ldm: corrupted partition table can cause kernel oops
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / fs-writeback.c
blobcdbf7accc1ec0c5ecd0f44761daf9f040bc09776
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
33 * Passed into wb_writeback(), essentially a subset of writeback_control
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 enum writeback_sync_modes sync_mode;
39 unsigned int for_kupdate:1;
40 unsigned int range_cyclic:1;
41 unsigned int for_background:1;
43 struct list_head list; /* pending work list */
44 struct completion *done; /* set if the caller waits */
48 * Include the creation of the trace points after defining the
49 * wb_writeback_work structure so that the definition remains local to this
50 * file.
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
56 * We don't actually have pdflush, but this one is exported though /proc...
58 int nr_pdflush_threads;
60 /**
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
64 * Determine whether there is writeback waiting to be handled against a
65 * backing device.
67 int writeback_in_progress(struct backing_dev_info *bdi)
69 return test_bit(BDI_writeback_running, &bdi->state);
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
74 struct super_block *sb = inode->i_sb;
76 if (strcmp(sb->s_type->name, "bdev") == 0)
77 return inode->i_mapping->backing_dev_info;
79 return sb->s_bdi;
82 static inline struct inode *wb_inode(struct list_head *head)
84 return list_entry(head, struct inode, i_wb_list);
87 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
88 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
90 if (bdi->wb.task) {
91 wake_up_process(bdi->wb.task);
92 } else {
94 * The bdi thread isn't there, wake up the forker thread which
95 * will create and run it.
97 wake_up_process(default_backing_dev_info.wb.task);
101 static void bdi_queue_work(struct backing_dev_info *bdi,
102 struct wb_writeback_work *work)
104 trace_writeback_queue(bdi, work);
106 spin_lock_bh(&bdi->wb_lock);
107 list_add_tail(&work->list, &bdi->work_list);
108 if (!bdi->wb.task)
109 trace_writeback_nothread(bdi, work);
110 bdi_wakeup_flusher(bdi);
111 spin_unlock_bh(&bdi->wb_lock);
114 static void
115 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
116 bool range_cyclic)
118 struct wb_writeback_work *work;
121 * This is WB_SYNC_NONE writeback, so if allocation fails just
122 * wakeup the thread for old dirty data writeback
124 work = kzalloc(sizeof(*work), GFP_ATOMIC);
125 if (!work) {
126 if (bdi->wb.task) {
127 trace_writeback_nowork(bdi);
128 wake_up_process(bdi->wb.task);
130 return;
133 work->sync_mode = WB_SYNC_NONE;
134 work->nr_pages = nr_pages;
135 work->range_cyclic = range_cyclic;
137 bdi_queue_work(bdi, work);
141 * bdi_start_writeback - start writeback
142 * @bdi: the backing device to write from
143 * @nr_pages: the number of pages to write
145 * Description:
146 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
147 * started when this function returns, we make no guarentees on
148 * completion. Caller need not hold sb s_umount semaphore.
151 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
153 __bdi_start_writeback(bdi, nr_pages, true);
157 * bdi_start_background_writeback - start background writeback
158 * @bdi: the backing device to write from
160 * Description:
161 * This makes sure WB_SYNC_NONE background writeback happens. When
162 * this function returns, it is only guaranteed that for given BDI
163 * some IO is happening if we are over background dirty threshold.
164 * Caller need not hold sb s_umount semaphore.
166 void bdi_start_background_writeback(struct backing_dev_info *bdi)
169 * We just wake up the flusher thread. It will perform background
170 * writeback as soon as there is no other work to do.
172 spin_lock_bh(&bdi->wb_lock);
173 bdi_wakeup_flusher(bdi);
174 spin_unlock_bh(&bdi->wb_lock);
178 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
179 * furthest end of its superblock's dirty-inode list.
181 * Before stamping the inode's ->dirtied_when, we check to see whether it is
182 * already the most-recently-dirtied inode on the b_dirty list. If that is
183 * the case then the inode must have been redirtied while it was being written
184 * out and we don't reset its dirtied_when.
186 static void redirty_tail(struct inode *inode)
188 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
190 if (!list_empty(&wb->b_dirty)) {
191 struct inode *tail;
193 tail = wb_inode(wb->b_dirty.next);
194 if (time_before(inode->dirtied_when, tail->dirtied_when))
195 inode->dirtied_when = jiffies;
197 list_move(&inode->i_wb_list, &wb->b_dirty);
201 * requeue inode for re-scanning after bdi->b_io list is exhausted.
