Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
blobd09692b4037614cf8a596ec229002018ebee9aac
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h" /* audit_signal_info() */
41 * SLAB caches for signal bits.
44 static struct kmem_cache *sigqueue_cachep;
46 int print_fatal_signals __read_mostly;
48 static void __user *sig_handler(struct task_struct *t, int sig)
50 return t->sighand->action[sig - 1].sa.sa_handler;
53 static int sig_handler_ignored(void __user *handler, int sig)
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
63 void __user *handler;
65 handler = sig_handler(t, sig);
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
71 return sig_handler_ignored(handler, sig);
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
88 * Tracers may want to know about even ignored signals.
90 return !tracehook_consider_ignored_signal(t, sig);
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
99 unsigned long ready;
100 long i;
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
120 return ready != 0;
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
125 static int recalc_sigpending_tsk(struct task_struct *t)
127 if (t->signal->group_stop_count > 0 ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
138 return 0;
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
145 void recalc_sigpending_and_wake(struct task_struct *t)
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
151 void recalc_sigpending(void)
153 if (unlikely(tracehook_force_sigpending()))
154 set_thread_flag(TIF_SIGPENDING);
155 else if (!recalc_sigpending_tsk(current) && !freezing(current))
156 clear_thread_flag(TIF_SIGPENDING);
160 /* Given the mask, find the first available signal that should be serviced. */
162 int next_signal(struct sigpending *pending, sigset_t *mask)
164 unsigned long i, *s, *m, x;
165 int sig = 0;
167 s = pending->signal.sig;
168 m = mask->sig;
169 switch (_NSIG_WORDS) {
170 default:
171 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
172 if ((x = *s &~ *m) != 0) {
173 sig = ffz(~x) + i*_NSIG_BPW + 1;
174 break;
176 break;
178 case 2: if ((x = s[0] &~ m[0]) != 0)
179 sig = 1;
180 else if ((x = s[1] &~ m[1]) != 0)
181 sig = _NSIG_BPW + 1;
182 else
183 break;
184 sig += ffz(~x);
185 break;
187 case 1: if ((x = *s &~ *m) != 0)
188 sig = ffz(~x) + 1;
189 break;
192 return sig;
195 static inline void print_dropped_signal(int sig)
197 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
199 if (!print_fatal_signals)
200 return;
202 if (!__ratelimit(&ratelimit_state))
203 return;
205 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
206 current->comm, current->pid, sig);
210 * allocate a new signal queue record
211 * - this may be called without locks if and only if t == current, otherwise an
212 * appopriate lock must be held to stop the target task from exiting
214 static struct sigqueue *
215 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
217 struct sigqueue *q = NULL;
218 struct user_struct *user;
221 * Protect access to @t credentials. This can go away when all
222 * callers hold rcu read lock.
224 rcu_read_lock();
225 user = get_uid(__task_cred(t)->user);
226 atomic_inc(&user->sigpending);
227 rcu_read_unlock();
229 if (override_rlimit ||
230 atomic_read(&user->sigpending) <=
231 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) {
232 q = kmem_cache_alloc(sigqueue_cachep, flags);
233 } else {
234 print_dropped_signal(sig);
237 if (unlikely(q == NULL)) {
238 atomic_dec(&user->sigpending);
239 free_uid(user);
240 } else {
241 INIT_LIST_HEAD(&q->list);
242 q->flags = 0;
243 q->user = user;
246 return q;
249 static void __sigqueue_free(struct sigqueue *q)
251 if (q->flags & SIGQUEUE_PREALLOC)
252 return;
253 atomic_dec(&q->user->sigpending);
254 free_uid(q->user);
255 kmem_cache_free(sigqueue_cachep, q);
258 void flush_sigqueue(struct sigpending *queue)
260 struct sigqueue *q;
262 sigemptyset(&queue->signal);
263 while (!list_empty(&queue->list)) {
264 q = list_entry(queue->list.next, struct sigqueue , list);
265 list_del_init(&q->list);
266 __sigqueue_free(q);
271 * Flush all pending signals for a task.
273 void __flush_signals(struct task_struct *t)
275 clear_tsk_thread_flag(t, TIF_SIGPENDING);
276 flush_sigqueue(&t->pending);
277 flush_sigqueue(&t->signal->shared_pending);
280 void flush_signals(struct task_struct *t)
282 unsigned long flags;
284 spin_lock_irqsave(&t->sighand->siglock, flags);
285 __flush_signals(t);
286 spin_unlock_irqrestore(&t->sighand->siglock, flags);
289 static void __flush_itimer_signals(struct sigpending *pending)
291 sigset_t signal, retain;
292 struct sigqueue *q, *n;
294 signal = pending->signal;
295 sigemptyset(&retain);
297 list_for_each_entry_safe(q, n, &pending->list, list) {
298 int sig = q->info.si_signo;
300 if (likely(q->info.si_code != SI_TIMER)) {
301 sigaddset(&retain, sig);
302 } else {
303 sigdelset(&signal, sig);
304 list_del_init(&q->list);
305 __sigqueue_free(q);
309 sigorsets(&pending->signal, &signal, &retain);
312 void flush_itimer_signals(void)
314 struct task_struct *tsk = current;
315 unsigned long flags;
317 spin_lock_irqsave(&tsk->sighand->siglock, flags);
318 __flush_itimer_signals(&tsk->pending);
319 __flush_itimer_signals(&tsk->signal->shared_pending);
320 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
323 void ignore_signals(struct task_struct *t)
325 int i;
327 for (i = 0; i < _NSIG; ++i)
328 t->sighand->action[i].sa.sa_handler = SIG_IGN;
330 flush_signals(t);
334 * Flush all handlers for a task.
337 void
338 flush_signal_handlers(struct task_struct *t, int force_default)
340 int i;
341 struct k_sigaction *ka = &t->sighand->action[0];
342 for (i = _NSIG ; i != 0 ; i--) {
343 if (force_default || ka->sa.sa_handler != SIG_IGN)
344 ka->sa.sa_handler = SIG_DFL;
345 ka->sa.sa_flags = 0;
346 sigemptyset(&ka->sa.sa_mask);
347 ka++;
351 int unhandled_signal(struct task_struct *tsk, int sig)
353 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
354 if (is_global_init(tsk))
355 return 1;
356 if (handler != SIG_IGN && handler != SIG_DFL)
357 return 0;
358 return !tracehook_consider_fatal_signal(tsk, sig);
362 /* Notify the system that a driver wants to block all signals for this
363 * process, and wants to be notified if any signals at all were to be
364 * sent/acted upon. If the notifier routine returns non-zero, then the
365 * signal will be acted upon after all. If the notifier routine returns 0,
366 * then then signal will be blocked. Only one block per process is
367 * allowed. priv is a pointer to private data that the notifier routine
368 * can use to determine if the signal should be blocked or not. */
370 void
371 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
373 unsigned long flags;
375 spin_lock_irqsave(&current->sighand->siglock, flags);
376 current->notifier_mask = mask;
377 current->notifier_data = priv;
378 current->notifier = notifier;
379 spin_unlock_irqrestore(&current->sighand->siglock, flags);
382 /* Notify the system that blocking has ended. */
384 void
385 unblock_all_signals(void)
387 unsigned long flags;
389 spin_lock_irqsave(&current->sighand->siglock, flags);
390 current->notifier = NULL;
391 current->notifier_data = NULL;
392 recalc_sigpending();
393 spin_unlock_irqrestore(&current->sighand->siglock, flags);
396 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
398 struct sigqueue *q, *first = NULL;
401 * Collect the siginfo appropriate to this signal. Check if
402 * there is another siginfo for the same signal.
404 list_for_each_entry(q, &list->list, list) {
405 if (q->info.si_signo == sig) {
406 if (first)
407 goto still_pending;
408 first = q;
412 sigdelset(&list->signal, sig);
414 if (first) {
415 still_pending:
416 list_del_init(&first->list);
417 copy_siginfo(info, &first->info);
418 __sigqueue_free(first);
419 } else {
420 /* Ok, it wasn't in the queue. This must be
421 a fast-pathed signal or we must have been
422 out of queue space. So zero out the info.
424 info->si_signo = sig;
425 info->si_errno = 0;
426 info->si_code = SI_USER;
427 info->si_pid = 0;
428 info->si_uid = 0;
432 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
433 siginfo_t *info)
435 int sig = next_signal(pending, mask);
437 if (sig) {
438 if (current->notifier) {
439 if (sigismember(current->notifier_mask, sig)) {
440 if (!(current->notifier)(current->notifier_data)) {
441 clear_thread_flag(TIF_SIGPENDING);
442 return 0;
447 collect_signal(sig, pending, info);
450 return sig;
454 * Dequeue a signal and return the element to the caller, which is
455 * expected to free it.
457 * All callers have to hold the siglock.
