2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
21 * Gianfar: AKA Lambda Draconis, "Dragon"
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
85 #include <linux/net_tstamp.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
95 #include <linux/phy_fixed.h>
99 #include "fsl_pq_mdio.h"
101 #define TX_TIMEOUT (1*HZ)
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
105 const char gfar_driver_name
[] = "Gianfar Ethernet";
106 const char gfar_driver_version
[] = "1.3";
108 static int gfar_enet_open(struct net_device
*dev
);
109 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
110 static void gfar_reset_task(struct work_struct
*work
);
111 static void gfar_timeout(struct net_device
*dev
);
112 static int gfar_close(struct net_device
*dev
);
113 struct sk_buff
*gfar_new_skb(struct net_device
*dev
);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
115 struct sk_buff
*skb
);
116 static int gfar_set_mac_address(struct net_device
*dev
);
117 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
118 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
119 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
120 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
121 static void adjust_link(struct net_device
*dev
);
122 static void init_registers(struct net_device
*dev
);
123 static int init_phy(struct net_device
*dev
);
124 static int gfar_probe(struct of_device
*ofdev
,
125 const struct of_device_id
*match
);
126 static int gfar_remove(struct of_device
*ofdev
);
127 static void free_skb_resources(struct gfar_private
*priv
);
128 static void gfar_set_multi(struct net_device
*dev
);
129 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
130 static void gfar_configure_serdes(struct net_device
*dev
);
131 static int gfar_poll(struct napi_struct
*napi
, int budget
);
132 #ifdef CONFIG_NET_POLL_CONTROLLER
133 static void gfar_netpoll(struct net_device
*dev
);
135 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
);
136 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
);
137 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
139 static void gfar_vlan_rx_register(struct net_device
*netdev
,
140 struct vlan_group
*grp
);
141 void gfar_halt(struct net_device
*dev
);
142 static void gfar_halt_nodisable(struct net_device
*dev
);
143 void gfar_start(struct net_device
*dev
);
144 static void gfar_clear_exact_match(struct net_device
*dev
);
145 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
146 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
159 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
160 if (bdp
== rx_queue
->rx_bd_base
+ rx_queue
->rx_ring_size
- 1)
161 lstatus
|= BD_LFLAG(RXBD_WRAP
);
165 bdp
->lstatus
= lstatus
;
168 static int gfar_init_bds(struct net_device
*ndev
)
170 struct gfar_private
*priv
= netdev_priv(ndev
);
171 struct gfar_priv_tx_q
*tx_queue
= NULL
;
172 struct gfar_priv_rx_q
*rx_queue
= NULL
;
177 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
178 tx_queue
= priv
->tx_queue
[i
];
179 /* Initialize some variables in our dev structure */
180 tx_queue
->num_txbdfree
= tx_queue
->tx_ring_size
;
181 tx_queue
->dirty_tx
= tx_queue
->tx_bd_base
;
182 tx_queue
->cur_tx
= tx_queue
->tx_bd_base
;
183 tx_queue
->skb_curtx
= 0;
184 tx_queue
->skb_dirtytx
= 0;
186 /* Initialize Transmit Descriptor Ring */
187 txbdp
= tx_queue
->tx_bd_base
;
188 for (j
= 0; j
< tx_queue
->tx_ring_size
; j
++) {
194 /* Set the last descriptor in the ring to indicate wrap */
196 txbdp
->status
|= TXBD_WRAP
;
199 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
200 rx_queue
= priv
->rx_queue
[i
];
201 rx_queue
->cur_rx
= rx_queue
->rx_bd_base
;
202 rx_queue
->skb_currx
= 0;
203 rxbdp
= rx_queue
->rx_bd_base
;
205 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++) {
206 struct sk_buff
*skb
= rx_queue
->rx_skbuff
[j
];
209 gfar_init_rxbdp(rx_queue
, rxbdp
,
212 skb
= gfar_new_skb(ndev
);
214 pr_err("%s: Can't allocate RX buffers\n",
216 goto err_rxalloc_fail
;
218 rx_queue
->rx_skbuff
[j
] = skb
;
220 gfar_new_rxbdp(rx_queue
, rxbdp
, skb
);
231 free_skb_resources(priv
);
235 static int gfar_alloc_skb_resources(struct net_device
*ndev
)
240 struct gfar_private
*priv
= netdev_priv(ndev
);
241 struct device
*dev
= &priv
->ofdev
->dev
;
242 struct gfar_priv_tx_q
*tx_queue
= NULL
;
243 struct gfar_priv_rx_q
*rx_queue
= NULL
;
245 priv
->total_tx_ring_size
= 0;
246 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
247 priv
->total_tx_ring_size
+= priv
->tx_queue
[i
