1 #include <linux/bitops.h>
2 #include <linux/slab.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
18 #include "btrfs_inode.h"
20 static struct kmem_cache
*extent_state_cache
;
21 static struct kmem_cache
*extent_buffer_cache
;
23 static LIST_HEAD(buffers
);
24 static LIST_HEAD(states
);
28 static DEFINE_SPINLOCK(leak_lock
);
31 #define BUFFER_LRU_MAX 64
36 struct rb_node rb_node
;
39 struct extent_page_data
{
41 struct extent_io_tree
*tree
;
42 get_extent_t
*get_extent
;
44 /* tells writepage not to lock the state bits for this range
45 * it still does the unlocking
47 unsigned int extent_locked
:1;
49 /* tells the submit_bio code to use a WRITE_SYNC */
50 unsigned int sync_io
:1;
53 int __init
extent_io_init(void)
55 extent_state_cache
= kmem_cache_create("extent_state",
56 sizeof(struct extent_state
), 0,
57 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
58 if (!extent_state_cache
)
61 extent_buffer_cache
= kmem_cache_create("extent_buffers",
62 sizeof(struct extent_buffer
), 0,
63 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
64 if (!extent_buffer_cache
)
65 goto free_state_cache
;
69 kmem_cache_destroy(extent_state_cache
);
73 void extent_io_exit(void)
75 struct extent_state
*state
;
76 struct extent_buffer
*eb
;
78 while (!list_empty(&states
)) {
79 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
80 printk(KERN_ERR
"btrfs state leak: start %llu end %llu "
81 "state %lu in tree %p refs %d\n",
82 (unsigned long long)state
->start
,
83 (unsigned long long)state
->end
,
84 state
->state
, state
->tree
, atomic_read(&state
->refs
));
85 list_del(&state
->leak_list
);
86 kmem_cache_free(extent_state_cache
, state
);
90 while (!list_empty(&buffers
)) {
91 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
92 printk(KERN_ERR
"btrfs buffer leak start %llu len %lu "
93 "refs %d\n", (unsigned long long)eb
->start
,
94 eb
->len
, atomic_read(&eb
->refs
));
95 list_del(&eb
->leak_list
);
96 kmem_cache_free(extent_buffer_cache
, eb
);
98 if (extent_state_cache
)
99 kmem_cache_destroy(extent_state_cache
);
100 if (extent_buffer_cache
)
101 kmem_cache_destroy(extent_buffer_cache
);
104 void extent_io_tree_init(struct extent_io_tree
*tree
,
105 struct address_space
*mapping
, gfp_t mask
)
107 tree
->state
.rb_node
= NULL
;
108 tree
->buffer
.rb_node
= NULL
;
110 tree
->dirty_bytes
= 0;
111 spin_lock_init(&tree
->lock
);
112 spin_lock_init(&tree
->buffer_lock
);
113 tree
->mapping
= mapping
;
116 static struct extent_state
*alloc_extent_state(gfp_t mask
)
118 struct extent_state
*state
;
123 state
= kmem_cache_alloc(extent_state_cache
, mask
);
130 spin_lock_irqsave(&leak_lock
, flags
);
131 list_add(&state
->leak_list
, &states
);
132 spin_unlock_irqrestore(&leak_lock
, flags
);
134 atomic_set(&state
->refs
, 1);
135 init_waitqueue_head(&state
->wq
);
139 static void free_extent_state(struct extent_state
*state
)
143 if (atomic_dec_and_test(&state
->refs
)) {
147 WARN_ON(state
->tree
);
149 spin_lock_irqsave(&leak_lock
, flags
);
150 list_del(&state
->leak_list
);
151 spin_unlock_irqrestore(&leak_lock
, flags
);
153 kmem_cache_free(extent_state_cache
, state
);
157 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 offset
,
158 struct rb_node
*node
)
160 struct rb_node
**p
= &root
->rb_node
;
161 struct rb_node
*parent
= NULL
;
162 struct tree_entry
*entry
;
166 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
168 if (offset
< entry
->start
)
170 else if (offset
> entry
->end
)
176 entry
= rb_entry(node
, struct tree_entry
, rb_node
);
177 rb_link_node(node
, parent
, p
);
178 rb_insert_color(node
, root
);
182 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
183 struct rb_node
**prev_ret
,
184 struct rb_node
**next_ret
)
186 struct rb_root
*root
= &tree
->state
;
187 struct rb_node
*n
= root
->rb_node
;
188 struct rb_node
*prev
= NULL
;
189 struct rb_node
*orig_prev
= NULL
;
190 struct tree_entry
*entry
;
191 struct tree_entry
*prev_entry
= NULL
;
194 entry
= rb_entry(n
, struct tree_entry
, rb_node
);
198 if (offset
< entry
->start
)
200 else if (offset
> entry
->end
)
208 while (prev
&& offset
> prev_entry
->end
) {
209 prev
= rb_next(prev
);
210 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
217 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
218 while (prev
&& offset
< prev_entry
->start
) {
219 prev
= rb_prev(prev
);
220 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
227 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
230 struct rb_node
*prev
= NULL
;
233 ret
= __etree_search(tree
, offset
, &prev
, NULL
);
239 static struct extent_buffer
*buffer_tree_insert(struct extent_io_tree
*tree
,
240 u64 offset
, struct rb_node
*node
)
242 struct rb_root
*root
= &tree
->buffer
;
243 struct rb_node
**p
= &root
->rb_node
;
244 struct rb_node
*parent
= NULL
;
245 struct extent_buffer
*eb
;
249 eb
= rb_entry(parent
, struct extent_buffer
, rb_node
);
251 if (offset
< eb
->start
)
253 else if (offset
> eb
->start
)
259 rb_link_node(node
, parent
, p
);
260 rb_insert_color(node
, root
);
264 static struct extent_buffer
*buffer_search(struct extent_io_tree
*tree
,
267 struct rb_root
*root
= &tree
->buffer
;
268 struct rb_node
*n
= root
->rb_node
;
269 struct extent_buffer
*eb
;
272 eb
= rb_entry(n
, struct extent_buffer
, rb_node
);
273 if (offset
< eb
->start
)
275 else if (offset
> eb
->start
)
283 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
284 struct extent_state
*other
)
286 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
287 tree
->ops
->merge_extent_hook(tree
->mapping
->host
, new,
292 * utility function to look for merge candidates inside a given range.
293 * Any extents with matching state are merged together into a single
294 * extent in the tree. Extents with EXTENT_IO in their state field
295 * are not merged because the end_io handlers need to be able to do
296 * operations on them without sleeping (or doing allocations/splits).
298 * This should be called with the tree lock held.
300 static int merge_state(struct extent_io_tree
*tree
,
301 struct extent_state
*state
)
303 struct extent_state
*other
;
304 struct rb_node
*other_node
;
306 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
309 other_node
= rb_prev(&state
->rb_node
);
311 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
312 if (other
->end
== state
->start
- 1 &&
313 other
->state
== state
->state
) {
314 merge_cb(tree
, state
, other
);
315 state
->start
= other
->start
;
317 rb_erase(&other
->rb_node
, &tree
->state
);
318 free_extent_state(other
);
321 other_node
= rb_next(&state
->rb_node
);
323 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
324 if (other
->start
== state
->end
+ 1 &&
325 other
->state
== state
->state
) {
326 merge_cb(tree
, state
, other
);
327 other
->start
= state
->start
;
329 rb_erase(&state
->rb_node
, &tree
->state
);
330 free_extent_state(state
);
338 static int set_state_cb(struct extent_io_tree
*tree
,
339 struct extent_state
*state
,
342 if (tree
->ops
&& tree
->ops
->set_bit_hook
) {
343 return tree
->ops
->set_bit_hook(tree
->mapping
->host
,
344 state
->start
, state
->end
,
351 static void clear_state_cb(struct extent_io_tree
*tree
,
352 struct extent_state
*state
,
355 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
356 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
, bits
);
360 * insert an extent_state struct into the tree. 'bits' are set on the
361 * struct before it is inserted.
363 * This may return -EEXIST if the extent is already there, in which case the
364 * state struct is freed.
366 * The tree lock is not taken internally. This is a utility function and
367 * probably isn't what you want to call (see set/clear_extent_bit).
369 static int insert_state(struct extent_io_tree
*tree
,
370 struct extent_state
*state
, u64 start
, u64 end
,
373 struct rb_node
*node
;
377 printk(KERN_ERR
"btrfs end < start %llu %llu\n",
378 (unsigned long long)end
,
379 (unsigned long long)start
);
382 state
->start
= start
;
384 ret
= set_state_cb(tree
, state
, bits
);
388 if (bits
& EXTENT_DIRTY
)
389 tree
->dirty_bytes
+= end
- start
+ 1;
390 state
->state
|= bits
;
391 node
= tree_insert(&tree
->state
, end
, &state
->rb_node
);
393 struct extent_state
*found
;
394 found
= rb_entry(node
, struct extent_state
, rb_node
);
395 printk(KERN_ERR
"btrfs found node %llu %llu on insert of "
396 "%llu %llu\n", (unsigned long long)found
->start
,
397 (unsigned long long)found
->end
,
398 (unsigned long long)start
, (unsigned long long)end
);
399 free_extent_state(state
);
403 merge_state(tree
, state
);
407 static int split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
410 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
411 return tree
->ops
->split_extent_hook(tree
->mapping
->host
,
417 * split a given extent state struct in two, inserting the preallocated
418 * struct 'prealloc' as the newly created second half. 'split' indicates an
419 * offset inside 'orig' where it should be split.
422 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
423 * are two extent state structs in the tree:
424 * prealloc: [orig->start, split - 1]
425 * orig: [ split, orig->end ]
427 * The tree locks are not taken by this function. They need to be held
430 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
431 struct extent_state
*prealloc
, u64 split
)
433 struct rb_node
*node
;
435 split_cb(tree
, orig
, split
);
437 prealloc
->start
= orig
->start
;
438 prealloc
->end
= split
- 1;
439 prealloc
->state
= orig
->state
;
442 node
= tree_insert(&tree
->state
, prealloc
->end
, &prealloc
->rb_node
);
444 free_extent_state(prealloc
);
447 prealloc
->tree
= tree
;
452 * utility function to clear some bits in an extent state struct.
453 * it will optionally wake up any one waiting on this state (wake == 1), or
454 * forcibly remove the state from the tree (delete == 1).
456 * If no bits are set on the state struct after clearing things, the
457 * struct is freed and removed from the tree
459 static int clear_state_bit(struct extent_io_tree
*tree
,
460 struct extent_state
*state
, int bits
, int wake
,
463 int bits_to_clear
= bits
& ~EXTENT_DO_ACCOUNTING
;
464 int ret
= state
->state
& bits_to_clear
;
466 if ((bits
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
467 u64 range
= state
->end
- state
->start
+ 1;
468 WARN_ON(range
> tree
->dirty_bytes
);
469 tree
->dirty_bytes
-= range
;
471 clear_state_cb(tree
, state
, bits
);
472 state
->state
&= ~bits_to_clear
;
475 if (delete || state
->state
== 0) {
477 clear_state_cb(tree
, state
, state
->state
);
478 rb_erase(&state
->rb_node
, &tree
->state
);
480 free_extent_state(state
);
485 merge_state(tree
, state
);
491 * clear some bits on a range in the tree. This may require splitting
492 * or inserting elements in the tree, so the gfp mask is used to
493 * indicate which allocations or sleeping are allowed.