459 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
461 int signr;
463 /* We only dequeue private signals from ourselves, we don't let
464 * signalfd steal them
466 signr = __dequeue_signal(&tsk->pending, mask, info);
467 if (!signr) {
468 signr = __dequeue_signal(&tsk->signal->shared_pending,
469 mask, info);
471 * itimer signal ?
473 * itimers are process shared and we restart periodic
474 * itimers in the signal delivery path to prevent DoS
475 * attacks in the high resolution timer case. This is
476 * compliant with the old way of self restarting
477 * itimers, as the SIGALRM is a legacy signal and only
478 * queued once. Changing the restart behaviour to
479 * restart the timer in the signal dequeue path is
480 * reducing the timer noise on heavy loaded !highres
481 * systems too.
483 if (unlikely(signr == SIGALRM)) {
484 struct hrtimer *tmr = &tsk->signal->real_timer;
486 if (!hrtimer_is_queued(tmr) &&
487 tsk->signal->it_real_incr.tv64 != 0) {
488 hrtimer_forward(tmr, tmr->base->get_time(),
489 tsk->signal->it_real_incr);
490 hrtimer_restart(tmr);
495 recalc_sigpending();
496 if (!signr)
497 return 0;
499 if (unlikely(sig_kernel_stop(signr))) {
501 * Set a marker that we have dequeued a stop signal. Our
502 * caller might release the siglock and then the pending
503 * stop signal it is about to process is no longer in the
504 * pending bitmasks, but must still be cleared by a SIGCONT
505 * (and overruled by a SIGKILL). So those cases clear this
506 * shared flag after we've set it. Note that this flag may
507 * remain set after the signal we return is ignored or
508 * handled. That doesn't matter because its only purpose
509 * is to alert stop-signal processing code when another
510 * processor has come along and cleared the flag.
512 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
514 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
516 * Release the siglock to ensure proper locking order
517 * of timer locks outside of siglocks. Note, we leave
518 * irqs disabled here, since the posix-timers code is
519 * about to disable them again anyway.
521 spin_unlock(&tsk->sighand->siglock);
522 do_schedule_next_timer(info);
523 spin_lock(&tsk->sighand->siglock);
525 return signr;
529 * Tell a process that it has a new active signal..
531 * NOTE! we rely on the previous spin_lock to
532 * lock interrupts for us! We can only be called with
533 * "siglock" held, and the local interrupt must
534 * have been disabled when that got acquired!
536 * No need to set need_resched since signal event passing
537 * goes through ->blocked
539 void signal_wake_up(struct task_struct *t, int resume)
541 unsigned int mask;
543 set_tsk_thread_flag(t, TIF_SIGPENDING);
546 * For SIGKILL, we want to wake it up in the stopped/traced/killable
547 * case. We don't check t->state here because there is a race with it
548 * executing another processor and just now entering stopped state.
549 * By using wake_up_state, we ensure the process will wake up and
550 * handle its death signal.
552 mask = TASK_INTERRUPTIBLE;
553 if (resume)
554 mask |= TASK_WAKEKILL;
555 if (!wake_up_state(t, mask))
556 kick_process(t);
560 * Remove signals in mask from the pending set and queue.
561 * Returns 1 if any signals were found.
563 * All callers must be holding the siglock.
565 * This version takes a sigset mask and looks at all signals,
566 * not just those in the first mask word.
568 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
570 struct sigqueue *q, *n;
571 sigset_t m;
573 sigandsets(&m, mask, &s->signal);
574 if (sigisemptyset(&m))
575 return 0;
577 signandsets(&s->signal, &s->signal, mask);
578 list_for_each_entry_safe(q, n, &s->list, list) {
579 if (sigismember(mask, q->info.si_signo)) {
580 list_del_init(&q->list);
581 __sigqueue_free(q);
584 return 1;
587 * Remove signals in mask from the pending set and queue.
588 * Returns 1 if any signals were found.
590 * All callers must be holding the siglock.
592 static int rm_from_queue(unsigned long mask, struct sigpending *s)
594 struct sigqueue *q, *n;
596 if (!sigtestsetmask(&s->signal, mask))
597 return 0;
599 sigdelsetmask(&s->signal, mask);
600 list_for_each_entry_safe(q, n, &s->list, list) {
601 if (q->info.si_signo < SIGRTMIN &&
602 (mask & sigmask(q->info.si_signo))) {
603 list_del_init(&q->list);
604 __sigqueue_free(q);
607 return 1;
610 static inline int is_si_special(const struct siginfo *info)
612 return info <= SEND_SIG_FORCED;
615 static inline bool si_fromuser(const struct siginfo *info)
617 return info == SEND_SIG_NOINFO ||
618 (!is_si_special(info) && SI_FROMUSER(info));
622 * Bad permissions for sending the signal
623 * - the caller must hold at least the RCU read lock
625 static int check_kill_permission(int sig, struct siginfo *info,
626 struct task_struct *t)
628 const struct cred *cred = current_cred(), *tcred;
629 struct pid *sid;
630 int error;
632 if (!valid_signal(sig))
633 return -EINVAL;
635 if (!si_fromuser(info))
636 return 0;
638 error = audit_signal_info(sig, t); /* Let audit system see the signal */
639 if (error)
640 return error;
642 tcred = __task_cred(t);
643 if ((cred->euid ^ tcred->suid) &&
644 (cred->euid ^ tcred->uid) &&
645 (cred->uid ^ tcred->suid) &&
646 (cred->uid ^ tcred->uid) &&
647 !capable(CAP_KILL)) {
648 switch (sig) {
649 case SIGCONT:
650 sid = task_session(t);
652 * We don't return the error if sid == NULL. The
653 * task was unhashed, the caller must notice this.
655 if (!sid || sid == task_session(current))
656 break;
657 default:
658 return -EPERM;
662 return security_task_kill(t, info, sig, 0);
666 * Handle magic process-wide effects of stop/continue signals. Unlike
667 * the signal actions, these happen immediately at signal-generation
668 * time regardless of blocking, ignoring, or handling. This does the
669 * actual continuing for SIGCONT, but not the actual stopping for stop
670 * signals. The process stop is done as a signal action for SIG_DFL.
672 * Returns true if the signal should be actually delivered, otherwise
673 * it should be dropped.
675 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
677 struct signal_struct *signal = p->signal;
678 struct task_struct *t;
680 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
682 * The process is in the middle of dying, nothing to do.
684 } else if (sig_kernel_stop(sig)) {
686 * This is a stop signal. Remove SIGCONT from all queues.
688 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
689 t = p;
690 do {
691 rm_from_queue(sigmask(SIGCONT), &t->pending);
692 } while_each_thread(p, t);
693 } else if (sig == SIGCONT) {
694 unsigned int why;
696 * Remove all stop signals from all queues,
697 * and wake all threads.
699 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
700 t = p;
701 do {
702 unsigned int state;
703 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
705 * If there is a handler for SIGCONT, we must make
706 * sure that no thread returns to user mode before
707 * we post the signal, in case it was the only
708 * thread eligible to run the signal handler--then
709 * it must not do anything between resuming and
710 * running the handler. With the TIF_SIGPENDING
711 * flag set, the thread will pause and acquire the
712 * siglock that we hold now and until we've queued
713 * the pending signal.
715 * Wake up the stopped thread _after_ setting
716 * TIF_SIGPENDING
718 state = __TASK_STOPPED;
719 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
720 set_tsk_thread_flag(t, TIF_SIGPENDING);
721 state |= TASK_INTERRUPTIBLE;
723 wake_up_state(t, state);
724 } while_each_thread(p, t);
727 * Notify the parent with CLD_CONTINUED if we were stopped.
729 * If we were in the middle of a group stop, we pretend it
730 * was already finished, and then continued. Since SIGCHLD
731 * doesn't queue we report only CLD_STOPPED, as if the next
732 * CLD_CONTINUED was dropped.
734 why = 0;
735 if (signal->flags & SIGNAL_STOP_STOPPED)
736 why |= SIGNAL_CLD_CONTINUED;
737 else if (signal->group_stop_count)
738 why |= SIGNAL_CLD_STOPPED;
740 if (why) {
742 * The first thread which returns from do_signal_stop()
743 * will take ->siglock, notice SIGNAL_CLD_MASK, and
744 * notify its parent. See get_signal_to_deliver().
746 signal->flags = why | SIGNAL_STOP_CONTINUED;
747 signal->group_stop_count = 0;
748 signal->group_exit_code = 0;
749 } else {
751 * We are not stopped, but there could be a stop
752 * signal in the middle of being processed after
753 * being removed from the queue. Clear that too.
755 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
759 return !sig_ignored(p, sig, from_ancestor_ns);
763 * Test if P wants to take SIG. After we've checked all threads with this,
764 * it's equivalent to finding no threads not blocking SIG. Any threads not
765 * blocking SIG were ruled out because they are not running and already
766 * have pending signals. Such threads will dequeue from the shared queue
767 * as soon as they're available, so putting the signal on the shared queue
768 * will be equivalent to sending it to one such thread.
