Merge branch 'irq-fixes-for-linus' of git://tesla.tglx.de/git/linux-2.6-tip
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / lib / radix-tree.c
bloba2f9da59c1970cfab2a55c94f43da8843551ef05
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2, or (at
10 * your option) any later version.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/radix-tree.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/string.h>
32 #include <linux/bitops.h>
33 #include <linux/rcupdate.h>
36 #ifdef __KERNEL__
37 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
38 #else
39 #define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */
40 #endif
42 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
43 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
45 #define RADIX_TREE_TAG_LONGS \
46 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
48 struct radix_tree_node {
49 unsigned int height; /* Height from the bottom */
50 unsigned int count;
51 struct rcu_head rcu_head;
52 void __rcu *slots[RADIX_TREE_MAP_SIZE];
53 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
56 struct radix_tree_path {
57 struct radix_tree_node *node;
58 int offset;
61 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
62 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
63 RADIX_TREE_MAP_SHIFT))
66 * The height_to_maxindex array needs to be one deeper than the maximum
67 * path as height 0 holds only 1 entry.
69 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
72 * Radix tree node cache.
74 static struct kmem_cache *radix_tree_node_cachep;
77 * Per-cpu pool of preloaded nodes
79 struct radix_tree_preload {
80 int nr;
81 struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
83 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
85 static inline void *ptr_to_indirect(void *ptr)
87 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
90 static inline void *indirect_to_ptr(void *ptr)
92 return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
95 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
97 return root->gfp_mask & __GFP_BITS_MASK;
100 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
101 int offset)
103 __set_bit(offset, node->tags[tag]);
106 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
107 int offset)
109 __clear_bit(offset, node->tags[tag]);
112 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
113 int offset)
115 return test_bit(offset, node->tags[tag]);
118 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
120 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
123 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
125 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
128 static inline void root_tag_clear_all(struct radix_tree_root *root)
130 root->gfp_mask &= __GFP_BITS_MASK;
133 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
135 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
139 * Returns 1 if any slot in the node has this tag set.
140 * Otherwise returns 0.
142 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
144 int idx;
145 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
146 if (node->tags[tag][idx])
147 return 1;
149 return 0;
152 * This assumes that the caller has performed appropriate preallocation, and
153 * that the caller has pinned this thread of control to the current CPU.
155 static struct radix_tree_node *
156 radix_tree_node_alloc(struct radix_tree_root *root)
158 struct radix_tree_node *ret = NULL;
159 gfp_t gfp_mask = root_gfp_mask(root);
161 if (!(gfp_mask & __GFP_WAIT)) {
162 struct radix_tree_preload *rtp;
165 * Provided the caller has preloaded here, we will always
166 * succeed in getting a node here (and never reach
167 * kmem_cache_alloc)
169 rtp = &__get_cpu_var(radix_tree_preloads);
170 if (rtp->nr) {
171 ret = rtp->nodes[rtp->nr - 1];
172 rtp->nodes[rtp->nr - 1] = NULL;
173 rtp->nr--;
176 if (ret == NULL)
177 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
179 BUG_ON(radix_tree_is_indirect_ptr(ret));
180 return ret;
183 static void radix_tree_node_rcu_free(struct rcu_head *head)
185 struct radix_tree_node *node =
186 container_of(head, struct radix_tree_node, rcu_head);
187 int i;
190 * must only free zeroed nodes into the slab. radix_tree_shrink
191 * can leave us with a non-NULL entry in the first slot, so clear
192 * that here to make sure.
194 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
195 tag_clear(node, i, 0);
197 node->slots[0] = NULL;
198 node->count = 0;
200 kmem_cache_free(radix_tree_node_cachep, node);
203 static inline void
204 radix_tree_node_free(struct radix_tree_node *node)
206 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
210 * Load up this CPU's radix_tree_node buffer with sufficient objects to
211 * ensure that the addition of a single element in the tree cannot fail. On
212 * success, return zero, with preemption disabled. On error, return -ENOMEM
213 * with preemption not disabled.
215 * To make use of this facility, the radix tree must be initialised without
216 * __GFP_WAIT being passed to INIT_RADIX_TREE().
218 int radix_tree_preload(gfp_t gfp_mask)
220 struct radix_tree_preload *rtp;
221 struct radix_tree_node *node;
222 int ret = -ENOMEM;
224 preempt_disable();
225 rtp = &__get_cpu_var(radix_tree_preloads);
226 while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
227 preempt_enable();
228 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
229 if (node == NULL)
230 goto out;
231 preempt_disable();
232 rtp = &__get_cpu_var(radix_tree_preloads);
233 if (rtp->nr < ARRAY_SIZE(rtp->nodes))
234 rtp->nodes[rtp->nr++] = node;
235 else
236 kmem_cache_free(radix_tree_node_cachep, node);
238 ret = 0;
239 out:
240 return ret;
242 EXPORT_SYMBOL(radix_tree_preload);
245 * Return the maximum key which can be store into a
246 * radix tree with height HEIGHT.
