4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/smp_lock.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
38 int sysctl_vfs_cache_pressure __read_mostly
= 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
41 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
42 static __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
44 EXPORT_SYMBOL(dcache_lock
);
46 static struct kmem_cache
*dentry_cache __read_mostly
;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly
;
62 static unsigned int d_hash_shift __read_mostly
;
63 static struct hlist_head
*dentry_hashtable __read_mostly
;
64 static LIST_HEAD(dentry_unused
);
66 /* Statistics gathering. */
67 struct dentry_stat_t dentry_stat
= {
71 static void d_callback(struct rcu_head
*head
)
73 struct dentry
* dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
75 if (dname_external(dentry
))
76 kfree(dentry
->d_name
.name
);
77 kmem_cache_free(dentry_cache
, dentry
);
81 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
84 static void d_free(struct dentry
*dentry
)
86 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
87 dentry
->d_op
->d_release(dentry
);
88 call_rcu(&dentry
->d_u
.d_rcu
, d_callback
);
92 * Release the dentry's inode, using the filesystem
93 * d_iput() operation if defined.
94 * Called with dcache_lock and per dentry lock held, drops both.
96 static void dentry_iput(struct dentry
* dentry
)
98 struct inode
*inode
= dentry
->d_inode
;
100 dentry
->d_inode
= NULL
;
101 list_del_init(&dentry
->d_alias
);
102 spin_unlock(&dentry
->d_lock
);
103 spin_unlock(&dcache_lock
);
105 fsnotify_inoderemove(inode
);
106 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
107 dentry
->d_op
->d_iput(dentry
, inode
);
111 spin_unlock(&dentry
->d_lock
);
112 spin_unlock(&dcache_lock
);
119 * This is complicated by the fact that we do not want to put
120 * dentries that are no longer on any hash chain on the unused
121 * list: we'd much rather just get rid of them immediately.
123 * However, that implies that we have to traverse the dentry
124 * tree upwards to the parents which might _also_ now be
125 * scheduled for deletion (it may have been only waiting for
126 * its last child to go away).
128 * This tail recursion is done by hand as we don't want to depend
129 * on the compiler to always get this right (gcc generally doesn't).
130 * Real recursion would eat up our stack space.
134 * dput - release a dentry
135 * @dentry: dentry to release
137 * Release a dentry. This will drop the usage count and if appropriate
138 * call the dentry unlink method as well as removing it from the queues and
139 * releasing its resources. If the parent dentries were scheduled for release
140 * they too may now get deleted.
142 * no dcache lock, please.
145 void dput(struct dentry
*dentry
)
151 if (atomic_read(&dentry
->d_count
) == 1)
153 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
156 spin_lock(&dentry
->d_lock
);
157 if (atomic_read(&dentry
->d_count
)) {
158 spin_unlock(&dentry
->d_lock
);
159 spin_unlock(&dcache_lock
);
164 * AV: ->d_delete() is _NOT_ allowed to block now.
166 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
167 if (dentry
->d_op
->d_delete(dentry
))
170 /* Unreachable? Get rid of it */
171 if (d_unhashed(dentry
))
173 if (list_empty(&dentry
->d_lru
)) {
174 dentry
->d_flags
|= DCACHE_REFERENCED
;
175 list_add(&dentry
->d_lru
, &dentry_unused
);
176 dentry_stat
.nr_unused
++;
178 spin_unlock(&dentry
->d_lock
);
179 spin_unlock(&dcache_lock
);
186 struct dentry
*parent
;
188 /* If dentry was on d_lru list
189 * delete it from there
191 if (!list_empty(&dentry
->d_lru
)) {
192 list_del(&dentry
->d_lru
);
193 dentry_stat
.nr_unused
--;
195 list_del(&dentry
->d_u
.d_child
);
196 dentry_stat
.nr_dentry
--; /* For d_free, below */
197 /*drops the locks, at that point nobody can reach this dentry */
199 parent
= dentry
->d_parent
;
201 if (dentry
== parent
)
209 * d_invalidate - invalidate a dentry
210 * @dentry: dentry to invalidate
212 * Try to invalidate the dentry if it turns out to be
213 * possible. If there are other dentries that can be
214 * reached through this one we can't delete it and we
215 * return -EBUSY. On success we return 0.
220 int d_invalidate(struct dentry
* dentry
)
223 * If it's already been dropped, return OK.
225 spin_lock(&dcache_lock
);
226 if (d_unhashed(dentry
)) {
227 spin_unlock(&dcache_lock
);
231 * Check whether to do a partial shrink_dcache
232 * to get rid of unused child entries.
234 if (!list_empty(&dentry
->d_subdirs
)) {
235 spin_unlock(&dcache_lock
);
236 shrink_dcache_parent(dentry
);
237 spin_lock(&dcache_lock
);
241 * Somebody else still using it?
243 * If it's a directory, we can't drop it
244 * for fear of somebody re-populating it
245 * with children (even though dropping it
246 * would make it unreachable from the root,
247 * we might still populate it if it was a
248 * working directory or similar).
250 spin_lock(&dentry
->d_lock
);
251 if (atomic_read(&dentry
->d_count
) > 1) {
252 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
253 spin_unlock(&dentry
->d_lock
);
254 spin_unlock(&dcache_lock
);
260 spin_unlock(&dentry
->d_lock
);
261 spin_unlock(&dcache_lock
);
265 /* This should be called _only_ with dcache_lock held */
267 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
269 atomic_inc(&dentry
->d_count
);
270 if (!list_empty(&dentry
->d_lru
)) {
271 dentry_stat
.nr_unused
--;
272 list_del_init(&dentry
->d_lru
);
277 struct dentry
* dget_locked(struct dentry
*dentry
)
279 return __dget_locked(dentry
);
283 * d_find_alias - grab a hashed alias of inode
284 * @inode: inode in question
285 * @want_discon: flag, used by d_splice_alias, to request
286 * that only a DISCONNECTED alias be returned.
288 * If inode has a hashed alias, or is a directory and has any alias,
289 * acquire the reference to alias and return it. Otherwise return NULL.