495 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
496 * the given range from the tree regardless of state (ie for truncate).
498 * the range [start, end] is inclusive.
500 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
501 * bits were already set, or zero if none of the bits were already set.
503 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
504 int bits
, int wake
, int delete,
505 struct extent_state
**cached_state
,
508 struct extent_state
*state
;
509 struct extent_state
*cached
;
510 struct extent_state
*prealloc
= NULL
;
511 struct rb_node
*next_node
;
512 struct rb_node
*node
;
518 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
519 prealloc
= alloc_extent_state(mask
);
524 spin_lock(&tree
->lock
);
526 cached
= *cached_state
;
527 *cached_state
= NULL
;
529 if (cached
&& cached
->tree
&& cached
->start
== start
) {
530 atomic_dec(&cached
->refs
);
534 free_extent_state(cached
);
537 * this search will find the extents that end after
540 node
= tree_search(tree
, start
);
543 state
= rb_entry(node
, struct extent_state
, rb_node
);
545 if (state
->start
> end
)
547 WARN_ON(state
->end
< start
);
548 last_end
= state
->end
;
551 * | ---- desired range ---- |
553 * | ------------- state -------------- |
555 * We need to split the extent we found, and may flip
556 * bits on second half.
558 * If the extent we found extends past our range, we
559 * just split and search again. It'll get split again
560 * the next time though.
562 * If the extent we found is inside our range, we clear
563 * the desired bit on it.
566 if (state
->start
< start
) {
568 prealloc
= alloc_extent_state(GFP_ATOMIC
);
569 err
= split_state(tree
, state
, prealloc
, start
);
570 BUG_ON(err
== -EEXIST
);
574 if (state
->end
<= end
) {
575 set
|= clear_state_bit(tree
, state
, bits
, wake
,
577 if (last_end
== (u64
)-1)
579 start
= last_end
+ 1;
584 * | ---- desired range ---- |
586 * We need to split the extent, and clear the bit
589 if (state
->start
<= end
&& state
->end
> end
) {
591 prealloc
= alloc_extent_state(GFP_ATOMIC
);
592 err
= split_state(tree
, state
, prealloc
, end
+ 1);
593 BUG_ON(err
== -EEXIST
);
597 set
|= clear_state_bit(tree
, prealloc
, bits
, wake
, delete);
603 if (state
->end
< end
&& prealloc
&& !need_resched())
604 next_node
= rb_next(&state
->rb_node
);
608 set
|= clear_state_bit(tree
, state
, bits
, wake
, delete);
609 if (last_end
== (u64
)-1)
611 start
= last_end
+ 1;
612 if (start
<= end
&& next_node
) {
613 state
= rb_entry(next_node
, struct extent_state
,
615 if (state
->start
== start
)
621 spin_unlock(&tree
->lock
);
623 free_extent_state(prealloc
);
630 spin_unlock(&tree
->lock
);
631 if (mask
& __GFP_WAIT
)
636 static int wait_on_state(struct extent_io_tree
*tree
,
637 struct extent_state
*state
)
638 __releases(tree
->lock
)
639 __acquires(tree
->lock
)
642 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
643 spin_unlock(&tree
->lock
);
645 spin_lock(&tree
->lock
);
646 finish_wait(&state
->wq
, &wait
);
651 * waits for one or more bits to clear on a range in the state tree.
652 * The range [start, end] is inclusive.
653 * The tree lock is taken by this function
655 int wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
, int bits
)
657 struct extent_state
*state
;
658 struct rb_node
*node
;
660 spin_lock(&tree
->lock
);
664 * this search will find all the extents that end after
667 node
= tree_search(tree
, start
);
671 state
= rb_entry(node
, struct extent_state
, rb_node
);
673 if (state
->start
> end
)
676 if (state
->state
& bits
) {
677 start
= state
->start
;
678 atomic_inc(&state
->refs
);
679 wait_on_state(tree
, state
);
680 free_extent_state(state
);
683 start
= state
->end
+ 1;
688 if (need_resched()) {
689 spin_unlock(&tree
->lock
);
691 spin_lock(&tree
->lock
);
695 spin_unlock(&tree
->lock
);
699 static int set_state_bits(struct extent_io_tree
*tree
,
700 struct extent_state
*state
,
705 ret
= set_state_cb(tree
, state
, bits
);
709 if ((bits
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
710 u64 range
= state
->end
- state
->start
+ 1;
711 tree
->dirty_bytes
+= range
;
713 state
->state
|= bits
;
718 static void cache_state(struct extent_state
*state
,
719 struct extent_state
**cached_ptr
)
721 if (cached_ptr
&& !(*cached_ptr
)) {
722 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
)) {
724 atomic_inc(&state
->refs
);
730 * set some bits on a range in the tree. This may require allocations or
731 * sleeping, so the gfp mask is used to indicate what is allowed.
733 * If any of the exclusive bits are set, this will fail with -EEXIST if some
734 * part of the range already has the desired bits set. The start of the
735 * existing range is returned in failed_start in this case.
737 * [start, end] is inclusive This takes the tree lock.
740 static int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
741 int bits
, int exclusive_bits
, u64
*failed_start
,
742 struct extent_state
**cached_state
,
745 struct extent_state
*state
;
746 struct extent_state
*prealloc
= NULL
;
747 struct rb_node
*node
;
753 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
754 prealloc
= alloc_extent_state(mask
);
759 spin_lock(&tree
->lock
);
760 if (cached_state
&& *cached_state
) {
761 state
= *cached_state
;
762 if (state
->start
== start
&& state
->tree
) {
763 node
= &state
->rb_node
;
768 * this search will find all the extents that end after
771 node
= tree_search(tree
, start
);
773 err
= insert_state(tree
, prealloc
, start
, end
, bits
);
775 BUG_ON(err
== -EEXIST
);
778 state
= rb_entry(node
, struct extent_state
, rb_node
);
780 last_start
= state
->start
;
781 last_end
= state
->end
;
784 * | ---- desired range ---- |
787 * Just lock what we found and keep going
789 if (state
->start
== start
&& state
->end
<= end
) {
790 struct rb_node
*next_node
;
791 if (state
->state
& exclusive_bits
) {
792 *failed_start
= state
->start
;
797 err
= set_state_bits(tree
, state
, bits
);
801 cache_state(state
, cached_state
);
802 merge_state(tree
, state
);
803 if (last_end
== (u64
)-1)
806 start
= last_end
+ 1;
807 if (start
< end
&& prealloc
&& !need_resched()) {
808 next_node
= rb_next(node
);
810 state
= rb_entry(next_node
, struct extent_state
,
812 if (state
->start
== start
)
820 * | ---- desired range ---- |
823 * | ------------- state -------------- |
825 * We need to split the extent we found, and may flip bits on
828 * If the extent we found extends past our
829 * range, we just split and search again. It'll get split
830 * again the next time though.
832 * If the extent we found is inside our range, we set the
835 if (state
->start
< start
) {
836 if (state
->state
& exclusive_bits
) {
837 *failed_start
= start
;
841 err
= split_state(tree
, state
, prealloc
, start
);
842 BUG_ON(err
== -EEXIST
);
846 if (state
->end
<= end
) {
847 err
= set_state_bits(tree
, state
, bits
);
850 cache_state(state
, cached_state
);
851 merge_state(tree
, state
);
852 if (last_end
== (u64
)-1)
854 start
= last_end
+ 1;
859 * | ---- desired range ---- |
860 * | state | or | state |
862 * There's a hole, we need to insert something in it and
863 * ignore the extent we found.
865 if (state
->start
> start
) {
867 if (end
< last_start
)
870 this_end
= last_start
- 1;
871 err
= insert_state(tree
, prealloc
, start
, this_end
,
873 BUG_ON(err
== -EEXIST
);
878 cache_state(prealloc
, cached_state
);
880 start
= this_end
+ 1;
884 * | ---- desired range ---- |
886 * We need to split the extent, and set the bit
889 if (state
->start
<= end
&& state
->end
> end
) {
890 if (state
->state
& exclusive_bits
) {
891 *failed_start
= start
;
895 err
= split_state(tree
, state
, prealloc
, end
+ 1);
896 BUG_ON(err
== -EEXIST
);
898 err
= set_state_bits(tree
, prealloc
, bits
);
903 cache_state(prealloc
, cached_state
);
904 merge_state(tree
, prealloc
);
912 spin_unlock(&tree
->lock
);
914 free_extent_state(prealloc
);
921 spin_unlock(&tree
->lock
);
922 if (mask
& __GFP_WAIT
)
927 /* wrappers around set/clear extent bit */
928 int set_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
931 return set_extent_bit(tree
, start
, end
, EXTENT_DIRTY
, 0, NULL
,
935 int set_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
936 int bits
, gfp_t mask
)
938 return set_extent_bit(tree
, start
, end
, bits
, 0, NULL
,
942 int clear_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
943 int bits
, gfp_t mask
)
945 return clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, mask
);
948 int set_extent_delalloc(struct extent_io_tree
*tree
, u64 start
, u64 end
,
951 return set_extent_bit(tree
, start
, end
,
952 EXTENT_DELALLOC
| EXTENT_DIRTY
| EXTENT_UPTODATE
,
953 0, NULL
, NULL
, mask
);
956 int clear_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
959 return clear_extent_bit(tree
, start
, end
,
960 EXTENT_DIRTY
| EXTENT_DELALLOC
|
961 EXTENT_DO_ACCOUNTING
, 0, 0,
965 int set_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
968 return set_extent_bit(tree
, start
, end
, EXTENT_NEW
, 0, NULL
,
972 static int clear_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
975 return clear_extent_bit(tree
, start
, end
, EXTENT_NEW
, 0, 0,
979 int set_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
982 return set_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, NULL
,
986 static int clear_extent_uptodate(struct extent_io_tree
*tree
, u64 start
,
989 return clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, 0,
993 int wait_on_extent_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
995 return wait_extent_bit(tree
, start
, end
, EXTENT_WRITEBACK
);
999 * either insert or lock state struct between start and end use mask to tell
1000 * us if waiting is desired.
