recordmcount: Fix handling of elf64 big-endian objects.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / tree-log.c
blob7fa128d32f7a648325ba2e9ba1531c20b5e93057
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
29 /* magic values for the inode_only field in btrfs_log_inode:
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
33 * during log replay
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
39 * directory trouble cases
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root, struct inode *inode,
96 int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_root *log,
103 struct btrfs_path *path,
104 u64 dirid, int del_all);
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 struct btrfs_root *root)
137 int ret;
138 int err = 0;
140 mutex_lock(&root->log_mutex);
141 if (root->log_root) {
142 if (!root->log_start_pid) {
143 root->log_start_pid = current->pid;
144 root->log_multiple_pids = false;
145 } else if (root->log_start_pid != current->pid) {
146 root->log_multiple_pids = true;
149 root->log_batch++;
150 atomic_inc(&root->log_writers);
151 mutex_unlock(&root->log_mutex);
152 return 0;
154 root->log_multiple_pids = false;
155 root->log_start_pid = current->pid;
156 mutex_lock(&root->fs_info->tree_log_mutex);
157 if (!root->fs_info->log_root_tree) {
158 ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 if (ret)
160 err = ret;
162 if (err == 0 && !root->log_root) {
163 ret = btrfs_add_log_tree(trans, root);
164 if (ret)
165 err = ret;
167 mutex_unlock(&root->fs_info->tree_log_mutex);
168 root->log_batch++;
169 atomic_inc(&root->log_writers);
170 mutex_unlock(&root->log_mutex);
171 return err;
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
177 * in progress
179 static int join_running_log_trans(struct btrfs_root *root)
181 int ret = -ENOENT;
183 smp_mb();
184 if (!root->log_root)
185 return -ENOENT;
187 mutex_lock(&root->log_mutex);
188 if (root->log_root) {
189 ret = 0;
190 atomic_inc(&root->log_writers);
192 mutex_unlock(&root->log_mutex);
193 return ret;
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
201 int btrfs_pin_log_trans(struct btrfs_root *root)
203 int ret = -ENOENT;
205 mutex_lock(&root->log_mutex);
206 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
215 int btrfs_end_log_trans(struct btrfs_root *root)
217 if (atomic_dec_and_test(&root->log_writers)) {
218 smp_mb();
219 if (waitqueue_active(&root->log_writer_wait))
220 wake_up(&root->log_writer_wait);
222 return 0;
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
232 struct walk_control {
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
236 int free;
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
241 int write;
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
246 int wait;
248 /* pin only walk, we record which extents on disk belong to the
249 * log trees
251 int pin;
253 /* what stage of the replay code we're currently in */
254 int stage;
256 /* the root we are currently replaying */
257 struct btrfs_root *replay_dest;
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle *trans;
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
265 * inside it
267 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 struct walk_control *wc, u64 gen);
272 * process_func used to pin down extents, write them or wait on them
274 static int process_one_buffer(struct btrfs_root *log,
275 struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen)
278 if (wc->pin)
279 btrfs_pin_extent(log->fs_info->extent_root,
280 eb->start, eb->len, 0);
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
288 return 0;
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
303 * If the key isn't in the destination yet, a new item is inserted.
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
335 if (item_size == 0) {
336 btrfs_release_path(path);
337 return 0;
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
341 if (!dst_copy || !src_copy) {
342 btrfs_release_path(path);
343 kfree(dst_copy);
344 kfree(src_copy);
345 return -ENOMEM;
348 read_extent_buffer(eb, src_copy, src_ptr, item_size);
350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 item_size);
353 ret = memcmp(dst_copy, src_copy, item_size);
355 kfree(dst_copy);
356 kfree(src_copy);
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
361 * sync
363 if (ret == 0) {
364 btrfs_release_path(path);
365 return 0;
369 insert:
370 btrfs_release_path(path);
371 /* try to insert the key into the destination tree */
372 ret = btrfs_insert_empty_item(trans, root, path,
373 key, item_size);
375 /* make sure any existing item is the correct size */
376 if (ret == -EEXIST) {
377 u32 found_size;
378 found_size = btrfs_item_size_nr(path->nodes[0],
379 path->slots[0]);
380 if (found_size > item_size) {
381 btrfs_truncate_item(trans, root, path, item_size, 1);
382 } else if (found_size < item_size) {
383 ret = btrfs_extend_item(trans, root, path,
384 item_size - found_size);
386 } else if (ret) {
387 return ret;
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
390 path->slots[0]);
392 /* don't overwrite an existing inode if the generation number
393 * was logged as zero. This is done when the tree logging code
394 * is just logging an inode to make sure it exists after recovery.
396 * Also, don't overwrite i_size on directories during replay.
397 * log replay inserts and removes directory items based on the
398 * state of the tree found in the subvolume, and i_size is modified
399 * as it goes
401 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
402 struct btrfs_inode_item *src_item;
403 struct btrfs_inode_item *dst_item;
405 src_item = (struct btrfs_inode_item *)src_ptr;
406 dst_item = (struct btrfs_inode_item *)dst_ptr;
408 if (btrfs_inode_generation(eb, src_item) == 0)
409 goto no_copy;
411 if (overwrite_root &&
412 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
413 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
414 save_old_i_size = 1;
415 saved_i_size = btrfs_inode_size(path->nodes[0],
416 dst_item);
420 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
421 src_ptr, item_size);
423 if (save_old_i_size) {
424 struct btrfs_inode_item *dst_item;
425 dst_item = (struct btrfs_inode_item *)dst_ptr;
426 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
429 /* make sure the generation is filled in */
430 if (key->type == BTRFS_INODE_ITEM_KEY) {
431 struct btrfs_inode_item *dst_item;
432 dst_item = (struct btrfs_inode_item *)dst_ptr;
433 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
434 btrfs_set_inode_generation(path->nodes[0], dst_item,
435 trans->transid);
438 no_copy:
439 btrfs_mark_buffer_dirty(path->nodes[0]);
440 btrfs_release_path(path);
441 return 0;
445 * simple helper to read an inode off the disk from a given root
446 * This can only be called for subvolume roots and not for the log
448 static noinline struct inode *read_one_inode(struct btrfs_root *root,
449 u64 objectid)
451 struct btrfs_key key;
452 struct inode *inode;
454 key.objectid = objectid;
455 key.type = BTRFS_INODE_ITEM_KEY;
456 key.offset = 0;
457 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
458 if (IS_ERR(inode)) {
459 inode = NULL;
460 } else if (is_bad_inode(inode)) {
461 iput(inode);
462 inode = NULL;
464 return inode;
467 /* replays a single extent in 'eb' at 'slot' with 'key' into the
468 * subvolume 'root'. path is released on entry and should be released
469 * on exit.
471 * extents in the log tree have not been allocated out of the extent
472 * tree yet. So, this completes the allocation, taking a reference
473 * as required if the extent already exists or creating a new extent
474 * if it isn't in the extent allocation tree yet.
476 * The extent is inserted into the file, dropping any existing extents
477 * from the file that overlap the new one.
479 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root,
481 struct btrfs_path *path,
482 struct extent_buffer *eb, int slot,
483 struct btrfs_key *key)
485 int found_type;
486 u64 mask = root->sectorsize - 1;
487 u64 extent_end;
488 u64 alloc_hint;
489 u64 start = key->offset;
490 u64 saved_nbytes;
491 struct btrfs_file_extent_item *item;
492 struct inode *inode = NULL;
493 unsigned long size;
494 int ret = 0;
496 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
497 found_type = btrfs_file_extent_type(eb, item);
499 if (found_type == BTRFS_FILE_EXTENT_REG ||
500 found_type == BTRFS_FILE_EXTENT_PREALLOC)
501 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
502 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
503 size = btrfs_file_extent_inline_len(eb, item);
504 extent_end = (start + size + mask) & ~mask;
505 } else {
506 ret = 0;
507 goto out;
510 inode = read_one_inode(root, key->objectid);
511 if (!inode) {
512 ret = -EIO;
513 goto out;
517 * first check to see if we already have this extent in the
518 * file. This must be done before the btrfs_drop_extents run
519 * so we don't try to drop this extent.