]->tx_ring_size
;
249 priv
->total_rx_ring_size
= 0;
250 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
251 priv
->total_rx_ring_size
+= priv
->rx_queue
[i
]->rx_ring_size
;
253 /* Allocate memory for the buffer descriptors */
254 vaddr
= dma_alloc_coherent(dev
,
255 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
256 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
259 if (netif_msg_ifup(priv
))
260 pr_err("%s: Could not allocate buffer descriptors!\n",
265 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
266 tx_queue
= priv
->tx_queue
[i
];
267 tx_queue
->tx_bd_base
= (struct txbd8
*) vaddr
;
268 tx_queue
->tx_bd_dma_base
= addr
;
269 tx_queue
->dev
= ndev
;
270 /* enet DMA only understands physical addresses */
271 addr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
272 vaddr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
275 /* Start the rx descriptor ring where the tx ring leaves off */
276 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
277 rx_queue
= priv
->rx_queue
[i
];
278 rx_queue
->rx_bd_base
= (struct rxbd8
*) vaddr
;
279 rx_queue
->rx_bd_dma_base
= addr
;
280 rx_queue
->dev
= ndev
;
281 addr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
282 vaddr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
285 /* Setup the skbuff rings */
286 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
287 tx_queue
= priv
->tx_queue
[i
];
288 tx_queue
->tx_skbuff
= kmalloc(sizeof(*tx_queue
->tx_skbuff
) *
289 tx_queue
->tx_ring_size
, GFP_KERNEL
);
290 if (!tx_queue
->tx_skbuff
) {
291 if (netif_msg_ifup(priv
))
292 pr_err("%s: Could not allocate tx_skbuff\n",
297 for (k
= 0; k
< tx_queue
->tx_ring_size
; k
++)
298 tx_queue
->tx_skbuff
[k
] = NULL
;
301 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
302 rx_queue
= priv
->rx_queue
[i
];
303 rx_queue
->rx_skbuff
= kmalloc(sizeof(*rx_queue
->rx_skbuff
) *
304 rx_queue
->rx_ring_size
, GFP_KERNEL
);
306 if (!rx_queue
->rx_skbuff
) {
307 if (netif_msg_ifup(priv
))
308 pr_err("%s: Could not allocate rx_skbuff\n",
313 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++)
314 rx_queue
->rx_skbuff
[j
] = NULL
;
317 if (gfar_init_bds(ndev
))
323 free_skb_resources(priv
);
327 static void gfar_init_tx_rx_base(struct gfar_private
*priv
)
329 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
333 baddr
= ®s
->tbase0
;
334 for(i
= 0; i
< priv
->num_tx_queues
; i
++) {
335 gfar_write(baddr
, priv
->tx_queue
[i
]->tx_bd_dma_base
);
339 baddr
= ®s
->rbase0
;
340 for(i
= 0; i
< priv
->num_rx_queues
; i
++) {
341 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_bd_dma_base
);
346 static void gfar_init_mac(struct net_device
*ndev
)
348 struct gfar_private
*priv
= netdev_priv(ndev
);
349 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
354 /* write the tx/rx base registers */
355 gfar_init_tx_rx_base(priv
);
357 /* Configure the coalescing support */
358 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
360 if (priv
->rx_filer_enable
) {
361 rctrl
|= RCTRL_FILREN
;
362 /* Program the RIR0 reg with the required distribution */
363 gfar_write(®s
->rir0
, DEFAULT_RIR0
);
366 if (priv
->rx_csum_enable
)
367 rctrl
|= RCTRL_CHECKSUMMING
;
369 if (priv
->extended_hash
) {
370 rctrl
|= RCTRL_EXTHASH
;
372 gfar_clear_exact_match(ndev
);
377 rctrl
&= ~RCTRL_PAL_MASK
;
378 rctrl
|= RCTRL_PADDING(priv
->padding
);
381 /* Insert receive time stamps into padding alignment bytes */
382 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
) {
383 rctrl
&= ~RCTRL_PAL_MASK
;
384 rctrl
|= RCTRL_PRSDEP_INIT
| RCTRL_TS_ENABLE
| RCTRL_PADDING(8);
388 /* keep vlan related bits if it's enabled */
390 rctrl
|= RCTRL_VLEX
| RCTRL_PRSDEP_INIT
;
391 tctrl
|= TCTRL_VLINS
;
394 /* Init rctrl based on our settings */
395 gfar_write(®s
->rctrl
, rctrl
);
397 if (ndev
->features
& NETIF_F_IP_CSUM
)
398 tctrl
|= TCTRL_INIT_CSUM
;
400 tctrl
|= TCTRL_TXSCHED_PRIO
;
402 gfar_write(®s
->tctrl
, tctrl
);
404 /* Set the extraction length and index */
405 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
406 ATTRELI_EI(priv
->rx_stash_index
);
408 gfar_write(®s
->attreli
, attrs
);
410 /* Start with defaults, and add stashing or locking
411 * depending on the approprate variables */
412 attrs
= ATTR_INIT_SETTINGS
;
414 if (priv
->bd_stash_en
)
415 attrs
|= ATTR_BDSTASH
;
417 if (priv
->rx_stash_size
!= 0)
418 attrs
|= ATTR_BUFSTASH
;
420 gfar_write(®s
->attr
, attrs
);
422 gfar_write(®s
->fifo_tx_thr
, priv
->fifo_threshold
);
423 gfar_write(®s