290 * Notice that if inode is a directory there can be only one alias and
291 * it can be unhashed only if it has no children, or if it is the root
294 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
295 * any other hashed alias over that one unless @want_discon is set,
296 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
299 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
301 struct list_head
*head
, *next
, *tmp
;
302 struct dentry
*alias
, *discon_alias
=NULL
;
304 head
= &inode
->i_dentry
;
305 next
= inode
->i_dentry
.next
;
306 while (next
!= head
) {
310 alias
= list_entry(tmp
, struct dentry
, d_alias
);
311 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
312 if (IS_ROOT(alias
) &&
313 (alias
->d_flags
& DCACHE_DISCONNECTED
))
314 discon_alias
= alias
;
315 else if (!want_discon
) {
316 __dget_locked(alias
);
322 __dget_locked(discon_alias
);
326 struct dentry
* d_find_alias(struct inode
*inode
)
328 struct dentry
*de
= NULL
;
330 if (!list_empty(&inode
->i_dentry
)) {
331 spin_lock(&dcache_lock
);
332 de
= __d_find_alias(inode
, 0);
333 spin_unlock(&dcache_lock
);
339 * Try to kill dentries associated with this inode.
340 * WARNING: you must own a reference to inode.
342 void d_prune_aliases(struct inode
*inode
)
344 struct dentry
*dentry
;
346 spin_lock(&dcache_lock
);
347 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
348 spin_lock(&dentry
->d_lock
);
349 if (!atomic_read(&dentry
->d_count
)) {
350 __dget_locked(dentry
);
352 spin_unlock(&dentry
->d_lock
);
353 spin_unlock(&dcache_lock
);
357 spin_unlock(&dentry
->d_lock
);
359 spin_unlock(&dcache_lock
);
363 * Throw away a dentry - free the inode, dput the parent. This requires that
364 * the LRU list has already been removed.
366 * Called with dcache_lock, drops it and then regains.
367 * Called with dentry->d_lock held, drops it.
369 static void prune_one_dentry(struct dentry
* dentry
)
371 struct dentry
* parent
;
374 list_del(&dentry
->d_u
.d_child
);
375 dentry_stat
.nr_dentry
--; /* For d_free, below */
377 parent
= dentry
->d_parent
;
379 if (parent
!= dentry
)
381 spin_lock(&dcache_lock
);
385 * prune_dcache - shrink the dcache
386 * @count: number of entries to try and free
387 * @sb: if given, ignore dentries for other superblocks
388 * which are being unmounted.
390 * Shrink the dcache. This is done when we need
391 * more memory, or simply when we need to unmount
392 * something (at which point we need to unuse
395 * This function may fail to free any resources if
396 * all the dentries are in use.
399 static void prune_dcache(int count
, struct super_block
*sb
)
401 spin_lock(&dcache_lock
);
402 for (; count
; count
--) {
403 struct dentry
*dentry
;
404 struct list_head
*tmp
;
405 struct rw_semaphore
*s_umount
;
407 cond_resched_lock(&dcache_lock
);
409 tmp
= dentry_unused
.prev
;
411 /* Try to find a dentry for this sb, but don't try
412 * too hard, if they aren't near the tail they will
413 * be moved down again soon
416 while (skip
&& tmp
!= &dentry_unused
&&
417 list_entry(tmp
, struct dentry
, d_lru
)->d_sb
!= sb
) {
422 if (tmp
== &dentry_unused
)
425 prefetch(dentry_unused
.prev
);
426 dentry_stat
.nr_unused
--;
427 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
429 spin_lock(&dentry
->d_lock
);
431 * We found an inuse dentry which was not removed from
432 * dentry_unused because of laziness during lookup. Do not free
433 * it - just keep it off the dentry_unused list.
435 if (atomic_read(&dentry
->d_count
)) {
436 spin_unlock(&dentry
->d_lock
);
439 /* If the dentry was recently referenced, don't free it. */
440 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
441 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
442 list_add(&dentry
->d_lru
, &dentry_unused
);
443 dentry_stat
.nr_unused
++;
444 spin_unlock(&dentry
->d_lock
);
448 * If the dentry is not DCACHED_REFERENCED, it is time
449 * to remove it from the dcache, provided the super block is
450 * NULL (which means we are trying to reclaim memory)
451 * or this dentry belongs to the same super block that
455 * If this dentry is for "my" filesystem, then I can prune it
456 * without taking the s_umount lock (I already hold it).
458 if (sb
&& dentry
->d_sb
== sb
) {
459 prune_one_dentry(dentry
);
463 * ...otherwise we need to be sure this filesystem isn't being
464 * unmounted, otherwise we could race with
465 * generic_shutdown_super(), and end up holding a reference to
466 * an inode while the filesystem is unmounted.
467 * So we try to get s_umount, and make sure s_root isn't NULL.
468 * (Take a local copy of s_umount to avoid a use-after-free of
471 s_umount
= &dentry
->d_sb
->s_umount
;
472 if (down_read_trylock(s_umount
)) {
473 if (dentry
->d_sb
->s_root
!= NULL
) {
474 prune_one_dentry(dentry
);
480 spin_unlock(&dentry
->d_lock
);
482 * Insert dentry at the head of the list as inserting at the
483 * tail leads to a cycle.
485 list_add(&dentry
->d_lru
, &dentry_unused
);
486 dentry_stat
.nr_unused
++;
488 spin_unlock(&dcache_lock
);
492 * Shrink the dcache for the specified super block.
493 * This allows us to unmount a device without disturbing
494 * the dcache for the other devices.
496 * This implementation makes just two traversals of the
497 * unused list. On the first pass we move the selected
498 * dentries to the most recent end, and on the second
499 * pass we free them. The second pass must restart after
500 * each dput(), but since the target dentries are all at
501 * the end, it's really just a single traversal.
505 * shrink_dcache_sb - shrink dcache for a superblock
508 * Shrink the dcache for the specified super block. This
509 * is used to free the dcache before unmounting a file
513 void shrink_dcache_sb(struct super_block
* sb
)
515 struct list_head
*tmp
, *next
;
516 struct dentry
*dentry
;
519 * Pass one ... move the dentries for the specified
520 * superblock to the most recent end of the unused list.
522 spin_lock(&dcache_lock
);
523 list_for_each_safe(tmp
, next
, &dentry_unused
) {
524 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
525 if (dentry
->d_sb
!= sb
)
527 list_move(tmp
, &dentry_unused
);
531 * Pass two ... free the dentries for this superblock.
