memcg: simplify the way memory limits are checked
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memcontrol.c
blob62bbb48980e50c365d3aabd0476ebf912cfffd11
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
72 #else
73 #define do_swap_account (0)
74 #endif
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
87 * Statistics for memory cgroup.
89 enum mem_cgroup_stat_index {
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
104 MEM_CGROUP_STAT_NSTATS,
107 struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
112 * per-zone information in memory controller.
114 struct mem_cgroup_per_zone {
116 * spin_lock to protect the per cgroup LRU
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
121 struct zone_reclaim_stat reclaim_stat;
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
132 struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
136 struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
145 struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
150 struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
154 struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
160 struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
175 struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
183 struct mem_cgroup_threshold_ary *spare;
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
206 struct mem_cgroup {
207 struct cgroup_subsys_state css;
209 * the counter to account for memory usage
211 struct res_counter res;
213 * the counter to account for mem+swap usage.
215 struct res_counter memsw;
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
220 struct mem_cgroup_lru_info info;
223 protect against reclaim related member.
225 spinlock_t reclaim_param_lock;
228 * While reclaiming in a hierarchy, we cache the last child we
229 * reclaimed from.
231 int last_scanned_child;
233 * Should the accounting and control be hierarchical, per subtree?
235 bool use_hierarchy;
236 atomic_t oom_lock;
237 atomic_t refcnt;
239 unsigned int swappiness;
240 /* OOM-Killer disable */
241 int oom_kill_disable;
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds;
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds;
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
262 unsigned long move_charge_at_immigrate;
264 * percpu counter.
266 struct mem_cgroup_stat_cpu *stat;
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
275 /* Stuffs for move charges at task migration. */
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
280 enum move_type {
281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
283 NR_MOVE_TYPE,
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 spinlock_t lock; /* for from, to */
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
292 unsigned long moved_charge;
293 unsigned long moved_swap;
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296 } mc = {
297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
301 static bool move_anon(void)
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
307 static bool move_file(void)
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
320 enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
327 NR_CHARGE_TYPE,
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE (1UL << PCG_CACHE)
332 #define PCGF_USED (1UL << PCG_USED)
333 #define PCGF_LOCK (1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT (1UL << PCG_ACCT)
337 /* for encoding cft->private value on file */
338 #define _MEM (0)
339 #define _MEMSWAP (1)
340 #define _OOM_TYPE (2)
341 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val) ((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL (0)
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
365 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
370 return &mem->css;
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct page_cgroup *pc)
376 struct mem_cgroup *mem = pc->mem_cgroup;
377 int nid = page_cgroup_nid(pc);
378 int zid = page_cgroup_zid(pc);
380 if (!mem)
381 return NULL;
383 return mem_cgroup_zoneinfo(mem, nid, zid);
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
395 int nid = page_to_nid(page);
396 int zid = page_zonenum(page);
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
401 static void
402 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403 struct mem_cgroup_per_zone *mz,
404 struct mem_cgroup_tree_per_zone *mctz,
405 unsigned long long new_usage_in_excess)
407 struct rb_node **p = &mctz->rb_root.rb_node;
408 struct rb_node *parent = NULL;
409 struct mem_cgroup_per_zone *mz_node;
411 if (mz->on_tree)
412 return;
414 mz->usage_in_excess = new_usage_in_excess;
415 if (!mz->usage_in_excess)
416 return;
417 while (*p) {
418 parent = *p;
419 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 tree_node);
421 if (mz->usage_in_excess < mz_node->usage_in_excess)
422 p = &(*p)->rb_left;
424 * We can't avoid mem cgroups that are over their soft
425 * limit by the same amount
427 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 p = &(*p)->rb_right;
430 rb_link_node(&mz->tree_node, parent, p);
431 rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = true;
435 static void
436 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
440 if (!mz->on_tree)
441 return;
442 rb_erase(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = false;
446 static void
447 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz)
451 spin_lock(&mctz->lock);
452 __mem_cgroup_remove_exceeded(mem, mz, mctz);
453 spin_unlock(&mctz->lock);
457 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
459 unsigned long long excess;
460 struct mem_cgroup_per_zone *mz;
461 struct mem_cgroup_tree_per_zone *mctz;
462 int nid = page_to_nid(page);
463 int zid = page_zonenum(page);
464 mctz = soft_limit_tree_from_page(page);
467 * Necessary to update all ancestors when hierarchy is used.
468 * because their event counter is not touched.
470 for (; mem; mem = parent_mem_cgroup(mem)) {
471 mz = mem_cgroup_zoneinfo(mem, nid, zid);
472 excess = res_counter_soft_limit_excess(&mem->res);
474 * We have to update the tree if mz is on RB-tree or
475 * mem is over its softlimit.
477 if (excess || mz->on_tree) {
478 spin_lock(&mctz->lock);
479 /* if on-tree, remove it */
480 if (mz->on_tree)
481 __mem_cgroup_remove_exceeded(mem, mz, mctz);
483 * Insert again. mz->usage_in_excess will be updated.
484 * If excess is 0, no tree ops.
486 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 spin_unlock(&mctz->lock);
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
494 int node, zone;
495 struct mem_cgroup_per_zone *mz;
496 struct mem_cgroup_tree_per_zone *mctz;
498 for_each_node_state(node, N_POSSIBLE) {
499 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 mz = mem_cgroup_zoneinfo(mem, node, zone);
501 mctz = soft_limit_tree_node_zone(node, zone);
502 mem_cgroup_remove_exceeded(mem, mz, mctz);
507 static struct mem_cgroup_per_zone *
508 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
510 struct rb_node *rightmost = NULL;
511 struct mem_cgroup_per_zone *mz;
513 retry:
514 mz = NULL;
515 rightmost = rb_last(&mctz->rb_root);
516 if (!rightmost)
517 goto done; /* Nothing to reclaim from */
519 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
521 * Remove the node now but someone else can add it back,
522 * we will to add it back at the end of reclaim to its correct
523 * position in the tree.
525 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
526 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
527 !css_tryget(&mz->mem->css))
528 goto retry;
529 done:
530 return mz;
533 static struct mem_cgroup_per_zone *
534 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
536 struct mem_cgroup_per_zone *mz;
538 spin_lock(&mctz->lock);
539 mz = __mem_cgroup_largest_soft_limit_node(mctz);
540 spin_unlock(&mctz->lock);
541 return mz;
545 * Implementation Note: reading percpu statistics for memcg.
547 * Both of vmstat[] and percpu_counter has threshold and do periodic
548 * synchronization to implement "quick" read. There are trade-off between
549 * reading cost and precision of value. Then, we may have a chance to implement
550 * a periodic synchronizion of counter in memcg's counter.
552 * But this _read() function is used for user interface now. The user accounts
553 * memory usage by memory cgroup and he _always_ requires exact value because
554 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
555 * have to visit all online cpus and make sum. So, for now, unnecessary
556 * synchronization is not implemented. (just implemented for cpu hotplug)
558 * If there are kernel internal actions which can make use of some not-exact
559 * value, and reading all cpu value can be performance bottleneck in some
560 * common workload, threashold and synchonization as vmstat[] should be
561 * implemented.
563 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
564 enum mem_cgroup_stat_index idx)
566 int cpu;
567 s64 val = 0;
569 get_online_cpus();
570 for_each_online_cpu(cpu)
571 val += per_cpu(mem->stat->count[idx], cpu);
572 #ifdef CONFIG_HOTPLUG_CPU
573 spin_lock(&mem->pcp_counter_lock);
574 val += mem->nocpu_base.count[idx];
575 spin_unlock(&mem->pcp_counter_lock);
576 #endif
577 put_online_cpus();
578 return val;
581 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
583 s64 ret;
585 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
586 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
587 return ret;
590 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
591 bool charge)
593 int val = (charge) ? 1 : -1;
594 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
597 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
598 bool file, int nr_pages)
600 preempt_disable();
602 if (file)
603 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
604 else
605 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
607 /* pagein of a big page is an event. So, ignore page size */
608 if (nr_pages > 0)
609 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
610 else {
611 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
612 nr_pages = -nr_pages; /* for event */
615 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
617 preempt_enable();
620 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
621 enum lru_list idx)
623 int nid, zid;
624 struct mem_cgroup_per_zone *mz;
625 u64 total = 0;
627 for_each_online_node(nid)
628 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
629 mz = mem_cgroup_zoneinfo(mem, nid, zid);
630 total += MEM_CGROUP_ZSTAT(mz, idx);
632 return total;
635 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
637 s64 val;
639 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
641 return !(val & ((1 << event_mask_shift) - 1));
645 * Check events in order.
648 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
650 /* threshold event is triggered in finer grain than soft limit */
651 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
652 mem_cgroup_threshold(mem);
653 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
654 mem_cgroup_update_tree(mem, page);
658 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
660 return container_of(cgroup_subsys_state(cont,
661 mem_cgroup_subsys_id), struct mem_cgroup,
662 css);
665 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
668 * mm_update_next_owner() may clear mm->owner to NULL
669 * if it races with swapoff, page migration, etc.
670 * So this can be called with p == NULL.
672 if (unlikely(!p))
673 return NULL;
675 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
676 struct mem_cgroup, css);
679 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
681 struct mem_cgroup *mem = NULL;
683 if (!mm)
684 return NULL;
686 * Because we have no locks, mm->owner's may be being moved to other
687 * cgroup. We use css_tryget() here even if this looks
688 * pessimistic (rather than adding locks here).
690 rcu_read_lock();
691 do {
692 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
693 if (unlikely(!mem))
694 break;
695 } while (!css_tryget(&mem->css));
696 rcu_read_unlock();
697 return mem;
700 /* The caller has to guarantee "mem" exists before calling this */
701 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
703 struct cgroup_subsys_state *css;
704 int found;
706 if (!mem) /* ROOT cgroup has the smallest ID */
707 return root_mem_cgroup; /*css_put/get against root is ignored*/
708 if (!mem->use_hierarchy) {
709 if (css_tryget(&mem->css))
710 return mem;
711 return NULL;
713 rcu_read_lock();
715 * searching a memory cgroup which has the smallest ID under given
716 * ROOT cgroup. (ID >= 1)
718 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
719 if (css && css_tryget(css))
720 mem = container_of(css, struct mem_cgroup, css);
721 else
722 mem = NULL;
723 rcu_read_unlock();
724 return mem;
727 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
728 struct mem_cgroup *root,
729 bool cond)
731 int nextid = css_id(&iter->css) + 1;
732 int found;
733 int hierarchy_used;
734 struct cgroup_subsys_state *css;
736 hierarchy_used = iter->use_hierarchy;
738 css_put(&iter->css);
739 /* If no ROOT, walk all, ignore hierarchy */
740 if (!cond || (root && !hierarchy_used))
741 return NULL;
743 if (!root)
744 root = root_mem_cgroup;
746 do {
747 iter = NULL;
748 rcu_read_lock();
750 css = css_get_next(&mem_cgroup_subsys, nextid,
751 &root->css, &found);
752 if (css && css_tryget(css))
753 iter = container_of(css, struct mem_cgroup, css);
754 rcu_read_unlock();
755 /* If css is NULL, no more cgroups will be found */
756 nextid = found + 1;
757 } while (css && !iter);
759 return iter;
762 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
763 * be careful that "break" loop is not allowed. We have reference count.
764 * Instead of that modify "cond" to be false and "continue" to exit the loop.
766 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
767 for (iter = mem_cgroup_start_loop(root);\
768 iter != NULL;\
769 iter = mem_cgroup_get_next(iter, root, cond))
771 #define for_each_mem_cgroup_tree(iter, root) \
772 for_each_mem_cgroup_tree_cond(iter, root, true)
774 #define for_each_mem_cgroup_all(iter) \
775 for_each_mem_cgroup_tree_cond(iter, NULL, true)
778 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
780 return (mem == root_mem_cgroup);
784 * Following LRU functions are allowed to be used without PCG_LOCK.
785 * Operations are called by routine of global LRU independently from memcg.
786 * What we have to take care of here is validness of pc->mem_cgroup.
788 * Changes to pc->mem_cgroup happens when
789 * 1. charge
790 * 2. moving account
791 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
792 * It is added to LRU before charge.
793 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
794 * When moving account, the page is not on LRU. It's isolated.
797 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
799 struct page_cgroup *pc;
800 struct mem_cgroup_per_zone *mz;
802 if (mem_cgroup_disabled())
803 return;
804 pc = lookup_page_cgroup(page);
805 /* can happen while we handle swapcache. */
806 if (!TestClearPageCgroupAcctLRU(pc))
807 return;
808 VM_BUG_ON(!pc->mem_cgroup);
810 * We don't check PCG_USED bit. It's cleared when the "page" is finally
811 * removed from global LRU.
813 mz = page_cgroup_zoneinfo(pc);
814 /* huge page split is done under lru_lock. so, we have no races. */
815 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
816 if (mem_cgroup_is_root(pc->mem_cgroup))
817 return;
818 VM_BUG_ON(list_empty(&pc->lru));
819 list_del_init(&pc->lru);
822 void mem_cgroup_del_lru(struct page *page)
824 mem_cgroup_del_lru_list(page, page_lru(page));
828 * Writeback is about to end against a page which has been marked for immediate
829 * reclaim. If it still appears to be reclaimable, move it to the tail of the
830 * inactive list.
832 void mem_cgroup_rotate_reclaimable_page(struct page *page)
834 struct mem_cgroup_per_zone *mz;
835 struct page_cgroup *pc;
836 enum lru_list lru = page_lru(page);
838 if (mem_cgroup_disabled())
839 return;
841 pc = lookup_page_cgroup(page);
842 /* unused or root page is not rotated. */
843 if (!PageCgroupUsed(pc))
844 return;
845 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
846 smp_rmb();
847 if (mem_cgroup_is_root(pc->mem_cgroup))
848 return;
849 mz = page_cgroup_zoneinfo(pc);
850 list_move_tail(&pc->lru, &mz->lists[lru]);
853 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
855 struct mem_cgroup_per_zone *mz;
856 struct page_cgroup *pc;
858 if (mem_cgroup_disabled())
859 return;
861 pc = lookup_page_cgroup(page);
862 /* unused or root page is not rotated. */
863 if (!PageCgroupUsed(pc))
864 return;
865 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
866 smp_rmb();
867 if (mem_cgroup_is_root(pc->mem_cgroup))
868 return;
869 mz = page_cgroup_zoneinfo(pc);
870 list_move(&pc->lru, &mz->lists[lru]);
873 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
875 struct page_cgroup *pc;
876 struct mem_cgroup_per_zone *mz;
878 if (mem_cgroup_disabled())
879 return;
880 pc = lookup_page_cgroup(page);
881 VM_BUG_ON(PageCgroupAcctLRU(pc));
882 if (!PageCgroupUsed(pc))
883 return;
884 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
885 smp_rmb();
886 mz = page_cgroup_zoneinfo(pc);
887 /* huge page split is done under lru_lock. so, we have no races. */
888 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
889 SetPageCgroupAcctLRU(pc);
890 if (mem_cgroup_is_root(pc->mem_cgroup))
891 return;
892 list_add(&pc->lru, &mz->lists[lru]);
896 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
897 * lru because the page may.be reused after it's fully uncharged (because of
898 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
899 * it again. This function is only used to charge SwapCache. It's done under
900 * lock_page and expected that zone->lru_lock is never held.
902 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
904 unsigned long flags;
905 struct zone *zone = page_zone(page);
906 struct page_cgroup *pc = lookup_page_cgroup(page);
908 spin_lock_irqsave(&zone->lru_lock, flags);
910 * Forget old LRU when this page_cgroup is *not* used. This Used bit
911 * is guarded by lock_page() because the page is SwapCache.