->fifo_tx_starve
, priv
->fifo_starve
);
424 gfar_write(®s
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
427 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
)
429 struct gfar_private
*priv
= netdev_priv(dev
);
430 struct netdev_queue
*txq
;
431 unsigned long rx_packets
= 0, rx_bytes
= 0, rx_dropped
= 0;
432 unsigned long tx_packets
= 0, tx_bytes
= 0;
435 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
436 rx_packets
+= priv
->rx_queue
[i
]->stats
.rx_packets
;
437 rx_bytes
+= priv
->rx_queue
[i
]->stats
.rx_bytes
;
438 rx_dropped
+= priv
->rx_queue
[i
]->stats
.rx_dropped
;
441 dev
->stats
.rx_packets
= rx_packets
;
442 dev
->stats
.rx_bytes
= rx_bytes
;
443 dev
->stats
.rx_dropped
= rx_dropped
;
445 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
446 txq
= netdev_get_tx_queue(dev
, i
);
447 tx_bytes
+= txq
->tx_bytes
;
448 tx_packets
+= txq
->tx_packets
;
451 dev
->stats
.tx_bytes
= tx_bytes
;
452 dev
->stats
.tx_packets
= tx_packets
;
457 static const struct net_device_ops gfar_netdev_ops
= {
458 .ndo_open
= gfar_enet_open
,
459 .ndo_start_xmit
= gfar_start_xmit
,
460 .ndo_stop
= gfar_close
,
461 .ndo_change_mtu
= gfar_change_mtu
,
462 .ndo_set_multicast_list
= gfar_set_multi
,
463 .ndo_tx_timeout
= gfar_timeout
,
464 .ndo_do_ioctl
= gfar_ioctl
,
465 .ndo_get_stats
= gfar_get_stats
,
466 .ndo_vlan_rx_register
= gfar_vlan_rx_register
,
467 .ndo_set_mac_address
= eth_mac_addr
,
468 .ndo_validate_addr
= eth_validate_addr
,
469 #ifdef CONFIG_NET_POLL_CONTROLLER
470 .ndo_poll_controller
= gfar_netpoll
,
474 unsigned int ftp_rqfpr
[MAX_FILER_IDX
+ 1];
475 unsigned int ftp_rqfcr
[MAX_FILER_IDX
+ 1];
477 void lock_rx_qs(struct gfar_private
*priv
)
481 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
482 spin_lock(&priv
->rx_queue
[i
]->rxlock
);
485 void lock_tx_qs(struct gfar_private
*priv
)
489 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
490 spin_lock(&priv
->tx_queue
[i
]->txlock
);
493 void unlock_rx_qs(struct gfar_private
*priv
)
497 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
498 spin_unlock(&priv
->rx_queue
[i
]->rxlock
);
501 void unlock_tx_qs(struct gfar_private
*priv
)
505 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
506 spin_unlock(&priv
->tx_queue
[i
]->txlock
);
509 /* Returns 1 if incoming frames use an FCB */
510 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
512 return priv
->vlgrp
|| priv
->rx_csum_enable
||
513 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
);
516 static void free_tx_pointers(struct gfar_private
*priv
)
520 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
521 kfree(priv
->tx_queue
[i
]);
524 static void free_rx_pointers(struct gfar_private
*priv
)
528 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
529 kfree(priv
->rx_queue
[i
]);
532 static void unmap_group_regs(struct gfar_private
*priv
)
536 for (i
= 0; i
< MAXGROUPS
; i
++)
537 if (priv
->gfargrp
[i
].regs
)
538 iounmap(priv
->gfargrp
[i
].regs
);
541 static void disable_napi(struct gfar_private
*priv
)
545 for (i
= 0; i
< priv
->num_grps
; i
++)
546 napi_disable(&priv
->gfargrp
[i
].napi
);
549 static void enable_napi(struct gfar_private
*priv
)
553 for (i
= 0; i
< priv
->num_grps
; i
++)
554 napi_enable(&priv
->gfargrp
[i
].napi
);
557 static int gfar_parse_group(struct device_node
*np
,
558 struct gfar_private
*priv
, const char *model
)
562 priv
->gfargrp
[priv
->num_grps
].regs
= of_iomap(np
, 0);
563 if (!priv
->gfargrp
[priv
->num_grps
].regs
)
566 priv
->gfargrp
[priv
->num_grps
].interruptTransmit
=
567 irq_of_parse_and_map(np
, 0);
569 /* If we aren't the FEC we have multiple interrupts */
570 if (model
&& strcasecmp(model
, "FEC")) {
571 priv
->gfargrp
[priv
->num_grps
].interruptReceive
=
572 irq_of_parse_and_map(np
, 1);
573 priv
->gfargrp
[priv
->num_grps
].interruptError
=
574 irq_of_parse_and_map(np
,2);
575 if (priv
->gfargrp
[priv
->num_grps
].interruptTransmit
< 0 ||
576 priv
->gfargrp
[priv
->num_grps
].interruptReceive
< 0 ||
577 priv
->gfargrp
[priv
->num_grps
].interruptError
< 0) {
582 priv
->gfargrp
[priv
->num_grps
].grp_id
= priv
->num_grps
;
583 priv
->gfargrp
[priv
->num_grps
].priv
= priv
;
584 spin_lock_init(&priv
->gfargrp
[priv
->num_grps
].grplock
);
585 if(priv
->mode
== MQ_MG_MODE
) {
586 queue_mask
= (u32
*)of_get_property(np
,
587 "fsl,rx-bit-map", NULL
);
588 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
=
589 queue_mask
? *queue_mask
:(DEFAULT_MAPPING
>> priv
->num_grps
);
590 queue_mask
= (u32
