memcg: simplify the way memory limits are checked
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / imm.c
blob99aa0e5699bc9369eb144fc2c144b4082ce15348
1 /* imm.c -- low level driver for the IOMEGA MatchMaker
2 * parallel port SCSI host adapter.
3 *
4 * (The IMM is the embedded controller in the ZIP Plus drive.)
5 *
6 * My unoffical company acronym list is 21 pages long:
7 * FLA: Four letter acronym with built in facility for
8 * future expansion to five letters.
9 */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/parport.h>
16 #include <linux/workqueue.h>
17 #include <linux/delay.h>
18 #include <linux/slab.h>
19 #include <asm/io.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_device.h>
24 #include <scsi/scsi_host.h>
26 /* The following #define is to avoid a clash with hosts.c */
27 #define IMM_PROBE_SPP 0x0001
28 #define IMM_PROBE_PS2 0x0002
29 #define IMM_PROBE_ECR 0x0010
30 #define IMM_PROBE_EPP17 0x0100
31 #define IMM_PROBE_EPP19 0x0200
34 typedef struct {
35 struct pardevice *dev; /* Parport device entry */
36 int base; /* Actual port address */
37 int base_hi; /* Hi Base address for ECP-ISA chipset */
38 int mode; /* Transfer mode */
39 struct scsi_cmnd *cur_cmd; /* Current queued command */
40 struct delayed_work imm_tq; /* Polling interrupt stuff */
41 unsigned long jstart; /* Jiffies at start */
42 unsigned failed:1; /* Failure flag */
43 unsigned dp:1; /* Data phase present */
44 unsigned rd:1; /* Read data in data phase */
45 unsigned wanted:1; /* Parport sharing busy flag */
46 wait_queue_head_t *waiting;
47 struct Scsi_Host *host;
48 struct list_head list;
49 } imm_struct;
51 static void imm_reset_pulse(unsigned int base);
52 static int device_check(imm_struct *dev);
54 #include "imm.h"
56 static inline imm_struct *imm_dev(struct Scsi_Host *host)
58 return *(imm_struct **)&host->hostdata;
61 static DEFINE_SPINLOCK(arbitration_lock);
63 static void got_it(imm_struct *dev)
65 dev->base = dev->dev->port->base;
66 if (dev->cur_cmd)
67 dev->cur_cmd->SCp.phase = 1;
68 else
69 wake_up(dev->waiting);
72 static void imm_wakeup(void *ref)
74 imm_struct *dev = (imm_struct *) ref;
75 unsigned long flags;
77 spin_lock_irqsave(&arbitration_lock, flags);
78 if (dev->wanted) {
79 parport_claim(dev->dev);
80 got_it(dev);
81 dev->wanted = 0;
83 spin_unlock_irqrestore(&arbitration_lock, flags);
86 static int imm_pb_claim(imm_struct *dev)
88 unsigned long flags;
89 int res = 1;
90 spin_lock_irqsave(&arbitration_lock, flags);
91 if (parport_claim(dev->dev) == 0) {
92 got_it(dev);
93 res = 0;
95 dev->wanted = res;
96 spin_unlock_irqrestore(&arbitration_lock, flags);
97 return res;
100 static void imm_pb_dismiss(imm_struct *dev)
102 unsigned long flags;
103 int wanted;
104 spin_lock_irqsave(&arbitration_lock, flags);
105 wanted = dev->wanted;
106 dev->wanted = 0;
107 spin_unlock_irqrestore(&arbitration_lock, flags);
108 if (!wanted)
109 parport_release(dev->dev);
112 static inline void imm_pb_release(imm_struct *dev)
114 parport_release(dev->dev);
117 /* This is to give the imm driver a way to modify the timings (and other
118 * parameters) by writing to the /proc/scsi/imm/0 file.
119 * Very simple method really... (Too simple, no error checking :( )
120 * Reason: Kernel hackers HATE having to unload and reload modules for
121 * testing...
122 * Also gives a method to use a script to obtain optimum timings (TODO)
124 static inline int imm_proc_write(imm_struct *dev, char *buffer, int length)
126 unsigned long x;
128 if ((length > 5) && (strncmp(buffer, "mode=", 5) == 0)) {
129 x = simple_strtoul(buffer + 5, NULL, 0);
130 dev->mode = x;
131 return length;
133 printk("imm /proc: invalid variable\n");
134 return (-EINVAL);
137 static int imm_proc_info(struct Scsi_Host *host, char *buffer, char **start,
138 off_t offset, int length, int inout)
140 imm_struct *dev = imm_dev(host);
141 int len = 0;
143 if (inout)
144 return imm_proc_write(dev, buffer, length);
146 len += sprintf(buffer + len, "Version : %s\n", IMM_VERSION);
147 len +=
148 sprintf(buffer + len, "Parport : %s\n",
149 dev->dev->port->name);
150 len +=
151 sprintf(buffer + len, "Mode : %s\n",
152 IMM_MODE_STRING[dev->mode]);
154 /* Request for beyond end of buffer */
155 if (offset > len)
156 return 0;
158 *start = buffer + offset;
159 len -= offset;
160 if (len > length)
161 len = length;
162 return len;
165 #if IMM_DEBUG > 0
166 #define imm_fail(x,y) printk("imm: imm_fail(%i) from %s at line %d\n",\
167 y, __func__, __LINE__); imm_fail_func(x,y);
168 static inline void
169 imm_fail_func(imm_struct *dev, int error_code)
170 #else
171 static inline void
172 imm_fail(imm_struct *dev, int error_code)
173 #endif
175 /* If we fail a device then we trash status / message bytes */
176 if (dev->cur_cmd) {
177 dev->cur_cmd->result = error_code << 16;
178 dev->failed = 1;
183 * Wait for the high bit to be set.