534 list_for_each_safe(tmp
, next
, &dentry_unused
) {
535 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
536 if (dentry
->d_sb
!= sb
)
538 dentry_stat
.nr_unused
--;
540 spin_lock(&dentry
->d_lock
);
541 if (atomic_read(&dentry
->d_count
)) {
542 spin_unlock(&dentry
->d_lock
);
545 prune_one_dentry(dentry
);
546 cond_resched_lock(&dcache_lock
);
549 spin_unlock(&dcache_lock
);
553 * destroy a single subtree of dentries for unmount
554 * - see the comments on shrink_dcache_for_umount() for a description of the
557 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
559 struct dentry
*parent
;
560 unsigned detached
= 0;
562 BUG_ON(!IS_ROOT(dentry
));
564 /* detach this root from the system */
565 spin_lock(&dcache_lock
);
566 if (!list_empty(&dentry
->d_lru
)) {
567 dentry_stat
.nr_unused
--;
568 list_del_init(&dentry
->d_lru
);
571 spin_unlock(&dcache_lock
);
574 /* descend to the first leaf in the current subtree */
575 while (!list_empty(&dentry
->d_subdirs
)) {
578 /* this is a branch with children - detach all of them
579 * from the system in one go */
580 spin_lock(&dcache_lock
);
581 list_for_each_entry(loop
, &dentry
->d_subdirs
,
583 if (!list_empty(&loop
->d_lru
)) {
584 dentry_stat
.nr_unused
--;
585 list_del_init(&loop
->d_lru
);
589 cond_resched_lock(&dcache_lock
);
591 spin_unlock(&dcache_lock
);
593 /* move to the first child */
594 dentry
= list_entry(dentry
->d_subdirs
.next
,
595 struct dentry
, d_u
.d_child
);
598 /* consume the dentries from this leaf up through its parents
599 * until we find one with children or run out altogether */
603 if (atomic_read(&dentry
->d_count
) != 0) {
605 "BUG: Dentry %p{i=%lx,n=%s}"
607 " [unmount of %s %s]\n",
610 dentry
->d_inode
->i_ino
: 0UL,
612 atomic_read(&dentry
->d_count
),
613 dentry
->d_sb
->s_type
->name
,
618 parent
= dentry
->d_parent
;
619 if (parent
== dentry
)
622 atomic_dec(&parent
->d_count
);
624 list_del(&dentry
->d_u
.d_child
);
627 inode
= dentry
->d_inode
;
629 dentry
->d_inode
= NULL
;
630 list_del_init(&dentry
->d_alias
);
631 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
632 dentry
->d_op
->d_iput(dentry
, inode
);
639 /* finished when we fall off the top of the tree,
640 * otherwise we ascend to the parent and move to the
641 * next sibling if there is one */
647 } while (list_empty(&dentry
->d_subdirs
));
649 dentry
= list_entry(dentry
->d_subdirs
.next
,
650 struct dentry
, d_u
.d_child
);
653 /* several dentries were freed, need to correct nr_dentry */
654 spin_lock(&dcache_lock
);
655 dentry_stat
.nr_dentry
-= detached
;
656 spin_unlock(&dcache_lock
);
660 * destroy the dentries attached to a superblock on unmounting
661 * - we don't need to use dentry->d_lock, and only need dcache_lock when
662 * removing the dentry from the system lists and hashes because:
663 * - the superblock is detached from all mountings and open files, so the
664 * dentry trees will not be rearranged by the VFS
665 * - s_umount is write-locked, so the memory pressure shrinker will ignore
666 * any dentries belonging to this superblock that it comes across
667 * - the filesystem itself is no longer permitted to rearrange the dentries
670 void shrink_dcache_for_umount(struct super_block
*sb
)
672 struct dentry
*dentry
;
674 if (down_read_trylock(&sb
->s_umount
))
679 atomic_dec(&dentry
->d_count
);
680 shrink_dcache_for_umount_subtree(dentry
);
682 while (!hlist_empty(&sb
->s_anon
)) {
683 dentry
= hlist_entry(sb
->s_anon
.first
, struct dentry
, d_hash
);
684 shrink_dcache_for_umount_subtree(dentry
);
689 * Search for at least 1 mount point in the dentry's subdirs.
690 * We descend to the next level whenever the d_subdirs
691 * list is non-empty and continue searching.
695 * have_submounts - check for mounts over a dentry
696 * @parent: dentry to check.
698 * Return true if the parent or its subdirectories contain
702 int have_submounts(struct dentry
*parent
)
704 struct dentry
*this_parent
= parent
;
705 struct list_head
*next
;
707 spin_lock(&dcache_lock
);
708 if (d_mountpoint(parent
))
711 next
= this_parent
->d_subdirs
.next
;
713 while (next
!= &this_parent
->d_subdirs
) {
714 struct list_head
*tmp
= next
;
715 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
717 /* Have we found a mount point ? */
718 if (d_mountpoint(dentry
))
720 if (!list_empty(&dentry
->d_subdirs
)) {
721 this_parent
= dentry
;
726 * All done at this level ... ascend and resume the search.
728 if (this_parent
!= parent
) {
729 next
= this_parent
->d_u
.d_child
.next
;
730 this_parent
= this_parent
->d_parent
;
733 spin_unlock(&dcache_lock
);
734 return 0; /* No mount points found in tree */
736 spin_unlock(&dcache_lock
);
741 * Search the dentry child list for the specified parent,
742 * and move any unused dentries to the end of the unused
743 * list for prune_dcache(). We descend to the next level
744 * whenever the d_subdirs list is non-empty and continue
747 * It returns zero iff there are no unused children,
748 * otherwise it returns the number of children moved to
749 * the end of the unused list. This may not be the total
750 * number of unused children, because select_parent can
751 * drop the lock and return early due to latency
754 static int select_parent(struct dentry
* parent
)
756 struct dentry
*this_parent
= parent
;
757 struct list_head
*next
;
760 spin_lock(&dcache_lock
);
762 next
= this_parent
->d_subdirs
.next
;
764 while (next
!= &this_parent
->d_subdirs
) {
765 struct list_head
*tmp
= next
;
766 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
769 if (!list_empty(&dentry
->d_lru
)) {
770 dentry_stat
.nr_unused
--;
771 list_del_init(&dentry
->d_lru
);
774 * move only zero ref count dentries to the end
775 * of the unused list for prune_dcache
777 if (!atomic_read(&dentry
->d_count
)) {
778 list_add_tail(&dentry
->d_lru
, &dentry_unused
);
779 dentry_stat
.nr_unused
++;
784 * We can return to the caller if we have found some (this
785 * ensures forward progress). We'll be coming back to find
788 if (found
&& need_resched())
792 * Descend a level if the d_subdirs list is non-empty.
794 if (!list_empty(&dentry
->d_subdirs
)) {
795 this_parent
= dentry
;
800 * All done at this level ... ascend and resume the search.
802 if (this_parent
!= parent
) {
803 next
= this_parent
->d_u
.d_child
.next
;
804 this_parent
= this_parent
->d_parent
;
808 spin_unlock(&dcache_lock
);
813 * shrink_dcache_parent - prune dcache
814 * @parent: parent of entries to prune
816 * Prune the dcache to remove unused children of the parent dentry.