*)of_get_property(np
,
591 "fsl,tx-bit-map", NULL
);
592 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
=
593 queue_mask
? *queue_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
595 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
= 0xFF;
596 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
= 0xFF;
603 static int gfar_of_init(struct of_device
*ofdev
, struct net_device
**pdev
)
607 const void *mac_addr
;
609 struct net_device
*dev
= NULL
;
610 struct gfar_private
*priv
= NULL
;
611 struct device_node
*np
= ofdev
->dev
.of_node
;
612 struct device_node
*child
= NULL
;
614 const u32
*stash_len
;
615 const u32
*stash_idx
;
616 unsigned int num_tx_qs
, num_rx_qs
;
617 u32
*tx_queues
, *rx_queues
;
619 if (!np
|| !of_device_is_available(np
))
622 /* parse the num of tx and rx queues */
623 tx_queues
= (u32
*)of_get_property(np
, "fsl,num_tx_queues", NULL
);
624 num_tx_qs
= tx_queues
? *tx_queues
: 1;
626 if (num_tx_qs
> MAX_TX_QS
) {
627 printk(KERN_ERR
"num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
628 num_tx_qs
, MAX_TX_QS
);
629 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
633 rx_queues
= (u32
*)of_get_property(np
, "fsl,num_rx_queues", NULL
);
634 num_rx_qs
= rx_queues
? *rx_queues
: 1;
636 if (num_rx_qs
> MAX_RX_QS
) {
637 printk(KERN_ERR
"num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
638 num_tx_qs
, MAX_TX_QS
);
639 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
643 *pdev
= alloc_etherdev_mq(sizeof(*priv
), num_tx_qs
);
648 priv
= netdev_priv(dev
);
649 priv
->node
= ofdev
->dev
.of_node
;
652 dev
->num_tx_queues
= num_tx_qs
;
653 dev
->real_num_tx_queues
= num_tx_qs
;
654 priv
->num_tx_queues
= num_tx_qs
;
655 priv
->num_rx_queues
= num_rx_qs
;
656 priv
->num_grps
= 0x0;
658 model
= of_get_property(np
, "model", NULL
);
660 for (i
= 0; i
< MAXGROUPS
; i
++)
661 priv
->gfargrp
[i
].regs
= NULL
;
663 /* Parse and initialize group specific information */
664 if (of_device_is_compatible(np
, "fsl,etsec2")) {
665 priv
->mode
= MQ_MG_MODE
;
666 for_each_child_of_node(np
, child
) {
667 err
= gfar_parse_group(child
, priv
, model
);
672 priv
->mode
= SQ_SG_MODE
;
673 err
= gfar_parse_group(np
, priv
, model
);
678 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
679 priv
->tx_queue
[i
] = NULL
;
680 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
681 priv
->rx_queue
[i
] = NULL
;
683 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
684 priv
->tx_queue
[i
] = (struct gfar_priv_tx_q
*)kzalloc(
685 sizeof (struct gfar_priv_tx_q
), GFP_KERNEL
);
686 if (!priv
->tx_queue
[i
]) {
688 goto tx_alloc_failed
;
690 priv
->tx_queue
[i
]->tx_skbuff
= NULL
;
691 priv
->tx_queue
[i
]->qindex
= i
;
692 priv
->tx_queue
[i
]->dev
= dev
;
693 spin_lock_init(&(priv
->tx_queue
[i
]->txlock
));
696 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
697 priv
->rx_queue
[i
] = (struct gfar_priv_rx_q
*)kzalloc(
698 sizeof (struct gfar_priv_rx_q
), GFP_KERNEL
);
699 if (!priv
->rx_queue
[i
]) {
701 goto rx_alloc_failed
;
703 priv
->rx_queue
[i
]->rx_skbuff
= NULL
;
704 priv
->rx_queue
[i
]->qindex
= i
;
705 priv
->rx_queue
[i
]->dev
= dev
;
706 spin_lock_init(&(priv
->rx_queue
[i
]->rxlock
));
710 stash
= of_get_property(np
, "bd-stash", NULL
);
713 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
714 priv
->bd_stash_en
= 1;
717 stash_len
= of_get_property(np
, "rx-stash-len", NULL
);
720 priv
->rx_stash_size
= *stash_len
;
722 stash_idx
= of_get_property(np
, "rx-stash-idx", NULL
);
725 priv
->rx_stash_index
= *stash_idx
;
727 if (stash_len
|| stash_idx
)
728 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
730 mac_addr
= of_get_mac_address(np
);
732 memcpy(dev
->dev_addr
, mac_addr
, MAC_ADDR_LEN
);
734 if (model
&& !strcasecmp(model
, "TSEC"))
736 FSL_GIANFAR_DEV_HAS_GIGABIT
|
737 FSL_GIANFAR_DEV_HAS_COALESCE
|
738 FSL_GIANFAR_DEV_HAS_RMON
|
739 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
740 if (model
&& !strcasecmp(model
, "eTSEC"))
742 FSL_GIANFAR_DEV_HAS_GIGABIT
|
743 FSL_GIANFAR_DEV_HAS_COALESCE
|
744 FSL_GIANFAR_DEV_HAS_RMON
|
745 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
746 FSL_GIANFAR_DEV_HAS_PADDING
|
747 FSL_GIANFAR_DEV_HAS_CSUM
|
748 FSL_GIANFAR_DEV_HAS_VLAN
|
749 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
750 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
;
752 ctype
= of_get_property(np
, "phy-connection-type", NULL
);
754 /* We only care about rgmii-id. The rest are autodetected */
755 if (ctype