913 if (!PageCgroupUsed(pc))
914 mem_cgroup_del_lru_list(page, page_lru(page));
915 spin_unlock_irqrestore(&zone->lru_lock, flags);
918 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
920 unsigned long flags;
921 struct zone *zone = page_zone(page);
922 struct page_cgroup *pc = lookup_page_cgroup(page);
924 spin_lock_irqsave(&zone->lru_lock, flags);
925 /* link when the page is linked to LRU but page_cgroup isn't */
926 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
927 mem_cgroup_add_lru_list(page, page_lru(page));
928 spin_unlock_irqrestore(&zone->lru_lock, flags);
932 void mem_cgroup_move_lists(struct page *page,
933 enum lru_list from, enum lru_list to)
935 if (mem_cgroup_disabled())
936 return;
937 mem_cgroup_del_lru_list(page, from);
938 mem_cgroup_add_lru_list(page, to);
941 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
943 int ret;
944 struct mem_cgroup *curr = NULL;
945 struct task_struct *p;
947 p = find_lock_task_mm(task);
948 if (!p)
949 return 0;
950 curr = try_get_mem_cgroup_from_mm(p->mm);
951 task_unlock(p);
952 if (!curr)
953 return 0;
955 * We should check use_hierarchy of "mem" not "curr". Because checking
956 * use_hierarchy of "curr" here make this function true if hierarchy is
957 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
958 * hierarchy(even if use_hierarchy is disabled in "mem").
960 if (mem->use_hierarchy)
961 ret = css_is_ancestor(&curr->css, &mem->css);
962 else
963 ret = (curr == mem);
964 css_put(&curr->css);
965 return ret;
968 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
970 unsigned long active;
971 unsigned long inactive;
972 unsigned long gb;
973 unsigned long inactive_ratio;
975 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
976 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
978 gb = (inactive + active) >> (30 - PAGE_SHIFT);
979 if (gb)
980 inactive_ratio = int_sqrt(10 * gb);
981 else
982 inactive_ratio = 1;
984 if (present_pages) {
985 present_pages[0] = inactive;
986 present_pages[1] = active;
989 return inactive_ratio;
992 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
994 unsigned long active;
995 unsigned long inactive;
996 unsigned long present_pages[2];
997 unsigned long inactive_ratio;
999 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1001 inactive = present_pages[0];
1002 active = present_pages[1];
1004 if (inactive * inactive_ratio < active)
1005 return 1;
1007 return 0;
1010 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1012 unsigned long active;
1013 unsigned long inactive;
1015 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1016 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1018 return (active > inactive);
1021 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1022 struct zone *zone,
1023 enum lru_list lru)
1025 int nid = zone_to_nid(zone);
1026 int zid = zone_idx(zone);
1027 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1029 return MEM_CGROUP_ZSTAT(mz, lru);
1032 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1033 struct zone *zone)
1035 int nid = zone_to_nid(zone);
1036 int zid = zone_idx(zone);
1037 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1039 return &mz->reclaim_stat;
1042 struct zone_reclaim_stat *
1043 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1045 struct page_cgroup *pc;
1046 struct mem_cgroup_per_zone *mz;
1048 if (mem_cgroup_disabled())
1049 return NULL;
1051 pc = lookup_page_cgroup(page);
1052 if (!PageCgroupUsed(pc))
1053 return NULL;
1054 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1055 smp_rmb();
1056 mz = page_cgroup_zoneinfo(pc);
1057 if (!mz)
1058 return NULL;
1060 return &mz->reclaim_stat;
1063 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1064 struct list_head *dst,
1065 unsigned long *scanned, int order,
1066 int mode, struct zone *z,
1067 struct mem_cgroup *mem_cont,
1068 int active, int file)
1070 unsigned long nr_taken = 0;
1071 struct page *page;
1072 unsigned long scan;
1073 LIST_HEAD(pc_list);
1074 struct list_head *src;
1075 struct page_cgroup *pc, *tmp;
1076 int nid = zone_to_nid(z);
1077 int zid = zone_idx(z);
1078 struct mem_cgroup_per_zone *mz;
1079 int lru = LRU_FILE * file + active;
1080 int ret;
1082 BUG_ON(!mem_cont);
1083 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1084 src = &mz->lists[lru];
1086 scan = 0;
1087 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1088 if (scan >= nr_to_scan)
1089 break;
1091 page = pc->page;
1092 if (unlikely(!PageCgroupUsed(pc)))
1093 continue;
1094 if (unlikely(!PageLRU(page)))
1095 continue;
1097 scan++;
1098 ret = __isolate_lru_page(page, mode, file);
1099 switch (ret) {
1100 case 0:
1101 list_move(&page->lru, dst);
1102 mem_cgroup_del_lru(page);
1103 nr_taken += hpage_nr_pages(page);
1104 break;
1105 case -EBUSY:
1106 /* we don't affect global LRU but rotate in our LRU */
1107 mem_cgroup_rotate_lru_list(page, page_lru(page));
1108 break;
1109 default:
1110 break;
1114 *scanned = scan;
1116 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1117 0, 0, 0, mode);
1119 return nr_taken;
1122 #define mem_cgroup_from_res_counter(counter, member) \
1123 container_of(counter, struct mem_cgroup, member)
1126 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1127 * @mem: the memory cgroup
1129 * Returns the maximum amount of memory @mem can be charged with, in
1130 * bytes.
1132 static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
1134 unsigned long long margin;
1136 margin = res_counter_margin(&mem->res);
1137 if (do_swap_account)
1138 margin = min(margin, res_counter_margin(&mem->memsw));
1139 return margin;
1142 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1144 struct cgroup *cgrp = memcg->css.cgroup;
1145 unsigned int swappiness;
1147 /* root ? */
1148 if (cgrp->parent == NULL)
1149 return vm_swappiness;
1151 spin_lock(&memcg->reclaim_param_lock);
1152 swappiness = memcg->swappiness;
1153 spin_unlock(&memcg->reclaim_param_lock);
1155 return swappiness;
1158 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1160 int cpu;
1162 get_online_cpus();
1163 spin_lock(&mem->pcp_counter_lock);
1164 for_each_online_cpu(cpu)
1165 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1166 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1167 spin_unlock(&mem->pcp_counter_lock);
1168 put_online_cpus();
1170 synchronize_rcu();
1173 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1175 int cpu;
1177 if (!mem)
1178 return;
1179 get_online_cpus();
1180 spin_lock(&mem->pcp_counter_lock);
1181 for_each_online_cpu(cpu)
1182 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1183 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1184 spin_unlock(&mem->pcp_counter_lock);
1185 put_online_cpus();
1188 * 2 routines for checking "mem" is under move_account() or not.
1190 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1191 * for avoiding race in accounting. If true,
1192 * pc->mem_cgroup may be overwritten.
1194 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1195 * under hierarchy of moving cgroups. This is for
1196 * waiting at hith-memory prressure caused by "move".
1199 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1201 VM_BUG_ON(!rcu_read_lock_held());
1202 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1205 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1207 struct mem_cgroup *from;
1208 struct mem_cgroup *to;
1209 bool ret = false;
1211 * Unlike task_move routines, we access mc.to, mc.from not under
1212 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1214 spin_lock(&mc.lock);
1215 from = mc.from;
1216 to = mc.to;
1217 if (!from)
1218 goto unlock;
1219 if (from == mem || to == mem
1220 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1221 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1222 ret = true;
1223 unlock:
1224 spin_unlock(&mc.lock);
1225 return ret;
1228 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1230 if (mc.moving_task && current != mc.moving_task) {
1231 if (mem_cgroup_under_move(mem)) {
1232 DEFINE_WAIT(wait);
1233 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1234 /* moving charge context might have finished. */
1235 if (mc.moving_task)
1236 schedule();
1237 finish_wait(&mc.waitq, &wait);
1238 return true;
1241 return false;
1245 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1246 * @memcg: The memory cgroup that went over limit
1247 * @p: Task that is going to be killed
1249 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1250 * enabled
1252 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1254 struct cgroup *task_cgrp;
1255 struct cgroup *mem_cgrp;
1257 * Need a buffer in BSS, can't rely on allocations. The code relies
1258 * on the assumption that OOM is serialized for memory controller.
1259 * If this assumption is broken, revisit this code.
1261 static char memcg_name[PATH_MAX];
1262 int ret;
1264 if (!memcg || !p)
1265 return;
1268 rcu_read_lock();
1270 mem_cgrp = memcg->css.cgroup;
1271 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1273 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1274 if (ret < 0) {
1276 * Unfortunately, we are unable to convert to a useful name
1277 * But we'll still print out the usage information
1279 rcu_read_unlock();
1280 goto done;
1282 rcu_read_unlock();
1284 printk(KERN_INFO "Task in %s killed", memcg_name);
1286 rcu_read_lock();
1287 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1288 if (ret < 0) {
1289 rcu_read_unlock();
1290 goto done;
1292 rcu_read_unlock();
1295 * Continues from above, so we don't need an KERN_ level
1297 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1298 done:
1300 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1301 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1302 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1303 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1304 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1305 "failcnt %llu\n",
1306 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1307 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1308 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1312 * This function returns the number of memcg under hierarchy tree. Returns
1313 * 1(self count) if no children.
1315 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1317 int num = 0;
1318 struct mem_cgroup *iter;
1320 for_each_mem_cgroup_tree(iter, mem)
1321 num++;
1322 return num;
1326 * Return the memory (and swap, if configured) limit for a memcg.
1328 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1330 u64 limit;
1331 u64 memsw;
1333 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1334 limit += total_swap_pages << PAGE_SHIFT;
1336 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1338 * If memsw is finite and limits the amount of swap space available
1339 * to this memcg, return that limit.
1341 return min(limit, memsw);
1345 * Visit the first child (need not be the first child as per the ordering
1346 * of the cgroup list, since we track last_scanned_child) of @mem and use
1347 * that to reclaim free pages from.
1349 static struct mem_cgroup *
1350 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1352 struct mem_cgroup *ret = NULL;
1353 struct cgroup_subsys_state *css;
1354 int nextid, found;
1356 if (!root_mem->use_hierarchy) {
1357 css_get(&root_mem->css);
1358 ret = root_mem;
1361 while (!ret) {
1362 rcu_read_lock();
1363 nextid = root_mem->last_scanned_child + 1;
1364 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1365 &found);
1366 if (css && css_tryget(css))
1367 ret = container_of(css, struct mem_cgroup, css);
1369 rcu_read_unlock();
1370 /* Updates scanning parameter */
1371 spin_lock(&root_mem->reclaim_param_lock);
1372 if (!css) {
1373 /* this means start scan from ID:1 */
1374 root_mem->last_scanned_child = 0;
1375 } else
1376 root_mem->last_scanned_child = found;
1377 spin_unlock(&root_mem->reclaim_param_lock);
1380 return ret;
1384 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1385 * we reclaimed from, so that we don't end up penalizing one child extensively
1386 * based on its position in the children list.
1388 * root_mem is the original ancestor that we've been reclaim from.
1390 * We give up and return to the caller when we visit root_mem twice.
1391 * (other groups can be removed while we're walking....)
1393 * If shrink==true, for avoiding to free too much, this returns immedieately.
1395 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1396 struct zone *zone,
1397 gfp_t gfp_mask,
1398 unsigned long reclaim_options)
1400 struct mem_cgroup *victim;
1401 int ret, total = 0;
1402 int loop = 0;
1403 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1404 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1405 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1406 unsigned long excess;
1408 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1410 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1411 if (root_mem->memsw_is_minimum)
1412 noswap = true;
1414 while (1) {
1415 victim = mem_cgroup_select_victim(root_mem);
1416 if (victim == root_mem) {
1417 loop++;
1418 if (loop >= 1)
1419 drain_all_stock_async();
1420 if (loop >= 2) {
1422 * If we have not been able to reclaim
1423 * anything, it might because there are
1424 * no reclaimable pages under this hierarchy
1426 if (!check_soft || !total) {
1427 css_put(&victim->css);
1428 break;
1431 * We want to do more targetted reclaim.
1432 * excess >> 2 is not to excessive so as to
1433 * reclaim too much, nor too less that we keep
1434 * coming back to reclaim from this cgroup
1436 if (total >= (excess >> 2) ||
1437 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1438 css_put(&victim->css);
1439 break;
1443 if (!mem_cgroup_local_usage(victim)) {
1444 /* this cgroup's local usage == 0 */
1445 css_put(&victim->css);
1446 continue;
1448 /* we use swappiness of local cgroup */
1449 if (check_soft)
1450 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1451 noswap, get_swappiness(victim), zone);
1452 else
1453 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1454 noswap, get_swappiness(victim));
1455 css_put(&victim->css);
1457 * At shrinking usage, we can't check we should stop here or
1458 * reclaim more. It's depends on callers. last_scanned_child
1459 * will work enough for keeping fairness under tree.
1461 if (shrink)
1462 return ret;
1463 total += ret;
1464 if (check_soft) {
1465 if (!res_counter_soft_limit_excess(&root_mem->res))
1466 return total;
1467 } else if (mem_cgroup_margin(root_mem))
1468 return 1 + total;
1470 return total;
1474 * Check OOM-Killer is already running under our hierarchy.
1475 * If someone is running, return false.
1477 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1479 int x, lock_count = 0;
1480 struct mem_cgroup *iter;
1482 for_each_mem_cgroup_tree(iter, mem) {
1483 x = atomic_inc_return(&iter->oom_lock);
1484 lock_count = max(x, lock_count);
1487 if (lock_count == 1)
1488 return true;
1489 return false;
1492 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1494 struct mem_cgroup *iter;
1497 * When a new child is created while the hierarchy is under oom,
1498 * mem_cgroup_oom_lock() may not be called. We have to use
1499 * atomic_add_unless() here.
1501 for_each_mem_cgroup_tree(iter, mem)
1502 atomic_add_unless(&iter->oom_lock, -1, 0);
1503 return 0;
1507 static DEFINE_MUTEX(memcg_oom_mutex);
1508 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1510 struct oom_wait_info {
1511 struct mem_cgroup *mem;
1512 wait_queue_t wait;
1515 static int memcg_oom_wake_function(wait_queue_t *wait,
1516 unsigned mode, int sync, void *arg)
1518 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1519 struct oom_wait_info *oom_wait_info;
1521 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1523 if (oom_wait_info->mem == wake_mem)
1524 goto wakeup;
1525 /* if no hierarchy, no match */
1526 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1527 return 0;
1529 * Both of oom_wait_info->mem and wake_mem are stable under us.
1530 * Then we can use css_is_ancestor without taking care of RCU.
1532 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1533 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1534 return 0;
1536 wakeup:
1537 return autoremove_wake_function(wait, mode, sync, arg);
1540 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1542 /* for filtering, pass "mem" as argument. */
1543 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1546 static void memcg_oom_recover(struct mem_cgroup *mem)
1548 if (mem && atomic_read(&mem->oom_lock))
1549 memcg_wakeup_oom(mem);
1553 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1555 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1557 struct oom_wait_info owait;
1558 bool locked, need_to_kill;
1560 owait.mem = mem;
1561 owait.wait.flags = 0;
1562 owait.wait.func = memcg_oom_wake_function;
1563 owait.wait.private = current;
1564 INIT_LIST_HEAD(&owait.wait.task_list);
1565 need_to_kill = true;
1566 /* At first, try to OOM lock hierarchy under mem.*/
1567 mutex_lock(&memcg_oom_mutex);
1568 locked = mem_cgroup_oom_lock(mem);
1570 * Even if signal_pending(), we can't quit charge() loop without
1571 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1572 * under OOM is always welcomed, use TASK_KILLABLE here.