1002 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1003 int bits
, struct extent_state
**cached_state
, gfp_t mask
)
1008 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| bits
,
1009 EXTENT_LOCKED
, &failed_start
,
1010 cached_state
, mask
);
1011 if (err
== -EEXIST
&& (mask
& __GFP_WAIT
)) {
1012 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1013 start
= failed_start
;
1017 WARN_ON(start
> end
);
1022 int lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
, gfp_t mask
)
1024 return lock_extent_bits(tree
, start
, end
, 0, NULL
, mask
);
1027 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1033 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1034 &failed_start
, NULL
, mask
);
1035 if (err
== -EEXIST
) {
1036 if (failed_start
> start
)
1037 clear_extent_bit(tree
, start
, failed_start
- 1,
1038 EXTENT_LOCKED
, 1, 0, NULL
, mask
);
1044 int unlock_extent_cached(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1045 struct extent_state
**cached
, gfp_t mask
)
1047 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, cached
,
1051 int unlock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1054 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, NULL
,
1059 * helper function to set pages and extents in the tree dirty
1061 int set_range_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1063 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1064 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1067 while (index
<= end_index
) {
1068 page
= find_get_page(tree
->mapping
, index
);
1070 __set_page_dirty_nobuffers(page
);
1071 page_cache_release(page
);
1078 * helper function to set both pages and extents in the tree writeback
1080 static int set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1082 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1083 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1086 while (index
<= end_index
) {
1087 page
= find_get_page(tree
->mapping
, index
);
1089 set_page_writeback(page
);
1090 page_cache_release(page
);
1097 * find the first offset in the io tree with 'bits' set. zero is
1098 * returned if we find something, and *start_ret and *end_ret are
1099 * set to reflect the state struct that was found.
1101 * If nothing was found, 1 is returned, < 0 on error
1103 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1104 u64
*start_ret
, u64
*end_ret
, int bits
)
1106 struct rb_node
*node
;
1107 struct extent_state
*state
;
1110 spin_lock(&tree
->lock
);
1112 * this search will find all the extents that end after
1115 node
= tree_search(tree
, start
);
1120 state
= rb_entry(node
, struct extent_state
, rb_node
);
1121 if (state
->end
>= start
&& (state
->state
& bits
)) {
1122 *start_ret
= state
->start
;
1123 *end_ret
= state
->end
;
1127 node
= rb_next(node
);
1132 spin_unlock(&tree
->lock
);
1136 /* find the first state struct with 'bits' set after 'start', and
1137 * return it. tree->lock must be held. NULL will returned if
1138 * nothing was found after 'start'
1140 struct extent_state
*find_first_extent_bit_state(struct extent_io_tree
*tree
,
1141 u64 start
, int bits
)
1143 struct rb_node
*node
;
1144 struct extent_state
*state
;
1147 * this search will find all the extents that end after
1150 node
= tree_search(tree
, start
);
1155 state
= rb_entry(node
, struct extent_state
, rb_node
);
1156 if (state
->end
>= start
&& (state
->state
& bits
))
1159 node
= rb_next(node
);
1168 * find a contiguous range of bytes in the file marked as delalloc, not
1169 * more than 'max_bytes'. start and end are used to return the range,
1171 * 1 is returned if we find something, 0 if nothing was in the tree
1173 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1174 u64
*start
, u64
*end
, u64 max_bytes
)
1176 struct rb_node
*node
;
1177 struct extent_state
*state
;
1178 u64 cur_start
= *start
;
1180 u64 total_bytes
= 0;
1182 spin_lock(&tree
->lock
);
1185 * this search will find all the extents that end after
1188 node
= tree_search(tree
, cur_start
);
1196 state
= rb_entry(node
, struct extent_state
, rb_node
);
1197 if (found
&& (state
->start
!= cur_start
||
1198 (state
->state
& EXTENT_BOUNDARY
))) {
1201 if (!(state
->state
& EXTENT_DELALLOC
)) {
1207 *start
= state
->start
;
1210 cur_start
= state
->end
+ 1;
1211 node
= rb_next(node
);
1214 total_bytes
+= state
->end
- state
->start
+ 1;
1215 if (total_bytes
>= max_bytes
)
1219 spin_unlock(&tree
->lock
);
1223 static noinline
int __unlock_for_delalloc(struct inode
*inode
,
1224 struct page
*locked_page
,
1228 struct page
*pages
[16];
1229 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1230 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1231 unsigned long nr_pages
= end_index
- index
+ 1;
1234 if (index
== locked_page
->index
&& end_index
== index
)
1237 while (nr_pages
> 0) {
1238 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1239 min_t(unsigned long, nr_pages
,
1240 ARRAY_SIZE(pages
)), pages
);
1241 for (i
= 0; i
< ret
; i
++) {
1242 if (pages
[i
] != locked_page
)
1243 unlock_page(pages
[i
]);
1244 page_cache_release(pages
[i
]);
1253 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1254 struct page
*locked_page
,
1258 unsigned long index
= delalloc_start
>> PAGE_CACHE_SHIFT
;
1259 unsigned long start_index
= index
;
1260 unsigned long end_index
= delalloc_end
>> PAGE_CACHE_SHIFT
;
1261 unsigned long pages_locked
= 0;
1262 struct page
*pages
[16];
1263 unsigned long nrpages
;
1267 /* the caller is responsible for locking the start index */
1268 if (index
== locked_page
->index
&& index
== end_index
)
1271 /* skip the page at the start index */
1272 nrpages
= end_index
- index
+ 1;
1273 while (nrpages
> 0) {
1274 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1275 min_t(unsigned long,
1276 nrpages
, ARRAY_SIZE(pages
)), pages
);
1281 /* now we have an array of pages, lock them all */
1282 for (i
= 0; i
< ret
; i
++) {
1284 * the caller is taking responsibility for
1287 if (pages
[i
] != locked_page
) {
1288 lock_page(pages
[i
]);
1289 if (!PageDirty(pages
[i
]) ||
1290 pages
[i
]->mapping
!= inode
->i_mapping
) {
1292 unlock_page(pages
[i
]);
1293 page_cache_release(pages
[i
]);
1297 page_cache_release(pages
[i
]);
1306 if (ret
&& pages_locked
) {
1307 __unlock_for_delalloc(inode
, locked_page
,
1309 ((u64
)(start_index
+ pages_locked
- 1)) <<
1316 * find a contiguous range of bytes in the file marked as delalloc, not
1317 * more than 'max_bytes'. start and end are used to return the range,
1319 * 1 is returned if we find something, 0 if nothing was in the tree
1321 static noinline u64
find_lock_delalloc_range(struct inode
*inode
,
1322 struct extent_io_tree
*tree
,
1323 struct page
*locked_page
,
1324 u64
*start
, u64
*end
,
1330 struct extent_state
*cached_state
= NULL
;
1335 /* step one, find a bunch of delalloc bytes starting at start */
1336 delalloc_start
= *start
;
1338 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1340 if (!found
|| delalloc_end
<= *start
) {
1341 *start
= delalloc_start
;
1342 *end
= delalloc_end
;
1347 * start comes from the offset of locked_page. We have to lock
1348 * pages in order, so we can't process delalloc bytes before
1351 if (delalloc_start
< *start
)
1352 delalloc_start
= *start
;
1355 * make sure to limit the number of pages we try to lock down
1358 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
&& loops
)
1359 delalloc_end
= delalloc_start
+ PAGE_CACHE_SIZE
- 1;
1361 /* step two, lock all the pages after the page that has start */
1362 ret
= lock_delalloc_pages(inode
, locked_page
,
1363 delalloc_start
, delalloc_end
);
1364 if (ret
== -EAGAIN
) {
1365 /* some of the pages are gone, lets avoid looping by
1366 * shortening the size of the delalloc range we're searching
1368 free_extent_state(cached_state
);
1370 unsigned long offset
= (*start
) & (PAGE_CACHE_SIZE
- 1);
1371 max_bytes
= PAGE_CACHE_SIZE
- offset
;
1381 /* step three, lock the state bits for the whole range */
1382 lock_extent_bits(tree
, delalloc_start
, delalloc_end
,
1383 0, &cached_state
, GFP_NOFS
);
1385 /* then test to make sure it is all still delalloc */
1386 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1387 EXTENT_DELALLOC
, 1, cached_state
);
1389 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1390 &cached_state
, GFP_NOFS
);
1391 __unlock_for_delalloc(inode
, locked_page
,
1392 delalloc_start
, delalloc_end
);
1396 free_extent_state(cached_state
);
1397 *start
= delalloc_start
;
1398 *end
= delalloc_end
;
1403 int extent_clear_unlock_delalloc(struct inode
*inode
,
1404 struct extent_io_tree
*tree
,
1405 u64 start
, u64 end
, struct page
*locked_page
,
1409 struct page
*pages
[16];
1410 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1411 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1412 unsigned long nr_pages
= end_index
- index
+ 1;
1416 if (op
& EXTENT_CLEAR_UNLOCK
)
1417 clear_bits
|= EXTENT_LOCKED
;
1418 if (op
& EXTENT_CLEAR_DIRTY
)
1419 clear_bits
|= EXTENT_DIRTY
;
1421 if (op
& EXTENT_CLEAR_DELALLOC
)
1422 clear_bits
|= EXTENT_DELALLOC
;
1424 if (op
& EXTENT_CLEAR_ACCOUNTING
)
1425 clear_bits
|= EXTENT_DO_ACCOUNTING
;
1427 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, NULL
, GFP_NOFS
);
1428 if (!(op
& (EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
1429 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
|
1430 EXTENT_SET_PRIVATE2
)))
1433 while (nr_pages
> 0) {
1434 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1435 min_t(unsigned long,
1436 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1437 for (i
= 0; i
< ret
; i
++) {
1439 if (op
& EXTENT_SET_PRIVATE2
)
1440 SetPagePrivate2(pages
[i
]);
1442 if (pages
[i
] == locked_page
) {
1443 page_cache_release(pages
[i
]);
1446 if (op
& EXTENT_CLEAR_DIRTY
)
1447 clear_page_dirty_for_io(pages
[i
]);
1448 if (op
& EXTENT_SET_WRITEBACK
)
1449 set_page_writeback(pages
[i
]);
1450 if (op
& EXTENT_END_WRITEBACK
)
1451 end_page_writeback(pages
[i
]);
1452 if (op
& EXTENT_CLEAR_UNLOCK_PAGE
)
1453 unlock_page(pages
[i
]);
1454 page_cache_release(pages
[i
]);
1464 * count the number of bytes in the tree that have a given bit(s)
1465 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1466 * cached. The total number found is returned.
1468 u64
count_range_bits(struct extent_io_tree
*tree
,
1469 u64
*start
, u64 search_end
, u64 max_bytes
,
1472 struct rb_node
*node
;
1473 struct extent_state
*state
;
1474 u64 cur_start
= *start
;
1475 u64 total_bytes
= 0;
1478 if (search_end
<= cur_start
) {
1483 spin_lock(&tree
->lock
);
1484 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1485 total_bytes
= tree
->dirty_bytes
;
1489 * this search will find all the extents that end after
1492 node
= tree_search(tree
, cur_start
);
1497 state
= rb_entry(node
, struct extent_state
, rb_node
);
1498 if (state
->start
> search_end
)
1500 if (state
->end
>= cur_start
&& (state
->state
& bits
)) {
1501 total_bytes
+= min(search_end
, state
->end
) + 1 -
1502 max(cur_start
, state
->start
);
1503 if (total_bytes
>= max_bytes
)
1506 *start
= state
->start
;
1510 node
= rb_next(node
);
1515 spin_unlock(&tree
->lock
);
1520 * set the private field for a given byte offset in the tree. If there isn't
1521 * an extent_state there already, this does nothing.