185 * In principle, this could be tied to an interrupt, but the adapter
186 * doesn't appear to be designed to support interrupts. We spin on
187 * the 0x80 ready bit.
189 static unsigned char imm_wait(imm_struct *dev)
191 int k;
192 unsigned short ppb = dev->base;
193 unsigned char r;
195 w_ctr(ppb, 0x0c);
197 k = IMM_SPIN_TMO;
198 do {
199 r = r_str(ppb);
200 k--;
201 udelay(1);
203 while (!(r & 0x80) && (k));
206 * STR register (LPT base+1) to SCSI mapping:
208 * STR imm imm
209 * ===================================
210 * 0x80 S_REQ S_REQ
211 * 0x40 !S_BSY (????)
212 * 0x20 !S_CD !S_CD
213 * 0x10 !S_IO !S_IO
214 * 0x08 (????) !S_BSY
216 * imm imm meaning
217 * ==================================
218 * 0xf0 0xb8 Bit mask
219 * 0xc0 0x88 ZIP wants more data
220 * 0xd0 0x98 ZIP wants to send more data
221 * 0xe0 0xa8 ZIP is expecting SCSI command data
222 * 0xf0 0xb8 end of transfer, ZIP is sending status
224 w_ctr(ppb, 0x04);
225 if (k)
226 return (r & 0xb8);
228 /* Counter expired - Time out occurred */
229 imm_fail(dev, DID_TIME_OUT);
230 printk("imm timeout in imm_wait\n");
231 return 0; /* command timed out */
234 static int imm_negotiate(imm_struct * tmp)
237 * The following is supposedly the IEEE 1284-1994 negotiate
238 * sequence. I have yet to obtain a copy of the above standard
239 * so this is a bit of a guess...
241 * A fair chunk of this is based on the Linux parport implementation
242 * of IEEE 1284.
244 * Return 0 if data available
245 * 1 if no data available
248 unsigned short base = tmp->base;
249 unsigned char a, mode;
251 switch (tmp->mode) {
252 case IMM_NIBBLE:
253 mode = 0x00;
254 break;
255 case IMM_PS2:
256 mode = 0x01;
257 break;
258 default:
259 return 0;
262 w_ctr(base, 0x04);
263 udelay(5);
264 w_dtr(base, mode);
265 udelay(100);
266 w_ctr(base, 0x06);
267 udelay(5);
268 a = (r_str(base) & 0x20) ? 0 : 1;
269 udelay(5);
270 w_ctr(base, 0x07);
271 udelay(5);
272 w_ctr(base, 0x06);
274 if (a) {
275 printk
276 ("IMM: IEEE1284 negotiate indicates no data available.\n");
277 imm_fail(tmp, DID_ERROR);
279 return a;
283 * Clear EPP timeout bit.