521 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
522 start, 0);
524 if (ret == 0 &&
525 (found_type == BTRFS_FILE_EXTENT_REG ||
526 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
527 struct btrfs_file_extent_item cmp1;
528 struct btrfs_file_extent_item cmp2;
529 struct btrfs_file_extent_item *existing;
530 struct extent_buffer *leaf;
532 leaf = path->nodes[0];
533 existing = btrfs_item_ptr(leaf, path->slots[0],
534 struct btrfs_file_extent_item);
536 read_extent_buffer(eb, &cmp1, (unsigned long)item,
537 sizeof(cmp1));
538 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
539 sizeof(cmp2));
542 * we already have a pointer to this exact extent,
543 * we don't have to do anything
545 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
546 btrfs_release_path(path);
547 goto out;
550 btrfs_release_path(path);
552 saved_nbytes = inode_get_bytes(inode);
553 /* drop any overlapping extents */
554 ret = btrfs_drop_extents(trans, inode, start, extent_end,
555 &alloc_hint, 1);
556 BUG_ON(ret);
558 if (found_type == BTRFS_FILE_EXTENT_REG ||
559 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
560 u64 offset;
561 unsigned long dest_offset;
562 struct btrfs_key ins;
564 ret = btrfs_insert_empty_item(trans, root, path, key,
565 sizeof(*item));
566 BUG_ON(ret);
567 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
568 path->slots[0]);
569 copy_extent_buffer(path->nodes[0], eb, dest_offset,
570 (unsigned long)item, sizeof(*item));
572 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
573 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
574 ins.type = BTRFS_EXTENT_ITEM_KEY;
575 offset = key->offset - btrfs_file_extent_offset(eb, item);
577 if (ins.objectid > 0) {
578 u64 csum_start;
579 u64 csum_end;
580 LIST_HEAD(ordered_sums);
582 * is this extent already allocated in the extent
583 * allocation tree? If so, just add a reference
585 ret = btrfs_lookup_extent(root, ins.objectid,
586 ins.offset);
587 if (ret == 0) {
588 ret = btrfs_inc_extent_ref(trans, root,
589 ins.objectid, ins.offset,
590 0, root->root_key.objectid,
591 key->objectid, offset);
592 BUG_ON(ret);
593 } else {
595 * insert the extent pointer in the extent
596 * allocation tree
598 ret = btrfs_alloc_logged_file_extent(trans,
599 root, root->root_key.objectid,
600 key->objectid, offset, &ins);
601 BUG_ON(ret);
603 btrfs_release_path(path);
605 if (btrfs_file_extent_compression(eb, item)) {
606 csum_start = ins.objectid;
607 csum_end = csum_start + ins.offset;
608 } else {
609 csum_start = ins.objectid +
610 btrfs_file_extent_offset(eb, item);
611 csum_end = csum_start +
612 btrfs_file_extent_num_bytes(eb, item);
615 ret = btrfs_lookup_csums_range(root->log_root,
616 csum_start, csum_end - 1,
617 &ordered_sums, 0);
618 BUG_ON(ret);
619 while (!list_empty(&ordered_sums)) {
620 struct btrfs_ordered_sum *sums;
621 sums = list_entry(ordered_sums.next,
622 struct btrfs_ordered_sum,
623 list);
624 ret = btrfs_csum_file_blocks(trans,
625 root->fs_info->csum_root,
626 sums);
627 BUG_ON(ret);
628 list_del(&sums->list);
629 kfree(sums);
631 } else {
632 btrfs_release_path(path);
634 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 /* inline extents are easy, we just overwrite them */
636 ret = overwrite_item(trans, root, path, eb, slot, key);
637 BUG_ON(ret);
640 inode_set_bytes(inode, saved_nbytes);
641 btrfs_update_inode(trans, root, inode);
642 out:
643 if (inode)
644 iput(inode);
645 return ret;
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
653 * This is a helper function to do the unlink of a specific directory
654 * item
656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct inode *dir,
660 struct btrfs_dir_item *di)
662 struct inode *inode;
663 char *name;
664 int name_len;
665 struct extent_buffer *leaf;
666 struct btrfs_key location;
667 int ret;
669 leaf = path->nodes[0];
671 btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 name_len = btrfs_dir_name_len(leaf, di);
673 name = kmalloc(name_len, GFP_NOFS);
674 if (!name)
675 return -ENOMEM;
677 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 btrfs_release_path(path);
680 inode = read_one_inode(root, location.objectid);
681 if (!inode) {
682 kfree(name);
683 return -EIO;
686 ret = link_to_fixup_dir(trans, root, path, location.objectid);
687 BUG_ON(ret);
689 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
690 BUG_ON(ret);
691 kfree(name);
693 iput(inode);
694 return ret;
698 * helper function to see if a given name and sequence number found
699 * in an inode back reference are already in a directory and correctly
700 * point to this inode
702 static noinline int inode_in_dir(struct btrfs_root *root,
703 struct btrfs_path *path,
704 u64 dirid, u64 objectid, u64 index,
705 const char *name, int name_len)
707 struct btrfs_dir_item *di;
708 struct btrfs_key location;
709 int match = 0;
711 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
712 index, name, name_len, 0);
713 if (di && !IS_ERR(di)) {
714 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
715 if (location.objectid != objectid)
716 goto out;
717 } else
718 goto out;
719 btrfs_release_path(path);
721 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
722 if (di && !IS_ERR(di)) {
723 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
724 if (location.objectid != objectid)
725 goto out;
726 } else
727 goto out;
728 match = 1;
729 out:
730 btrfs_release_path(path);
731 return match;
735 * helper function to check a log tree for a named back reference in
736 * an inode. This is used to decide if a back reference that is
737 * found in the subvolume conflicts with what we find in the log.
739 * inode backreferences may have multiple refs in a single item,
740 * during replay we process one reference at a time, and we don't
741 * want to delete valid links to a file from the subvolume if that
742 * link is also in the log.
744 static noinline int backref_in_log(struct btrfs_root *log,
745 struct btrfs_key *key,
746 char *name, int namelen)
748 struct btrfs_path *path;
749 struct btrfs_inode_ref *ref;
750 unsigned long ptr;
751 unsigned long ptr_end;
752 unsigned long name_ptr;
753 int found_name_len;
754 int item_size;
755 int ret;
756 int match = 0;
758 path = btrfs_alloc_path();
759 if (!path)
760 return -ENOMEM;
762 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
763 if (ret != 0)
764 goto out;
766 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
767 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
768 ptr_end = ptr + item_size;
769 while (ptr < ptr_end) {
770 ref = (struct btrfs_inode_ref *)ptr;
771 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
772 if (found_name_len == namelen) {
773 name_ptr = (unsigned long)(ref + 1);
774 ret = memcmp_extent_buffer(path->nodes[0], name,
775 name_ptr, namelen);
776 if (ret == 0) {
777 match = 1;
778 goto out;
781 ptr = (unsigned long)(ref + 1) + found_name_len;
783 out:
784 btrfs_free_path(path);
785 return match;
790 * replay one inode back reference item found in the log tree.
791 * eb, slot and key refer to the buffer and key found in the log tree.
792 * root is the destination we are replaying into, and path is for temp
793 * use by this function. (it should be released on return).
795 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
796 struct btrfs_root *root,
797 struct btrfs_root *log,
798 struct btrfs_path *path,
799 struct extent_buffer *eb, int slot,
800 struct btrfs_key *key)
802 struct btrfs_inode_ref *ref;
803 struct btrfs_dir_item *di;
804 struct inode *dir;
805 struct inode *inode;
806 unsigned long ref_ptr;
807 unsigned long ref_end;
808 char *name;
809 int namelen;
810 int ret;
811 int search_done = 0;
814 * it is possible that we didn't log all the parent directories
815 * for a given inode. If we don't find the dir, just don't
816 * copy the back ref in. The link count fixup code will take
817 * care of the rest
819 dir = read_one_inode(root, key->offset);
820 if (!dir)
821 return -ENOENT;
823 inode = read_one_inode(root, key->objectid);
824 if (!inode) {
825 iput(dir);
826 return -EIO;
829 ref_ptr = btrfs_item_ptr_offset(eb, slot);
830 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
832 again:
833 ref = (struct btrfs_inode_ref *)ref_ptr;
835 namelen = btrfs_inode_ref_name_len(eb, ref);
836 name = kmalloc(namelen, GFP_NOFS);
837 BUG_ON(!name);
839 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
841 /* if we already have a perfect match, we're done */
842 if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
843 btrfs_inode_ref_index(eb, ref),
844 name, namelen)) {
845 goto out;
849 * look for a conflicting back reference in the metadata.
850 * if we find one we have to unlink that name of the file
851 * before we add our new link. Later on, we overwrite any
852 * existing back reference, and we don't want to create
853 * dangling pointers in the directory.
856 if (search_done)
857 goto insert;
859 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
860 if (ret == 0) {
861 char *victim_name;
862 int victim_name_len;
863 struct btrfs_inode_ref *victim_ref;
864 unsigned long ptr;
865 unsigned long ptr_end;
866 struct extent_buffer *leaf = path->nodes[0];
868 /* are we trying to overwrite a back ref for the root directory
869 * if so, just jump out, we're done
871 if (key->objectid == key->offset)
872 goto out_nowrite;
874 /* check all the names in this back reference to see
875 * if they are in the log. if so, we allow them to stay
876 * otherwise they must be unlinked as a conflict
878 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
879 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
880 while (ptr < ptr_end) {
881 victim_ref = (struct btrfs_inode_ref *)ptr;
882 victim_name_len = btrfs_inode_ref_name_len(leaf,
883 victim_ref);
884 victim_name = kmalloc(victim_name_len, GFP_NOFS);
885 BUG_ON(!victim_name);
887 read_extent_buffer(leaf, victim_name,
888 (unsigned long)(victim_ref + 1),
889 victim_name_len);
891 if (!backref_in_log(log, key, victim_name,
892 victim_name_len)) {
893 btrfs_inc_nlink(inode);
894 btrfs_release_path(path);
896 ret = btrfs_unlink_inode(trans, root, dir,
897 inode, victim_name,
898 victim_name_len);
900 kfree(victim_name);
901 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
903 BUG_ON(ret);
906 * NOTE: we have searched root tree and checked the
907 * coresponding ref, it does not need to check again.
909 search_done = 1;
911 btrfs_release_path(path);
913 /* look for a conflicting sequence number */
914 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
915 btrfs_inode_ref_index(eb, ref),
916 name, namelen, 0);
917 if (di && !IS_ERR(di)) {
918 ret = drop_one_dir_item(trans, root, path, dir, di);
919 BUG_ON(ret);
921 btrfs_release_path(path);
923 /* look for a conflicing name */
924 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
925 name, namelen, 0);
926 if (di && !IS_ERR(di)) {
927 ret = drop_one_dir_item(trans, root, path, dir, di);
928 BUG_ON(ret);
930 btrfs_release_path(path);
932 insert:
933 /* insert our name */
934 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
935 btrfs_inode_ref_index(eb, ref));
936 BUG_ON(ret);
938 btrfs_update_inode(trans, root, inode);
940 out:
941 ref_ptr = (unsigned long)(ref + 1) + namelen;
942 kfree(name);
943 if (ref_ptr < ref_end)
944 goto again;
946 /* finally write the back reference in the inode */
947 ret = overwrite_item(trans, root, path, eb, slot, key);
948 BUG_ON(ret);
950 out_nowrite:
951 btrfs_release_path(path);
952 iput(dir);
953 iput(inode);
954 return 0;
957 static int insert_orphan_item(struct btrfs_trans_handle *trans,
958 struct btrfs_root *root, u64 offset)
960 int ret;
961 ret = btrfs_find_orphan_item(root, offset);
962 if (ret > 0)
963 ret = btrfs_insert_orphan_item(trans, root, offset);
964 return ret;
969 * There are a few corners where the link count of the file can't
970 * be properly maintained during replay. So, instead of adding
971 * lots of complexity to the log code, we just scan the backrefs
972 * for any file that has been through replay.
974 * The scan will update the link count on the inode to reflect the
975 * number of back refs found. If it goes down to zero, the iput
976 * will free the inode.
