staging: et131x: remove unused prototype et131x_vlan_rx_register
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / nommu.c
blob9edc897a3970e3a22753e6bbed4ce0bdde9d0f19
1 /*
2 * linux/mm/nommu.c
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/audit.h>
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
40 #if 0
41 #define kenter(FMT, ...) \
42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long num_physpages;
60 unsigned long highest_memmap_pfn;
61 struct percpu_counter vm_committed_as;
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66 int heap_stack_gap = 0;
68 atomic_long_t mmap_pages_allocated;
70 EXPORT_SYMBOL(mem_map);
71 EXPORT_SYMBOL(num_physpages);
73 /* list of mapped, potentially shareable regions */
74 static struct kmem_cache *vm_region_jar;
75 struct rb_root nommu_region_tree = RB_ROOT;
76 DECLARE_RWSEM(nommu_region_sem);
78 const struct vm_operations_struct generic_file_vm_ops = {
82 * Return the total memory allocated for this pointer, not
83 * just what the caller asked for.
85 * Doesn't have to be accurate, i.e. may have races.
87 unsigned int kobjsize(const void *objp)
89 struct page *page;
92 * If the object we have should not have ksize performed on it,
93 * return size of 0
95 if (!objp || !virt_addr_valid(objp))
96 return 0;
98 page = virt_to_head_page(objp);
101 * If the allocator sets PageSlab, we know the pointer came from
102 * kmalloc().
104 if (PageSlab(page))
105 return ksize(objp);
108 * If it's not a compound page, see if we have a matching VMA
109 * region. This test is intentionally done in reverse order,
110 * so if there's no VMA, we still fall through and hand back
111 * PAGE_SIZE for 0-order pages.
113 if (!PageCompound(page)) {
114 struct vm_area_struct *vma;
116 vma = find_vma(current->mm, (unsigned long)objp);
117 if (vma)
118 return vma->vm_end - vma->vm_start;
122 * The ksize() function is only guaranteed to work for pointers
123 * returned by kmalloc(). So handle arbitrary pointers here.
125 return PAGE_SIZE << compound_order(page);
128 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
129 unsigned long start, int nr_pages, unsigned int foll_flags,
130 struct page **pages, struct vm_area_struct **vmas,
131 int *retry)
133 struct vm_area_struct *vma;
134 unsigned long vm_flags;
135 int i;
137 /* calculate required read or write permissions.
138 * If FOLL_FORCE is set, we only require the "MAY" flags.
140 vm_flags = (foll_flags & FOLL_WRITE) ?
141 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
142 vm_flags &= (foll_flags & FOLL_FORCE) ?
143 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
145 for (i = 0; i < nr_pages; i++) {
146 vma = find_vma(mm, start);
147 if (!vma)
148 goto finish_or_fault;
150 /* protect what we can, including chardevs */
151 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
152 !(vm_flags & vma->vm_flags))
153 goto finish_or_fault;
155 if (pages) {
156 pages[i] = virt_to_page(start);
157 if (pages[i])
158 page_cache_get(pages[i]);
160 if (vmas)
161 vmas[i] = vma;
162 start = (start + PAGE_SIZE) & PAGE_MASK;
165 return i;
167 finish_or_fault:
168 return i ? : -EFAULT;
172 * get a list of pages in an address range belonging to the specified process
173 * and indicate the VMA that covers each page
174 * - this is potentially dodgy as we may end incrementing the page count of a
175 * slab page or a secondary page from a compound page
176 * - don't permit access to VMAs that don't support it, such as I/O mappings
178 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
179 unsigned long start, int nr_pages, int write, int force,
180 struct page **pages, struct vm_area_struct **vmas)
182 int flags = 0;
184 if (write)
185 flags |= FOLL_WRITE;
186 if (force)
187 flags |= FOLL_FORCE;
189 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
190 NULL);
192 EXPORT_SYMBOL(get_user_pages);
195 * follow_pfn - look up PFN at a user virtual address
196 * @vma: memory mapping
197 * @address: user virtual address
198 * @pfn: location to store found PFN
200 * Only IO mappings and raw PFN mappings are allowed.
202 * Returns zero and the pfn at @pfn on success, -ve otherwise.
204 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
205 unsigned long *pfn)
207 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
208 return -EINVAL;
210 *pfn = address >> PAGE_SHIFT;
211 return 0;
213 EXPORT_SYMBOL(follow_pfn);
215 DEFINE_RWLOCK(vmlist_lock);
216 struct vm_struct *vmlist;
218 void vfree(const void *addr)
220 kfree(addr);
222 EXPORT_SYMBOL(vfree);
224 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
227 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
228 * returns only a logical address.
230 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
232 EXPORT_SYMBOL(__vmalloc);
234 void *vmalloc_user(unsigned long size)
236 void *ret;
238 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
239 PAGE_KERNEL);
240 if (ret) {
241 struct vm_area_struct *vma;
243 down_write(&current->mm->mmap_sem);
244 vma = find_vma(current->mm, (unsigned long)ret);
245 if (vma)
246 vma->vm_flags |= VM_USERMAP;
247 up_write(&current->mm->mmap_sem);
250 return ret;
252 EXPORT_SYMBOL(vmalloc_user);
254 struct page *vmalloc_to_page(const void *addr)
256 return virt_to_page(addr);
258 EXPORT_SYMBOL(vmalloc_to_page);
260 unsigned long vmalloc_to_pfn(const void *addr)
262 return page_to_pfn(virt_to_page(addr));
264 EXPORT_SYMBOL(vmalloc_to_pfn);
266 long vread(char *buf, char *addr, unsigned long count)
268 memcpy(buf, addr, count);
269 return count;
272 long vwrite(char *buf, char *addr, unsigned long count)
274 /* Don't allow overflow */
275 if ((unsigned long) addr + count < count)
276 count = -(unsigned long) addr;
278 memcpy(addr, buf, count);
279 return(count);
283 * vmalloc - allocate virtually continguos memory
285 * @size: allocation size
287 * Allocate enough pages to cover @size from the page level
288 * allocator and map them into continguos kernel virtual space.
290 * For tight control over page level allocator and protection flags
291 * use __vmalloc() instead.
293 void *vmalloc(unsigned long size)
295 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
297 EXPORT_SYMBOL(vmalloc);
300 * vzalloc - allocate virtually continguos memory with zero fill
302 * @size: allocation size
304 * Allocate enough pages to cover @size from the page level
305 * allocator and map them into continguos kernel virtual space.
306 * The memory allocated is set to zero.
308 * For tight control over page level allocator and protection flags
309 * use __vmalloc() instead.