770 static inline int wants_signal(int sig, struct task_struct *p)
772 if (sigismember(&p->blocked, sig))
773 return 0;
774 if (p->flags & PF_EXITING)
775 return 0;
776 if (sig == SIGKILL)
777 return 1;
778 if (task_is_stopped_or_traced(p))
779 return 0;
780 return task_curr(p) || !signal_pending(p);
783 static void complete_signal(int sig, struct task_struct *p, int group)
785 struct signal_struct *signal = p->signal;
786 struct task_struct *t;
789 * Now find a thread we can wake up to take the signal off the queue.
791 * If the main thread wants the signal, it gets first crack.
792 * Probably the least surprising to the average bear.
794 if (wants_signal(sig, p))
795 t = p;
796 else if (!group || thread_group_empty(p))
798 * There is just one thread and it does not need to be woken.
799 * It will dequeue unblocked signals before it runs again.
801 return;
802 else {
804 * Otherwise try to find a suitable thread.
806 t = signal->curr_target;
807 while (!wants_signal(sig, t)) {
808 t = next_thread(t);
809 if (t == signal->curr_target)
811 * No thread needs to be woken.
812 * Any eligible threads will see
813 * the signal in the queue soon.
815 return;
817 signal->curr_target = t;
821 * Found a killable thread. If the signal will be fatal,
822 * then start taking the whole group down immediately.
824 if (sig_fatal(p, sig) &&
825 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
826 !sigismember(&t->real_blocked, sig) &&
827 (sig == SIGKILL ||
828 !tracehook_consider_fatal_signal(t, sig))) {
830 * This signal will be fatal to the whole group.
832 if (!sig_kernel_coredump(sig)) {
834 * Start a group exit and wake everybody up.
835 * This way we don't have other threads
836 * running and doing things after a slower
837 * thread has the fatal signal pending.
839 signal->flags = SIGNAL_GROUP_EXIT;
840 signal->group_exit_code = sig;
841 signal->group_stop_count = 0;
842 t = p;
843 do {
844 sigaddset(&t->pending.signal, SIGKILL);
845 signal_wake_up(t, 1);
846 } while_each_thread(p, t);
847 return;
852 * The signal is already in the shared-pending queue.
853 * Tell the chosen thread to wake up and dequeue it.
855 signal_wake_up(t, sig == SIGKILL);
856 return;
859 static inline int legacy_queue(struct sigpending *signals, int sig)
861 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
864 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
865 int group, int from_ancestor_ns)
867 struct sigpending *pending;
868 struct sigqueue *q;
869 int override_rlimit;
871 trace_signal_generate(sig, info, t);
873 assert_spin_locked(&t->sighand->siglock);
875 if (!prepare_signal(sig, t, from_ancestor_ns))
876 return 0;
878 pending = group ? &t->signal->shared_pending : &t->pending;
880 * Short-circuit ignored signals and support queuing
881 * exactly one non-rt signal, so that we can get more
882 * detailed information about the cause of the signal.
884 if (legacy_queue(pending, sig))
885 return 0;
887 * fast-pathed signals for kernel-internal things like SIGSTOP
888 * or SIGKILL.
890 if (info == SEND_SIG_FORCED)
891 goto out_set;
893 /* Real-time signals must be queued if sent by sigqueue, or
894 some other real-time mechanism. It is implementation
895 defined whether kill() does so. We attempt to do so, on
896 the principle of least surprise, but since kill is not
897 allowed to fail with EAGAIN when low on memory we just
898 make sure at least one signal gets delivered and don't
899 pass on the info struct. */
901 if (sig < SIGRTMIN)
902 override_rlimit = (is_si_special(info) || info->si_code >= 0);
903 else
904 override_rlimit = 0;
906 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
907 override_rlimit);
908 if (q) {
909 list_add_tail(&q->list, &pending->list);
910 switch ((unsigned long) info) {
911 case (unsigned long) SEND_SIG_NOINFO:
912 q->info.si_signo = sig;
913 q->info.si_errno = 0;
914 q->info.si_code = SI_USER;
915 q->info.si_pid = task_tgid_nr_ns(current,
916 task_active_pid_ns(t));
917 q->info.si_uid = current_uid();
918 break;
919 case (unsigned long) SEND_SIG_PRIV:
920 q->info.si_signo = sig;
921 q->info.si_errno = 0;
922 q->info.si_code = SI_KERNEL;
923 q->info.si_pid = 0;
924 q->info.si_uid = 0;
925 break;
926 default:
927 copy_siginfo(&q->info, info);
928 if (from_ancestor_ns)
929 q->info.si_pid = 0;
930 break;
932 } else if (!is_si_special(info)) {
933 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
935 * Queue overflow, abort. We may abort if the
936 * signal was rt and sent by user using something
937 * other than kill().
939 trace_signal_overflow_fail(sig, group, info);
940 return -EAGAIN;
941 } else {
943 * This is a silent loss of information. We still
944 * send the signal, but the *info bits are lost.
946 trace_signal_lose_info(sig, group, info);
950 out_set:
951 signalfd_notify(t, sig);
952 sigaddset(&pending->signal, sig);
953 complete_signal(sig, t, group);
954 return 0;
957 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
958 int group)
960 int from_ancestor_ns = 0;
962 #ifdef CONFIG_PID_NS
963 from_ancestor_ns = si_fromuser(info) &&
964 !task_pid_nr_ns(current, task_active_pid_ns(t));
965 #endif
967 return __send_signal(sig, info, t, group, from_ancestor_ns);
970 static void print_fatal_signal(struct pt_regs *regs, int signr)
972 printk("%s/%d: potentially unexpected fatal signal %d.\n",
973 current->comm, task_pid_nr(current), signr);
975 #if defined(__i386__) && !defined(__arch_um__)
976 printk("code at %08lx: ", regs->ip);
978 int i;
979 for (i = 0; i < 16; i++) {
980 unsigned char insn;
982 __get_user(insn, (unsigned char *)(regs->ip + i));
983 printk("%02x ", insn);
986 #endif
987 printk("\n");
988 preempt_disable();
989 show_regs(regs);
990 preempt_enable();
993 static int __init setup_print_fatal_signals(char *str)
995 get_option (&str, &print_fatal_signals);
997 return 1;
1000 __setup("print-fatal-signals=", setup_print_fatal_signals);
1003 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1005 return send_signal(sig, info, p, 1);
1008 static int
1009 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1011 return send_signal(sig, info, t, 0);
1014 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1015 bool group)
1017 unsigned long flags;
1018 int ret = -ESRCH;
1020 if (lock_task_sighand(p, &flags)) {
1021 ret = send_signal(sig, info, p, group);
1022 unlock_task_sighand(p, &flags);
1025 return ret;
1029 * Force a signal that the process can't ignore: if necessary
1030 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1032 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1033 * since we do not want to have a signal handler that was blocked
1034 * be invoked when user space had explicitly blocked it.
1036 * We don't want to have recursive SIGSEGV's etc, for example,
1037 * that is why we also clear SIGNAL_UNKILLABLE.
1040 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1042 unsigned long int flags;
1043 int ret, blocked, ignored;
1044 struct k_sigaction *action;
1046 spin_lock_irqsave(&t->sighand->siglock, flags);
1047 action = &t->sighand->action[sig-1];
1048 ignored = action->sa.sa_handler == SIG_IGN;
1049 blocked = sigismember(&t->blocked, sig);
1050 if (blocked || ignored) {
1051 action->sa.sa_handler = SIG_DFL;
1052 if (blocked) {
1053 sigdelset(&t->blocked, sig);
1054 recalc_sigpending_and_wake(t);
1057 if (action->sa.sa_handler == SIG_DFL)
1058 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1059 ret = specific_send_sig_info(sig, info, t);
1060 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1062 return ret;
1066 * Nuke all other threads in the group.
1068 void zap_other_threads(struct task_struct *p)
1070 struct task_struct *t;
1072 p->signal->group_stop_count = 0;
1074 for (t = next_thread(p); t != p; t = next_thread(t)) {
1076 * Don't bother with already dead threads
1078 if (t->exit_state)
1079 continue;
1081 /* SIGKILL will be handled before any pending SIGSTOP */
1082 sigaddset(&t->pending.signal, SIGKILL);
1083 signal_wake_up(t, 1);
1087 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1089 struct sighand_struct *sighand;
1091 rcu_read_lock();
1092 for (;;) {
1093 sighand = rcu_dereference(tsk->sighand);
1094 if (unlikely(sighand == NULL))
1095 break;
1097 spin_lock_irqsave(&sighand->siglock, *flags);
1098 if (likely(sighand == tsk->sighand))
1099 break;
1100 spin_unlock_irqrestore(&sighand->siglock, *flags);
1102 rcu_read_unlock();
1104 return sighand;
1108 * send signal info to all the members of a group
1109 * - the caller must hold the RCU read lock at least
1111 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1113 int ret = check_kill_permission(sig, info, p);
1115 if (!ret && sig)
1116 ret = do_send_sig_info(sig, info, p, true);
1118 return ret;
1122 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1123 * control characters do (^C, ^Z etc)
1124 * - the caller must hold at least a readlock on tasklist_lock
1126 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1128 struct task_struct *p = NULL;
1129 int retval, success;
1131 success = 0;
1132 retval = -ESRCH;
1133 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1134 int err = group_send_sig_info(sig, info, p);
1135 success |= !err;
1136 retval = err;
1137 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1138 return success ? 0 : retval;
1141 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1143 int error = -ESRCH;
1144 struct task_struct *p;
1146 rcu_read_lock();
1147 retry:
1148 p = pid_task(pid, PIDTYPE_PID);
1149 if (p) {
1150 error = group_send_sig_info(sig, info, p);
1151 if (unlikely(error == -ESRCH))
1153 * The task was unhashed in between, try again.