978 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
979 struct btrfs_root *root,
980 struct inode *inode)
982 struct btrfs_path *path;
983 int ret;
984 struct btrfs_key key;
985 u64 nlink = 0;
986 unsigned long ptr;
987 unsigned long ptr_end;
988 int name_len;
989 u64 ino = btrfs_ino(inode);
991 key.objectid = ino;
992 key.type = BTRFS_INODE_REF_KEY;
993 key.offset = (u64)-1;
995 path = btrfs_alloc_path();
996 if (!path)
997 return -ENOMEM;
999 while (1) {
1000 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1001 if (ret < 0)
1002 break;
1003 if (ret > 0) {
1004 if (path->slots[0] == 0)
1005 break;
1006 path->slots[0]--;
1008 btrfs_item_key_to_cpu(path->nodes[0], &key,
1009 path->slots[0]);
1010 if (key.objectid != ino ||
1011 key.type != BTRFS_INODE_REF_KEY)
1012 break;
1013 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1014 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1015 path->slots[0]);
1016 while (ptr < ptr_end) {
1017 struct btrfs_inode_ref *ref;
1019 ref = (struct btrfs_inode_ref *)ptr;
1020 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1021 ref);
1022 ptr = (unsigned long)(ref + 1) + name_len;
1023 nlink++;
1026 if (key.offset == 0)
1027 break;
1028 key.offset--;
1029 btrfs_release_path(path);
1031 btrfs_release_path(path);
1032 if (nlink != inode->i_nlink) {
1033 inode->i_nlink = nlink;
1034 btrfs_update_inode(trans, root, inode);
1036 BTRFS_I(inode)->index_cnt = (u64)-1;
1038 if (inode->i_nlink == 0) {
1039 if (S_ISDIR(inode->i_mode)) {
1040 ret = replay_dir_deletes(trans, root, NULL, path,
1041 ino, 1);
1042 BUG_ON(ret);
1044 ret = insert_orphan_item(trans, root, ino);
1045 BUG_ON(ret);
1047 btrfs_free_path(path);
1049 return 0;
1052 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1053 struct btrfs_root *root,
1054 struct btrfs_path *path)
1056 int ret;
1057 struct btrfs_key key;
1058 struct inode *inode;
1060 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1061 key.type = BTRFS_ORPHAN_ITEM_KEY;
1062 key.offset = (u64)-1;
1063 while (1) {
1064 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1065 if (ret < 0)
1066 break;
1068 if (ret == 1) {
1069 if (path->slots[0] == 0)
1070 break;
1071 path->slots[0]--;
1074 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1075 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1076 key.type != BTRFS_ORPHAN_ITEM_KEY)
1077 break;
1079 ret = btrfs_del_item(trans, root, path);
1080 if (ret)
1081 goto out;
1083 btrfs_release_path(path);
1084 inode = read_one_inode(root, key.offset);
1085 if (!inode)
1086 return -EIO;
1088 ret = fixup_inode_link_count(trans, root, inode);
1089 BUG_ON(ret);
1091 iput(inode);
1094 * fixup on a directory may create new entries,
1095 * make sure we always look for the highset possible
1096 * offset
1098 key.offset = (u64)-1;
1100 ret = 0;
1101 out:
1102 btrfs_release_path(path);
1103 return ret;
1108 * record a given inode in the fixup dir so we can check its link
1109 * count when replay is done. The link count is incremented here
1110 * so the inode won't go away until we check it
1112 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1113 struct btrfs_root *root,
1114 struct btrfs_path *path,
1115 u64 objectid)
1117 struct btrfs_key key;
1118 int ret = 0;
1119 struct inode *inode;
1121 inode = read_one_inode(root, objectid);
1122 if (!inode)
1123 return -EIO;
1125 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1126 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1127 key.offset = objectid;
1129 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1131 btrfs_release_path(path);
1132 if (ret == 0) {
1133 btrfs_inc_nlink(inode);
1134 btrfs_update_inode(trans, root, inode);
1135 } else if (ret == -EEXIST) {
1136 ret = 0;
1137 } else {
1138 BUG();
1140 iput(inode);
1142 return ret;
1146 * when replaying the log for a directory, we only insert names
1147 * for inodes that actually exist. This means an fsync on a directory
1148 * does not implicitly fsync all the new files in it
1150 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1151 struct btrfs_root *root,
1152 struct btrfs_path *path,
1153 u64 dirid, u64 index,
1154 char *name, int name_len, u8 type,
1155 struct btrfs_key *location)
1157 struct inode *inode;
1158 struct inode *dir;
1159 int ret;
1161 inode = read_one_inode(root, location->objectid);
1162 if (!inode)
1163 return -ENOENT;
1165 dir = read_one_inode(root, dirid);
1166 if (!dir) {
1167 iput(inode);
1168 return -EIO;
1170 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1172 /* FIXME, put inode into FIXUP list */
1174 iput(inode);
1175 iput(dir);
1176 return ret;
1180 * take a single entry in a log directory item and replay it into
1181 * the subvolume.
1183 * if a conflicting item exists in the subdirectory already,
1184 * the inode it points to is unlinked and put into the link count
1185 * fix up tree.
1187 * If a name from the log points to a file or directory that does
1188 * not exist in the FS, it is skipped. fsyncs on directories
1189 * do not force down inodes inside that directory, just changes to the
1190 * names or unlinks in a directory.
1192 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1193 struct btrfs_root *root,
1194 struct btrfs_path *path,
1195 struct extent_buffer *eb,
1196 struct btrfs_dir_item *di,
1197 struct btrfs_key *key)
1199 char *name;
1200 int name_len;
1201 struct btrfs_dir_item *dst_di;
1202 struct btrfs_key found_key;
1203 struct btrfs_key log_key;
1204 struct inode *dir;
1205 u8 log_type;
1206 int exists;
1207 int ret;
1209 dir = read_one_inode(root, key->objectid);
1210 if (!dir)
1211 return -EIO;
1213 name_len = btrfs_dir_name_len(eb, di);
1214 name = kmalloc(name_len, GFP_NOFS);
1215 if (!name)
1216 return -ENOMEM;
1218 log_type = btrfs_dir_type(eb, di);
1219 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1220 name_len);
1222 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1223 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1224 if (exists == 0)
1225 exists = 1;
1226 else
1227 exists = 0;
1228 btrfs_release_path(path);
1230 if (key->type == BTRFS_DIR_ITEM_KEY) {
1231 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1232 name, name_len, 1);
1233 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1234 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1235 key->objectid,
1236 key->offset, name,
1237 name_len, 1);
1238 } else {
1239 BUG();
1241 if (IS_ERR_OR_NULL(dst_di)) {
1242 /* we need a sequence number to insert, so we only
1243 * do inserts for the BTRFS_DIR_INDEX_KEY types
1245 if (key->type != BTRFS_DIR_INDEX_KEY)
1246 goto out;
1247 goto insert;
1250 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1251 /* the existing item matches the logged item */
1252 if (found_key.objectid == log_key.objectid &&
1253 found_key.type == log_key.type &&
1254 found_key.offset == log_key.offset &&
1255 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1256 goto out;
1260 * don't drop the conflicting directory entry if the inode
1261 * for the new entry doesn't exist
1263 if (!exists)
1264 goto out;
1266 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1267 BUG_ON(ret);
1269 if (key->type == BTRFS_DIR_INDEX_KEY)
1270 goto insert;
1271 out:
1272 btrfs_release_path(path);
1273 kfree(name);
1274 iput(dir);
1275 return 0;
1277 insert:
1278 btrfs_release_path(path);
1279 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1280 name, name_len, log_type, &log_key);
1282 BUG_ON(ret && ret != -ENOENT);
1283 goto out;
1287 * find all the names in a directory item and reconcile them into
1288 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1289 * one name in a directory item, but the same code gets used for
1290 * both directory index types
1292 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1293 struct btrfs_root *root,
1294 struct btrfs_path *path,
1295 struct extent_buffer *eb, int slot,
1296 struct btrfs_key *key)
1298 int ret;
1299 u32 item_size = btrfs_item_size_nr(eb, slot);
1300 struct btrfs_dir_item *di;
1301 int name_len;
1302 unsigned long ptr;
1303 unsigned long ptr_end;
1305 ptr = btrfs_item_ptr_offset(eb, slot);
1306 ptr_end = ptr + item_size;
1307 while (ptr < ptr_end) {
1308 di = (struct btrfs_dir_item *)ptr;
1309 if (verify_dir_item(root, eb, di))
1310 return -EIO;
1311 name_len = btrfs_dir_name_len(eb, di);
1312 ret = replay_one_name(trans, root, path, eb, di, key);
1313 BUG_ON(ret);
1314 ptr = (unsigned long)(di + 1);
1315 ptr += name_len;
1317 return 0;
1321 * directory replay has two parts. There are the standard directory
1322 * items in the log copied from the subvolume, and range items
1323 * created in the log while the subvolume was logged.
1325 * The range items tell us which parts of the key space the log
1326 * is authoritative for. During replay, if a key in the subvolume
1327 * directory is in a logged range item, but not actually in the log
1328 * that means it was deleted from the directory before the fsync
1329 * and should be removed.
1331 static noinline int find_dir_range(struct btrfs_root *root,
1332 struct btrfs_path *path,
1333 u64 dirid, int key_type,
1334 u64 *start_ret, u64 *end_ret)
1336 struct btrfs_key key;
1337 u64 found_end;
1338 struct btrfs_dir_log_item *item;
1339 int ret;
1340 int nritems;
1342 if (*start_ret == (u64)-1)
1343 return 1;
1345 key.objectid = dirid;
1346 key.type = key_type;
1347 key.offset = *start_ret;
1349 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1350 if (ret < 0)
1351 goto out;
1352 if (ret > 0) {
1353 if (path->slots[0] == 0)
1354 goto out;
1355 path->slots[0]--;
1357 if (ret != 0)
1358 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1360 if (key.type != key_type || key.objectid != dirid) {
1361 ret = 1;
1362 goto next;
1364 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1365 struct btrfs_dir_log_item);
1366 found_end = btrfs_dir_log_end(path->nodes[0], item);
1368 if (*start_ret >= key.offset && *start_ret <= found_end) {
1369 ret = 0;
1370 *start_ret = key.offset;
1371 *end_ret = found_end;
1372 goto out;
1374 ret = 1;
1375 next:
1376 /* check the next slot in the tree to see if it is a valid item */
1377 nritems = btrfs_header_nritems(path->nodes[0]);
1378 if (path->slots[0] >= nritems) {
1379 ret = btrfs_next_leaf(root, path);
1380 if (ret)
1381 goto out;
1382 } else {
1383 path->slots[0]++;
1386 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1388 if (key.type != key_type || key.objectid != dirid) {
1389 ret = 1;
1390 goto out;
1392 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1393 struct btrfs_dir_log_item);
1394 found_end = btrfs_dir_log_end(path->nodes[0], item);
1395 *start_ret = key.offset;
1396 *end_ret = found_end;
1397 ret = 0;
1398 out:
1399 btrfs_release_path(path);
1400 return ret;
1404 * this looks for a given directory item in the log. If the directory
1405 * item is not in the log, the item is removed and the inode it points
1406 * to is unlinked
1408 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1409 struct btrfs_root *root,
1410 struct btrfs_root *log,
1411 struct btrfs_path *path,
1412 struct btrfs_path *log_path,
1413 struct inode *dir,
1414 struct btrfs_key *dir_key)
1416 int ret;
1417 struct extent_buffer *eb;
1418 int slot;
1419 u32 item_size;
1420 struct btrfs_dir_item *di;
1421 struct btrfs_dir_item *log_di;
1422 int name_len;
1423 unsigned long ptr;
1424 unsigned long ptr_end;
1425 char *name;
1426 struct inode *inode;
1427 struct btrfs_key location;
1429 again:
1430 eb = path->nodes[0];
1431 slot = path->slots[0];
1432 item_size = btrfs_item_size_nr(eb, slot);
1433 ptr = btrfs_item_ptr_offset(eb, slot);
1434 ptr_end = ptr + item_size;
1435 while (ptr < ptr_end) {
1436 di = (struct btrfs_dir_item *)ptr;
1437 if (verify_dir_item(root, eb, di)) {
1438 ret = -EIO;
1439 goto out;
1442 name_len = btrfs_dir_name_len(eb, di);
1443 name = kmalloc(name_len, GFP_NOFS);
1444 if (!name) {
1445 ret = -ENOMEM;
1446 goto out;
1448 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1449 name_len);
1450 log_di = NULL;
1451 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1452 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1453 dir_key->objectid,
1454 name, name_len, 0);
1455 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1456 log_di = btrfs_lookup_dir_index_item(trans, log,
1457 log_path,
1458 dir_key->objectid,
1459 dir_key->offset,
1460 name, name_len, 0);
1462 if (IS_ERR_OR_NULL(log_di)) {
1463 btrfs_dir_item_key_to_cpu(eb, di, &location);
1464 btrfs_release_path(path);
1465 btrfs_release_path(log_path);
1466 inode = read_one_inode(root, location.objectid);
1467 if (!inode) {
1468 kfree(name);
1469 return -EIO;
1472 ret = link_to_fixup_dir(trans, root,
1473 path, location.objectid);
1474 BUG_ON(ret);
1475 btrfs_inc_nlink(inode);
1476 ret = btrfs_unlink_inode(trans, root, dir, inode,
1477 name, name_len);
1478 BUG_ON(ret);
1479 kfree(name);
1480 iput(inode);
1482 /* there might still be more names under this key
1483 * check and repeat if required
1485 ret = btrfs_search_slot(NULL, root, dir_key, path,
1486 0, 0);
1487 if (ret == 0)
1488 goto again;
1489 ret = 0;
1490 goto out;
1492 btrfs_release_path(log_path);
1493 kfree(name);
1495 ptr = (unsigned long)(di + 1);
1496 ptr += name_len;
1498 ret = 0;
1499 out:
1500 btrfs_release_path(path);
1501 btrfs_release_path(log_path);
1502 return ret;
1506 * deletion replay happens before we copy any new directory items
1507 * out of the log or out of backreferences from inodes. It
1508 * scans the log to find ranges of keys that log is authoritative for,
1509 * and then scans the directory to find items in those ranges that are
1510 * not present in the log.