819 void shrink_dcache_parent(struct dentry
* parent
)
823 while ((found
= select_parent(parent
)) != 0)
824 prune_dcache(found
, parent
->d_sb
);
828 * Scan `nr' dentries and return the number which remain.
830 * We need to avoid reentering the filesystem if the caller is performing a
831 * GFP_NOFS allocation attempt. One example deadlock is:
833 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
834 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
835 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
837 * In this case we return -1 to tell the caller that we baled.
839 static int shrink_dcache_memory(int nr
, gfp_t gfp_mask
)
842 if (!(gfp_mask
& __GFP_FS
))
844 prune_dcache(nr
, NULL
);
846 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
850 * d_alloc - allocate a dcache entry
851 * @parent: parent of entry to allocate
852 * @name: qstr of the name
854 * Allocates a dentry. It returns %NULL if there is insufficient memory
855 * available. On a success the dentry is returned. The name passed in is
856 * copied and the copy passed in may be reused after this call.
859 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
861 struct dentry
*dentry
;
864 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
868 if (name
->len
> DNAME_INLINE_LEN
-1) {
869 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
871 kmem_cache_free(dentry_cache
, dentry
);
875 dname
= dentry
->d_iname
;
877 dentry
->d_name
.name
= dname
;
879 dentry
->d_name
.len
= name
->len
;
880 dentry
->d_name
.hash
= name
->hash
;
881 memcpy(dname
, name
->name
, name
->len
);
882 dname
[name
->len
] = 0;
884 atomic_set(&dentry
->d_count
, 1);
885 dentry
->d_flags
= DCACHE_UNHASHED
;
886 spin_lock_init(&dentry
->d_lock
);
887 dentry
->d_inode
= NULL
;
888 dentry
->d_parent
= NULL
;
891 dentry
->d_fsdata
= NULL
;
892 dentry
->d_mounted
= 0;
893 #ifdef CONFIG_PROFILING
894 dentry
->d_cookie
= NULL
;
896 INIT_HLIST_NODE(&dentry
->d_hash
);
897 INIT_LIST_HEAD(&dentry
->d_lru
);
898 INIT_LIST_HEAD(&dentry
->d_subdirs
);
899 INIT_LIST_HEAD(&dentry
->d_alias
);
902 dentry
->d_parent
= dget(parent
);
903 dentry
->d_sb
= parent
->d_sb
;
905 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
908 spin_lock(&dcache_lock
);
910 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
911 dentry_stat
.nr_dentry
++;
912 spin_unlock(&dcache_lock
);
917 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
922 q
.len
= strlen(name
);
923 q
.hash
= full_name_hash(q
.name
, q
.len
);
924 return d_alloc(parent
, &q
);
928 * d_instantiate - fill in inode information for a dentry
929 * @entry: dentry to complete
930 * @inode: inode to attach to this dentry
932 * Fill in inode information in the entry.
934 * This turns negative dentries into productive full members
937 * NOTE! This assumes that the inode count has been incremented
938 * (or otherwise set) by the caller to indicate that it is now
939 * in use by the dcache.
942 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
944 BUG_ON(!list_empty(&entry
->d_alias
));
945 spin_lock(&dcache_lock
);
947 list_add(&entry
->d_alias
, &inode
->i_dentry
);
948 entry
->d_inode
= inode
;
949 fsnotify_d_instantiate(entry
, inode
);
950 spin_unlock(&dcache_lock
);
951 security_d_instantiate(entry
, inode
);
955 * d_instantiate_unique - instantiate a non-aliased dentry
956 * @entry: dentry to instantiate
957 * @inode: inode to attach to this dentry
959 * Fill in inode information in the entry. On success, it returns NULL.
960 * If an unhashed alias of "entry" already exists, then we return the
961 * aliased dentry instead and drop one reference to inode.
963 * Note that in order to avoid conflicts with rename() etc, the caller
964 * had better be holding the parent directory semaphore.
966 * This also assumes that the inode count has been incremented
967 * (or otherwise set) by the caller to indicate that it is now
968 * in use by the dcache.
970 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
973 struct dentry
*alias
;
974 int len
= entry
->d_name
.len
;
975 const char *name
= entry
->d_name
.name
;
976 unsigned int hash
= entry
->d_name
.hash
;
979 entry
->d_inode
= NULL
;
983 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
984 struct qstr
*qstr
= &alias
->d_name
;
986 if (qstr
->hash
!= hash
)
988 if (alias
->d_parent
!= entry
->d_parent
)
990 if (qstr
->len
!= len
)
992 if (memcmp(qstr
->name
, name
, len
))
998 list_add(&entry
->d_alias
, &inode
->i_dentry
);
999 entry
->d_inode
= inode
;
1000 fsnotify_d_instantiate(entry
, inode
);
1004 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1006 struct dentry
*result
;
1008 BUG_ON(!list_empty(&entry
->d_alias
));
1010 spin_lock(&dcache_lock
);
1011 result
= __d_instantiate_unique(entry
, inode
);
1012 spin_unlock(&dcache_lock
);
1015 security_d_instantiate(entry
, inode
);
1019 BUG_ON(!d_unhashed(result
));
1024 EXPORT_SYMBOL(d_instantiate_unique
);
1027 * d_alloc_root - allocate root dentry
1028 * @root_inode: inode to allocate the root for
1030 * Allocate a root ("/") dentry for the inode given. The inode is
1031 * instantiated and returned. %NULL is returned if there is insufficient
1032 * memory or the inode passed is %NULL.
1035 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1037 struct dentry
*res
= NULL
;
1040 static const struct qstr name
= { .name
= "/", .len
= 1 };
1042 res
= d_alloc(NULL
, &name
);
1044 res
->d_sb
= root_inode
->i_sb
;
1045 res
->d_parent
= res
;
1046 d_instantiate(res
, root_inode
);
1052 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
1055 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
1056 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
1057 return dentry_hashtable
+ (hash
& D_HASHMASK
);
1061 * d_alloc_anon - allocate an anonymous dentry
1062 * @inode: inode to allocate the dentry for
1064 * This is similar to d_alloc_root. It is used by filesystems when
1065 * creating a dentry for a given inode, often in the process of
1066 * mapping a filehandle to a dentry. The returned dentry may be
1067 * anonymous, or may have a full name (if the inode was already
1068 * in the cache). The file system may need to make further
1069 * efforts to connect this dentry into the dcache properly.
1071 * When called on a directory inode, we must ensure that
1072 * the inode only ever has one dentry. If a dentry is
1073 * found, that is returned instead of allocating a new one.