1574 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1575 if (!locked || mem->oom_kill_disable)
1576 need_to_kill = false;
1577 if (locked)
1578 mem_cgroup_oom_notify(mem);
1579 mutex_unlock(&memcg_oom_mutex);
1581 if (need_to_kill) {
1582 finish_wait(&memcg_oom_waitq, &owait.wait);
1583 mem_cgroup_out_of_memory(mem, mask);
1584 } else {
1585 schedule();
1586 finish_wait(&memcg_oom_waitq, &owait.wait);
1588 mutex_lock(&memcg_oom_mutex);
1589 mem_cgroup_oom_unlock(mem);
1590 memcg_wakeup_oom(mem);
1591 mutex_unlock(&memcg_oom_mutex);
1593 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1594 return false;
1595 /* Give chance to dying process */
1596 schedule_timeout(1);
1597 return true;
1601 * Currently used to update mapped file statistics, but the routine can be
1602 * generalized to update other statistics as well.
1604 * Notes: Race condition
1606 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1607 * it tends to be costly. But considering some conditions, we doesn't need
1608 * to do so _always_.
1610 * Considering "charge", lock_page_cgroup() is not required because all
1611 * file-stat operations happen after a page is attached to radix-tree. There
1612 * are no race with "charge".
1614 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1615 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1616 * if there are race with "uncharge". Statistics itself is properly handled
1617 * by flags.
1619 * Considering "move", this is an only case we see a race. To make the race
1620 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1621 * possibility of race condition. If there is, we take a lock.
1624 void mem_cgroup_update_page_stat(struct page *page,
1625 enum mem_cgroup_page_stat_item idx, int val)
1627 struct mem_cgroup *mem;
1628 struct page_cgroup *pc = lookup_page_cgroup(page);
1629 bool need_unlock = false;
1630 unsigned long uninitialized_var(flags);
1632 if (unlikely(!pc))
1633 return;
1635 rcu_read_lock();
1636 mem = pc->mem_cgroup;
1637 if (unlikely(!mem || !PageCgroupUsed(pc)))
1638 goto out;
1639 /* pc->mem_cgroup is unstable ? */
1640 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1641 /* take a lock against to access pc->mem_cgroup */
1642 move_lock_page_cgroup(pc, &flags);
1643 need_unlock = true;
1644 mem = pc->mem_cgroup;
1645 if (!mem || !PageCgroupUsed(pc))
1646 goto out;
1649 switch (idx) {
1650 case MEMCG_NR_FILE_MAPPED:
1651 if (val > 0)
1652 SetPageCgroupFileMapped(pc);
1653 else if (!page_mapped(page))
1654 ClearPageCgroupFileMapped(pc);
1655 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1656 break;
1657 default:
1658 BUG();
1661 this_cpu_add(mem->stat->count[idx], val);
1663 out:
1664 if (unlikely(need_unlock))
1665 move_unlock_page_cgroup(pc, &flags);
1666 rcu_read_unlock();
1667 return;
1669 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1672 * size of first charge trial. "32" comes from vmscan.c's magic value.
1673 * TODO: maybe necessary to use big numbers in big irons.
1675 #define CHARGE_SIZE (32 * PAGE_SIZE)
1676 struct memcg_stock_pcp {
1677 struct mem_cgroup *cached; /* this never be root cgroup */
1678 int charge;
1679 struct work_struct work;
1681 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1682 static atomic_t memcg_drain_count;
1685 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1686 * from local stock and true is returned. If the stock is 0 or charges from a
1687 * cgroup which is not current target, returns false. This stock will be
1688 * refilled.
1690 static bool consume_stock(struct mem_cgroup *mem)
1692 struct memcg_stock_pcp *stock;
1693 bool ret = true;
1695 stock = &get_cpu_var(memcg_stock);
1696 if (mem == stock->cached && stock->charge)
1697 stock->charge -= PAGE_SIZE;
1698 else /* need to call res_counter_charge */
1699 ret = false;
1700 put_cpu_var(memcg_stock);
1701 return ret;
1705 * Returns stocks cached in percpu to res_counter and reset cached information.
1707 static void drain_stock(struct memcg_stock_pcp *stock)
1709 struct mem_cgroup *old = stock->cached;
1711 if (stock->charge) {
1712 res_counter_uncharge(&old->res, stock->charge);
1713 if (do_swap_account)
1714 res_counter_uncharge(&old->memsw, stock->charge);
1716 stock->cached = NULL;
1717 stock->charge = 0;
1721 * This must be called under preempt disabled or must be called by
1722 * a thread which is pinned to local cpu.
1724 static void drain_local_stock(struct work_struct *dummy)
1726 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1727 drain_stock(stock);
1731 * Cache charges(val) which is from res_counter, to local per_cpu area.
1732 * This will be consumed by consume_stock() function, later.
1734 static void refill_stock(struct mem_cgroup *mem, int val)
1736 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1738 if (stock->cached != mem) { /* reset if necessary */
1739 drain_stock(stock);
1740 stock->cached = mem;
1742 stock->charge += val;
1743 put_cpu_var(memcg_stock);
1747 * Tries to drain stocked charges in other cpus. This function is asynchronous
1748 * and just put a work per cpu for draining localy on each cpu. Caller can
1749 * expects some charges will be back to res_counter later but cannot wait for
1750 * it.
1752 static void drain_all_stock_async(void)
1754 int cpu;
1755 /* This function is for scheduling "drain" in asynchronous way.
1756 * The result of "drain" is not directly handled by callers. Then,
1757 * if someone is calling drain, we don't have to call drain more.
1758 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1759 * there is a race. We just do loose check here.
1761 if (atomic_read(&memcg_drain_count))
1762 return;
1763 /* Notify other cpus that system-wide "drain" is running */
1764 atomic_inc(&memcg_drain_count);
1765 get_online_cpus();
1766 for_each_online_cpu(cpu) {
1767 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1768 schedule_work_on(cpu, &stock->work);
1770 put_online_cpus();
1771 atomic_dec(&memcg_drain_count);
1772 /* We don't wait for flush_work */
1775 /* This is a synchronous drain interface. */
1776 static void drain_all_stock_sync(void)
1778 /* called when force_empty is called */
1779 atomic_inc(&memcg_drain_count);
1780 schedule_on_each_cpu(drain_local_stock);
1781 atomic_dec(&memcg_drain_count);
1785 * This function drains percpu counter value from DEAD cpu and
1786 * move it to local cpu. Note that this function can be preempted.
1788 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1790 int i;
1792 spin_lock(&mem->pcp_counter_lock);
1793 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1794 s64 x = per_cpu(mem->stat->count[i], cpu);
1796 per_cpu(mem->stat->count[i], cpu) = 0;
1797 mem->nocpu_base.count[i] += x;
1799 /* need to clear ON_MOVE value, works as a kind of lock. */
1800 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1801 spin_unlock(&mem->pcp_counter_lock);
1804 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1806 int idx = MEM_CGROUP_ON_MOVE;
1808 spin_lock(&mem->pcp_counter_lock);
1809 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1810 spin_unlock(&mem->pcp_counter_lock);
1813 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1814 unsigned long action,
1815 void *hcpu)
1817 int cpu = (unsigned long)hcpu;
1818 struct memcg_stock_pcp *stock;
1819 struct mem_cgroup *iter;
1821 if ((action == CPU_ONLINE)) {
1822 for_each_mem_cgroup_all(iter)
1823 synchronize_mem_cgroup_on_move(iter, cpu);
1824 return NOTIFY_OK;
1827 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1828 return NOTIFY_OK;
1830 for_each_mem_cgroup_all(iter)
1831 mem_cgroup_drain_pcp_counter(iter, cpu);
1833 stock = &per_cpu(memcg_stock, cpu);
1834 drain_stock(stock);
1835 return NOTIFY_OK;
1839 /* See __mem_cgroup_try_charge() for details */
1840 enum {
1841 CHARGE_OK, /* success */
1842 CHARGE_RETRY, /* need to retry but retry is not bad */
1843 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1844 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1845 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1848 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1849 int csize, bool oom_check)
1851 struct mem_cgroup *mem_over_limit;
1852 struct res_counter *fail_res;
1853 unsigned long flags = 0;
1854 int ret;
1856 ret = res_counter_charge(&mem->res, csize, &fail_res);
1858 if (likely(!ret)) {
1859 if (!do_swap_account)
1860 return CHARGE_OK;
1861 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1862 if (likely(!ret))
1863 return CHARGE_OK;
1865 res_counter_uncharge(&mem->res, csize);
1866 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1867 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1868 } else
1869 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1871 * csize can be either a huge page (HPAGE_SIZE), a batch of
1872 * regular pages (CHARGE_SIZE), or a single regular page
1873 * (PAGE_SIZE).
1875 * Never reclaim on behalf of optional batching, retry with a
1876 * single page instead.
1878 if (csize == CHARGE_SIZE)
1879 return CHARGE_RETRY;
1881 if (!(gfp_mask & __GFP_WAIT))
1882 return CHARGE_WOULDBLOCK;
1884 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1885 gfp_mask, flags);
1886 if (mem_cgroup_margin(mem_over_limit) >= csize)
1887 return CHARGE_RETRY;
1889 * Even though the limit is exceeded at this point, reclaim
1890 * may have been able to free some pages. Retry the charge
1891 * before killing the task.
1893 * Only for regular pages, though: huge pages are rather
1894 * unlikely to succeed so close to the limit, and we fall back
1895 * to regular pages anyway in case of failure.
1897 if (csize == PAGE_SIZE && ret)
1898 return CHARGE_RETRY;
1901 * At task move, charge accounts can be doubly counted. So, it's
1902 * better to wait until the end of task_move if something is going on.
1904 if (mem_cgroup_wait_acct_move(mem_over_limit))
1905 return CHARGE_RETRY;
1907 /* If we don't need to call oom-killer at el, return immediately */
1908 if (!oom_check)
1909 return CHARGE_NOMEM;
1910 /* check OOM */
1911 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1912 return CHARGE_OOM_DIE;
1914 return CHARGE_RETRY;
1918 * Unlike exported interface, "oom" parameter is added. if oom==true,
1919 * oom-killer can be invoked.
1921 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1922 gfp_t gfp_mask,
1923 struct mem_cgroup **memcg, bool oom,
1924 int page_size)
1926 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1927 struct mem_cgroup *mem = NULL;
1928 int ret;
1929 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1932 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1933 * in system level. So, allow to go ahead dying process in addition to
1934 * MEMDIE process.
1936 if (unlikely(test_thread_flag(TIF_MEMDIE)
1937 || fatal_signal_pending(current)))
1938 goto bypass;
1941 * We always charge the cgroup the mm_struct belongs to.
1942 * The mm_struct's mem_cgroup changes on task migration if the
1943 * thread group leader migrates. It's possible that mm is not
1944 * set, if so charge the init_mm (happens for pagecache usage).
1946 if (!*memcg && !mm)
1947 goto bypass;
1948 again:
1949 if (*memcg) { /* css should be a valid one */
1950 mem = *memcg;
1951 VM_BUG_ON(css_is_removed(&mem->css));
1952 if (mem_cgroup_is_root(mem))
1953 goto done;
1954 if (page_size == PAGE_SIZE && consume_stock(mem))
1955 goto done;
1956 css_get(&mem->css);
1957 } else {
1958 struct task_struct *p;
1960 rcu_read_lock();
1961 p = rcu_dereference(mm->owner);
1963 * Because we don't have task_lock(), "p" can exit.
1964 * In that case, "mem" can point to root or p can be NULL with
1965 * race with swapoff. Then, we have small risk of mis-accouning.
1966 * But such kind of mis-account by race always happens because
1967 * we don't have cgroup_mutex(). It's overkill and we allo that
1968 * small race, here.
1969 * (*) swapoff at el will charge against mm-struct not against
1970 * task-struct. So, mm->owner can be NULL.
1972 mem = mem_cgroup_from_task(p);
1973 if (!mem || mem_cgroup_is_root(mem)) {
1974 rcu_read_unlock();
1975 goto done;
1977 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1979 * It seems dagerous to access memcg without css_get().
1980 * But considering how consume_stok works, it's not
1981 * necessary. If consume_stock success, some charges
1982 * from this memcg are cached on this cpu. So, we
1983 * don't need to call css_get()/css_tryget() before
1984 * calling consume_stock().
1986 rcu_read_unlock();
1987 goto done;
1989 /* after here, we may be blocked. we need to get refcnt */
1990 if (!css_tryget(&mem->css)) {
1991 rcu_read_unlock();
1992 goto again;
1994 rcu_read_unlock();
1997 do {
1998 bool oom_check;
2000 /* If killed, bypass charge */
2001 if (fatal_signal_pending(current)) {
2002 css_put(&mem->css);
2003 goto bypass;
2006 oom_check = false;
2007 if (oom && !nr_oom_retries) {
2008 oom_check = true;
2009 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2012 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2014 switch (ret) {
2015 case CHARGE_OK:
2016 break;
2017 case CHARGE_RETRY: /* not in OOM situation but retry */
2018 csize = page_size;
2019 css_put(&mem->css);
2020 mem = NULL;
2021 goto again;
2022 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2023 css_put(&mem->css);
2024 goto nomem;
2025 case CHARGE_NOMEM: /* OOM routine works */
2026 if (!oom) {
2027 css_put(&mem->css);
2028 goto nomem;
2030 /* If oom, we never return -ENOMEM */
2031 nr_oom_retries--;
2032 break;
2033 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2034 css_put(&mem->css);
2035 goto bypass;
2037 } while (ret != CHARGE_OK);
2039 if (csize > page_size)
2040 refill_stock(mem, csize - page_size);
2041 css_put(&mem->css);
2042 done:
2043 *memcg = mem;
2044 return 0;
2045 nomem:
2046 *memcg = NULL;
2047 return -ENOMEM;
2048 bypass:
2049 *memcg = NULL;
2050 return 0;
2054 * Somemtimes we have to undo a charge we got by try_charge().
2055 * This function is for that and do uncharge, put css's refcnt.
2056 * gotten by try_charge().
2058 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2059 unsigned long count)
2061 if (!mem_cgroup_is_root(mem)) {
2062 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2063 if (do_swap_account)
2064 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2068 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2069 int page_size)
2071 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2075 * A helper function to get mem_cgroup from ID. must be called under
2076 * rcu_read_lock(). The caller must check css_is_removed() or some if
2077 * it's concern. (dropping refcnt from swap can be called against removed
2078 * memcg.)
2080 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2082 struct cgroup_subsys_state *css;
2084 /* ID 0 is unused ID */
2085 if (!id)
2086 return NULL;
2087 css = css_lookup(&mem_cgroup_subsys, id);
2088 if (!css)
2089 return NULL;
2090 return container_of(css, struct mem_cgroup, css);
2093 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2095 struct mem_cgroup *mem = NULL;
2096 struct page_cgroup *pc;
2097 unsigned short id;
2098 swp_entry_t ent;
2100 VM_BUG_ON(!PageLocked(page));
2102 pc = lookup_page_cgroup(page);
2103 lock_page_cgroup(pc);
2104 if (PageCgroupUsed(pc)) {
2105 mem = pc->mem_cgroup;
2106 if (mem && !css_tryget(&mem->css))
2107 mem = NULL;
2108 } else if (PageSwapCache(page)) {
2109 ent.val = page_private(page);
2110 id = lookup_swap_cgroup(ent);
2111 rcu_read_lock();
2112 mem = mem_cgroup_lookup(id);
2113 if (mem && !css_tryget(&mem->css))
2114 mem = NULL;
2115 rcu_read_unlock();
2117 unlock_page_cgroup(pc);
2118 return mem;
2121 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2122 struct page_cgroup *pc,
2123 enum charge_type ctype,
2124 int page_size)
2126 int nr_pages = page_size >> PAGE_SHIFT;
2128 /* try_charge() can return NULL to *memcg, taking care of it. */
2129 if (!mem)
2130 return;
2132 lock_page_cgroup(pc);
2133 if (unlikely(PageCgroupUsed(pc))) {
2134 unlock_page_cgroup(pc);
2135 mem_cgroup_cancel_charge(mem, page_size);
2136 return;
2139 * we don't need page_cgroup_lock about tail pages, becase they are not
2140 * accessed by any other context at this point.