1512 * Anything we don't find in the log is unlinked and removed from the
1513 * directory.
1515 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1516 struct btrfs_root *root,
1517 struct btrfs_root *log,
1518 struct btrfs_path *path,
1519 u64 dirid, int del_all)
1521 u64 range_start;
1522 u64 range_end;
1523 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1524 int ret = 0;
1525 struct btrfs_key dir_key;
1526 struct btrfs_key found_key;
1527 struct btrfs_path *log_path;
1528 struct inode *dir;
1530 dir_key.objectid = dirid;
1531 dir_key.type = BTRFS_DIR_ITEM_KEY;
1532 log_path = btrfs_alloc_path();
1533 if (!log_path)
1534 return -ENOMEM;
1536 dir = read_one_inode(root, dirid);
1537 /* it isn't an error if the inode isn't there, that can happen
1538 * because we replay the deletes before we copy in the inode item
1539 * from the log
1541 if (!dir) {
1542 btrfs_free_path(log_path);
1543 return 0;
1545 again:
1546 range_start = 0;
1547 range_end = 0;
1548 while (1) {
1549 if (del_all)
1550 range_end = (u64)-1;
1551 else {
1552 ret = find_dir_range(log, path, dirid, key_type,
1553 &range_start, &range_end);
1554 if (ret != 0)
1555 break;
1558 dir_key.offset = range_start;
1559 while (1) {
1560 int nritems;
1561 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1562 0, 0);
1563 if (ret < 0)
1564 goto out;
1566 nritems = btrfs_header_nritems(path->nodes[0]);
1567 if (path->slots[0] >= nritems) {
1568 ret = btrfs_next_leaf(root, path);
1569 if (ret)
1570 break;
1572 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1573 path->slots[0]);
1574 if (found_key.objectid != dirid ||
1575 found_key.type != dir_key.type)
1576 goto next_type;
1578 if (found_key.offset > range_end)
1579 break;
1581 ret = check_item_in_log(trans, root, log, path,
1582 log_path, dir,
1583 &found_key);
1584 BUG_ON(ret);
1585 if (found_key.offset == (u64)-1)
1586 break;
1587 dir_key.offset = found_key.offset + 1;
1589 btrfs_release_path(path);
1590 if (range_end == (u64)-1)
1591 break;
1592 range_start = range_end + 1;
1595 next_type:
1596 ret = 0;
1597 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1598 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1599 dir_key.type = BTRFS_DIR_INDEX_KEY;
1600 btrfs_release_path(path);
1601 goto again;
1603 out:
1604 btrfs_release_path(path);
1605 btrfs_free_path(log_path);
1606 iput(dir);
1607 return ret;
1611 * the process_func used to replay items from the log tree. This
1612 * gets called in two different stages. The first stage just looks
1613 * for inodes and makes sure they are all copied into the subvolume.
1615 * The second stage copies all the other item types from the log into
1616 * the subvolume. The two stage approach is slower, but gets rid of
1617 * lots of complexity around inodes referencing other inodes that exist
1618 * only in the log (references come from either directory items or inode
1619 * back refs).
1621 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1622 struct walk_control *wc, u64 gen)
1624 int nritems;
1625 struct btrfs_path *path;
1626 struct btrfs_root *root = wc->replay_dest;
1627 struct btrfs_key key;
1628 int level;
1629 int i;
1630 int ret;
1632 btrfs_read_buffer(eb, gen);
1634 level = btrfs_header_level(eb);
1636 if (level != 0)
1637 return 0;
1639 path = btrfs_alloc_path();
1640 BUG_ON(!path);
1642 nritems = btrfs_header_nritems(eb);
1643 for (i = 0; i < nritems; i++) {
1644 btrfs_item_key_to_cpu(eb, &key, i);
1646 /* inode keys are done during the first stage */
1647 if (key.type == BTRFS_INODE_ITEM_KEY &&
1648 wc->stage == LOG_WALK_REPLAY_INODES) {
1649 struct btrfs_inode_item *inode_item;
1650 u32 mode;
1652 inode_item = btrfs_item_ptr(eb, i,
1653 struct btrfs_inode_item);
1654 mode = btrfs_inode_mode(eb, inode_item);
1655 if (S_ISDIR(mode)) {
1656 ret = replay_dir_deletes(wc->trans,
1657 root, log, path, key.objectid, 0);
1658 BUG_ON(ret);
1660 ret = overwrite_item(wc->trans, root, path,
1661 eb, i, &key);
1662 BUG_ON(ret);
1664 /* for regular files, make sure corresponding
1665 * orhpan item exist. extents past the new EOF
1666 * will be truncated later by orphan cleanup.
1668 if (S_ISREG(mode)) {
1669 ret = insert_orphan_item(wc->trans, root,
1670 key.objectid);
1671 BUG_ON(ret);
1674 ret = link_to_fixup_dir(wc->trans, root,
1675 path, key.objectid);
1676 BUG_ON(ret);
1678 if (wc->stage < LOG_WALK_REPLAY_ALL)
1679 continue;
1681 /* these keys are simply copied */
1682 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1683 ret = overwrite_item(wc->trans, root, path,
1684 eb, i, &key);
1685 BUG_ON(ret);
1686 } else if (key.type == BTRFS_INODE_REF_KEY) {
1687 ret = add_inode_ref(wc->trans, root, log, path,
1688 eb, i, &key);
1689 BUG_ON(ret && ret != -ENOENT);
1690 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1691 ret = replay_one_extent(wc->trans, root, path,
1692 eb, i, &key);
1693 BUG_ON(ret);
1694 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1695 key.type == BTRFS_DIR_INDEX_KEY) {
1696 ret = replay_one_dir_item(wc->trans, root, path,
1697 eb, i, &key);
1698 BUG_ON(ret);
1701 btrfs_free_path(path);
1702 return 0;
1705 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1706 struct btrfs_root *root,
1707 struct btrfs_path *path, int *level,
1708 struct walk_control *wc)
1710 u64 root_owner;
1711 u64 bytenr;
1712 u64 ptr_gen;
1713 struct extent_buffer *next;
1714 struct extent_buffer *cur;
1715 struct extent_buffer *parent;
1716 u32 blocksize;
1717 int ret = 0;
1719 WARN_ON(*level < 0);
1720 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1722 while (*level > 0) {
1723 WARN_ON(*level < 0);
1724 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1725 cur = path->nodes[*level];
1727 if (btrfs_header_level(cur) != *level)
1728 WARN_ON(1);
1730 if (path->slots[*level] >=
1731 btrfs_header_nritems(cur))
1732 break;
1734 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1735 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1736 blocksize = btrfs_level_size(root, *level - 1);
1738 parent = path->nodes[*level];
1739 root_owner = btrfs_header_owner(parent);
1741 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1742 if (!next)
1743 return -ENOMEM;
1745 if (*level == 1) {
1746 wc->process_func(root, next, wc, ptr_gen);
1748 path->slots[*level]++;
1749 if (wc->free) {
1750 btrfs_read_buffer(next, ptr_gen);
1752 btrfs_tree_lock(next);
1753 clean_tree_block(trans, root, next);
1754 btrfs_set_lock_blocking(next);
1755 btrfs_wait_tree_block_writeback(next);
1756 btrfs_tree_unlock(next);
1758 WARN_ON(root_owner !=
1759 BTRFS_TREE_LOG_OBJECTID);
1760 ret = btrfs_free_reserved_extent(root,
1761 bytenr, blocksize);
1762 BUG_ON(ret);
1764 free_extent_buffer(next);
1765 continue;
1767 btrfs_read_buffer(next, ptr_gen);
1769 WARN_ON(*level <= 0);
1770 if (path->nodes[*level-1])
1771 free_extent_buffer(path->nodes[*level-1]);
1772 path->nodes[*level-1] = next;
1773 *level = btrfs_header_level(next);
1774 path->slots[*level] = 0;
1775 cond_resched();
1777 WARN_ON(*level < 0);
1778 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1780 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1782 cond_resched();
1783 return 0;
1786 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1787 struct btrfs_root *root,
1788 struct btrfs_path *path, int *level,
1789 struct walk_control *wc)
1791 u64 root_owner;
1792 int i;
1793 int slot;
1794 int ret;
1796 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1797 slot = path->slots[i];
1798 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1799 path->slots[i]++;
1800 *level = i;
1801 WARN_ON(*level == 0);
1802 return 0;
1803 } else {
1804 struct extent_buffer *parent;
1805 if (path->nodes[*level] == root->node)
1806 parent = path->nodes[*level];
1807 else
1808 parent = path->nodes[*level + 1];
1810 root_owner = btrfs_header_owner(parent);
1811 wc->process_func(root, path->nodes[*level], wc,
1812 btrfs_header_generation(path->nodes[*level]));
1813 if (wc->free) {
1814 struct extent_buffer *next;
1816 next = path->nodes[*level];
1818 btrfs_tree_lock(next);
1819 clean_tree_block(trans, root, next);
1820 btrfs_set_lock_blocking(next);
1821 btrfs_wait_tree_block_writeback(next);
1822 btrfs_tree_unlock(next);
1824 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1825 ret = btrfs_free_reserved_extent(root,
1826 path->nodes[*level]->start,
1827 path->nodes[*level]->len);
1828 BUG_ON(ret);
1830 free_extent_buffer(path->nodes[*level]);
1831 path->nodes[*level] = NULL;
1832 *level = i + 1;
1835 return 1;
1839 * drop the reference count on the tree rooted at 'snap'. This traverses
1840 * the tree freeing any blocks that have a ref count of zero after being
1841 * decremented.