1075 * On successful return, the reference to the inode has been transferred
1076 * to the dentry. If %NULL is returned (indicating kmalloc failure),
1077 * the reference on the inode has not been released.
1080 struct dentry
* d_alloc_anon(struct inode
*inode
)
1082 static const struct qstr anonstring
= { .name
= "" };
1086 if ((res
= d_find_alias(inode
))) {
1091 tmp
= d_alloc(NULL
, &anonstring
);
1095 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1097 spin_lock(&dcache_lock
);
1098 res
= __d_find_alias(inode
, 0);
1100 /* attach a disconnected dentry */
1103 spin_lock(&res
->d_lock
);
1104 res
->d_sb
= inode
->i_sb
;
1105 res
->d_parent
= res
;
1106 res
->d_inode
= inode
;
1107 res
->d_flags
|= DCACHE_DISCONNECTED
;
1108 res
->d_flags
&= ~DCACHE_UNHASHED
;
1109 list_add(&res
->d_alias
, &inode
->i_dentry
);
1110 hlist_add_head(&res
->d_hash
, &inode
->i_sb
->s_anon
);
1111 spin_unlock(&res
->d_lock
);
1113 inode
= NULL
; /* don't drop reference */
1115 spin_unlock(&dcache_lock
);
1126 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1127 * @inode: the inode which may have a disconnected dentry
1128 * @dentry: a negative dentry which we want to point to the inode.
1130 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1131 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1132 * and return it, else simply d_add the inode to the dentry and return NULL.
1134 * This is needed in the lookup routine of any filesystem that is exportable
1135 * (via knfsd) so that we can build dcache paths to directories effectively.
1137 * If a dentry was found and moved, then it is returned. Otherwise NULL
1138 * is returned. This matches the expected return value of ->lookup.
1141 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1143 struct dentry
*new = NULL
;
1145 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1146 spin_lock(&dcache_lock
);
1147 new = __d_find_alias(inode
, 1);
1149 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1150 fsnotify_d_instantiate(new, inode
);
1151 spin_unlock(&dcache_lock
);
1152 security_d_instantiate(new, inode
);
1154 d_move(new, dentry
);
1157 /* d_instantiate takes dcache_lock, so we do it by hand */
1158 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1159 dentry
->d_inode
= inode
;
1160 fsnotify_d_instantiate(dentry
, inode
);
1161 spin_unlock(&dcache_lock
);
1162 security_d_instantiate(dentry
, inode
);
1166 d_add(dentry
, inode
);
1172 * d_lookup - search for a dentry
1173 * @parent: parent dentry
1174 * @name: qstr of name we wish to find
1176 * Searches the children of the parent dentry for the name in question. If
1177 * the dentry is found its reference count is incremented and the dentry
1178 * is returned. The caller must use d_put to free the entry when it has
1179 * finished using it. %NULL is returned on failure.
1181 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1182 * Memory barriers are used while updating and doing lockless traversal.
1183 * To avoid races with d_move while rename is happening, d_lock is used.
1185 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1186 * and name pointer in one structure pointed by d_qstr.
1188 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1189 * lookup is going on.
1191 * dentry_unused list is not updated even if lookup finds the required dentry
1192 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1193 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1196 * d_lookup() is protected against the concurrent renames in some unrelated
1197 * directory using the seqlockt_t rename_lock.
1200 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1202 struct dentry
* dentry
= NULL
;
1206 seq
= read_seqbegin(&rename_lock
);
1207 dentry
= __d_lookup(parent
, name
);
1210 } while (read_seqretry(&rename_lock
, seq
));
1214 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1216 unsigned int len
= name
->len
;
1217 unsigned int hash
= name
->hash
;
1218 const unsigned char *str
= name
->name
;
1219 struct hlist_head
*head
= d_hash(parent
,hash
);
1220 struct dentry
*found
= NULL
;
1221 struct hlist_node
*node
;
1222 struct dentry
*dentry
;
1226 hlist_for_each_entry_rcu(dentry
, node
, head
, d_hash
) {
1229 if (dentry
->d_name
.hash
!= hash
)
1231 if (dentry
->d_parent
!= parent
)
1234 spin_lock(&dentry
->d_lock
);
1237 * Recheck the dentry after taking the lock - d_move may have
1238 * changed things. Don't bother checking the hash because we're
1239 * about to compare the whole name anyway.
1241 if (dentry
->d_parent
!= parent
)
1245 * It is safe to compare names since d_move() cannot
1246 * change the qstr (protected by d_lock).
1248 qstr
= &dentry
->d_name
;
1249 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1250 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1253 if (qstr
->len
!= len
)
1255 if (memcmp(qstr
->name
, str
, len
))
1259 if (!d_unhashed(dentry
)) {
1260 atomic_inc(&dentry
->d_count
);
1263 spin_unlock(&dentry
->d_lock
);
1266 spin_unlock(&dentry
->d_lock
);
1274 * d_hash_and_lookup - hash the qstr then search for a dentry
1275 * @dir: Directory to search in
1276 * @name: qstr of name we wish to find
1278 * On hash failure or on lookup failure NULL is returned.
1280 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1282 struct dentry
*dentry
= NULL
;
1285 * Check for a fs-specific hash function. Note that we must
1286 * calculate the standard hash first, as the d_op->d_hash()
1287 * routine may choose to leave the hash value unchanged.
1289 name
->hash
= full_name_hash(name
->name
, name
->len
);
1290 if (dir
->d_op
&& dir
->d_op
->d_hash
) {
1291 if (dir
->d_op
->d_hash(dir
, name
) < 0)
1294 dentry
= d_lookup(dir
, name
);
1300 * d_validate - verify dentry provided from insecure source
1301 * @dentry: The dentry alleged to be valid child of @dparent
1302 * @dparent: The parent dentry (known to be valid)
1303 * @hash: Hash of the dentry
1304 * @len: Length of the name
1306 * An insecure source has sent us a dentry, here we verify it and dget() it.
1307 * This is used by ncpfs in its readdir implementation.
1308 * Zero is returned in the dentry is invalid.
1311 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1313 struct hlist_head
*base
;
1314 struct hlist_node
*lhp
;
1316 /* Check whether the ptr might be valid at all.. */
1317 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1320 if (dentry
->d_parent
!= dparent
)
1323 spin_lock(&dcache_lock
);
1324 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1325 hlist_for_each(lhp
,base
) {
1326 /* hlist_for_each_entry_rcu() not required for d_hash list
1327 * as it is parsed under dcache_lock
1329 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1330 __dget_locked(dentry
);
1331 spin_unlock(&dcache_lock
);
1335 spin_unlock(&dcache_lock
);
1341 * When a file is deleted, we have two options:
1342 * - turn this dentry into a negative dentry
1343 * - unhash this dentry and free it.