2142 pc->mem_cgroup = mem;
2144 * We access a page_cgroup asynchronously without lock_page_cgroup().
2145 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2146 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2147 * before USED bit, we need memory barrier here.
2148 * See mem_cgroup_add_lru_list(), etc.
2150 smp_wmb();
2151 switch (ctype) {
2152 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2153 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2154 SetPageCgroupCache(pc);
2155 SetPageCgroupUsed(pc);
2156 break;
2157 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2158 ClearPageCgroupCache(pc);
2159 SetPageCgroupUsed(pc);
2160 break;
2161 default:
2162 break;
2165 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2166 unlock_page_cgroup(pc);
2168 * "charge_statistics" updated event counter. Then, check it.
2169 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2170 * if they exceeds softlimit.
2172 memcg_check_events(mem, pc->page);
2175 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2177 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2178 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2180 * Because tail pages are not marked as "used", set it. We're under
2181 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2183 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2185 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2186 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2187 unsigned long flags;
2189 if (mem_cgroup_disabled())
2190 return;
2192 * We have no races with charge/uncharge but will have races with
2193 * page state accounting.
2195 move_lock_page_cgroup(head_pc, &flags);
2197 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2198 smp_wmb(); /* see __commit_charge() */
2199 if (PageCgroupAcctLRU(head_pc)) {
2200 enum lru_list lru;
2201 struct mem_cgroup_per_zone *mz;
2204 * LRU flags cannot be copied because we need to add tail
2205 *.page to LRU by generic call and our hook will be called.
2206 * We hold lru_lock, then, reduce counter directly.
2208 lru = page_lru(head);
2209 mz = page_cgroup_zoneinfo(head_pc);
2210 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2212 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2213 move_unlock_page_cgroup(head_pc, &flags);
2215 #endif
2218 * __mem_cgroup_move_account - move account of the page
2219 * @pc: page_cgroup of the page.
2220 * @from: mem_cgroup which the page is moved from.
2221 * @to: mem_cgroup which the page is moved to. @from != @to.
2222 * @uncharge: whether we should call uncharge and css_put against @from.
2224 * The caller must confirm following.
2225 * - page is not on LRU (isolate_page() is useful.)
2226 * - the pc is locked, used, and ->mem_cgroup points to @from.
2228 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2229 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2230 * true, this function does "uncharge" from old cgroup, but it doesn't if
2231 * @uncharge is false, so a caller should do "uncharge".
2234 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2235 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2236 int charge_size)
2238 int nr_pages = charge_size >> PAGE_SHIFT;
2240 VM_BUG_ON(from == to);
2241 VM_BUG_ON(PageLRU(pc->page));
2242 VM_BUG_ON(!page_is_cgroup_locked(pc));
2243 VM_BUG_ON(!PageCgroupUsed(pc));
2244 VM_BUG_ON(pc->mem_cgroup != from);
2246 if (PageCgroupFileMapped(pc)) {
2247 /* Update mapped_file data for mem_cgroup */
2248 preempt_disable();
2249 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2250 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2251 preempt_enable();
2253 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2254 if (uncharge)
2255 /* This is not "cancel", but cancel_charge does all we need. */
2256 mem_cgroup_cancel_charge(from, charge_size);
2258 /* caller should have done css_get */
2259 pc->mem_cgroup = to;
2260 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2262 * We charges against "to" which may not have any tasks. Then, "to"
2263 * can be under rmdir(). But in current implementation, caller of
2264 * this function is just force_empty() and move charge, so it's
2265 * garanteed that "to" is never removed. So, we don't check rmdir
2266 * status here.
2271 * check whether the @pc is valid for moving account and call
2272 * __mem_cgroup_move_account()
2274 static int mem_cgroup_move_account(struct page_cgroup *pc,
2275 struct mem_cgroup *from, struct mem_cgroup *to,
2276 bool uncharge, int charge_size)
2278 int ret = -EINVAL;
2279 unsigned long flags;
2281 * The page is isolated from LRU. So, collapse function
2282 * will not handle this page. But page splitting can happen.
2283 * Do this check under compound_page_lock(). The caller should
2284 * hold it.
2286 if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2287 return -EBUSY;
2289 lock_page_cgroup(pc);
2290 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2291 move_lock_page_cgroup(pc, &flags);
2292 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2293 move_unlock_page_cgroup(pc, &flags);
2294 ret = 0;
2296 unlock_page_cgroup(pc);
2298 * check events
2300 memcg_check_events(to, pc->page);
2301 memcg_check_events(from, pc->page);
2302 return ret;
2306 * move charges to its parent.
2309 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2310 struct mem_cgroup *child,
2311 gfp_t gfp_mask)
2313 struct page *page = pc->page;
2314 struct cgroup *cg = child->css.cgroup;
2315 struct cgroup *pcg = cg->parent;
2316 struct mem_cgroup *parent;
2317 int page_size = PAGE_SIZE;
2318 unsigned long flags;
2319 int ret;
2321 /* Is ROOT ? */
2322 if (!pcg)
2323 return -EINVAL;
2325 ret = -EBUSY;
2326 if (!get_page_unless_zero(page))
2327 goto out;
2328 if (isolate_lru_page(page))
2329 goto put;
2331 if (PageTransHuge(page))
2332 page_size = HPAGE_SIZE;
2334 parent = mem_cgroup_from_cont(pcg);
2335 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2336 &parent, false, page_size);
2337 if (ret || !parent)
2338 goto put_back;
2340 if (page_size > PAGE_SIZE)
2341 flags = compound_lock_irqsave(page);
2343 ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2344 if (ret)
2345 mem_cgroup_cancel_charge(parent, page_size);
2347 if (page_size > PAGE_SIZE)
2348 compound_unlock_irqrestore(page, flags);
2349 put_back:
2350 putback_lru_page(page);
2351 put:
2352 put_page(page);
2353 out:
2354 return ret;
2358 * Charge the memory controller for page usage.
2359 * Return
2360 * 0 if the charge was successful
2361 * < 0 if the cgroup is over its limit
2363 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2364 gfp_t gfp_mask, enum charge_type ctype)
2366 struct mem_cgroup *mem = NULL;
2367 int page_size = PAGE_SIZE;
2368 struct page_cgroup *pc;
2369 bool oom = true;
2370 int ret;
2372 if (PageTransHuge(page)) {
2373 page_size <<= compound_order(page);
2374 VM_BUG_ON(!PageTransHuge(page));
2376 * Never OOM-kill a process for a huge page. The
2377 * fault handler will fall back to regular pages.
2379 oom = false;
2382 pc = lookup_page_cgroup(page);
2383 /* can happen at boot */
2384 if (unlikely(!pc))
2385 return 0;
2386 prefetchw(pc);
2388 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2389 if (ret || !mem)
2390 return ret;
2392 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2393 return 0;
2396 int mem_cgroup_newpage_charge(struct page *page,
2397 struct mm_struct *mm, gfp_t gfp_mask)
2399 if (mem_cgroup_disabled())
2400 return 0;
2402 * If already mapped, we don't have to account.
2403 * If page cache, page->mapping has address_space.
2404 * But page->mapping may have out-of-use anon_vma pointer,
2405 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2406 * is NULL.
2408 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2409 return 0;
2410 if (unlikely(!mm))
2411 mm = &init_mm;
2412 return mem_cgroup_charge_common(page, mm, gfp_mask,
2413 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2416 static void
2417 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2418 enum charge_type ctype);
2420 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2421 gfp_t gfp_mask)
2423 int ret;
2425 if (mem_cgroup_disabled())
2426 return 0;
2427 if (PageCompound(page))
2428 return 0;
2430 * Corner case handling. This is called from add_to_page_cache()
2431 * in usual. But some FS (shmem) precharges this page before calling it
2432 * and call add_to_page_cache() with GFP_NOWAIT.
2434 * For GFP_NOWAIT case, the page may be pre-charged before calling
2435 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2436 * charge twice. (It works but has to pay a bit larger cost.)
2437 * And when the page is SwapCache, it should take swap information
2438 * into account. This is under lock_page() now.
2440 if (!(gfp_mask & __GFP_WAIT)) {
2441 struct page_cgroup *pc;
2443 pc = lookup_page_cgroup(page);
2444 if (!pc)
2445 return 0;
2446 lock_page_cgroup(pc);
2447 if (PageCgroupUsed(pc)) {
2448 unlock_page_cgroup(pc);
2449 return 0;
2451 unlock_page_cgroup(pc);
2454 if (unlikely(!mm))
2455 mm = &init_mm;
2457 if (page_is_file_cache(page))
2458 return mem_cgroup_charge_common(page, mm, gfp_mask,
2459 MEM_CGROUP_CHARGE_TYPE_CACHE);
2461 /* shmem */
2462 if (PageSwapCache(page)) {
2463 struct mem_cgroup *mem;
2465 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2466 if (!ret)
2467 __mem_cgroup_commit_charge_swapin(page, mem,
2468 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2469 } else
2470 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2471 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2473 return ret;
2477 * While swap-in, try_charge -> commit or cancel, the page is locked.
2478 * And when try_charge() successfully returns, one refcnt to memcg without
2479 * struct page_cgroup is acquired. This refcnt will be consumed by
2480 * "commit()" or removed by "cancel()"
2482 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2483 struct page *page,
2484 gfp_t mask, struct mem_cgroup **ptr)
2486 struct mem_cgroup *mem;
2487 int ret;
2489 *ptr = NULL;
2491 if (mem_cgroup_disabled())
2492 return 0;
2494 if (!do_swap_account)
2495 goto charge_cur_mm;
2497 * A racing thread's fault, or swapoff, may have already updated
2498 * the pte, and even removed page from swap cache: in those cases
2499 * do_swap_page()'s pte_same() test will fail; but there's also a
2500 * KSM case which does need to charge the page.
2502 if (!PageSwapCache(page))
2503 goto charge_cur_mm;
2504 mem = try_get_mem_cgroup_from_page(page);
2505 if (!mem)
2506 goto charge_cur_mm;
2507 *ptr = mem;
2508 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2509 css_put(&mem->css);
2510 return ret;
2511 charge_cur_mm:
2512 if (unlikely(!mm))
2513 mm = &init_mm;
2514 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2517 static void
2518 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2519 enum charge_type ctype)
2521 struct page_cgroup *pc;
2523 if (mem_cgroup_disabled())
2524 return;
2525 if (!ptr)
2526 return;
2527 cgroup_exclude_rmdir(&ptr->css);
2528 pc = lookup_page_cgroup(page);
2529 mem_cgroup_lru_del_before_commit_swapcache(page);
2530 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2531 mem_cgroup_lru_add_after_commit_swapcache(page);
2533 * Now swap is on-memory. This means this page may be
2534 * counted both as mem and swap....double count.
2535 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2536 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2537 * may call delete_from_swap_cache() before reach here.
2539 if (do_swap_account && PageSwapCache(page)) {
2540 swp_entry_t ent = {.val = page_private(page)};
2541 unsigned short id;
2542 struct mem_cgroup *memcg;
2544 id = swap_cgroup_record(ent, 0);
2545 rcu_read_lock();
2546 memcg = mem_cgroup_lookup(id);
2547 if (memcg) {
2549 * This recorded memcg can be obsolete one. So, avoid
2550 * calling css_tryget
2552 if (!mem_cgroup_is_root(memcg))
2553 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2554 mem_cgroup_swap_statistics(memcg, false);
2555 mem_cgroup_put(memcg);
2557 rcu_read_unlock();
2560 * At swapin, we may charge account against cgroup which has no tasks.
2561 * So, rmdir()->pre_destroy() can be called while we do this charge.
2562 * In that case, we need to call pre_destroy() again. check it here.
2564 cgroup_release_and_wakeup_rmdir(&ptr->css);
2567 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2569 __mem_cgroup_commit_charge_swapin(page, ptr,
2570 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2573 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2575 if (mem_cgroup_disabled())
2576 return;
2577 if (!mem)
2578 return;
2579 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2582 static void
2583 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2584 int page_size)
2586 struct memcg_batch_info *batch = NULL;
2587 bool uncharge_memsw = true;
2588 /* If swapout, usage of swap doesn't decrease */
2589 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2590 uncharge_memsw = false;
2592 batch = &current->memcg_batch;
2594 * In usual, we do css_get() when we remember memcg pointer.
2595 * But in this case, we keep res->usage until end of a series of
2596 * uncharges. Then, it's ok to ignore memcg's refcnt.
2598 if (!batch->memcg)
2599 batch->memcg = mem;
2601 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2602 * In those cases, all pages freed continously can be expected to be in
2603 * the same cgroup and we have chance to coalesce uncharges.
2604 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2605 * because we want to do uncharge as soon as possible.
2608 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2609 goto direct_uncharge;
2611 if (page_size != PAGE_SIZE)
2612 goto direct_uncharge;
2615 * In typical case, batch->memcg == mem. This means we can
2616 * merge a series of uncharges to an uncharge of res_counter.
2617 * If not, we uncharge res_counter ony by one.
2619 if (batch->memcg != mem)
2620 goto direct_uncharge;
2621 /* remember freed charge and uncharge it later */
2622 batch->bytes += PAGE_SIZE;
2623 if (uncharge_memsw)
2624 batch->memsw_bytes += PAGE_SIZE;
2625 return;
2626 direct_uncharge:
2627 res_counter_uncharge(&mem->res, page_size);
2628 if (uncharge_memsw)
2629 res_counter_uncharge(&mem->memsw, page_size);
2630 if (unlikely(batch->memcg != mem))
2631 memcg_oom_recover(mem);
2632 return;
2636 * uncharge if !page_mapped(page)
2638 static struct mem_cgroup *
2639 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2641 int count;
2642 struct page_cgroup *pc;
2643 struct mem_cgroup *mem = NULL;
2644 int page_size = PAGE_SIZE;
2646 if (mem_cgroup_disabled())
2647 return NULL;
2649 if (PageSwapCache(page))
2650 return NULL;
2652 if (PageTransHuge(page)) {
2653 page_size <<= compound_order(page);
2654 VM_BUG_ON(!PageTransHuge(page));
2657 count = page_size >> PAGE_SHIFT;
2659 * Check if our page_cgroup is valid
2661 pc = lookup_page_cgroup(page);
2662 if (unlikely(!pc || !PageCgroupUsed(pc)))
2663 return NULL;
2665 lock_page_cgroup(pc);
2667 mem = pc->mem_cgroup;
2669 if (!PageCgroupUsed(pc))
2670 goto unlock_out;
2672 switch (ctype) {
2673 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2674 case MEM_CGROUP_CHARGE_TYPE_DROP:
2675 /* See mem_cgroup_prepare_migration() */
2676 if (page_mapped(page) || PageCgroupMigration(pc))
2677 goto unlock_out;
2678 break;
2679 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2680 if (!PageAnon(page)) { /* Shared memory */
2681 if (page->mapping && !page_is_file_cache(page))
2682 goto unlock_out;
2683 } else if (page_mapped(page)) /* Anon */
2684 goto unlock_out;
2685 break;
2686 default:
2687 break;
2690 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2692 ClearPageCgroupUsed(pc);
2694 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2695 * freed from LRU. This is safe because uncharged page is expected not
2696 * to be reused (freed soon). Exception is SwapCache, it's handled by
2697 * special functions.
2700 unlock_page_cgroup(pc);
2702 * even after unlock, we have mem->res.usage here and this memcg
2703 * will never be freed.