&& !strcmp(ctype
, "rgmii-id"))
756 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
758 priv
->interface
= PHY_INTERFACE_MODE_MII
;
760 if (of_get_property(np
, "fsl,magic-packet", NULL
))
761 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
763 priv
->phy_node
= of_parse_phandle(np
, "phy-handle", 0);
765 /* Find the TBI PHY. If it's not there, we don't support SGMII */
766 priv
->tbi_node
= of_parse_phandle(np
, "tbi-handle", 0);
771 free_rx_pointers(priv
);
773 free_tx_pointers(priv
);
775 unmap_group_regs(priv
);
780 static int gfar_hwtstamp_ioctl(struct net_device
*netdev
,
781 struct ifreq
*ifr
, int cmd
)
783 struct hwtstamp_config config
;
784 struct gfar_private
*priv
= netdev_priv(netdev
);
786 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
789 /* reserved for future extensions */
793 switch (config
.tx_type
) {
794 case HWTSTAMP_TX_OFF
:
795 priv
->hwts_tx_en
= 0;
798 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
800 priv
->hwts_tx_en
= 1;
806 switch (config
.rx_filter
) {
807 case HWTSTAMP_FILTER_NONE
:
808 priv
->hwts_rx_en
= 0;
811 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
813 priv
->hwts_rx_en
= 1;
814 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
818 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
822 /* Ioctl MII Interface */
823 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
825 struct gfar_private
*priv
= netdev_priv(dev
);
827 if (!netif_running(dev
))
830 if (cmd
== SIOCSHWTSTAMP
)
831 return gfar_hwtstamp_ioctl(dev
, rq
, cmd
);
836 return phy_mii_ioctl(priv
->phydev
, if_mii(rq
), cmd
);
839 static unsigned int reverse_bitmap(unsigned int bit_map
, unsigned int max_qs
)
841 unsigned int new_bit_map
= 0x0;
842 int mask
= 0x1 << (max_qs
- 1), i
;
843 for (i
= 0; i
< max_qs
; i
++) {
845 new_bit_map
= new_bit_map
+ (1 << i
);
851 static u32
cluster_entry_per_class(struct gfar_private
*priv
, u32 rqfar
,
854 u32 rqfpr
= FPR_FILER_MASK
;
858 rqfcr
= RQFCR_CLE
| RQFCR_PID_MASK
| RQFCR_CMP_EXACT
;
859 ftp_rqfpr
[rqfar
] = rqfpr
;
860 ftp_rqfcr
[rqfar
] = rqfcr
;
861 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
864 rqfcr
= RQFCR_CMP_NOMATCH
;
865 ftp_rqfpr
[rqfar
] = rqfpr
;
866 ftp_rqfcr
[rqfar
] = rqfcr
;
867 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
870 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_PARSE
| RQFCR_CLE
| RQFCR_AND
;
872 ftp_rqfcr
[rqfar
] = rqfcr
;
873 ftp_rqfpr
[rqfar
] = rqfpr
;
874 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
877 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_MASK
| RQFCR_AND
;
879 ftp_rqfcr
[rqfar
] = rqfcr
;
880 ftp_rqfpr
[rqfar
] = rqfpr
;
881 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
886 static void gfar_init_filer_table(struct gfar_private
*priv
)
889 u32 rqfar
= MAX_FILER_IDX
;
891 u32 rqfpr
= FPR_FILER_MASK
;
894 rqfcr
= RQFCR_CMP_MATCH
;
895 ftp_rqfcr
[rqfar
] = rqfcr
;
896 ftp_rqfpr
[rqfar
] = rqfpr
;
897 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
899 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
);
900 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_UDP
);
901 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_TCP
);
902 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
);
903 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_UDP
);
904 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_TCP
);
906 /* cur_filer_idx indicated the fisrt non-masked rule */
907 priv
->cur_filer_idx
= rqfar
;
909 /* Rest are masked rules */
910 rqfcr
= RQFCR_CMP_NOMATCH
;
911 for (i
= 0; i
< rqfar
; i
++) {
912 ftp_rqfcr
[i
] = rqfcr
;
913 ftp_rqfpr
[i
] = rqfpr
;
914 gfar_write_filer(priv
, i
, rqfcr
, rqfpr
);
918 /* Set up the ethernet device structure, private data,
919 * and anything else we need before we start */
920 static int gfar_probe(struct of_device
*ofdev
,
921 const struct of_device_id
*match
)
924 struct net_device
*dev
= NULL
;
925 struct gfar_private
*priv
= NULL
;
926 struct gfar __iomem
*regs
= NULL
;
927 int err
= 0, i
, grp_idx
= 0;
929 u32 rstat
= 0, tstat
= 0, rqueue
= 0, tqueue
= 0;
933 err
= gfar_of_init(ofdev
, &dev
);
938 priv
= netdev_priv(dev
);
941 priv
->node
= ofdev
->dev
.of_node
;
942 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
944 spin_lock_init(&priv
->bflock
);
945 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
947 dev_set_drvdata(&ofdev
->dev
, priv
);
948 regs
= priv
->gfargrp
[0].regs
;
950 /* Stop the DMA engine now, in case it was running before */