1523 int set_state_private(struct extent_io_tree
*tree
, u64 start
, u64
private)
1525 struct rb_node
*node
;
1526 struct extent_state
*state
;
1529 spin_lock(&tree
->lock
);
1531 * this search will find all the extents that end after
1534 node
= tree_search(tree
, start
);
1539 state
= rb_entry(node
, struct extent_state
, rb_node
);
1540 if (state
->start
!= start
) {
1544 state
->private = private;
1546 spin_unlock(&tree
->lock
);
1550 int get_state_private(struct extent_io_tree
*tree
, u64 start
, u64
*private)
1552 struct rb_node
*node
;
1553 struct extent_state
*state
;
1556 spin_lock(&tree
->lock
);
1558 * this search will find all the extents that end after
1561 node
= tree_search(tree
, start
);
1566 state
= rb_entry(node
, struct extent_state
, rb_node
);
1567 if (state
->start
!= start
) {
1571 *private = state
->private;
1573 spin_unlock(&tree
->lock
);
1578 * searches a range in the state tree for a given mask.
1579 * If 'filled' == 1, this returns 1 only if every extent in the tree
1580 * has the bits set. Otherwise, 1 is returned if any bit in the
1581 * range is found set.
1583 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1584 int bits
, int filled
, struct extent_state
*cached
)
1586 struct extent_state
*state
= NULL
;
1587 struct rb_node
*node
;
1590 spin_lock(&tree
->lock
);
1591 if (cached
&& cached
->tree
&& cached
->start
== start
)
1592 node
= &cached
->rb_node
;
1594 node
= tree_search(tree
, start
);
1595 while (node
&& start
<= end
) {
1596 state
= rb_entry(node
, struct extent_state
, rb_node
);
1598 if (filled
&& state
->start
> start
) {
1603 if (state
->start
> end
)
1606 if (state
->state
& bits
) {
1610 } else if (filled
) {
1615 if (state
->end
== (u64
)-1)
1618 start
= state
->end
+ 1;
1621 node
= rb_next(node
);
1628 spin_unlock(&tree
->lock
);
1633 * helper function to set a given page up to date if all the
1634 * extents in the tree for that page are up to date
1636 static int check_page_uptodate(struct extent_io_tree
*tree
,
1639 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1640 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1641 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
1642 SetPageUptodate(page
);
1647 * helper function to unlock a page if all the extents in the tree
1648 * for that page are unlocked
1650 static int check_page_locked(struct extent_io_tree
*tree
,
1653 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1654 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1655 if (!test_range_bit(tree
, start
, end
, EXTENT_LOCKED
, 0, NULL
))
1661 * helper function to end page writeback if all the extents
1662 * in the tree for that page are done with writeback
1664 static int check_page_writeback(struct extent_io_tree
*tree
,
1667 end_page_writeback(page
);
1671 /* lots and lots of room for performance fixes in the end_bio funcs */
1674 * after a writepage IO is done, we need to:
1675 * clear the uptodate bits on error
1676 * clear the writeback bits in the extent tree for this IO
1677 * end_page_writeback if the page has no more pending IO
1679 * Scheduling is not allowed, so the extent state tree is expected
1680 * to have one and only one object corresponding to this IO.
1682 static void end_bio_extent_writepage(struct bio
*bio
, int err
)
1684 int uptodate
= err
== 0;
1685 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1686 struct extent_io_tree
*tree
;
1693 struct page
*page
= bvec
->bv_page
;
1694 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1696 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1698 end
= start
+ bvec
->bv_len
- 1;
1700 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
1705 if (--bvec
>= bio
->bi_io_vec
)
1706 prefetchw(&bvec
->bv_page
->flags
);
1707 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
1708 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
1709 end
, NULL
, uptodate
);
1714 if (!uptodate
&& tree
->ops
&&
1715 tree
->ops
->writepage_io_failed_hook
) {
1716 ret
= tree
->ops
->writepage_io_failed_hook(bio
, page
,
1719 uptodate
= (err
== 0);
1725 clear_extent_uptodate(tree
, start
, end
, GFP_NOFS
);
1726 ClearPageUptodate(page
);
1731 end_page_writeback(page
);
1733 check_page_writeback(tree
, page
);
1734 } while (bvec
>= bio
->bi_io_vec
);
1740 * after a readpage IO is done, we need to:
1741 * clear the uptodate bits on error
1742 * set the uptodate bits if things worked
1743 * set the page up to date if all extents in the tree are uptodate
1744 * clear the lock bit in the extent tree
1745 * unlock the page if there are no other extents locked for it
1747 * Scheduling is not allowed, so the extent state tree is expected
1748 * to have one and only one object corresponding to this IO.
1750 static void end_bio_extent_readpage(struct bio
*bio
, int err
)
1752 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1753 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1754 struct extent_io_tree
*tree
;
1764 struct page
*page
= bvec
->bv_page
;
1765 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1767 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1769 end
= start
+ bvec
->bv_len
- 1;
1771 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
1776 if (--bvec
>= bio
->bi_io_vec
)
1777 prefetchw(&bvec
->bv_page
->flags
);
1779 if (uptodate
&& tree
->ops
&& tree
->ops
->readpage_end_io_hook
) {
1780 ret
= tree
->ops
->readpage_end_io_hook(page
, start
, end
,
1785 if (!uptodate
&& tree
->ops
&&
1786 tree
->ops
->readpage_io_failed_hook
) {
1787 ret
= tree
->ops
->readpage_io_failed_hook(bio
, page
,
1791 test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1799 set_extent_uptodate(tree
, start
, end
,
1802 unlock_extent(tree
, start
, end
, GFP_ATOMIC
);
1806 SetPageUptodate(page
);
1808 ClearPageUptodate(page
);
1814 check_page_uptodate(tree
, page
);
1816 ClearPageUptodate(page
);
1819 check_page_locked(tree
, page
);
1821 } while (bvec
>= bio
->bi_io_vec
);
1827 * IO done from prepare_write is pretty simple, we just unlock
1828 * the structs in the extent tree when done, and set the uptodate bits
1831 static void end_bio_extent_preparewrite(struct bio
*bio
, int err
)
1833 const int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1834 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1835 struct extent_io_tree
*tree
;
1840 struct page
*page
= bvec
->bv_page
;
1841 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1843 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1845 end
= start
+ bvec
->bv_len
- 1;
1847 if (--bvec
>= bio
->bi_io_vec
)
1848 prefetchw(&bvec
->bv_page
->flags
);
1851 set_extent_uptodate(tree
, start
, end
, GFP_ATOMIC
);
1853 ClearPageUptodate(page
);
1857 unlock_extent(tree
, start
, end
, GFP_ATOMIC
);
1859 } while (bvec
>= bio
->bi_io_vec
);
1865 extent_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
1870 bio
= bio_alloc(gfp_flags
, nr_vecs
);
1872 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
1873 while (!bio
&& (nr_vecs
/= 2))
1874 bio
= bio_alloc(gfp_flags
, nr_vecs
);
1879 bio
->bi_bdev
= bdev
;
1880 bio
->bi_sector
= first_sector
;
1885 static int submit_one_bio(int rw
, struct bio
*bio
, int mirror_num
,
1886 unsigned long bio_flags
)
1889 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1890 struct page
*page
= bvec
->bv_page
;
1891 struct extent_io_tree
*tree
= bio
->bi_private
;
1895 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) + bvec
->bv_offset
;
1896 end
= start
+ bvec
->bv_len
- 1;
1898 bio
->bi_private
= NULL
;
1902 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
1903 tree
->ops
->submit_bio_hook(page
->mapping
->host
, rw
, bio
,
1904 mirror_num
, bio_flags
);
1906 submit_bio(rw
, bio
);
1907 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
1913 static int submit_extent_page(int rw
, struct extent_io_tree
*tree
,
1914 struct page
*page
, sector_t sector
,
1915 size_t size
, unsigned long offset
,
1916 struct block_device
*bdev
,
1917 struct bio
**bio_ret
,
1918 unsigned long max_pages
,
1919 bio_end_io_t end_io_func
,
1921 unsigned long prev_bio_flags
,
1922 unsigned long bio_flags
)
1928 int this_compressed
= bio_flags
& EXTENT_BIO_COMPRESSED
;
1929 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
1930 size_t page_size
= min_t(size_t, size
, PAGE_CACHE_SIZE
);
1932 if (bio_ret
&& *bio_ret
) {
1935 contig
= bio
->bi_sector
== sector
;
1937 contig
= bio
->bi_sector
+ (bio
->bi_size
>> 9) ==
1940 if (prev_bio_flags
!= bio_flags
|| !contig
||
1941 (tree
->ops
&& tree
->ops
->merge_bio_hook
&&
1942 tree
->ops
->merge_bio_hook(page
, offset
, page_size
, bio
,
1944 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
1945 ret
= submit_one_bio(rw
, bio
, mirror_num
,
1952 if (this_compressed
)
1955 nr
= bio_get_nr_vecs(bdev
);
1957 bio
= extent_bio_alloc(bdev
, sector
, nr
, GFP_NOFS
| __GFP_HIGH
);
1959 bio_add_page(bio
, page
, page_size
, offset
);
1960 bio
->bi_end_io
= end_io_func
;
1961 bio
->bi_private
= tree
;
1966 ret
= submit_one_bio(rw
, bio
, mirror_num
, bio_flags
);
1971 void set_page_extent_mapped(struct page
*page
)
1973 if (!PagePrivate(page
)) {
1974 SetPagePrivate(page
);
1975 page_cache_get(page
);
1976 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
1980 static void set_page_extent_head(struct page
*page
, unsigned long len
)
1982 set_page_private(page
, EXTENT_PAGE_PRIVATE_FIRST_PAGE
| len
<< 2);
1986 * basic readpage implementation. Locked extent state structs are inserted
1987 * into the tree that are removed when the IO is done (by the end_io
1990 static int __extent_read_full_page(struct extent_io_tree
*tree
,
1992 get_extent_t
*get_extent
,
1993 struct bio
**bio
, int mirror_num
,
1994 unsigned long *bio_flags
)
1996 struct inode
*inode
= page
->mapping
->host
;
1997 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1998 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2002 u64 last_byte
= i_size_read(inode
);
2006 struct extent_map
*em
;
2007 struct block_device
*bdev
;