248 static inline unsigned long radix_tree_maxindex(unsigned int height)
250 return height_to_maxindex[height];
254 * Extend a radix tree so it can store key @index.
256 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
258 struct radix_tree_node *node;
259 unsigned int height;
260 int tag;
262 /* Figure out what the height should be. */
263 height = root->height + 1;
264 while (index > radix_tree_maxindex(height))
265 height++;
267 if (root->rnode == NULL) {
268 root->height = height;
269 goto out;
272 do {
273 unsigned int newheight;
274 if (!(node = radix_tree_node_alloc(root)))
275 return -ENOMEM;
277 /* Increase the height. */
278 node->slots[0] = indirect_to_ptr(root->rnode);
280 /* Propagate the aggregated tag info into the new root */
281 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
282 if (root_tag_get(root, tag))
283 tag_set(node, tag, 0);
286 newheight = root->height+1;
287 node->height = newheight;
288 node->count = 1;
289 node = ptr_to_indirect(node);
290 rcu_assign_pointer(root->rnode, node);
291 root->height = newheight;
292 } while (height > root->height);
293 out:
294 return 0;
298 * radix_tree_insert - insert into a radix tree
299 * @root: radix tree root
300 * @index: index key
301 * @item: item to insert
303 * Insert an item into the radix tree at position @index.
305 int radix_tree_insert(struct radix_tree_root *root,
306 unsigned long index, void *item)
308 struct radix_tree_node *node = NULL, *slot;
309 unsigned int height, shift;
310 int offset;
311 int error;
313 BUG_ON(radix_tree_is_indirect_ptr(item));
315 /* Make sure the tree is high enough. */
316 if (index > radix_tree_maxindex(root->height)) {
317 error = radix_tree_extend(root, index);
318 if (error)
319 return error;
322 slot = indirect_to_ptr(root->rnode);
324 height = root->height;
325 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
327 offset = 0; /* uninitialised var warning */
328 while (height > 0) {
329 if (slot == NULL) {
330 /* Have to add a child node. */
331 if (!(slot = radix_tree_node_alloc(root)))
332 return -ENOMEM;
333 slot->height = height;
334 if (node) {
335 rcu_assign_pointer(node->slots[offset], slot);
336 node->count++;
337 } else
338 rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
341 /* Go a level down */
342 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
343 node = slot;
344 slot = node->slots[offset];
345 shift -= RADIX_TREE_MAP_SHIFT;
346 height--;
349 if (slot != NULL)
350 return -EEXIST;
352 if (node) {
353 node->count++;
354 rcu_assign_pointer(node->slots[offset], item);
355 BUG_ON(tag_get(node, 0, offset));
356 BUG_ON(tag_get(node, 1, offset));
357 } else {
358 rcu_assign_pointer(root->rnode, item);
359 BUG_ON(root_tag_get(root, 0));
360 BUG_ON(root_tag_get(root, 1));
363 return 0;
365 EXPORT_SYMBOL(radix_tree_insert);
368 * is_slot == 1 : search for the slot.
369 * is_slot == 0 : search for the node.
371 static void *radix_tree_lookup_element(struct radix_tree_root *root,
372 unsigned long index, int is_slot)
374 unsigned int height, shift;
375 struct radix_tree_node *node, **slot;
377 node = rcu_dereference_raw(root->rnode);
378 if (node == NULL)
379 return NULL;
381 if (!radix_tree_is_indirect_ptr(node)) {
382 if (index > 0)
383 return NULL;
384 return is_slot ? (void *)&root->rnode : node;
386 node = indirect_to_ptr(node);
388 height = node->height;
389 if (index > radix_tree_maxindex(height))
390 return NULL;
392 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
394 do {
395 slot = (struct radix_tree_node **)
396 (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
397 node = rcu_dereference_raw(*slot);
398 if (node == NULL)
399 return NULL;
401 shift -= RADIX_TREE_MAP_SHIFT;
402 height--;
403 } while (height > 0);
405 return is_slot ? (void *)slot : indirect_to_ptr(node);
409 * radix_tree_lookup_slot - lookup a slot in a radix tree
410 * @root: radix tree root
411 * @index: index key
413 * Returns: the slot corresponding to the position @index in the
414 * radix tree @root. This is useful for update-if-exists operations.
416 * This function can be called under rcu_read_lock iff the slot is not
417 * modified by radix_tree_replace_slot, otherwise it must be called
418 * exclusive from other writers. Any dereference of the slot must be done
419 * using radix_tree_deref_slot.
421 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
423 return (void **)radix_tree_lookup_element(root, index, 1);
425 EXPORT_SYMBOL(radix_tree_lookup_slot);
428 * radix_tree_lookup - perform lookup operation on a radix tree
429 * @root: radix tree root
430 * @index: index key
432 * Lookup the item at the position @index in the radix tree @root.
434 * This function can be called under rcu_read_lock, however the caller
435 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
436 * them safely). No RCU barriers are required to access or modify the
437 * returned item, however.