951 /* (The firmware could have used it, and left it running). */
954 /* Reset MAC layer */
955 gfar_write(®s
->maccfg1
, MACCFG1_SOFT_RESET
);
957 /* We need to delay at least 3 TX clocks */
960 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
961 gfar_write(®s
->maccfg1
, tempval
);
963 /* Initialize MACCFG2. */
964 gfar_write(®s
->maccfg2
, MACCFG2_INIT_SETTINGS
);
966 /* Initialize ECNTRL */
967 gfar_write(®s
->ecntrl
, ECNTRL_INIT_SETTINGS
);
969 /* Set the dev->base_addr to the gfar reg region */
970 dev
->base_addr
= (unsigned long) regs
;
972 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
974 /* Fill in the dev structure */
975 dev
->watchdog_timeo
= TX_TIMEOUT
;
977 dev
->netdev_ops
= &gfar_netdev_ops
;
978 dev
->ethtool_ops
= &gfar_ethtool_ops
;
980 /* Register for napi ...We are registering NAPI for each grp */
981 for (i
= 0; i
< priv
->num_grps
; i
++)
982 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
984 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
985 priv
->rx_csum_enable
= 1;
986 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_HIGHDMA
;
988 priv
->rx_csum_enable
= 0;
992 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
)
993 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
995 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
996 priv
->extended_hash
= 1;
997 priv
->hash_width
= 9;
999 priv
->hash_regs
[0] = ®s
->igaddr0
;
1000 priv
->hash_regs
[1] = ®s
->igaddr1
;
1001 priv
->hash_regs
[2] = ®s
->igaddr2
;
1002 priv
->hash_regs
[3] = ®s
->igaddr3
;
1003 priv
->hash_regs
[4] = ®s
->igaddr4
;
1004 priv
->hash_regs
[5] = ®s
->igaddr5
;
1005 priv
->hash_regs
[6] = ®s
->igaddr6
;
1006 priv
->hash_regs
[7] = ®s
->igaddr7
;
1007 priv
->hash_regs
[8] = ®s
->gaddr0
;
1008 priv
->hash_regs
[9] = ®s
->gaddr1
;
1009 priv
->hash_regs
[10] = ®s
->gaddr2
;
1010 priv
->hash_regs
[11] = ®s
->gaddr3
;
1011 priv
->hash_regs
[12] = ®s
->gaddr4
;
1012 priv
->hash_regs
[13] = ®s
->gaddr5
;
1013 priv
->hash_regs
[14] = ®s
->gaddr6
;
1014 priv
->hash_regs
[15] = ®s
->gaddr7
;
1017 priv
->extended_hash
= 0;
1018 priv
->hash_width
= 8;
1020 priv
->hash_regs
[0] = ®s
->gaddr0
;
1021 priv
->hash_regs
[1] = ®s
->gaddr1
;
1022 priv
->hash_regs
[2] = ®s
->gaddr2
;
1023 priv
->hash_regs
[3] = ®s
->gaddr3
;
1024 priv
->hash_regs
[4] = ®s
->gaddr4
;
1025 priv
->hash_regs
[5] = ®s
->gaddr5
;
1026 priv
->hash_regs
[6] = ®s
->gaddr6
;
1027 priv
->hash_regs
[7] = ®s
->gaddr7
;
1030 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
1031 priv
->padding
= DEFAULT_PADDING
;
1035 if (dev
->features
& NETIF_F_IP_CSUM
||
1036 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
)
1037 dev
->hard_header_len
+= GMAC_FCB_LEN
;
1039 /* Program the isrg regs only if number of grps > 1 */
1040 if (priv
->num_grps
> 1) {
1041 baddr
= ®s
->isrg0
;
1042 for (i
= 0; i
< priv
->num_grps
; i
++) {
1043 isrg
|= (priv
->gfargrp
[i
].rx_bit_map
<< ISRG_SHIFT_RX
);
1044 isrg
|= (priv
->gfargrp
[i
].tx_bit_map
<< ISRG_SHIFT_TX
);
1045 gfar_write(baddr
, isrg
);
1051 /* Need to reverse the bit maps as bit_map's MSB is q0
1052 * but, for_each_set_bit parses from right to left, which
1053 * basically reverses the queue numbers */
1054 for (i
= 0; i
< priv
->num_grps
; i
++) {
1055 priv
->gfargrp
[i
].tx_bit_map
= reverse_bitmap(
1056 priv
->gfargrp
[i
].tx_bit_map
, MAX_TX_QS
);
1057 priv
->gfargrp
[i
].rx_bit_map
= reverse_bitmap(
1058 priv
->gfargrp
[i
].rx_bit_map
, MAX_RX_QS
);
1061 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1062 * also assign queues to groups */
1063 for (grp_idx
= 0; grp_idx
< priv
->num_grps
; grp_idx
++) {
1064 priv
->gfargrp
[grp_idx
].num_rx_queues
= 0x0;
1065 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].rx_bit_map
,
1066 priv
->num_rx_queues
) {
1067 priv
->gfargrp
[grp_idx
].num_rx_queues
++;
1068 priv
->rx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1069 rstat
= rstat
| (RSTAT_CLEAR_RHALT
>> i
);
1070 rqueue
= rqueue
| ((RQUEUE_EN0
| RQUEUE_EX0
) >> i
);
1072 priv
->gfargrp
[grp_idx
].num_tx_queues
= 0x0;
1073 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].tx_bit_map
,
1074 priv
->num_tx_queues
) {
1075 priv
->gfargrp
[grp_idx
].num_tx_queues
++;
1076 priv
->tx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1077 tstat
= tstat
| (TSTAT_CLEAR_THALT
>> i
);
1078 tqueue
= tqueue
| (TQUEUE_EN0
>> i
);
1080 priv
->gfargrp
[grp_idx
].rstat
= rstat
;
1081 priv
->gfargrp
[grp_idx
].tstat
= tstat
;
1085 gfar_write(®s
->rqueue
, rqueue
);
1086 gfar_write(®s
->tqueue