203 static void requeue_io(struct inode *inode)
205 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
207 list_move(&inode->i_wb_list, &wb->b_more_io);
210 static void inode_sync_complete(struct inode *inode)
213 * Prevent speculative execution through spin_unlock(&inode_lock);
215 smp_mb();
216 wake_up_bit(&inode->i_state, __I_SYNC);
219 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
221 bool ret = time_after(inode->dirtied_when, t);
222 #ifndef CONFIG_64BIT
224 * For inodes being constantly redirtied, dirtied_when can get stuck.
225 * It _appears_ to be in the future, but is actually in distant past.
226 * This test is necessary to prevent such wrapped-around relative times
227 * from permanently stopping the whole bdi writeback.
229 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
230 #endif
231 return ret;
235 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
237 static void move_expired_inodes(struct list_head *delaying_queue,
238 struct list_head *dispatch_queue,
239 unsigned long *older_than_this)
241 LIST_HEAD(tmp);
242 struct list_head *pos, *node;
243 struct super_block *sb = NULL;
244 struct inode *inode;
245 int do_sb_sort = 0;
247 while (!list_empty(delaying_queue)) {
248 inode = wb_inode(delaying_queue->prev);
249 if (older_than_this &&
250 inode_dirtied_after(inode, *older_than_this))
251 break;
252 if (sb && sb != inode->i_sb)
253 do_sb_sort = 1;
254 sb = inode->i_sb;
255 list_move(&inode->i_wb_list, &tmp);
258 /* just one sb in list, splice to dispatch_queue and we're done */
259 if (!do_sb_sort) {
260 list_splice(&tmp, dispatch_queue);
261 return;
264 /* Move inodes from one superblock together */
265 while (!list_empty(&tmp)) {
266 sb = wb_inode(tmp.prev)->i_sb;
267 list_for_each_prev_safe(pos, node, &tmp) {
268 inode = wb_inode(pos);
269 if (inode->i_sb == sb)
270 list_move(&inode->i_wb_list, dispatch_queue);
276 * Queue all expired dirty inodes for io, eldest first.
277 * Before
278 * newly dirtied b_dirty b_io b_more_io
279 * =============> gf edc BA
280 * After
281 * newly dirtied b_dirty b_io b_more_io
282 * =============> g fBAedc
284 * +--> dequeue for IO
286 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
288 list_splice_init(&wb->b_more_io, &wb->b_io);
289 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
292 static int write_inode(struct inode *inode, struct writeback_control *wbc)
294 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
295 return inode->i_sb->s_op->write_inode(inode, wbc);
296 return 0;
300 * Wait for writeback on an inode to complete.
302 static void inode_wait_for_writeback(struct inode *inode)
304 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
305 wait_queue_head_t *wqh;
307 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
308 while (inode->i_state & I_SYNC) {
309 spin_unlock(&inode_lock);
310 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
311 spin_lock(&inode_lock);
316 * Write out an inode's dirty pages. Called under inode_lock. Either the
317 * caller has ref on the inode (either via __iget or via syscall against an fd)
318 * or the inode has I_WILL_FREE set (via generic_forget_inode)
320 * If `wait' is set, wait on the writeout.
322 * The whole writeout design is quite complex and fragile. We want to avoid
323 * starvation of particular inodes when others are being redirtied, prevent
324 * livelocks, etc.
326 * Called under inode_lock.
328 static int
329 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
331 struct address_space *mapping = inode->i_mapping;
332 unsigned dirty;
333 int ret;
335 if (!atomic_read(&inode->i_count))
336 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
337 else
338 WARN_ON(inode->i_state & I_WILL_FREE);
340 if (inode->i_state & I_SYNC) {
342 * If this inode is locked for writeback and we are not doing
343 * writeback-for-data-integrity, move it to b_more_io so that
344 * writeback can proceed with the other inodes on s_io.
346 * We'll have another go at writing back this inode when we
347 * completed a full scan of b_io.
349 if (wbc->sync_mode != WB_SYNC_ALL) {
350 requeue_io(inode);
351 return 0;
355 * It's a data-integrity sync. We must wait.
357 inode_wait_for_writeback(inode);
360 BUG_ON(inode->i_state & I_SYNC);
362 /* Set I_SYNC, reset I_DIRTY_PAGES */
363 inode->i_state |= I_SYNC;
364 inode->i_state &= ~I_DIRTY_PAGES;
365 spin_unlock(&inode_lock);
367 ret = do_writepages(mapping, wbc);
370 * Make sure to wait on the data before writing out the metadata.