1843 static int walk_log_tree(struct btrfs_trans_handle *trans,
1844 struct btrfs_root *log, struct walk_control *wc)
1846 int ret = 0;
1847 int wret;
1848 int level;
1849 struct btrfs_path *path;
1850 int i;
1851 int orig_level;
1853 path = btrfs_alloc_path();
1854 if (!path)
1855 return -ENOMEM;
1857 level = btrfs_header_level(log->node);
1858 orig_level = level;
1859 path->nodes[level] = log->node;
1860 extent_buffer_get(log->node);
1861 path->slots[level] = 0;
1863 while (1) {
1864 wret = walk_down_log_tree(trans, log, path, &level, wc);
1865 if (wret > 0)
1866 break;
1867 if (wret < 0)
1868 ret = wret;
1870 wret = walk_up_log_tree(trans, log, path, &level, wc);
1871 if (wret > 0)
1872 break;
1873 if (wret < 0)
1874 ret = wret;
1877 /* was the root node processed? if not, catch it here */
1878 if (path->nodes[orig_level]) {
1879 wc->process_func(log, path->nodes[orig_level], wc,
1880 btrfs_header_generation(path->nodes[orig_level]));
1881 if (wc->free) {
1882 struct extent_buffer *next;
1884 next = path->nodes[orig_level];
1886 btrfs_tree_lock(next);
1887 clean_tree_block(trans, log, next);
1888 btrfs_set_lock_blocking(next);
1889 btrfs_wait_tree_block_writeback(next);
1890 btrfs_tree_unlock(next);
1892 WARN_ON(log->root_key.objectid !=
1893 BTRFS_TREE_LOG_OBJECTID);
1894 ret = btrfs_free_reserved_extent(log, next->start,
1895 next->len);
1896 BUG_ON(ret);
1900 for (i = 0; i <= orig_level; i++) {
1901 if (path->nodes[i]) {
1902 free_extent_buffer(path->nodes[i]);
1903 path->nodes[i] = NULL;
1906 btrfs_free_path(path);
1907 return ret;
1911 * helper function to update the item for a given subvolumes log root
1912 * in the tree of log roots
1914 static int update_log_root(struct btrfs_trans_handle *trans,
1915 struct btrfs_root *log)
1917 int ret;
1919 if (log->log_transid == 1) {
1920 /* insert root item on the first sync */
1921 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1922 &log->root_key, &log->root_item);
1923 } else {
1924 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1925 &log->root_key, &log->root_item);
1927 return ret;
1930 static int wait_log_commit(struct btrfs_trans_handle *trans,
1931 struct btrfs_root *root, unsigned long transid)
1933 DEFINE_WAIT(wait);
1934 int index = transid % 2;
1937 * we only allow two pending log transactions at a time,
1938 * so we know that if ours is more than 2 older than the
1939 * current transaction, we're done
1941 do {
1942 prepare_to_wait(&root->log_commit_wait[index],
1943 &wait, TASK_UNINTERRUPTIBLE);
1944 mutex_unlock(&root->log_mutex);
1946 if (root->fs_info->last_trans_log_full_commit !=
1947 trans->transid && root->log_transid < transid + 2 &&
1948 atomic_read(&root->log_commit[index]))
1949 schedule();
1951 finish_wait(&root->log_commit_wait[index], &wait);
1952 mutex_lock(&root->log_mutex);
1953 } while (root->log_transid < transid + 2 &&
1954 atomic_read(&root->log_commit[index]));
1955 return 0;
1958 static int wait_for_writer(struct btrfs_trans_handle *trans,
1959 struct btrfs_root *root)
1961 DEFINE_WAIT(wait);
1962 while (atomic_read(&root->log_writers)) {
1963 prepare_to_wait(&root->log_writer_wait,
1964 &wait, TASK_UNINTERRUPTIBLE);
1965 mutex_unlock(&root->log_mutex);
1966 if (root->fs_info->last_trans_log_full_commit !=
1967 trans->transid && atomic_read(&root->log_writers))
1968 schedule();
1969 mutex_lock(&root->log_mutex);
1970 finish_wait(&root->log_writer_wait, &wait);
1972 return 0;
1976 * btrfs_sync_log does sends a given tree log down to the disk and
1977 * updates the super blocks to record it. When this call is done,
1978 * you know that any inodes previously logged are safely on disk only
1979 * if it returns 0.
1981 * Any other return value means you need to call btrfs_commit_transaction.
1982 * Some of the edge cases for fsyncing directories that have had unlinks
1983 * or renames done in the past mean that sometimes the only safe
1984 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1985 * that has happened.
1987 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1988 struct btrfs_root *root)
1990 int index1;
1991 int index2;
1992 int mark;
1993 int ret;
1994 struct btrfs_root *log = root->log_root;
1995 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1996 unsigned long log_transid = 0;
1998 mutex_lock(&root->log_mutex);
1999 index1 = root->log_transid % 2;
2000 if (atomic_read(&root->log_commit[index1])) {
2001 wait_log_commit(trans, root, root->log_transid);
2002 mutex_unlock(&root->log_mutex);
2003 return 0;
2005 atomic_set(&root->log_commit[index1], 1);
2007 /* wait for previous tree log sync to complete */
2008 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2009 wait_log_commit(trans, root, root->log_transid - 1);
2011 while (1) {
2012 unsigned long batch = root->log_batch;
2013 if (root->log_multiple_pids) {
2014 mutex_unlock(&root->log_mutex);
2015 schedule_timeout_uninterruptible(1);
2016 mutex_lock(&root->log_mutex);
2018 wait_for_writer(trans, root);
2019 if (batch == root->log_batch)
2020 break;
2023 /* bail out if we need to do a full commit */
2024 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2025 ret = -EAGAIN;
2026 mutex_unlock(&root->log_mutex);
2027 goto out;
2030 log_transid = root->log_transid;
2031 if (log_transid % 2 == 0)
2032 mark = EXTENT_DIRTY;
2033 else
2034 mark = EXTENT_NEW;
2036 /* we start IO on all the marked extents here, but we don't actually
2037 * wait for them until later.
2039 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2040 BUG_ON(ret);
2042 btrfs_set_root_node(&log->root_item, log->node);
2044 root->log_batch = 0;
2045 root->log_transid++;
2046 log->log_transid = root->log_transid;
2047 root->log_start_pid = 0;
2048 smp_mb();
2050 * IO has been started, blocks of the log tree have WRITTEN flag set
2051 * in their headers. new modifications of the log will be written to
2052 * new positions. so it's safe to allow log writers to go in.
2054 mutex_unlock(&root->log_mutex);
2056 mutex_lock(&log_root_tree->log_mutex);
2057 log_root_tree->log_batch++;
2058 atomic_inc(&log_root_tree->log_writers);
2059 mutex_unlock(&log_root_tree->log_mutex);
2061 ret = update_log_root(trans, log);
2063 mutex_lock(&log_root_tree->log_mutex);
2064 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2065 smp_mb();
2066 if (waitqueue_active(&log_root_tree->log_writer_wait))
2067 wake_up(&log_root_tree->log_writer_wait);
2070 if (ret) {
2071 BUG_ON(ret != -ENOSPC);
2072 root->fs_info->last_trans_log_full_commit = trans->transid;
2073 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2074 mutex_unlock(&log_root_tree->log_mutex);
2075 ret = -EAGAIN;
2076 goto out;
2079 index2 = log_root_tree->log_transid % 2;
2080 if (atomic_read(&log_root_tree->log_commit[index2])) {
2081 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2082 wait_log_commit(trans, log_root_tree,
2083 log_root_tree->log_transid);
2084 mutex_unlock(&log_root_tree->log_mutex);
2085 ret = 0;
2086 goto out;
2088 atomic_set(&log_root_tree->log_commit[index2], 1);
2090 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2091 wait_log_commit(trans, log_root_tree,
2092 log_root_tree->log_transid - 1);
2095 wait_for_writer(trans, log_root_tree);
2098 * now that we've moved on to the tree of log tree roots,
2099 * check the full commit flag again
2101 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2102 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2103 mutex_unlock(&log_root_tree->log_mutex);
2104 ret = -EAGAIN;
2105 goto out_wake_log_root;
2108 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2109 &log_root_tree->dirty_log_pages,
2110 EXTENT_DIRTY | EXTENT_NEW);
2111 BUG_ON(ret);
2112 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2114 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2115 log_root_tree->node->start);
2116 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2117 btrfs_header_level(log_root_tree->node));
2119 log_root_tree->log_batch = 0;
2120 log_root_tree->log_transid++;
2121 smp_mb();
2123 mutex_unlock(&log_root_tree->log_mutex);
2126 * nobody else is going to jump in and write the the ctree
2127 * super here because the log_commit atomic below is protecting
2128 * us. We must be called with a transaction handle pinning
2129 * the running transaction open, so a full commit can't hop
2130 * in and cause problems either.