285 static inline void epp_reset(unsigned short ppb)
287 int i;
289 i = r_str(ppb);
290 w_str(ppb, i);
291 w_str(ppb, i & 0xfe);
295 * Wait for empty ECP fifo (if we are in ECP fifo mode only)
297 static inline void ecp_sync(imm_struct *dev)
299 int i, ppb_hi = dev->base_hi;
301 if (ppb_hi == 0)
302 return;
304 if ((r_ecr(ppb_hi) & 0xe0) == 0x60) { /* mode 011 == ECP fifo mode */
305 for (i = 0; i < 100; i++) {
306 if (r_ecr(ppb_hi) & 0x01)
307 return;
308 udelay(5);
310 printk("imm: ECP sync failed as data still present in FIFO.\n");
314 static int imm_byte_out(unsigned short base, const char *buffer, int len)
316 int i;
318 w_ctr(base, 0x4); /* apparently a sane mode */
319 for (i = len >> 1; i; i--) {
320 w_dtr(base, *buffer++);
321 w_ctr(base, 0x5); /* Drop STROBE low */
322 w_dtr(base, *buffer++);
323 w_ctr(base, 0x0); /* STROBE high + INIT low */
325 w_ctr(base, 0x4); /* apparently a sane mode */
326 return 1; /* All went well - we hope! */
329 static int imm_nibble_in(unsigned short base, char *buffer, int len)
331 unsigned char l;
332 int i;
335 * The following is based on documented timing signals
337 w_ctr(base, 0x4);
338 for (i = len; i; i--) {
339 w_ctr(base, 0x6);
340 l = (r_str(base) & 0xf0) >> 4;
341 w_ctr(base, 0x5);
342 *buffer++ = (r_str(base) & 0xf0) | l;
343 w_ctr(base, 0x4);
345 return 1; /* All went well - we hope! */
348 static int imm_byte_in(unsigned short base, char *buffer, int len)
350 int i;
353 * The following is based on documented timing signals
355 w_ctr(base, 0x4);
356 for (i = len; i; i--) {
357 w_ctr(base, 0x26);
358 *buffer++ = r_dtr(base);
359 w_ctr(base, 0x25);
361 return 1; /* All went well - we hope! */
364 static int imm_out(imm_struct *dev, char *buffer, int len)
366 unsigned short ppb = dev->base;
367 int r = imm_wait(dev);
370 * Make sure that:
371 * a) the SCSI bus is BUSY (device still listening)
372 * b) the device is listening
374 if ((r & 0x18) != 0x08) {
375 imm_fail(dev, DID_ERROR);
376 printk("IMM: returned SCSI status %2x\n", r);
377 return 0;
379 switch (dev->mode) {
380 case IMM_EPP_32:
381 case IMM_EPP_16:
382 case IMM_EPP_8:
383 epp_reset(ppb);
384 w_ctr(ppb, 0x4);
385 #ifdef CONFIG_SCSI_IZIP_EPP16
386 if (!(((long) buffer | len) & 0x01))
387 outsw(ppb + 4, buffer, len >> 1);
388 #else
389 if (!(((long) buffer | len) & 0x03))
390 outsl(ppb + 4, buffer, len >> 2);
391 #endif
392 else
393 outsb(ppb + 4, buffer, len);
394 w_ctr(ppb, 0xc);
395 r = !(r_str(ppb) & 0x01);
396 w_ctr(ppb, 0xc);
397 ecp_sync(dev);
398 break;
400 case IMM_NIBBLE:
401 case IMM_PS2:
402 /* 8 bit output, with a loop */
403 r = imm_byte_out(ppb, buffer, len);
404 break;
406 default:
407 printk("IMM: bug in imm_out()\n");
408 r = 0;
410 return r;
413 static int imm_in(imm_struct *dev, char *buffer, int len)
415 unsigned short ppb = dev->base;
416 int r = imm_wait(dev);
419 * Make sure that:
420 * a) the SCSI bus is BUSY (device still listening)
421 * b) the device is sending data
423 if ((r & 0x18) != 0x18) {
424 imm_fail(dev, DID_ERROR);
425 return 0;
427 switch (dev->mode) {
428 case IMM_NIBBLE:
429 /* 4 bit input, with a loop */
430 r = imm_nibble_in(ppb, buffer, len);
431 w_ctr(ppb, 0xc);
432 break;
434 case IMM_PS2:
435 /* 8 bit input, with a loop */
436 r = imm_byte_in(ppb, buffer, len);
437 w_ctr(ppb, 0xc);
438 break;
440 case IMM_EPP_32:
441 case IMM_EPP_16:
442 case IMM_EPP_8:
443 epp_reset(ppb);
444 w_ctr(ppb, 0x24);
445 #ifdef CONFIG_SCSI_IZIP_EPP16
446 if (!(((long) buffer | len) & 0x01))
447 insw(ppb + 4, buffer, len >> 1);
448 #else
449 if (!(((long) buffer | len) & 0x03))
450 insl(ppb + 4, buffer, len >> 2);
451 #endif
452 else
453 insb(ppb + 4, buffer, len);
454 w_ctr(ppb, 0x2c);
455 r = !(r_str(ppb) & 0x01);
456 w_ctr(ppb, 0x2c);
457 ecp_sync(dev);
458 break;
460 default:
461 printk("IMM: bug in imm_ins()\n");
462 r = 0;
463 break;
465 return r;
468 static int imm_cpp(unsigned short ppb, unsigned char b)
471 * Comments on udelay values refer to the
472 * Command Packet Protocol (CPP) timing diagram.