1154 * If it is dead, pid_task() will return NULL,
1155 * if we race with de_thread() it will find the
1156 * new leader.
1158 goto retry;
1160 rcu_read_unlock();
1162 return error;
1166 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1168 int error;
1169 rcu_read_lock();
1170 error = kill_pid_info(sig, info, find_vpid(pid));
1171 rcu_read_unlock();
1172 return error;
1175 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1176 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1177 uid_t uid, uid_t euid, u32 secid)
1179 int ret = -EINVAL;
1180 struct task_struct *p;
1181 const struct cred *pcred;
1182 unsigned long flags;
1184 if (!valid_signal(sig))
1185 return ret;
1187 rcu_read_lock();
1188 p = pid_task(pid, PIDTYPE_PID);
1189 if (!p) {
1190 ret = -ESRCH;
1191 goto out_unlock;
1193 pcred = __task_cred(p);
1194 if (si_fromuser(info) &&
1195 euid != pcred->suid && euid != pcred->uid &&
1196 uid != pcred->suid && uid != pcred->uid) {
1197 ret = -EPERM;
1198 goto out_unlock;
1200 ret = security_task_kill(p, info, sig, secid);
1201 if (ret)
1202 goto out_unlock;
1204 if (sig) {
1205 if (lock_task_sighand(p, &flags)) {
1206 ret = __send_signal(sig, info, p, 1, 0);
1207 unlock_task_sighand(p, &flags);
1208 } else
1209 ret = -ESRCH;
1211 out_unlock:
1212 rcu_read_unlock();
1213 return ret;
1215 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1218 * kill_something_info() interprets pid in interesting ways just like kill(2).
1220 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1221 * is probably wrong. Should make it like BSD or SYSV.
1224 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1226 int ret;
1228 if (pid > 0) {
1229 rcu_read_lock();
1230 ret = kill_pid_info(sig, info, find_vpid(pid));
1231 rcu_read_unlock();
1232 return ret;
1235 read_lock(&tasklist_lock);
1236 if (pid != -1) {
1237 ret = __kill_pgrp_info(sig, info,
1238 pid ? find_vpid(-pid) : task_pgrp(current));
1239 } else {
1240 int retval = 0, count = 0;
1241 struct task_struct * p;
1243 for_each_process(p) {
1244 if (task_pid_vnr(p) > 1 &&
1245 !same_thread_group(p, current)) {
1246 int err = group_send_sig_info(sig, info, p);
1247 ++count;
1248 if (err != -EPERM)
1249 retval = err;
1252 ret = count ? retval : -ESRCH;
1254 read_unlock(&tasklist_lock);
1256 return ret;
1260 * These are for backward compatibility with the rest of the kernel source.
1264 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1267 * Make sure legacy kernel users don't send in bad values
1268 * (normal paths check this in check_kill_permission).
1270 if (!valid_signal(sig))
1271 return -EINVAL;
1273 return do_send_sig_info(sig, info, p, false);
1276 #define __si_special(priv) \
1277 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1280 send_sig(int sig, struct task_struct *p, int priv)
1282 return send_sig_info(sig, __si_special(priv), p);
1285 void
1286 force_sig(int sig, struct task_struct *p)
1288 force_sig_info(sig, SEND_SIG_PRIV, p);
1292 * When things go south during signal handling, we
1293 * will force a SIGSEGV. And if the signal that caused
1294 * the problem was already a SIGSEGV, we'll want to
1295 * make sure we don't even try to deliver the signal..
1298 force_sigsegv(int sig, struct task_struct *p)
1300 if (sig == SIGSEGV) {
1301 unsigned long flags;
1302 spin_lock_irqsave(&p->sighand->siglock, flags);
1303 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1304 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1306 force_sig(SIGSEGV, p);
1307 return 0;
1310 int kill_pgrp(struct pid *pid, int sig, int priv)
1312 int ret;
1314 read_lock(&tasklist_lock);
1315 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1316 read_unlock(&tasklist_lock);
1318 return ret;
1320 EXPORT_SYMBOL(kill_pgrp);
1322 int kill_pid(struct pid *pid, int sig, int priv)
1324 return kill_pid_info(sig, __si_special(priv), pid);
1326 EXPORT_SYMBOL(kill_pid);
1329 * These functions support sending signals using preallocated sigqueue
1330 * structures. This is needed "because realtime applications cannot
1331 * afford to lose notifications of asynchronous events, like timer
1332 * expirations or I/O completions". In the case of Posix Timers
1333 * we allocate the sigqueue structure from the timer_create. If this
1334 * allocation fails we are able to report the failure to the application
1335 * with an EAGAIN error.
1337 struct sigqueue *sigqueue_alloc(void)
1339 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1341 if (q)
1342 q->flags |= SIGQUEUE_PREALLOC;
1344 return q;
1347 void sigqueue_free(struct sigqueue *q)
1349 unsigned long flags;
1350 spinlock_t *lock = &current->sighand->siglock;
1352 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1354 * We must hold ->siglock while testing q->list
1355 * to serialize with collect_signal() or with
1356 * __exit_signal()->flush_sigqueue().
1358 spin_lock_irqsave(lock, flags);
1359 q->flags &= ~SIGQUEUE_PREALLOC;
1361 * If it is queued it will be freed when dequeued,
1362 * like the "regular" sigqueue.
1364 if (!list_empty(&q->list))
1365 q = NULL;
1366 spin_unlock_irqrestore(lock, flags);
1368 if (q)
1369 __sigqueue_free(q);
1372 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1374 int sig = q->info.si_signo;
1375 struct sigpending *pending;
1376 unsigned long flags;
1377 int ret;
1379 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1381 ret = -1;
1382 if (!likely(lock_task_sighand(t, &flags)))
1383 goto ret;
1385 ret = 1; /* the signal is ignored */
1386 if (!prepare_signal(sig, t, 0))
1387 goto out;
1389 ret = 0;
1390 if (unlikely(!list_empty(&q->list))) {
1392 * If an SI_TIMER entry is already queue just increment
1393 * the overrun count.
1395 BUG_ON(q->info.si_code != SI_TIMER);
1396 q->info.si_overrun++;
1397 goto out;
1399 q->info.si_overrun = 0;
1401 signalfd_notify(t, sig);
1402 pending = group ? &t->signal->shared_pending : &t->pending;
1403 list_add_tail(&q->list, &pending->list);
1404 sigaddset(&pending->signal, sig);
1405 complete_signal(sig, t, group);
1406 out:
1407 unlock_task_sighand(t, &flags);
1408 ret:
1409 return ret;
1413 * Let a parent know about the death of a child.
1414 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1416 * Returns -1 if our parent ignored us and so we've switched to
1417 * self-reaping, or else @sig.
1419 int do_notify_parent(struct task_struct *tsk, int sig)
1421 struct siginfo info;
1422 unsigned long flags;
1423 struct sighand_struct *psig;
1424 int ret = sig;
1426 BUG_ON(sig == -1);
1428 /* do_notify_parent_cldstop should have been called instead. */
1429 BUG_ON(task_is_stopped_or_traced(tsk));
1431 BUG_ON(!task_ptrace(tsk) &&
1432 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1434 info.si_signo = sig;
1435 info.si_errno = 0;
1437 * we are under tasklist_lock here so our parent is tied to
1438 * us and cannot exit and release its namespace.