1345 * Usually, we want to just turn this into
1346 * a negative dentry, but if anybody else is
1347 * currently using the dentry or the inode
1348 * we can't do that and we fall back on removing
1349 * it from the hash queues and waiting for
1350 * it to be deleted later when it has no users
1354 * d_delete - delete a dentry
1355 * @dentry: The dentry to delete
1357 * Turn the dentry into a negative dentry if possible, otherwise
1358 * remove it from the hash queues so it can be deleted later
1361 void d_delete(struct dentry
* dentry
)
1365 * Are we the only user?
1367 spin_lock(&dcache_lock
);
1368 spin_lock(&dentry
->d_lock
);
1369 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1370 if (atomic_read(&dentry
->d_count
) == 1) {
1371 dentry_iput(dentry
);
1372 fsnotify_nameremove(dentry
, isdir
);
1374 /* remove this and other inotify debug checks after 2.6.18 */
1375 dentry
->d_flags
&= ~DCACHE_INOTIFY_PARENT_WATCHED
;
1379 if (!d_unhashed(dentry
))
1382 spin_unlock(&dentry
->d_lock
);
1383 spin_unlock(&dcache_lock
);
1385 fsnotify_nameremove(dentry
, isdir
);
1388 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1391 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1392 hlist_add_head_rcu(&entry
->d_hash
, list
);
1395 static void _d_rehash(struct dentry
* entry
)
1397 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
1401 * d_rehash - add an entry back to the hash
1402 * @entry: dentry to add to the hash
1404 * Adds a dentry to the hash according to its name.
1407 void d_rehash(struct dentry
* entry
)
1409 spin_lock(&dcache_lock
);
1410 spin_lock(&entry
->d_lock
);
1412 spin_unlock(&entry
->d_lock
);
1413 spin_unlock(&dcache_lock
);
1416 #define do_switch(x,y) do { \
1417 __typeof__ (x) __tmp = x; \
1418 x = y; y = __tmp; } while (0)
1421 * When switching names, the actual string doesn't strictly have to
1422 * be preserved in the target - because we're dropping the target
1423 * anyway. As such, we can just do a simple memcpy() to copy over
1424 * the new name before we switch.
1426 * Note that we have to be a lot more careful about getting the hash
1427 * switched - we have to switch the hash value properly even if it
1428 * then no longer matches the actual (corrupted) string of the target.
1429 * The hash value has to match the hash queue that the dentry is on..
1431 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1433 if (dname_external(target
)) {
1434 if (dname_external(dentry
)) {
1436 * Both external: swap the pointers
1438 do_switch(target
->d_name
.name
, dentry
->d_name
.name
);
1441 * dentry:internal, target:external. Steal target's
1442 * storage and make target internal.
1444 dentry
->d_name
.name
= target
->d_name
.name
;
1445 target
->d_name
.name
= target
->d_iname
;
1448 if (dname_external(dentry
)) {
1450 * dentry:external, target:internal. Give dentry's
1451 * storage to target and make dentry internal
1453 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1454 target
->d_name
.len
+ 1);
1455 target
->d_name
.name
= dentry
->d_name
.name
;
1456 dentry
->d_name
.name
= dentry
->d_iname
;
1459 * Both are internal. Just copy target to dentry
1461 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1462 target
->d_name
.len
+ 1);
1468 * We cannibalize "target" when moving dentry on top of it,
1469 * because it's going to be thrown away anyway. We could be more
1470 * polite about it, though.
1472 * This forceful removal will result in ugly /proc output if
1473 * somebody holds a file open that got deleted due to a rename.
1474 * We could be nicer about the deleted file, and let it show
1475 * up under the name it got deleted rather than the name that
1480 * d_move_locked - move a dentry
1481 * @dentry: entry to move
1482 * @target: new dentry
1484 * Update the dcache to reflect the move of a file name. Negative
1485 * dcache entries should not be moved in this way.
1487 static void d_move_locked(struct dentry
* dentry
, struct dentry
* target
)
1489 struct hlist_head
*list
;
1491 if (!dentry
->d_inode
)
1492 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1494 write_seqlock(&rename_lock
);
1496 * XXXX: do we really need to take target->d_lock?
1498 if (target
< dentry
) {
1499 spin_lock(&target
->d_lock
);
1500 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1502 spin_lock(&dentry
->d_lock
);
1503 spin_lock_nested(&target
->d_lock
, DENTRY_D_LOCK_NESTED
);
1506 /* Move the dentry to the target hash queue, if on different bucket */
1507 if (dentry
->d_flags
& DCACHE_UNHASHED
)
1508 goto already_unhashed
;
1510 hlist_del_rcu(&dentry
->d_hash
);
1513 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1514 __d_rehash(dentry
, list
);
1516 /* Unhash the target: dput() will then get rid of it */
1519 list_del(&dentry
->d_u
.d_child
);
1520 list_del(&target
->d_u
.d_child
);
1522 /* Switch the names.. */
1523 switch_names(dentry
, target
);
1524 do_switch(dentry
->d_name
.len
, target
->d_name
.len
);
1525 do_switch(dentry
->d_name
.hash
, target
->d_name
.hash
);
1527 /* ... and switch the parents */
1528 if (IS_ROOT(dentry
)) {
1529 dentry
->d_parent
= target
->d_parent
;
1530 target
->d_parent
= target
;
1531 INIT_LIST_HEAD(&target
->d_u
.d_child
);
1533 do_switch(dentry
->d_parent
, target
->d_parent
);
1535 /* And add them back to the (new) parent lists */
1536 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
1539 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1540 spin_unlock(&target
->d_lock
);
1541 fsnotify_d_move(dentry
);
1542 spin_unlock(&dentry
->d_lock
);
1543 write_sequnlock(&rename_lock
);
1547 * d_move - move a dentry
1548 * @dentry: entry to move
1549 * @target: new dentry
1551 * Update the dcache to reflect the move of a file name. Negative
1552 * dcache entries should not be moved in this way.
1555 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1557 spin_lock(&dcache_lock
);
1558 d_move_locked(dentry
, target
);
1559 spin_unlock(&dcache_lock
);
1563 * Helper that returns 1 if p1 is a parent of p2, else 0
1565 static int d_isparent(struct dentry
*p1
, struct dentry
*p2
)
1569 for (p
= p2
; p
->d_parent
!= p
; p
= p
->d_parent
) {
1570 if (p
->d_parent
== p1
)
1577 * This helper attempts to cope with remotely renamed directories
1579 * It assumes that the caller is already holding
1580 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1582 * Note: If ever the locking in lock_rename() changes, then please
1583 * remember to update this too...