, tqueue
);
1088 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
1090 /* Initializing some of the rx/tx queue level parameters */
1091 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1092 priv
->tx_queue
[i
]->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
1093 priv
->tx_queue
[i
]->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
1094 priv
->tx_queue
[i
]->txcoalescing
= DEFAULT_TX_COALESCE
;
1095 priv
->tx_queue
[i
]->txic
= DEFAULT_TXIC
;
1098 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1099 priv
->rx_queue
[i
]->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
1100 priv
->rx_queue
[i
]->rxcoalescing
= DEFAULT_RX_COALESCE
;
1101 priv
->rx_queue
[i
]->rxic
= DEFAULT_RXIC
;
1104 /* enable filer if using multiple RX queues*/
1105 if(priv
->num_rx_queues
> 1)
1106 priv
->rx_filer_enable
= 1;
1107 /* Enable most messages by default */
1108 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
1110 /* Carrier starts down, phylib will bring it up */
1111 netif_carrier_off(dev
);
1113 err
= register_netdev(dev
);
1116 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
1121 device_init_wakeup(&dev
->dev
,
1122 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1124 /* fill out IRQ number and name fields */
1125 len_devname
= strlen(dev
->name
);
1126 for (i
= 0; i
< priv
->num_grps
; i
++) {
1127 strncpy(&priv
->gfargrp
[i
].int_name_tx
[0], dev
->name
,
1129 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1130 strncpy(&priv
->gfargrp
[i
].int_name_tx
[len_devname
],
1131 "_g", sizeof("_g"));
1132 priv
->gfargrp
[i
].int_name_tx
[
1133 strlen(priv
->gfargrp
[i
].int_name_tx
)] = i
+48;
1134 strncpy(&priv
->gfargrp
[i
].int_name_tx
[strlen(
1135 priv
->gfargrp
[i
].int_name_tx
)],
1136 "_tx", sizeof("_tx") + 1);
1138 strncpy(&priv
->gfargrp
[i
].int_name_rx
[0], dev
->name
,
1140 strncpy(&priv
->gfargrp
[i
].int_name_rx
[len_devname
],
1141 "_g", sizeof("_g"));
1142 priv
->gfargrp
[i
].int_name_rx
[
1143 strlen(priv
->gfargrp
[i
].int_name_rx
)] = i
+48;
1144 strncpy(&priv
->gfargrp
[i
].int_name_rx
[strlen(
1145 priv
->gfargrp
[i
].int_name_rx
)],
1146 "_rx", sizeof("_rx") + 1);
1148 strncpy(&priv
->gfargrp
[i
].int_name_er
[0], dev
->name
,
1150 strncpy(&priv
->gfargrp
[i
].int_name_er
[len_devname
],
1151 "_g", sizeof("_g"));
1152 priv
->gfargrp
[i
].int_name_er
[strlen(
1153 priv
->gfargrp
[i
].int_name_er
)] = i
+48;
1154 strncpy(&priv
->gfargrp
[i
].int_name_er
[strlen(\
1155 priv
->gfargrp
[i
].int_name_er
)],
1156 "_er", sizeof("_er") + 1);
1158 priv
->gfargrp
[i
].int_name_tx
[len_devname
] = '\0';
1161 /* Initialize the filer table */
1162 gfar_init_filer_table(priv
);
1164 /* Create all the sysfs files */
1165 gfar_init_sysfs(dev
);
1167 /* Print out the device info */
1168 printk(KERN_INFO DEVICE_NAME
"%pM\n", dev
->name
, dev
->dev_addr
);
1170 /* Even more device info helps when determining which kernel */
1171 /* provided which set of benchmarks. */
1172 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
1173 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
1174 printk(KERN_INFO
"%s: RX BD ring size for Q[%d]: %d\n",
1175 dev
->name
, i
, priv
->rx_queue
[i
]->rx_ring_size
);
1176 for(i
= 0; i
< priv
->num_tx_queues
; i
++)
1177 printk(KERN_INFO
"%s: TX BD ring size for Q[%d]: %d\n",
1178 dev
->name
, i
, priv
->tx_queue
[i
]->tx_ring_size
);
1183 unmap_group_regs(priv
);
1184 free_tx_pointers(priv
);
1185 free_rx_pointers(priv
);
1187 of_node_put(priv
->phy_node
);
1189 of_node_put(priv
->tbi_node
);
1194 static int gfar_remove(struct of_device
*ofdev
)
1196 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
1199 of_node_put(priv
->phy_node
);
1201 of_node_put(priv
->tbi_node
);
1203 dev_set_drvdata(&ofdev
->dev
, NULL
);
1205 unregister_netdev(priv
->ndev
);
1206 unmap_group_regs(priv
);
1207 free_netdev(priv
->ndev
);
1214 static int gfar_suspend(struct device
*dev
)
1216 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1217 struct net_device
*ndev
= priv
->ndev
;
1218 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1219 unsigned long flags
;
1222 int magic_packet
= priv
->wol_en
&&
1223 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1225 netif_device_detach(ndev
);
1227 if (netif_running(ndev
)) {
1229 local_irq_save(flags
);
1233 gfar_halt_nodisable(ndev
);
1235 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1236 tempval
= gfar_read(®s
->maccfg1
);
1238 tempval
&= ~MACCFG1_TX_EN
;
1241 tempval
&= ~MACCFG1_RX_EN
;