2010 size_t page_offset
= 0;
2012 size_t disk_io_size
;
2013 size_t blocksize
= inode
->i_sb
->s_blocksize
;
2014 unsigned long this_bio_flag
= 0;
2016 set_page_extent_mapped(page
);
2019 lock_extent(tree
, start
, end
, GFP_NOFS
);
2021 if (page
->index
== last_byte
>> PAGE_CACHE_SHIFT
) {
2023 size_t zero_offset
= last_byte
& (PAGE_CACHE_SIZE
- 1);
2026 iosize
= PAGE_CACHE_SIZE
- zero_offset
;
2027 userpage
= kmap_atomic(page
, KM_USER0
);
2028 memset(userpage
+ zero_offset
, 0, iosize
);
2029 flush_dcache_page(page
);
2030 kunmap_atomic(userpage
, KM_USER0
);
2033 while (cur
<= end
) {
2034 if (cur
>= last_byte
) {
2036 iosize
= PAGE_CACHE_SIZE
- page_offset
;
2037 userpage
= kmap_atomic(page
, KM_USER0
);
2038 memset(userpage
+ page_offset
, 0, iosize
);
2039 flush_dcache_page(page
);
2040 kunmap_atomic(userpage
, KM_USER0
);
2041 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2043 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2046 em
= get_extent(inode
, page
, page_offset
, cur
,
2048 if (IS_ERR(em
) || !em
) {
2050 unlock_extent(tree
, cur
, end
, GFP_NOFS
);
2053 extent_offset
= cur
- em
->start
;
2054 BUG_ON(extent_map_end(em
) <= cur
);
2057 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
2058 this_bio_flag
= EXTENT_BIO_COMPRESSED
;
2060 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2061 cur_end
= min(extent_map_end(em
) - 1, end
);
2062 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
2063 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
2064 disk_io_size
= em
->block_len
;
2065 sector
= em
->block_start
>> 9;
2067 sector
= (em
->block_start
+ extent_offset
) >> 9;
2068 disk_io_size
= iosize
;
2071 block_start
= em
->block_start
;
2072 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2073 block_start
= EXTENT_MAP_HOLE
;
2074 free_extent_map(em
);
2077 /* we've found a hole, just zero and go on */
2078 if (block_start
== EXTENT_MAP_HOLE
) {
2080 userpage
= kmap_atomic(page
, KM_USER0
);
2081 memset(userpage
+ page_offset
, 0, iosize
);
2082 flush_dcache_page(page
);
2083 kunmap_atomic(userpage
, KM_USER0
);
2085 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2087 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2089 page_offset
+= iosize
;
2092 /* the get_extent function already copied into the page */
2093 if (test_range_bit(tree
, cur
, cur_end
,
2094 EXTENT_UPTODATE
, 1, NULL
)) {
2095 check_page_uptodate(tree
, page
);
2096 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2098 page_offset
+= iosize
;
2101 /* we have an inline extent but it didn't get marked up
2102 * to date. Error out
2104 if (block_start
== EXTENT_MAP_INLINE
) {
2106 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2108 page_offset
+= iosize
;
2113 if (tree
->ops
&& tree
->ops
->readpage_io_hook
) {
2114 ret
= tree
->ops
->readpage_io_hook(page
, cur
,
2118 unsigned long pnr
= (last_byte
>> PAGE_CACHE_SHIFT
) + 1;
2120 ret
= submit_extent_page(READ
, tree
, page
,
2121 sector
, disk_io_size
, page_offset
,
2123 end_bio_extent_readpage
, mirror_num
,
2127 *bio_flags
= this_bio_flag
;
2132 page_offset
+= iosize
;
2135 if (!PageError(page
))
2136 SetPageUptodate(page
);
2142 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
2143 get_extent_t
*get_extent
)
2145 struct bio
*bio
= NULL
;
2146 unsigned long bio_flags
= 0;
2149 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, 0,
2152 submit_one_bio(READ
, bio
, 0, bio_flags
);
2156 static noinline
void update_nr_written(struct page
*page
,
2157 struct writeback_control
*wbc
,
2158 unsigned long nr_written
)
2160 wbc
->nr_to_write
-= nr_written
;
2161 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 &&
2162 wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
))
2163 page
->mapping
->writeback_index
= page
->index
+ nr_written
;
2167 * the writepage semantics are similar to regular writepage. extent
2168 * records are inserted to lock ranges in the tree, and as dirty areas
2169 * are found, they are marked writeback. Then the lock bits are removed
2170 * and the end_io handler clears the writeback ranges
2172 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
2175 struct inode
*inode
= page
->mapping
->host
;
2176 struct extent_page_data
*epd
= data
;
2177 struct extent_io_tree
*tree
= epd
->tree
;
2178 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2180 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2184 u64 last_byte
= i_size_read(inode
);
2189 struct extent_state
*cached_state
= NULL
;
2190 struct extent_map
*em
;
2191 struct block_device
*bdev
;
2194 size_t pg_offset
= 0;
2196 loff_t i_size
= i_size_read(inode
);
2197 unsigned long end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2203 unsigned long nr_written
= 0;
2205 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2206 write_flags
= WRITE_SYNC_PLUG
;
2208 write_flags
= WRITE
;
2210 WARN_ON(!PageLocked(page
));
2211 pg_offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
2212 if (page
->index
> end_index
||
2213 (page
->index
== end_index
&& !pg_offset
)) {
2214 page
->mapping
->a_ops
->invalidatepage(page
, 0);
2219 if (page
->index
== end_index
) {
2222 userpage
= kmap_atomic(page
, KM_USER0
);
2223 memset(userpage
+ pg_offset
, 0,
2224 PAGE_CACHE_SIZE
- pg_offset
);
2225 kunmap_atomic(userpage
, KM_USER0
);
2226 flush_dcache_page(page
);
2230 set_page_extent_mapped(page
);
2232 delalloc_start
= start
;
2235 if (!epd
->extent_locked
) {
2236 u64 delalloc_to_write
= 0;
2238 * make sure the wbc mapping index is at least updated
2241 update_nr_written(page
, wbc
, 0);
2243 while (delalloc_end
< page_end
) {
2244 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
2249 if (nr_delalloc
== 0) {
2250 delalloc_start
= delalloc_end
+ 1;
2253 tree
->ops
->fill_delalloc(inode
, page
, delalloc_start
,
2254 delalloc_end
, &page_started
,
2257 * delalloc_end is already one less than the total
2258 * length, so we don't subtract one from
2261 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
2264 delalloc_start
= delalloc_end
+ 1;
2266 if (wbc
->nr_to_write
< delalloc_to_write
) {
2269 if (delalloc_to_write
< thresh
* 2)
2270 thresh
= delalloc_to_write
;
2271 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
2275 /* did the fill delalloc function already unlock and start
2281 * we've unlocked the page, so we can't update
2282 * the mapping's writeback index, just update
2285 wbc
->nr_to_write
-= nr_written
;
2289 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
2290 ret
= tree
->ops
->writepage_start_hook(page
, start
,
2292 if (ret
== -EAGAIN
) {
2293 redirty_page_for_writepage(wbc
, page
);
2294 update_nr_written(page
, wbc
, nr_written
);
2302 * we don't want to touch the inode after unlocking the page,
2303 * so we update the mapping writeback index now
2305 update_nr_written(page
, wbc
, nr_written
+ 1);
2308 if (last_byte
<= start
) {
2309 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2310 tree
->ops
->writepage_end_io_hook(page
, start
,
2312 unlock_start
= page_end
+ 1;
2316 blocksize
= inode
->i_sb
->s_blocksize
;
2318 while (cur
<= end
) {
2319 if (cur
>= last_byte
) {
2320 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2321 tree
->ops
->writepage_end_io_hook(page
, cur
,
2323 unlock_start
= page_end
+ 1;
2326 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
2328 if (IS_ERR(em
) || !em
) {
2333 extent_offset
= cur
- em
->start
;
2334 BUG_ON(extent_map_end(em
) <= cur
);
2336 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2337 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
2338 sector
= (em
->block_start
+ extent_offset
) >> 9;
2340 block_start
= em
->block_start
;
2341 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
2342 free_extent_map(em
);
2346 * compressed and inline extents are written through other
2349 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
2350 block_start
== EXTENT_MAP_INLINE
) {
2352 * end_io notification does not happen here for
2353 * compressed extents
2355 if (!compressed
&& tree
->ops
&&
2356 tree
->ops
->writepage_end_io_hook
)
2357 tree
->ops
->writepage_end_io_hook(page
, cur
,
2360 else if (compressed
) {
2361 /* we don't want to end_page_writeback on
2362 * a compressed extent. this happens
2369 pg_offset
+= iosize
;
2373 /* leave this out until we have a page_mkwrite call */
2374 if (0 && !test_range_bit(tree
, cur
, cur
+ iosize
- 1,
2375 EXTENT_DIRTY
, 0, NULL
)) {
2377 pg_offset
+= iosize
;
2381 if (tree
->ops
&& tree
->ops
->writepage_io_hook
) {
2382 ret
= tree
->ops
->writepage_io_hook(page
, cur
,
2390 unsigned long max_nr
= end_index
+ 1;
2392 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
2393 if (!PageWriteback(page
)) {
2394 printk(KERN_ERR
"btrfs warning page %lu not "
2395 "writeback, cur %llu end %llu\n",
2396 page
->index
, (unsigned long long)cur
,
2397 (unsigned long long)end
);
2400 ret
= submit_extent_page(write_flags
, tree
, page
,
2401 sector
, iosize
, pg_offset
,
2402 bdev
, &epd
->bio
, max_nr
,
2403 end_bio_extent_writepage
,
2409 pg_offset
+= iosize
;
2414 /* make sure the mapping tag for page dirty gets cleared */
2415 set_page_writeback(page
);
2416 end_page_writeback(page
);
2422 /* drop our reference on any cached states */
2423 free_extent_state(cached_state
);
2428 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2429 * @mapping: address space structure to write
2430 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2431 * @writepage: function called for each page
2432 * @data: data passed to writepage function
2434 * If a page is already under I/O, write_cache_pages() skips it, even
2435 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2436 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2437 * and msync() need to guarantee that all the data which was dirty at the time
2438 * the call was made get new I/O started against them. If wbc->sync_mode is
2439 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2440 * existing IO to complete.
