush(nic
); udelay(4);
699 /* General technique stolen from the eepro100 driver - very clever */
700 static u16
e100_eeprom_read(struct nic
*nic
, u16
*addr_len
, u16 addr
)
707 cmd_addr_data
= ((op_read
<< *addr_len
) | addr
) << 16;
710 writeb(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
711 e100_write_flush(nic
); udelay(4);
713 /* Bit-bang to read word from eeprom */
714 for(i
= 31; i
>= 0; i
--) {
715 ctrl
= (cmd_addr_data
& (1 << i
)) ? eecs
| eedi
: eecs
;
716 writeb(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
717 e100_write_flush(nic
); udelay(4);
719 writeb(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
720 e100_write_flush(nic
); udelay(4);
722 /* Eeprom drives a dummy zero to EEDO after receiving
723 * complete address. Use this to adjust addr_len. */
724 ctrl
= readb(&nic
->csr
->eeprom_ctrl_lo
);
725 if(!(ctrl
& eedo
) && i
> 16) {
726 *addr_len
-= (i
- 16);
730 data
= (data
<< 1) | (ctrl
& eedo
? 1 : 0);
734 writeb(0, &nic
->csr
->eeprom_ctrl_lo
);
735 e100_write_flush(nic
); udelay(4);
737 return le16_to_cpu(data
);
740 /* Load entire EEPROM image into driver cache and validate checksum */
741 static int e100_eeprom_load(struct nic
*nic
)
743 u16 addr
, addr_len
= 8, checksum
= 0;
745 /* Try reading with an 8-bit addr len to discover actual addr len */
746 e100_eeprom_read(nic
, &addr_len
, 0);
747 nic
->eeprom_wc
= 1 << addr_len
;
749 for(addr
= 0; addr
< nic
->eeprom_wc
; addr
++) {
750 nic
->eeprom
[addr
] = e100_eeprom_read(nic
, &addr_len
, addr
);
751 if(addr
< nic
->eeprom_wc
- 1)
752 checksum
+= cpu_to_le16(nic
->eeprom
[addr
]);
755 /* The checksum, stored in the last word, is calculated such that
756 * the sum of words should be 0xBABA */
757 checksum
= le16_to_cpu(0xBABA - checksum
);
758 if(checksum
!= nic
->eeprom
[nic
->eeprom_wc
- 1]) {
759 DPRINTK(PROBE
, ERR
, "EEPROM corrupted\n");
766 /* Save (portion of) driver EEPROM cache to device and update checksum */
767 static int e100_eeprom_save(struct nic
*nic
, u16 start
, u16 count
)
769 u16 addr
, addr_len
= 8, checksum
= 0;
771 /* Try reading with an 8-bit addr len to discover actual addr len */
772 e100_eeprom_read(nic
, &addr_len
, 0);
773 nic
->eeprom_wc
= 1 << addr_len
;
775 if(start
+ count
>= nic
->eeprom_wc
)
778 for(addr
= start
; addr
< start
+ count
; addr
++)
779 e100_eeprom_write(nic
, addr_len
, addr
, nic
->eeprom
[addr
]);
781 /* The checksum, stored in the last word, is calculated such that
782 * the sum of words should be 0xBABA */
783 for(addr
= 0; addr
< nic
->eeprom_wc
- 1; addr
++)
784 checksum
+= cpu_to_le16(nic
->eeprom
[addr
]);
785 nic
->eeprom
[nic
->eeprom_wc
- 1] = le16_to_cpu(0xBABA - checksum
);
786 e100_eeprom_write(nic
, addr_len
, nic
->eeprom_wc
- 1,
787 nic
->eeprom
[nic
->eeprom_wc
- 1]);
792 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
793 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
794 static int e100_exec_cmd(struct nic
*nic
, u8 cmd
, dma_addr_t dma_addr
)
800 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
802 /* Previous command is accepted when SCB clears */
803 for(i
= 0; i
< E100_WAIT_SCB_TIMEOUT
; i
++) {
804 if(likely(!readb(&nic
->csr
->scb
.cmd_lo
)))
807 if(unlikely(i
> E100_WAIT_SCB_FAST
))
810 if(unlikely(i
== E100_WAIT_SCB_TIMEOUT
)) {
815 if(unlikely(cmd
!= cuc_resume
))
816 writel(dma_addr
, &nic
->csr
->scb
.gen_ptr
);
817 writeb(cmd
, &nic
->csr
->scb
.cmd_lo
);
820 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
825 static int e100_exec_cb(struct nic
*nic
, struct sk_buff
*skb
,
826 void (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
832 spin_lock_irqsave(&nic
->cb_lock
, flags
);
834 if(unlikely(!nic
->cbs_avail
)) {
840 nic
->cb_to_use
= cb
->next
;
844 if(unlikely(!nic
->cbs_avail
))
847 cb_prepare(nic
, cb
, skb
);
849 /* Order is important otherwise we'll be in a race with h/w:
850 * set S-bit in current first, then clear S-bit in previous. */
851 cb
->command
|= cpu_to_le16(cb_s
);
853 cb
->prev
->command
&= cpu_to_le16(~cb_s
);
855 while(nic
->cb_to_send
!= nic
->cb_to_use
) {
856 if(unlikely(e100_exec_cmd(nic
, nic
->cuc_cmd
,
857 nic
->cb_to_send
->dma_addr
))) {
858 /* Ok, here's where things get sticky. It's
859 * possible that we can't schedule the command
860 * because the controller is too busy, so
861 * let's just queue the command and try again
862 * when another command is scheduled. */
865 schedule_work(&nic
->tx_timeout_task
);
869 nic
->cuc_cmd
= cuc_resume
;
870 nic
->cb_to_send
= nic
->cb_to_send
->next
;
875 spin_unlock_irqrestore(&nic
->cb_lock
, flags
);
880 static u16
mdio_ctrl(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
)
888 * Stratus87247: we shouldn't be writing the MDI control
889 * register until the Ready bit shows True. Also, since
890 * manipulation of the MDI control registers is a multi-step
891 * procedure it should be done under lock.
893 spin_lock_irqsave(&nic
->mdio_lock
, flags
);
894 for (i
= 100; i
; --i
) {
895 if (readl(&nic
->csr
->mdi_ctrl
) & mdi_ready
)
900 printk("e100.mdio_ctrl(%s) won't go Ready\n",
902 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
903 return 0; /* No way to indicate timeout error */
905 writel((reg
<< 16) | (addr
<< 21) | dir
| data
, &nic
->csr
->mdi_ctrl
);
907 for (i
= 0; i
< 100; i
++) {
909 if ((data_out
= readl(&nic
->csr
->mdi_ctrl
)) & mdi_ready
)
912 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
914 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
915 dir
== mdi_read
? "READ" : "WRITE", addr
, reg
, data
, data_out
);
916 return (u16
)data_out
;
919 static int mdio_read(struct net_device
*netdev
, int addr
, int reg
)
921 return mdio_ctrl(netdev_priv(netdev
), addr
, mdi_read
, reg
, 0);
924 static void mdio_write(struct net_device
*netdev
, int addr
, int reg
, int data
)
926 mdio_ctrl(netdev_priv(netdev
), addr
, mdi_write
, reg
, data
);
929 static void e100_get_defaults(struct nic
*nic
)
931 struct param_range rfds
= { .min
= 16, .max
= 256, .count
= 256 };
932 struct param_range cbs
= { .min
= 64, .max
= 256, .count
= 128 };
934 pci_read_config_byte(nic
->pdev
, PCI_REVISION_ID
, &nic
->rev_id
);
935 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
936 nic
->mac
= (nic
->flags
& ich
) ? mac_82559_D101M
: nic
->rev_id
;
937 if(nic
->mac
== mac_unknown
)
938 nic
->mac
= mac_82557_D100_A
;
940 nic
->params
.rfds
= rfds
;
941 nic
->params
.cbs
= cbs
;
943 /* Quadwords to DMA into FIFO before starting frame transmit */
944 nic
->tx_threshold
= 0xE0;
946 /* no interrupt for every tx completion, delay = 256us if not 557*/
947 nic
->tx_command
= cpu_to_le16(cb_tx
| cb_tx_sf
|
948 ((nic
->mac
>= mac_82558_D101_A4
) ? cb_cid
: cb_i
));
950 /* Template for a freshly allocated RFD */
951 nic
->blank_rfd
.command
= cpu_to_le16(cb_el
);
952 nic
->blank_rfd
.rbd
= 0xFFFFFFFF;
953 nic
->blank_rfd
.size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
);
956 nic
->mii
.phy_id_mask
= 0x1F;
957 nic
->mii
.reg_num_mask
= 0x1F;
958 nic
->mii
.dev
= nic
->netdev
;
959 nic
->mii
.mdio_read
= mdio_read
;
960 nic
->mii
.mdio_write
= mdio_write
;
963 static void e100_configure(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
965 struct config
*config
= &cb
->u
.config
;
966 u8
*c
= (u8
*)config
;
968 cb
->command
= cpu_to_le16(cb_config
);
970 memset(config
, 0, sizeof(struct config
));
972 config
->byte_count
= 0x16; /* bytes in this struct */
973 config
->rx_fifo_limit
= 0x8; /* bytes in FIFO before DMA */
974 config
->direct_rx_dma
= 0x1; /* reserved */
975 config
->standard_tcb
= 0x1; /* 1=standard, 0=extended */
976 config
->standard_stat_counter
= 0x1; /* 1=standard, 0=extended */
977 config
->rx_discard_short_frames
= 0x1; /* 1=discard, 0=pass */
978 config
->tx_underrun_retry
= 0x3; /* # of underrun retries */
979 config
->mii_mode
= 0x1; /* 1=MII mode, 0=503 mode */
981 config
->no_source_addr_insertion
= 0x1; /* 1=no, 0=yes */
982 config
->preamble_length
= 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
983 config
->ifs
= 0x6; /* x16 = inter frame spacing */
984 config
->ip_addr_hi
= 0xF2; /* ARP IP filter - not used */
985 config
->pad15_1
= 0x1;
986 config
->pad15_2
= 0x1;
987 config
->crs_or_cdt
= 0x0; /* 0=CRS only, 1=CRS or CDT */
988 config
->fc_delay_hi
= 0x40; /* time delay for fc frame */
989 config
->tx_padding
= 0x1; /* 1=pad short frames */
990 config
->fc_priority_threshold
= 0x7; /* 7=priority fc disabled */
992 config
->full_duplex_pin
= 0x1; /* 1=examine FDX# pin */
993 config
->pad20_1
= 0x1F;
994 config
->fc_priority_location
= 0x1; /* 1=byte#31, 0=byte#19 */
995 config
->pad21_1
= 0x5;
997 config
->adaptive_ifs
= nic
->adaptive_ifs
;
998 config
->loopback
= nic
->loopback
;
1000 if(nic
->mii
.force_media
&& nic
->mii
.full_duplex
)
1001 config
->full_duplex_force
= 0x1; /* 1=force, 0=auto */
1003 if(nic
->flags
& promiscuous
|| nic
->loopback
) {
1004 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
1005 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
1006 config
->promiscuous_mode
= 0x1; /* 1=on, 0=off */
1009 if(nic
->flags
& multicast_all
)
1010 config
->multicast_all
= 0x1; /* 1=accept, 0=no */
1012 /* disable WoL when up */
1013 if(netif_running(nic
->netdev
) || !(nic
->flags
& wol_magic
))
1014 config
->magic_packet_disable
= 0x1; /* 1=off, 0=on */
1016 if(nic
->mac
>= mac_82558_D101_A4
) {
1017 config
->fc_disable
= 0x1; /* 1=Tx fc off, 0=Tx fc on */
1018 config
->mwi_enable
= 0x1; /* 1=enable, 0=disable */
1019 config
->standard_tcb
= 0x0; /* 1=standard, 0=extended */
1020 config
->rx_long_ok
= 0x1; /* 1=VLANs ok, 0=standard */
1021 if(nic
->mac
>= mac_82559_D101M
)
1022 config
->tno_intr
= 0x1; /* TCO stats enable */
1024 config
->standard_stat_counter
= 0x0;
1027 DPRINTK(HW
, DEBUG
, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1028 c
[0], c
[1], c
[2], c
[3], c
[4], c
[5], c
[6], c
[7]);
1029 DPRINTK(HW
, DEBUG
, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1030 c
[8], c
[9], c
[10], c
[11], c
[12], c
[13], c