439 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
441 return radix_tree_lookup_element(root, index, 0);
443 EXPORT_SYMBOL(radix_tree_lookup);
446 * radix_tree_tag_set - set a tag on a radix tree node
447 * @root: radix tree root
448 * @index: index key
449 * @tag: tag index
451 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
452 * corresponding to @index in the radix tree. From
453 * the root all the way down to the leaf node.
455 * Returns the address of the tagged item. Setting a tag on a not-present
456 * item is a bug.
458 void *radix_tree_tag_set(struct radix_tree_root *root,
459 unsigned long index, unsigned int tag)
461 unsigned int height, shift;
462 struct radix_tree_node *slot;
464 height = root->height;
465 BUG_ON(index > radix_tree_maxindex(height));
467 slot = indirect_to_ptr(root->rnode);
468 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
470 while (height > 0) {
471 int offset;
473 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
474 if (!tag_get(slot, tag, offset))
475 tag_set(slot, tag, offset);
476 slot = slot->slots[offset];
477 BUG_ON(slot == NULL);
478 shift -= RADIX_TREE_MAP_SHIFT;
479 height--;
482 /* set the root's tag bit */
483 if (slot && !root_tag_get(root, tag))
484 root_tag_set(root, tag);
486 return slot;
488 EXPORT_SYMBOL(radix_tree_tag_set);
491 * radix_tree_tag_clear - clear a tag on a radix tree node
492 * @root: radix tree root
493 * @index: index key
494 * @tag: tag index
496 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
497 * corresponding to @index in the radix tree. If
498 * this causes the leaf node to have no tags set then clear the tag in the
499 * next-to-leaf node, etc.
501 * Returns the address of the tagged item on success, else NULL. ie:
502 * has the same return value and semantics as radix_tree_lookup().
504 void *radix_tree_tag_clear(struct radix_tree_root *root,
505 unsigned long index, unsigned int tag)
508 * The radix tree path needs to be one longer than the maximum path
509 * since the "list" is null terminated.
511 struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
512 struct radix_tree_node *slot = NULL;
513 unsigned int height, shift;
515 height = root->height;
516 if (index > radix_tree_maxindex(height))
517 goto out;
519 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
520 pathp->node = NULL;
521 slot = indirect_to_ptr(root->rnode);
523 while (height > 0) {
524 int offset;
526 if (slot == NULL)
527 goto out;
529 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
530 pathp[1].offset = offset;
531 pathp[1].node = slot;
532 slot = slot->slots[offset];
533 pathp++;
534 shift -= RADIX_TREE_MAP_SHIFT;
535 height--;
538 if (slot == NULL)
539 goto out;
541 while (pathp->node) {
542 if (!tag_get(pathp->node, tag, pathp->offset))
543 goto out;
544 tag_clear(pathp->node, tag, pathp->offset);
545 if (any_tag_set(pathp->node, tag))
546 goto out;
547 pathp--;
550 /* clear the root's tag bit */
551 if (root_tag_get(root, tag))
552 root_tag_clear(root, tag);
554 out:
555 return slot;
557 EXPORT_SYMBOL(radix_tree_tag_clear);
560 * radix_tree_tag_get - get a tag on a radix tree node
561 * @root: radix tree root
562 * @index: index key
563 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
565 * Return values:
567 * 0: tag not present or not set
568 * 1: tag set
570 * Note that the return value of this function may not be relied on, even if
571 * the RCU lock is held, unless tag modification and node deletion are excluded
572 * from concurrency.
574 int radix_tree_tag_get(struct radix_tree_root *root,
575 unsigned long index, unsigned int tag)
577 unsigned int height, shift;
578 struct radix_tree_node *node;
579 int saw_unset_tag = 0;
581 /* check the root's tag bit */
582 if (!root_tag_get(root, tag))
583 return 0;
585 node = rcu_dereference_raw(root->rnode);
586 if (node == NULL)
587 return 0;
589 if (!radix_tree_is_indirect_ptr(node))
590 return (index == 0);
591 node = indirect_to_ptr(node);
593 height = node->height;
594 if (index > radix_tree_maxindex(height))
595 return 0;
597 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
599 for ( ; ; ) {
600 int offset;
602 if (node == NULL)
603 return 0;
605 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
608 * This is just a debug check. Later, we can bale as soon as
609 * we see an unset tag.
611 if (!tag_get(node, tag, offset))
612 saw_unset_tag = 1;
613 if (height == 1)
614 return !!tag_get(node, tag, offset);
615 node = rcu_dereference_raw(node->slots[offset]);
616 shift -= RADIX_TREE_MAP_SHIFT;
617 height--;
620 EXPORT_SYMBOL(radix_tree_tag_get);
623 * radix_tree_range_tag_if_tagged - for each item in given range set given
624 * tag if item has another tag set
625 * @root: radix tree root
626 * @first_indexp: pointer to a starting index of a range to scan
627 * @last_index: last index of a range to scan
628 * @nr_to_tag: maximum number items to tag
629 * @iftag: tag index to test
630 * @settag: tag index to set if tested tag is set
632 * This function scans range of radix tree from first_index to last_index
633 * (inclusive). For each item in the range if iftag is set, the function sets
634 * also settag. The function stops either after tagging nr_to_tag items or
635 * after reaching last_index.