2705 memcg_check_events(mem, page);
2706 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2707 mem_cgroup_swap_statistics(mem, true);
2708 mem_cgroup_get(mem);
2710 if (!mem_cgroup_is_root(mem))
2711 __do_uncharge(mem, ctype, page_size);
2713 return mem;
2715 unlock_out:
2716 unlock_page_cgroup(pc);
2717 return NULL;
2720 void mem_cgroup_uncharge_page(struct page *page)
2722 /* early check. */
2723 if (page_mapped(page))
2724 return;
2725 if (page->mapping && !PageAnon(page))
2726 return;
2727 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2730 void mem_cgroup_uncharge_cache_page(struct page *page)
2732 VM_BUG_ON(page_mapped(page));
2733 VM_BUG_ON(page->mapping);
2734 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2738 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2739 * In that cases, pages are freed continuously and we can expect pages
2740 * are in the same memcg. All these calls itself limits the number of
2741 * pages freed at once, then uncharge_start/end() is called properly.
2742 * This may be called prural(2) times in a context,
2745 void mem_cgroup_uncharge_start(void)
2747 current->memcg_batch.do_batch++;
2748 /* We can do nest. */
2749 if (current->memcg_batch.do_batch == 1) {
2750 current->memcg_batch.memcg = NULL;
2751 current->memcg_batch.bytes = 0;
2752 current->memcg_batch.memsw_bytes = 0;
2756 void mem_cgroup_uncharge_end(void)
2758 struct memcg_batch_info *batch = &current->memcg_batch;
2760 if (!batch->do_batch)
2761 return;
2763 batch->do_batch--;
2764 if (batch->do_batch) /* If stacked, do nothing. */
2765 return;
2767 if (!batch->memcg)
2768 return;
2770 * This "batch->memcg" is valid without any css_get/put etc...
2771 * bacause we hide charges behind us.
2773 if (batch->bytes)
2774 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2775 if (batch->memsw_bytes)
2776 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2777 memcg_oom_recover(batch->memcg);
2778 /* forget this pointer (for sanity check) */
2779 batch->memcg = NULL;
2782 #ifdef CONFIG_SWAP
2784 * called after __delete_from_swap_cache() and drop "page" account.
2785 * memcg information is recorded to swap_cgroup of "ent"
2787 void
2788 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2790 struct mem_cgroup *memcg;
2791 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2793 if (!swapout) /* this was a swap cache but the swap is unused ! */
2794 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2796 memcg = __mem_cgroup_uncharge_common(page, ctype);
2799 * record memcg information, if swapout && memcg != NULL,
2800 * mem_cgroup_get() was called in uncharge().
2802 if (do_swap_account && swapout && memcg)
2803 swap_cgroup_record(ent, css_id(&memcg->css));
2805 #endif
2807 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2809 * called from swap_entry_free(). remove record in swap_cgroup and
2810 * uncharge "memsw" account.
2812 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2814 struct mem_cgroup *memcg;
2815 unsigned short id;
2817 if (!do_swap_account)
2818 return;
2820 id = swap_cgroup_record(ent, 0);
2821 rcu_read_lock();
2822 memcg = mem_cgroup_lookup(id);
2823 if (memcg) {
2825 * We uncharge this because swap is freed.
2826 * This memcg can be obsolete one. We avoid calling css_tryget
2828 if (!mem_cgroup_is_root(memcg))
2829 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2830 mem_cgroup_swap_statistics(memcg, false);
2831 mem_cgroup_put(memcg);
2833 rcu_read_unlock();
2837 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2838 * @entry: swap entry to be moved
2839 * @from: mem_cgroup which the entry is moved from
2840 * @to: mem_cgroup which the entry is moved to
2841 * @need_fixup: whether we should fixup res_counters and refcounts.
2843 * It succeeds only when the swap_cgroup's record for this entry is the same
2844 * as the mem_cgroup's id of @from.
2846 * Returns 0 on success, -EINVAL on failure.
2848 * The caller must have charged to @to, IOW, called res_counter_charge() about
2849 * both res and memsw, and called css_get().
2851 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2852 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2854 unsigned short old_id, new_id;
2856 old_id = css_id(&from->css);
2857 new_id = css_id(&to->css);
2859 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2860 mem_cgroup_swap_statistics(from, false);
2861 mem_cgroup_swap_statistics(to, true);
2863 * This function is only called from task migration context now.
2864 * It postpones res_counter and refcount handling till the end
2865 * of task migration(mem_cgroup_clear_mc()) for performance
2866 * improvement. But we cannot postpone mem_cgroup_get(to)
2867 * because if the process that has been moved to @to does
2868 * swap-in, the refcount of @to might be decreased to 0.
2870 mem_cgroup_get(to);
2871 if (need_fixup) {
2872 if (!mem_cgroup_is_root(from))
2873 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2874 mem_cgroup_put(from);
2876 * we charged both to->res and to->memsw, so we should
2877 * uncharge to->res.
2879 if (!mem_cgroup_is_root(to))
2880 res_counter_uncharge(&to->res, PAGE_SIZE);
2882 return 0;
2884 return -EINVAL;
2886 #else
2887 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2888 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2890 return -EINVAL;
2892 #endif
2895 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2896 * page belongs to.
2898 int mem_cgroup_prepare_migration(struct page *page,
2899 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2901 struct page_cgroup *pc;
2902 struct mem_cgroup *mem = NULL;
2903 enum charge_type ctype;
2904 int ret = 0;
2906 *ptr = NULL;
2908 VM_BUG_ON(PageTransHuge(page));
2909 if (mem_cgroup_disabled())
2910 return 0;
2912 pc = lookup_page_cgroup(page);
2913 lock_page_cgroup(pc);
2914 if (PageCgroupUsed(pc)) {
2915 mem = pc->mem_cgroup;
2916 css_get(&mem->css);
2918 * At migrating an anonymous page, its mapcount goes down
2919 * to 0 and uncharge() will be called. But, even if it's fully
2920 * unmapped, migration may fail and this page has to be
2921 * charged again. We set MIGRATION flag here and delay uncharge
2922 * until end_migration() is called
2924 * Corner Case Thinking
2925 * A)
2926 * When the old page was mapped as Anon and it's unmap-and-freed
2927 * while migration was ongoing.
2928 * If unmap finds the old page, uncharge() of it will be delayed
2929 * until end_migration(). If unmap finds a new page, it's
2930 * uncharged when it make mapcount to be 1->0. If unmap code
2931 * finds swap_migration_entry, the new page will not be mapped
2932 * and end_migration() will find it(mapcount==0).
2934 * B)
2935 * When the old page was mapped but migraion fails, the kernel
2936 * remaps it. A charge for it is kept by MIGRATION flag even
2937 * if mapcount goes down to 0. We can do remap successfully
2938 * without charging it again.
2940 * C)
2941 * The "old" page is under lock_page() until the end of
2942 * migration, so, the old page itself will not be swapped-out.
2943 * If the new page is swapped out before end_migraton, our
2944 * hook to usual swap-out path will catch the event.
2946 if (PageAnon(page))
2947 SetPageCgroupMigration(pc);
2949 unlock_page_cgroup(pc);
2951 * If the page is not charged at this point,
2952 * we return here.
2954 if (!mem)
2955 return 0;
2957 *ptr = mem;
2958 ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2959 css_put(&mem->css);/* drop extra refcnt */
2960 if (ret || *ptr == NULL) {
2961 if (PageAnon(page)) {
2962 lock_page_cgroup(pc);
2963 ClearPageCgroupMigration(pc);
2964 unlock_page_cgroup(pc);
2966 * The old page may be fully unmapped while we kept it.
2968 mem_cgroup_uncharge_page(page);
2970 return -ENOMEM;
2973 * We charge new page before it's used/mapped. So, even if unlock_page()
2974 * is called before end_migration, we can catch all events on this new
2975 * page. In the case new page is migrated but not remapped, new page's
2976 * mapcount will be finally 0 and we call uncharge in end_migration().
2978 pc = lookup_page_cgroup(newpage);
2979 if (PageAnon(page))
2980 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2981 else if (page_is_file_cache(page))
2982 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2983 else
2984 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2985 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2986 return ret;
2989 /* remove redundant charge if migration failed*/
2990 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2991 struct page *oldpage, struct page *newpage, bool migration_ok)
2993 struct page *used, *unused;
2994 struct page_cgroup *pc;
2996 if (!mem)
2997 return;
2998 /* blocks rmdir() */
2999 cgroup_exclude_rmdir(&mem->css);
3000 if (!migration_ok) {
3001 used = oldpage;
3002 unused = newpage;
3003 } else {
3004 used = newpage;
3005 unused = oldpage;
3008 * We disallowed uncharge of pages under migration because mapcount
3009 * of the page goes down to zero, temporarly.
3010 * Clear the flag and check the page should be charged.
3012 pc = lookup_page_cgroup(oldpage);
3013 lock_page_cgroup(pc);
3014 ClearPageCgroupMigration(pc);
3015 unlock_page_cgroup(pc);
3017 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3020 * If a page is a file cache, radix-tree replacement is very atomic
3021 * and we can skip this check. When it was an Anon page, its mapcount
3022 * goes down to 0. But because we added MIGRATION flage, it's not
3023 * uncharged yet. There are several case but page->mapcount check
3024 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3025 * check. (see prepare_charge() also)
3027 if (PageAnon(used))
3028 mem_cgroup_uncharge_page(used);
3030 * At migration, we may charge account against cgroup which has no
3031 * tasks.
3032 * So, rmdir()->pre_destroy() can be called while we do this charge.
3033 * In that case, we need to call pre_destroy() again. check it here.
3035 cgroup_release_and_wakeup_rmdir(&mem->css);
3039 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3040 * Calling hierarchical_reclaim is not enough because we should update
3041 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3042 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3043 * not from the memcg which this page would be charged to.
3044 * try_charge_swapin does all of these works properly.
3046 int mem_cgroup_shmem_charge_fallback(struct page *page,
3047 struct mm_struct *mm,
3048 gfp_t gfp_mask)
3050 struct mem_cgroup *mem;
3051 int ret;
3053 if (mem_cgroup_disabled())
3054 return 0;
3056 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3057 if (!ret)
3058 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3060 return ret;
3063 static DEFINE_MUTEX(set_limit_mutex);
3065 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3066 unsigned long long val)
3068 int retry_count;
3069 u64 memswlimit, memlimit;
3070 int ret = 0;
3071 int children = mem_cgroup_count_children(memcg);
3072 u64 curusage, oldusage;
3073 int enlarge;
3076 * For keeping hierarchical_reclaim simple, how long we should retry
3077 * is depends on callers. We set our retry-count to be function
3078 * of # of children which we should visit in this loop.
3080 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3082 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3084 enlarge = 0;
3085 while (retry_count) {
3086 if (signal_pending(current)) {
3087 ret = -EINTR;
3088 break;
3091 * Rather than hide all in some function, I do this in
3092 * open coded manner. You see what this really does.
3093 * We have to guarantee mem->res.limit < mem->memsw.limit.
3095 mutex_lock(&set_limit_mutex);
3096 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3097 if (memswlimit < val) {
3098 ret = -EINVAL;
3099 mutex_unlock(&set_limit_mutex);
3100 break;
3103 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3104 if (memlimit < val)
3105 enlarge = 1;
3107 ret = res_counter_set_limit(&memcg->res, val);
3108 if (!ret) {
3109 if (memswlimit == val)
3110 memcg->memsw_is_minimum = true;
3111 else
3112 memcg->memsw_is_minimum = false;
3114 mutex_unlock(&set_limit_mutex);
3116 if (!ret)
3117 break;
3119 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3120 MEM_CGROUP_RECLAIM_SHRINK);
3121 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3122 /* Usage is reduced ? */
3123 if (curusage >= oldusage)
3124 retry_count--;
3125 else
3126 oldusage = curusage;
3128 if (!ret && enlarge)
3129 memcg_oom_recover(memcg);
3131 return ret;
3134 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3135 unsigned long long val)
3137 int retry_count;
3138 u64 memlimit, memswlimit, oldusage, curusage;
3139 int children = mem_cgroup_count_children(memcg);
3140 int ret = -EBUSY;
3141 int enlarge = 0;
3143 /* see mem_cgroup_resize_res_limit */
3144 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3145 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3146 while (retry_count) {
3147 if (signal_pending(current)) {
3148 ret = -EINTR;
3149 break;
3152 * Rather than hide all in some function, I do this in
3153 * open coded manner. You see what this really does.
3154 * We have to guarantee mem->res.limit < mem->memsw.limit.
3156 mutex_lock(&set_limit_mutex);
3157 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3158 if (memlimit > val) {
3159 ret = -EINVAL;
3160 mutex_unlock(&set_limit_mutex);
3161 break;
3163 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3164 if (memswlimit < val)
3165 enlarge = 1;
3166 ret = res_counter_set_limit(&memcg->memsw, val);
3167 if (!ret) {
3168 if (memlimit == val)
3169 memcg->memsw_is_minimum = true;
3170 else
3171 memcg->memsw_is_minimum = false;
3173 mutex_unlock(&set_limit_mutex);
3175 if (!ret)
3176 break;
3178 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3179 MEM_CGROUP_RECLAIM_NOSWAP |
3180 MEM_CGROUP_RECLAIM_SHRINK);
3181 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3182 /* Usage is reduced ? */
3183 if (curusage >= oldusage)
3184 retry_count--;
3185 else
3186 oldusage = curusage;
3188 if (!ret && enlarge)
3189 memcg_oom_recover(memcg);
3190 return ret;
3193 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3194 gfp_t gfp_mask)
3196 unsigned long nr_reclaimed = 0;
3197 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3198 unsigned long reclaimed;
3199 int loop = 0;
3200 struct mem_cgroup_tree_per_zone *mctz;
3201 unsigned long long excess;
3203 if (order > 0)
3204 return 0;
3206 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3208 * This loop can run a while, specially if mem_cgroup's continuously
3209 * keep exceeding their soft limit and putting the system under
3210 * pressure
3212 do {
3213 if (next_mz)
3214 mz = next_mz;
3215 else
3216 mz = mem_cgroup_largest_soft_limit_node(mctz);
3217 if (!mz)
3218 break;
3220 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3221 gfp_mask,
3222 MEM_CGROUP_RECLAIM_SOFT);
3223 nr_reclaimed += reclaimed;
3224 spin_lock(&mctz->lock);
3227 * If we failed to reclaim anything from this memory cgroup
3228 * it is time to move on to the next cgroup
3230 next_mz = NULL;
3231 if (!reclaimed) {
3232 do {
3234 * Loop until we find yet another one.
3236 * By the time we get the soft_limit lock
3237 * again, someone might have aded the
3238 * group back on the RB tree. Iterate to
3239 * make sure we get a different mem.
3240 * mem_cgroup_largest_soft_limit_node returns
3241 * NULL if no other cgroup is present on
3242 * the tree
3244 next_mz =
3245 __mem_cgroup_largest_soft_limit_node(mctz);
3246 if (next_mz == mz) {
3247 css_put(&next_mz->mem->css);
3248 next_mz = NULL;
3249 } else /* next_mz == NULL or other memcg */
3250 break;
3251 } while (1);
3253 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3254 excess = res_counter_soft_limit_excess(&mz->mem->res);
3256 * One school of thought says that we should not add
3257 * back the node to the tree if reclaim returns 0.
3258 * But our reclaim could return 0, simply because due
3259 * to priority we are exposing a smaller subset of
3260 * memory to reclaim from. Consider this as a longer
3261 * term TODO.
3263 /* If excess == 0, no tree ops */
3264 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3265 spin_unlock(&mctz->lock);
3266 css_put(&mz->mem->css);
3267 loop++;
3269 * Could not reclaim anything and there are no more
3270 * mem cgroups to try or we seem to be looping without
3271 * reclaiming anything.
3273 if (!nr_reclaimed &&
3274 (next_mz == NULL ||
3275 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3276 break;
3277 } while (!nr_reclaimed);
3278 if (next_mz)
3279 css_put(&next_mz->mem->css);
3280 return nr_reclaimed;
3284 * This routine traverse page_cgroup in given list and drop them all.