1440 * the only it can is to switch its nsproxy with sys_unshare,
1441 * bu uncharing pid namespaces is not allowed, so we'll always
1442 * see relevant namespace
1444 * write_lock() currently calls preempt_disable() which is the
1445 * same as rcu_read_lock(), but according to Oleg, this is not
1446 * correct to rely on this
1448 rcu_read_lock();
1449 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1450 info.si_uid = __task_cred(tsk)->uid;
1451 rcu_read_unlock();
1453 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1454 tsk->signal->utime));
1455 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1456 tsk->signal->stime));
1458 info.si_status = tsk->exit_code & 0x7f;
1459 if (tsk->exit_code & 0x80)
1460 info.si_code = CLD_DUMPED;
1461 else if (tsk->exit_code & 0x7f)
1462 info.si_code = CLD_KILLED;
1463 else {
1464 info.si_code = CLD_EXITED;
1465 info.si_status = tsk->exit_code >> 8;
1468 psig = tsk->parent->sighand;
1469 spin_lock_irqsave(&psig->siglock, flags);
1470 if (!task_ptrace(tsk) && sig == SIGCHLD &&
1471 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1472 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1474 * We are exiting and our parent doesn't care. POSIX.1
1475 * defines special semantics for setting SIGCHLD to SIG_IGN
1476 * or setting the SA_NOCLDWAIT flag: we should be reaped
1477 * automatically and not left for our parent's wait4 call.
1478 * Rather than having the parent do it as a magic kind of
1479 * signal handler, we just set this to tell do_exit that we
1480 * can be cleaned up without becoming a zombie. Note that
1481 * we still call __wake_up_parent in this case, because a
1482 * blocked sys_wait4 might now return -ECHILD.
1484 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1485 * is implementation-defined: we do (if you don't want
1486 * it, just use SIG_IGN instead).
1488 ret = tsk->exit_signal = -1;
1489 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1490 sig = -1;
1492 if (valid_signal(sig) && sig > 0)
1493 __group_send_sig_info(sig, &info, tsk->parent);
1494 __wake_up_parent(tsk, tsk->parent);
1495 spin_unlock_irqrestore(&psig->siglock, flags);
1497 return ret;
1500 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1502 struct siginfo info;
1503 unsigned long flags;
1504 struct task_struct *parent;
1505 struct sighand_struct *sighand;
1507 if (task_ptrace(tsk))
1508 parent = tsk->parent;
1509 else {
1510 tsk = tsk->group_leader;
1511 parent = tsk->real_parent;
1514 info.si_signo = SIGCHLD;
1515 info.si_errno = 0;
1517 * see comment in do_notify_parent() abot the following 3 lines
1519 rcu_read_lock();
1520 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1521 info.si_uid = __task_cred(tsk)->uid;
1522 rcu_read_unlock();
1524 info.si_utime = cputime_to_clock_t(tsk->utime);
1525 info.si_stime = cputime_to_clock_t(tsk->stime);
1527 info.si_code = why;
1528 switch (why) {
1529 case CLD_CONTINUED:
1530 info.si_status = SIGCONT;
1531 break;
1532 case CLD_STOPPED:
1533 info.si_status = tsk->signal->group_exit_code & 0x7f;
1534 break;
1535 case CLD_TRAPPED:
1536 info.si_status = tsk->exit_code & 0x7f;
1537 break;
1538 default:
1539 BUG();
1542 sighand = parent->sighand;
1543 spin_lock_irqsave(&sighand->siglock, flags);
1544 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1545 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1546 __group_send_sig_info(SIGCHLD, &info, parent);
1548 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1550 __wake_up_parent(tsk, parent);
1551 spin_unlock_irqrestore(&sighand->siglock, flags);
1554 static inline int may_ptrace_stop(void)
1556 if (!likely(task_ptrace(current)))
1557 return 0;
1559 * Are we in the middle of do_coredump?
1560 * If so and our tracer is also part of the coredump stopping
1561 * is a deadlock situation, and pointless because our tracer
1562 * is dead so don't allow us to stop.
1563 * If SIGKILL was already sent before the caller unlocked
1564 * ->siglock we must see ->core_state != NULL. Otherwise it
1565 * is safe to enter schedule().
1567 if (unlikely(current->mm->core_state) &&
1568 unlikely(current->mm == current->parent->mm))
1569 return 0;
1571 return 1;
1575 * Return nonzero if there is a SIGKILL that should be waking us up.
1576 * Called with the siglock held.
1578 static int sigkill_pending(struct task_struct *tsk)
1580 return sigismember(&tsk->pending.signal, SIGKILL) ||
1581 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1585 * This must be called with current->sighand->siglock held.
1587 * This should be the path for all ptrace stops.
1588 * We always set current->last_siginfo while stopped here.
1589 * That makes it a way to test a stopped process for
1590 * being ptrace-stopped vs being job-control-stopped.
1592 * If we actually decide not to stop at all because the tracer
1593 * is gone, we keep current->exit_code unless clear_code.
1595 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1597 if (arch_ptrace_stop_needed(exit_code, info)) {
1599 * The arch code has something special to do before a
1600 * ptrace stop. This is allowed to block, e.g. for faults
1601 * on user stack pages. We can't keep the siglock while
1602 * calling arch_ptrace_stop, so we must release it now.
1603 * To preserve proper semantics, we must do this before
1604 * any signal bookkeeping like checking group_stop_count.
1605 * Meanwhile, a SIGKILL could come in before we retake the
1606 * siglock. That must prevent us from sleeping in TASK_TRACED.
1607 * So after regaining the lock, we must check for SIGKILL.
1609 spin_unlock_irq(&current->sighand->siglock);
1610 arch_ptrace_stop(exit_code, info);
1611 spin_lock_irq(&current->sighand->siglock);
1612 if (sigkill_pending(current))
1613 return;
1617 * If there is a group stop in progress,
1618 * we must participate in the bookkeeping.
1620 if (current->signal->group_stop_count > 0)
1621 --current->signal->group_stop_count;
1623 current->last_siginfo = info;
1624 current->exit_code = exit_code;
1626 /* Let the debugger run. */
1627 __set_current_state(TASK_TRACED);
1628 spin_unlock_irq(&current->sighand->siglock);
1629 read_lock(&tasklist_lock);
1630 if (may_ptrace_stop()) {
1631 do_notify_parent_cldstop(current, CLD_TRAPPED);
1633 * Don't want to allow preemption here, because
1634 * sys_ptrace() needs this task to be inactive.
1636 * XXX: implement read_unlock_no_resched().
1638 preempt_disable();
1639 read_unlock(&tasklist_lock);
1640 preempt_enable_no_resched();
1641 schedule();
1642 } else {
1644 * By the time we got the lock, our tracer went away.
1645 * Don't drop the lock yet, another tracer may come.
1647 __set_current_state(TASK_RUNNING);
1648 if (clear_code)
1649 current->exit_code = 0;
1650 read_unlock(&tasklist_lock);
1654 * While in TASK_TRACED, we were considered "frozen enough".
1655 * Now that we woke up, it's crucial if we're supposed to be
1656 * frozen that we freeze now before running anything substantial.
1658 try_to_freeze();
1661 * We are back. Now reacquire the siglock before touching
1662 * last_siginfo, so that we are sure to have synchronized with
1663 * any signal-sending on another CPU that wants to examine it.
1665 spin_lock_irq(&current->sighand->siglock);
1666 current->last_siginfo = NULL;
1669 * Queued signals ignored us while we were stopped for tracing.
1670 * So check for any that we should take before resuming user mode.
1671 * This sets TIF_SIGPENDING, but never clears it.
1673 recalc_sigpending_tsk(current);
1676 void ptrace_notify(int exit_code)
1678 siginfo_t info;
1680 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1682 memset(&info, 0, sizeof info);
1683 info.si_signo = SIGTRAP;
1684 info.si_code = exit_code;
1685 info.si_pid = task_pid_vnr(current);
1686 info.si_uid = current_uid();
1688 /* Let the debugger run. */
1689 spin_lock_irq(&current->sighand->siglock);
1690 ptrace_stop(exit_code, 1, &info);
1691 spin_unlock_irq(&current->sighand->siglock);
1695 * This performs the stopping for SIGSTOP and other stop signals.
1696 * We have to stop all threads in the thread group.
1697 * Returns nonzero if we've actually stopped and released the siglock.
1698 * Returns zero if we didn't stop and still hold the siglock.
1700 static int do_signal_stop(int signr)
1702 struct signal_struct *sig = current->signal;
1703 int notify;
1705 if (!sig->group_stop_count) {
1706 struct task_struct *t;
1708 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1709 unlikely(signal_group_exit(sig)))
1710 return 0;
1712 * There is no group stop already in progress.
1713 * We must initiate one now.
1715 sig->group_exit_code = signr;
1717 sig->group_stop_count = 1;
1718 for (t = next_thread(current); t != current; t = next_thread(t))
1720 * Setting state to TASK_STOPPED for a group
1721 * stop is always done with the siglock held,
1722 * so this check has no races.
1724 if (!(t->flags & PF_EXITING) &&
1725 !task_is_stopped_or_traced(t)) {
1726 sig->group_stop_count++;
1727 signal_wake_up(t, 0);
1731 * If there are no other threads in the group, or if there is
1732 * a group stop in progress and we are the last to stop, report
1733 * to the parent. When ptraced, every thread reports itself.
1735 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1736 notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1738 * tracehook_notify_jctl() can drop and reacquire siglock, so
1739 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1740 * or SIGKILL comes in between ->group_stop_count == 0.