637 * The tags must be set from the leaf level only and propagated back up the
638 * path to the root. We must do this so that we resolve the full path before
639 * setting any tags on intermediate nodes. If we set tags as we descend, then
640 * we can get to the leaf node and find that the index that has the iftag
641 * set is outside the range we are scanning. This reults in dangling tags and
642 * can lead to problems with later tag operations (e.g. livelocks on lookups).
644 * The function returns number of leaves where the tag was set and sets
645 * *first_indexp to the first unscanned index.
646 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
647 * be prepared to handle that.
649 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
650 unsigned long *first_indexp, unsigned long last_index,
651 unsigned long nr_to_tag,
652 unsigned int iftag, unsigned int settag)
654 unsigned int height = root->height;
655 struct radix_tree_path path[height];
656 struct radix_tree_path *pathp = path;
657 struct radix_tree_node *slot;
658 unsigned int shift;
659 unsigned long tagged = 0;
660 unsigned long index = *first_indexp;
662 last_index = min(last_index, radix_tree_maxindex(height));
663 if (index > last_index)
664 return 0;
665 if (!nr_to_tag)
666 return 0;
667 if (!root_tag_get(root, iftag)) {
668 *first_indexp = last_index + 1;
669 return 0;
671 if (height == 0) {
672 *first_indexp = last_index + 1;
673 root_tag_set(root, settag);
674 return 1;
677 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
678 slot = indirect_to_ptr(root->rnode);
681 * we fill the path from (root->height - 2) to 0, leaving the index at
682 * (root->height - 1) as a terminator. Zero the node in the terminator
683 * so that we can use this to end walk loops back up the path.
685 path[height - 1].node = NULL;
687 for (;;) {
688 int offset;
690 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
691 if (!slot->slots[offset])
692 goto next;
693 if (!tag_get(slot, iftag, offset))
694 goto next;
695 if (height > 1) {
696 /* Go down one level */
697 height--;
698 shift -= RADIX_TREE_MAP_SHIFT;
699 path[height - 1].node = slot;
700 path[height - 1].offset = offset;
701 slot = slot->slots[offset];
702 continue;
705 /* tag the leaf */
706 tagged++;
707 tag_set(slot, settag, offset);
709 /* walk back up the path tagging interior nodes */
710 pathp = &path[0];
711 while (pathp->node) {
712 /* stop if we find a node with the tag already set */
713 if (tag_get(pathp->node, settag, pathp->offset))
714 break;
715 tag_set(pathp->node, settag, pathp->offset);
716 pathp++;
719 next:
720 /* Go to next item at level determined by 'shift' */
721 index = ((index >> shift) + 1) << shift;
722 /* Overflow can happen when last_index is ~0UL... */
723 if (index > last_index || !index)
724 break;
725 if (tagged >= nr_to_tag)
726 break;
727 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
729 * We've fully scanned this node. Go up. Because
730 * last_index is guaranteed to be in the tree, what
731 * we do below cannot wander astray.
733 slot = path[height - 1].node;
734 height++;
735 shift += RADIX_TREE_MAP_SHIFT;
739 * We need not to tag the root tag if there is no tag which is set with
740 * settag within the range from *first_indexp to last_index.
742 if (tagged > 0)
743 root_tag_set(root, settag);
744 *first_indexp = index;
746 return tagged;
748 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
752 * radix_tree_next_hole - find the next hole (not-present entry)
753 * @root: tree root
754 * @index: index key
755 * @max_scan: maximum range to search
757 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
758 * indexed hole.
760 * Returns: the index of the hole if found, otherwise returns an index
761 * outside of the set specified (in which case 'return - index >= max_scan'
762 * will be true). In rare cases of index wrap-around, 0 will be returned.
764 * radix_tree_next_hole may be called under rcu_read_lock. However, like
765 * radix_tree_gang_lookup, this will not atomically search a snapshot of
766 * the tree at a single point in time. For example, if a hole is created
767 * at index 5, then subsequently a hole is created at index 10,
768 * radix_tree_next_hole covering both indexes may return 10 if called
769 * under rcu_read_lock.
771 unsigned long radix_tree_next_hole(struct radix_tree_root *root,
772 unsigned long index, unsigned long max_scan)
774 unsigned long i;
776 for (i = 0; i < max_scan; i++) {
777 if (!radix_tree_lookup(root, index))
778 break;
779 index++;
780 if (index == 0)
781 break;
784 return index;
786 EXPORT_SYMBOL(radix_tree_next_hole);
789 * radix_tree_prev_hole - find the prev hole (not-present entry)
790 * @root: tree root
791 * @index: index key
792 * @max_scan: maximum range to search
794 * Search backwards in the range [max(index-max_scan+1, 0), index]
795 * for the first hole.