475 unsigned char s1, s2, s3;
476 w_ctr(ppb, 0x0c);
477 udelay(2); /* 1 usec - infinite */
478 w_dtr(ppb, 0xaa);
479 udelay(10); /* 7 usec - infinite */
480 w_dtr(ppb, 0x55);
481 udelay(10); /* 7 usec - infinite */
482 w_dtr(ppb, 0x00);
483 udelay(10); /* 7 usec - infinite */
484 w_dtr(ppb, 0xff);
485 udelay(10); /* 7 usec - infinite */
486 s1 = r_str(ppb) & 0xb8;
487 w_dtr(ppb, 0x87);
488 udelay(10); /* 7 usec - infinite */
489 s2 = r_str(ppb) & 0xb8;
490 w_dtr(ppb, 0x78);
491 udelay(10); /* 7 usec - infinite */
492 s3 = r_str(ppb) & 0x38;
494 * Values for b are:
495 * 0000 00aa Assign address aa to current device
496 * 0010 00aa Select device aa in EPP Winbond mode
497 * 0010 10aa Select device aa in EPP mode
498 * 0011 xxxx Deselect all devices
499 * 0110 00aa Test device aa
500 * 1101 00aa Select device aa in ECP mode
501 * 1110 00aa Select device aa in Compatible mode
503 w_dtr(ppb, b);
504 udelay(2); /* 1 usec - infinite */
505 w_ctr(ppb, 0x0c);
506 udelay(10); /* 7 usec - infinite */
507 w_ctr(ppb, 0x0d);
508 udelay(2); /* 1 usec - infinite */
509 w_ctr(ppb, 0x0c);
510 udelay(10); /* 7 usec - infinite */
511 w_dtr(ppb, 0xff);
512 udelay(10); /* 7 usec - infinite */
515 * The following table is electrical pin values.
516 * (BSY is inverted at the CTR register)
518 * BSY ACK POut SEL Fault
519 * S1 0 X 1 1 1
520 * S2 1 X 0 1 1
521 * S3 L X 1 1 S
523 * L => Last device in chain
524 * S => Selected
526 * Observered values for S1,S2,S3 are:
527 * Disconnect => f8/58/78
528 * Connect => f8/58/70
530 if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x30))
531 return 1; /* Connected */
532 if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x38))
533 return 0; /* Disconnected */
535 return -1; /* No device present */
538 static inline int imm_connect(imm_struct *dev, int flag)
540 unsigned short ppb = dev->base;
542 imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */
543 imm_cpp(ppb, 0x30); /* Disconnect all devices */
545 if ((dev->mode == IMM_EPP_8) ||
546 (dev->mode == IMM_EPP_16) ||
547 (dev->mode == IMM_EPP_32))
548 return imm_cpp(ppb, 0x28); /* Select device 0 in EPP mode */
549 return imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */
552 static void imm_disconnect(imm_struct *dev)
554 imm_cpp(dev->base, 0x30); /* Disconnect all devices */
557 static int imm_select(imm_struct *dev, int target)
559 int k;
560 unsigned short ppb = dev->base;
563 * Firstly we want to make sure there is nothing
564 * holding onto the SCSI bus.
566 w_ctr(ppb, 0xc);
568 k = IMM_SELECT_TMO;
569 do {
570 k--;
571 } while ((r_str(ppb) & 0x08) && (k));
573 if (!k)
574 return 0;
577 * Now assert the SCSI ID (HOST and TARGET) on the data bus
579 w_ctr(ppb, 0x4);
580 w_dtr(ppb, 0x80 | (1 << target));
581 udelay(1);
584 * Deassert SELIN first followed by STROBE
586 w_ctr(ppb, 0xc);
587 w_ctr(ppb, 0xd);
590 * ACK should drop low while SELIN is deasserted.
591 * FAULT should drop low when the SCSI device latches the bus.
593 k = IMM_SELECT_TMO;
594 do {
595 k--;
597 while (!(r_str(ppb) & 0x08) && (k));
600 * Place the interface back into a sane state (status mode)
602 w_ctr(ppb, 0xc);
603 return (k) ? 1 : 0;
606 static int imm_init(imm_struct *dev)
608 if (imm_connect(dev, 0) != 1)
609 return -EIO;
610 imm_reset_pulse(dev->base);
611 mdelay(1); /* Delay to allow devices to settle */
612 imm_disconnect(dev);
613 mdelay(1); /* Another delay to allow devices to settle */
614 return device_check(dev);
617 static inline int imm_send_command(struct scsi_cmnd *cmd)
619 imm_struct *dev = imm_dev(cmd->device->host);
620 int k;
622 /* NOTE: IMM uses byte pairs */
623 for (k = 0; k < cmd->cmd_len; k += 2)
624 if (!imm_out(dev, &cmd->cmnd[k], 2))
625 return 0;
626 return 1;
630 * The bulk flag enables some optimisations in the data transfer loops,
631 * it should be true for any command that transfers data in integral
632 * numbers of sectors.
634 * The driver appears to remain stable if we speed up the parallel port
635 * i/o in this function, but not elsewhere.
637 static int imm_completion(struct scsi_cmnd *cmd)
639 /* Return codes:
640 * -1 Error
641 * 0 Told to schedule
642 * 1 Finished data transfer
644 imm_struct *dev = imm_dev(cmd->device->host);
645 unsigned short ppb = dev->base;
646 unsigned long start_jiffies = jiffies;
648 unsigned char r, v;
649 int fast, bulk, status;
651 v = cmd->cmnd[0];
652 bulk = ((v == READ_6) ||
653 (v == READ_10) || (v == WRITE_6) || (v == WRITE_10));
656 * We only get here if the drive is ready to comunicate,
657 * hence no need for a full imm_wait.