371 * This is important for filesystems that modify metadata on data
372 * I/O completion.
374 if (wbc->sync_mode == WB_SYNC_ALL) {
375 int err = filemap_fdatawait(mapping);
376 if (ret == 0)
377 ret = err;
381 * Some filesystems may redirty the inode during the writeback
382 * due to delalloc, clear dirty metadata flags right before
383 * write_inode()
385 spin_lock(&inode_lock);
386 dirty = inode->i_state & I_DIRTY;
387 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
388 spin_unlock(&inode_lock);
389 /* Don't write the inode if only I_DIRTY_PAGES was set */
390 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
391 int err = write_inode(inode, wbc);
392 if (ret == 0)
393 ret = err;
396 spin_lock(&inode_lock);
397 inode->i_state &= ~I_SYNC;
398 if (!(inode->i_state & I_FREEING)) {
399 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
401 * We didn't write back all the pages. nfs_writepages()
402 * sometimes bales out without doing anything.
404 inode->i_state |= I_DIRTY_PAGES;
405 if (wbc->nr_to_write <= 0) {
407 * slice used up: queue for next turn
409 requeue_io(inode);
410 } else {
412 * Writeback blocked by something other than
413 * congestion. Delay the inode for some time to
414 * avoid spinning on the CPU (100% iowait)
415 * retrying writeback of the dirty page/inode
416 * that cannot be performed immediately.
418 redirty_tail(inode);
420 } else if (inode->i_state & I_DIRTY) {
422 * Filesystems can dirty the inode during writeback
423 * operations, such as delayed allocation during
424 * submission or metadata updates after data IO
425 * completion.
427 redirty_tail(inode);
428 } else {
430 * The inode is clean. At this point we either have
431 * a reference to the inode or it's on it's way out.
432 * No need to add it back to the LRU.
434 list_del_init(&inode->i_wb_list);
437 inode_sync_complete(inode);
438 return ret;
442 * For background writeback the caller does not have the sb pinned
443 * before calling writeback. So make sure that we do pin it, so it doesn't
444 * go away while we are writing inodes from it.
446 static bool pin_sb_for_writeback(struct super_block *sb)
448 spin_lock(&sb_lock);
449 if (list_empty(&sb->s_instances)) {
450 spin_unlock(&sb_lock);
451 return false;
454 sb->s_count++;
455 spin_unlock(&sb_lock);
457 if (down_read_trylock(&sb->s_umount)) {
458 if (sb->s_root)
459 return true;
460 up_read(&sb->s_umount);
463 put_super(sb);
464 return false;
468 * Write a portion of b_io inodes which belong to @sb.
470 * If @only_this_sb is true, then find and write all such
471 * inodes. Otherwise write only ones which go sequentially
472 * in reverse order.
474 * Return 1, if the caller writeback routine should be
475 * interrupted. Otherwise return 0.
477 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
478 struct writeback_control *wbc, bool only_this_sb)
480 while (!list_empty(&wb->b_io)) {
481 long pages_skipped;
482 struct inode *inode = wb_inode(wb->b_io.prev);
484 if (inode->i_sb != sb) {
485 if (only_this_sb) {
487 * We only want to write back data for this
488 * superblock, move all inodes not belonging
489 * to it back onto the dirty list.
491 redirty_tail(inode);
492 continue;
496 * The inode belongs to a different superblock.
497 * Bounce back to the caller to unpin this and
498 * pin the next superblock.
500 return 0;
504 * Don't bother with new inodes or inodes beeing freed, first
505 * kind does not need peridic writeout yet, and for the latter
506 * kind writeout is handled by the freer.
508 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
509 requeue_io(inode);
510 continue;
514 * Was this inode dirtied after sync_sb_inodes was called?
515 * This keeps sync from extra jobs and livelock.
517 if (inode_dirtied_after(inode, wbc->wb_start))
518 return 1;
520 __iget(inode);
521 pages_skipped = wbc->pages_skipped;
522 writeback_single_inode(inode, wbc);
523 if (wbc->pages_skipped != pages_skipped) {
525 * writeback is not making progress due to locked
526 * buffers. Skip this inode for now.