311 void *vzalloc(unsigned long size)
313 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
314 PAGE_KERNEL);
316 EXPORT_SYMBOL(vzalloc);
319 * vmalloc_node - allocate memory on a specific node
320 * @size: allocation size
321 * @node: numa node
323 * Allocate enough pages to cover @size from the page level
324 * allocator and map them into contiguous kernel virtual space.
326 * For tight control over page level allocator and protection flags
327 * use __vmalloc() instead.
329 void *vmalloc_node(unsigned long size, int node)
331 return vmalloc(size);
333 EXPORT_SYMBOL(vmalloc_node);
336 * vzalloc_node - allocate memory on a specific node with zero fill
337 * @size: allocation size
338 * @node: numa node
340 * Allocate enough pages to cover @size from the page level
341 * allocator and map them into contiguous kernel virtual space.
342 * The memory allocated is set to zero.
344 * For tight control over page level allocator and protection flags
345 * use __vmalloc() instead.
347 void *vzalloc_node(unsigned long size, int node)
349 return vzalloc(size);
351 EXPORT_SYMBOL(vzalloc_node);
353 #ifndef PAGE_KERNEL_EXEC
354 # define PAGE_KERNEL_EXEC PAGE_KERNEL
355 #endif
358 * vmalloc_exec - allocate virtually contiguous, executable memory
359 * @size: allocation size
361 * Kernel-internal function to allocate enough pages to cover @size
362 * the page level allocator and map them into contiguous and
363 * executable kernel virtual space.
365 * For tight control over page level allocator and protection flags
366 * use __vmalloc() instead.
369 void *vmalloc_exec(unsigned long size)
371 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
375 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
376 * @size: allocation size
378 * Allocate enough 32bit PA addressable pages to cover @size from the
379 * page level allocator and map them into continguos kernel virtual space.
381 void *vmalloc_32(unsigned long size)
383 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
385 EXPORT_SYMBOL(vmalloc_32);
388 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
389 * @size: allocation size
391 * The resulting memory area is 32bit addressable and zeroed so it can be
392 * mapped to userspace without leaking data.
394 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
395 * remap_vmalloc_range() are permissible.
397 void *vmalloc_32_user(unsigned long size)
400 * We'll have to sort out the ZONE_DMA bits for 64-bit,
401 * but for now this can simply use vmalloc_user() directly.
403 return vmalloc_user(size);
405 EXPORT_SYMBOL(vmalloc_32_user);
407 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
409 BUG();
410 return NULL;
412 EXPORT_SYMBOL(vmap);
414 void vunmap(const void *addr)
416 BUG();
418 EXPORT_SYMBOL(vunmap);
420 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
422 BUG();
423 return NULL;
425 EXPORT_SYMBOL(vm_map_ram);
427 void vm_unmap_ram(const void *mem, unsigned int count)
429 BUG();
431 EXPORT_SYMBOL(vm_unmap_ram);
433 void vm_unmap_aliases(void)
436 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
439 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
440 * have one.
442 void __attribute__((weak)) vmalloc_sync_all(void)
447 * alloc_vm_area - allocate a range of kernel address space
448 * @size: size of the area
450 * Returns: NULL on failure, vm_struct on success
452 * This function reserves a range of kernel address space, and
453 * allocates pagetables to map that range. No actual mappings
454 * are created. If the kernel address space is not shared
455 * between processes, it syncs the pagetable across all
456 * processes.
458 struct vm_struct *alloc_vm_area(size_t size)
460 BUG();
461 return NULL;
463 EXPORT_SYMBOL_GPL(alloc_vm_area);
465 void free_vm_area(struct vm_struct *area)
467 BUG();
469 EXPORT_SYMBOL_GPL(free_vm_area);
471 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
472 struct page *page)
474 return -EINVAL;
476 EXPORT_SYMBOL(vm_insert_page);
479 * sys_brk() for the most part doesn't need the global kernel
480 * lock, except when an application is doing something nasty
481 * like trying to un-brk an area that has already been mapped
482 * to a regular file. in this case, the unmapping will need
483 * to invoke file system routines that need the global lock.
485 SYSCALL_DEFINE1(brk, unsigned long, brk)
487 struct mm_struct *mm = current->mm;
489 if (brk < mm->start_brk || brk > mm->context.end_brk)
490 return mm->brk;
492 if (mm->brk == brk)
493 return mm->brk;
496 * Always allow shrinking brk
498 if (brk <= mm->brk) {
499 mm->brk = brk;
500 return brk;
504 * Ok, looks good - let it rip.
506 flush_icache_range(mm->brk, brk);
507 return mm->brk = brk;
511 * initialise the VMA and region record slabs
513 void __init mmap_init(void)
515 int ret;
517 ret = percpu_counter_init(&vm_committed_as, 0);
518 VM_BUG_ON(ret);
519 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
523 * validate the region tree
524 * - the caller must hold the region lock
526 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
527 static noinline void validate_nommu_regions(void)
529 struct vm_region *region, *last;
530 struct rb_node *p, *lastp;
532 lastp = rb_first(&nommu_region_tree);
533 if (!lastp)
534 return;
536 last = rb_entry(lastp, struct vm_region, vm_rb);
537 BUG_ON(unlikely(last->vm_end <= last->vm_start));
538 BUG_ON(unlikely(last->vm_top < last->vm_end));
540 while ((p = rb_next(lastp))) {
541 region = rb_entry(p, struct vm_region, vm_rb);
542 last = rb_entry(lastp, struct vm_region, vm_rb);
544 BUG_ON(unlikely(region->vm_end <= region->vm_start));
545 BUG_ON(unlikely(region->vm_top < region->vm_end));
546 BUG_ON(unlikely(region->vm_start < last->vm_top));
548 lastp = p;
551 #else
552 static void validate_nommu_regions(void)
555 #endif
558 * add a region into the global tree
560 static void add_nommu_region(struct vm_region *region)
562 struct vm_region *pregion;
563 struct rb_node **p, *parent;
565 validate_nommu_regions();
567 parent = NULL;
568 p = &nommu_region_tree.rb_node;
569 while (*p) {
570 parent = *p;
571 pregion = rb_entry(parent, struct vm_region, vm_rb);
572 if (region->vm_start < pregion->vm_start)
573 p = &(*p)->rb_left;