[14], c
[15]);
1031 DPRINTK(HW
, DEBUG
, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1032 c
[16], c
[17], c
[18], c
[19], c
[20], c
[21], c
[22], c
[23]);
1035 /********************************************************/
1036 /* Micro code for 8086:1229 Rev 8 */
1037 /********************************************************/
1039 /* Parameter values for the D101M B-step */
1040 #define D101M_CPUSAVER_TIMER_DWORD 78
1041 #define D101M_CPUSAVER_BUNDLE_DWORD 65
1042 #define D101M_CPUSAVER_MIN_SIZE_DWORD 126
1044 #define D101M_B_RCVBUNDLE_UCODE \
1046 0x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
1047 0x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
1048 0x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
1049 0x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
1050 0x00380438, 0x00000000, 0x00140000, 0x00380555, \
1051 0x00308000, 0x00100662, 0x00100561, 0x000E0408, \
1052 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1053 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1054 0x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
1055 0x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
1056 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1057 0x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
1058 0x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
1059 0x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
1060 0x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
1061 0x00041000, 0x00010004, 0x00130826, 0x000C0006, \
1062 0x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
1063 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1064 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1065 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1066 0x00101210, 0x00380C34, 0x00000000, 0x00000000, \
1067 0x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
1068 0x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
1069 0x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
1070 0x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
1071 0x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
1072 0x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
1073 0x00130826, 0x000C0001, 0x00220559, 0x00101313, \
1074 0x00380559, 0x00000000, 0x00000000, 0x00000000, \
1075 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1076 0x00000000, 0x00130831, 0x0010090B, 0x00124813, \
1077 0x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
1078 0x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1081 /********************************************************/
1082 /* Micro code for 8086:1229 Rev 9 */
1083 /********************************************************/
1085 /* Parameter values for the D101S */
1086 #define D101S_CPUSAVER_TIMER_DWORD 78
1087 #define D101S_CPUSAVER_BUNDLE_DWORD 67
1088 #define D101S_CPUSAVER_MIN_SIZE_DWORD 128
1090 #define D101S_RCVBUNDLE_UCODE \
1092 0x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
1093 0x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
1094 0x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
1095 0x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
1096 0x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
1097 0x00308000, 0x00100610, 0x00100561, 0x000E0408, \
1098 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1099 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1100 0x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
1101 0x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
1102 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1103 0x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
1104 0x003A047E, 0x00044010, 0x00380819, 0x00000000, \
1105 0x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
1106 0x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
1107 0x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
1108 0x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
1109 0x00101313, 0x00380700, 0x00000000, 0x00000000, \
1110 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1111 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1112 0x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
1113 0x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
1114 0x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
1115 0x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
1116 0x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
1117 0x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
1118 0x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
1119 0x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
1120 0x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
1121 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1122 0x00000000, 0x00000000, 0x00000000, 0x00130831, \
1123 0x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
1124 0x00041000, 0x00010004, 0x00380700 \
1127 /********************************************************/
1128 /* Micro code for the 8086:1229 Rev F/10 */
1129 /********************************************************/
1131 /* Parameter values for the D102 E-step */
1132 #define D102_E_CPUSAVER_TIMER_DWORD 42
1133 #define D102_E_CPUSAVER_BUNDLE_DWORD 54
1134 #define D102_E_CPUSAVER_MIN_SIZE_DWORD 46
1136 #define D102_E_RCVBUNDLE_UCODE \
1138 0x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
1139 0x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
1140 0x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
1141 0x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
1142 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1143 0x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
1144 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1145 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1146 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1147 0x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
1148 0x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
1149 0x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
1150 0x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
1151 0x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
1152 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1153 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1154 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1155 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
1156 0x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
1157 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1158 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1159 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1160 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1161 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1162 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1163 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1164 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1165 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1166 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1167 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1168 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1169 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1170 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1173 static void e100_setup_ucode(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1177 u32 ucode
[UCODE_SIZE
+ 1];
1183 { D101M_B_RCVBUNDLE_UCODE
,
1185 D101M_CPUSAVER_TIMER_DWORD
,
1186 D101M_CPUSAVER_BUNDLE_DWORD
,
1187 D101M_CPUSAVER_MIN_SIZE_DWORD
},
1188 { D101S_RCVBUNDLE_UCODE
,
1190 D101S_CPUSAVER_TIMER_DWORD
,
1191 D101S_CPUSAVER_BUNDLE_DWORD
,
1192 D101S_CPUSAVER_MIN_SIZE_DWORD
},
1193 { D102_E_RCVBUNDLE_UCODE
,
1195 D102_E_CPUSAVER_TIMER_DWORD
,
1196 D102_E_CPUSAVER_BUNDLE_DWORD
,
1197 D102_E_CPUSAVER_MIN_SIZE_DWORD
},
1198 { D102_E_RCVBUNDLE_UCODE
,
1200 D102_E_CPUSAVER_TIMER_DWORD
,
1201 D102_E_CPUSAVER_BUNDLE_DWORD
,
1202 D102_E_CPUSAVER_MIN_SIZE_DWORD
},
1207 /*************************************************************************
1208 * CPUSaver parameters
1210 * All CPUSaver parameters are 16-bit literals that are part of a
1211 * "move immediate value" instruction. By changing the value of
1212 * the literal in the instruction before the code is loaded, the
1213 * driver can change the algorithm.
1215 * INTDELAY - This loads the dead-man timer with its inital value.
1216 * When this timer expires the interrupt is asserted, and the
1217 * timer is reset each time a new packet is received. (see
1218 * BUNDLEMAX below to set the limit on number of chained packets)
1219 * The current default is 0x600 or 1536. Experiments show that
1220 * the value should probably stay within the 0x200 - 0x1000.
1223 * This sets the maximum number of frames that will be bundled. In
1224 * some situations, such as the TCP windowing algorithm, it may be
1225 * better to limit the growth of the bundle size than let it go as
1226 * high as it can, because that could cause too much added latency.
1227 * The default is six, because this is the number of packets in the
1228 * default TCP window size. A value of 1 would make CPUSaver indicate
1229 * an interrupt for every frame received. If you do not want to put
1230 * a limit on the bundle size, set this value to xFFFF.
1233 * This contains a bit-mask describing the minimum size frame that
1234 * will be bundled. The default masks the lower 7 bits, which means
1235 * that any frame less than 128 bytes in length will not be bundled,
1236 * but will instead immediately generate an interrupt. This does
1237 * not affect the current bundle in any way. Any frame that is 128
1238 * bytes or large will be bundled normally. This feature is meant
1239 * to provide immediate indication of ACK frames in a TCP environment.
1240 * Customers were seeing poor performance when a machine with CPUSaver
1241 * enabled was sending but not receiving. The delay introduced when
1242 * the ACKs were received was enough to reduce total throughput, because
1243 * the sender would sit idle until the ACK was finally seen.