1742 if (sig->group_stop_count) {
1743 if (!--sig->group_stop_count)
1744 sig->flags = SIGNAL_STOP_STOPPED;
1745 current->exit_code = sig->group_exit_code;
1746 __set_current_state(TASK_STOPPED);
1748 spin_unlock_irq(&current->sighand->siglock);
1750 if (notify) {
1751 read_lock(&tasklist_lock);
1752 do_notify_parent_cldstop(current, notify);
1753 read_unlock(&tasklist_lock);
1756 /* Now we don't run again until woken by SIGCONT or SIGKILL */
1757 do {
1758 schedule();
1759 } while (try_to_freeze());
1761 tracehook_finish_jctl();
1762 current->exit_code = 0;
1764 return 1;
1767 static int ptrace_signal(int signr, siginfo_t *info,
1768 struct pt_regs *regs, void *cookie)
1770 if (!task_ptrace(current))
1771 return signr;
1773 ptrace_signal_deliver(regs, cookie);
1775 /* Let the debugger run. */
1776 ptrace_stop(signr, 0, info);
1778 /* We're back. Did the debugger cancel the sig? */
1779 signr = current->exit_code;
1780 if (signr == 0)
1781 return signr;
1783 current->exit_code = 0;
1785 /* Update the siginfo structure if the signal has
1786 changed. If the debugger wanted something
1787 specific in the siginfo structure then it should
1788 have updated *info via PTRACE_SETSIGINFO. */
1789 if (signr != info->si_signo) {
1790 info->si_signo = signr;
1791 info->si_errno = 0;
1792 info->si_code = SI_USER;
1793 info->si_pid = task_pid_vnr(current->parent);
1794 info->si_uid = task_uid(current->parent);
1797 /* If the (new) signal is now blocked, requeue it. */
1798 if (sigismember(&current->blocked, signr)) {
1799 specific_send_sig_info(signr, info, current);
1800 signr = 0;
1803 return signr;
1806 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1807 struct pt_regs *regs, void *cookie)
1809 struct sighand_struct *sighand = current->sighand;
1810 struct signal_struct *signal = current->signal;
1811 int signr;
1813 relock:
1815 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1816 * While in TASK_STOPPED, we were considered "frozen enough".
1817 * Now that we woke up, it's crucial if we're supposed to be
1818 * frozen that we freeze now before running anything substantial.
1820 try_to_freeze();
1822 spin_lock_irq(&sighand->siglock);
1824 * Every stopped thread goes here after wakeup. Check to see if
1825 * we should notify the parent, prepare_signal(SIGCONT) encodes
1826 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1828 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1829 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1830 ? CLD_CONTINUED : CLD_STOPPED;
1831 signal->flags &= ~SIGNAL_CLD_MASK;
1833 why = tracehook_notify_jctl(why, CLD_CONTINUED);
1834 spin_unlock_irq(&sighand->siglock);
1836 if (why) {
1837 read_lock(&tasklist_lock);
1838 do_notify_parent_cldstop(current->group_leader, why);
1839 read_unlock(&tasklist_lock);
1841 goto relock;
1844 for (;;) {
1845 struct k_sigaction *ka;
1847 * Tracing can induce an artifical signal and choose sigaction.
1848 * The return value in @signr determines the default action,
1849 * but @info->si_signo is the signal number we will report.
1851 signr = tracehook_get_signal(current, regs, info, return_ka);
1852 if (unlikely(signr < 0))
1853 goto relock;
1854 if (unlikely(signr != 0))
1855 ka = return_ka;
1856 else {
1857 if (unlikely(signal->group_stop_count > 0) &&
1858 do_signal_stop(0))
1859 goto relock;
1861 signr = dequeue_signal(current, &current->blocked,
1862 info);
1864 if (!signr)
1865 break; /* will return 0 */
1867 if (signr != SIGKILL) {
1868 signr = ptrace_signal(signr, info,
1869 regs, cookie);
1870 if (!signr)
1871 continue;
1874 ka = &sighand->action[signr-1];
1877 /* Trace actually delivered signals. */
1878 trace_signal_deliver(signr, info, ka);
1880 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1881 continue;
1882 if (ka->sa.sa_handler != SIG_DFL) {
1883 /* Run the handler. */
1884 *return_ka = *ka;
1886 if (ka->sa.sa_flags & SA_ONESHOT)
1887 ka->sa.sa_handler = SIG_DFL;
1889 break; /* will return non-zero "signr" value */
1893 * Now we are doing the default action for this signal.
1895 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1896 continue;
1899 * Global init gets no signals it doesn't want.
1900 * Container-init gets no signals it doesn't want from same
1901 * container.
1903 * Note that if global/container-init sees a sig_kernel_only()
1904 * signal here, the signal must have been generated internally
1905 * or must have come from an ancestor namespace. In either
1906 * case, the signal cannot be dropped.
1908 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1909 !sig_kernel_only(signr))
1910 continue;
1912 if (sig_kernel_stop(signr)) {
1914 * The default action is to stop all threads in
1915 * the thread group. The job control signals
1916 * do nothing in an orphaned pgrp, but SIGSTOP
1917 * always works. Note that siglock needs to be
1918 * dropped during the call to is_orphaned_pgrp()
1919 * because of lock ordering with tasklist_lock.
1920 * This allows an intervening SIGCONT to be posted.
1921 * We need to check for that and bail out if necessary.
1923 if (signr != SIGSTOP) {
1924 spin_unlock_irq(&sighand->siglock);
1926 /* signals can be posted during this window */
1928 if (is_current_pgrp_orphaned())
1929 goto relock;
1931 spin_lock_irq(&sighand->siglock);
1934 if (likely(do_signal_stop(info->si_signo))) {
1935 /* It released the siglock. */
1936 goto relock;
1940 * We didn't actually stop, due to a race
1941 * with SIGCONT or something like that.
1943 continue;
1946 spin_unlock_irq(&sighand->siglock);
1949 * Anything else is fatal, maybe with a core dump.
1951 current->flags |= PF_SIGNALED;
1953 if (sig_kernel_coredump(signr)) {
1954 if (print_fatal_signals)
1955 print_fatal_signal(regs, info->si_signo);
1957 * If it was able to dump core, this kills all
1958 * other threads in the group and synchronizes with
1959 * their demise. If we lost the race with another
1960 * thread getting here, it set group_exit_code
1961 * first and our do_group_exit call below will use
1962 * that value and ignore the one we pass it.
1964 do_coredump(info->si_signo, info->si_signo, regs);
1968 * Death signals, no core dump.
1970 do_group_exit(info->si_signo);
1971 /* NOTREACHED */
1973 spin_unlock_irq(&sighand->siglock);
1974 return signr;
1977 void exit_signals(struct task_struct *tsk)
1979 int group_stop = 0;
1980 struct task_struct *t;
1982 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1983 tsk->flags |= PF_EXITING;
1984 return;
1987 spin_lock_irq(&tsk->sighand->siglock);
1989 * From now this task is not visible for group-wide signals,
1990 * see wants_signal(), do_signal_stop().
1992 tsk->flags |= PF_EXITING;
1993 if (!signal_pending(tsk))
1994 goto out;
1996 /* It could be that __group_complete_signal() choose us to
1997 * notify about group-wide signal. Another thread should be
1998 * woken now to take the signal since we will not.
2000 for (t = tsk; (t = next_thread(t)) != tsk; )
2001 if (!signal_pending(t) && !(t->flags & PF_EXITING))
2002 recalc_sigpending_and_wake(t);
2004 if (unlikely(tsk->signal->group_stop_count) &&
2005 !--tsk->signal->group_stop_count) {
2006 tsk->signal->flags = SIGNAL_STOP_STOPPED;
2007 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
2009 out:
2010 spin_unlock_irq(&tsk->sighand->siglock);
2012 if (unlikely(group_stop)) {
2013 read_lock(&tasklist_lock);
2014 do_notify_parent_cldstop(tsk, group_stop);
2015 read_unlock(&tasklist_lock);
2019 EXPORT_SYMBOL(recalc_sigpending);
2020 EXPORT_SYMBOL_GPL(dequeue_signal);
2021 EXPORT_SYMBOL(flush_signals);
2022 EXPORT_SYMBOL(force_sig);
2023 EXPORT_SYMBOL(send_sig);
2024 EXPORT_SYMBOL(send_sig_info);
2025 EXPORT_SYMBOL(sigprocmask);
2026 EXPORT_SYMBOL(block_all_signals);
2027 EXPORT_SYMBOL(unblock_all_signals);
2031 * System call entry points.
2034 SYSCALL_DEFINE0(restart_syscall)
2036 struct restart_block *restart = &current_thread_info()->restart_block;
2037 return restart->fn(restart);
2040 long do_no_restart_syscall(struct restart_block *param)
2042 return -EINTR;
2046 * We don't need to get the kernel lock - this is all local to this
2047 * particular thread.. (and that's good, because this is _heavily_
2048 * used by various programs)
2052 * This is also useful for kernel threads that want to temporarily
2053 * (or permanently) block certain signals.