574 else if (region->vm_start > pregion->vm_start)
575 p = &(*p)->rb_right;
576 else if (pregion == region)
577 return;
578 else
579 BUG();
582 rb_link_node(&region->vm_rb, parent, p);
583 rb_insert_color(&region->vm_rb, &nommu_region_tree);
585 validate_nommu_regions();
589 * delete a region from the global tree
591 static void delete_nommu_region(struct vm_region *region)
593 BUG_ON(!nommu_region_tree.rb_node);
595 validate_nommu_regions();
596 rb_erase(&region->vm_rb, &nommu_region_tree);
597 validate_nommu_regions();
601 * free a contiguous series of pages
603 static void free_page_series(unsigned long from, unsigned long to)
605 for (; from < to; from += PAGE_SIZE) {
606 struct page *page = virt_to_page(from);
608 kdebug("- free %lx", from);
609 atomic_long_dec(&mmap_pages_allocated);
610 if (page_count(page) != 1)
611 kdebug("free page %p: refcount not one: %d",
612 page, page_count(page));
613 put_page(page);
618 * release a reference to a region
619 * - the caller must hold the region semaphore for writing, which this releases
620 * - the region may not have been added to the tree yet, in which case vm_top
621 * will equal vm_start
623 static void __put_nommu_region(struct vm_region *region)
624 __releases(nommu_region_sem)
626 kenter("%p{%d}", region, region->vm_usage);
628 BUG_ON(!nommu_region_tree.rb_node);
630 if (--region->vm_usage == 0) {
631 if (region->vm_top > region->vm_start)
632 delete_nommu_region(region);
633 up_write(&nommu_region_sem);
635 if (region->vm_file)
636 fput(region->vm_file);
638 /* IO memory and memory shared directly out of the pagecache
639 * from ramfs/tmpfs mustn't be released here */
640 if (region->vm_flags & VM_MAPPED_COPY) {
641 kdebug("free series");
642 free_page_series(region->vm_start, region->vm_top);
644 kmem_cache_free(vm_region_jar, region);
645 } else {
646 up_write(&nommu_region_sem);
651 * release a reference to a region
653 static void put_nommu_region(struct vm_region *region)
655 down_write(&nommu_region_sem);
656 __put_nommu_region(region);
660 * update protection on a vma
662 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
664 #ifdef CONFIG_MPU
665 struct mm_struct *mm = vma->vm_mm;
666 long start = vma->vm_start & PAGE_MASK;
667 while (start < vma->vm_end) {
668 protect_page(mm, start, flags);
669 start += PAGE_SIZE;
671 update_protections(mm);
672 #endif
676 * add a VMA into a process's mm_struct in the appropriate place in the list
677 * and tree and add to the address space's page tree also if not an anonymous
678 * page
679 * - should be called with mm->mmap_sem held writelocked
681 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
683 struct vm_area_struct *pvma, *prev;
684 struct address_space *mapping;
685 struct rb_node **p, *parent, *rb_prev;
687 kenter(",%p", vma);
689 BUG_ON(!vma->vm_region);
691 mm->map_count++;
692 vma->vm_mm = mm;
694 protect_vma(vma, vma->vm_flags);
696 /* add the VMA to the mapping */
697 if (vma->vm_file) {
698 mapping = vma->vm_file->f_mapping;
700 flush_dcache_mmap_lock(mapping);
701 vma_prio_tree_insert(vma, &mapping->i_mmap);
702 flush_dcache_mmap_unlock(mapping);
705 /* add the VMA to the tree */
706 parent = rb_prev = NULL;
707 p = &mm->mm_rb.rb_node;
708 while (*p) {
709 parent = *p;
710 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
712 /* sort by: start addr, end addr, VMA struct addr in that order
713 * (the latter is necessary as we may get identical VMAs) */
714 if (vma->vm_start < pvma->vm_start)
715 p = &(*p)->rb_left;
716 else if (vma->vm_start > pvma->vm_start) {
717 rb_prev = parent;
718 p = &(*p)->rb_right;
719 } else if (vma->vm_end < pvma->vm_end)
720 p = &(*p)->rb_left;
721 else if (vma->vm_end > pvma->vm_end) {
722 rb_prev = parent;
723 p = &(*p)->rb_right;
724 } else if (vma < pvma)
725 p = &(*p)->rb_left;
726 else if (vma > pvma) {
727 rb_prev = parent;
728 p = &(*p)->rb_right;
729 } else
730 BUG();
733 rb_link_node(&vma->vm_rb, parent, p);
734 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
736 /* add VMA to the VMA list also */
737 prev = NULL;
738 if (rb_prev)
739 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
741 __vma_link_list(mm, vma, prev, parent);
745 * delete a VMA from its owning mm_struct and address space
747 static void delete_vma_from_mm(struct vm_area_struct *vma)
749 struct address_space *mapping;
750 struct mm_struct *mm = vma->vm_mm;
752 kenter("%p", vma);
754 protect_vma(vma, 0);
756 mm->map_count--;
757 if (mm->mmap_cache == vma)
758 mm->mmap_cache = NULL;
760 /* remove the VMA from the mapping */
761 if (vma->vm_file) {
762 mapping = vma->vm_file->f_mapping;
764 flush_dcache_mmap_lock(mapping);
765 vma_prio_tree_remove(vma, &mapping->i_mmap);
766 flush_dcache_mmap_unlock(mapping);
769 /* remove from the MM's tree and list */
770 rb_erase(&vma->vm_rb, &mm->mm_rb);
772 if (vma->vm_prev)
773 vma->vm_prev->vm_next = vma->vm_next;
774 else
775 mm->mmap = vma->vm_next;
777 if (vma->vm_next)
778 vma->vm_next->vm_prev = vma->vm_prev;
780 vma->vm_mm = NULL;
784 * destroy a VMA record
786 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
788 kenter("%p", vma);
789 if (vma->vm_ops && vma->vm_ops->close)
790 vma->vm_ops->close(vma);
791 if (vma->vm_file) {
792 fput(vma->vm_file);
793 if (vma->vm_flags & VM_EXECUTABLE)
794 removed_exe_file_vma(mm);
796 put_nommu_region(vma->vm_region);
797 kmem_cache_free(vm_area_cachep, vma);
801 * look up the first VMA in which addr resides, NULL if none
802 * - should be called with mm->mmap_sem at least held readlocked
804 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
806 struct vm_area_struct *vma;
808 /* check the cache first */
809 vma = mm->mmap_cache;
810 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
811 return vma;
813 /* trawl the list (there may be multiple mappings in which addr
814 * resides) */
815 for (vma = mm->mmap; vma; vma = vma->vm_next) {
816 if (vma->vm_start > addr)
817 return NULL;
818 if (vma->vm_end > addr) {
819 mm->mmap_cache = vma;
820 return vma;
824 return NULL;
826 EXPORT_SYMBOL(find_vma);
829 * find a VMA
830 * - we don't extend stack VMAs under NOMMU conditions
832 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
834 return find_vma(mm, addr);
838 * expand a stack to a given address