1245 * The current default is 0xFF80, which masks out the lower 7 bits.
1246 * This means that any frame which is x7F (127) bytes or smaller
1247 * will cause an immediate interrupt. Because this value must be a
1248 * bit mask, there are only a few valid values that can be used. To
1249 * turn this feature off, the driver can write the value xFFFF to the
1250 * lower word of this instruction (in the same way that the other
1251 * parameters are used). Likewise, a value of 0xF800 (2047) would
1252 * cause an interrupt to be generated for every frame, because all
1253 * standard Ethernet frames are <= 2047 bytes in length.
1254 *************************************************************************/
1256 /* if you wish to disable the ucode functionality, while maintaining the
1257 * workarounds it provides, set the following defines to:
1262 #define BUNDLESMALL 1
1263 #define BUNDLEMAX (u16)6
1264 #define INTDELAY (u16)1536 /* 0x600 */
1266 /* do not load u-code for ICH devices */
1267 if (nic
->flags
& ich
)
1270 /* Search for ucode match against h/w rev_id */
1271 for (opts
= ucode_opts
; opts
->mac
; opts
++) {
1273 u32
*ucode
= opts
->ucode
;
1274 if (nic
->mac
!= opts
->mac
)
1277 /* Insert user-tunable settings */
1278 ucode
[opts
->timer_dword
] &= 0xFFFF0000;
1279 ucode
[opts
->timer_dword
] |= INTDELAY
;
1280 ucode
[opts
->bundle_dword
] &= 0xFFFF0000;
1281 ucode
[opts
->bundle_dword
] |= BUNDLEMAX
;
1282 ucode
[opts
->min_size_dword
] &= 0xFFFF0000;
1283 ucode
[opts
->min_size_dword
] |= (BUNDLESMALL
) ? 0xFFFF : 0xFF80;
1285 for (i
= 0; i
< UCODE_SIZE
; i
++)
1286 cb
->u
.ucode
[i
] = cpu_to_le32(ucode
[i
]);
1287 cb
->command
= cpu_to_le16(cb_ucode
| cb_el
);
1292 cb
->command
= cpu_to_le16(cb_nop
| cb_el
);
1295 static inline int e100_exec_cb_wait(struct nic
*nic
, struct sk_buff
*skb
,
1296 void (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
1298 int err
= 0, counter
= 50;
1299 struct cb
*cb
= nic
->cb_to_clean
;
1301 if ((err
= e100_exec_cb(nic
, NULL
, e100_setup_ucode
)))
1302 DPRINTK(PROBE
,ERR
, "ucode cmd failed with error %d\n", err
);
1304 /* must restart cuc */
1305 nic
->cuc_cmd
= cuc_start
;
1307 /* wait for completion */
1308 e100_write_flush(nic
);
1311 /* wait for possibly (ouch) 500ms */
1312 while (!(cb
->status
& cpu_to_le16(cb_complete
))) {
1314 if (!--counter
) break;
1317 /* ack any interupts, something could have been set */
1318 writeb(~0, &nic
->csr
->scb
.stat_ack
);
1320 /* if the command failed, or is not OK, notify and return */
1321 if (!counter
|| !(cb
->status
& cpu_to_le16(cb_ok
))) {
1322 DPRINTK(PROBE
,ERR
, "ucode load failed\n");
1329 static void e100_setup_iaaddr(struct nic
*nic
, struct cb
*cb
,
1330 struct sk_buff
*skb
)
1332 cb
->command
= cpu_to_le16(cb_iaaddr
);
1333 memcpy(cb
->u
.iaaddr
, nic
->netdev
->dev_addr
, ETH_ALEN
);
1336 static void e100_dump(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1338 cb
->command
= cpu_to_le16(cb_dump
);
1339 cb
->u
.dump_buffer_addr
= cpu_to_le32(nic
->dma_addr
+
1340 offsetof(struct mem
, dump_buf
));
1343 #define NCONFIG_AUTO_SWITCH 0x0080
1344 #define MII_NSC_CONG MII_RESV1
1345 #define NSC_CONG_ENABLE 0x0100
1346 #define NSC_CONG_TXREADY 0x0400
1347 #define ADVERTISE_FC_SUPPORTED 0x0400
1348 static int e100_phy_init(struct nic
*nic
)
1350 struct net_device
*netdev
= nic
->netdev
;
1352 u16 bmcr
, stat
, id_lo
, id_hi
, cong
;
1354 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1355 for(addr
= 0; addr
< 32; addr
++) {
1356 nic
->mii
.phy_id
= (addr
== 0) ? 1 : (addr
== 1) ? 0 : addr
;
1357 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1358 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1359 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1360 if(!((bmcr
== 0xFFFF) || ((stat
== 0) && (bmcr
== 0))))
1363 DPRINTK(HW
, DEBUG
, "phy_addr = %d\n", nic
->mii
.phy_id
);
1367 /* Selected the phy and isolate the rest */
1368 for(addr
= 0; addr
< 32; addr
++) {
1369 if(addr
!= nic
->mii
.phy_id
) {
1370 mdio_write(netdev
, addr
, MII_BMCR
, BMCR_ISOLATE
);
1372 bmcr
= mdio_read(netdev
, addr
, MII_BMCR
);
1373 mdio_write(netdev
, addr
, MII_BMCR
,
1374 bmcr
& ~BMCR_ISOLATE
);
1379 id_lo
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID1
);
1380 id_hi
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID2
);
1381 nic
->phy
= (u32
)id_hi
<< 16 | (u32
)id_lo
;
1382 DPRINTK(HW
, DEBUG
, "phy ID = 0x%08X\n", nic
->phy
);
1384 /* Handle National tx phys */
1385 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1386 if((nic
->phy
& NCS_PHY_MODEL_MASK
) == phy_nsc_tx
) {
1387 /* Disable congestion control */
1388 cong
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
);
1389 cong
|= NSC_CONG_TXREADY
;
1390 cong
&= ~NSC_CONG_ENABLE
;
1391 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
, cong
);
1394 if((nic
->mac
>= mac_82550_D102
) || ((nic
->flags
& ich
) &&
1395 (mdio_read(netdev
, nic
->mii
.phy_id
, MII_TPISTATUS
) & 0x8000))) {
1396 /* enable/disable MDI/MDI-X auto-switching.
1397 MDI/MDI-X auto-switching is disabled for 82551ER/QM chips */
1398 if((nic
->mac
== mac_82551_E
) || (nic
->mac
== mac_82551_F
) ||
1399 (nic
->mac
== mac_82551_10
) || (nic
->mii
.force_media
) ||
1400 !(nic
->eeprom
[eeprom_cnfg_mdix
] & eeprom_mdix_enabled
))
1401 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
, 0);
1403 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
, NCONFIG_AUTO_SWITCH
);
1409 static int e100_hw_init(struct nic
*nic
)
1415 DPRINTK(HW
, ERR
, "e100_hw_init\n");
1416 if(!in_interrupt() && (err
= e100_self_test(nic
)))
1419 if((err
= e100_phy_init(nic
)))
1421 if((err
= e100_exec_cmd(nic
, cuc_load_base
, 0)))
1423 if((err
= e100_exec_cmd(nic
, ruc_load_base
, 0)))
1425 if ((err
= e100_exec_cb_wait(nic
, NULL
, e100_setup_ucode
)))
1427 if((err
= e100_exec_cb(nic
, NULL
, e100_configure
)))
1429 if((err
= e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
)))
1431 if((err
= e100_exec_cmd(nic
, cuc_dump_addr
,
1432 nic
->dma_addr
+ offsetof(struct mem
, stats
))))
1434 if((err
= e100_exec_cmd(nic
, cuc_dump_reset
, 0)))
1437 e100_disable_irq(nic
);
1442 static void e100_multi(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1444 struct net_device
*netdev
= nic
->netdev
;
1445 struct dev_mc_list
*list
= netdev
->mc_list
;
1446 u16 i
, count
= min(netdev
->mc_count
, E100_MAX_MULTICAST_ADDRS
);
1448 cb
->command
= cpu_to_le16(cb_multi
);
1449 cb
->u
.multi
.count
= cpu_to_le16(count
* ETH_ALEN
);
1450 for(i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
1451 memcpy(&cb
->u
.multi
.addr
[i
*ETH_ALEN
], &list
->dmi_addr
,
1455 static void e100_set_multicast_list(struct net_device
*netdev
)
1457 struct nic
*nic
= netdev_priv(netdev
);
1459 DPRINTK(HW
, DEBUG
, "mc_count=%d, flags=0x%04X\n",
1460 netdev
->mc_count
, netdev
->flags
);
1462 if(netdev
->flags
& IFF_PROMISC
)
1463 nic
->flags
|= promiscuous
;
1465 nic
->flags
&= ~promiscuous
;
1467 if(netdev
->flags
& IFF_ALLMULTI
||
1468 netdev
->mc_count
> E100_MAX_MULTICAST_ADDRS
)
1469 nic
->flags
|= multicast_all
;
1471 nic
->flags
&= ~multicast_all
;
1473 e100_exec_cb(nic
, NULL
, e100_configure
);
1474 e100_exec_cb(nic
, NULL
, e100_multi
);
1477 static void e100_update_stats(struct nic
*nic
)
1479 struct net_device_stats
*ns
= &nic
->net_stats
;
1480 struct stats
*s
= &nic
->mem
->stats
;
1481 u32
*complete
= (nic
->mac