528 redirty_tail(inode);
530 spin_unlock(&inode_lock);
531 iput(inode);
532 cond_resched();
533 spin_lock(&inode_lock);
534 if (wbc->nr_to_write <= 0) {
535 wbc->more_io = 1;
536 return 1;
538 if (!list_empty(&wb->b_more_io))
539 wbc->more_io = 1;
541 /* b_io is empty */
542 return 1;
545 void writeback_inodes_wb(struct bdi_writeback *wb,
546 struct writeback_control *wbc)
548 int ret = 0;
550 if (!wbc->wb_start)
551 wbc->wb_start = jiffies; /* livelock avoidance */
552 spin_lock(&inode_lock);
553 if (!wbc->for_kupdate || list_empty(&wb->b_io))
554 queue_io(wb, wbc->older_than_this);
556 while (!list_empty(&wb->b_io)) {
557 struct inode *inode = wb_inode(wb->b_io.prev);
558 struct super_block *sb = inode->i_sb;
560 if (!pin_sb_for_writeback(sb)) {
561 requeue_io(inode);
562 continue;
564 ret = writeback_sb_inodes(sb, wb, wbc, false);
565 drop_super(sb);
567 if (ret)
568 break;
570 spin_unlock(&inode_lock);
571 /* Leave any unwritten inodes on b_io */
574 static void __writeback_inodes_sb(struct super_block *sb,
575 struct bdi_writeback *wb, struct writeback_control *wbc)
577 WARN_ON(!rwsem_is_locked(&sb->s_umount));
579 spin_lock(&inode_lock);
580 if (!wbc->for_kupdate || list_empty(&wb->b_io))
581 queue_io(wb, wbc->older_than_this);
582 writeback_sb_inodes(sb, wb, wbc, true);
583 spin_unlock(&inode_lock);
587 * The maximum number of pages to writeout in a single bdi flush/kupdate
588 * operation. We do this so we don't hold I_SYNC against an inode for
589 * enormous amounts of time, which would block a userspace task which has
590 * been forced to throttle against that inode. Also, the code reevaluates
591 * the dirty each time it has written this many pages.
593 #define MAX_WRITEBACK_PAGES 1024
595 static inline bool over_bground_thresh(void)
597 unsigned long background_thresh, dirty_thresh;
599 global_dirty_limits(&background_thresh, &dirty_thresh);
601 return (global_page_state(NR_FILE_DIRTY) +
602 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
606 * Explicit flushing or periodic writeback of "old" data.
608 * Define "old": the first time one of an inode's pages is dirtied, we mark the
609 * dirtying-time in the inode's address_space. So this periodic writeback code
610 * just walks the superblock inode list, writing back any inodes which are
611 * older than a specific point in time.
613 * Try to run once per dirty_writeback_interval. But if a writeback event
614 * takes longer than a dirty_writeback_interval interval, then leave a
615 * one-second gap.
617 * older_than_this takes precedence over nr_to_write. So we'll only write back
618 * all dirty pages if they are all attached to "old" mappings.
620 static long wb_writeback(struct bdi_writeback *wb,
621 struct wb_writeback_work *work)
623 struct writeback_control wbc = {
624 .sync_mode = work->sync_mode,
625 .older_than_this = NULL,
626 .for_kupdate = work->for_kupdate,
627 .for_background = work->for_background,
628 .range_cyclic = work->range_cyclic,
630 unsigned long oldest_jif;
631 long wrote = 0;
632 long write_chunk;
633 struct inode *inode;
635 if (wbc.for_kupdate) {
636 wbc.older_than_this = &oldest_jif;
637 oldest_jif = jiffies -
638 msecs_to_jiffies(dirty_expire_interval * 10);
640 if (!wbc.range_cyclic) {
641 wbc.range_start = 0;
642 wbc.range_end = LLONG_MAX;
646 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
647 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
648 * here avoids calling into writeback_inodes_wb() more than once.
650 * The intended call sequence for WB_SYNC_ALL writeback is:
652 * wb_writeback()
653 * __writeback_inodes_sb() <== called only once
654 * write_cache_pages() <== called once for each inode
655 * (quickly) tag currently dirty pages
656 * (maybe slowly) sync all tagged pages
658 if (wbc.sync_mode == WB_SYNC_NONE)
659 write_chunk = MAX_WRITEBACK_PAGES;
660 else
661 write_chunk = LONG_MAX;
663 wbc.wb_start = jiffies; /* livelock avoidance */
664 for (;;) {
666 * Stop writeback when nr_pages has been consumed
668 if (work->nr_pages <= 0)
669 break;
672 * Background writeout and kupdate-style writeback may
673 * run forever. Stop them if there is other work to do
674 * so that e.g. sync can proceed. They'll be restarted
675 * after the other works are all done.