839 * - not supported under NOMMU conditions
841 int expand_stack(struct vm_area_struct *vma, unsigned long address)
843 return -ENOMEM;
847 * look up the first VMA exactly that exactly matches addr
848 * - should be called with mm->mmap_sem at least held readlocked
850 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
851 unsigned long addr,
852 unsigned long len)
854 struct vm_area_struct *vma;
855 unsigned long end = addr + len;
857 /* check the cache first */
858 vma = mm->mmap_cache;
859 if (vma && vma->vm_start == addr && vma->vm_end == end)
860 return vma;
862 /* trawl the list (there may be multiple mappings in which addr
863 * resides) */
864 for (vma = mm->mmap; vma; vma = vma->vm_next) {
865 if (vma->vm_start < addr)
866 continue;
867 if (vma->vm_start > addr)
868 return NULL;
869 if (vma->vm_end == end) {
870 mm->mmap_cache = vma;
871 return vma;
875 return NULL;
879 * determine whether a mapping should be permitted and, if so, what sort of
880 * mapping we're capable of supporting
882 static int validate_mmap_request(struct file *file,
883 unsigned long addr,
884 unsigned long len,
885 unsigned long prot,
886 unsigned long flags,
887 unsigned long pgoff,
888 unsigned long *_capabilities)
890 unsigned long capabilities, rlen;
891 unsigned long reqprot = prot;
892 int ret;
894 /* do the simple checks first */
895 if (flags & MAP_FIXED) {
896 printk(KERN_DEBUG
897 "%d: Can't do fixed-address/overlay mmap of RAM\n",
898 current->pid);
899 return -EINVAL;
902 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
903 (flags & MAP_TYPE) != MAP_SHARED)
904 return -EINVAL;
906 if (!len)
907 return -EINVAL;
909 /* Careful about overflows.. */
910 rlen = PAGE_ALIGN(len);
911 if (!rlen || rlen > TASK_SIZE)
912 return -ENOMEM;
914 /* offset overflow? */
915 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
916 return -EOVERFLOW;
918 if (file) {
919 /* validate file mapping requests */
920 struct address_space *mapping;
922 /* files must support mmap */
923 if (!file->f_op || !file->f_op->mmap)
924 return -ENODEV;
926 /* work out if what we've got could possibly be shared
927 * - we support chardevs that provide their own "memory"
928 * - we support files/blockdevs that are memory backed
930 mapping = file->f_mapping;
931 if (!mapping)
932 mapping = file->f_path.dentry->d_inode->i_mapping;
934 capabilities = 0;
935 if (mapping && mapping->backing_dev_info)
936 capabilities = mapping->backing_dev_info->capabilities;
938 if (!capabilities) {
939 /* no explicit capabilities set, so assume some
940 * defaults */
941 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
942 case S_IFREG:
943 case S_IFBLK:
944 capabilities = BDI_CAP_MAP_COPY;
945 break;
947 case S_IFCHR:
948 capabilities =
949 BDI_CAP_MAP_DIRECT |
950 BDI_CAP_READ_MAP |
951 BDI_CAP_WRITE_MAP;
952 break;
954 default:
955 return -EINVAL;
959 /* eliminate any capabilities that we can't support on this
960 * device */
961 if (!file->f_op->get_unmapped_area)
962 capabilities &= ~BDI_CAP_MAP_DIRECT;
963 if (!file->f_op->read)
964 capabilities &= ~BDI_CAP_MAP_COPY;
966 /* The file shall have been opened with read permission. */
967 if (!(file->f_mode & FMODE_READ))
968 return -EACCES;
970 if (flags & MAP_SHARED) {
971 /* do checks for writing, appending and locking */
972 if ((prot & PROT_WRITE) &&
973 !(file->f_mode & FMODE_WRITE))
974 return -EACCES;
976 if (IS_APPEND(file->f_path.dentry->d_inode) &&
977 (file->f_mode & FMODE_WRITE))
978 return -EACCES;
980 if (locks_verify_locked(file->f_path.dentry->d_inode))
981 return -EAGAIN;
983 if (!(capabilities & BDI_CAP_MAP_DIRECT))
984 return -ENODEV;
986 /* we mustn't privatise shared mappings */
987 capabilities &= ~BDI_CAP_MAP_COPY;
989 else {
990 /* we're going to read the file into private memory we
991 * allocate */
992 if (!(capabilities & BDI_CAP_MAP_COPY))
993 return -ENODEV;
995 /* we don't permit a private writable mapping to be
996 * shared with the backing device */
997 if (prot & PROT_WRITE)
998 capabilities &= ~BDI_CAP_MAP_DIRECT;
1001 if (capabilities & BDI_CAP_MAP_DIRECT) {
1002 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1003 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1004 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1006 capabilities &= ~BDI_CAP_MAP_DIRECT;
1007 if (flags & MAP_SHARED) {
1008 printk(KERN_WARNING
1009 "MAP_SHARED not completely supported on !MMU\n");
1010 return -EINVAL;
1015 /* handle executable mappings and implied executable
1016 * mappings */
1017 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1018 if (prot & PROT_EXEC)
1019 return -EPERM;
1021 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1022 /* handle implication of PROT_EXEC by PROT_READ */
1023 if (current->personality & READ_IMPLIES_EXEC) {
1024 if (capabilities & BDI_CAP_EXEC_MAP)
1025 prot |= PROT_EXEC;
1028 else if ((prot & PROT_READ) &&
1029 (prot & PROT_EXEC) &&
1030 !(capabilities & BDI_CAP_EXEC_MAP)
1032 /* backing file is not executable, try to copy */
1033 capabilities &= ~BDI_CAP_MAP_DIRECT;
1036 else {
1037 /* anonymous mappings are always memory backed and can be
1038 * privately mapped
1040 capabilities = BDI_CAP_MAP_COPY;
1042 /* handle PROT_EXEC implication by PROT_READ */
1043 if ((prot & PROT_READ) &&
1044 (current->personality & READ_IMPLIES_EXEC))
1045 prot |= PROT_EXEC;
1048 /* allow the security API to have its say */
1049 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1050 if (ret < 0)
1051 return ret;
1053 /* looks okay */
1054 *_capabilities = capabilities;
1055 return 0;
1059 * we've determined that we can make the mapping, now translate what we
1060 * now know into VMA flags
1062 static unsigned long determine_vm_flags(struct file *file,
1063 unsigned long prot,
1064 unsigned long flags,
1065 unsigned long capabilities)
1067 unsigned long vm_flags;
1069 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1070 /* vm_flags |= mm->def_flags; */
1072 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1073 /* attempt to share read-only copies of mapped file chunks */
1074 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1075 if (file && !(prot & PROT_WRITE))
1076 vm_flags |= VM_MAYSHARE;
1077 } else {