797 * Returns: the index of the hole if found, otherwise returns an index
798 * outside of the set specified (in which case 'index - return >= max_scan'
799 * will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
801 * radix_tree_next_hole may be called under rcu_read_lock. However, like
802 * radix_tree_gang_lookup, this will not atomically search a snapshot of
803 * the tree at a single point in time. For example, if a hole is created
804 * at index 10, then subsequently a hole is created at index 5,
805 * radix_tree_prev_hole covering both indexes may return 5 if called under
806 * rcu_read_lock.
808 unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
809 unsigned long index, unsigned long max_scan)
811 unsigned long i;
813 for (i = 0; i < max_scan; i++) {
814 if (!radix_tree_lookup(root, index))
815 break;
816 index--;
817 if (index == ULONG_MAX)
818 break;
821 return index;
823 EXPORT_SYMBOL(radix_tree_prev_hole);
825 static unsigned int
826 __lookup(struct radix_tree_node *slot, void ***results, unsigned long *indices,
827 unsigned long index, unsigned int max_items, unsigned long *next_index)
829 unsigned int nr_found = 0;
830 unsigned int shift, height;
831 unsigned long i;
833 height = slot->height;
834 if (height == 0)
835 goto out;
836 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
838 for ( ; height > 1; height--) {
839 i = (index >> shift) & RADIX_TREE_MAP_MASK;
840 for (;;) {
841 if (slot->slots[i] != NULL)
842 break;
843 index &= ~((1UL << shift) - 1);
844 index += 1UL << shift;
845 if (index == 0)
846 goto out; /* 32-bit wraparound */
847 i++;
848 if (i == RADIX_TREE_MAP_SIZE)
849 goto out;
852 shift -= RADIX_TREE_MAP_SHIFT;
853 slot = rcu_dereference_raw(slot->slots[i]);
854 if (slot == NULL)
855 goto out;
858 /* Bottom level: grab some items */
859 for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
860 if (slot->slots[i]) {
861 results[nr_found] = &(slot->slots[i]);
862 if (indices)
863 indices[nr_found] = index;
864 if (++nr_found == max_items) {
865 index++;
866 goto out;
869 index++;
871 out:
872 *next_index = index;
873 return nr_found;
877 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
878 * @root: radix tree root
879 * @results: where the results of the lookup are placed
880 * @first_index: start the lookup from this key
881 * @max_items: place up to this many items at *results
883 * Performs an index-ascending scan of the tree for present items. Places
884 * them at *@results and returns the number of items which were placed at
885 * *@results.
887 * The implementation is naive.
889 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
890 * rcu_read_lock. In this case, rather than the returned results being
891 * an atomic snapshot of the tree at a single point in time, the semantics
892 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
893 * have been issued in individual locks, and results stored in 'results'.
895 unsigned int
896 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
897 unsigned long first_index, unsigned int max_items)
899 unsigned long max_index;
900 struct radix_tree_node *node;
901 unsigned long cur_index = first_index;
902 unsigned int ret;
904 node = rcu_dereference_raw(root->rnode);
905 if (!node)
906 return 0;
908 if (!radix_tree_is_indirect_ptr(node)) {
909 if (first_index > 0)
910 return 0;
911 results[0] = node;
912 return 1;
914 node = indirect_to_ptr(node);
916 max_index = radix_tree_maxindex(node->height);
918 ret = 0;
919 while (ret < max_items) {
920 unsigned int nr_found, slots_found, i;
921 unsigned long next_index; /* Index of next search */
923 if (cur_index > max_index)
924 break;
925 slots_found = __lookup(node, (void ***)results + ret, NULL,
926 cur_index, max_items - ret, &next_index);
927 nr_found = 0;
928 for (i = 0; i < slots_found; i++) {
929 struct radix_tree_node *slot;
930 slot = *(((void ***)results)[ret + i]);
931 if (!slot)
932 continue;
933 results[ret + nr_found] =
934 indirect_to_ptr(rcu_dereference_raw(slot));
935 nr_found++;
937 ret += nr_found;
938 if (next_index == 0)
939 break;
940 cur_index = next_index;
943 return ret;
945 EXPORT_SYMBOL(radix_tree_gang_lookup);
948 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
949 * @root: radix tree root
950 * @results: where the results of the lookup are placed
951 * @indices: where their indices should be placed (but usually NULL)
952 * @first_index: start the lookup from this key
953 * @max_items: place up to this many items at *results
955 * Performs an index-ascending scan of the tree for present items. Places
956 * their slots at *@results and returns the number of items which were
957 * placed at *@results.
959 * The implementation is naive.
961 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
962 * be dereferenced with radix_tree_deref_slot, and if using only RCU
963 * protection, radix_tree_deref_slot may fail requiring a retry.