677 if ((work->for_background || work->for_kupdate) &&
678 !list_empty(&wb->bdi->work_list))
679 break;
682 * For background writeout, stop when we are below the
683 * background dirty threshold
685 if (work->for_background && !over_bground_thresh())
686 break;
688 wbc.more_io = 0;
689 wbc.nr_to_write = write_chunk;
690 wbc.pages_skipped = 0;
692 trace_wbc_writeback_start(&wbc, wb->bdi);
693 if (work->sb)
694 __writeback_inodes_sb(work->sb, wb, &wbc);
695 else
696 writeback_inodes_wb(wb, &wbc);
697 trace_wbc_writeback_written(&wbc, wb->bdi);
699 work->nr_pages -= write_chunk - wbc.nr_to_write;
700 wrote += write_chunk - wbc.nr_to_write;
703 * If we consumed everything, see if we have more
705 if (wbc.nr_to_write <= 0)
706 continue;
708 * Didn't write everything and we don't have more IO, bail
710 if (!wbc.more_io)
711 break;
713 * Did we write something? Try for more
715 if (wbc.nr_to_write < write_chunk)
716 continue;
718 * Nothing written. Wait for some inode to
719 * become available for writeback. Otherwise
720 * we'll just busyloop.
722 spin_lock(&inode_lock);
723 if (!list_empty(&wb->b_more_io)) {
724 inode = wb_inode(wb->b_more_io.prev);
725 trace_wbc_writeback_wait(&wbc, wb->bdi);
726 inode_wait_for_writeback(inode);
728 spin_unlock(&inode_lock);
731 return wrote;
735 * Return the next wb_writeback_work struct that hasn't been processed yet.
737 static struct wb_writeback_work *
738 get_next_work_item(struct backing_dev_info *bdi)
740 struct wb_writeback_work *work = NULL;
742 spin_lock_bh(&bdi->wb_lock);
743 if (!list_empty(&bdi->work_list)) {
744 work = list_entry(bdi->work_list.next,
745 struct wb_writeback_work, list);
746 list_del_init(&work->list);
748 spin_unlock_bh(&bdi->wb_lock);
749 return work;
753 * Add in the number of potentially dirty inodes, because each inode
754 * write can dirty pagecache in the underlying blockdev.
756 static unsigned long get_nr_dirty_pages(void)
758 return global_page_state(NR_FILE_DIRTY) +
759 global_page_state(NR_UNSTABLE_NFS) +
760 get_nr_dirty_inodes();
763 static long wb_check_background_flush(struct bdi_writeback *wb)
765 if (over_bground_thresh()) {
767 struct wb_writeback_work work = {
768 .nr_pages = LONG_MAX,
769 .sync_mode = WB_SYNC_NONE,
770 .for_background = 1,
771 .range_cyclic = 1,
774 return wb_writeback(wb, &work);
777 return 0;
780 static long wb_check_old_data_flush(struct bdi_writeback *wb)
782 unsigned long expired;
783 long nr_pages;
786 * When set to zero, disable periodic writeback
788 if (!dirty_writeback_interval)
789 return 0;
791 expired = wb->last_old_flush +
792 msecs_to_jiffies(dirty_writeback_interval * 10);
793 if (time_before(jiffies, expired))
794 return 0;
796 wb->last_old_flush = jiffies;
797 nr_pages = get_nr_dirty_pages();
799 if (nr_pages) {
800 struct wb_writeback_work work = {
801 .nr_pages = nr_pages,
802 .sync_mode = WB_SYNC_NONE,
803 .for_kupdate = 1,
804 .range_cyclic = 1,
807 return wb_writeback(wb, &work);
810 return 0;
814 * Retrieve work items and do the writeback they describe
816 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
818 struct backing_dev_info *bdi = wb->bdi;
819 struct wb_writeback_work *work;
820 long wrote = 0;
822 set_bit(BDI_writeback_running, &wb->bdi->state);
823 while ((work = get_next_work_item(bdi)) != NULL) {
825 * Override sync mode, in case we must wait for completion
826 * because this thread is exiting now.
828 if (force_wait)
829 work->sync_mode = WB_SYNC_ALL;
831 trace_writeback_exec(bdi, work);
833 wrote += wb_writeback(wb, work);
836 * Notify the caller of completion if this is a synchronous
837 * work item, otherwise just free it.