1585 * On return, dcache_lock will have been unlocked.
1587 static struct dentry
*__d_unalias(struct dentry
*dentry
, struct dentry
*alias
)
1589 struct mutex
*m1
= NULL
, *m2
= NULL
;
1592 /* If alias and dentry share a parent, then no extra locks required */
1593 if (alias
->d_parent
== dentry
->d_parent
)
1596 /* Check for loops */
1597 ret
= ERR_PTR(-ELOOP
);
1598 if (d_isparent(alias
, dentry
))
1601 /* See lock_rename() */
1602 ret
= ERR_PTR(-EBUSY
);
1603 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
1605 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
1606 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
1608 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
1610 d_move_locked(alias
, dentry
);
1613 spin_unlock(&dcache_lock
);
1622 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1623 * named dentry in place of the dentry to be replaced.
1625 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
1627 struct dentry
*dparent
, *aparent
;
1629 switch_names(dentry
, anon
);
1630 do_switch(dentry
->d_name
.len
, anon
->d_name
.len
);
1631 do_switch(dentry
->d_name
.hash
, anon
->d_name
.hash
);
1633 dparent
= dentry
->d_parent
;
1634 aparent
= anon
->d_parent
;
1636 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
1637 list_del(&dentry
->d_u
.d_child
);
1638 if (!IS_ROOT(dentry
))
1639 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1641 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1643 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
1644 list_del(&anon
->d_u
.d_child
);
1646 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
1648 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
1650 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
1654 * d_materialise_unique - introduce an inode into the tree
1655 * @dentry: candidate dentry
1656 * @inode: inode to bind to the dentry, to which aliases may be attached
1658 * Introduces an dentry into the tree, substituting an extant disconnected
1659 * root directory alias in its place if there is one
1661 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
1663 struct dentry
*actual
;
1665 BUG_ON(!d_unhashed(dentry
));
1667 spin_lock(&dcache_lock
);
1671 dentry
->d_inode
= NULL
;
1675 if (S_ISDIR(inode
->i_mode
)) {
1676 struct dentry
*alias
;
1678 /* Does an aliased dentry already exist? */
1679 alias
= __d_find_alias(inode
, 0);
1682 /* Is this an anonymous mountpoint that we could splice
1684 if (IS_ROOT(alias
)) {
1685 spin_lock(&alias
->d_lock
);
1686 __d_materialise_dentry(dentry
, alias
);
1690 /* Nope, but we must(!) avoid directory aliasing */
1691 actual
= __d_unalias(dentry
, alias
);
1698 /* Add a unique reference */
1699 actual
= __d_instantiate_unique(dentry
, inode
);
1702 else if (unlikely(!d_unhashed(actual
)))
1703 goto shouldnt_be_hashed
;
1706 spin_lock(&actual
->d_lock
);
1709 spin_unlock(&actual
->d_lock
);
1710 spin_unlock(&dcache_lock
);
1712 if (actual
== dentry
) {
1713 security_d_instantiate(dentry
, inode
);
1721 spin_unlock(&dcache_lock
);
1723 goto shouldnt_be_hashed
;
1727 * d_path - return the path of a dentry
1728 * @dentry: dentry to report
1729 * @vfsmnt: vfsmnt to which the dentry belongs
1730 * @root: root dentry
1731 * @rootmnt: vfsmnt to which the root dentry belongs
1732 * @buffer: buffer to return value in
1733 * @buflen: buffer length
1735 * Convert a dentry into an ASCII path name. If the entry has been deleted
1736 * the string " (deleted)" is appended. Note that this is ambiguous.
1738 * Returns the buffer or an error code if the path was too long.
1740 * "buflen" should be positive. Caller holds the dcache_lock.
1742 static char * __d_path( struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1743 struct dentry
*root
, struct vfsmount
*rootmnt
,
1744 char *buffer
, int buflen
)
1746 char * end
= buffer
+buflen
;
1752 if (!IS_ROOT(dentry
) && d_unhashed(dentry
)) {
1757 memcpy(end
, " (deleted)", 10);
1767 struct dentry
* parent
;
1769 if (dentry
== root
&& vfsmnt
== rootmnt
)
1771 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1773 spin_lock(&vfsmount_lock
);
1774 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1775 spin_unlock(&vfsmount_lock
);
1778 dentry
= vfsmnt
->mnt_mountpoint
;
1779 vfsmnt
= vfsmnt
->mnt_parent
;
1780 spin_unlock(&vfsmount_lock
);
1783 parent
= dentry
->d_parent
;
1785 namelen
= dentry
->d_name
.len
;
1786 buflen
-= namelen
+ 1;
1790 memcpy(end
, dentry
->d_name
.name
, namelen
);
1799 namelen
= dentry
->d_name
.len
;
1803 retval
-= namelen
-1; /* hit the slash */
1804 memcpy(retval
, dentry
->d_name
.name
, namelen
);
1807 return ERR_PTR(-ENAMETOOLONG
);
1810 /* write full pathname into buffer and return start of pathname */
1811 char * d_path(struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1812 char *buf
, int buflen
)
1815 struct vfsmount
*rootmnt
;
1816 struct dentry
*root
;
1818 read_lock(¤t
->fs
->lock
);
1819 rootmnt
= mntget(current
->fs
->rootmnt
);
1820 root
= dget(current
->fs
->root
);
1821 read_unlock(¤t
->fs
->lock
);
1822 spin_lock(&dcache_lock
);
1823 res
= __d_path(dentry
, vfsmnt
, root
, rootmnt
, buf
, buflen
);
1824 spin_unlock(&dcache_lock
);
1831 * NOTE! The user-level library version returns a
1832 * character pointer. The kernel system call just
1833 * returns the length of the buffer filled (which
1834 * includes the ending '\0' character), or a negative
1835 * error value. So libc would do something like
1837 * char *getcwd(char * buf, size_t size)
1841 * retval = sys_getcwd(buf, size);
1848 asmlinkage
long sys_getcwd(char __user
*buf
, unsigned long size
)
1851 struct vfsmount
*pwdmnt
, *rootmnt
;
1852 struct dentry
*pwd
, *root
;
1853 char *page
= (char *) __get_free_page(GFP_USER
);
1858 read_lock(¤t
->fs
->lock
);
1859 pwdmnt
= mntget(current
->fs
->pwdmnt
);
1860 pwd
= dget(current
->fs
->pwd
);
1861 rootmnt
= mntget(current
->fs
->rootmnt
);
1862 root
= dget(current
->fs
->root
);
1863 read_unlock(¤t
->fs
->lock
);
1866 /* Has the current directory has been unlinked? */
1867 spin_lock(&dcache_lock
);
1868 if (pwd
->d_parent
== pwd
|| !d_unhashed(pwd
)) {
1872 cwd
= __d_path(pwd
, pwdmnt
, root
, rootmnt
, page
, PAGE_SIZE
);
1873 spin_unlock(&dcache_lock
);
1875 error
= PTR_ERR(cwd
);
1880 len
= PAGE_SIZE
+ page
- cwd
;
1883 if (copy_to_user(buf
, cwd
, len
))
1887 spin_unlock(&dcache_lock
);
1894 free_page((unsigned long) page
);
1899 * Test whether new_dentry is a subdirectory of old_dentry.