2132 btrfs_scrub_pause_super(root);
2133 write_ctree_super(trans, root->fs_info->tree_root, 1);
2134 btrfs_scrub_continue_super(root);
2135 ret = 0;
2137 mutex_lock(&root->log_mutex);
2138 if (root->last_log_commit < log_transid)
2139 root->last_log_commit = log_transid;
2140 mutex_unlock(&root->log_mutex);
2142 out_wake_log_root:
2143 atomic_set(&log_root_tree->log_commit[index2], 0);
2144 smp_mb();
2145 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2146 wake_up(&log_root_tree->log_commit_wait[index2]);
2147 out:
2148 atomic_set(&root->log_commit[index1], 0);
2149 smp_mb();
2150 if (waitqueue_active(&root->log_commit_wait[index1]))
2151 wake_up(&root->log_commit_wait[index1]);
2152 return ret;
2155 static void free_log_tree(struct btrfs_trans_handle *trans,
2156 struct btrfs_root *log)
2158 int ret;
2159 u64 start;
2160 u64 end;
2161 struct walk_control wc = {
2162 .free = 1,
2163 .process_func = process_one_buffer
2166 ret = walk_log_tree(trans, log, &wc);
2167 BUG_ON(ret);
2169 while (1) {
2170 ret = find_first_extent_bit(&log->dirty_log_pages,
2171 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2172 if (ret)
2173 break;
2175 clear_extent_bits(&log->dirty_log_pages, start, end,
2176 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2179 free_extent_buffer(log->node);
2180 kfree(log);
2184 * free all the extents used by the tree log. This should be called
2185 * at commit time of the full transaction
2187 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2189 if (root->log_root) {
2190 free_log_tree(trans, root->log_root);
2191 root->log_root = NULL;
2193 return 0;
2196 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2197 struct btrfs_fs_info *fs_info)
2199 if (fs_info->log_root_tree) {
2200 free_log_tree(trans, fs_info->log_root_tree);
2201 fs_info->log_root_tree = NULL;
2203 return 0;
2207 * If both a file and directory are logged, and unlinks or renames are
2208 * mixed in, we have a few interesting corners:
2210 * create file X in dir Y
2211 * link file X to X.link in dir Y
2212 * fsync file X
2213 * unlink file X but leave X.link
2214 * fsync dir Y
2216 * After a crash we would expect only X.link to exist. But file X
2217 * didn't get fsync'd again so the log has back refs for X and X.link.
2219 * We solve this by removing directory entries and inode backrefs from the
2220 * log when a file that was logged in the current transaction is
2221 * unlinked. Any later fsync will include the updated log entries, and
2222 * we'll be able to reconstruct the proper directory items from backrefs.
2224 * This optimizations allows us to avoid relogging the entire inode
2225 * or the entire directory.
2227 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2228 struct btrfs_root *root,
2229 const char *name, int name_len,
2230 struct inode *dir, u64 index)
2232 struct btrfs_root *log;
2233 struct btrfs_dir_item *di;
2234 struct btrfs_path *path;
2235 int ret;
2236 int err = 0;
2237 int bytes_del = 0;
2238 u64 dir_ino = btrfs_ino(dir);
2240 if (BTRFS_I(dir)->logged_trans < trans->transid)
2241 return 0;
2243 ret = join_running_log_trans(root);
2244 if (ret)
2245 return 0;
2247 mutex_lock(&BTRFS_I(dir)->log_mutex);
2249 log = root->log_root;
2250 path = btrfs_alloc_path();
2251 if (!path) {
2252 err = -ENOMEM;
2253 goto out_unlock;
2256 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2257 name, name_len, -1);
2258 if (IS_ERR(di)) {
2259 err = PTR_ERR(di);
2260 goto fail;
2262 if (di) {
2263 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2264 bytes_del += name_len;
2265 BUG_ON(ret);
2267 btrfs_release_path(path);
2268 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2269 index, name, name_len, -1);
2270 if (IS_ERR(di)) {
2271 err = PTR_ERR(di);
2272 goto fail;
2274 if (di) {
2275 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2276 bytes_del += name_len;
2277 BUG_ON(ret);
2280 /* update the directory size in the log to reflect the names
2281 * we have removed
2283 if (bytes_del) {
2284 struct btrfs_key key;
2286 key.objectid = dir_ino;
2287 key.offset = 0;
2288 key.type = BTRFS_INODE_ITEM_KEY;
2289 btrfs_release_path(path);
2291 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2292 if (ret < 0) {
2293 err = ret;
2294 goto fail;
2296 if (ret == 0) {
2297 struct btrfs_inode_item *item;
2298 u64 i_size;
2300 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2301 struct btrfs_inode_item);
2302 i_size = btrfs_inode_size(path->nodes[0], item);
2303 if (i_size > bytes_del)
2304 i_size -= bytes_del;
2305 else
2306 i_size = 0;
2307 btrfs_set_inode_size(path->nodes[0], item, i_size);
2308 btrfs_mark_buffer_dirty(path->nodes[0]);
2309 } else
2310 ret = 0;
2311 btrfs_release_path(path);
2313 fail:
2314 btrfs_free_path(path);
2315 out_unlock:
2316 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2317 if (ret == -ENOSPC) {
2318 root->fs_info->last_trans_log_full_commit = trans->transid;
2319 ret = 0;
2321 btrfs_end_log_trans(root);
2323 return err;
2326 /* see comments for btrfs_del_dir_entries_in_log */
2327 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2328 struct btrfs_root *root,
2329 const char *name, int name_len,
2330 struct inode *inode, u64 dirid)
2332 struct btrfs_root *log;
2333 u64 index;
2334 int ret;
2336 if (BTRFS_I(inode)->logged_trans < trans->transid)
2337 return 0;
2339 ret = join_running_log_trans(root);
2340 if (ret)
2341 return 0;
2342 log = root->log_root;
2343 mutex_lock(&BTRFS_I(inode)->log_mutex);
2345 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2346 dirid, &index);
2347 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2348 if (ret == -ENOSPC) {
2349 root->fs_info->last_trans_log_full_commit = trans->transid;
2350 ret = 0;
2352 btrfs_end_log_trans(root);
2354 return ret;
2358 * creates a range item in the log for 'dirid'. first_offset and
2359 * last_offset tell us which parts of the key space the log should
2360 * be considered authoritative for.
2362 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2363 struct btrfs_root *log,
2364 struct btrfs_path *path,
2365 int key_type, u64 dirid,
2366 u64 first_offset, u64 last_offset)
2368 int ret;
2369 struct btrfs_key key;
2370 struct btrfs_dir_log_item *item;
2372 key.objectid = dirid;
2373 key.offset = first_offset;
2374 if (key_type == BTRFS_DIR_ITEM_KEY)
2375 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2376 else
2377 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2378 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2379 if (ret)
2380 return ret;
2382 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2383 struct btrfs_dir_log_item);
2384 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2385 btrfs_mark_buffer_dirty(path->nodes[0]);
2386 btrfs_release_path(path);
2387 return 0;
2391 * log all the items included in the current transaction for a given
2392 * directory. This also creates the range items in the log tree required
2393 * to replay anything deleted before the fsync
2395 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2396 struct btrfs_root *root, struct inode *inode,
2397 struct btrfs_path *path,
2398 struct btrfs_path *dst_path, int key_type,
2399 u64 min_offset, u64 *last_offset_ret)
2401 struct btrfs_key min_key;
2402 struct btrfs_key max_key;
2403 struct btrfs_root *log = root->log_root;
2404 struct extent_buffer *src;
2405 int err = 0;
2406 int ret;
2407 int i;
2408 int nritems;
2409 u64 first_offset = min_offset;
2410 u64 last_offset = (u64)-1;
2411 u64 ino = btrfs_ino(inode);
2413 log = root->log_root;
2414 max_key.objectid = ino;
2415 max_key.offset = (u64)-1;
2416 max_key.type = key_type;
2418 min_key.objectid = ino;
2419 min_key.type = key_type;
2420 min_key.offset = min_offset;
2422 path->keep_locks = 1;
2424 ret = btrfs_search_forward(root, &min_key, &max_key,
2425 path, 0, trans->transid);
2428 * we didn't find anything from this transaction, see if there
2429 * is anything at all
2431 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2432 min_key.objectid = ino;
2433 min_key.type = key_type;
2434 min_key.offset = (u64)-1;
2435 btrfs_release_path(path);
2436 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2437 if (ret < 0) {
2438 btrfs_release_path(path);
2439 return ret;
2441 ret = btrfs_previous_item(root, path, ino, key_type);
2443 /* if ret == 0 there are items for this type,
2444 * create a range to tell us the last key of this type.
2445 * otherwise, there are no items in this directory after
2446 * *min_offset, and we create a range to indicate that.
2448 if (ret == 0) {
2449 struct btrfs_key tmp;
2450 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2451 path->slots[0]);
2452 if (key_type == tmp.type)
2453 first_offset = max(min_offset, tmp.offset) + 1;
2455 goto done;
2458 /* go backward to find any previous key */
2459 ret = btrfs_previous_item(root, path, ino, key_type);
2460 if (ret == 0) {
2461 struct btrfs_key tmp;
2462 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2463 if (key_type == tmp.type) {
2464 first_offset = tmp.offset;
2465 ret = overwrite_item(trans, log, dst_path,
2466 path->nodes[0], path->slots[0],
2467 &tmp);
2468 if (ret) {
2469 err = ret;
2470 goto done;
2474 btrfs_release_path(path);
2476 /* find the first key from this transaction again */
2477 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2478 if (ret != 0) {
2479 WARN_ON(1);
2480 goto done;
2484 * we have a block from this transaction, log every item in it
2485 * from our directory
2487 while (1) {
2488 struct btrfs_key tmp;
2489 src = path->nodes[0];
2490 nritems = btrfs_header_nritems(src);
2491 for (i = path->slots[0]; i < nritems; i++) {
2492 btrfs_item_key_to_cpu(src, &min_key, i);
2494 if (min_key.objectid != ino || min_key.type != key_type)
2495 goto done;
2496 ret = overwrite_item(trans, log, dst_path, src, i,
2497 &min_key);
2498 if (ret) {
2499 err = ret;
2500 goto done;
2503 path->slots[0] = nritems;
2506 * look ahead to the next item and see if it is also
2507 * from this directory and from this transaction
2509 ret = btrfs_next_leaf(root, path);
2510 if (ret == 1) {
2511 last_offset = (u64)-1;
2512 goto done;
2514 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2515 if (tmp.objectid != ino || tmp.type != key_type) {
2516 last_offset = (u64)-1;
2517 goto done;
2519 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2520 ret = overwrite_item(trans, log, dst_path,
2521 path->nodes[0], path->slots[0],
2522 &tmp);
2523 if (ret)
2524 err = ret;
2525 else
2526 last_offset = tmp.offset;
2527 goto done;
2530 done:
2531 btrfs_release_path(path);
2532 btrfs_release_path(dst_path);
2534 if (err == 0) {
2535 *last_offset_ret = last_offset;
2537 * insert the log range keys to indicate where the log
2538 * is valid
2540 ret = insert_dir_log_key(trans, log, path, key_type,
2541 ino, first_offset, last_offset);
2542 if (ret)
2543 err = ret;
2545 return err;
2549 * logging directories is very similar to logging inodes, We find all the items
2550 * from the current transaction and write them to the log.