3285 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3287 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3288 int node, int zid, enum lru_list lru)
3290 struct zone *zone;
3291 struct mem_cgroup_per_zone *mz;
3292 struct page_cgroup *pc, *busy;
3293 unsigned long flags, loop;
3294 struct list_head *list;
3295 int ret = 0;
3297 zone = &NODE_DATA(node)->node_zones[zid];
3298 mz = mem_cgroup_zoneinfo(mem, node, zid);
3299 list = &mz->lists[lru];
3301 loop = MEM_CGROUP_ZSTAT(mz, lru);
3302 /* give some margin against EBUSY etc...*/
3303 loop += 256;
3304 busy = NULL;
3305 while (loop--) {
3306 ret = 0;
3307 spin_lock_irqsave(&zone->lru_lock, flags);
3308 if (list_empty(list)) {
3309 spin_unlock_irqrestore(&zone->lru_lock, flags);
3310 break;
3312 pc = list_entry(list->prev, struct page_cgroup, lru);
3313 if (busy == pc) {
3314 list_move(&pc->lru, list);
3315 busy = NULL;
3316 spin_unlock_irqrestore(&zone->lru_lock, flags);
3317 continue;
3319 spin_unlock_irqrestore(&zone->lru_lock, flags);
3321 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3322 if (ret == -ENOMEM)
3323 break;
3325 if (ret == -EBUSY || ret == -EINVAL) {
3326 /* found lock contention or "pc" is obsolete. */
3327 busy = pc;
3328 cond_resched();
3329 } else
3330 busy = NULL;
3333 if (!ret && !list_empty(list))
3334 return -EBUSY;
3335 return ret;
3339 * make mem_cgroup's charge to be 0 if there is no task.
3340 * This enables deleting this mem_cgroup.
3342 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3344 int ret;
3345 int node, zid, shrink;
3346 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3347 struct cgroup *cgrp = mem->css.cgroup;
3349 css_get(&mem->css);
3351 shrink = 0;
3352 /* should free all ? */
3353 if (free_all)
3354 goto try_to_free;
3355 move_account:
3356 do {
3357 ret = -EBUSY;
3358 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3359 goto out;
3360 ret = -EINTR;
3361 if (signal_pending(current))
3362 goto out;
3363 /* This is for making all *used* pages to be on LRU. */
3364 lru_add_drain_all();
3365 drain_all_stock_sync();
3366 ret = 0;
3367 mem_cgroup_start_move(mem);
3368 for_each_node_state(node, N_HIGH_MEMORY) {
3369 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3370 enum lru_list l;
3371 for_each_lru(l) {
3372 ret = mem_cgroup_force_empty_list(mem,
3373 node, zid, l);
3374 if (ret)
3375 break;
3378 if (ret)
3379 break;
3381 mem_cgroup_end_move(mem);
3382 memcg_oom_recover(mem);
3383 /* it seems parent cgroup doesn't have enough mem */
3384 if (ret == -ENOMEM)
3385 goto try_to_free;
3386 cond_resched();
3387 /* "ret" should also be checked to ensure all lists are empty. */
3388 } while (mem->res.usage > 0 || ret);
3389 out:
3390 css_put(&mem->css);
3391 return ret;
3393 try_to_free:
3394 /* returns EBUSY if there is a task or if we come here twice. */
3395 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3396 ret = -EBUSY;
3397 goto out;
3399 /* we call try-to-free pages for make this cgroup empty */
3400 lru_add_drain_all();
3401 /* try to free all pages in this cgroup */
3402 shrink = 1;
3403 while (nr_retries && mem->res.usage > 0) {
3404 int progress;
3406 if (signal_pending(current)) {
3407 ret = -EINTR;
3408 goto out;
3410 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3411 false, get_swappiness(mem));
3412 if (!progress) {
3413 nr_retries--;
3414 /* maybe some writeback is necessary */
3415 congestion_wait(BLK_RW_ASYNC, HZ/10);
3419 lru_add_drain();
3420 /* try move_account...there may be some *locked* pages. */
3421 goto move_account;
3424 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3426 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3430 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3432 return mem_cgroup_from_cont(cont)->use_hierarchy;
3435 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3436 u64 val)
3438 int retval = 0;
3439 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3440 struct cgroup *parent = cont->parent;
3441 struct mem_cgroup *parent_mem = NULL;
3443 if (parent)
3444 parent_mem = mem_cgroup_from_cont(parent);
3446 cgroup_lock();
3448 * If parent's use_hierarchy is set, we can't make any modifications
3449 * in the child subtrees. If it is unset, then the change can
3450 * occur, provided the current cgroup has no children.
3452 * For the root cgroup, parent_mem is NULL, we allow value to be
3453 * set if there are no children.
3455 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3456 (val == 1 || val == 0)) {
3457 if (list_empty(&cont->children))
3458 mem->use_hierarchy = val;
3459 else
3460 retval = -EBUSY;
3461 } else
3462 retval = -EINVAL;
3463 cgroup_unlock();
3465 return retval;
3469 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3470 enum mem_cgroup_stat_index idx)
3472 struct mem_cgroup *iter;
3473 s64 val = 0;
3475 /* each per cpu's value can be minus.Then, use s64 */
3476 for_each_mem_cgroup_tree(iter, mem)
3477 val += mem_cgroup_read_stat(iter, idx);
3479 if (val < 0) /* race ? */
3480 val = 0;
3481 return val;
3484 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3486 u64 val;
3488 if (!mem_cgroup_is_root(mem)) {
3489 if (!swap)
3490 return res_counter_read_u64(&mem->res, RES_USAGE);
3491 else
3492 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3495 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3496 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3498 if (swap)
3499 val += mem_cgroup_get_recursive_idx_stat(mem,
3500 MEM_CGROUP_STAT_SWAPOUT);
3502 return val << PAGE_SHIFT;
3505 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3507 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3508 u64 val;
3509 int type, name;
3511 type = MEMFILE_TYPE(cft->private);
3512 name = MEMFILE_ATTR(cft->private);
3513 switch (type) {
3514 case _MEM:
3515 if (name == RES_USAGE)
3516 val = mem_cgroup_usage(mem, false);
3517 else
3518 val = res_counter_read_u64(&mem->res, name);
3519 break;
3520 case _MEMSWAP:
3521 if (name == RES_USAGE)
3522 val = mem_cgroup_usage(mem, true);
3523 else
3524 val = res_counter_read_u64(&mem->memsw, name);
3525 break;
3526 default:
3527 BUG();
3528 break;
3530 return val;
3533 * The user of this function is...
3534 * RES_LIMIT.
3536 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3537 const char *buffer)
3539 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3540 int type, name;
3541 unsigned long long val;
3542 int ret;
3544 type = MEMFILE_TYPE(cft->private);
3545 name = MEMFILE_ATTR(cft->private);
3546 switch (name) {
3547 case RES_LIMIT:
3548 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3549 ret = -EINVAL;
3550 break;
3552 /* This function does all necessary parse...reuse it */
3553 ret = res_counter_memparse_write_strategy(buffer, &val);
3554 if (ret)
3555 break;
3556 if (type == _MEM)
3557 ret = mem_cgroup_resize_limit(memcg, val);
3558 else
3559 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3560 break;
3561 case RES_SOFT_LIMIT:
3562 ret = res_counter_memparse_write_strategy(buffer, &val);
3563 if (ret)
3564 break;
3566 * For memsw, soft limits are hard to implement in terms
3567 * of semantics, for now, we support soft limits for
3568 * control without swap
3570 if (type == _MEM)
3571 ret = res_counter_set_soft_limit(&memcg->res, val);
3572 else
3573 ret = -EINVAL;
3574 break;
3575 default:
3576 ret = -EINVAL; /* should be BUG() ? */
3577 break;
3579 return ret;
3582 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3583 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3585 struct cgroup *cgroup;
3586 unsigned long long min_limit, min_memsw_limit, tmp;
3588 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3589 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3590 cgroup = memcg->css.cgroup;
3591 if (!memcg->use_hierarchy)
3592 goto out;
3594 while (cgroup->parent) {
3595 cgroup = cgroup->parent;
3596 memcg = mem_cgroup_from_cont(cgroup);
3597 if (!memcg->use_hierarchy)
3598 break;
3599 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3600 min_limit = min(min_limit, tmp);
3601 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3602 min_memsw_limit = min(min_memsw_limit, tmp);
3604 out:
3605 *mem_limit = min_limit;
3606 *memsw_limit = min_memsw_limit;
3607 return;
3610 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3612 struct mem_cgroup *mem;
3613 int type, name;
3615 mem = mem_cgroup_from_cont(cont);
3616 type = MEMFILE_TYPE(event);
3617 name = MEMFILE_ATTR(event);
3618 switch (name) {
3619 case RES_MAX_USAGE:
3620 if (type == _MEM)
3621 res_counter_reset_max(&mem->res);
3622 else
3623 res_counter_reset_max(&mem->memsw);
3624 break;
3625 case RES_FAILCNT:
3626 if (type == _MEM)
3627 res_counter_reset_failcnt(&mem->res);
3628 else
3629 res_counter_reset_failcnt(&mem->memsw);
3630 break;
3633 return 0;
3636 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3637 struct cftype *cft)
3639 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3642 #ifdef CONFIG_MMU
3643 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3644 struct cftype *cft, u64 val)
3646 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3648 if (val >= (1 << NR_MOVE_TYPE))
3649 return -EINVAL;
3651 * We check this value several times in both in can_attach() and
3652 * attach(), so we need cgroup lock to prevent this value from being
3653 * inconsistent.
3655 cgroup_lock();
3656 mem->move_charge_at_immigrate = val;
3657 cgroup_unlock();
3659 return 0;
3661 #else
3662 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3663 struct cftype *cft, u64 val)
3665 return -ENOSYS;
3667 #endif
3670 /* For read statistics */
3671 enum {
3672 MCS_CACHE,
3673 MCS_RSS,
3674 MCS_FILE_MAPPED,
3675 MCS_PGPGIN,
3676 MCS_PGPGOUT,
3677 MCS_SWAP,
3678 MCS_INACTIVE_ANON,
3679 MCS_ACTIVE_ANON,
3680 MCS_INACTIVE_FILE,
3681 MCS_ACTIVE_FILE,
3682 MCS_UNEVICTABLE,
3683 NR_MCS_STAT,
3686 struct mcs_total_stat {
3687 s64 stat[NR_MCS_STAT];
3690 struct {
3691 char *local_name;
3692 char *total_name;
3693 } memcg_stat_strings[NR_MCS_STAT] = {
3694 {"cache", "total_cache"},
3695 {"rss", "total_rss"},
3696 {"mapped_file", "total_mapped_file"},
3697 {"pgpgin", "total_pgpgin"},
3698 {"pgpgout", "total_pgpgout"},
3699 {"swap", "total_swap"},
3700 {"inactive_anon", "total_inactive_anon"},
3701 {"active_anon", "total_active_anon"},
3702 {"inactive_file", "total_inactive_file"},
3703 {"active_file", "total_active_file"},
3704 {"unevictable", "total_unevictable"}
3708 static void
3709 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3711 s64 val;
3713 /* per cpu stat */
3714 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3715 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3716 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3717 s->stat[MCS_RSS] += val * PAGE_SIZE;
3718 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3719 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3720 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3721 s->stat[MCS_PGPGIN] += val;
3722 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3723 s->stat[MCS_PGPGOUT] += val;
3724 if (do_swap_account) {
3725 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3726 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3729 /* per zone stat */
3730 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3731 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3732 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3733 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3734 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3735 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3736 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3737 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3738 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3739 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3742 static void
3743 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3745 struct mem_cgroup *iter;
3747 for_each_mem_cgroup_tree(iter, mem)
3748 mem_cgroup_get_local_stat(iter, s);
3751 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3752 struct cgroup_map_cb *cb)
3754 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3755 struct mcs_total_stat mystat;
3756 int i;
3758 memset(&mystat, 0, sizeof(mystat));
3759 mem_cgroup_get_local_stat(mem_cont, &mystat);
3761 for (i = 0; i < NR_MCS_STAT; i++) {
3762 if (i == MCS_SWAP && !do_swap_account)
3763 continue;
3764 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3767 /* Hierarchical information */
3769 unsigned long long limit, memsw_limit;
3770 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3771 cb->fill(cb, "hierarchical_memory_limit", limit);
3772 if (do_swap_account)
3773 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3776 memset(&mystat, 0, sizeof(mystat));
3777 mem_cgroup_get_total_stat(mem_cont, &mystat);
3778 for (i = 0; i < NR_MCS_STAT; i++) {
3779 if (i == MCS_SWAP && !do_swap_account)
3780 continue;
3781 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3784 #ifdef CONFIG_DEBUG_VM
3785 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3788 int nid, zid;
3789 struct mem_cgroup_per_zone *mz;
3790 unsigned long recent_rotated[2] = {0, 0};
3791 unsigned long recent_scanned[2] = {0, 0};
3793 for_each_online_node(nid)
3794 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3795 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3797 recent_rotated[0] +=
3798 mz->reclaim_stat.recent_rotated[0];
3799 recent_rotated[1] +=
3800 mz->reclaim_stat.recent_rotated[1];
3801 recent_scanned[0] +=
3802 mz->reclaim_stat.recent_scanned[0];
3803 recent_scanned[1] +=
3804 mz->reclaim_stat.recent_scanned[1];
3806 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3807 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3808 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3809 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3811 #endif
3813 return 0;
3816 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3818 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3820 return get_swappiness(memcg);
3823 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3824 u64 val)
3826 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3827 struct mem_cgroup *parent;
3829 if (val > 100)
3830 return -EINVAL;
3832 if (cgrp->parent == NULL)
3833 return -EINVAL;
3835 parent = mem_cgroup_from_cont(cgrp->parent);
3837 cgroup_lock();
3839 /* If under hierarchy, only empty-root can set this value */
3840 if ((parent->use_hierarchy) ||
3841 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3842 cgroup_unlock();
3843 return -EINVAL;
3846 spin_lock(&memcg->reclaim_param_lock);
3847 memcg->swappiness = val;
3848 spin_unlock(&memcg->reclaim_param_lock);
3850 cgroup_unlock();
3852 return 0;
3855 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3857 struct mem_cgroup_threshold_ary *t;
3858 u64 usage;
3859 int i;
3861 rcu_read_lock();
3862 if (!swap)
3863 t = rcu_dereference(memcg->thresholds.primary);
3864 else
3865 t = rcu_dereference(memcg->memsw_thresholds.primary);
3867 if (!t)
3868 goto unlock;
3870 usage = mem_cgroup_usage(memcg, swap);
3873 * current_threshold points to threshold just below usage.
3874 * If it's not true, a threshold was crossed after last
3875 * call of __mem_cgroup_threshold().
3877 i = t->current_threshold;
3880 * Iterate backward over array of thresholds starting from
3881 * current_threshold and check if a threshold is crossed.
3882 * If none of thresholds below usage is crossed, we read
3883 * only one element of the array here.
3885 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3886 eventfd_signal(t->entries[i].eventfd, 1);
3888 /* i = current_threshold + 1 */
3889 i++;
3892 * Iterate forward over array of thresholds starting from
3893 * current_threshold+1 and check if a threshold is crossed.
3894 * If none of thresholds above usage is crossed, we read
3895 * only one element of the array here.