839 if (work->done)
840 complete(work->done);
841 else
842 kfree(work);
846 * Check for periodic writeback, kupdated() style
848 wrote += wb_check_old_data_flush(wb);
849 wrote += wb_check_background_flush(wb);
850 clear_bit(BDI_writeback_running, &wb->bdi->state);
852 return wrote;
856 * Handle writeback of dirty data for the device backed by this bdi. Also
857 * wakes up periodically and does kupdated style flushing.
859 int bdi_writeback_thread(void *data)
861 struct bdi_writeback *wb = data;
862 struct backing_dev_info *bdi = wb->bdi;
863 long pages_written;
865 current->flags |= PF_SWAPWRITE;
866 set_freezable();
867 wb->last_active = jiffies;
870 * Our parent may run at a different priority, just set us to normal
872 set_user_nice(current, 0);
874 trace_writeback_thread_start(bdi);
876 while (!kthread_should_stop()) {
878 * Remove own delayed wake-up timer, since we are already awake
879 * and we'll take care of the preriodic write-back.
881 del_timer(&wb->wakeup_timer);
883 pages_written = wb_do_writeback(wb, 0);
885 trace_writeback_pages_written(pages_written);
887 if (pages_written)
888 wb->last_active = jiffies;
890 set_current_state(TASK_INTERRUPTIBLE);
891 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
892 __set_current_state(TASK_RUNNING);
893 continue;
896 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
897 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
898 else {
900 * We have nothing to do, so can go sleep without any
901 * timeout and save power. When a work is queued or
902 * something is made dirty - we will be woken up.
904 schedule();
907 try_to_freeze();
910 /* Flush any work that raced with us exiting */
911 if (!list_empty(&bdi->work_list))
912 wb_do_writeback(wb, 1);
914 trace_writeback_thread_stop(bdi);
915 return 0;
920 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
921 * the whole world.
923 void wakeup_flusher_threads(long nr_pages)
925 struct backing_dev_info *bdi;
927 if (!nr_pages) {
928 nr_pages = global_page_state(NR_FILE_DIRTY) +
929 global_page_state(NR_UNSTABLE_NFS);
932 rcu_read_lock();
933 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
934 if (!bdi_has_dirty_io(bdi))
935 continue;
936 __bdi_start_writeback(bdi, nr_pages, false);
938 rcu_read_unlock();
941 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
943 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
944 struct dentry *dentry;
945 const char *name = "?";
947 dentry = d_find_alias(inode);
948 if (dentry) {
949 spin_lock(&dentry->d_lock);
950 name = (const char *) dentry->d_name.name;
952 printk(KERN_DEBUG
953 "%s(%d): dirtied inode %lu (%s) on %s\n",
954 current->comm, task_pid_nr(current), inode->i_ino,
955 name, inode->i_sb->s_id);
956 if (dentry) {
957 spin_unlock(&dentry->d_lock);
958 dput(dentry);
964 * __mark_inode_dirty - internal function
965 * @inode: inode to mark
966 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
967 * Mark an inode as dirty. Callers should use mark_inode_dirty or
968 * mark_inode_dirty_sync.
970 * Put the inode on the super block's dirty list.
972 * CAREFUL! We mark it dirty unconditionally, but move it onto the
973 * dirty list only if it is hashed or if it refers to a blockdev.
974 * If it was not hashed, it will never be added to the dirty list
975 * even if it is later hashed, as it will have been marked dirty already.
977 * In short, make sure you hash any inodes _before_ you start marking
978 * them dirty.
980 * This function *must* be atomic for the I_DIRTY_PAGES case -
981 * set_page_dirty() is called under spinlock in several places.
983 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
984 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
985 * the kernel-internal blockdev inode represents the dirtying time of the
986 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
987 * page->mapping->host, so the page-dirtying time is recorded in the internal
988 * blockdev inode.
990 void __mark_inode_dirty(struct inode *inode, int flags)
992 struct super_block *sb = inode->i_sb;
993 struct backing_dev_info *bdi = NULL;
994 bool wakeup_bdi = false;
997 * Don't do this for I_DIRTY_PAGES - that doesn't actually
998 * dirty the inode itself
1000 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1001 if (sb->s_op->dirty_inode)
1002 sb->s_op->dirty_inode(inode);
1006 * make sure that changes are seen by all cpus before we test i_state
1007 * -- mikulas
1009 smp_mb();
1011 /* avoid the locking if we can */
1012 if ((inode->i_state & flags) == flags)
1013 return;
1015 if (unlikely(block_dump))
1016 block_dump___mark_inode_dirty(inode);
1018 spin_lock(&inode_lock);
1019 if ((inode->i_state & flags) != flags) {
1020 const int was_dirty = inode->i_state & I_DIRTY;
1022 inode->i_state |= flags;
1025 * If the inode is being synced, just update its dirty state.