2552 * The recovery code scans the directory in the subvolume, and if it finds a
2553 * key in the range logged that is not present in the log tree, then it means
2554 * that dir entry was unlinked during the transaction.
2556 * In order for that scan to work, we must include one key smaller than
2557 * the smallest logged by this transaction and one key larger than the largest
2558 * key logged by this transaction.
2560 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2561 struct btrfs_root *root, struct inode *inode,
2562 struct btrfs_path *path,
2563 struct btrfs_path *dst_path)
2565 u64 min_key;
2566 u64 max_key;
2567 int ret;
2568 int key_type = BTRFS_DIR_ITEM_KEY;
2570 again:
2571 min_key = 0;
2572 max_key = 0;
2573 while (1) {
2574 ret = log_dir_items(trans, root, inode, path,
2575 dst_path, key_type, min_key,
2576 &max_key);
2577 if (ret)
2578 return ret;
2579 if (max_key == (u64)-1)
2580 break;
2581 min_key = max_key + 1;
2584 if (key_type == BTRFS_DIR_ITEM_KEY) {
2585 key_type = BTRFS_DIR_INDEX_KEY;
2586 goto again;
2588 return 0;
2592 * a helper function to drop items from the log before we relog an
2593 * inode. max_key_type indicates the highest item type to remove.
2594 * This cannot be run for file data extents because it does not
2595 * free the extents they point to.
2597 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2598 struct btrfs_root *log,
2599 struct btrfs_path *path,
2600 u64 objectid, int max_key_type)
2602 int ret;
2603 struct btrfs_key key;
2604 struct btrfs_key found_key;
2606 key.objectid = objectid;
2607 key.type = max_key_type;
2608 key.offset = (u64)-1;
2610 while (1) {
2611 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2612 BUG_ON(ret == 0);
2613 if (ret < 0)
2614 break;
2616 if (path->slots[0] == 0)
2617 break;
2619 path->slots[0]--;
2620 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2621 path->slots[0]);
2623 if (found_key.objectid != objectid)
2624 break;
2626 ret = btrfs_del_item(trans, log, path);
2627 if (ret)
2628 break;
2629 btrfs_release_path(path);
2631 btrfs_release_path(path);
2632 return ret;
2635 static noinline int copy_items(struct btrfs_trans_handle *trans,
2636 struct btrfs_root *log,
2637 struct btrfs_path *dst_path,
2638 struct extent_buffer *src,
2639 int start_slot, int nr, int inode_only)
2641 unsigned long src_offset;
2642 unsigned long dst_offset;
2643 struct btrfs_file_extent_item *extent;
2644 struct btrfs_inode_item *inode_item;
2645 int ret;
2646 struct btrfs_key *ins_keys;
2647 u32 *ins_sizes;
2648 char *ins_data;
2649 int i;
2650 struct list_head ordered_sums;
2652 INIT_LIST_HEAD(&ordered_sums);
2654 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2655 nr * sizeof(u32), GFP_NOFS);
2656 if (!ins_data)
2657 return -ENOMEM;
2659 ins_sizes = (u32 *)ins_data;
2660 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2662 for (i = 0; i < nr; i++) {
2663 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2664 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2666 ret = btrfs_insert_empty_items(trans, log, dst_path,
2667 ins_keys, ins_sizes, nr);
2668 if (ret) {
2669 kfree(ins_data);
2670 return ret;
2673 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2674 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2675 dst_path->slots[0]);
2677 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2679 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2680 src_offset, ins_sizes[i]);
2682 if (inode_only == LOG_INODE_EXISTS &&
2683 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2684 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2685 dst_path->slots[0],
2686 struct btrfs_inode_item);
2687 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2689 /* set the generation to zero so the recover code
2690 * can tell the difference between an logging
2691 * just to say 'this inode exists' and a logging
2692 * to say 'update this inode with these values'
2694 btrfs_set_inode_generation(dst_path->nodes[0],
2695 inode_item, 0);
2697 /* take a reference on file data extents so that truncates
2698 * or deletes of this inode don't have to relog the inode
2699 * again
2701 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2702 int found_type;
2703 extent = btrfs_item_ptr(src, start_slot + i,
2704 struct btrfs_file_extent_item);
2706 if (btrfs_file_extent_generation(src, extent) < trans->transid)
2707 continue;
2709 found_type = btrfs_file_extent_type(src, extent);
2710 if (found_type == BTRFS_FILE_EXTENT_REG ||
2711 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2712 u64 ds, dl, cs, cl;
2713 ds = btrfs_file_extent_disk_bytenr(src,
2714 extent);
2715 /* ds == 0 is a hole */
2716 if (ds == 0)
2717 continue;
2719 dl = btrfs_file_extent_disk_num_bytes(src,
2720 extent);
2721 cs = btrfs_file_extent_offset(src, extent);
2722 cl = btrfs_file_extent_num_bytes(src,
2723 extent);
2724 if (btrfs_file_extent_compression(src,
2725 extent)) {
2726 cs = 0;
2727 cl = dl;
2730 ret = btrfs_lookup_csums_range(
2731 log->fs_info->csum_root,
2732 ds + cs, ds + cs + cl - 1,
2733 &ordered_sums, 0);
2734 BUG_ON(ret);
2739 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2740 btrfs_release_path(dst_path);
2741 kfree(ins_data);
2744 * we have to do this after the loop above to avoid changing the
2745 * log tree while trying to change the log tree.
2747 ret = 0;
2748 while (!list_empty(&ordered_sums)) {
2749 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2750 struct btrfs_ordered_sum,
2751 list);
2752 if (!ret)
2753 ret = btrfs_csum_file_blocks(trans, log, sums);
2754 list_del(&sums->list);
2755 kfree(sums);
2757 return ret;
2760 /* log a single inode in the tree log.
2761 * At least one parent directory for this inode must exist in the tree
2762 * or be logged already.
2764 * Any items from this inode changed by the current transaction are copied
2765 * to the log tree. An extra reference is taken on any extents in this
2766 * file, allowing us to avoid a whole pile of corner cases around logging
2767 * blocks that have been removed from the tree.
2769 * See LOG_INODE_ALL and related defines for a description of what inode_only
2770 * does.
2772 * This handles both files and directories.
2774 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2775 struct btrfs_root *root, struct inode *inode,
2776 int inode_only)
2778 struct btrfs_path *path;
2779 struct btrfs_path *dst_path;
2780 struct btrfs_key min_key;
2781 struct btrfs_key max_key;
2782 struct btrfs_root *log = root->log_root;
2783 struct extent_buffer *src = NULL;
2784 int err = 0;
2785 int ret;
2786 int nritems;
2787 int ins_start_slot = 0;
2788 int ins_nr;
2789 u64 ino = btrfs_ino(inode);
2791 log = root->log_root;
2793 path = btrfs_alloc_path();
2794 if (!path)
2795 return -ENOMEM;
2796 dst_path = btrfs_alloc_path();
2797 if (!dst_path) {
2798 btrfs_free_path(path);
2799 return -ENOMEM;
2802 min_key.objectid = ino;
2803 min_key.type = BTRFS_INODE_ITEM_KEY;
2804 min_key.offset = 0;
2806 max_key.objectid = ino;
2808 /* today the code can only do partial logging of directories */
2809 if (!S_ISDIR(inode->i_mode))
2810 inode_only = LOG_INODE_ALL;
2812 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2813 max_key.type = BTRFS_XATTR_ITEM_KEY;
2814 else
2815 max_key.type = (u8)-1;
2816 max_key.offset = (u64)-1;
2818 ret = btrfs_commit_inode_delayed_items(trans, inode);
2819 if (ret) {
2820 btrfs_free_path(path);
2821 btrfs_free_path(dst_path);
2822 return ret;
2825 mutex_lock(&BTRFS_I(inode)->log_mutex);
2828 * a brute force approach to making sure we get the most uptodate
2829 * copies of everything.
2831 if (S_ISDIR(inode->i_mode)) {
2832 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2834 if (inode_only == LOG_INODE_EXISTS)
2835 max_key_type = BTRFS_XATTR_ITEM_KEY;
2836 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2837 } else {
2838 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2840 if (ret) {
2841 err = ret;
2842 goto out_unlock;
2844 path->keep_locks = 1;
2846 while (1) {
2847 ins_nr = 0;
2848 ret = btrfs_search_forward(root, &min_key, &max_key,
2849 path, 0, trans->transid);
2850 if (ret != 0)
2851 break;
2852 again:
2853 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2854 if (min_key.objectid != ino)
2855 break;
2856 if (min_key.type > max_key.type)
2857 break;
2859 src = path->nodes[0];
2860 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2861 ins_nr++;
2862 goto next_slot;
2863 } else if (!ins_nr) {
2864 ins_start_slot = path->slots[0];
2865 ins_nr = 1;
2866 goto next_slot;
2869 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2870 ins_nr, inode_only);
2871 if (ret) {
2872 err = ret;
2873 goto out_unlock;
2875 ins_nr = 1;
2876 ins_start_slot = path->slots[0];
2877 next_slot:
2879 nritems = btrfs_header_nritems(path->nodes[0]);
2880 path->slots[0]++;
2881 if (path->slots[0] < nritems) {
2882 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2883 path->slots[0]);
2884 goto again;
2886 if (ins_nr) {
2887 ret = copy_items(trans, log, dst_path, src,
2888 ins_start_slot,
2889 ins_nr, inode_only);
2890 if (ret) {
2891 err = ret;
2892 goto out_unlock;
2894 ins_nr = 0;
2896 btrfs_release_path(path);
2898 if (min_key.offset < (u64)-1)
2899 min_key.offset++;
2900 else if (min_key.type < (u8)-1)
2901 min_key.type++;
2902 else if (min_key.objectid < (u64)-1)
2903 min_key.objectid++;
2904 else
2905 break;
2907 if (ins_nr) {
2908 ret = copy_items(trans, log, dst_path, src,
2909 ins_start_slot,
2910 ins_nr, inode_only);
2911 if (ret) {
2912 err = ret;
2913 goto out_unlock;
2915 ins_nr = 0;
2917 WARN_ON(ins_nr);
2918 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2919 btrfs_release_path(path);
2920 btrfs_release_path(dst_path);
2921 ret = log_directory_changes(trans, root, inode, path, dst_path);
2922 if (ret) {
2923 err = ret;
2924 goto out_unlock;
2927 BTRFS_I(inode)->logged_trans = trans->transid;
2928 out_unlock:
2929 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2931 btrfs_free_path(path);
2932 btrfs_free_path(dst_path);
2933 return err;
2937 * follow the dentry parent pointers up the chain and see if any
2938 * of the directories in it require a full commit before they can
2939 * be logged. Returns zero if nothing special needs to be done or 1 if
2940 * a full commit is required.