3897 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3898 eventfd_signal(t->entries[i].eventfd, 1);
3900 /* Update current_threshold */
3901 t->current_threshold = i - 1;
3902 unlock:
3903 rcu_read_unlock();
3906 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3908 while (memcg) {
3909 __mem_cgroup_threshold(memcg, false);
3910 if (do_swap_account)
3911 __mem_cgroup_threshold(memcg, true);
3913 memcg = parent_mem_cgroup(memcg);
3917 static int compare_thresholds(const void *a, const void *b)
3919 const struct mem_cgroup_threshold *_a = a;
3920 const struct mem_cgroup_threshold *_b = b;
3922 return _a->threshold - _b->threshold;
3925 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3927 struct mem_cgroup_eventfd_list *ev;
3929 list_for_each_entry(ev, &mem->oom_notify, list)
3930 eventfd_signal(ev->eventfd, 1);
3931 return 0;
3934 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3936 struct mem_cgroup *iter;
3938 for_each_mem_cgroup_tree(iter, mem)
3939 mem_cgroup_oom_notify_cb(iter);
3942 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3943 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3945 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3946 struct mem_cgroup_thresholds *thresholds;
3947 struct mem_cgroup_threshold_ary *new;
3948 int type = MEMFILE_TYPE(cft->private);
3949 u64 threshold, usage;
3950 int i, size, ret;
3952 ret = res_counter_memparse_write_strategy(args, &threshold);
3953 if (ret)
3954 return ret;
3956 mutex_lock(&memcg->thresholds_lock);
3958 if (type == _MEM)
3959 thresholds = &memcg->thresholds;
3960 else if (type == _MEMSWAP)
3961 thresholds = &memcg->memsw_thresholds;
3962 else
3963 BUG();
3965 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3967 /* Check if a threshold crossed before adding a new one */
3968 if (thresholds->primary)
3969 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3971 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3973 /* Allocate memory for new array of thresholds */
3974 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3975 GFP_KERNEL);
3976 if (!new) {
3977 ret = -ENOMEM;
3978 goto unlock;
3980 new->size = size;
3982 /* Copy thresholds (if any) to new array */
3983 if (thresholds->primary) {
3984 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3985 sizeof(struct mem_cgroup_threshold));
3988 /* Add new threshold */
3989 new->entries[size - 1].eventfd = eventfd;
3990 new->entries[size - 1].threshold = threshold;
3992 /* Sort thresholds. Registering of new threshold isn't time-critical */
3993 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3994 compare_thresholds, NULL);
3996 /* Find current threshold */
3997 new->current_threshold = -1;
3998 for (i = 0; i < size; i++) {
3999 if (new->entries[i].threshold < usage) {
4001 * new->current_threshold will not be used until
4002 * rcu_assign_pointer(), so it's safe to increment
4003 * it here.
4005 ++new->current_threshold;
4009 /* Free old spare buffer and save old primary buffer as spare */
4010 kfree(thresholds->spare);
4011 thresholds->spare = thresholds->primary;
4013 rcu_assign_pointer(thresholds->primary, new);
4015 /* To be sure that nobody uses thresholds */
4016 synchronize_rcu();
4018 unlock:
4019 mutex_unlock(&memcg->thresholds_lock);
4021 return ret;
4024 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4025 struct cftype *cft, struct eventfd_ctx *eventfd)
4027 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4028 struct mem_cgroup_thresholds *thresholds;
4029 struct mem_cgroup_threshold_ary *new;
4030 int type = MEMFILE_TYPE(cft->private);
4031 u64 usage;
4032 int i, j, size;
4034 mutex_lock(&memcg->thresholds_lock);
4035 if (type == _MEM)
4036 thresholds = &memcg->thresholds;
4037 else if (type == _MEMSWAP)
4038 thresholds = &memcg->memsw_thresholds;
4039 else
4040 BUG();
4043 * Something went wrong if we trying to unregister a threshold
4044 * if we don't have thresholds
4046 BUG_ON(!thresholds);
4048 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4050 /* Check if a threshold crossed before removing */
4051 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4053 /* Calculate new number of threshold */
4054 size = 0;
4055 for (i = 0; i < thresholds->primary->size; i++) {
4056 if (thresholds->primary->entries[i].eventfd != eventfd)
4057 size++;
4060 new = thresholds->spare;
4062 /* Set thresholds array to NULL if we don't have thresholds */
4063 if (!size) {
4064 kfree(new);
4065 new = NULL;
4066 goto swap_buffers;
4069 new->size = size;
4071 /* Copy thresholds and find current threshold */
4072 new->current_threshold = -1;
4073 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4074 if (thresholds->primary->entries[i].eventfd == eventfd)
4075 continue;
4077 new->entries[j] = thresholds->primary->entries[i];
4078 if (new->entries[j].threshold < usage) {
4080 * new->current_threshold will not be used
4081 * until rcu_assign_pointer(), so it's safe to increment
4082 * it here.
4084 ++new->current_threshold;
4086 j++;
4089 swap_buffers:
4090 /* Swap primary and spare array */
4091 thresholds->spare = thresholds->primary;
4092 rcu_assign_pointer(thresholds->primary, new);
4094 /* To be sure that nobody uses thresholds */
4095 synchronize_rcu();
4097 mutex_unlock(&memcg->thresholds_lock);
4100 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4101 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4103 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4104 struct mem_cgroup_eventfd_list *event;
4105 int type = MEMFILE_TYPE(cft->private);
4107 BUG_ON(type != _OOM_TYPE);
4108 event = kmalloc(sizeof(*event), GFP_KERNEL);
4109 if (!event)
4110 return -ENOMEM;
4112 mutex_lock(&memcg_oom_mutex);
4114 event->eventfd = eventfd;
4115 list_add(&event->list, &memcg->oom_notify);
4117 /* already in OOM ? */
4118 if (atomic_read(&memcg->oom_lock))
4119 eventfd_signal(eventfd, 1);
4120 mutex_unlock(&memcg_oom_mutex);
4122 return 0;
4125 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4126 struct cftype *cft, struct eventfd_ctx *eventfd)
4128 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4129 struct mem_cgroup_eventfd_list *ev, *tmp;
4130 int type = MEMFILE_TYPE(cft->private);
4132 BUG_ON(type != _OOM_TYPE);
4134 mutex_lock(&memcg_oom_mutex);
4136 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4137 if (ev->eventfd == eventfd) {
4138 list_del(&ev->list);
4139 kfree(ev);
4143 mutex_unlock(&memcg_oom_mutex);
4146 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4147 struct cftype *cft, struct cgroup_map_cb *cb)
4149 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4151 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4153 if (atomic_read(&mem->oom_lock))
4154 cb->fill(cb, "under_oom", 1);
4155 else
4156 cb->fill(cb, "under_oom", 0);
4157 return 0;
4160 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4161 struct cftype *cft, u64 val)
4163 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4164 struct mem_cgroup *parent;
4166 /* cannot set to root cgroup and only 0 and 1 are allowed */
4167 if (!cgrp->parent || !((val == 0) || (val == 1)))
4168 return -EINVAL;
4170 parent = mem_cgroup_from_cont(cgrp->parent);
4172 cgroup_lock();
4173 /* oom-kill-disable is a flag for subhierarchy. */
4174 if ((parent->use_hierarchy) ||
4175 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4176 cgroup_unlock();
4177 return -EINVAL;
4179 mem->oom_kill_disable = val;
4180 if (!val)
4181 memcg_oom_recover(mem);
4182 cgroup_unlock();
4183 return 0;
4186 static struct cftype mem_cgroup_files[] = {
4188 .name = "usage_in_bytes",
4189 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4190 .read_u64 = mem_cgroup_read,
4191 .register_event = mem_cgroup_usage_register_event,
4192 .unregister_event = mem_cgroup_usage_unregister_event,
4195 .name = "max_usage_in_bytes",
4196 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4197 .trigger = mem_cgroup_reset,
4198 .read_u64 = mem_cgroup_read,
4201 .name = "limit_in_bytes",
4202 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4203 .write_string = mem_cgroup_write,
4204 .read_u64 = mem_cgroup_read,
4207 .name = "soft_limit_in_bytes",
4208 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4209 .write_string = mem_cgroup_write,
4210 .read_u64 = mem_cgroup_read,
4213 .name = "failcnt",
4214 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4215 .trigger = mem_cgroup_reset,
4216 .read_u64 = mem_cgroup_read,
4219 .name = "stat",
4220 .read_map = mem_control_stat_show,
4223 .name = "force_empty",
4224 .trigger = mem_cgroup_force_empty_write,
4227 .name = "use_hierarchy",
4228 .write_u64 = mem_cgroup_hierarchy_write,
4229 .read_u64 = mem_cgroup_hierarchy_read,
4232 .name = "swappiness",
4233 .read_u64 = mem_cgroup_swappiness_read,
4234 .write_u64 = mem_cgroup_swappiness_write,
4237 .name = "move_charge_at_immigrate",
4238 .read_u64 = mem_cgroup_move_charge_read,
4239 .write_u64 = mem_cgroup_move_charge_write,
4242 .name = "oom_control",
4243 .read_map = mem_cgroup_oom_control_read,
4244 .write_u64 = mem_cgroup_oom_control_write,
4245 .register_event = mem_cgroup_oom_register_event,
4246 .unregister_event = mem_cgroup_oom_unregister_event,
4247 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4251 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4252 static struct cftype memsw_cgroup_files[] = {
4254 .name = "memsw.usage_in_bytes",
4255 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4256 .read_u64 = mem_cgroup_read,
4257 .register_event = mem_cgroup_usage_register_event,
4258 .unregister_event = mem_cgroup_usage_unregister_event,
4261 .name = "memsw.max_usage_in_bytes",
4262 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4263 .trigger = mem_cgroup_reset,
4264 .read_u64 = mem_cgroup_read,
4267 .name = "memsw.limit_in_bytes",
4268 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4269 .write_string = mem_cgroup_write,
4270 .read_u64 = mem_cgroup_read,
4273 .name = "memsw.failcnt",
4274 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4275 .trigger = mem_cgroup_reset,
4276 .read_u64 = mem_cgroup_read,
4280 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4282 if (!do_swap_account)
4283 return 0;
4284 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4285 ARRAY_SIZE(memsw_cgroup_files));
4287 #else
4288 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4290 return 0;
4292 #endif
4294 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4296 struct mem_cgroup_per_node *pn;
4297 struct mem_cgroup_per_zone *mz;
4298 enum lru_list l;
4299 int zone, tmp = node;
4301 * This routine is called against possible nodes.
4302 * But it's BUG to call kmalloc() against offline node.
4304 * TODO: this routine can waste much memory for nodes which will
4305 * never be onlined. It's better to use memory hotplug callback
4306 * function.
4308 if (!node_state(node, N_NORMAL_MEMORY))
4309 tmp = -1;
4310 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4311 if (!pn)
4312 return 1;
4314 mem->info.nodeinfo[node] = pn;
4315 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4316 mz = &pn->zoneinfo[zone];
4317 for_each_lru(l)
4318 INIT_LIST_HEAD(&mz->lists[l]);
4319 mz->usage_in_excess = 0;
4320 mz->on_tree = false;
4321 mz->mem = mem;
4323 return 0;
4326 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4328 kfree(mem->info.nodeinfo[node]);
4331 static struct mem_cgroup *mem_cgroup_alloc(void)
4333 struct mem_cgroup *mem;
4334 int size = sizeof(struct mem_cgroup);
4336 /* Can be very big if MAX_NUMNODES is very big */
4337 if (size < PAGE_SIZE)
4338 mem = kzalloc(size, GFP_KERNEL);
4339 else
4340 mem = vzalloc(size);
4342 if (!mem)
4343 return NULL;
4345 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4346 if (!mem->stat)
4347 goto out_free;
4348 spin_lock_init(&mem->pcp_counter_lock);
4349 return mem;
4351 out_free:
4352 if (size < PAGE_SIZE)
4353 kfree(mem);
4354 else
4355 vfree(mem);
4356 return NULL;
4360 * At destroying mem_cgroup, references from swap_cgroup can remain.
4361 * (scanning all at force_empty is too costly...)
4363 * Instead of clearing all references at force_empty, we remember
4364 * the number of reference from swap_cgroup and free mem_cgroup when
4365 * it goes down to 0.
4367 * Removal of cgroup itself succeeds regardless of refs from swap.
4370 static void __mem_cgroup_free(struct mem_cgroup *mem)
4372 int node;
4374 mem_cgroup_remove_from_trees(mem);
4375 free_css_id(&mem_cgroup_subsys, &mem->css);
4377 for_each_node_state(node, N_POSSIBLE)
4378 free_mem_cgroup_per_zone_info(mem, node);
4380 free_percpu(mem->stat);
4381 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4382 kfree(mem);
4383 else
4384 vfree(mem);
4387 static void mem_cgroup_get(struct mem_cgroup *mem)
4389 atomic_inc(&mem->refcnt);
4392 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4394 if (atomic_sub_and_test(count, &mem->refcnt)) {
4395 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4396 __mem_cgroup_free(mem);
4397 if (parent)
4398 mem_cgroup_put(parent);
4402 static void mem_cgroup_put(struct mem_cgroup *mem)
4404 __mem_cgroup_put(mem, 1);
4408 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4410 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4412 if (!mem->res.parent)
4413 return NULL;
4414 return mem_cgroup_from_res_counter(mem->res.parent, res);
4417 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4418 static void __init enable_swap_cgroup(void)
4420 if (!mem_cgroup_disabled() && really_do_swap_account)
4421 do_swap_account = 1;
4423 #else
4424 static void __init enable_swap_cgroup(void)
4427 #endif
4429 static int mem_cgroup_soft_limit_tree_init(void)
4431 struct mem_cgroup_tree_per_node *rtpn;
4432 struct mem_cgroup_tree_per_zone *rtpz;
4433 int tmp, node, zone;
4435 for_each_node_state(node, N_POSSIBLE) {
4436 tmp = node;
4437 if (!node_state(node, N_NORMAL_MEMORY))
4438 tmp = -1;
4439 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4440 if (!rtpn)
4441 return 1;
4443 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4445 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4446 rtpz = &rtpn->rb_tree_per_zone[zone];
4447 rtpz->rb_root = RB_ROOT;
4448 spin_lock_init(&rtpz->lock);
4451 return 0;
4454 static struct cgroup_subsys_state * __ref
4455 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4457 struct mem_cgroup *mem, *parent;
4458 long error = -ENOMEM;
4459 int node;
4461 mem = mem_cgroup_alloc();
4462 if (!mem)
4463 return ERR_PTR(error);
4465 for_each_node_state(node, N_POSSIBLE)
4466 if (alloc_mem_cgroup_per_zone_info(mem, node))
4467 goto free_out;
4469 /* root ? */
4470 if (cont->parent == NULL) {
4471 int cpu;
4472 enable_swap_cgroup();
4473 parent = NULL;
4474 root_mem_cgroup = mem;
4475 if (mem_cgroup_soft_limit_tree_init())
4476 goto free_out;
4477 for_each_possible_cpu(cpu) {
4478 struct memcg_stock_pcp *stock =
4479 &per_cpu(memcg_stock, cpu);
4480 INIT_WORK(&stock->work, drain_local_stock);
4482 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4483 } else {
4484 parent = mem_cgroup_from_cont(cont->parent);
4485 mem->use_hierarchy = parent->use_hierarchy;
4486 mem->oom_kill_disable = parent->oom_kill_disable;
4489 if (parent && parent->use_hierarchy) {
4490 res_counter_init(&mem->res, &parent->res);
4491 res_counter_init(&mem->memsw, &parent->memsw);
4493 * We increment refcnt of the parent to ensure that we can
4494 * safely access it on res_counter_charge/uncharge.
4495 * This refcnt will be decremented when freeing this
4496 * mem_cgroup(see mem_cgroup_put).