< mac_82558_D101_A4
) ? &s
->fc_xmt_pause
:
1482 (nic
->mac
< mac_82559_D101M
) ? (u32
*)&s
->xmt_tco_frames
:
1485 /* Device's stats reporting may take several microseconds to
1486 * complete, so where always waiting for results of the
1487 * previous command. */
1489 if(*complete
== le32_to_cpu(cuc_dump_reset_complete
)) {
1491 nic
->tx_frames
= le32_to_cpu(s
->tx_good_frames
);
1492 nic
->tx_collisions
= le32_to_cpu(s
->tx_total_collisions
);
1493 ns
->tx_aborted_errors
+= le32_to_cpu(s
->tx_max_collisions
);
1494 ns
->tx_window_errors
+= le32_to_cpu(s
->tx_late_collisions
);
1495 ns
->tx_carrier_errors
+= le32_to_cpu(s
->tx_lost_crs
);
1496 ns
->tx_fifo_errors
+= le32_to_cpu(s
->tx_underruns
);
1497 ns
->collisions
+= nic
->tx_collisions
;
1498 ns
->tx_errors
+= le32_to_cpu(s
->tx_max_collisions
) +
1499 le32_to_cpu(s
->tx_lost_crs
);
1500 ns
->rx_length_errors
+= le32_to_cpu(s
->rx_short_frame_errors
) +
1501 nic
->rx_over_length_errors
;
1502 ns
->rx_crc_errors
+= le32_to_cpu(s
->rx_crc_errors
);
1503 ns
->rx_frame_errors
+= le32_to_cpu(s
->rx_alignment_errors
);
1504 ns
->rx_over_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1505 ns
->rx_fifo_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1506 ns
->rx_missed_errors
+= le32_to_cpu(s
->rx_resource_errors
);
1507 ns
->rx_errors
+= le32_to_cpu(s
->rx_crc_errors
) +
1508 le32_to_cpu(s
->rx_alignment_errors
) +
1509 le32_to_cpu(s
->rx_short_frame_errors
) +
1510 le32_to_cpu(s
->rx_cdt_errors
);
1511 nic
->tx_deferred
+= le32_to_cpu(s
->tx_deferred
);
1512 nic
->tx_single_collisions
+=
1513 le32_to_cpu(s
->tx_single_collisions
);
1514 nic
->tx_multiple_collisions
+=
1515 le32_to_cpu(s
->tx_multiple_collisions
);
1516 if(nic
->mac
>= mac_82558_D101_A4
) {
1517 nic
->tx_fc_pause
+= le32_to_cpu(s
->fc_xmt_pause
);
1518 nic
->rx_fc_pause
+= le32_to_cpu(s
->fc_rcv_pause
);
1519 nic
->rx_fc_unsupported
+=
1520 le32_to_cpu(s
->fc_rcv_unsupported
);
1521 if(nic
->mac
>= mac_82559_D101M
) {
1522 nic
->tx_tco_frames
+=
1523 le16_to_cpu(s
->xmt_tco_frames
);
1524 nic
->rx_tco_frames
+=
1525 le16_to_cpu(s
->rcv_tco_frames
);
1531 if(e100_exec_cmd(nic
, cuc_dump_reset
, 0))
1532 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_dump_reset failed\n");
1535 static void e100_adjust_adaptive_ifs(struct nic
*nic
, int speed
, int duplex
)
1537 /* Adjust inter-frame-spacing (IFS) between two transmits if
1538 * we're getting collisions on a half-duplex connection. */
1540 if(duplex
== DUPLEX_HALF
) {
1541 u32 prev
= nic
->adaptive_ifs
;
1542 u32 min_frames
= (speed
== SPEED_100
) ? 1000 : 100;
1544 if((nic
->tx_frames
/ 32 < nic
->tx_collisions
) &&
1545 (nic
->tx_frames
> min_frames
)) {
1546 if(nic
->adaptive_ifs
< 60)
1547 nic
->adaptive_ifs
+= 5;
1548 } else if (nic
->tx_frames
< min_frames
) {
1549 if(nic
->adaptive_ifs
>= 5)
1550 nic
->adaptive_ifs
-= 5;
1552 if(nic
->adaptive_ifs
!= prev
)
1553 e100_exec_cb(nic
, NULL
, e100_configure
);
1557 static void e100_watchdog(unsigned long data
)
1559 struct nic
*nic
= (struct nic
*)data
;
1560 struct ethtool_cmd cmd
;
1562 DPRINTK(TIMER
, DEBUG
, "right now = %ld\n", jiffies
);
1564 /* mii library handles link maintenance tasks */
1566 mii_ethtool_gset(&nic
->mii
, &cmd
);
1568 if(mii_link_ok(&nic
->mii
) && !netif_carrier_ok(nic
->netdev
)) {
1569 DPRINTK(LINK
, INFO
, "link up, %sMbps, %s-duplex\n",
1570 cmd
.speed
== SPEED_100
? "100" : "10",
1571 cmd
.duplex
== DUPLEX_FULL
? "full" : "half");
1572 } else if(!mii_link_ok(&nic
->mii
) && netif_carrier_ok(nic
->netdev
)) {
1573 DPRINTK(LINK
, INFO
, "link down\n");
1576 mii_check_link(&nic
->mii
);
1578 /* Software generated interrupt to recover from (rare) Rx
1579 * allocation failure.
1580 * Unfortunately have to use a spinlock to not re-enable interrupts
1581 * accidentally, due to hardware that shares a register between the
1582 * interrupt mask bit and the SW Interrupt generation bit */
1583 spin_lock_irq(&nic
->cmd_lock
);
1584 writeb(readb(&nic
->csr
->scb
.cmd_hi
) | irq_sw_gen
,&nic
->csr
->scb
.cmd_hi
);
1585 spin_unlock_irq(&nic
->cmd_lock
);
1586 e100_write_flush(nic
);
1588 e100_update_stats(nic
);
1589 e100_adjust_adaptive_ifs(nic
, cmd
.speed
, cmd
.duplex
);
1591 if(nic
->mac
<= mac_82557_D100_C
)
1592 /* Issue a multicast command to workaround a 557 lock up */
1593 e100_set_multicast_list(nic
->netdev
);
1595 if(nic
->flags
& ich
&& cmd
.speed
==SPEED_10
&& cmd
.duplex
==DUPLEX_HALF
)
1596 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1597 nic
->flags
|= ich_10h_workaround
;
1599 nic
->flags
&= ~ich_10h_workaround
;
1601 mod_timer(&nic
->watchdog
, jiffies
+ E100_WATCHDOG_PERIOD
);
1604 static void e100_xmit_prepare(struct nic
*nic
, struct cb
*cb
,
1605 struct sk_buff
*skb
)
1607 cb
->command
= nic
->tx_command
;
1608 /* interrupt every 16 packets regardless of delay */
1609 if((nic
->cbs_avail
& ~15) == nic
->cbs_avail
)
1610 cb
->command
|= cpu_to_le16(cb_i
);
1611 cb
->u
.tcb
.tbd_array
= cb
->dma_addr
+ offsetof(struct cb
, u
.tcb
.tbd
);
1612 cb
->u
.tcb
.tcb_byte_count
= 0;
1613 cb
->u
.tcb
.threshold
= nic
->tx_threshold
;
1614 cb
->u
.tcb
.tbd_count
= 1;
1615 cb
->u
.tcb
.tbd
.buf_addr
= cpu_to_le32(pci_map_single(nic
->pdev
,
1616 skb
->data
, skb
->len
, PCI_DMA_TODEVICE
));
1617 /* check for mapping failure? */
1618 cb
->u
.tcb
.tbd
.size
= cpu_to_le16(skb
->len
);
1621 static int e100_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
1623 struct nic
*nic
= netdev_priv(netdev
);
1626 if(nic
->flags
& ich_10h_workaround
) {
1627 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1628 Issue a NOP command followed by a 1us delay before
1629 issuing the Tx command. */
1630 if(e100_exec_cmd(nic
, cuc_nop
, 0))
1631 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_nop failed\n");
1635 err
= e100_exec_cb(nic
, skb
, e100_xmit_prepare
);
1639 /* We queued the skb, but now we're out of space. */
1640 DPRINTK(TX_ERR
, DEBUG
, "No space for CB\n");
1641 netif_stop_queue(netdev
);
1644 /* This is a hard error - log it. */
1645 DPRINTK(TX_ERR
, DEBUG
, "Out of Tx resources, returning skb\n");
1646 netif_stop_queue(netdev
);
1650 netdev
->trans_start
= jiffies
;
1654 static int e100_tx_clean(struct nic
*nic
)
1659 spin_lock(&nic
->cb_lock
);
1661 DPRINTK(TX_DONE
, DEBUG
, "cb->status = 0x%04X\n",
1662 nic
->cb_to_clean
->status
);
1664 /* Clean CBs marked complete */
1665 for(cb
= nic
->cb_to_clean
;
1666 cb
->status
& cpu_to_le16(cb_complete
);
1667 cb
= nic
->cb_to_clean
= cb
->next
) {
1668 if(likely(cb
->skb
!= NULL
)) {
1669 nic
->net_stats
.tx_packets
++;
1670 nic
->net_stats
.tx_bytes
+= cb
->skb
->len
;
1672 pci_unmap_single(nic
->pdev
,
1673 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1674 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1676 dev_kfree_skb_any(cb
->skb
);
1684 spin_unlock(&nic
->cb_lock
);
1686 /* Recover from running out of Tx resources in xmit_frame */
1687 if(unlikely(tx_cleaned
&& netif_queue_stopped(nic
->netdev
)))
1688 netif_wake_queue(nic
->netdev
);
1693 static void e100_clean_cbs(struct nic
*nic
)
1696 while(nic
->cbs_avail
!= nic
->params
.cbs
.count
) {
1697 struct cb
*cb
= nic
->cb_to_clean
;
1699 pci_unmap_single(nic
->pdev
,
1700 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1701 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1703 dev_kfree_skb(cb
->skb
);
1705 nic
->cb_to_clean
= nic
->cb_to_clean
