perf_counter tools: Define and use our own u64, s64 etc. definitions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / tools / perf / builtin-stat.c
blob6d3eeac1ea257b47c898dae49c6336c35c4c43f4
1 /*
2 * builtin-stat.c
4 * Builtin stat command: Give a precise performance counters summary
5 * overview about any workload, CPU or specific PID.
7 * Sample output:
9 $ perf stat ~/hackbench 10
10 Time: 0.104
12 Performance counter stats for '/home/mingo/hackbench':
14 1255.538611 task clock ticks # 10.143 CPU utilization factor
15 54011 context switches # 0.043 M/sec
16 385 CPU migrations # 0.000 M/sec
17 17755 pagefaults # 0.014 M/sec
18 3808323185 CPU cycles # 3033.219 M/sec
19 1575111190 instructions # 1254.530 M/sec
20 17367895 cache references # 13.833 M/sec
21 7674421 cache misses # 6.112 M/sec
23 Wall-clock time elapsed: 123.786620 msecs
26 * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
28 * Improvements and fixes by:
30 * Arjan van de Ven <arjan@linux.intel.com>
31 * Yanmin Zhang <yanmin.zhang@intel.com>
32 * Wu Fengguang <fengguang.wu@intel.com>
33 * Mike Galbraith <efault@gmx.de>
34 * Paul Mackerras <paulus@samba.org>
36 * Released under the GPL v2. (and only v2, not any later version)
39 #include "perf.h"
40 #include "builtin.h"
41 #include "util/util.h"
42 #include "util/parse-options.h"
43 #include "util/parse-events.h"
45 #include <sys/prctl.h>
46 #include <math.h>
48 static struct perf_counter_attr default_attrs[MAX_COUNTERS] = {
50 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK },
51 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
52 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS },
53 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS },
55 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES },
56 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS },
57 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
58 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES },
62 static int system_wide = 0;
63 static int inherit = 1;
64 static int verbose = 0;
66 static int fd[MAX_NR_CPUS][MAX_COUNTERS];
68 static int target_pid = -1;
69 static int nr_cpus = 0;
70 static unsigned int page_size;
72 static int scale = 1;
74 static const unsigned int default_count[] = {
75 1000000,
76 1000000,
77 10000,
78 10000,
79 1000000,
80 10000,
83 #define MAX_RUN 100
85 static int run_count = 1;
86 static int run_idx = 0;
88 static u64 event_res[MAX_RUN][MAX_COUNTERS][3];
89 static u64 event_scaled[MAX_RUN][MAX_COUNTERS];
91 //static u64 event_hist[MAX_RUN][MAX_COUNTERS][3];
94 static u64 runtime_nsecs[MAX_RUN];
95 static u64 walltime_nsecs[MAX_RUN];
96 static u64 runtime_cycles[MAX_RUN];
98 static u64 event_res_avg[MAX_COUNTERS][3];
99 static u64 event_res_noise[MAX_COUNTERS][3];
101 static u64 event_scaled_avg[MAX_COUNTERS];
103 static u64 runtime_nsecs_avg;
104 static u64 runtime_nsecs_noise;
106 static u64 walltime_nsecs_avg;
107 static u64 walltime_nsecs_noise;
109 static u64 runtime_cycles_avg;
110 static u64 runtime_cycles_noise;
112 static void create_perf_stat_counter(int counter)
114 struct perf_counter_attr *attr = attrs + counter;
116 if (scale)
117 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
118 PERF_FORMAT_TOTAL_TIME_RUNNING;
120 if (system_wide) {
121 int cpu;
122 for (cpu = 0; cpu < nr_cpus; cpu ++) {
123 fd[cpu][counter] = sys_perf_counter_open(attr, -1, cpu, -1, 0);
124 if (fd[cpu][counter] < 0 && verbose) {
125 printf("Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n", counter, fd[cpu][counter], strerror(errno));
128 } else {
129 attr->inherit = inherit;
130 attr->disabled = 1;
132 fd[0][counter] = sys_perf_counter_open(attr, 0, -1, -1, 0);
133 if (fd[0][counter] < 0 && verbose) {
134 printf("Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n", counter, fd[0][counter], strerror(errno));
140 * Does the counter have nsecs as a unit?