2442 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
2443 struct address_space
*mapping
,
2444 struct writeback_control
*wbc
,
2445 writepage_t writepage
, void *data
,
2446 void (*flush_fn
)(void *))
2450 int nr_to_write_done
= 0;
2451 struct pagevec pvec
;
2454 pgoff_t end
; /* Inclusive */
2456 int range_whole
= 0;
2458 pagevec_init(&pvec
, 0);
2459 if (wbc
->range_cyclic
) {
2460 index
= mapping
->writeback_index
; /* Start from prev offset */
2463 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2464 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2465 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2470 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
2471 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
2472 PAGECACHE_TAG_DIRTY
, min(end
- index
,
2473 (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
2477 for (i
= 0; i
< nr_pages
; i
++) {
2478 struct page
*page
= pvec
.pages
[i
];
2481 * At this point we hold neither mapping->tree_lock nor
2482 * lock on the page itself: the page may be truncated or
2483 * invalidated (changing page->mapping to NULL), or even
2484 * swizzled back from swapper_space to tmpfs file
2487 if (tree
->ops
&& tree
->ops
->write_cache_pages_lock_hook
)
2488 tree
->ops
->write_cache_pages_lock_hook(page
);
2492 if (unlikely(page
->mapping
!= mapping
)) {
2497 if (!wbc
->range_cyclic
&& page
->index
> end
) {
2503 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
2504 if (PageWriteback(page
))
2506 wait_on_page_writeback(page
);
2509 if (PageWriteback(page
) ||
2510 !clear_page_dirty_for_io(page
)) {
2515 ret
= (*writepage
)(page
, wbc
, data
);
2517 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
2525 * the filesystem may choose to bump up nr_to_write.
2526 * We have to make sure to honor the new nr_to_write
2529 nr_to_write_done
= wbc
->nr_to_write
<= 0;
2531 pagevec_release(&pvec
);
2534 if (!scanned
&& !done
) {
2536 * We hit the last page and there is more work to be done: wrap
2537 * back to the start of the file
2546 static void flush_epd_write_bio(struct extent_page_data
*epd
)
2550 submit_one_bio(WRITE_SYNC
, epd
->bio
, 0, 0);
2552 submit_one_bio(WRITE
, epd
->bio
, 0, 0);
2557 static noinline
void flush_write_bio(void *data
)
2559 struct extent_page_data
*epd
= data
;
2560 flush_epd_write_bio(epd
);
2563 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
2564 get_extent_t
*get_extent
,
2565 struct writeback_control
*wbc
)
2568 struct address_space
*mapping
= page
->mapping
;
2569 struct extent_page_data epd
= {
2572 .get_extent
= get_extent
,
2574 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
2576 struct writeback_control wbc_writepages
= {
2578 .sync_mode
= wbc
->sync_mode
,
2579 .older_than_this
= NULL
,
2581 .range_start
= page_offset(page
) + PAGE_CACHE_SIZE
,
2582 .range_end
= (loff_t
)-1,
2585 ret
= __extent_writepage(page
, wbc
, &epd
);
2587 extent_write_cache_pages(tree
, mapping
, &wbc_writepages
,
2588 __extent_writepage
, &epd
, flush_write_bio
);
2589 flush_epd_write_bio(&epd
);
2593 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
2594 u64 start
, u64 end
, get_extent_t
*get_extent
,
2598 struct address_space
*mapping
= inode
->i_mapping
;
2600 unsigned long nr_pages
= (end
- start
+ PAGE_CACHE_SIZE
) >>
2603 struct extent_page_data epd
= {
2606 .get_extent
= get_extent
,
2608 .sync_io
= mode
== WB_SYNC_ALL
,
2610 struct writeback_control wbc_writepages
= {
2611 .bdi
= inode
->i_mapping
->backing_dev_info
,
2613 .older_than_this
= NULL
,
2614 .nr_to_write
= nr_pages
* 2,
2615 .range_start
= start
,
2616 .range_end
= end
+ 1,
2619 while (start
<= end
) {
2620 page
= find_get_page(mapping
, start
>> PAGE_CACHE_SHIFT
);
2621 if (clear_page_dirty_for_io(page
))
2622 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
2624 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2625 tree
->ops
->writepage_end_io_hook(page
, start
,
2626 start
+ PAGE_CACHE_SIZE
- 1,
2630 page_cache_release(page
);
2631 start
+= PAGE_CACHE_SIZE
;
2634 flush_epd_write_bio(&epd
);
2638 int extent_writepages(struct extent_io_tree
*tree
,
2639 struct address_space
*mapping
,
2640 get_extent_t
*get_extent
,
2641 struct writeback_control
*wbc
)
2644 struct extent_page_data epd
= {
2647 .get_extent
= get_extent
,
2649 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
2652 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
2653 __extent_writepage
, &epd
,
2655 flush_epd_write_bio(&epd
);
2659 int extent_readpages(struct extent_io_tree
*tree
,
2660 struct address_space
*mapping
,
2661 struct list_head
*pages
, unsigned nr_pages
,
2662 get_extent_t get_extent
)
2664 struct bio
*bio
= NULL
;
2666 struct pagevec pvec
;
2667 unsigned long bio_flags
= 0;
2669 pagevec_init(&pvec
, 0);
2670 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
2671 struct page
*page
= list_entry(pages
->prev
, struct page
, lru
);
2673 prefetchw(&page
->flags
);
2674 list_del(&page
->lru
);
2676 * what we want to do here is call add_to_page_cache_lru,
2677 * but that isn't exported, so we reproduce it here
2679 if (!add_to_page_cache(page
, mapping
,
2680 page
->index
, GFP_KERNEL
)) {
2682 /* open coding of lru_cache_add, also not exported */
2683 page_cache_get(page
);
2684 if (!pagevec_add(&pvec
, page
))
2685 __pagevec_lru_add_file(&pvec
);
2686 __extent_read_full_page(tree
, page
, get_extent
,
2687 &bio
, 0, &bio_flags
);
2689 page_cache_release(page
);
2691 if (pagevec_count(&pvec
))
2692 __pagevec_lru_add_file(&pvec
);
2693 BUG_ON(!list_empty(pages
));
2695 submit_one_bio(READ
, bio
, 0, bio_flags
);
2700 * basic invalidatepage code, this waits on any locked or writeback
2701 * ranges corresponding to the page, and then deletes any extent state
2702 * records from the tree
2704 int extent_invalidatepage(struct extent_io_tree
*tree
,
2705 struct page
*page
, unsigned long offset
)
2707 u64 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
2708 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2709 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
2711 start
+= (offset
+ blocksize
- 1) & ~(blocksize
- 1);
2715 lock_extent(tree
, start
, end
, GFP_NOFS
);
2716 wait_on_page_writeback(page
);
2717 clear_extent_bit(tree
, start
, end
,
2718 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
2719 EXTENT_DO_ACCOUNTING
,
2720 1, 1, NULL
, GFP_NOFS
);
2725 * simple commit_write call, set_range_dirty is used to mark both
2726 * the pages and the extent records as dirty
2728 int extent_commit_write(struct extent_io_tree
*tree
,
2729 struct inode
*inode
, struct page
*page
,
2730 unsigned from
, unsigned to
)
2732 loff_t pos
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2734 set_page_extent_mapped(page
);
2735 set_page_dirty(page
);
2737 if (pos
> inode
->i_size
) {
2738 i_size_write(inode
, pos
);
2739 mark_inode_dirty(inode
);
2744 int extent_prepare_write(struct extent_io_tree
*tree
,
2745 struct inode
*inode
, struct page
*page
,
2746 unsigned from
, unsigned to
, get_extent_t
*get_extent
)
2748 u64 page_start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2749 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
2751 u64 orig_block_start
;
2754 struct extent_map
*em
;
2755 unsigned blocksize
= 1 << inode
->i_blkbits
;
2756 size_t page_offset
= 0;
2757 size_t block_off_start
;
2758 size_t block_off_end
;
2764 set_page_extent_mapped(page
);
2766 block_start
= (page_start
+ from
) & ~((u64
)blocksize
- 1);
2767 block_end
= (page_start
+ to
- 1) | (blocksize
- 1);
2768 orig_block_start
= block_start
;
2770 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
2771 while (block_start
<= block_end
) {
2772 em
= get_extent(inode
, page
, page_offset
, block_start
,
2773 block_end
- block_start
+ 1, 1);
2774 if (IS_ERR(em
) || !em
)
2777 cur_end
= min(block_end
, extent_map_end(em
) - 1);
2778 block_off_start
= block_start
& (PAGE_CACHE_SIZE
- 1);
2779 block_off_end
= block_off_start
+ blocksize
;
2780 isnew
= clear_extent_new(tree
, block_start
, cur_end
, GFP_NOFS
);
2782 if (!PageUptodate(page
) && isnew
&&
2783 (block_off_end
> to
|| block_off_start
< from
)) {
2786 kaddr
= kmap_atomic(page
, KM_USER0
);
2787 if (block_off_end
> to
)
2788 memset(kaddr
+ to
, 0, block_off_end
- to
);
2789 if (block_off_start
< from
)
2790 memset(kaddr
+ block_off_start
, 0,
2791 from
- block_off_start
);
2792 flush_dcache_page(page
);
2793 kunmap_atomic(kaddr
, KM_USER0
);
2795 if ((em
->block_start
!= EXTENT_MAP_HOLE
&&
2796 em
->block_start
!= EXTENT_MAP_INLINE
) &&
2797 !isnew
&& !PageUptodate(page
) &&
2798 (block_off_end
> to
|| block_off_start
< from
) &&
2799 !test_range_bit(tree
, block_start
, cur_end
,
2800 EXTENT_UPTODATE
, 1, NULL
)) {
2802 u64 extent_offset
= block_start
- em
->start
;
2804 sector
= (em
->block_start
+ extent_offset
) >> 9;
2805 iosize
= (cur_end
- block_start
+ blocksize
) &
2806 ~((u64
)blocksize
- 1);
2808 * we've already got the extent locked, but we
2809 * need to split the state such that our end_bio
2810 * handler can clear the lock.