1901 * Trivially implemented using the dcache structure
1905 * is_subdir - is new dentry a subdirectory of old_dentry
1906 * @new_dentry: new dentry
1907 * @old_dentry: old dentry
1909 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1910 * Returns 0 otherwise.
1911 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1914 int is_subdir(struct dentry
* new_dentry
, struct dentry
* old_dentry
)
1917 struct dentry
* saved
= new_dentry
;
1920 /* need rcu_readlock to protect against the d_parent trashing due to
1925 /* for restarting inner loop in case of seq retry */
1928 seq
= read_seqbegin(&rename_lock
);
1930 if (new_dentry
!= old_dentry
) {
1931 struct dentry
* parent
= new_dentry
->d_parent
;
1932 if (parent
== new_dentry
)
1934 new_dentry
= parent
;
1940 } while (read_seqretry(&rename_lock
, seq
));
1946 void d_genocide(struct dentry
*root
)
1948 struct dentry
*this_parent
= root
;
1949 struct list_head
*next
;
1951 spin_lock(&dcache_lock
);
1953 next
= this_parent
->d_subdirs
.next
;
1955 while (next
!= &this_parent
->d_subdirs
) {
1956 struct list_head
*tmp
= next
;
1957 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1959 if (d_unhashed(dentry
)||!dentry
->d_inode
)
1961 if (!list_empty(&dentry
->d_subdirs
)) {
1962 this_parent
= dentry
;
1965 atomic_dec(&dentry
->d_count
);
1967 if (this_parent
!= root
) {
1968 next
= this_parent
->d_u
.d_child
.next
;
1969 atomic_dec(&this_parent
->d_count
);
1970 this_parent
= this_parent
->d_parent
;
1973 spin_unlock(&dcache_lock
);
1977 * find_inode_number - check for dentry with name
1978 * @dir: directory to check
1979 * @name: Name to find.
1981 * Check whether a dentry already exists for the given name,
1982 * and return the inode number if it has an inode. Otherwise
1985 * This routine is used to post-process directory listings for
1986 * filesystems using synthetic inode numbers, and is necessary
1987 * to keep getcwd() working.
1990 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
1992 struct dentry
* dentry
;
1995 dentry
= d_hash_and_lookup(dir
, name
);
1997 if (dentry
->d_inode
)
1998 ino
= dentry
->d_inode
->i_ino
;
2004 static __initdata
unsigned long dhash_entries
;
2005 static int __init
set_dhash_entries(char *str
)
2009 dhash_entries
= simple_strtoul(str
, &str
, 0);
2012 __setup("dhash_entries=", set_dhash_entries
);
2014 static void __init
dcache_init_early(void)
2018 /* If hashes are distributed across NUMA nodes, defer
2019 * hash allocation until vmalloc space is available.
2025 alloc_large_system_hash("Dentry cache",
2026 sizeof(struct hlist_head
),
2034 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2035 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2038 static void __init
dcache_init(unsigned long mempages
)
2043 * A constructor could be added for stable state like the lists,
2044 * but it is probably not worth it because of the cache nature
2047 dentry_cache
= kmem_cache_create("dentry_cache",
2048 sizeof(struct dentry
),
2050 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
2054 set_shrinker(DEFAULT_SEEKS
, shrink_dcache_memory
);
2056 /* Hash may have been set up in dcache_init_early */
2061 alloc_large_system_hash("Dentry cache",
2062 sizeof(struct hlist_head
),
2070 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2071 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2074 /* SLAB cache for __getname() consumers */
2075 struct kmem_cache
*names_cachep __read_mostly
;
2077 /* SLAB cache for file structures */
2078 struct kmem_cache
*filp_cachep __read_mostly
;
2080 EXPORT_SYMBOL(d_genocide
);
2082 void __init
vfs_caches_init_early(void)
2084 dcache_init_early();
2088 void __init
vfs_caches_init(unsigned long mempages
)
2090 unsigned long reserve
;
2092 /* Base hash sizes on available memory, with a reserve equal to
2093 150% of current kernel size */
2095 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
2096 mempages
-= reserve
;
2098 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
2099 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
2101 filp_cachep
= kmem_cache_create("filp", sizeof(struct file
), 0,
2102 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
2104 dcache_init(mempages
);
2105 inode_init(mempages
);
2106 files_init(mempages
);
2112 EXPORT_SYMBOL(d_alloc
);
2113 EXPORT_SYMBOL(d_alloc_anon
);
2114 EXPORT_SYMBOL(d_alloc_root
);
2115 EXPORT_SYMBOL(d_delete
);
2116 EXPORT_SYMBOL(d_find_alias
);
2117 EXPORT_SYMBOL(d_instantiate
);
2118 EXPORT_SYMBOL(d_invalidate
);
2119 EXPORT_SYMBOL(d_lookup
);
2120 EXPORT_SYMBOL(d_move
);
2121 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2122 EXPORT_SYMBOL(d_path
);
2123 EXPORT_SYMBOL(d_prune_aliases
);
2124 EXPORT_SYMBOL(d_rehash
);
2125 EXPORT_SYMBOL(d_splice_alias
);
2126 EXPORT_SYMBOL(d_validate
);
2127 EXPORT_SYMBOL(dget_locked
);
2128 EXPORT_SYMBOL(dput
);
2129 EXPORT_SYMBOL(find_inode_number
);
2130 EXPORT_SYMBOL(have_submounts
);
2131 EXPORT_SYMBOL(names_cachep
);
2132 EXPORT_SYMBOL(shrink_dcache_parent
);
2133 EXPORT_SYMBOL(shrink_dcache_sb
);