->next
;
1708 pci_free_consistent(nic
->pdev
,
1709 sizeof(struct cb
) * nic
->params
.cbs
.count
,
1710 nic
->cbs
, nic
->cbs_dma_addr
);
1714 nic
->cuc_cmd
= cuc_start
;
1715 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
=
1719 static int e100_alloc_cbs(struct nic
*nic
)
1722 unsigned int i
, count
= nic
->params
.cbs
.count
;
1724 nic
->cuc_cmd
= cuc_start
;
1725 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= NULL
;
1728 nic
->cbs
= pci_alloc_consistent(nic
->pdev
,
1729 sizeof(struct cb
) * count
, &nic
->cbs_dma_addr
);
1733 for(cb
= nic
->cbs
, i
= 0; i
< count
; cb
++, i
++) {
1734 cb
->next
= (i
+ 1 < count
) ? cb
+ 1 : nic
->cbs
;
1735 cb
->prev
= (i
== 0) ? nic
->cbs
+ count
- 1 : cb
- 1;
1737 cb
->dma_addr
= nic
->cbs_dma_addr
+ i
* sizeof(struct cb
);
1738 cb
->link
= cpu_to_le32(nic
->cbs_dma_addr
+
1739 ((i
+1) % count
) * sizeof(struct cb
));
1743 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= nic
->cbs
;
1744 nic
->cbs_avail
= count
;
1749 static inline void e100_start_receiver(struct nic
*nic
, struct rx
*rx
)
1751 if(!nic
->rxs
) return;
1752 if(RU_SUSPENDED
!= nic
->ru_running
) return;
1754 /* handle init time starts */
1755 if(!rx
) rx
= nic
->rxs
;
1757 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1759 e100_exec_cmd(nic
, ruc_start
, rx
->dma_addr
);
1760 nic
->ru_running
= RU_RUNNING
;
1764 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1765 static int e100_rx_alloc_skb(struct nic
*nic
, struct rx
*rx
)
1767 if(!(rx
->skb
= dev_alloc_skb(RFD_BUF_LEN
+ NET_IP_ALIGN
)))
1770 /* Align, init, and map the RFD. */
1771 rx
->skb
->dev
= nic
->netdev
;
1772 skb_reserve(rx
->skb
, NET_IP_ALIGN
);
1773 memcpy(rx
->skb
->data
, &nic
->blank_rfd
, sizeof(struct rfd
));
1774 rx
->dma_addr
= pci_map_single(nic
->pdev
, rx
->skb
->data
,
1775 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1777 if(pci_dma_mapping_error(rx
->dma_addr
)) {
1778 dev_kfree_skb_any(rx
->skb
);
1784 /* Link the RFD to end of RFA by linking previous RFD to
1785 * this one, and clearing EL bit of previous. */
1787 struct rfd
*prev_rfd
= (struct rfd
*)rx
->prev
->skb
->data
;
1788 put_unaligned(cpu_to_le32(rx
->dma_addr
),
1789 (u32
*)&prev_rfd
->link
);
1791 prev_rfd
->command
&= ~cpu_to_le16(cb_el
);
1792 pci_dma_sync_single_for_device(nic
->pdev
, rx
->prev
->dma_addr
,
1793 sizeof(struct rfd
), PCI_DMA_TODEVICE
);
1799 static int e100_rx_indicate(struct nic
*nic
, struct rx
*rx
,
1800 unsigned int *work_done
, unsigned int work_to_do
)
1802 struct sk_buff
*skb
= rx
->skb
;
1803 struct rfd
*rfd
= (struct rfd
*)skb
->data
;
1804 u16 rfd_status
, actual_size
;
1806 if(unlikely(work_done
&& *work_done
>= work_to_do
))
1809 /* Need to sync before taking a peek at cb_complete bit */
1810 pci_dma_sync_single_for_cpu(nic
->pdev
, rx
->dma_addr
,
1811 sizeof(struct rfd
), PCI_DMA_FROMDEVICE
);
1812 rfd_status
= le16_to_cpu(rfd
->status
);
1814 DPRINTK(RX_STATUS
, DEBUG
, "status=0x%04X\n", rfd_status
);
1816 /* If data isn't ready, nothing to indicate */
1817 if(unlikely(!(rfd_status
& cb_complete
)))
1820 /* Get actual data size */
1821 actual_size
= le16_to_cpu(rfd
->actual_size
) & 0x3FFF;
1822 if(unlikely(actual_size
> RFD_BUF_LEN
- sizeof(struct rfd
)))
1823 actual_size
= RFD_BUF_LEN
- sizeof(struct rfd
);
1826 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1827 RFD_BUF_LEN
, PCI_DMA_FROMDEVICE
);
1829 /* this allows for a fast restart without re-enabling interrupts */
1830 if(le16_to_cpu(rfd
->command
) & cb_el
)
1831 nic
->ru_running
= RU_SUSPENDED
;
1833 /* Pull off the RFD and put the actual data (minus eth hdr) */
1834 skb_reserve(skb
, sizeof(struct rfd
));
1835 skb_put(skb
, actual_size
);
1836 skb
->protocol
= eth_type_trans(skb
, nic
->netdev
);
1838 if(unlikely(!(rfd_status
& cb_ok
))) {
1839 /* Don't indicate if hardware indicates errors */
1840 dev_kfree_skb_any(skb
);
1841 } else if(actual_size
> ETH_DATA_LEN
+ VLAN_ETH_HLEN
) {
1842 /* Don't indicate oversized frames */
1843 nic
->rx_over_length_errors
++;
1844 dev_kfree_skb_any(skb
);
1846 nic
->net_stats
.rx_packets
++;
1847 nic
->net_stats
.rx_bytes
+= actual_size
;
1848 nic
->netdev
->last_rx
= jiffies
;
1849 netif_receive_skb(skb
);
1859 static void e100_rx_clean(struct nic
*nic
, unsigned int *work_done
,
1860 unsigned int work_to_do
)
1863 int restart_required
= 0;
1864 struct rx
*rx_to_start
= NULL
;
1866 /* are we already rnr? then pay attention!!! this ensures that
1867 * the state machine progression never allows a start with a
1868 * partially cleaned list, avoiding a race between hardware
1869 * and rx_to_clean when in NAPI mode */
1870 if(RU_SUSPENDED
== nic
->ru_running
)
1871 restart_required
= 1;
1873 /* Indicate newly arrived packets */
1874 for(rx
= nic
->rx_to_clean
; rx
->skb
; rx
= nic
->rx_to_clean
= rx
->next
) {
1875 int err
= e100_rx_indicate(nic
, rx
, work_done
, work_to_do
);
1876 if(-EAGAIN
== err
) {
1877 /* hit quota so have more work to do, restart once
1878 * cleanup is complete */
1879 restart_required
= 0;
1881 } else if(-ENODATA
== err
)
1882 break; /* No more to clean */
1885 /* save our starting point as the place we'll restart the receiver */
1886 if(restart_required
)
1887 rx_to_start
= nic
->rx_to_clean
;
1889 /* Alloc new skbs to refill list */
1890 for(rx
= nic
->rx_to_use
; !rx
->skb
; rx
= nic
->rx_to_use
= rx
->next
) {
1891 if(unlikely(e100_rx_alloc_skb(nic
, rx
)))
1892 break; /* Better luck next time (see watchdog) */
1895 if(restart_required
) {
1897 writeb(stat_ack_rnr
, &nic
->csr
->scb
.stat_ack
);
1898 e100_start_receiver(nic
, rx_to_start
);
1904 static void e100_rx_clean_list(struct nic
*nic
)
1907 unsigned int i
, count
= nic
->params
.rfds
.count
;
1909 nic
->ru_running
= RU_UNINITIALIZED
;
1912 for(rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
1914 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1915 RFD_BUF_LEN
, PCI_DMA_FROMDEVICE
);
1916 dev_kfree_skb(rx
->skb
);
1923 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1926 static int e100_rx_alloc_list(struct nic
*nic
)
1929 unsigned int i
, count
= nic
->params
.rfds
.count
;
1931 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1932 nic
->ru_running
= RU_UNINITIALIZED
;
1934 if(!(nic
->rxs
= kmalloc(sizeof(struct rx
) * count
, GFP_ATOMIC
)))
1936 memset(nic
->rxs
, 0, sizeof(struct rx
) * count
);
1938 for(rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
1939 rx
->next
= (i
+ 1 < count
) ? rx
+ 1 : nic
->rxs
;
1940 rx
->prev
= (i
== 0) ? nic
->rxs
+ count
- 1 : rx
- 1;
1941 if(e100_rx_alloc_skb(nic
, rx
)) {
1942 e100_rx_clean_list(nic
);
1947 nic
->rx_to_use
= nic
->rx_to_clean
= nic
->rxs
;
1948 nic
->ru_running
= RU_SUSPENDED
;
1953 static irqreturn_t
e100_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
1955 struct net_device
*netdev
= dev_id
;
1956 struct nic
*nic
= netdev_priv(netdev
);
1957 u8 stat_ack
= readb(&nic
->csr
->scb
.stat_ack
);
1959 DPRINTK(INTR
, DEBUG
, "stat_ack = 0x%02X\n", stat_ack
);
1961 if(stat_ack
== stat_ack_not_ours
|| /* Not our interrupt */
1962 stat_ack
== stat_ack_not_present
) /* Hardware is ejected */
1965 /* Ack interrupt(s) */
1966 writeb(stat_ack
, &nic
->csr
->scb
.stat_ack
);
1968 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1969 if(stat_ack
& stat_ack_rnr
)
1970 nic
->ru_running
= RU_SUSPENDED
;
1972 if(likely(netif_rx_schedule_prep(netdev
))) {