2812 set_extent_bit(tree
, block_start
,
2813 block_start
+ iosize
- 1,
2814 EXTENT_LOCKED
, 0, NULL
, NULL
, GFP_NOFS
);
2815 ret
= submit_extent_page(READ
, tree
, page
,
2816 sector
, iosize
, page_offset
, em
->bdev
,
2818 end_bio_extent_preparewrite
, 0,
2821 block_start
= block_start
+ iosize
;
2823 set_extent_uptodate(tree
, block_start
, cur_end
,
2825 unlock_extent(tree
, block_start
, cur_end
, GFP_NOFS
);
2826 block_start
= cur_end
+ 1;
2828 page_offset
= block_start
& (PAGE_CACHE_SIZE
- 1);
2829 free_extent_map(em
);
2832 wait_extent_bit(tree
, orig_block_start
,
2833 block_end
, EXTENT_LOCKED
);
2835 check_page_uptodate(tree
, page
);
2837 /* FIXME, zero out newly allocated blocks on error */
2842 * a helper for releasepage, this tests for areas of the page that
2843 * are locked or under IO and drops the related state bits if it is safe
2846 int try_release_extent_state(struct extent_map_tree
*map
,
2847 struct extent_io_tree
*tree
, struct page
*page
,
2850 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2851 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2854 if (test_range_bit(tree
, start
, end
,
2855 EXTENT_IOBITS
, 0, NULL
))
2858 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
2861 * at this point we can safely clear everything except the
2862 * locked bit and the nodatasum bit
2864 clear_extent_bit(tree
, start
, end
,
2865 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
2872 * a helper for releasepage. As long as there are no locked extents
2873 * in the range corresponding to the page, both state records and extent
2874 * map records are removed
2876 int try_release_extent_mapping(struct extent_map_tree
*map
,
2877 struct extent_io_tree
*tree
, struct page
*page
,
2880 struct extent_map
*em
;
2881 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2882 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2884 if ((mask
& __GFP_WAIT
) &&
2885 page
->mapping
->host
->i_size
> 16 * 1024 * 1024) {
2887 while (start
<= end
) {
2888 len
= end
- start
+ 1;
2889 write_lock(&map
->lock
);
2890 em
= lookup_extent_mapping(map
, start
, len
);
2891 if (!em
|| IS_ERR(em
)) {
2892 write_unlock(&map
->lock
);
2895 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
2896 em
->start
!= start
) {
2897 write_unlock(&map
->lock
);
2898 free_extent_map(em
);
2901 if (!test_range_bit(tree
, em
->start
,
2902 extent_map_end(em
) - 1,
2903 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
2905 remove_extent_mapping(map
, em
);
2906 /* once for the rb tree */
2907 free_extent_map(em
);
2909 start
= extent_map_end(em
);
2910 write_unlock(&map
->lock
);
2913 free_extent_map(em
);
2916 return try_release_extent_state(map
, tree
, page
, mask
);
2919 sector_t
extent_bmap(struct address_space
*mapping
, sector_t iblock
,
2920 get_extent_t
*get_extent
)
2922 struct inode
*inode
= mapping
->host
;
2923 u64 start
= iblock
<< inode
->i_blkbits
;
2924 sector_t sector
= 0;
2925 size_t blksize
= (1 << inode
->i_blkbits
);
2926 struct extent_map
*em
;
2928 lock_extent(&BTRFS_I(inode
)->io_tree
, start
, start
+ blksize
- 1,
2930 em
= get_extent(inode
, NULL
, 0, start
, blksize
, 0);
2931 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, start
+ blksize
- 1,
2933 if (!em
|| IS_ERR(em
))
2936 if (em
->block_start
> EXTENT_MAP_LAST_BYTE
)
2939 sector
= (em
->block_start
+ start
- em
->start
) >> inode
->i_blkbits
;
2941 free_extent_map(em
);
2945 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
2946 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
2950 u64 max
= start
+ len
;
2953 struct extent_map
*em
= NULL
;
2955 u64 em_start
= 0, em_len
= 0;
2956 unsigned long emflags
;
2962 lock_extent(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
,
2964 em
= get_extent(inode
, NULL
, 0, off
, max
- off
, 0);
2972 off
= em
->start
+ em
->len
;
2976 em_start
= em
->start
;
2982 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
2984 flags
|= FIEMAP_EXTENT_LAST
;
2985 } else if (em
->block_start
== EXTENT_MAP_HOLE
) {
2986 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
2987 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
2988 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
2989 FIEMAP_EXTENT_NOT_ALIGNED
);
2990 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
2991 flags
|= (FIEMAP_EXTENT_DELALLOC
|
2992 FIEMAP_EXTENT_UNKNOWN
);
2994 disko
= em
->block_start
;
2996 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
2997 flags
|= FIEMAP_EXTENT_ENCODED
;
2999 emflags
= em
->flags
;
3000 free_extent_map(em
);
3004 em
= get_extent(inode
, NULL
, 0, off
, max
- off
, 0);
3011 emflags
= em
->flags
;
3013 if (test_bit(EXTENT_FLAG_VACANCY
, &emflags
)) {
3014 flags
|= FIEMAP_EXTENT_LAST
;
3018 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
3024 free_extent_map(em
);
3026 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
,
3031 static inline struct page
*extent_buffer_page(struct extent_buffer
*eb
,
3035 struct address_space
*mapping
;
3038 return eb
->first_page
;
3039 i
+= eb
->start
>> PAGE_CACHE_SHIFT
;
3040 mapping
= eb
->first_page
->mapping
;
3045 * extent_buffer_page is only called after pinning the page
3046 * by increasing the reference count. So we know the page must
3047 * be in the radix tree.
3050 p
= radix_tree_lookup(&mapping
->page_tree
, i
);
3056 static inline unsigned long num_extent_pages(u64 start
, u64 len
)
3058 return ((start
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
) -
3059 (start
>> PAGE_CACHE_SHIFT
);
3062 static struct extent_buffer
*__alloc_extent_buffer(struct extent_io_tree
*tree
,
3067 struct extent_buffer
*eb
= NULL
;
3069 unsigned long flags
;
3072 eb
= kmem_cache_zalloc(extent_buffer_cache
, mask
);
3075 spin_lock_init(&eb
->lock
);
3076 init_waitqueue_head(&eb
->lock_wq
);
3079 spin_lock_irqsave(&leak_lock
, flags
);
3080 list_add(&eb
->leak_list
, &buffers
);
3081 spin_unlock_irqrestore(&leak_lock
, flags
);
3083 atomic_set(&eb
->refs
, 1);
3088 static void __free_extent_buffer(struct extent_buffer
*eb
)
3091 unsigned long flags
;
3092 spin_lock_irqsave(&leak_lock
, flags
);
3093 list_del(&eb
->leak_list
);
3094 spin_unlock_irqrestore(&leak_lock
, flags
);
3096 kmem_cache_free(extent_buffer_cache
, eb
);
3099 struct extent_buffer
*alloc_extent_buffer(struct extent_io_tree
*tree
,
3100 u64 start
, unsigned long len
,
3104 unsigned long num_pages
= num_extent_pages(start
, len
);
3106 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
3107 struct extent_buffer
*eb
;
3108 struct extent_buffer
*exists
= NULL
;
3110 struct address_space
*mapping
= tree
->mapping
;
3113 spin_lock(&tree
->buffer_lock
);
3114 eb
= buffer_search(tree
, start
);
3116 atomic_inc(&eb
->refs
);
3117 spin_unlock(&tree
->buffer_lock
);
3118 mark_page_accessed(eb
->first_page
);
3121 spin_unlock(&tree
->buffer_lock
);
3123 eb
= __alloc_extent_buffer(tree
, start
, len
, mask
);
3128 eb
->first_page
= page0
;
3131 page_cache_get(page0
);
3132 mark_page_accessed(page0
);
3133 set_page_extent_mapped(page0
);
3134 set_page_extent_head(page0
, len
);
3135 uptodate
= PageUptodate(page0
);
3139 for (; i
< num_pages
; i
++, index
++) {
3140 p
= find_or_create_page(mapping
, index
, mask
| __GFP_HIGHMEM
);
3145 set_page_extent_mapped(p
);
3146 mark_page_accessed(p
);
3149 set_page_extent_head(p
, len
);
3151 set_page_private(p
, EXTENT_PAGE_PRIVATE
);
3153 if (!PageUptodate(p
))
3158 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3160 spin_lock(&tree
->buffer_lock
);
3161 exists
= buffer_tree_insert(tree
, start
, &eb
->rb_node
);
3163 /* add one reference for the caller */
3164 atomic_inc(&exists
->refs
);
3165 spin_unlock(&tree
->buffer_lock
);
3168 spin_unlock(&tree
->buffer_lock
);
3170 /* add one reference for the tree */
3171 atomic_inc(&eb
->refs
);
3175 if (!atomic_dec_and_test(&eb
->refs
))
3177 for (index
= 1; index
< i
; index
++)
3178 page_cache_release(extent_buffer_page(eb
, index
));
3179 page_cache_release(extent_buffer_page(eb
, 0));
3180 __free_extent_buffer(eb
);
3184 struct extent_buffer
*find_extent_buffer(struct extent_io_tree
*tree
,
3185 u64 start
, unsigned long len
,
3188 struct extent_buffer
*eb
;
3190 spin_lock(&tree
->buffer_lock
);
3191 eb
= buffer_search(tree
, start
);
3193 atomic_inc(&eb
->refs
);
3194 spin_unlock(&tree
->buffer_lock
);
3197 mark_page_accessed(eb
->first_page
);
3202 void free_extent_buffer(struct extent_buffer
*eb
)
3207 if (!atomic_dec_and_test(&eb
->refs
))
3213 int clear_extent_buffer_dirty(struct extent_io_tree
*tree
,
3214 struct extent_buffer
*eb
)
3217 unsigned long num_pages
;
3220 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3222 for (i
= 0; i
< num_pages
; i
++) {
3223 page
= extent_buffer_page(eb
, i
);
3224 if (!PageDirty(page
))
3229 set_page_extent_head(page
, eb
->len
);
3231 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
3233 clear_page_dirty_for_io(page
);
3234 spin_lock_irq(&page
->mapping
->tree_lock
);
3235 if (!PageDirty(page
)) {
3236 radix_tree_tag_clear(&page
->mapping
->page_tree
,
3238 PAGECACHE_TAG_DIRTY
);
3240 spin_unlock_irq(&page
->mapping
->tree_lock
);
3246 int wait_on_extent_buffer_writeback(struct extent_io_tree
*tree
,
3247 struct extent_buffer
*eb
)
3249 return wait_on_extent_writeback(tree
, eb
->start
,
3250 eb
->start
+ eb
->len
- 1);
3253 int set_extent_buffer_dirty(struct extent_io_tree
*tree
,
3254 struct extent_buffer
*eb
)
3257 unsigned long num_pages
;
3260 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
3261 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3262 for (i
= 0; i
< num_pages
; i
++)
3263 __set_page_dirty_nobuffers(extent_buffer_page(eb
, i
));
3267 int clear_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3268 struct extent_buffer
*eb
)
3272 unsigned long num_pages
;
3274 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3275 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3277 clear_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3279 for (i
= 0; i
< num_pages
; i
++) {
3280 page
= extent_buffer_page(eb
, i
);
3282 ClearPageUptodate(page
);
3287 int set_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3288 struct extent_buffer
*eb
)
3292 unsigned long num_pages
;
3294 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3296 set_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3298 for (i
= 0; i
< num_pages
; i
++) {
3299 page
= extent_buffer_page(eb
, i
);
3300 if ((i
== 0 && (eb
->start
& (PAGE_CACHE_SIZE
- 1))) ||
3301 ((i
== num_pages
- 1) &&
3302 ((eb
->start
+ eb
->len
) & (PAGE_CACHE_SIZE
- 1)))) {
3303 check_page_uptodate(tree
, page
);
3306 SetPageUptodate(page
);
3311 int extent_range_uptodate(struct extent_io_tree
*tree
,
3316 int pg_uptodate
= 1;
3318 unsigned long index
;
3320 ret
= test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
);
3323 while (start
<= end
) {
3324 index
= start
>> PAGE_CACHE_SHIFT
;
3325 page
= find_get_page(tree
->mapping
, index
);
3326 uptodate
= PageUptodate(page
);
3327 page_cache_release(page
);
3332 start
+= PAGE_CACHE_SIZE
;