1078 /* overlay a shareable mapping on the backing device or inode
1079 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1080 * romfs/cramfs */
1081 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1082 if (flags & MAP_SHARED)
1083 vm_flags |= VM_SHARED;
1086 /* refuse to let anyone share private mappings with this process if
1087 * it's being traced - otherwise breakpoints set in it may interfere
1088 * with another untraced process
1090 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1091 vm_flags &= ~VM_MAYSHARE;
1093 return vm_flags;
1097 * set up a shared mapping on a file (the driver or filesystem provides and
1098 * pins the storage)
1100 static int do_mmap_shared_file(struct vm_area_struct *vma)
1102 int ret;
1104 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1105 if (ret == 0) {
1106 vma->vm_region->vm_top = vma->vm_region->vm_end;
1107 return 0;
1109 if (ret != -ENOSYS)
1110 return ret;
1112 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1113 * opposed to tried but failed) so we can only give a suitable error as
1114 * it's not possible to make a private copy if MAP_SHARED was given */
1115 return -ENODEV;
1119 * set up a private mapping or an anonymous shared mapping
1121 static int do_mmap_private(struct vm_area_struct *vma,
1122 struct vm_region *region,
1123 unsigned long len,
1124 unsigned long capabilities)
1126 struct page *pages;
1127 unsigned long total, point, n;
1128 void *base;
1129 int ret, order;
1131 /* invoke the file's mapping function so that it can keep track of
1132 * shared mappings on devices or memory
1133 * - VM_MAYSHARE will be set if it may attempt to share
1135 if (capabilities & BDI_CAP_MAP_DIRECT) {
1136 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1137 if (ret == 0) {
1138 /* shouldn't return success if we're not sharing */
1139 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1140 vma->vm_region->vm_top = vma->vm_region->vm_end;
1141 return 0;
1143 if (ret != -ENOSYS)
1144 return ret;
1146 /* getting an ENOSYS error indicates that direct mmap isn't
1147 * possible (as opposed to tried but failed) so we'll try to
1148 * make a private copy of the data and map that instead */
1152 /* allocate some memory to hold the mapping
1153 * - note that this may not return a page-aligned address if the object
1154 * we're allocating is smaller than a page
1156 order = get_order(len);
1157 kdebug("alloc order %d for %lx", order, len);
1159 pages = alloc_pages(GFP_KERNEL, order);
1160 if (!pages)
1161 goto enomem;
1163 total = 1 << order;
1164 atomic_long_add(total, &mmap_pages_allocated);
1166 point = len >> PAGE_SHIFT;
1168 /* we allocated a power-of-2 sized page set, so we may want to trim off
1169 * the excess */
1170 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1171 while (total > point) {
1172 order = ilog2(total - point);
1173 n = 1 << order;
1174 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1175 atomic_long_sub(n, &mmap_pages_allocated);
1176 total -= n;
1177 set_page_refcounted(pages + total);
1178 __free_pages(pages + total, order);
1182 for (point = 1; point < total; point++)
1183 set_page_refcounted(&pages[point]);
1185 base = page_address(pages);
1186 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1187 region->vm_start = (unsigned long) base;
1188 region->vm_end = region->vm_start + len;
1189 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1191 vma->vm_start = region->vm_start;
1192 vma->vm_end = region->vm_start + len;
1194 if (vma->vm_file) {
1195 /* read the contents of a file into the copy */
1196 mm_segment_t old_fs;
1197 loff_t fpos;
1199 fpos = vma->vm_pgoff;
1200 fpos <<= PAGE_SHIFT;
1202 old_fs = get_fs();
1203 set_fs(KERNEL_DS);
1204 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1205 set_fs(old_fs);
1207 if (ret < 0)
1208 goto error_free;
1210 /* clear the last little bit */
1211 if (ret < len)
1212 memset(base + ret, 0, len - ret);
1216 return 0;
1218 error_free:
1219 free_page_series(region->vm_start, region->vm_top);
1220 region->vm_start = vma->vm_start = 0;
1221 region->vm_end = vma->vm_end = 0;
1222 region->vm_top = 0;
1223 return ret;
1225 enomem:
1226 printk("Allocation of length %lu from process %d (%s) failed\n",
1227 len, current->pid, current->comm);
1228 show_free_areas(0);
1229 return -ENOMEM;
1233 * handle mapping creation for uClinux
1235 unsigned long do_mmap_pgoff(struct file *file,
1236 unsigned long addr,
1237 unsigned long len,
1238 unsigned long prot,
1239 unsigned long flags,
1240 unsigned long pgoff)
1242 struct vm_area_struct *vma;
1243 struct vm_region *region;
1244 struct rb_node *rb;
1245 unsigned long capabilities, vm_flags, result;
1246 int ret;
1248 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1250 /* decide whether we should attempt the mapping, and if so what sort of
1251 * mapping */
1252 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1253 &capabilities);
1254 if (ret < 0) {
1255 kleave(" = %d [val]", ret);
1256 return ret;
1259 /* we ignore the address hint */
1260 addr = 0;
1261 len = PAGE_ALIGN(len);
1263 /* we've determined that we can make the mapping, now translate what we
1264 * now know into VMA flags */
1265 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1267 /* we're going to need to record the mapping */
1268 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1269 if (!region)
1270 goto error_getting_region;
1272 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1273 if (!vma)
1274 goto error_getting_vma;
1276 region->vm_usage = 1;
1277 region->vm_flags = vm_flags;
1278 region->vm_pgoff = pgoff;
1280 INIT_LIST_HEAD(&vma->anon_vma_chain);
1281 vma->vm_flags = vm_flags;
1282 vma->vm_pgoff = pgoff;
1284 if (file) {
1285 region->vm_file = file;
1286 get_file(file);
1287 vma->vm_file = file;
1288 get_file(file);
1289 if (vm_flags & VM_EXECUTABLE) {
1290 added_exe_file_vma(current->mm);
1291 vma->vm_mm = current->mm;
1295 down_write(&nommu_region_sem);
1297 /* if we want to share, we need to check for regions created by other
1298 * mmap() calls that overlap with our proposed mapping
1299 * - we can only share with a superset match on most regular files
1300 * - shared mappings on character devices and memory backed files are