4498 mem_cgroup_get(parent);
4499 } else {
4500 res_counter_init(&mem->res, NULL);
4501 res_counter_init(&mem->memsw, NULL);
4503 mem->last_scanned_child = 0;
4504 spin_lock_init(&mem->reclaim_param_lock);
4505 INIT_LIST_HEAD(&mem->oom_notify);
4507 if (parent)
4508 mem->swappiness = get_swappiness(parent);
4509 atomic_set(&mem->refcnt, 1);
4510 mem->move_charge_at_immigrate = 0;
4511 mutex_init(&mem->thresholds_lock);
4512 return &mem->css;
4513 free_out:
4514 __mem_cgroup_free(mem);
4515 root_mem_cgroup = NULL;
4516 return ERR_PTR(error);
4519 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4520 struct cgroup *cont)
4522 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4524 return mem_cgroup_force_empty(mem, false);
4527 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4528 struct cgroup *cont)
4530 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4532 mem_cgroup_put(mem);
4535 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4536 struct cgroup *cont)
4538 int ret;
4540 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4541 ARRAY_SIZE(mem_cgroup_files));
4543 if (!ret)
4544 ret = register_memsw_files(cont, ss);
4545 return ret;
4548 #ifdef CONFIG_MMU
4549 /* Handlers for move charge at task migration. */
4550 #define PRECHARGE_COUNT_AT_ONCE 256
4551 static int mem_cgroup_do_precharge(unsigned long count)
4553 int ret = 0;
4554 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4555 struct mem_cgroup *mem = mc.to;
4557 if (mem_cgroup_is_root(mem)) {
4558 mc.precharge += count;
4559 /* we don't need css_get for root */
4560 return ret;
4562 /* try to charge at once */
4563 if (count > 1) {
4564 struct res_counter *dummy;
4566 * "mem" cannot be under rmdir() because we've already checked
4567 * by cgroup_lock_live_cgroup() that it is not removed and we
4568 * are still under the same cgroup_mutex. So we can postpone
4569 * css_get().
4571 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4572 goto one_by_one;
4573 if (do_swap_account && res_counter_charge(&mem->memsw,
4574 PAGE_SIZE * count, &dummy)) {
4575 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4576 goto one_by_one;
4578 mc.precharge += count;
4579 return ret;
4581 one_by_one:
4582 /* fall back to one by one charge */
4583 while (count--) {
4584 if (signal_pending(current)) {
4585 ret = -EINTR;
4586 break;
4588 if (!batch_count--) {
4589 batch_count = PRECHARGE_COUNT_AT_ONCE;
4590 cond_resched();
4592 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4593 PAGE_SIZE);
4594 if (ret || !mem)
4595 /* mem_cgroup_clear_mc() will do uncharge later */
4596 return -ENOMEM;
4597 mc.precharge++;
4599 return ret;
4603 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4604 * @vma: the vma the pte to be checked belongs
4605 * @addr: the address corresponding to the pte to be checked
4606 * @ptent: the pte to be checked
4607 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4609 * Returns
4610 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4611 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4612 * move charge. if @target is not NULL, the page is stored in target->page
4613 * with extra refcnt got(Callers should handle it).
4614 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4615 * target for charge migration. if @target is not NULL, the entry is stored
4616 * in target->ent.
4618 * Called with pte lock held.
4620 union mc_target {
4621 struct page *page;
4622 swp_entry_t ent;
4625 enum mc_target_type {
4626 MC_TARGET_NONE, /* not used */
4627 MC_TARGET_PAGE,
4628 MC_TARGET_SWAP,
4631 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4632 unsigned long addr, pte_t ptent)
4634 struct page *page = vm_normal_page(vma, addr, ptent);
4636 if (!page || !page_mapped(page))
4637 return NULL;
4638 if (PageAnon(page)) {
4639 /* we don't move shared anon */
4640 if (!move_anon() || page_mapcount(page) > 2)
4641 return NULL;
4642 } else if (!move_file())
4643 /* we ignore mapcount for file pages */
4644 return NULL;
4645 if (!get_page_unless_zero(page))
4646 return NULL;
4648 return page;
4651 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4652 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4654 int usage_count;
4655 struct page *page = NULL;
4656 swp_entry_t ent = pte_to_swp_entry(ptent);
4658 if (!move_anon() || non_swap_entry(ent))
4659 return NULL;
4660 usage_count = mem_cgroup_count_swap_user(ent, &page);
4661 if (usage_count > 1) { /* we don't move shared anon */
4662 if (page)
4663 put_page(page);
4664 return NULL;
4666 if (do_swap_account)
4667 entry->val = ent.val;
4669 return page;
4672 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4673 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4675 struct page *page = NULL;
4676 struct inode *inode;
4677 struct address_space *mapping;
4678 pgoff_t pgoff;
4680 if (!vma->vm_file) /* anonymous vma */
4681 return NULL;
4682 if (!move_file())
4683 return NULL;
4685 inode = vma->vm_file->f_path.dentry->d_inode;
4686 mapping = vma->vm_file->f_mapping;
4687 if (pte_none(ptent))
4688 pgoff = linear_page_index(vma, addr);
4689 else /* pte_file(ptent) is true */
4690 pgoff = pte_to_pgoff(ptent);
4692 /* page is moved even if it's not RSS of this task(page-faulted). */
4693 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4694 page = find_get_page(mapping, pgoff);
4695 } else { /* shmem/tmpfs file. we should take account of swap too. */
4696 swp_entry_t ent;
4697 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4698 if (do_swap_account)
4699 entry->val = ent.val;
4702 return page;
4705 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4706 unsigned long addr, pte_t ptent, union mc_target *target)
4708 struct page *page = NULL;
4709 struct page_cgroup *pc;
4710 int ret = 0;
4711 swp_entry_t ent = { .val = 0 };
4713 if (pte_present(ptent))
4714 page = mc_handle_present_pte(vma, addr, ptent);
4715 else if (is_swap_pte(ptent))
4716 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4717 else if (pte_none(ptent) || pte_file(ptent))
4718 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4720 if (!page && !ent.val)
4721 return 0;
4722 if (page) {
4723 pc = lookup_page_cgroup(page);
4725 * Do only loose check w/o page_cgroup lock.
4726 * mem_cgroup_move_account() checks the pc is valid or not under
4727 * the lock.
4729 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4730 ret = MC_TARGET_PAGE;
4731 if (target)
4732 target->page = page;
4734 if (!ret || !target)
4735 put_page(page);
4737 /* There is a swap entry and a page doesn't exist or isn't charged */
4738 if (ent.val && !ret &&
4739 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4740 ret = MC_TARGET_SWAP;
4741 if (target)
4742 target->ent = ent;
4744 return ret;
4747 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4748 unsigned long addr, unsigned long end,
4749 struct mm_walk *walk)
4751 struct vm_area_struct *vma = walk->private;
4752 pte_t *pte;
4753 spinlock_t *ptl;
4755 split_huge_page_pmd(walk->mm, pmd);
4757 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4758 for (; addr != end; pte++, addr += PAGE_SIZE)
4759 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4760 mc.precharge++; /* increment precharge temporarily */
4761 pte_unmap_unlock(pte - 1, ptl);
4762 cond_resched();
4764 return 0;
4767 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4769 unsigned long precharge;
4770 struct vm_area_struct *vma;
4772 down_read(&mm->mmap_sem);
4773 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4774 struct mm_walk mem_cgroup_count_precharge_walk = {
4775 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4776 .mm = mm,
4777 .private = vma,
4779 if (is_vm_hugetlb_page(vma))
4780 continue;
4781 walk_page_range(vma->vm_start, vma->vm_end,
4782 &mem_cgroup_count_precharge_walk);
4784 up_read(&mm->mmap_sem);
4786 precharge = mc.precharge;
4787 mc.precharge = 0;
4789 return precharge;
4792 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4794 unsigned long precharge = mem_cgroup_count_precharge(mm);
4796 VM_BUG_ON(mc.moving_task);
4797 mc.moving_task = current;
4798 return mem_cgroup_do_precharge(precharge);
4801 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4802 static void __mem_cgroup_clear_mc(void)
4804 struct mem_cgroup *from = mc.from;
4805 struct mem_cgroup *to = mc.to;
4807 /* we must uncharge all the leftover precharges from mc.to */
4808 if (mc.precharge) {
4809 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4810 mc.precharge = 0;
4813 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4814 * we must uncharge here.
4816 if (mc.moved_charge) {
4817 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4818 mc.moved_charge = 0;
4820 /* we must fixup refcnts and charges */
4821 if (mc.moved_swap) {
4822 /* uncharge swap account from the old cgroup */
4823 if (!mem_cgroup_is_root(mc.from))
4824 res_counter_uncharge(&mc.from->memsw,
4825 PAGE_SIZE * mc.moved_swap);
4826 __mem_cgroup_put(mc.from, mc.moved_swap);
4828 if (!mem_cgroup_is_root(mc.to)) {
4830 * we charged both to->res and to->memsw, so we should
4831 * uncharge to->res.
4833 res_counter_uncharge(&mc.to->res,
4834 PAGE_SIZE * mc.moved_swap);
4836 /* we've already done mem_cgroup_get(mc.to) */
4837 mc.moved_swap = 0;
4839 memcg_oom_recover(from);
4840 memcg_oom_recover(to);
4841 wake_up_all(&mc.waitq);
4844 static void mem_cgroup_clear_mc(void)
4846 struct mem_cgroup *from = mc.from;
4849 * we must clear moving_task before waking up waiters at the end of
4850 * task migration.
4852 mc.moving_task = NULL;
4853 __mem_cgroup_clear_mc();
4854 spin_lock(&mc.lock);
4855 mc.from = NULL;
4856 mc.to = NULL;
4857 spin_unlock(&mc.lock);
4858 mem_cgroup_end_move(from);
4861 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4862 struct cgroup *cgroup,
4863 struct task_struct *p,
4864 bool threadgroup)
4866 int ret = 0;
4867 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4869 if (mem->move_charge_at_immigrate) {
4870 struct mm_struct *mm;
4871 struct mem_cgroup *from = mem_cgroup_from_task(p);
4873 VM_BUG_ON(from == mem);
4875 mm = get_task_mm(p);
4876 if (!mm)
4877 return 0;
4878 /* We move charges only when we move a owner of the mm */
4879 if (mm->owner == p) {
4880 VM_BUG_ON(mc.from);
4881 VM_BUG_ON(mc.to);
4882 VM_BUG_ON(mc.precharge);
4883 VM_BUG_ON(mc.moved_charge);
4884 VM_BUG_ON(mc.moved_swap);
4885 mem_cgroup_start_move(from);
4886 spin_lock(&mc.lock);
4887 mc.from = from;
4888 mc.to = mem;
4889 spin_unlock(&mc.lock);
4890 /* We set mc.moving_task later */
4892 ret = mem_cgroup_precharge_mc(mm);
4893 if (ret)
4894 mem_cgroup_clear_mc();
4896 mmput(mm);
4898 return ret;
4901 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4902 struct cgroup *cgroup,
4903 struct task_struct *p,
4904 bool threadgroup)
4906 mem_cgroup_clear_mc();
4909 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4910 unsigned long addr, unsigned long end,
4911 struct mm_walk *walk)
4913 int ret = 0;
4914 struct vm_area_struct *vma = walk->private;
4915 pte_t *pte;
4916 spinlock_t *ptl;
4918 split_huge_page_pmd(walk->mm, pmd);
4919 retry:
4920 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4921 for (; addr != end; addr += PAGE_SIZE) {
4922 pte_t ptent = *(pte++);
4923 union mc_target target;
4924 int type;
4925 struct page *page;
4926 struct page_cgroup *pc;
4927 swp_entry_t ent;
4929 if (!mc.precharge)
4930 break;
4932 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4933 switch (type) {
4934 case MC_TARGET_PAGE:
4935 page = target.page;
4936 if (isolate_lru_page(page))
4937 goto put;
4938 pc = lookup_page_cgroup(page);
4939 if (!mem_cgroup_move_account(pc,
4940 mc.from, mc.to, false, PAGE_SIZE)) {
4941 mc.precharge--;
4942 /* we uncharge from mc.from later. */
4943 mc.moved_charge++;
4945 putback_lru_page(page);
4946 put: /* is_target_pte_for_mc() gets the page */
4947 put_page(page);
4948 break;
4949 case MC_TARGET_SWAP:
4950 ent = target.ent;
4951 if (!mem_cgroup_move_swap_account(ent,
4952 mc.from, mc.to, false)) {
4953 mc.precharge--;
4954 /* we fixup refcnts and charges later. */
4955 mc.moved_swap++;
4957 break;
4958 default:
4959 break;
4962 pte_unmap_unlock(pte - 1, ptl);
4963 cond_resched();
4965 if (addr != end) {
4967 * We have consumed all precharges we got in can_attach().
4968 * We try charge one by one, but don't do any additional
4969 * charges to mc.to if we have failed in charge once in attach()
4970 * phase.
4972 ret = mem_cgroup_do_precharge(1);
4973 if (!ret)
4974 goto retry;
4977 return ret;
4980 static void mem_cgroup_move_charge(struct mm_struct *mm)
4982 struct vm_area_struct *vma;
4984 lru_add_drain_all();
4985 retry:
4986 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4988 * Someone who are holding the mmap_sem might be waiting in
4989 * waitq. So we cancel all extra charges, wake up all waiters,
4990 * and retry. Because we cancel precharges, we might not be able
4991 * to move enough charges, but moving charge is a best-effort
4992 * feature anyway, so it wouldn't be a big problem.
4994 __mem_cgroup_clear_mc();
4995 cond_resched();
4996 goto retry;
4998 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4999 int ret;
5000 struct mm_walk mem_cgroup_move_charge_walk = {
5001 .pmd_entry = mem_cgroup_move_charge_pte_range,
5002 .mm = mm,
5003 .private = vma,
5005 if (is_vm_hugetlb_page(vma))
5006 continue;
5007 ret = walk_page_range(vma->vm_start, vma->vm_end,
5008 &mem_cgroup_move_charge_walk);
5009 if (ret)
5011 * means we have consumed all precharges and failed in
5012 * doing additional charge. Just abandon here.
5014 break;
5016 up_read(&mm->mmap_sem);
5019 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5020 struct cgroup *cont,
5021 struct cgroup *old_cont,
5022 struct task_struct *p,
5023 bool threadgroup)
5025 struct mm_struct *mm;
5027 if (!mc.to)
5028 /* no need to move charge */
5029 return;
5031 mm = get_task_mm(p);
5032 if (mm) {
5033 mem_cgroup_move_charge(mm);
5034 mmput(mm);
5036 mem_cgroup_clear_mc();
5038 #else /* !CONFIG_MMU */
5039 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5040 struct cgroup *cgroup,
5041 struct task_struct *p,
5042 bool threadgroup)
5044 return 0;
5046 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5047 struct cgroup *cgroup,
5048 struct task_struct *p,
5049 bool threadgroup)
5052 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5053 struct cgroup *cont,
5054 struct cgroup *old_cont,
5055 struct task_struct *p,
5056 bool threadgroup)
5059 #endif
5061 struct cgroup_subsys mem_cgroup_subsys = {
5062 .name = "memory",
5063 .subsys_id = mem_cgroup_subsys_id,
5064 .create = mem_cgroup_create,
5065 .pre_destroy = mem_cgroup_pre_destroy,
5066 .destroy = mem_cgroup_destroy,
5067 .populate = mem_cgroup_populate,
5068 .can_attach = mem_cgroup_can_attach,
5069 .cancel_attach = mem_cgroup_cancel_attach,
5070 .attach = mem_cgroup_move_task,
5071 .early_init = 0,
5072 .use_id = 1,
5075 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5076 static int __init enable_swap_account(char *s)
5078 /* consider enabled if no parameter or 1 is given */
5079 if (!(*s) || !strcmp(s, "=1"))
5080 really_do_swap_account = 1;
5081 else if (!strcmp(s, "=0"))
5082 really_do_swap_account = 0;
5083 return 1;
5085 __setup("swapaccount", enable_swap_account);
5087 static int __init disable_swap_account(char *s)
5089 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5090 enable_swap_account("=0");
5091 return 1;
5093 __setup("noswapaccount", disable_swap_account);
5094 #endif