659 w_ctr(ppb, 0x0c);
660 r = (r_str(ppb) & 0xb8);
663 * while (device is not ready to send status byte)
664 * loop;
666 while (r != (unsigned char) 0xb8) {
668 * If we have been running for more than a full timer tick
669 * then take a rest.
671 if (time_after(jiffies, start_jiffies + 1))
672 return 0;
675 * FAIL if:
676 * a) Drive status is screwy (!ready && !present)
677 * b) Drive is requesting/sending more data than expected
679 if (((r & 0x88) != 0x88) || (cmd->SCp.this_residual <= 0)) {
680 imm_fail(dev, DID_ERROR);
681 return -1; /* ERROR_RETURN */
683 /* determine if we should use burst I/O */
684 if (dev->rd == 0) {
685 fast = (bulk
686 && (cmd->SCp.this_residual >=
687 IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 2;
688 status = imm_out(dev, cmd->SCp.ptr, fast);
689 } else {
690 fast = (bulk
691 && (cmd->SCp.this_residual >=
692 IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 1;
693 status = imm_in(dev, cmd->SCp.ptr, fast);
696 cmd->SCp.ptr += fast;
697 cmd->SCp.this_residual -= fast;
699 if (!status) {
700 imm_fail(dev, DID_BUS_BUSY);
701 return -1; /* ERROR_RETURN */
703 if (cmd->SCp.buffer && !cmd->SCp.this_residual) {
704 /* if scatter/gather, advance to the next segment */
705 if (cmd->SCp.buffers_residual--) {
706 cmd->SCp.buffer++;
707 cmd->SCp.this_residual =
708 cmd->SCp.buffer->length;
709 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
712 * Make sure that we transfer even number of bytes
713 * otherwise it makes imm_byte_out() messy.
715 if (cmd->SCp.this_residual & 0x01)
716 cmd->SCp.this_residual++;
719 /* Now check to see if the drive is ready to comunicate */
720 w_ctr(ppb, 0x0c);
721 r = (r_str(ppb) & 0xb8);
723 /* If not, drop back down to the scheduler and wait a timer tick */
724 if (!(r & 0x80))
725 return 0;
727 return 1; /* FINISH_RETURN */
731 * Since the IMM itself doesn't generate interrupts, we use
732 * the scheduler's task queue to generate a stream of call-backs and
733 * complete the request when the drive is ready.
735 static void imm_interrupt(struct work_struct *work)
737 imm_struct *dev = container_of(work, imm_struct, imm_tq.work);
738 struct scsi_cmnd *cmd = dev->cur_cmd;
739 struct Scsi_Host *host = cmd->device->host;
740 unsigned long flags;
742 if (imm_engine(dev, cmd)) {
743 schedule_delayed_work(&dev->imm_tq, 1);
744 return;
746 /* Command must of completed hence it is safe to let go... */
747 #if IMM_DEBUG > 0
748 switch ((cmd->result >> 16) & 0xff) {
749 case DID_OK:
750 break;
751 case DID_NO_CONNECT:
752 printk("imm: no device at SCSI ID %i\n", cmd->device->id);
753 break;
754 case DID_BUS_BUSY:
755 printk("imm: BUS BUSY - EPP timeout detected\n");
756 break;
757 case DID_TIME_OUT:
758 printk("imm: unknown timeout\n");
759 break;
760 case DID_ABORT:
761 printk("imm: told to abort\n");
762 break;
763 case DID_PARITY:
764 printk("imm: parity error (???)\n");
765 break;
766 case DID_ERROR:
767 printk("imm: internal driver error\n");
768 break;
769 case DID_RESET:
770 printk("imm: told to reset device\n");
771 break;
772 case DID_BAD_INTR:
773 printk("imm: bad interrupt (???)\n");
774 break;
775 default:
776 printk("imm: bad return code (%02x)\n",
777 (cmd->result >> 16) & 0xff);
779 #endif
781 if (cmd->SCp.phase > 1)
782 imm_disconnect(dev);
784 imm_pb_dismiss(dev);
786 spin_lock_irqsave(host->host_lock, flags);
787 dev->cur_cmd = NULL;
788 cmd->scsi_done(cmd);
789 spin_unlock_irqrestore(host->host_lock, flags);
790 return;
793 static int imm_engine(imm_struct *dev, struct scsi_cmnd *cmd)
795 unsigned short ppb = dev->base;
796 unsigned char l = 0, h = 0;
797 int retv, x;
799 /* First check for any errors that may have occurred
800 * Here we check for internal errors