1026 * The unlocker will place the inode on the appropriate
1027 * superblock list, based upon its state.
1029 if (inode->i_state & I_SYNC)
1030 goto out;
1033 * Only add valid (hashed) inodes to the superblock's
1034 * dirty list. Add blockdev inodes as well.
1036 if (!S_ISBLK(inode->i_mode)) {
1037 if (inode_unhashed(inode))
1038 goto out;
1040 if (inode->i_state & I_FREEING)
1041 goto out;
1044 * If the inode was already on b_dirty/b_io/b_more_io, don't
1045 * reposition it (that would break b_dirty time-ordering).
1047 if (!was_dirty) {
1048 bdi = inode_to_bdi(inode);
1050 if (bdi_cap_writeback_dirty(bdi)) {
1051 WARN(!test_bit(BDI_registered, &bdi->state),
1052 "bdi-%s not registered\n", bdi->name);
1055 * If this is the first dirty inode for this
1056 * bdi, we have to wake-up the corresponding
1057 * bdi thread to make sure background
1058 * write-back happens later.
1060 if (!wb_has_dirty_io(&bdi->wb))
1061 wakeup_bdi = true;
1064 inode->dirtied_when = jiffies;
1065 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1068 out:
1069 spin_unlock(&inode_lock);
1071 if (wakeup_bdi)
1072 bdi_wakeup_thread_delayed(bdi);
1074 EXPORT_SYMBOL(__mark_inode_dirty);
1077 * Write out a superblock's list of dirty inodes. A wait will be performed
1078 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1080 * If older_than_this is non-NULL, then only write out inodes which
1081 * had their first dirtying at a time earlier than *older_than_this.
1083 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1084 * This function assumes that the blockdev superblock's inodes are backed by
1085 * a variety of queues, so all inodes are searched. For other superblocks,
1086 * assume that all inodes are backed by the same queue.
1088 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1089 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1090 * on the writer throttling path, and we get decent balancing between many
1091 * throttled threads: we don't want them all piling up on inode_sync_wait.
1093 static void wait_sb_inodes(struct super_block *sb)
1095 struct inode *inode, *old_inode = NULL;
1098 * We need to be protected against the filesystem going from
1099 * r/o to r/w or vice versa.
1101 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1103 spin_lock(&inode_lock);
1106 * Data integrity sync. Must wait for all pages under writeback,
1107 * because there may have been pages dirtied before our sync
1108 * call, but which had writeout started before we write it out.
1109 * In which case, the inode may not be on the dirty list, but
1110 * we still have to wait for that writeout.
1112 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1113 struct address_space *mapping;
1115 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1116 continue;
1117 mapping = inode->i_mapping;
1118 if (mapping->nrpages == 0)
1119 continue;
1120 __iget(inode);
1121 spin_unlock(&inode_lock);
1123 * We hold a reference to 'inode' so it couldn't have
1124 * been removed from s_inodes list while we dropped the
1125 * inode_lock. We cannot iput the inode now as we can
1126 * be holding the last reference and we cannot iput it
1127 * under inode_lock. So we keep the reference and iput
1128 * it later.
1130 iput(old_inode);
1131 old_inode = inode;
1133 filemap_fdatawait(mapping);
1135 cond_resched();
1137 spin_lock(&inode_lock);
1139 spin_unlock(&inode_lock);
1140 iput(old_inode);
1144 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1145 * @sb: the superblock
1146 * @nr: the number of pages to write
1148 * Start writeback on some inodes on this super_block. No guarantees are made
1149 * on how many (if any) will be written, and this function does not wait
1150 * for IO completion of submitted IO.
1152 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1154 DECLARE_COMPLETION_ONSTACK(done);
1155 struct wb_writeback_work work = {
1156 .sb = sb,
1157 .sync_mode = WB_SYNC_NONE,
1158 .done = &done,
1159 .nr_pages = nr,
1162 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1163 bdi_queue_work(sb->s_bdi, &work);
1164 wait_for_completion(&done);
1166 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1169 * writeback_inodes_sb - writeback dirty inodes from given super_block
1170 * @sb: the superblock
1172 * Start writeback on some inodes on this super_block. No guarantees are made
1173 * on how many (if any) will be written, and this function does not wait
1174 * for IO completion of submitted IO.