2055 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2056 * interface happily blocks "unblockable" signals like SIGKILL
2057 * and friends.
2059 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2061 int error;
2063 spin_lock_irq(&current->sighand->siglock);
2064 if (oldset)
2065 *oldset = current->blocked;
2067 error = 0;
2068 switch (how) {
2069 case SIG_BLOCK:
2070 sigorsets(&current->blocked, &current->blocked, set);
2071 break;
2072 case SIG_UNBLOCK:
2073 signandsets(&current->blocked, &current->blocked, set);
2074 break;
2075 case SIG_SETMASK:
2076 current->blocked = *set;
2077 break;
2078 default:
2079 error = -EINVAL;
2081 recalc_sigpending();
2082 spin_unlock_irq(&current->sighand->siglock);
2084 return error;
2087 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2088 sigset_t __user *, oset, size_t, sigsetsize)
2090 int error = -EINVAL;
2091 sigset_t old_set, new_set;
2093 /* XXX: Don't preclude handling different sized sigset_t's. */
2094 if (sigsetsize != sizeof(sigset_t))
2095 goto out;
2097 if (set) {
2098 error = -EFAULT;
2099 if (copy_from_user(&new_set, set, sizeof(*set)))
2100 goto out;
2101 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2103 error = sigprocmask(how, &new_set, &old_set);
2104 if (error)
2105 goto out;
2106 if (oset)
2107 goto set_old;
2108 } else if (oset) {
2109 spin_lock_irq(&current->sighand->siglock);
2110 old_set = current->blocked;
2111 spin_unlock_irq(&current->sighand->siglock);
2113 set_old:
2114 error = -EFAULT;
2115 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2116 goto out;
2118 error = 0;
2119 out:
2120 return error;
2123 long do_sigpending(void __user *set, unsigned long sigsetsize)
2125 long error = -EINVAL;
2126 sigset_t pending;
2128 if (sigsetsize > sizeof(sigset_t))
2129 goto out;
2131 spin_lock_irq(&current->sighand->siglock);
2132 sigorsets(&pending, &current->pending.signal,
2133 &current->signal->shared_pending.signal);
2134 spin_unlock_irq(&current->sighand->siglock);
2136 /* Outside the lock because only this thread touches it. */
2137 sigandsets(&pending, &current->blocked, &pending);
2139 error = -EFAULT;
2140 if (!copy_to_user(set, &pending, sigsetsize))
2141 error = 0;
2143 out:
2144 return error;
2147 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2149 return do_sigpending(set, sigsetsize);
2152 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2154 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2156 int err;
2158 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2159 return -EFAULT;
2160 if (from->si_code < 0)
2161 return __copy_to_user(to, from, sizeof(siginfo_t))
2162 ? -EFAULT : 0;
2164 * If you change siginfo_t structure, please be sure
2165 * this code is fixed accordingly.
2166 * Please remember to update the signalfd_copyinfo() function
2167 * inside fs/signalfd.c too, in case siginfo_t changes.
2168 * It should never copy any pad contained in the structure
2169 * to avoid security leaks, but must copy the generic
2170 * 3 ints plus the relevant union member.
2172 err = __put_user(from->si_signo, &to->si_signo);
2173 err |= __put_user(from->si_errno, &to->si_errno);
2174 err |= __put_user((short)from->si_code, &to->si_code);
2175 switch (from->si_code & __SI_MASK) {
2176 case __SI_KILL:
2177 err |= __put_user(from->si_pid, &to->si_pid);
2178 err |= __put_user(from->si_uid, &to->si_uid);
2179 break;
2180 case __SI_TIMER:
2181 err |= __put_user(from->si_tid, &to->si_tid);
2182 err |= __put_user(from->si_overrun, &to->si_overrun);
2183 err |= __put_user(from->si_ptr, &to->si_ptr);
2184 break;
2185 case __SI_POLL:
2186 err |= __put_user(from->si_band, &to->si_band);
2187 err |= __put_user(from->si_fd, &to->si_fd);
2188 break;
2189 case __SI_FAULT:
2190 err |= __put_user(from->si_addr, &to->si_addr);
2191 #ifdef __ARCH_SI_TRAPNO
2192 err |= __put_user(from->si_trapno, &to->si_trapno);
2193 #endif
2194 break;
2195 case __SI_CHLD:
2196 err |= __put_user(from->si_pid, &to->si_pid);
2197 err |= __put_user(from->si_uid, &to->si_uid);
2198 err |= __put_user(from->si_status, &to->si_status);
2199 err |= __put_user(from->si_utime, &to->si_utime);
2200 err |= __put_user(from->si_stime, &to->si_stime);
2201 break;
2202 case __SI_RT: /* This is not generated by the kernel as of now. */
2203 case __SI_MESGQ: /* But this is */
2204 err |= __put_user(from->si_pid, &to->si_pid);
2205 err |= __put_user(from->si_uid, &to->si_uid);
2206 err |= __put_user(from->si_ptr, &to->si_ptr);
2207 break;
2208 default: /* this is just in case for now ... */
2209 err |= __put_user(from->si_pid, &to->si_pid);
2210 err |= __put_user(from->si_uid, &to->si_uid);
2211 break;
2213 return err;
2216 #endif
2218 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2219 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2220 size_t, sigsetsize)
2222 int ret, sig;
2223 sigset_t these;
2224 struct timespec ts;
2225 siginfo_t info;
2226 long timeout = 0;
2228 /* XXX: Don't preclude handling different sized sigset_t's. */
2229 if (sigsetsize != sizeof(sigset_t))
2230 return -EINVAL;
2232 if (copy_from_user(&these, uthese, sizeof(these)))
2233 return -EFAULT;
2236 * Invert the set of allowed signals to get those we
2237 * want to block.
2239 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2240 signotset(&these);
2242 if (uts) {
2243 if (copy_from_user(&ts, uts, sizeof(ts)))
2244 return -EFAULT;
2245 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2246 || ts.tv_sec < 0)
2247 return -EINVAL;
2250 spin_lock_irq(&current->sighand->siglock);
2251 sig = dequeue_signal(current, &these, &info);
2252 if (!sig) {
2253 timeout = MAX_SCHEDULE_TIMEOUT;
2254 if (uts)
2255 timeout = (timespec_to_jiffies(&ts)
2256 + (ts.tv_sec || ts.tv_nsec));
2258 if (timeout) {
2259 /* None ready -- temporarily unblock those we're
2260 * interested while we are sleeping in so that we'll
2261 * be awakened when they arrive. */
2262 current->real_blocked = current->blocked;
2263 sigandsets(&current->blocked, &current->blocked, &these);
2264 recalc_sigpending();
2265 spin_unlock_irq(&current->sighand->siglock);
2267 timeout = schedule_timeout_interruptible(timeout);
2269 spin_lock_irq(&current->sighand->siglock);
2270 sig = dequeue_signal(current, &these, &info);
2271 current->blocked = current->real_blocked;
2272 siginitset(&current->real_blocked, 0);
2273 recalc_sigpending();
2276 spin_unlock_irq(&current->sighand->siglock);
2278 if (sig) {
2279 ret = sig;
2280 if (uinfo) {
2281 if (copy_siginfo_to_user(uinfo, &info))
2282 ret = -EFAULT;
2284 } else {
2285 ret = -EAGAIN;
2286 if (timeout)
2287 ret = -EINTR;
2290 return ret;
2293 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2295 struct siginfo info;
2297 info.si_signo = sig;
2298 info.si_errno = 0;
2299 info.si_code = SI_USER;
2300 info.si_pid = task_tgid_vnr(current);
2301 info.si_uid = current_uid();
2303 return kill_something_info(sig, &info, pid);
2306 static int
2307 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2309 struct task_struct *p;
2310 int error = -ESRCH;
2312 rcu_read_lock();
2313 p = find_task_by_vpid(pid);
2314 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2315 error = check_kill_permission(sig, info, p);
2317 * The null signal is a permissions and process existence
2318 * probe. No signal is actually delivered.
2320 if (!error && sig) {
2321 error = do_send_sig_info(sig, info, p, false);
2323 * If lock_task_sighand() failed we pretend the task
2324 * dies after receiving the signal. The window is tiny,
2325 * and the signal is private anyway.
2327 if (unlikely(error == -ESRCH))
2328 error = 0;
2331 rcu_read_unlock();
2333 return error;
2336 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2338 struct siginfo info;
2340 info.si_signo = sig;
2341 info.si_errno = 0;
2342 info.si_code = SI_TKILL;
2343 info.si_pid = task_tgid_vnr(current);
2344 info.si_uid = current_uid();
2346 return do_send_specific(tgid, pid, sig, &info);
2350 * sys_tgkill - send signal to one specific thread
2351 * @tgid: the thread group ID of the thread
2352 * @pid: the PID of the thread
2353 * @sig: signal to be sent
2355 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2356 * exists but it's not belonging to the target process anymore. This
2357 * method solves the problem of threads exiting and PIDs getting reused.