802 if (dev->failed)
803 return 0;
805 switch (cmd->SCp.phase) {
806 case 0: /* Phase 0 - Waiting for parport */
807 if (time_after(jiffies, dev->jstart + HZ)) {
809 * We waited more than a second
810 * for parport to call us
812 imm_fail(dev, DID_BUS_BUSY);
813 return 0;
815 return 1; /* wait until imm_wakeup claims parport */
816 /* Phase 1 - Connected */
817 case 1:
818 imm_connect(dev, CONNECT_EPP_MAYBE);
819 cmd->SCp.phase++;
821 /* Phase 2 - We are now talking to the scsi bus */
822 case 2:
823 if (!imm_select(dev, scmd_id(cmd))) {
824 imm_fail(dev, DID_NO_CONNECT);
825 return 0;
827 cmd->SCp.phase++;
829 /* Phase 3 - Ready to accept a command */
830 case 3:
831 w_ctr(ppb, 0x0c);
832 if (!(r_str(ppb) & 0x80))
833 return 1;
835 if (!imm_send_command(cmd))
836 return 0;
837 cmd->SCp.phase++;
839 /* Phase 4 - Setup scatter/gather buffers */
840 case 4:
841 if (scsi_bufflen(cmd)) {
842 cmd->SCp.buffer = scsi_sglist(cmd);
843 cmd->SCp.this_residual = cmd->SCp.buffer->length;
844 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
845 } else {
846 cmd->SCp.buffer = NULL;
847 cmd->SCp.this_residual = 0;
848 cmd->SCp.ptr = NULL;
850 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
851 cmd->SCp.phase++;
852 if (cmd->SCp.this_residual & 0x01)
853 cmd->SCp.this_residual++;
854 /* Phase 5 - Pre-Data transfer stage */
855 case 5:
856 /* Spin lock for BUSY */
857 w_ctr(ppb, 0x0c);
858 if (!(r_str(ppb) & 0x80))
859 return 1;
861 /* Require negotiation for read requests */
862 x = (r_str(ppb) & 0xb8);
863 dev->rd = (x & 0x10) ? 1 : 0;
864 dev->dp = (x & 0x20) ? 0 : 1;
866 if ((dev->dp) && (dev->rd))
867 if (imm_negotiate(dev))
868 return 0;
869 cmd->SCp.phase++;
871 /* Phase 6 - Data transfer stage */
872 case 6:
873 /* Spin lock for BUSY */
874 w_ctr(ppb, 0x0c);
875 if (!(r_str(ppb) & 0x80))
876 return 1;
878 if (dev->dp) {
879 retv = imm_completion(cmd);
880 if (retv == -1)
881 return 0;
882 if (retv == 0)
883 return 1;
885 cmd->SCp.phase++;
887 /* Phase 7 - Post data transfer stage */
888 case 7:
889 if ((dev->dp) && (dev->rd)) {
890 if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) {
891 w_ctr(ppb, 0x4);
892 w_ctr(ppb, 0xc);
893 w_ctr(ppb, 0xe);
894 w_ctr(ppb, 0x4);
897 cmd->SCp.phase++;
899 /* Phase 8 - Read status/message */
900 case 8:
901 /* Check for data overrun */
902 if (imm_wait(dev) != (unsigned char) 0xb8) {
903 imm_fail(dev, DID_ERROR);
904 return 0;
906 if (imm_negotiate(dev))
907 return 0;
908 if (imm_in(dev, &l, 1)) { /* read status byte */
909 /* Check for optional message byte */
910 if (imm_wait(dev) == (unsigned char) 0xb8)
911 imm_in(dev, &h, 1);
912 cmd->result = (DID_OK << 16) + (l & STATUS_MASK);
914 if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) {
915 w_ctr(ppb, 0x4);
916 w_ctr(ppb, 0xc);
917 w_ctr(ppb, 0xe);
918 w_ctr(ppb, 0x4);
920 return 0; /* Finished */
921 break;
923 default:
924 printk("imm: Invalid scsi phase\n");
926 return 0;
929 static int imm_queuecommand_lck(struct scsi_cmnd *cmd,
930 void (*done)(struct scsi_cmnd *))
932 imm_struct *dev = imm_dev(cmd->device->host);
934 if (dev->cur_cmd) {
935 printk("IMM: bug in imm_queuecommand\n");
936 return 0;
938 dev->failed = 0;
939 dev->jstart = jiffies;
940 dev->cur_cmd = cmd;
941 cmd->scsi_done = done;
942 cmd->result = DID_ERROR << 16; /* default return code */
943 cmd->SCp.phase = 0; /* bus free */
945 schedule_delayed_work(&dev->imm_tq, 0);
947 imm_pb_claim(dev);
949 return 0;
952 static DEF_SCSI_QCMD(imm_queuecommand)
955 * Apparently the disk->capacity attribute is off by 1 sector
956 * for all disk drives. We add the one here, but it should really
957 * be done in sd.c. Even if it gets fixed there, this will still
958 * work.