142 static inline int nsec_counter(int counter)
144 if (attrs[counter].type != PERF_TYPE_SOFTWARE)
145 return 0;
147 if (attrs[counter].config == PERF_COUNT_SW_CPU_CLOCK)
148 return 1;
150 if (attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK)
151 return 1;
153 return 0;
157 * Read out the results of a single counter:
159 static void read_counter(int counter)
161 u64 *count, single_count[3];
162 ssize_t res;
163 int cpu, nv;
164 int scaled;
166 count = event_res[run_idx][counter];
168 count[0] = count[1] = count[2] = 0;
170 nv = scale ? 3 : 1;
171 for (cpu = 0; cpu < nr_cpus; cpu ++) {
172 if (fd[cpu][counter] < 0)
173 continue;
175 res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
176 assert(res == nv * sizeof(u64));
177 close(fd[cpu][counter]);
178 fd[cpu][counter] = -1;
180 count[0] += single_count[0];
181 if (scale) {
182 count[1] += single_count[1];
183 count[2] += single_count[2];
187 scaled = 0;
188 if (scale) {
189 if (count[2] == 0) {
190 event_scaled[run_idx][counter] = -1;
191 count[0] = 0;
192 return;
195 if (count[2] < count[1]) {
196 event_scaled[run_idx][counter] = 1;
197 count[0] = (unsigned long long)
198 ((double)count[0] * count[1] / count[2] + 0.5);
202 * Save the full runtime - to allow normalization during printout:
204 if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
205 attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK)
206 runtime_nsecs[run_idx] = count[0];
207 if (attrs[counter].type == PERF_TYPE_HARDWARE &&
208 attrs[counter].config == PERF_COUNT_HW_CPU_CYCLES)
209 runtime_cycles[run_idx] = count[0];
212 static int run_perf_stat(int argc, const char **argv)
214 unsigned long long t0, t1;
215 int status = 0;
216 int counter;
217 int pid;
219 if (!system_wide)
220 nr_cpus = 1;
222 for (counter = 0; counter < nr_counters; counter++)
223 create_perf_stat_counter(counter);
226 * Enable counters and exec the command:
228 t0 = rdclock();
229 prctl(PR_TASK_PERF_COUNTERS_ENABLE);
231 if ((pid = fork()) < 0)
232 perror("failed to fork");
234 if (!pid) {
235 if (execvp(argv[0], (char **)argv)) {
236 perror(argv[0]);
237 exit(-1);
241 wait(&status);
243 prctl(PR_TASK_PERF_COUNTERS_DISABLE);
244 t1 = rdclock();
246 walltime_nsecs[run_idx] = t1 - t0;
248 for (counter = 0; counter < nr_counters; counter++)
249 read_counter(counter);
251 return WEXITSTATUS(status);
254 static void print_noise(u64 *count, u64 *noise)
256 if (run_count > 1)
257 fprintf(stderr, " ( +- %7.3f%% )",
258 (double)noise[0]/(count[0]+1)*100.0);
261 static void nsec_printout(int counter, u64 *count, u64 *noise)
263 double msecs = (double)count[0] / 1000000;
265 fprintf(stderr, " %14.6f %-20s", msecs, event_name(counter));
267 if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
268 attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK) {
270 if (walltime_nsecs_avg)
271 fprintf(stderr, " # %10.3f CPUs ",
272 (double)count[0] / (double)walltime_nsecs_avg);
274 print_noise(count, noise);
277 static void abs_printout(int counter, u64 *count, u64 *noise)
279 fprintf(stderr, " %14Ld %-20s", count[0], event_name(counter));
281 if (runtime_cycles_avg &&
282 attrs[counter].type == PERF_TYPE_HARDWARE &&
283 attrs[counter].config == PERF_COUNT_HW_INSTRUCTIONS) {
285 fprintf(stderr, " # %10.3f IPC ",
286 (double)count[0] / (double)runtime_cycles_avg);
287 } else {
288 if (runtime_nsecs_avg) {
289 fprintf(stderr, " # %10.3f M/sec",
290 (double)count[0]/runtime_nsecs_avg*1000.0);
293 print_noise(count, noise);
297 * Print out the results of a single counter:
299 static void print_counter(int counter)
301 u64 *count, *noise;
302 int scaled;
304 count = event_res_avg[counter];
305 noise = event_res_noise[counter];
306 scaled = event_scaled_avg[counter];
308 if (scaled == -1) {
309 fprintf(stderr, " %14s %-20s\n",
310 "<not counted>", event_name(counter));
311 return;
314 if (nsec_counter(counter))
315 nsec_printout(counter, count, noise);
316 else
317 abs_printout(counter, count, noise);
319 if (scaled)
320 fprintf(stderr, " (scaled from %.2f%%)",
321 (double) count[2] / count[1] * 100);
323 fprintf(stderr, "\n");
327 * normalize_noise noise values down to stddev:
329 static void normalize_noise(u64 *val)
331 double res;
333 res = (double)*val / (run_count * sqrt((double)run_count));
335 *val = (u64)res;
338 static void update_avg(const char *name, int idx, u64 *avg, u64 *val)
340 *avg += *val;
342 if (verbose > 1)
343 fprintf(stderr, "debug: %20s[%d]: %Ld\n", name, idx, *val);
346 * Calculate the averages and noises:
348 static void calc_avg(void)
350 int i, j;
352 if (verbose > 1)