1301 * permitted to overlap inexactly as far as we are concerned for in
1302 * these cases, sharing is handled in the driver or filesystem rather
1303 * than here
1305 if (vm_flags & VM_MAYSHARE) {
1306 struct vm_region *pregion;
1307 unsigned long pglen, rpglen, pgend, rpgend, start;
1309 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1310 pgend = pgoff + pglen;
1312 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1313 pregion = rb_entry(rb, struct vm_region, vm_rb);
1315 if (!(pregion->vm_flags & VM_MAYSHARE))
1316 continue;
1318 /* search for overlapping mappings on the same file */
1319 if (pregion->vm_file->f_path.dentry->d_inode !=
1320 file->f_path.dentry->d_inode)
1321 continue;
1323 if (pregion->vm_pgoff >= pgend)
1324 continue;
1326 rpglen = pregion->vm_end - pregion->vm_start;
1327 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1328 rpgend = pregion->vm_pgoff + rpglen;
1329 if (pgoff >= rpgend)
1330 continue;
1332 /* handle inexactly overlapping matches between
1333 * mappings */
1334 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1335 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1336 /* new mapping is not a subset of the region */
1337 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1338 goto sharing_violation;
1339 continue;
1342 /* we've found a region we can share */
1343 pregion->vm_usage++;
1344 vma->vm_region = pregion;
1345 start = pregion->vm_start;
1346 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1347 vma->vm_start = start;
1348 vma->vm_end = start + len;
1350 if (pregion->vm_flags & VM_MAPPED_COPY) {
1351 kdebug("share copy");
1352 vma->vm_flags |= VM_MAPPED_COPY;
1353 } else {
1354 kdebug("share mmap");
1355 ret = do_mmap_shared_file(vma);
1356 if (ret < 0) {
1357 vma->vm_region = NULL;
1358 vma->vm_start = 0;
1359 vma->vm_end = 0;
1360 pregion->vm_usage--;
1361 pregion = NULL;
1362 goto error_just_free;
1365 fput(region->vm_file);
1366 kmem_cache_free(vm_region_jar, region);
1367 region = pregion;
1368 result = start;
1369 goto share;
1372 /* obtain the address at which to make a shared mapping
1373 * - this is the hook for quasi-memory character devices to
1374 * tell us the location of a shared mapping
1376 if (capabilities & BDI_CAP_MAP_DIRECT) {
1377 addr = file->f_op->get_unmapped_area(file, addr, len,
1378 pgoff, flags);
1379 if (IS_ERR_VALUE(addr)) {
1380 ret = addr;
1381 if (ret != -ENOSYS)
1382 goto error_just_free;
1384 /* the driver refused to tell us where to site
1385 * the mapping so we'll have to attempt to copy
1386 * it */
1387 ret = -ENODEV;
1388 if (!(capabilities & BDI_CAP_MAP_COPY))
1389 goto error_just_free;
1391 capabilities &= ~BDI_CAP_MAP_DIRECT;
1392 } else {
1393 vma->vm_start = region->vm_start = addr;
1394 vma->vm_end = region->vm_end = addr + len;
1399 vma->vm_region = region;
1401 /* set up the mapping
1402 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1404 if (file && vma->vm_flags & VM_SHARED)
1405 ret = do_mmap_shared_file(vma);
1406 else
1407 ret = do_mmap_private(vma, region, len, capabilities);
1408 if (ret < 0)
1409 goto error_just_free;
1410 add_nommu_region(region);
1412 /* clear anonymous mappings that don't ask for uninitialized data */
1413 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1414 memset((void *)region->vm_start, 0,
1415 region->vm_end - region->vm_start);
1417 /* okay... we have a mapping; now we have to register it */
1418 result = vma->vm_start;
1420 current->mm->total_vm += len >> PAGE_SHIFT;
1422 share:
1423 add_vma_to_mm(current->mm, vma);
1425 /* we flush the region from the icache only when the first executable
1426 * mapping of it is made */
1427 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1428 flush_icache_range(region->vm_start, region->vm_end);
1429 region->vm_icache_flushed = true;
1432 up_write(&nommu_region_sem);
1434 kleave(" = %lx", result);
1435 return result;
1437 error_just_free:
1438 up_write(&nommu_region_sem);
1439 error:
1440 if (region->vm_file)
1441 fput(region->vm_file);
1442 kmem_cache_free(vm_region_jar, region);
1443 if (vma->vm_file)
1444 fput(vma->vm_file);
1445 if (vma->vm_flags & VM_EXECUTABLE)
1446 removed_exe_file_vma(vma->vm_mm);
1447 kmem_cache_free(vm_area_cachep, vma);
1448 kleave(" = %d", ret);
1449 return ret;
1451 sharing_violation:
1452 up_write(&nommu_region_sem);
1453 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1454 ret = -EINVAL;
1455 goto error;
1457 error_getting_vma:
1458 kmem_cache_free(vm_region_jar, region);
1459 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1460 " from process %d failed\n",
1461 len, current->pid);
1462 show_free_areas(0);
1463 return -ENOMEM;
1465 error_getting_region:
1466 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1467 " from process %d failed\n",
1468 len, current->pid);
1469 show_free_areas(0);
1470 return -ENOMEM;
1472 EXPORT_SYMBOL(do_mmap_pgoff);
1474 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1475 unsigned long, prot, unsigned long, flags,
1476 unsigned long, fd, unsigned long, pgoff)
1478 struct file *file = NULL;
1479 unsigned long retval = -EBADF;
1481 audit_mmap_fd(fd, flags);
1482 if (!(flags & MAP_ANONYMOUS)) {
1483 file = fget(fd);
1484 if (!file)
1485 goto out;
1488 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1490 down_write(&current->mm->mmap_sem);
1491 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1492 up_write(&current->mm->mmap_sem);
1494 if (file)
1495 fput(file);
1496 out:
1497 return retval;
1500 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1501 struct mmap_arg_struct {
1502 unsigned long addr;
1503 unsigned long len;
1504 unsigned long prot;
1505 unsigned long flags;
1506 unsigned long fd;
1507 unsigned long offset;
1510 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1512 struct mmap_arg_struct a;
1514 if (copy_from_user(&a, arg, sizeof(a)))
1515 return -EFAULT;
1516 if (a.offset & ~PAGE_MASK)
1517 return -EINVAL;
1519 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1520 a.offset >> PAGE_SHIFT);
1522 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1525 * split a vma into two pieces at address 'addr', a new vma is allocated either
1526 * for the first part or the tail.