2359 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2361 /* This is only valid for single tasks */
2362 if (pid <= 0 || tgid <= 0)
2363 return -EINVAL;
2365 return do_tkill(tgid, pid, sig);
2369 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2371 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2373 /* This is only valid for single tasks */
2374 if (pid <= 0)
2375 return -EINVAL;
2377 return do_tkill(0, pid, sig);
2380 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2381 siginfo_t __user *, uinfo)
2383 siginfo_t info;
2385 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2386 return -EFAULT;
2388 /* Not even root can pretend to send signals from the kernel.
2389 Nor can they impersonate a kill(), which adds source info. */
2390 if (info.si_code >= 0)
2391 return -EPERM;
2392 info.si_signo = sig;
2394 /* POSIX.1b doesn't mention process groups. */
2395 return kill_proc_info(sig, &info, pid);
2398 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2400 /* This is only valid for single tasks */
2401 if (pid <= 0 || tgid <= 0)
2402 return -EINVAL;
2404 /* Not even root can pretend to send signals from the kernel.
2405 Nor can they impersonate a kill(), which adds source info. */
2406 if (info->si_code >= 0)
2407 return -EPERM;
2408 info->si_signo = sig;
2410 return do_send_specific(tgid, pid, sig, info);
2413 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2414 siginfo_t __user *, uinfo)
2416 siginfo_t info;
2418 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2419 return -EFAULT;
2421 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2424 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2426 struct task_struct *t = current;
2427 struct k_sigaction *k;
2428 sigset_t mask;
2430 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2431 return -EINVAL;
2433 k = &t->sighand->action[sig-1];
2435 spin_lock_irq(&current->sighand->siglock);
2436 if (oact)
2437 *oact = *k;
2439 if (act) {
2440 sigdelsetmask(&act->sa.sa_mask,
2441 sigmask(SIGKILL) | sigmask(SIGSTOP));
2442 *k = *act;
2444 * POSIX 3.3.1.3:
2445 * "Setting a signal action to SIG_IGN for a signal that is
2446 * pending shall cause the pending signal to be discarded,
2447 * whether or not it is blocked."
2449 * "Setting a signal action to SIG_DFL for a signal that is
2450 * pending and whose default action is to ignore the signal
2451 * (for example, SIGCHLD), shall cause the pending signal to
2452 * be discarded, whether or not it is blocked"
2454 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2455 sigemptyset(&mask);
2456 sigaddset(&mask, sig);
2457 rm_from_queue_full(&mask, &t->signal->shared_pending);
2458 do {
2459 rm_from_queue_full(&mask, &t->pending);
2460 t = next_thread(t);
2461 } while (t != current);
2465 spin_unlock_irq(&current->sighand->siglock);
2466 return 0;
2469 int
2470 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2472 stack_t oss;
2473 int error;
2475 oss.ss_sp = (void __user *) current->sas_ss_sp;
2476 oss.ss_size = current->sas_ss_size;
2477 oss.ss_flags = sas_ss_flags(sp);
2479 if (uss) {
2480 void __user *ss_sp;
2481 size_t ss_size;
2482 int ss_flags;
2484 error = -EFAULT;
2485 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2486 goto out;
2487 error = __get_user(ss_sp, &uss->ss_sp) |
2488 __get_user(ss_flags, &uss->ss_flags) |
2489 __get_user(ss_size, &uss->ss_size);
2490 if (error)
2491 goto out;
2493 error = -EPERM;
2494 if (on_sig_stack(sp))
2495 goto out;
2497 error = -EINVAL;
2500 * Note - this code used to test ss_flags incorrectly
2501 * old code may have been written using ss_flags==0
2502 * to mean ss_flags==SS_ONSTACK (as this was the only
2503 * way that worked) - this fix preserves that older
2504 * mechanism
2506 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2507 goto out;
2509 if (ss_flags == SS_DISABLE) {
2510 ss_size = 0;
2511 ss_sp = NULL;
2512 } else {
2513 error = -ENOMEM;
2514 if (ss_size < MINSIGSTKSZ)
2515 goto out;
2518 current->sas_ss_sp = (unsigned long) ss_sp;
2519 current->sas_ss_size = ss_size;
2522 error = 0;
2523 if (uoss) {
2524 error = -EFAULT;
2525 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2526 goto out;
2527 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2528 __put_user(oss.ss_size, &uoss->ss_size) |
2529 __put_user(oss.ss_flags, &uoss->ss_flags);
2532 out:
2533 return error;
2536 #ifdef __ARCH_WANT_SYS_SIGPENDING
2538 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2540 return do_sigpending(set, sizeof(*set));
2543 #endif
2545 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2546 /* Some platforms have their own version with special arguments others
2547 support only sys_rt_sigprocmask. */
2549 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2550 old_sigset_t __user *, oset)
2552 int error;
2553 old_sigset_t old_set, new_set;
2555 if (set) {
2556 error = -EFAULT;
2557 if (copy_from_user(&new_set, set, sizeof(*set)))
2558 goto out;
2559 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2561 spin_lock_irq(&current->sighand->siglock);
2562 old_set = current->blocked.sig[0];
2564 error = 0;
2565 switch (how) {
2566 default:
2567 error = -EINVAL;
2568 break;
2569 case SIG_BLOCK:
2570 sigaddsetmask(&current->blocked, new_set);
2571 break;
2572 case SIG_UNBLOCK:
2573 sigdelsetmask(&current->blocked, new_set);
2574 break;
2575 case SIG_SETMASK:
2576 current->blocked.sig[0] = new_set;
2577 break;
2580 recalc_sigpending();
2581 spin_unlock_irq(&current->sighand->siglock);
2582 if (error)
2583 goto out;
2584 if (oset)
2585 goto set_old;
2586 } else if (oset) {
2587 old_set = current->blocked.sig[0];
2588 set_old:
2589 error = -EFAULT;
2590 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2591 goto out;
2593 error = 0;
2594 out:
2595 return error;
2597 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2599 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2600 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2601 const struct sigaction __user *, act,
2602 struct sigaction __user *, oact,
2603 size_t, sigsetsize)
2605 struct k_sigaction new_sa, old_sa;
2606 int ret = -EINVAL;
2608 /* XXX: Don't preclude handling different sized sigset_t's. */
2609 if (sigsetsize != sizeof(sigset_t))
2610 goto out;
2612 if (act) {
2613 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2614 return -EFAULT;
2617 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2619 if (!ret && oact) {
2620 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2621 return -EFAULT;
2623 out:
2624 return ret;
2626 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2628 #ifdef __ARCH_WANT_SYS_SGETMASK
2631 * For backwards compatibility. Functionality superseded by sigprocmask.
2633 SYSCALL_DEFINE0(sgetmask)
2635 /* SMP safe */
2636 return current->blocked.sig[0];
2639 SYSCALL_DEFINE1(ssetmask, int, newmask)
2641 int old;
2643 spin_lock_irq(&current->sighand->siglock);
2644 old = current->blocked.sig[0];
2646 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2647 sigmask(SIGSTOP)));
2648 recalc_sigpending();
2649 spin_unlock_irq(&current->sighand->siglock);
2651 return old;
2653 #endif /* __ARCH_WANT_SGETMASK */
2655 #ifdef __ARCH_WANT_SYS_SIGNAL
2657 * For backwards compatibility. Functionality superseded by sigaction.
2659 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2661 struct k_sigaction new_sa, old_sa;
2662 int ret;
2664 new_sa.sa.sa_handler = handler;
2665 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2666 sigemptyset(&new_sa.sa.sa_mask);
2668 ret = do_sigaction(sig, &new_sa, &old_sa);
2670 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2672 #endif /* __ARCH_WANT_SYS_SIGNAL */
2674 #ifdef __ARCH_WANT_SYS_PAUSE
2676 SYSCALL_DEFINE0(pause)
2678 current->state = TASK_INTERRUPTIBLE;
2679 schedule();
2680 return -ERESTARTNOHAND;
2683 #endif
2685 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2686 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2688 sigset_t newset;
2690 /* XXX: Don't preclude handling different sized sigset_t's. */
2691 if (sigsetsize != sizeof(sigset_t))
2692 return -EINVAL;
2694 if (copy_from_user(&newset, unewset, sizeof(newset)))
2695 return -EFAULT;
2696 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2698 spin_lock_irq(&current->sighand->siglock);
2699 current->saved_sigmask = current->blocked;
2700 current->blocked = newset;
2701 recalc_sigpending();
2702 spin_unlock_irq(&current->sighand->siglock);
2704 current->state = TASK_INTERRUPTIBLE;
2705 schedule();
2706 set_restore_sigmask();
2707 return -ERESTARTNOHAND;
2709 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2711 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2713 return NULL;
2716 void __init signals_init(void)
2718 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);