960 static int imm_biosparam(struct scsi_device *sdev, struct block_device *dev,
961 sector_t capacity, int ip[])
963 ip[0] = 0x40;
964 ip[1] = 0x20;
965 ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]);
966 if (ip[2] > 1024) {
967 ip[0] = 0xff;
968 ip[1] = 0x3f;
969 ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]);
971 return 0;
974 static int imm_abort(struct scsi_cmnd *cmd)
976 imm_struct *dev = imm_dev(cmd->device->host);
978 * There is no method for aborting commands since Iomega
979 * have tied the SCSI_MESSAGE line high in the interface
982 switch (cmd->SCp.phase) {
983 case 0: /* Do not have access to parport */
984 case 1: /* Have not connected to interface */
985 dev->cur_cmd = NULL; /* Forget the problem */
986 return SUCCESS;
987 break;
988 default: /* SCSI command sent, can not abort */
989 return FAILED;
990 break;
994 static void imm_reset_pulse(unsigned int base)
996 w_ctr(base, 0x04);
997 w_dtr(base, 0x40);
998 udelay(1);
999 w_ctr(base, 0x0c);
1000 w_ctr(base, 0x0d);
1001 udelay(50);
1002 w_ctr(base, 0x0c);
1003 w_ctr(base, 0x04);
1006 static int imm_reset(struct scsi_cmnd *cmd)
1008 imm_struct *dev = imm_dev(cmd->device->host);
1010 if (cmd->SCp.phase)
1011 imm_disconnect(dev);
1012 dev->cur_cmd = NULL; /* Forget the problem */
1014 imm_connect(dev, CONNECT_NORMAL);
1015 imm_reset_pulse(dev->base);
1016 mdelay(1); /* device settle delay */
1017 imm_disconnect(dev);
1018 mdelay(1); /* device settle delay */
1019 return SUCCESS;
1022 static int device_check(imm_struct *dev)
1024 /* This routine looks for a device and then attempts to use EPP
1025 to send a command. If all goes as planned then EPP is available. */
1027 static char cmd[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1028 int loop, old_mode, status, k, ppb = dev->base;
1029 unsigned char l;
1031 old_mode = dev->mode;
1032 for (loop = 0; loop < 8; loop++) {
1033 /* Attempt to use EPP for Test Unit Ready */
1034 if ((ppb & 0x0007) == 0x0000)
1035 dev->mode = IMM_EPP_32;
1037 second_pass:
1038 imm_connect(dev, CONNECT_EPP_MAYBE);
1039 /* Select SCSI device */
1040 if (!imm_select(dev, loop)) {
1041 imm_disconnect(dev);
1042 continue;
1044 printk("imm: Found device at ID %i, Attempting to use %s\n",
1045 loop, IMM_MODE_STRING[dev->mode]);
1047 /* Send SCSI command */
1048 status = 1;
1049 w_ctr(ppb, 0x0c);
1050 for (l = 0; (l < 3) && (status); l++)
1051 status = imm_out(dev, &cmd[l << 1], 2);
1053 if (!status) {
1054 imm_disconnect(dev);
1055 imm_connect(dev, CONNECT_EPP_MAYBE);
1056 imm_reset_pulse(dev->base);
1057 udelay(1000);
1058 imm_disconnect(dev);
1059 udelay(1000);
1060 if (dev->mode == IMM_EPP_32) {
1061 dev->mode = old_mode;
1062 goto second_pass;
1064 printk("imm: Unable to establish communication\n");
1065 return -EIO;
1067 w_ctr(ppb, 0x0c);
1069 k = 1000000; /* 1 Second */
1070 do {
1071 l = r_str(ppb);
1072 k--;
1073 udelay(1);
1074 } while (!(l & 0x80) && (k));
1076 l &= 0xb8;
1078 if (l != 0xb8) {
1079 imm_disconnect(dev);
1080 imm_connect(dev, CONNECT_EPP_MAYBE);
1081 imm_reset_pulse(dev->base);
1082 udelay(1000);
1083 imm_disconnect(dev);
1084 udelay(1000);
1085 if (dev->mode == IMM_EPP_32) {
1086 dev->mode = old_mode;
1087 goto second_pass;
1089 printk
1090 ("imm: Unable to establish communication\n");
1091 return -EIO;
1093 imm_disconnect(dev);
1094 printk
1095 ("imm: Communication established at 0x%x with ID %i using %s\n",
1096 ppb, loop, IMM_MODE_STRING[dev->mode]);
1097 imm_connect(dev, CONNECT_EPP_MAYBE);
1098 imm_reset_pulse(dev->base);
1099 udelay(1000);
1100 imm_disconnect(dev);
1101 udelay(1000);
1102 return 0;
1104 printk("imm: No devices found\n");
1105 return -ENODEV;
1109 * imm cannot deal with highmem, so this causes all IO pages for this host
1110 * to reside in low memory (hence mapped)
1112 static int imm_adjust_queue(struct scsi_device *device)
1114 blk_queue_bounce_limit(device->request_queue, BLK_BOUNCE_HIGH);
1115 return 0;
1118 static struct scsi_host_template imm_template = {
1119 .module = THIS_MODULE,