1973 e100_disable_irq(nic
);
1974 __netif_rx_schedule(netdev
);
1980 static int e100_poll(struct net_device
*netdev
, int *budget
)
1982 struct nic
*nic
= netdev_priv(netdev
);
1983 unsigned int work_to_do
= min(netdev
->quota
, *budget
);
1984 unsigned int work_done
= 0;
1987 e100_rx_clean(nic
, &work_done
, work_to_do
);
1988 tx_cleaned
= e100_tx_clean(nic
);
1990 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1991 if((!tx_cleaned
&& (work_done
== 0)) || !netif_running(netdev
)) {
1992 netif_rx_complete(netdev
);
1993 e100_enable_irq(nic
);
1997 *budget
-= work_done
;
1998 netdev
->quota
-= work_done
;
2003 #ifdef CONFIG_NET_POLL_CONTROLLER
2004 static void e100_netpoll(struct net_device
*netdev
)
2006 struct nic
*nic
= netdev_priv(netdev
);
2008 e100_disable_irq(nic
);
2009 e100_intr(nic
->pdev
->irq
, netdev
, NULL
);
2011 e100_enable_irq(nic
);
2015 static struct net_device_stats
*e100_get_stats(struct net_device
*netdev
)
2017 struct nic
*nic
= netdev_priv(netdev
);
2018 return &nic
->net_stats
;
2021 static int e100_set_mac_address(struct net_device
*netdev
, void *p
)
2023 struct nic
*nic
= netdev_priv(netdev
);
2024 struct sockaddr
*addr
= p
;
2026 if (!is_valid_ether_addr(addr
->sa_data
))
2027 return -EADDRNOTAVAIL
;
2029 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2030 e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
);
2035 static int e100_change_mtu(struct net_device
*netdev
, int new_mtu
)
2037 if(new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_DATA_LEN
)
2039 netdev
->mtu
= new_mtu
;
2044 static int e100_asf(struct nic
*nic
)
2046 /* ASF can be enabled from eeprom */
2047 return((nic
->pdev
->device
>= 0x1050) && (nic
->pdev
->device
<= 0x1057) &&
2048 (nic
->eeprom
[eeprom_config_asf
] & eeprom_asf
) &&
2049 !(nic
->eeprom
[eeprom_config_asf
] & eeprom_gcl
) &&
2050 ((nic
->eeprom
[eeprom_smbus_addr
] & 0xFF) != 0xFE));
2054 static int e100_up(struct nic
*nic
)
2058 if((err
= e100_rx_alloc_list(nic
)))
2060 if((err
= e100_alloc_cbs(nic
)))
2061 goto err_rx_clean_list
;
2062 if((err
= e100_hw_init(nic
)))
2064 e100_set_multicast_list(nic
->netdev
);
2065 e100_start_receiver(nic
, NULL
);
2066 mod_timer(&nic
->watchdog
, jiffies
);
2067 if((err
= request_irq(nic
->pdev
->irq
, e100_intr
, SA_SHIRQ
,
2068 nic
->netdev
->name
, nic
->netdev
)))
2070 netif_wake_queue(nic
->netdev
);
2071 netif_poll_enable(nic
->netdev
);
2072 /* enable ints _after_ enabling poll, preventing a race between
2073 * disable ints+schedule */
2074 e100_enable_irq(nic
);
2078 del_timer_sync(&nic
->watchdog
);
2080 e100_clean_cbs(nic
);
2082 e100_rx_clean_list(nic
);
2086 static void e100_down(struct nic
*nic
)
2088 /* wait here for poll to complete */
2089 netif_poll_disable(nic
->netdev
);
2090 netif_stop_queue(nic
->netdev
);
2092 free_irq(nic
->pdev
->irq
, nic
->netdev
);
2093 del_timer_sync(&nic
->watchdog
);
2094 netif_carrier_off(nic
->netdev
);
2095 e100_clean_cbs(nic
);
2096 e100_rx_clean_list(nic
);
2099 static void e100_tx_timeout(struct net_device
*netdev
)
2101 struct nic
*nic
= netdev_priv(netdev
);
2103 /* Reset outside of interrupt context, to avoid request_irq
2104 * in interrupt context */
2105 schedule_work(&nic
->tx_timeout_task
);
2108 static void e100_tx_timeout_task(struct net_device
*netdev
)
2110 struct nic
*nic
= netdev_priv(netdev
);
2112 DPRINTK(TX_ERR
, DEBUG
, "scb.status=0x%02X\n",
2113 readb(&nic
->csr
->scb
.status
));
2114 e100_down(netdev_priv(netdev
));
2115 e100_up(netdev_priv(netdev
));
2118 static int e100_loopback_test(struct nic
*nic
, enum loopback loopback_mode
)
2121 struct sk_buff
*skb
;
2123 /* Use driver resources to perform internal MAC or PHY
2124 * loopback test. A single packet is prepared and transmitted
2125 * in loopback mode, and the test passes if the received
2126 * packet compares byte-for-byte to the transmitted packet. */
2128 if((err
= e100_rx_alloc_list(nic
)))
2130 if((err
= e100_alloc_cbs(nic
)))
2133 /* ICH PHY loopback is broken so do MAC loopback instead */
2134 if(nic
->flags
& ich
&& loopback_mode
== lb_phy
)
2135 loopback_mode
= lb_mac
;
2137 nic
->loopback
= loopback_mode
;
2138 if((err
= e100_hw_init(nic
)))
2139 goto err_loopback_none
;
2141 if(loopback_mode
== lb_phy
)
2142 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
,
2145 e100_start_receiver(nic
, NULL
);
2147 if(!(skb
= dev_alloc_skb(ETH_DATA_LEN
))) {
2149 goto err_loopback_none
;
2151 skb_put(skb
, ETH_DATA_LEN
);
2152 memset(skb
->data
, 0xFF, ETH_DATA_LEN
);
2153 e100_xmit_frame(skb
, nic
->netdev
);
2157 if(memcmp(nic
->rx_to_clean
->skb
->data
+ sizeof(struct rfd
),
2158 skb
->data
, ETH_DATA_LEN
))
2162 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
, 0);
2163 nic
->loopback
= lb_none
;
2165 e100_clean_cbs(nic
);
2167 e100_rx_clean_list(nic
);
2171 #define MII_LED_CONTROL 0x1B
2172 static void e100_blink_led(unsigned long data
)
2174 struct nic
*nic
= (struct nic
*)data
;
2182 nic
->leds
= (nic
->leds
& led_on
) ? led_off
:
2183 (nic
->mac
< mac_82559_D101M
) ? led_on_557
: led_on_559
;
2184 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_LED_CONTROL
, nic
->leds
);
2185 mod_timer(&nic
->blink_timer
, jiffies
+ HZ
/ 4);
2188 static int e100_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2190 struct nic
*nic
= netdev_priv(netdev
);
2191 return mii_ethtool_gset(&nic
->mii
, cmd
);
2194 static int e100_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2196 struct nic
*nic
= netdev_priv(netdev
);
2199 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, BMCR_RESET
);
2200 err
= mii_ethtool_sset(&nic
->mii
, cmd
);
2201 e100_exec_cb(nic
, NULL
, e100_configure
);
2206 static void e100_get_drvinfo(struct net_device
*netdev
,
2207 struct ethtool_drvinfo
*info
)
2209 struct nic
*nic
= netdev_priv(netdev
);
2210 strcpy(info
->driver
, DRV_NAME
);
2211 strcpy(info
->version
, DRV_VERSION
);
2212 strcpy(info
->fw_version
, "N/A");
2213 strcpy(info
->bus_info
, pci_name(nic
->pdev
));
2216 static int e100_get_regs_len(struct net_device
*netdev
)
2218 struct nic
*nic
= netdev_priv(netdev
);
2219 #define E100_PHY_REGS 0x1C
2220 #define E100_REGS_LEN 1 + E100_PHY_REGS + \
2221 sizeof(nic->mem->dump_buf) / sizeof(u32)
2222 return E100_REGS_LEN
* sizeof(u32
);
2225 static void e100_get_regs(struct net_device
*netdev
,
2226 struct ethtool_regs
*regs
, void *p
)
2228 struct nic
*nic
= netdev_priv(netdev
);
2232 regs
->version
= (1 << 24) | nic
->rev_id
;
2233 buff
[0] = readb(&nic
->csr
->scb
.cmd_hi
) << 24 |
2234 readb(&nic
->csr
->scb
.cmd_lo
) << 16 |
2235 readw(&nic
->csr
->scb
.status
);
2236 for(i
= E100_PHY_REGS
; i
>= 0; i
--)
2237 buff
[1 + E100_PHY_REGS
- i
] =
2238 mdio_read(netdev
, nic
->mii
.phy_id
, i
);
2239 memset(nic
->mem
->dump_buf
, 0, sizeof(nic
->mem
->dump_buf
));
2240 e100_exec_cb(nic
, NULL
, e100_dump
);
2242 memcpy(&buff
[2 + E100_PHY_REGS
], nic
->mem
->dump_buf
,
2243 sizeof(nic
->mem
->dump_buf
));
2246 static void e100_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2248 struct nic
*nic
= netdev_priv(netdev
);
2249 wol
->supported
= (nic
->mac
>= mac_82558_D101_A4
) ? WAKE_MAGIC
: 0;
2250 wol
->wolopts
= (nic
->flags
& wol_magic
) ? WAKE_MAGIC
: 0;
2253 static int e100_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2255 struct nic
*nic
= netdev_priv(netdev
);
2257 if(wol
->wolopts
!= WAKE_MAGIC
&& wol
->wolopts
!= 0)
2261 nic