965 unsigned int
966 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
967 void ***results, unsigned long *indices,
968 unsigned long first_index, unsigned int max_items)
970 unsigned long max_index;
971 struct radix_tree_node *node;
972 unsigned long cur_index = first_index;
973 unsigned int ret;
975 node = rcu_dereference_raw(root->rnode);
976 if (!node)
977 return 0;
979 if (!radix_tree_is_indirect_ptr(node)) {
980 if (first_index > 0)
981 return 0;
982 results[0] = (void **)&root->rnode;
983 if (indices)
984 indices[0] = 0;
985 return 1;
987 node = indirect_to_ptr(node);
989 max_index = radix_tree_maxindex(node->height);
991 ret = 0;
992 while (ret < max_items) {
993 unsigned int slots_found;
994 unsigned long next_index; /* Index of next search */
996 if (cur_index > max_index)
997 break;
998 slots_found = __lookup(node, results + ret,
999 indices ? indices + ret : NULL,
1000 cur_index, max_items - ret, &next_index);
1001 ret += slots_found;
1002 if (next_index == 0)
1003 break;
1004 cur_index = next_index;
1007 return ret;
1009 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1012 * FIXME: the two tag_get()s here should use find_next_bit() instead of
1013 * open-coding the search.
1015 static unsigned int
1016 __lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
1017 unsigned int max_items, unsigned long *next_index, unsigned int tag)
1019 unsigned int nr_found = 0;
1020 unsigned int shift, height;
1022 height = slot->height;
1023 if (height == 0)
1024 goto out;
1025 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1027 while (height > 0) {
1028 unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
1030 for (;;) {
1031 if (tag_get(slot, tag, i))
1032 break;
1033 index &= ~((1UL << shift) - 1);
1034 index += 1UL << shift;
1035 if (index == 0)
1036 goto out; /* 32-bit wraparound */
1037 i++;
1038 if (i == RADIX_TREE_MAP_SIZE)
1039 goto out;
1041 height--;
1042 if (height == 0) { /* Bottom level: grab some items */
1043 unsigned long j = index & RADIX_TREE_MAP_MASK;
1045 for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
1046 index++;
1047 if (!tag_get(slot, tag, j))
1048 continue;
1050 * Even though the tag was found set, we need to
1051 * recheck that we have a non-NULL node, because
1052 * if this lookup is lockless, it may have been
1053 * subsequently deleted.
1055 * Similar care must be taken in any place that
1056 * lookup ->slots[x] without a lock (ie. can't
1057 * rely on its value remaining the same).
1059 if (slot->slots[j]) {
1060 results[nr_found++] = &(slot->slots[j]);
1061 if (nr_found == max_items)
1062 goto out;
1066 shift -= RADIX_TREE_MAP_SHIFT;
1067 slot = rcu_dereference_raw(slot->slots[i]);
1068 if (slot == NULL)
1069 break;
1071 out:
1072 *next_index = index;
1073 return nr_found;
1077 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1078 * based on a tag
1079 * @root: radix tree root
1080 * @results: where the results of the lookup are placed
1081 * @first_index: start the lookup from this key
1082 * @max_items: place up to this many items at *results
1083 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1085 * Performs an index-ascending scan of the tree for present items which
1086 * have the tag indexed by @tag set. Places the items at *@results and
1087 * returns the number of items which were placed at *@results.
1089 unsigned int
1090 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1091 unsigned long first_index, unsigned int max_items,
1092 unsigned int tag)
1094 struct radix_tree_node *node;
1095 unsigned long max_index;
1096 unsigned long cur_index = first_index;
1097 unsigned int ret;
1099 /* check the root's tag bit */
1100 if (!root_tag_get(root, tag))
1101 return 0;
1103 node = rcu_dereference_raw(root->rnode);
1104 if (!node)
1105 return 0;
1107 if (!radix_tree_is_indirect_ptr(node)) {
1108 if (first_index > 0)
1109 return 0;
1110 results[0] = node;
1111 return 1;
1113 node = indirect_to_ptr(node);
1115 max_index = radix_tree_maxindex(node->height);
1117 ret = 0;
1118 while (ret < max_items) {
1119 unsigned int nr_found, slots_found, i;
1120 unsigned long next_index; /* Index of next search */
1122 if (cur_index > max_index)
1123 break;
1124 slots_found = __lookup_tag(node, (void ***)results + ret,
1125 cur_index, max_items - ret, &next_index, tag);
1126 nr_found = 0;
1127 for (i = 0; i < slots_found; i++) {
1128 struct radix_tree_node *slot;
1129 slot = *(((void ***)results)[ret + i]);
1130 if (!slot)
1131 continue;
1132 results[ret + nr_found] =
1133 indirect_to_ptr(rcu_dereference_raw(slot));
1134 nr_found++;
1136 ret += nr_found;
1137 if (next_index == 0)
1138 break;
1139 cur_index = next_index;
1142 return ret;
1144 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1147 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1148 * radix tree based on a tag
1149 * @root: radix tree root
1150 * @results: where the results of the lookup are placed
1151 * @first_index: start the lookup from this key
1152 * @max_items: place up to this many items at *results
1153 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1155 * Performs an index-ascending scan of the tree for present items which
1156 * have the tag indexed by @tag set. Places the slots at *@results and
1157 * returns the number of slots which were placed at *@results.