1120 .proc_name = "imm",
1121 .proc_info = imm_proc_info,
1122 .name = "Iomega VPI2 (imm) interface",
1123 .queuecommand = imm_queuecommand,
1124 .eh_abort_handler = imm_abort,
1125 .eh_bus_reset_handler = imm_reset,
1126 .eh_host_reset_handler = imm_reset,
1127 .bios_param = imm_biosparam,
1128 .this_id = 7,
1129 .sg_tablesize = SG_ALL,
1130 .cmd_per_lun = 1,
1131 .use_clustering = ENABLE_CLUSTERING,
1132 .can_queue = 1,
1133 .slave_alloc = imm_adjust_queue,
1136 /***************************************************************************
1137 * Parallel port probing routines *
1138 ***************************************************************************/
1140 static LIST_HEAD(imm_hosts);
1142 static int __imm_attach(struct parport *pb)
1144 struct Scsi_Host *host;
1145 imm_struct *dev;
1146 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waiting);
1147 DEFINE_WAIT(wait);
1148 int ports;
1149 int modes, ppb;
1150 int err = -ENOMEM;
1152 init_waitqueue_head(&waiting);
1154 dev = kzalloc(sizeof(imm_struct), GFP_KERNEL);
1155 if (!dev)
1156 return -ENOMEM;
1159 dev->base = -1;
1160 dev->mode = IMM_AUTODETECT;
1161 INIT_LIST_HEAD(&dev->list);
1163 dev->dev = parport_register_device(pb, "imm", NULL, imm_wakeup,
1164 NULL, 0, dev);
1166 if (!dev->dev)
1167 goto out;
1170 /* Claim the bus so it remembers what we do to the control
1171 * registers. [ CTR and ECP ]
1173 err = -EBUSY;
1174 dev->waiting = &waiting;
1175 prepare_to_wait(&waiting, &wait, TASK_UNINTERRUPTIBLE);
1176 if (imm_pb_claim(dev))
1177 schedule_timeout(3 * HZ);
1178 if (dev->wanted) {
1179 printk(KERN_ERR "imm%d: failed to claim parport because "
1180 "a pardevice is owning the port for too long "
1181 "time!\n", pb->number);
1182 imm_pb_dismiss(dev);
1183 dev->waiting = NULL;
1184 finish_wait(&waiting, &wait);
1185 goto out1;
1187 dev->waiting = NULL;
1188 finish_wait(&waiting, &wait);
1189 ppb = dev->base = dev->dev->port->base;
1190 dev->base_hi = dev->dev->port->base_hi;
1191 w_ctr(ppb, 0x0c);
1192 modes = dev->dev->port->modes;
1194 /* Mode detection works up the chain of speed
1195 * This avoids a nasty if-then-else-if-... tree
1197 dev->mode = IMM_NIBBLE;
1199 if (modes & PARPORT_MODE_TRISTATE)
1200 dev->mode = IMM_PS2;
1202 /* Done configuration */
1204 err = imm_init(dev);
1206 imm_pb_release(dev);
1208 if (err)
1209 goto out1;
1211 /* now the glue ... */
1212 if (dev->mode == IMM_NIBBLE || dev->mode == IMM_PS2)
1213 ports = 3;
1214 else
1215 ports = 8;
1217 INIT_DELAYED_WORK(&dev->imm_tq, imm_interrupt);
1219 err = -ENOMEM;
1220 host = scsi_host_alloc(&imm_template, sizeof(imm_struct *));
1221 if (!host)
1222 goto out1;
1223 host->io_port = pb->base;
1224 host->n_io_port = ports;
1225 host->dma_channel = -1;
1226 host->unique_id = pb->number;
1227 *(imm_struct **)&host->hostdata = dev;
1228 dev->host = host;
1229 list_add_tail(&dev->list, &imm_hosts);
1230 err = scsi_add_host(host, NULL);
1231 if (err)
1232 goto out2;
1233 scsi_scan_host(host);
1234 return 0;
1236 out2:
1237 list_del_init(&dev->list);
1238 scsi_host_put(host);
1239 out1:
1240 parport_unregister_device(dev->dev);
1241 out:
1242 kfree(dev);
1243 return err;
1246 static void imm_attach(struct parport *pb)
1248 __imm_attach(pb);
1251 static void imm_detach(struct parport *pb)
1253 imm_struct *dev;
1254 list_for_each_entry(dev, &imm_hosts, list) {
1255 if (dev->dev->port == pb) {
1256 list_del_init(&dev->list);
1257 scsi_remove_host(dev->host);
1258 scsi_host_put(dev->host);
1259 parport_unregister_device(dev->dev);
1260 kfree(dev);
1261 break;
1266 static struct parport_driver imm_driver = {
1267 .name = "imm",
1268 .attach = imm_attach,
1269 .detach = imm_detach,
1272 static int __init imm_driver_init(void)
1274 printk("imm: Version %s\n", IMM_VERSION);
1275 return parport_register_driver(&imm_driver);
1278 static void __exit imm_driver_exit(void)
1280 parport_unregister_driver(&imm_driver);
1283 module_init(imm_driver_init);
1284 module_exit(imm_driver_exit);
1286 MODULE_LICENSE("GPL");