2942 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2943 struct inode *inode,
2944 struct dentry *parent,
2945 struct super_block *sb,
2946 u64 last_committed)
2948 int ret = 0;
2949 struct btrfs_root *root;
2950 struct dentry *old_parent = NULL;
2953 * for regular files, if its inode is already on disk, we don't
2954 * have to worry about the parents at all. This is because
2955 * we can use the last_unlink_trans field to record renames
2956 * and other fun in this file.
2958 if (S_ISREG(inode->i_mode) &&
2959 BTRFS_I(inode)->generation <= last_committed &&
2960 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2961 goto out;
2963 if (!S_ISDIR(inode->i_mode)) {
2964 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2965 goto out;
2966 inode = parent->d_inode;
2969 while (1) {
2970 BTRFS_I(inode)->logged_trans = trans->transid;
2971 smp_mb();
2973 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2974 root = BTRFS_I(inode)->root;
2977 * make sure any commits to the log are forced
2978 * to be full commits
2980 root->fs_info->last_trans_log_full_commit =
2981 trans->transid;
2982 ret = 1;
2983 break;
2986 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2987 break;
2989 if (IS_ROOT(parent))
2990 break;
2992 parent = dget_parent(parent);
2993 dput(old_parent);
2994 old_parent = parent;
2995 inode = parent->d_inode;
2998 dput(old_parent);
2999 out:
3000 return ret;
3003 static int inode_in_log(struct btrfs_trans_handle *trans,
3004 struct inode *inode)
3006 struct btrfs_root *root = BTRFS_I(inode)->root;
3007 int ret = 0;
3009 mutex_lock(&root->log_mutex);
3010 if (BTRFS_I(inode)->logged_trans == trans->transid &&
3011 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
3012 ret = 1;
3013 mutex_unlock(&root->log_mutex);
3014 return ret;
3019 * helper function around btrfs_log_inode to make sure newly created
3020 * parent directories also end up in the log. A minimal inode and backref
3021 * only logging is done of any parent directories that are older than
3022 * the last committed transaction
3024 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3025 struct btrfs_root *root, struct inode *inode,
3026 struct dentry *parent, int exists_only)
3028 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3029 struct super_block *sb;
3030 struct dentry *old_parent = NULL;
3031 int ret = 0;
3032 u64 last_committed = root->fs_info->last_trans_committed;
3034 sb = inode->i_sb;
3036 if (btrfs_test_opt(root, NOTREELOG)) {
3037 ret = 1;
3038 goto end_no_trans;
3041 if (root->fs_info->last_trans_log_full_commit >
3042 root->fs_info->last_trans_committed) {
3043 ret = 1;
3044 goto end_no_trans;
3047 if (root != BTRFS_I(inode)->root ||
3048 btrfs_root_refs(&root->root_item) == 0) {
3049 ret = 1;
3050 goto end_no_trans;
3053 ret = check_parent_dirs_for_sync(trans, inode, parent,
3054 sb, last_committed);
3055 if (ret)
3056 goto end_no_trans;
3058 if (inode_in_log(trans, inode)) {
3059 ret = BTRFS_NO_LOG_SYNC;
3060 goto end_no_trans;
3063 ret = start_log_trans(trans, root);
3064 if (ret)
3065 goto end_trans;
3067 ret = btrfs_log_inode(trans, root, inode, inode_only);
3068 if (ret)
3069 goto end_trans;
3072 * for regular files, if its inode is already on disk, we don't
3073 * have to worry about the parents at all. This is because
3074 * we can use the last_unlink_trans field to record renames
3075 * and other fun in this file.
3077 if (S_ISREG(inode->i_mode) &&
3078 BTRFS_I(inode)->generation <= last_committed &&
3079 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3080 ret = 0;
3081 goto end_trans;
3084 inode_only = LOG_INODE_EXISTS;
3085 while (1) {
3086 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3087 break;
3089 inode = parent->d_inode;
3090 if (root != BTRFS_I(inode)->root)
3091 break;
3093 if (BTRFS_I(inode)->generation >
3094 root->fs_info->last_trans_committed) {
3095 ret = btrfs_log_inode(trans, root, inode, inode_only);
3096 if (ret)
3097 goto end_trans;
3099 if (IS_ROOT(parent))
3100 break;
3102 parent = dget_parent(parent);
3103 dput(old_parent);
3104 old_parent = parent;
3106 ret = 0;
3107 end_trans:
3108 dput(old_parent);
3109 if (ret < 0) {
3110 BUG_ON(ret != -ENOSPC);
3111 root->fs_info->last_trans_log_full_commit = trans->transid;
3112 ret = 1;
3114 btrfs_end_log_trans(root);
3115 end_no_trans:
3116 return ret;
3120 * it is not safe to log dentry if the chunk root has added new
3121 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3122 * If this returns 1, you must commit the transaction to safely get your
3123 * data on disk.
3125 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3126 struct btrfs_root *root, struct dentry *dentry)
3128 struct dentry *parent = dget_parent(dentry);
3129 int ret;
3131 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3132 dput(parent);
3134 return ret;
3138 * should be called during mount to recover any replay any log trees
3139 * from the FS
3141 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3143 int ret;
3144 struct btrfs_path *path;
3145 struct btrfs_trans_handle *trans;
3146 struct btrfs_key key;
3147 struct btrfs_key found_key;
3148 struct btrfs_key tmp_key;
3149 struct btrfs_root *log;
3150 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3151 struct walk_control wc = {
3152 .process_func = process_one_buffer,
3153 .stage = 0,
3156 path = btrfs_alloc_path();
3157 if (!path)
3158 return -ENOMEM;
3160 fs_info->log_root_recovering = 1;
3162 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3163 BUG_ON(IS_ERR(trans));
3165 wc.trans = trans;
3166 wc.pin = 1;
3168 ret = walk_log_tree(trans, log_root_tree, &wc);
3169 BUG_ON(ret);
3171 again:
3172 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3173 key.offset = (u64)-1;
3174 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3176 while (1) {
3177 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3178 if (ret < 0)
3179 break;
3180 if (ret > 0) {
3181 if (path->slots[0] == 0)
3182 break;
3183 path->slots[0]--;
3185 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3186 path->slots[0]);
3187 btrfs_release_path(path);
3188 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3189 break;
3191 log = btrfs_read_fs_root_no_radix(log_root_tree,
3192 &found_key);
3193 BUG_ON(IS_ERR(log));
3195 tmp_key.objectid = found_key.offset;
3196 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3197 tmp_key.offset = (u64)-1;
3199 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3200 BUG_ON(IS_ERR_OR_NULL(wc.replay_dest));
3202 wc.replay_dest->log_root = log;
3203 btrfs_record_root_in_trans(trans, wc.replay_dest);
3204 ret = walk_log_tree(trans, log, &wc);
3205 BUG_ON(ret);
3207 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3208 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3209 path);
3210 BUG_ON(ret);
3213 key.offset = found_key.offset - 1;
3214 wc.replay_dest->log_root = NULL;
3215 free_extent_buffer(log->node);
3216 free_extent_buffer(log->commit_root);
3217 kfree(log);
3219 if (found_key.offset == 0)
3220 break;
3222 btrfs_release_path(path);
3224 /* step one is to pin it all, step two is to replay just inodes */
3225 if (wc.pin) {
3226 wc.pin = 0;
3227 wc.process_func = replay_one_buffer;
3228 wc.stage = LOG_WALK_REPLAY_INODES;
3229 goto again;
3231 /* step three is to replay everything */
3232 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3233 wc.stage++;
3234 goto again;
3237 btrfs_free_path(path);
3239 free_extent_buffer(log_root_tree->node);
3240 log_root_tree->log_root = NULL;
3241 fs_info->log_root_recovering = 0;
3243 /* step 4: commit the transaction, which also unpins the blocks */
3244 btrfs_commit_transaction(trans, fs_info->tree_root);
3246 kfree(log_root_tree);
3247 return 0;
3251 * there are some corner cases where we want to force a full
3252 * commit instead of allowing a directory to be logged.
3254 * They revolve around files there were unlinked from the directory, and
3255 * this function updates the parent directory so that a full commit is
3256 * properly done if it is fsync'd later after the unlinks are done.
3258 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3259 struct inode *dir, struct inode *inode,
3260 int for_rename)
3263 * when we're logging a file, if it hasn't been renamed
3264 * or unlinked, and its inode is fully committed on disk,
3265 * we don't have to worry about walking up the directory chain
3266 * to log its parents.
3268 * So, we use the last_unlink_trans field to put this transid
3269 * into the file. When the file is logged we check it and
3270 * don't log the parents if the file is fully on disk.
3272 if (S_ISREG(inode->i_mode))
3273 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3276 * if this directory was already logged any new
3277 * names for this file/dir will get recorded
3279 smp_mb();
3280 if (BTRFS_I(dir)->logged_trans == trans->transid)
3281 return;
3284 * if the inode we're about to unlink was logged,
3285 * the log will be properly updated for any new names
3287 if (BTRFS_I(inode)->logged_trans == trans->transid)
3288 return;
3291 * when renaming files across directories, if the directory
3292 * there we're unlinking from gets fsync'd later on, there's
3293 * no way to find the destination directory later and fsync it
3294 * properly. So, we have to be conservative and force commits
3295 * so the new name gets discovered.
3297 if (for_rename)
3298 goto record;
3300 /* we can safely do the unlink without any special recording */
3301 return;
3303 record:
3304 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3308 * Call this after adding a new name for a file and it will properly
3309 * update the log to reflect the new name.
3311 * It will return zero if all goes well, and it will return 1 if a
3312 * full transaction commit is required.
3314 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3315 struct inode *inode, struct inode *old_dir,
3316 struct dentry *parent)
3318 struct btrfs_root * root = BTRFS_I(inode)->root;
3321 * this will force the logging code to walk the dentry chain
3322 * up for the file
3324 if (S_ISREG(inode->i_mode))
3325 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3328 * if this inode hasn't been logged and directory we're renaming it
3329 * from hasn't been logged, we don't need to log it
3331 if (BTRFS_I(inode)->logged_trans <=
3332 root->fs_info->last_trans_committed &&
3333 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3334 root->fs_info->last_trans_committed))
3335 return 0;
3337 return btrfs_log_inode_parent(trans, root, inode, parent, 1);