->flags
|= wol_magic
;
2263 nic
->flags
&= ~wol_magic
;
2265 e100_exec_cb(nic
, NULL
, e100_configure
);
2270 static u32
e100_get_msglevel(struct net_device
*netdev
)
2272 struct nic
*nic
= netdev_priv(netdev
);
2273 return nic
->msg_enable
;
2276 static void e100_set_msglevel(struct net_device
*netdev
, u32 value
)
2278 struct nic
*nic
= netdev_priv(netdev
);
2279 nic
->msg_enable
= value
;
2282 static int e100_nway_reset(struct net_device
*netdev
)
2284 struct nic
*nic
= netdev_priv(netdev
);
2285 return mii_nway_restart(&nic
->mii
);
2288 static u32
e100_get_link(struct net_device
*netdev
)
2290 struct nic
*nic
= netdev_priv(netdev
);
2291 return mii_link_ok(&nic
->mii
);
2294 static int e100_get_eeprom_len(struct net_device
*netdev
)
2296 struct nic
*nic
= netdev_priv(netdev
);
2297 return nic
->eeprom_wc
<< 1;
2300 #define E100_EEPROM_MAGIC 0x1234
2301 static int e100_get_eeprom(struct net_device
*netdev
,
2302 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2304 struct nic
*nic
= netdev_priv(netdev
);
2306 eeprom
->magic
= E100_EEPROM_MAGIC
;
2307 memcpy(bytes
, &((u8
*)nic
->eeprom
)[eeprom
->offset
], eeprom
->len
);
2312 static int e100_set_eeprom(struct net_device
*netdev
,
2313 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2315 struct nic
*nic
= netdev_priv(netdev
);
2317 if(eeprom
->magic
!= E100_EEPROM_MAGIC
)
2320 memcpy(&((u8
*)nic
->eeprom
)[eeprom
->offset
], bytes
, eeprom
->len
);
2322 return e100_eeprom_save(nic
, eeprom
->offset
>> 1,
2323 (eeprom
->len
>> 1) + 1);
2326 static void e100_get_ringparam(struct net_device
*netdev
,
2327 struct ethtool_ringparam
*ring
)
2329 struct nic
*nic
= netdev_priv(netdev
);
2330 struct param_range
*rfds
= &nic
->params
.rfds
;
2331 struct param_range
*cbs
= &nic
->params
.cbs
;
2333 ring
->rx_max_pending
= rfds
->max
;
2334 ring
->tx_max_pending
= cbs
->max
;
2335 ring
->rx_mini_max_pending
= 0;
2336 ring
->rx_jumbo_max_pending
= 0;
2337 ring
->rx_pending
= rfds
->count
;
2338 ring
->tx_pending
= cbs
->count
;
2339 ring
->rx_mini_pending
= 0;
2340 ring
->rx_jumbo_pending
= 0;
2343 static int e100_set_ringparam(struct net_device
*netdev
,
2344 struct ethtool_ringparam
*ring
)
2346 struct nic
*nic
= netdev_priv(netdev
);
2347 struct param_range
*rfds
= &nic
->params
.rfds
;
2348 struct param_range
*cbs
= &nic
->params
.cbs
;
2350 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
2353 if(netif_running(netdev
))
2355 rfds
->count
= max(ring
->rx_pending
, rfds
->min
);
2356 rfds
->count
= min(rfds
->count
, rfds
->max
);
2357 cbs
->count
= max(ring
->tx_pending
, cbs
->min
);
2358 cbs
->count
= min(cbs
->count
, cbs
->max
);
2359 DPRINTK(DRV
, INFO
, "Ring Param settings: rx: %d, tx %d\n",
2360 rfds
->count
, cbs
->count
);
2361 if(netif_running(netdev
))
2367 static const char e100_gstrings_test
[][ETH_GSTRING_LEN
] = {
2368 "Link test (on/offline)",
2369 "Eeprom test (on/offline)",
2370 "Self test (offline)",
2371 "Mac loopback (offline)",
2372 "Phy loopback (offline)",
2374 #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2376 static int e100_diag_test_count(struct net_device
*netdev
)
2378 return E100_TEST_LEN
;
2381 static void e100_diag_test(struct net_device
*netdev
,
2382 struct ethtool_test
*test
, u64
*data
)
2384 struct ethtool_cmd cmd
;
2385 struct nic
*nic
= netdev_priv(netdev
);
2388 memset(data
, 0, E100_TEST_LEN
* sizeof(u64
));
2389 data
[0] = !mii_link_ok(&nic
->mii
);
2390 data
[1] = e100_eeprom_load(nic
);
2391 if(test
->flags
& ETH_TEST_FL_OFFLINE
) {
2393 /* save speed, duplex & autoneg settings */
2394 err
= mii_ethtool_gset(&nic
->mii
, &cmd
);
2396 if(netif_running(netdev
))
2398 data
[2] = e100_self_test(nic
);
2399 data
[3] = e100_loopback_test(nic
, lb_mac
);
2400 data
[4] = e100_loopback_test(nic
, lb_phy
);
2402 /* restore speed, duplex & autoneg settings */
2403 err
= mii_ethtool_sset(&nic
->mii
, &cmd
);
2405 if(netif_running(netdev
))
2408 for(i
= 0; i
< E100_TEST_LEN
; i
++)
2409 test
->flags
|= data
[i
] ? ETH_TEST_FL_FAILED
: 0;
2411 msleep_interruptible(4 * 1000);
2414 static int e100_phys_id(struct net_device
*netdev
, u32 data
)
2416 struct nic
*nic
= netdev_priv(netdev
);
2418 if(!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
2419 data
= (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
2420 mod_timer(&nic
->blink_timer
, jiffies
);
2421 msleep_interruptible(data
* 1000);
2422 del_timer_sync(&nic
->blink_timer
);
2423 mdio_write(netdev
, nic
->mii
.phy_id
, MII_LED_CONTROL
, 0);
2428 static const char e100_gstrings_stats
[][ETH_GSTRING_LEN
] = {
2429 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2430 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2431 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2432 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2433 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2434 "tx_heartbeat_errors", "tx_window_errors",
2435 /* device-specific stats */
2436 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2437 "tx_flow_control_pause", "rx_flow_control_pause",
2438 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2440 #define E100_NET_STATS_LEN 21
2441 #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2443 static int e100_get_stats_count(struct net_device
*netdev
)
2445 return E100_STATS_LEN
;
2448 static void e100_get_ethtool_stats(struct net_device
*netdev
,
2449 struct ethtool_stats
*stats
, u64
*data
)
2451 struct nic
*nic
= netdev_priv(netdev
);
2454 for(i
= 0; i
< E100_NET_STATS_LEN
; i
++)
2455 data
[i
] = ((unsigned long *)&nic
->net_stats
)[i
];
2457 data
[i
++] = nic
->tx_deferred
;
2458 data
[i
++] = nic
->tx_single_collisions
;
2459 data
[i
++] = nic
->tx_multiple_collisions
;
2460 data
[i
++] = nic
->tx_fc_pause
;
2461 data
[i
++] = nic
->rx_fc_pause
;
2462 data
[i
++] = nic
->rx_fc_unsupported
;
2463 data
[i
++] = nic
->tx_tco_frames
;
2464 data
[i
++] = nic
->rx_tco_frames
;
2467 static void e100_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2471 memcpy(data
, *e100_gstrings_test
, sizeof(e100_gstrings_test
));
2474 memcpy(data
, *e100_gstrings_stats
, sizeof(e100_gstrings_stats
));
2479 static struct ethtool_ops e100_ethtool_ops
= {
2480 .get_settings
= e100_get_settings
,
2481 .set_settings
= e100_set_settings
,
2482 .get_drvinfo
= e100_get_drvinfo
,
2483 .get_regs_len
= e100_get_regs_len
,
2484 .get_regs
= e100_get_regs
,
2485 .get_wol
= e100_get_wol
,
2486 .set_wol
= e100_set_wol
,
2487 .get_msglevel
= e100_get_msglevel
,
2488 .set_msglevel
= e100_set_msglevel
,
2489 .nway_reset
= e100_nway_reset
,
2490 .get_link
= e100_get_link
,
2491 .get_eeprom_len
= e100_get_eeprom_len
,
2492 .get_eeprom
= e100_get_eeprom
,
2493 .set_eeprom
= e100_set_eeprom
,
2494 .get_ringparam
= e100_get_ringparam
,
2495 .set_ringparam
= e100_set_ringparam
,
2496 .self_test_count
= e100_diag_test_count
,
2497 .self_test
= e100_diag_test
,
2498 .get_strings
= e100_get_strings
,
2499 .phys_id
= e100_phys_id
,
2500 .get_stats_count
= e100_get_stats_count
,
2501 .get_ethtool_stats
= e100_get_ethtool_stats
,
2502 .get_perm_addr
= ethtool_op_get_perm_addr
,
2505 static int e100_do_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2507 struct nic
*nic
= netdev_priv(netdev
);
2509 return generic_mii_ioctl(&nic
->mii
, if_mii(ifr
), cmd
, NULL
);
2512 static int e100_alloc(struct nic
*nic
)
2514 nic
->mem
= pci_alloc_consistent(nic
->pdev
, sizeof(struct mem