1528 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1529 unsigned long addr, int new_below)
1531 struct vm_area_struct *new;
1532 struct vm_region *region;
1533 unsigned long npages;
1535 kenter("");
1537 /* we're only permitted to split anonymous regions (these should have
1538 * only a single usage on the region) */
1539 if (vma->vm_file)
1540 return -ENOMEM;
1542 if (mm->map_count >= sysctl_max_map_count)
1543 return -ENOMEM;
1545 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1546 if (!region)
1547 return -ENOMEM;
1549 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1550 if (!new) {
1551 kmem_cache_free(vm_region_jar, region);
1552 return -ENOMEM;
1555 /* most fields are the same, copy all, and then fixup */
1556 *new = *vma;
1557 *region = *vma->vm_region;
1558 new->vm_region = region;
1560 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1562 if (new_below) {
1563 region->vm_top = region->vm_end = new->vm_end = addr;
1564 } else {
1565 region->vm_start = new->vm_start = addr;
1566 region->vm_pgoff = new->vm_pgoff += npages;
1569 if (new->vm_ops && new->vm_ops->open)
1570 new->vm_ops->open(new);
1572 delete_vma_from_mm(vma);
1573 down_write(&nommu_region_sem);
1574 delete_nommu_region(vma->vm_region);
1575 if (new_below) {
1576 vma->vm_region->vm_start = vma->vm_start = addr;
1577 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1578 } else {
1579 vma->vm_region->vm_end = vma->vm_end = addr;
1580 vma->vm_region->vm_top = addr;
1582 add_nommu_region(vma->vm_region);
1583 add_nommu_region(new->vm_region);
1584 up_write(&nommu_region_sem);
1585 add_vma_to_mm(mm, vma);
1586 add_vma_to_mm(mm, new);
1587 return 0;
1591 * shrink a VMA by removing the specified chunk from either the beginning or
1592 * the end
1594 static int shrink_vma(struct mm_struct *mm,
1595 struct vm_area_struct *vma,
1596 unsigned long from, unsigned long to)
1598 struct vm_region *region;
1600 kenter("");
1602 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1603 * and list */
1604 delete_vma_from_mm(vma);
1605 if (from > vma->vm_start)
1606 vma->vm_end = from;
1607 else
1608 vma->vm_start = to;
1609 add_vma_to_mm(mm, vma);
1611 /* cut the backing region down to size */
1612 region = vma->vm_region;
1613 BUG_ON(region->vm_usage != 1);
1615 down_write(&nommu_region_sem);
1616 delete_nommu_region(region);
1617 if (from > region->vm_start) {
1618 to = region->vm_top;
1619 region->vm_top = region->vm_end = from;
1620 } else {
1621 region->vm_start = to;
1623 add_nommu_region(region);
1624 up_write(&nommu_region_sem);
1626 free_page_series(from, to);
1627 return 0;
1631 * release a mapping
1632 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1633 * VMA, though it need not cover the whole VMA
1635 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1637 struct vm_area_struct *vma;
1638 unsigned long end;
1639 int ret;
1641 kenter(",%lx,%zx", start, len);
1643 len = PAGE_ALIGN(len);
1644 if (len == 0)
1645 return -EINVAL;
1647 end = start + len;
1649 /* find the first potentially overlapping VMA */
1650 vma = find_vma(mm, start);
1651 if (!vma) {
1652 static int limit = 0;
1653 if (limit < 5) {
1654 printk(KERN_WARNING
1655 "munmap of memory not mmapped by process %d"
1656 " (%s): 0x%lx-0x%lx\n",
1657 current->pid, current->comm,
1658 start, start + len - 1);
1659 limit++;
1661 return -EINVAL;
1664 /* we're allowed to split an anonymous VMA but not a file-backed one */
1665 if (vma->vm_file) {
1666 do {
1667 if (start > vma->vm_start) {
1668 kleave(" = -EINVAL [miss]");
1669 return -EINVAL;
1671 if (end == vma->vm_end)
1672 goto erase_whole_vma;
1673 vma = vma->vm_next;
1674 } while (vma);
1675 kleave(" = -EINVAL [split file]");
1676 return -EINVAL;
1677 } else {
1678 /* the chunk must be a subset of the VMA found */
1679 if (start == vma->vm_start && end == vma->vm_end)
1680 goto erase_whole_vma;
1681 if (start < vma->vm_start || end > vma->vm_end) {
1682 kleave(" = -EINVAL [superset]");
1683 return -EINVAL;
1685 if (start & ~PAGE_MASK) {
1686 kleave(" = -EINVAL [unaligned start]");
1687 return -EINVAL;
1689 if (end != vma->vm_end && end & ~PAGE_MASK) {
1690 kleave(" = -EINVAL [unaligned split]");
1691 return -EINVAL;
1693 if (start != vma->vm_start && end != vma->vm_end) {
1694 ret = split_vma(mm, vma, start, 1);
1695 if (ret < 0) {
1696 kleave(" = %d [split]", ret);
1697 return ret;
1700 return shrink_vma(mm, vma, start, end);
1703 erase_whole_vma:
1704 delete_vma_from_mm(vma);
1705 delete_vma(mm, vma);
1706 kleave(" = 0");
1707 return 0;
1709 EXPORT_SYMBOL(do_munmap);
1711 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1713 int ret;
1714 struct mm_struct *mm = current->mm;
1716 down_write(&mm->mmap_sem);
1717 ret = do_munmap(mm, addr, len);
1718 up_write(&mm->mmap_sem);
1719 return ret;
1723 * release all the mappings made in a process's VM space
1725 void exit_mmap(struct mm_struct *mm)
1727 struct vm_area_struct *vma;
1729 if (!mm)
1730 return;
1732 kenter("");
1734 mm->total_vm = 0;
1736 while ((vma = mm->mmap)) {
1737 mm->mmap = vma->vm_next;
1738 delete_vma_from_mm(vma);
1739 delete_vma(mm, vma);
1740 cond_resched();
1743 kleave("");
1746 unsigned long do_brk(unsigned long addr, unsigned long len)
1748 return -ENOMEM;
1752 * expand (or shrink) an existing mapping, potentially moving it at the same
1753 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1755 * under NOMMU conditions, we only permit changing a mapping's size, and only
1756 * as long as it stays within the region allocated by do_mmap_private() and the
1757 * block is not shareable
1759 * MREMAP_FIXED is not supported under NOMMU conditions
1761 unsigned long do_mremap(unsigned long addr,
1762 unsigned long old_len, unsigned long new_len,
1763 unsigned long flags, unsigned long new_addr)
1765 struct vm_area_struct *vma;
1767 /* insanity checks first */
1768 old_len = PAGE_ALIGN(old_len);
1769 new_len = PAGE_ALIGN(new_len);
1770 if (old_len == 0 || new_len == 0)
1771 return (unsigned long) -EINVAL;
1773 if (addr & ~PAGE_MASK)
1774 return -EINVAL;
1776 if (flags & MREMAP_FIXED && new_addr != addr)
1777 return (unsigned long) -EINVAL;
1779 vma = find_vma_exact(current->mm, addr, old_len);
1780 if (!vma)
1781 return (unsigned long) -EINVAL;
1783 if (vma->vm_end != vma->vm_start + old_len)
1784 return (unsigned long) -EFAULT;
1786 if (vma->vm_flags & VM_MAYSHARE)
1787 return (unsigned long) -EPERM;
1789 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1790 return (unsigned long) -ENOMEM;
1792 /* all checks complete - do it */
1793 vma->vm_end = vma->vm_start + new_len;
1794 return vma->vm_start;
1796 EXPORT_SYMBOL(do_mremap);
1798 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1799 unsigned long, new_len, unsigned long, flags,
1800 unsigned long, new_addr)
1802 unsigned long ret;
1804 down_write(&current->mm->mmap_sem);
1805 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1806 up_write(&current->mm->mmap_sem);
1807 return ret;
1810 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1811 unsigned int foll_flags)
1813 return NULL;
1816 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1817 unsigned long pfn, unsigned long size, pgprot_t prot)
1819 if (addr != (pfn << PAGE_SHIFT))
1820 return -EINVAL;
1822 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1823 return 0;
1825 EXPORT_SYMBOL(remap_pfn_range);
1827 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1828 unsigned long pgoff)
1830 unsigned int size = vma->vm_end - vma->vm_start;
1832 if (!(vma->vm_flags & VM_USERMAP))
1833 return -EINVAL;
1835 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1836 vma->vm_end = vma->vm_start + size;
1838 return 0;
1840 EXPORT_SYMBOL(remap_vmalloc_range);
1842 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1843 unsigned long len, unsigned long pgoff, unsigned long flags)
1845 return -ENOMEM;
1848 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1852 void unmap_mapping_range(struct address_space *mapping,
1853 loff_t const holebegin, loff_t const holelen,
1854 int even_cows)
1857 EXPORT_SYMBOL(unmap_mapping_range);
1860 * Check that a process has enough memory to allocate a new virtual
1861 * mapping. 0 means there is enough memory for the allocation to
1862 * succeed and -ENOMEM implies there is not.