1159 unsigned int
1160 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1161 unsigned long first_index, unsigned int max_items,
1162 unsigned int tag)
1164 struct radix_tree_node *node;
1165 unsigned long max_index;
1166 unsigned long cur_index = first_index;
1167 unsigned int ret;
1169 /* check the root's tag bit */
1170 if (!root_tag_get(root, tag))
1171 return 0;
1173 node = rcu_dereference_raw(root->rnode);
1174 if (!node)
1175 return 0;
1177 if (!radix_tree_is_indirect_ptr(node)) {
1178 if (first_index > 0)
1179 return 0;
1180 results[0] = (void **)&root->rnode;
1181 return 1;
1183 node = indirect_to_ptr(node);
1185 max_index = radix_tree_maxindex(node->height);
1187 ret = 0;
1188 while (ret < max_items) {
1189 unsigned int slots_found;
1190 unsigned long next_index; /* Index of next search */
1192 if (cur_index > max_index)
1193 break;
1194 slots_found = __lookup_tag(node, results + ret,
1195 cur_index, max_items - ret, &next_index, tag);
1196 ret += slots_found;
1197 if (next_index == 0)
1198 break;
1199 cur_index = next_index;
1202 return ret;
1204 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1206 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1207 #include <linux/sched.h> /* for cond_resched() */
1210 * This linear search is at present only useful to shmem_unuse_inode().
1212 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1213 unsigned long index, unsigned long *found_index)
1215 unsigned int shift, height;
1216 unsigned long i;
1218 height = slot->height;
1219 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1221 for ( ; height > 1; height--) {
1222 i = (index >> shift) & RADIX_TREE_MAP_MASK;
1223 for (;;) {
1224 if (slot->slots[i] != NULL)
1225 break;
1226 index &= ~((1UL << shift) - 1);
1227 index += 1UL << shift;
1228 if (index == 0)
1229 goto out; /* 32-bit wraparound */
1230 i++;
1231 if (i == RADIX_TREE_MAP_SIZE)
1232 goto out;
1235 shift -= RADIX_TREE_MAP_SHIFT;
1236 slot = rcu_dereference_raw(slot->slots[i]);
1237 if (slot == NULL)
1238 goto out;
1241 /* Bottom level: check items */
1242 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1243 if (slot->slots[i] == item) {
1244 *found_index = index + i;
1245 index = 0;
1246 goto out;
1249 index += RADIX_TREE_MAP_SIZE;
1250 out:
1251 return index;
1255 * radix_tree_locate_item - search through radix tree for item
1256 * @root: radix tree root
1257 * @item: item to be found
1259 * Returns index where item was found, or -1 if not found.
1260 * Caller must hold no lock (since this time-consuming function needs
1261 * to be preemptible), and must check afterwards if item is still there.
1263 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1265 struct radix_tree_node *node;
1266 unsigned long max_index;
1267 unsigned long cur_index = 0;
1268 unsigned long found_index = -1;
1270 do {
1271 rcu_read_lock();
1272 node = rcu_dereference_raw(root->rnode);
1273 if (!radix_tree_is_indirect_ptr(node)) {
1274 rcu_read_unlock();
1275 if (node == item)
1276 found_index = 0;
1277 break;
1280 node = indirect_to_ptr(node);
1281 max_index = radix_tree_maxindex(node->height);
1282 if (cur_index > max_index)
1283 break;
1285 cur_index = __locate(node, item, cur_index, &found_index);
1286 rcu_read_unlock();
1287 cond_resched();
1288 } while (cur_index != 0 && cur_index <= max_index);
1290 return found_index;
1292 #else
1293 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1295 return -1;
1297 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1300 * radix_tree_shrink - shrink height of a radix tree to minimal
1301 * @root radix tree root
1303 static inline void radix_tree_shrink(struct radix_tree_root *root)
1305 /* try to shrink tree height */
1306 while (root->height > 0) {
1307 struct radix_tree_node *to_free = root->rnode;
1308 void *newptr;
1310 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1311 to_free = indirect_to_ptr(to_free);
1314 * The candidate node has more than one child, or its child
1315 * is not at the leftmost slot, we cannot shrink.
1317 if (to_free->count != 1)
1318 break;
1319 if (!to_free->slots[0])
1320 break;
1323 * We don't need rcu_assign_pointer(), since we are simply
1324 * moving the node from one part of the tree to another: if it
1325 * was safe to dereference the old pointer to it
1326 * (to_free->slots[0]), it will be safe to dereference the new
1327 * one (root->rnode) as far as dependent read barriers go.
1329 newptr = to_free->slots[0];
1330 if (root->height > 1)
1331 newptr = ptr_to_indirect(newptr);
1332 root->rnode = newptr;
1333 root->height--;
1336 * We have a dilemma here. The node's slot[0] must not be
1337 * NULLed in case there are concurrent lookups expecting to
1338 * find the item. However if this was a bottom-level node,
1339 * then it may be subject to the slot pointer being visible
1340 * to callers dereferencing it. If item corresponding to
1341 * slot[0] is subsequently deleted, these callers would expect
1342 * their slot to become empty sooner or later.