1176 void writeback_inodes_sb(struct super_block *sb)
1178 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1180 EXPORT_SYMBOL(writeback_inodes_sb);
1183 * writeback_inodes_sb_if_idle - start writeback if none underway
1184 * @sb: the superblock
1186 * Invoke writeback_inodes_sb if no writeback is currently underway.
1187 * Returns 1 if writeback was started, 0 if not.
1189 int writeback_inodes_sb_if_idle(struct super_block *sb)
1191 if (!writeback_in_progress(sb->s_bdi)) {
1192 down_read(&sb->s_umount);
1193 writeback_inodes_sb(sb);
1194 up_read(&sb->s_umount);
1195 return 1;
1196 } else
1197 return 0;
1199 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1202 * writeback_inodes_sb_if_idle - start writeback if none underway
1203 * @sb: the superblock
1204 * @nr: the number of pages to write
1206 * Invoke writeback_inodes_sb if no writeback is currently underway.
1207 * Returns 1 if writeback was started, 0 if not.
1209 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1210 unsigned long nr)
1212 if (!writeback_in_progress(sb->s_bdi)) {
1213 down_read(&sb->s_umount);
1214 writeback_inodes_sb_nr(sb, nr);
1215 up_read(&sb->s_umount);
1216 return 1;
1217 } else
1218 return 0;
1220 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1223 * sync_inodes_sb - sync sb inode pages
1224 * @sb: the superblock
1226 * This function writes and waits on any dirty inode belonging to this
1227 * super_block. The number of pages synced is returned.
1229 void sync_inodes_sb(struct super_block *sb)
1231 DECLARE_COMPLETION_ONSTACK(done);
1232 struct wb_writeback_work work = {
1233 .sb = sb,
1234 .sync_mode = WB_SYNC_ALL,
1235 .nr_pages = LONG_MAX,
1236 .range_cyclic = 0,
1237 .done = &done,
1240 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1242 bdi_queue_work(sb->s_bdi, &work);
1243 wait_for_completion(&done);
1245 wait_sb_inodes(sb);
1247 EXPORT_SYMBOL(sync_inodes_sb);
1250 * write_inode_now - write an inode to disk
1251 * @inode: inode to write to disk
1252 * @sync: whether the write should be synchronous or not
1254 * This function commits an inode to disk immediately if it is dirty. This is
1255 * primarily needed by knfsd.
1257 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1259 int write_inode_now(struct inode *inode, int sync)
1261 int ret;
1262 struct writeback_control wbc = {
1263 .nr_to_write = LONG_MAX,
1264 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1265 .range_start = 0,
1266 .range_end = LLONG_MAX,
1269 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1270 wbc.nr_to_write = 0;
1272 might_sleep();
1273 spin_lock(&inode_lock);
1274 ret = writeback_single_inode(inode, &wbc);
1275 spin_unlock(&inode_lock);
1276 if (sync)
1277 inode_sync_wait(inode);
1278 return ret;
1280 EXPORT_SYMBOL(write_inode_now);
1283 * sync_inode - write an inode and its pages to disk.
1284 * @inode: the inode to sync
1285 * @wbc: controls the writeback mode
1287 * sync_inode() will write an inode and its pages to disk. It will also
1288 * correctly update the inode on its superblock's dirty inode lists and will
1289 * update inode->i_state.
1291 * The caller must have a ref on the inode.
1293 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1295 int ret;
1297 spin_lock(&inode_lock);
1298 ret = writeback_single_inode(inode, wbc);
1299 spin_unlock(&inode_lock);
1300 return ret;
1302 EXPORT_SYMBOL(sync_inode);
1305 * sync_inode - write an inode to disk
1306 * @inode: the inode to sync
1307 * @wait: wait for I/O to complete.
1309 * Write an inode to disk and adjust it's dirty state after completion.
1311 * Note: only writes the actual inode, no associated data or other metadata.
1313 int sync_inode_metadata(struct inode *inode, int wait)
1315 struct writeback_control wbc = {
1316 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1317 .nr_to_write = 0, /* metadata-only */
1320 return sync_inode(inode, &wbc);
1322 EXPORT_SYMBOL(sync_inode_metadata);