),
2516 return nic
->mem
? 0 : -ENOMEM
;
2519 static void e100_free(struct nic
*nic
)
2522 pci_free_consistent(nic
->pdev
, sizeof(struct mem
),
2523 nic
->mem
, nic
->dma_addr
);
2528 static int e100_open(struct net_device
*netdev
)
2530 struct nic
*nic
= netdev_priv(netdev
);
2533 netif_carrier_off(netdev
);
2534 if((err
= e100_up(nic
)))
2535 DPRINTK(IFUP
, ERR
, "Cannot open interface, aborting.\n");
2539 static int e100_close(struct net_device
*netdev
)
2541 e100_down(netdev_priv(netdev
));
2545 static int __devinit
e100_probe(struct pci_dev
*pdev
,
2546 const struct pci_device_id
*ent
)
2548 struct net_device
*netdev
;
2552 if(!(netdev
= alloc_etherdev(sizeof(struct nic
)))) {
2553 if(((1 << debug
) - 1) & NETIF_MSG_PROBE
)
2554 printk(KERN_ERR PFX
"Etherdev alloc failed, abort.\n");
2558 netdev
->open
= e100_open
;
2559 netdev
->stop
= e100_close
;
2560 netdev
->hard_start_xmit
= e100_xmit_frame
;
2561 netdev
->get_stats
= e100_get_stats
;
2562 netdev
->set_multicast_list
= e100_set_multicast_list
;
2563 netdev
->set_mac_address
= e100_set_mac_address
;
2564 netdev
->change_mtu
= e100_change_mtu
;
2565 netdev
->do_ioctl
= e100_do_ioctl
;
2566 SET_ETHTOOL_OPS(netdev
, &e100_ethtool_ops
);
2567 netdev
->tx_timeout
= e100_tx_timeout
;
2568 netdev
->watchdog_timeo
= E100_WATCHDOG_PERIOD
;
2569 netdev
->poll
= e100_poll
;
2570 netdev
->weight
= E100_NAPI_WEIGHT
;
2571 #ifdef CONFIG_NET_POLL_CONTROLLER
2572 netdev
->poll_controller
= e100_netpoll
;
2574 strcpy(netdev
->name
, pci_name(pdev
));
2576 nic
= netdev_priv(netdev
);
2577 nic
->netdev
= netdev
;
2579 nic
->msg_enable
= (1 << debug
) - 1;
2580 pci_set_drvdata(pdev
, netdev
);
2582 if((err
= pci_enable_device(pdev
))) {
2583 DPRINTK(PROBE
, ERR
, "Cannot enable PCI device, aborting.\n");
2584 goto err_out_free_dev
;
2587 if(!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
2588 DPRINTK(PROBE
, ERR
, "Cannot find proper PCI device "
2589 "base address, aborting.\n");
2591 goto err_out_disable_pdev
;
2594 if((err
= pci_request_regions(pdev
, DRV_NAME
))) {
2595 DPRINTK(PROBE
, ERR
, "Cannot obtain PCI resources, aborting.\n");
2596 goto err_out_disable_pdev
;
2599 if((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
2600 DPRINTK(PROBE
, ERR
, "No usable DMA configuration, aborting.\n");
2601 goto err_out_free_res
;
2604 SET_MODULE_OWNER(netdev
);
2605 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2607 nic
->csr
= ioremap(pci_resource_start(pdev
, 0), sizeof(struct csr
));
2609 DPRINTK(PROBE
, ERR
, "Cannot map device registers, aborting.\n");
2611 goto err_out_free_res
;
2614 if(ent
->driver_data
)
2619 e100_get_defaults(nic
);
2621 /* locks must be initialized before calling hw_reset */
2622 spin_lock_init(&nic
->cb_lock
);
2623 spin_lock_init(&nic
->cmd_lock
);
2624 spin_lock_init(&nic
->mdio_lock
);
2626 /* Reset the device before pci_set_master() in case device is in some
2627 * funky state and has an interrupt pending - hint: we don't have the
2628 * interrupt handler registered yet. */
2631 pci_set_master(pdev
);
2633 init_timer(&nic
->watchdog
);
2634 nic
->watchdog
.function
= e100_watchdog
;
2635 nic
->watchdog
.data
= (unsigned long)nic
;
2636 init_timer(&nic
->blink_timer
);
2637 nic
->blink_timer
.function
= e100_blink_led
;
2638 nic
->blink_timer
.data
= (unsigned long)nic
;
2640 INIT_WORK(&nic
->tx_timeout_task
,
2641 (void (*)(void *))e100_tx_timeout_task
, netdev
);
2643 if((err
= e100_alloc(nic
))) {
2644 DPRINTK(PROBE
, ERR
, "Cannot alloc driver memory, aborting.\n");
2645 goto err_out_iounmap
;
2648 if((err
= e100_eeprom_load(nic
)))
2653 memcpy(netdev
->dev_addr
, nic
->eeprom
, ETH_ALEN
);
2654 memcpy(netdev
->perm_addr
, nic
->eeprom
, ETH_ALEN
);
2655 if(!is_valid_ether_addr(netdev
->perm_addr
)) {
2656 DPRINTK(PROBE
, ERR
, "Invalid MAC address from "
2657 "EEPROM, aborting.\n");
2662 /* Wol magic packet can be enabled from eeprom */
2663 if((nic
->mac
>= mac_82558_D101_A4
) &&
2664 (nic
->eeprom
[eeprom_id
] & eeprom_id_wol
))
2665 nic
->flags
|= wol_magic
;
2667 /* ack any pending wake events, disable PME */
2668 err
= pci_enable_wake(pdev
, 0, 0);
2670 DPRINTK(PROBE
, ERR
, "Error clearing wake event\n");
2672 strcpy(netdev
->name
, "eth%d");
2673 if((err
= register_netdev(netdev
))) {
2674 DPRINTK(PROBE
, ERR
, "Cannot register net device, aborting.\n");
2678 DPRINTK(PROBE
, INFO
, "addr 0x%lx, irq %d, "
2679 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
2680 pci_resource_start(pdev
, 0), pdev
->irq
,
2681 netdev
->dev_addr
[0], netdev
->dev_addr
[1], netdev
->dev_addr
[2],
2682 netdev
->dev_addr
[3], netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
2691 pci_release_regions(pdev
);
2692 err_out_disable_pdev
:
2693 pci_disable_device(pdev
);
2695 pci_set_drvdata(pdev
, NULL
);
2696 free_netdev(netdev
);
2700 static void __devexit
e100_remove(struct pci_dev
*pdev
)
2702 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2705 struct nic
*nic
= netdev_priv(netdev
);
2706 unregister_netdev(netdev
);
2709 free_netdev(netdev
);
2710 pci_release_regions(pdev
);
2711 pci_disable_device(pdev
);
2712 pci_set_drvdata(pdev
, NULL
);
2717 static int e100_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2719 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2720 struct nic
*nic
= netdev_priv(netdev
);
2723 if(netif_running(netdev
))
2726 netif_device_detach(netdev
);
2728 pci_save_state(pdev
);
2729 retval
= pci_enable_wake(pdev
, pci_choose_state(pdev
, state
),
2730 nic
->flags
& (wol_magic
| e100_asf(nic
)));
2732 DPRINTK(PROBE
,ERR
, "Error enabling wake\n");
2733 pci_disable_device(pdev
);
2734 retval
= pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
2736 DPRINTK(PROBE
,ERR
, "Error %d setting power state\n", retval
);
2741 static int e100_resume(struct pci_dev
*pdev
)
2743 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2744 struct nic
*nic
= netdev_priv(netdev
);
2747 retval
= pci_set_power_state(pdev
, PCI_D0
);
2749 DPRINTK(PROBE
,ERR
, "Error waking adapter\n");
2750 pci_restore_state(pdev
);
2751 /* ack any pending wake events, disable PME */
2752 retval
= pci_enable_wake(pdev
, 0, 0);
2754 DPRINTK(PROBE
,ERR
, "Error clearing wake events\n");
2755 if(e100_hw_init(nic
))
2756 DPRINTK(HW
, ERR
, "e100_hw_init failed\n");
2758 netif_device_attach(netdev
);
2759 if(netif_running(netdev
))
2767 static void e100_shutdown(struct pci_dev
*pdev
)
2769 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2770 struct nic
*nic
= netdev_priv(netdev
);
2774 retval
= pci_enable_wake(pdev
, 0, nic
->flags
& (wol_magic
| e100_asf(nic
)));
2776 retval
= pci_enable_wake(pdev
, 0, nic
->flags
& (wol_magic
));
2779 DPRINTK(PROBE
,ERR
, "Error enabling wake\n");
2783 static struct pci_driver e100_driver
= {
2785 .id_table
= e100_id_table
,
2786 .probe
= e100_probe
,
2787 .remove
= __devexit_p(e100_remove
),
2789 .suspend
= e100_suspend
,
2790 .resume
= e100_resume
,
2792 .shutdown
= e100_shutdown
,
2795 static int __init
e100_init_module(void)
2797 if(((1 << debug
) - 1) & NETIF_MSG_DRV
) {
2798 printk(KERN_INFO PFX
"%s, %s\n", DRV_DESCRIPTION
, DRV_VERSION
);
2799 printk(KERN_INFO PFX
"%s\n", DRV_COPYRIGHT
);
2801 return pci_module_init(&e100_driver
);
2804 static void __exit
e100_cleanup_module(void)
2806 pci_unregister_driver(&e100_driver
);
2809 module_init(e100_init_module
);
2810 module_exit(e100_cleanup_module
);