1864 * We currently support three overcommit policies, which are set via the
1865 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1867 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1868 * Additional code 2002 Jul 20 by Robert Love.
1870 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1872 * Note this is a helper function intended to be used by LSMs which
1873 * wish to use this logic.
1875 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1877 unsigned long free, allowed;
1879 vm_acct_memory(pages);
1882 * Sometimes we want to use more memory than we have
1884 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1885 return 0;
1887 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1888 unsigned long n;
1890 free = global_page_state(NR_FILE_PAGES);
1891 free += nr_swap_pages;
1894 * Any slabs which are created with the
1895 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1896 * which are reclaimable, under pressure. The dentry
1897 * cache and most inode caches should fall into this
1899 free += global_page_state(NR_SLAB_RECLAIMABLE);
1902 * Leave the last 3% for root
1904 if (!cap_sys_admin)
1905 free -= free / 32;
1907 if (free > pages)
1908 return 0;
1911 * nr_free_pages() is very expensive on large systems,
1912 * only call if we're about to fail.
1914 n = nr_free_pages();
1917 * Leave reserved pages. The pages are not for anonymous pages.
1919 if (n <= totalreserve_pages)
1920 goto error;
1921 else
1922 n -= totalreserve_pages;
1925 * Leave the last 3% for root
1927 if (!cap_sys_admin)
1928 n -= n / 32;
1929 free += n;
1931 if (free > pages)
1932 return 0;
1934 goto error;
1937 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1939 * Leave the last 3% for root
1941 if (!cap_sys_admin)
1942 allowed -= allowed / 32;
1943 allowed += total_swap_pages;
1945 /* Don't let a single process grow too big:
1946 leave 3% of the size of this process for other processes */
1947 if (mm)
1948 allowed -= mm->total_vm / 32;
1950 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1951 return 0;
1953 error:
1954 vm_unacct_memory(pages);
1956 return -ENOMEM;
1959 int in_gate_area_no_mm(unsigned long addr)
1961 return 0;
1964 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1966 BUG();
1967 return 0;
1969 EXPORT_SYMBOL(filemap_fault);
1971 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1972 unsigned long addr, void *buf, int len, int write)
1974 struct vm_area_struct *vma;
1976 down_read(&mm->mmap_sem);
1978 /* the access must start within one of the target process's mappings */
1979 vma = find_vma(mm, addr);
1980 if (vma) {
1981 /* don't overrun this mapping */
1982 if (addr + len >= vma->vm_end)
1983 len = vma->vm_end - addr;
1985 /* only read or write mappings where it is permitted */
1986 if (write && vma->vm_flags & VM_MAYWRITE)
1987 copy_to_user_page(vma, NULL, addr,
1988 (void *) addr, buf, len);
1989 else if (!write && vma->vm_flags & VM_MAYREAD)
1990 copy_from_user_page(vma, NULL, addr,
1991 buf, (void *) addr, len);
1992 else
1993 len = 0;
1994 } else {
1995 len = 0;
1998 up_read(&mm->mmap_sem);
2000 return len;
2004 * @access_remote_vm - access another process' address space
2005 * @mm: the mm_struct of the target address space
2006 * @addr: start address to access
2007 * @buf: source or destination buffer
2008 * @len: number of bytes to transfer
2009 * @write: whether the access is a write
2011 * The caller must hold a reference on @mm.
2013 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2014 void *buf, int len, int write)
2016 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2020 * Access another process' address space.
2021 * - source/target buffer must be kernel space
2023 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2025 struct mm_struct *mm;
2027 if (addr + len < addr)
2028 return 0;
2030 mm = get_task_mm(tsk);
2031 if (!mm)
2032 return 0;
2034 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2036 mmput(mm);
2037 return len;
2041 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2042 * @inode: The inode to check
2043 * @size: The current filesize of the inode
2044 * @newsize: The proposed filesize of the inode
2046 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2047 * make sure that that any outstanding VMAs aren't broken and then shrink the
2048 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2049 * automatically grant mappings that are too large.
2051 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2052 size_t newsize)
2054 struct vm_area_struct *vma;
2055 struct prio_tree_iter iter;
2056 struct vm_region *region;
2057 pgoff_t low, high;
2058 size_t r_size, r_top;
2060 low = newsize >> PAGE_SHIFT;
2061 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2063 down_write(&nommu_region_sem);
2065 /* search for VMAs that fall within the dead zone */
2066 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2067 low, high) {
2068 /* found one - only interested if it's shared out of the page
2069 * cache */
2070 if (vma->vm_flags & VM_SHARED) {
2071 up_write(&nommu_region_sem);
2072 return -ETXTBSY; /* not quite true, but near enough */
2076 /* reduce any regions that overlap the dead zone - if in existence,
2077 * these will be pointed to by VMAs that don't overlap the dead zone
2079 * we don't check for any regions that start beyond the EOF as there
2080 * shouldn't be any
2082 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2083 0, ULONG_MAX) {
2084 if (!(vma->vm_flags & VM_SHARED))
2085 continue;
2087 region = vma->vm_region;
2088 r_size = region->vm_top - region->vm_start;
2089 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2091 if (r_top > newsize) {
2092 region->vm_top -= r_top - newsize;
2093 if (region->vm_end > region->vm_top)
2094 region->vm_end = region->vm_top;
2098 up_write(&nommu_region_sem);
2099 return 0;