353 fprintf(stderr, "\n");
355 for (i = 0; i < run_count; i++) {
356 update_avg("runtime", 0, &runtime_nsecs_avg, runtime_nsecs + i);
357 update_avg("walltime", 0, &walltime_nsecs_avg, walltime_nsecs + i);
358 update_avg("runtime_cycles", 0, &runtime_cycles_avg, runtime_cycles + i);
360 for (j = 0; j < nr_counters; j++) {
361 update_avg("counter/0", j,
362 event_res_avg[j]+0, event_res[i][j]+0);
363 update_avg("counter/1", j,
364 event_res_avg[j]+1, event_res[i][j]+1);
365 update_avg("counter/2", j,
366 event_res_avg[j]+2, event_res[i][j]+2);
367 update_avg("scaled", j,
368 event_scaled_avg + j, event_scaled[i]+j);
371 runtime_nsecs_avg /= run_count;
372 walltime_nsecs_avg /= run_count;
373 runtime_cycles_avg /= run_count;
375 for (j = 0; j < nr_counters; j++) {
376 event_res_avg[j][0] /= run_count;
377 event_res_avg[j][1] /= run_count;
378 event_res_avg[j][2] /= run_count;
381 for (i = 0; i < run_count; i++) {
382 runtime_nsecs_noise +=
383 abs((s64)(runtime_nsecs[i] - runtime_nsecs_avg));
384 walltime_nsecs_noise +=
385 abs((s64)(walltime_nsecs[i] - walltime_nsecs_avg));
386 runtime_cycles_noise +=
387 abs((s64)(runtime_cycles[i] - runtime_cycles_avg));
389 for (j = 0; j < nr_counters; j++) {
390 event_res_noise[j][0] +=
391 abs((s64)(event_res[i][j][0] - event_res_avg[j][0]));
392 event_res_noise[j][1] +=
393 abs((s64)(event_res[i][j][1] - event_res_avg[j][1]));
394 event_res_noise[j][2] +=
395 abs((s64)(event_res[i][j][2] - event_res_avg[j][2]));
399 normalize_noise(&runtime_nsecs_noise);
400 normalize_noise(&walltime_nsecs_noise);
401 normalize_noise(&runtime_cycles_noise);
403 for (j = 0; j < nr_counters; j++) {
404 normalize_noise(&event_res_noise[j][0]);
405 normalize_noise(&event_res_noise[j][1]);
406 normalize_noise(&event_res_noise[j][2]);
410 static void print_stat(int argc, const char **argv)
412 int i, counter;
414 calc_avg();
416 fflush(stdout);
418 fprintf(stderr, "\n");
419 fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
421 for (i = 1; i < argc; i++)
422 fprintf(stderr, " %s", argv[i]);
424 fprintf(stderr, "\'");
425 if (run_count > 1)
426 fprintf(stderr, " (%d runs)", run_count);
427 fprintf(stderr, ":\n\n");
429 for (counter = 0; counter < nr_counters; counter++)
430 print_counter(counter);
433 fprintf(stderr, "\n");
434 fprintf(stderr, " %14.9f seconds time elapsed.\n",
435 (double)walltime_nsecs_avg/1e9);
436 fprintf(stderr, "\n");
439 static volatile int signr = -1;
441 static void skip_signal(int signo)
443 signr = signo;
446 static void sig_atexit(void)
448 if (signr == -1)
449 return;
451 signal(signr, SIG_DFL);
452 kill(getpid(), signr);
455 static const char * const stat_usage[] = {
456 "perf stat [<options>] <command>",
457 NULL
460 static const struct option options[] = {
461 OPT_CALLBACK('e', "event", NULL, "event",
462 "event selector. use 'perf list' to list available events",
463 parse_events),
464 OPT_BOOLEAN('i', "inherit", &inherit,
465 "child tasks inherit counters"),
466 OPT_INTEGER('p', "pid", &target_pid,
467 "stat events on existing pid"),
468 OPT_BOOLEAN('a', "all-cpus", &system_wide,
469 "system-wide collection from all CPUs"),
470 OPT_BOOLEAN('S', "scale", &scale,
471 "scale/normalize counters"),
472 OPT_BOOLEAN('v', "verbose", &verbose,
473 "be more verbose (show counter open errors, etc)"),
474 OPT_INTEGER('r', "repeat", &run_count,
475 "repeat command and print average + stddev (max: 100)"),
476 OPT_END()
479 int cmd_stat(int argc, const char **argv, const char *prefix)
481 int status;
483 page_size = sysconf(_SC_PAGE_SIZE);
485 memcpy(attrs, default_attrs, sizeof(attrs));
487 argc = parse_options(argc, argv, options, stat_usage, 0);
488 if (!argc)
489 usage_with_options(stat_usage, options);
490 if (run_count <= 0 || run_count > MAX_RUN)
491 usage_with_options(stat_usage, options);
493 if (!nr_counters)
494 nr_counters = 8;
496 nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
497 assert(nr_cpus <= MAX_NR_CPUS);
498 assert(nr_cpus >= 0);
501 * We dont want to block the signals - that would cause
502 * child tasks to inherit that and Ctrl-C would not work.
503 * What we want is for Ctrl-C to work in the exec()-ed
504 * task, but being ignored by perf stat itself:
506 atexit(sig_atexit);
507 signal(SIGINT, skip_signal);
508 signal(SIGALRM, skip_signal);
509 signal(SIGABRT, skip_signal);
511 status = 0;
512 for (run_idx = 0; run_idx < run_count; run_idx++) {
513 if (run_count != 1 && verbose)
514 fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx+1);
515 status = run_perf_stat(argc, argv);
518 print_stat(argc, argv);
520 return status;