1344 * For example, lockless pagecache will look up a slot, deref
1345 * the page pointer, and if the page is 0 refcount it means it
1346 * was concurrently deleted from pagecache so try the deref
1347 * again. Fortunately there is already a requirement for logic
1348 * to retry the entire slot lookup -- the indirect pointer
1349 * problem (replacing direct root node with an indirect pointer
1350 * also results in a stale slot). So tag the slot as indirect
1351 * to force callers to retry.
1353 if (root->height == 0)
1354 *((unsigned long *)&to_free->slots[0]) |=
1355 RADIX_TREE_INDIRECT_PTR;
1357 radix_tree_node_free(to_free);
1362 * radix_tree_delete - delete an item from a radix tree
1363 * @root: radix tree root
1364 * @index: index key
1366 * Remove the item at @index from the radix tree rooted at @root.
1368 * Returns the address of the deleted item, or NULL if it was not present.
1370 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1373 * The radix tree path needs to be one longer than the maximum path
1374 * since the "list" is null terminated.
1376 struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
1377 struct radix_tree_node *slot = NULL;
1378 struct radix_tree_node *to_free;
1379 unsigned int height, shift;
1380 int tag;
1381 int offset;
1383 height = root->height;
1384 if (index > radix_tree_maxindex(height))
1385 goto out;
1387 slot = root->rnode;
1388 if (height == 0) {
1389 root_tag_clear_all(root);
1390 root->rnode = NULL;
1391 goto out;
1393 slot = indirect_to_ptr(slot);
1395 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1396 pathp->node = NULL;
1398 do {
1399 if (slot == NULL)
1400 goto out;
1402 pathp++;
1403 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1404 pathp->offset = offset;
1405 pathp->node = slot;
1406 slot = slot->slots[offset];
1407 shift -= RADIX_TREE_MAP_SHIFT;
1408 height--;
1409 } while (height > 0);
1411 if (slot == NULL)
1412 goto out;
1415 * Clear all tags associated with the just-deleted item
1417 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1418 if (tag_get(pathp->node, tag, pathp->offset))
1419 radix_tree_tag_clear(root, index, tag);
1422 to_free = NULL;
1423 /* Now free the nodes we do not need anymore */
1424 while (pathp->node) {
1425 pathp->node->slots[pathp->offset] = NULL;
1426 pathp->node->count--;
1428 * Queue the node for deferred freeing after the
1429 * last reference to it disappears (set NULL, above).
1431 if (to_free)
1432 radix_tree_node_free(to_free);
1434 if (pathp->node->count) {
1435 if (pathp->node == indirect_to_ptr(root->rnode))
1436 radix_tree_shrink(root);
1437 goto out;
1440 /* Node with zero slots in use so free it */
1441 to_free = pathp->node;
1442 pathp--;
1445 root_tag_clear_all(root);
1446 root->height = 0;
1447 root->rnode = NULL;
1448 if (to_free)
1449 radix_tree_node_free(to_free);
1451 out:
1452 return slot;
1454 EXPORT_SYMBOL(radix_tree_delete);
1457 * radix_tree_tagged - test whether any items in the tree are tagged
1458 * @root: radix tree root
1459 * @tag: tag to test
1461 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1463 return root_tag_get(root, tag);
1465 EXPORT_SYMBOL(radix_tree_tagged);
1467 static void
1468 radix_tree_node_ctor(void *node)
1470 memset(node, 0, sizeof(struct radix_tree_node));
1473 static __init unsigned long __maxindex(unsigned int height)
1475 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1476 int shift = RADIX_TREE_INDEX_BITS - width;
1478 if (shift < 0)
1479 return ~0UL;
1480 if (shift >= BITS_PER_LONG)
1481 return 0UL;
1482 return ~0UL >> shift;
1485 static __init void radix_tree_init_maxindex(void)
1487 unsigned int i;
1489 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1490 height_to_maxindex[i] = __maxindex(i);
1493 static int radix_tree_callback(struct notifier_block *nfb,
1494 unsigned long action,
1495 void *hcpu)
1497 int cpu = (long)hcpu;
1498 struct radix_tree_preload *rtp;
1500 /* Free per-cpu pool of perloaded nodes */
1501 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1502 rtp = &per_cpu(radix_tree_preloads, cpu);
1503 while (rtp->nr) {
1504 kmem_cache_free(radix_tree_node_cachep,
1505 rtp->nodes[rtp->nr-1]);
1506 rtp->nodes[rtp->nr-1] = NULL;
1507 rtp->nr--;
1510 return NOTIFY_OK;
1513 void __init radix_tree_init(void)
1515 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1516 sizeof(struct radix_tree_node), 0,
1517 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1518 radix_tree_node_ctor);
1519 radix_tree_init_maxindex();
1520 hotcpu_notifier(radix_tree_callback, 0);