3337 int extent_buffer_uptodate(struct extent_io_tree
*tree
,
3338 struct extent_buffer
*eb
)
3341 unsigned long num_pages
;
3344 int pg_uptodate
= 1;
3346 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3349 ret
= test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3350 EXTENT_UPTODATE
, 1, NULL
);
3354 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3355 for (i
= 0; i
< num_pages
; i
++) {
3356 page
= extent_buffer_page(eb
, i
);
3357 if (!PageUptodate(page
)) {
3365 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
3366 struct extent_buffer
*eb
,
3367 u64 start
, int wait
,
3368 get_extent_t
*get_extent
, int mirror_num
)
3371 unsigned long start_i
;
3375 int locked_pages
= 0;
3376 int all_uptodate
= 1;
3377 int inc_all_pages
= 0;
3378 unsigned long num_pages
;
3379 struct bio
*bio
= NULL
;
3380 unsigned long bio_flags
= 0;
3382 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3385 if (test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3386 EXTENT_UPTODATE
, 1, NULL
)) {
3391 WARN_ON(start
< eb
->start
);
3392 start_i
= (start
>> PAGE_CACHE_SHIFT
) -
3393 (eb
->start
>> PAGE_CACHE_SHIFT
);
3398 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3399 for (i
= start_i
; i
< num_pages
; i
++) {
3400 page
= extent_buffer_page(eb
, i
);
3402 if (!trylock_page(page
))
3408 if (!PageUptodate(page
))
3413 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3417 for (i
= start_i
; i
< num_pages
; i
++) {
3418 page
= extent_buffer_page(eb
, i
);
3420 page_cache_get(page
);
3421 if (!PageUptodate(page
)) {
3424 ClearPageError(page
);
3425 err
= __extent_read_full_page(tree
, page
,
3427 mirror_num
, &bio_flags
);
3436 submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3441 for (i
= start_i
; i
< num_pages
; i
++) {
3442 page
= extent_buffer_page(eb
, i
);
3443 wait_on_page_locked(page
);
3444 if (!PageUptodate(page
))
3449 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3454 while (locked_pages
> 0) {
3455 page
= extent_buffer_page(eb
, i
);
3463 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
3464 unsigned long start
,
3471 char *dst
= (char *)dstv
;
3472 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3473 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3475 WARN_ON(start
> eb
->len
);
3476 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3478 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3481 page
= extent_buffer_page(eb
, i
);
3483 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
3484 kaddr
= kmap_atomic(page
, KM_USER1
);
3485 memcpy(dst
, kaddr
+ offset
, cur
);
3486 kunmap_atomic(kaddr
, KM_USER1
);
3495 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
3496 unsigned long min_len
, char **token
, char **map
,
3497 unsigned long *map_start
,
3498 unsigned long *map_len
, int km
)
3500 size_t offset
= start
& (PAGE_CACHE_SIZE
- 1);
3503 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3504 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3505 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
3512 offset
= start_offset
;
3516 *map_start
= ((u64
)i
<< PAGE_CACHE_SHIFT
) - start_offset
;
3519 if (start
+ min_len
> eb
->len
) {
3520 printk(KERN_ERR
"btrfs bad mapping eb start %llu len %lu, "
3521 "wanted %lu %lu\n", (unsigned long long)eb
->start
,
3522 eb
->len
, start
, min_len
);
3526 p
= extent_buffer_page(eb
, i
);
3527 kaddr
= kmap_atomic(p
, km
);
3529 *map
= kaddr
+ offset
;
3530 *map_len
= PAGE_CACHE_SIZE
- offset
;
3534 int map_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
3535 unsigned long min_len
,
3536 char **token
, char **map
,
3537 unsigned long *map_start
,
3538 unsigned long *map_len
, int km
)
3542 if (eb
->map_token
) {
3543 unmap_extent_buffer(eb
, eb
->map_token
, km
);
3544 eb
->map_token
= NULL
;
3547 err
= map_private_extent_buffer(eb
, start
, min_len
, token
, map
,
3548 map_start
, map_len
, km
);
3550 eb
->map_token
= *token
;
3552 eb
->map_start
= *map_start
;
3553 eb
->map_len
= *map_len
;
3558 void unmap_extent_buffer(struct extent_buffer
*eb
, char *token
, int km
)
3560 kunmap_atomic(token
, km
);
3563 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
3564 unsigned long start
,
3571 char *ptr
= (char *)ptrv
;
3572 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3573 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3576 WARN_ON(start
> eb
->len
);
3577 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3579 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3582 page
= extent_buffer_page(eb
, i
);
3584 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
3586 kaddr
= kmap_atomic(page
, KM_USER0
);
3587 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
3588 kunmap_atomic(kaddr
, KM_USER0
);
3600 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
3601 unsigned long start
, unsigned long len
)
3607 char *src
= (char *)srcv
;
3608 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3609 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3611 WARN_ON(start
> eb
->len
);
3612 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3614 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3617 page
= extent_buffer_page(eb
, i
);
3618 WARN_ON(!PageUptodate(page
));
3620 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
3621 kaddr
= kmap_atomic(page
, KM_USER1
);
3622 memcpy(kaddr
+ offset
, src
, cur
);
3623 kunmap_atomic(kaddr
, KM_USER1
);
3632 void memset_extent_buffer(struct extent_buffer
*eb
, char c
,
3633 unsigned long start
, unsigned long len
)
3639 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3640 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3642 WARN_ON(start
> eb
->len
);
3643 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3645 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3648 page
= extent_buffer_page(eb
, i
);
3649 WARN_ON(!PageUptodate(page
));
3651 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
3652 kaddr
= kmap_atomic(page
, KM_USER0
);
3653 memset(kaddr
+ offset
, c
, cur
);
3654 kunmap_atomic(kaddr
, KM_USER0
);
3662 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
3663 unsigned long dst_offset
, unsigned long src_offset
,
3666 u64 dst_len
= dst
->len
;
3671 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3672 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
3674 WARN_ON(src
->len
!= dst_len
);
3676 offset
= (start_offset
+ dst_offset
) &
3677 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3680 page
= extent_buffer_page(dst
, i
);
3681 WARN_ON(!PageUptodate(page
));
3683 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
- offset
));
3685 kaddr
= kmap_atomic(page
, KM_USER0
);
3686 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
3687 kunmap_atomic(kaddr
, KM_USER0
);
3696 static void move_pages(struct page
*dst_page
, struct page
*src_page
,
3697 unsigned long dst_off
, unsigned long src_off
,
3700 char *dst_kaddr
= kmap_atomic(dst_page
, KM_USER0
);
3701 if (dst_page
== src_page
) {
3702 memmove(dst_kaddr
+ dst_off
, dst_kaddr
+ src_off
, len
);
3704 char *src_kaddr
= kmap_atomic(src_page
, KM_USER1
);
3705 char *p
= dst_kaddr
+ dst_off
+ len
;
3706 char *s
= src_kaddr
+ src_off
+ len
;
3711 kunmap_atomic(src_kaddr
, KM_USER1
);
3713 kunmap_atomic(dst_kaddr
, KM_USER0
);
3716 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
3717 unsigned long dst_off
, unsigned long src_off
,
3720 char *dst_kaddr
= kmap_atomic(dst_page
, KM_USER0
);
3723 if (dst_page
!= src_page
)
3724 src_kaddr
= kmap_atomic(src_page
, KM_USER1
);
3726 src_kaddr
= dst_kaddr
;
3728 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
3729 kunmap_atomic(dst_kaddr
, KM_USER0
);
3730 if (dst_page
!= src_page
)
3731 kunmap_atomic(src_kaddr
, KM_USER1
);
3734 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
3735 unsigned long src_offset
, unsigned long len
)
3738 size_t dst_off_in_page
;
3739 size_t src_off_in_page
;
3740 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3741 unsigned long dst_i
;
3742 unsigned long src_i
;
3744 if (src_offset
+ len
> dst
->len
) {
3745 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
3746 "len %lu dst len %lu\n", src_offset
, len
, dst
->len
);
3749 if (dst_offset
+ len
> dst
->len
) {
3750 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
3751 "len %lu dst len %lu\n", dst_offset
, len
, dst
->len
);
3756 dst_off_in_page
= (start_offset
+ dst_offset
) &
3757 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3758 src_off_in_page
= (start_offset
+ src_offset
) &
3759 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3761 dst_i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
3762 src_i
= (start_offset
+ src_offset
) >> PAGE_CACHE_SHIFT
;
3764 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
-
3766 cur
= min_t(unsigned long, cur
,
3767 (unsigned long)(PAGE_CACHE_SIZE
- dst_off_in_page
));
3769 copy_pages(extent_buffer_page(dst
, dst_i
),
3770 extent_buffer_page(dst
, src_i
),
3771 dst_off_in_page
, src_off_in_page
, cur
);
3779 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
3780 unsigned long src_offset
, unsigned long len
)
3783 size_t dst_off_in_page
;
3784 size_t src_off_in_page
;
3785 unsigned long dst_end
= dst_offset
+ len
- 1;
3786 unsigned long src_end
= src_offset
+ len
- 1;
3787 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3788 unsigned long dst_i
;
3789 unsigned long src_i
;
3791 if (src_offset
+ len
> dst
->len
) {
3792 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
3793 "len %lu len %lu\n", src_offset
, len
, dst
->len
);
3796 if (dst_offset
+ len
> dst
->len
) {
3797 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
3798 "len %lu len %lu\n", dst_offset
, len
, dst
->len
);
3801 if (dst_offset
< src_offset
) {
3802 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
3806 dst_i
= (start_offset
+ dst_end
) >> PAGE_CACHE_SHIFT
;
3807 src_i
= (start_offset
+ src_end
) >> PAGE_CACHE_SHIFT
;
3809 dst_off_in_page
= (start_offset
+ dst_end
) &
3810 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3811 src_off_in_page
= (start_offset
+ src_end
) &
3812 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3814 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
3815 cur
= min(cur
, dst_off_in_page
+ 1);
3816 move_pages(extent_buffer_page(dst
, dst_i
),
3817 extent_buffer_page(dst
, src_i
),
3818 dst_off_in_page
- cur
+ 1,
3819 src_off_in_page
- cur
+ 1, cur
);
3827 int try_release_extent_buffer(struct extent_io_tree
*tree
, struct page
*page
)
3829 u64 start
= page_offset(page
);
3830 struct extent_buffer
*eb
;
3833 unsigned long num_pages
;
3835 spin_lock(&tree
->buffer_lock
);
3836 eb
= buffer_search(tree
, start
);
3840 if (atomic_read(&eb
->refs
) > 1) {
3844 if (test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3848 /* at this point we can safely release the extent buffer */
3849 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3850 for (i
= 0; i
< num_pages
; i
++)
3851 page_cache_release(extent_buffer_page(eb
, i
));
3852 rb_erase(&eb
->rb_node
, &tree
->buffer
);
3853 __free_extent_buffer(eb
);
3855 spin_unlock(&tree
->buffer_lock
);