1243 gfar_write(®s
->maccfg1
, tempval
);
1247 local_irq_restore(flags
);
1252 /* Enable interrupt on Magic Packet */
1253 gfar_write(®s
->imask
, IMASK_MAG
);
1255 /* Enable Magic Packet mode */
1256 tempval
= gfar_read(®s
->maccfg2
);
1257 tempval
|= MACCFG2_MPEN
;
1258 gfar_write(®s
->maccfg2
, tempval
);
1260 phy_stop(priv
->phydev
);
1267 static int gfar_resume(struct device
*dev
)
1269 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1270 struct net_device
*ndev
= priv
->ndev
;
1271 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1272 unsigned long flags
;
1274 int magic_packet
= priv
->wol_en
&&
1275 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1277 if (!netif_running(ndev
)) {
1278 netif_device_attach(ndev
);
1282 if (!magic_packet
&& priv
->phydev
)
1283 phy_start(priv
->phydev
);
1285 /* Disable Magic Packet mode, in case something
1288 local_irq_save(flags
);
1292 tempval
= gfar_read(®s
->maccfg2
);
1293 tempval
&= ~MACCFG2_MPEN
;
1294 gfar_write(®s
->maccfg2
, tempval
);
1300 local_irq_restore(flags
);
1302 netif_device_attach(ndev
);
1309 static int gfar_restore(struct device
*dev
)
1311 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1312 struct net_device
*ndev
= priv
->ndev
;
1314 if (!netif_running(ndev
))
1317 gfar_init_bds(ndev
);
1318 init_registers(ndev
);
1319 gfar_set_mac_address(ndev
);
1320 gfar_init_mac(ndev
);
1325 priv
->oldduplex
= -1;
1328 phy_start(priv
->phydev
);
1330 netif_device_attach(ndev
);
1336 static struct dev_pm_ops gfar_pm_ops
= {
1337 .suspend
= gfar_suspend
,
1338 .resume
= gfar_resume
,
1339 .freeze
= gfar_suspend
,
1340 .thaw
= gfar_resume
,
1341 .restore
= gfar_restore
,
1344 #define GFAR_PM_OPS (&gfar_pm_ops)
1348 #define GFAR_PM_OPS NULL
1352 /* Reads the controller's registers to determine what interface
1353 * connects it to the PHY.
1355 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
1357 struct gfar_private
*priv
= netdev_priv(dev
);
1358 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1361 ecntrl
= gfar_read(®s
->ecntrl
);
1363 if (ecntrl
& ECNTRL_SGMII_MODE
)
1364 return PHY_INTERFACE_MODE_SGMII
;
1366 if (ecntrl
& ECNTRL_TBI_MODE
) {
1367 if (ecntrl
& ECNTRL_REDUCED_MODE
)
1368 return PHY_INTERFACE_MODE_RTBI
;
1370 return PHY_INTERFACE_MODE_TBI
;
1373 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
1374 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
1375 return PHY_INTERFACE_MODE_RMII
;
1377 phy_interface_t interface
= priv
->interface
;
1380 * This isn't autodetected right now, so it must
1381 * be set by the device tree or platform code.
1383 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
1384 return PHY_INTERFACE_MODE_RGMII_ID
;
1386 return PHY_INTERFACE_MODE_RGMII
;
1390 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
1391 return PHY_INTERFACE_MODE_GMII
;
1393 return PHY_INTERFACE_MODE_MII
;
1397 /* Initializes driver's PHY state, and attaches to the PHY.
1398 * Returns 0 on success.
1400 static int init_phy(struct net_device
*dev
)
1402 struct gfar_private
*priv
= netdev_priv(dev
);
1403 uint gigabit_support
=
1404 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
1405 SUPPORTED_1000baseT_Full
: 0;
1406 phy_interface_t interface
;
1410 priv
->oldduplex
= -1;
1412 interface
= gfar_get_interface(dev
);
1414 priv
->phydev
= of_phy_connect(dev
, priv
->phy_node
, &adjust_link
, 0,
1417 priv
->phydev
= of_phy_connect_fixed_link(dev
, &adjust_link
,
1419 if (!priv
->phydev
) {
1420 dev_err(&dev
->dev
, "could not attach to PHY\n");
1424 if (interface
== PHY_INTERFACE_MODE_SGMII
)
1425 gfar_configure_serdes(dev
);
1427 /* Remove any features not supported by the controller */
1428 priv
->phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
1429 priv
->phydev
->advertising
= priv
->phydev
->supported
;
1435 * Initialize TBI PHY interface for communicating with the
1436 * SERDES lynx PHY on the chip. We communicate with this PHY
1437 * through the MDIO bus on each controller, treating it as a
1438 * "normal" PHY at the address found in the TBIPA register. We assume
1439 * that the TBIPA register is valid. Either the MDIO bus code will set
1440 * it to a value that doesn't conflict with other PHYs on the bus, or the
1441 * value doesn't matter, as there are no other PHYs on the bus.
1443 static void gfar_configure_serdes(struct net_device
*dev
)
1445 struct gfar_private
*priv
= netdev_priv(dev
);
1446 struct phy_device
*tbiphy
;
1448 if (!priv
->tbi_node
) {
1449 dev_warn(&dev
->dev
, "error: SGMII mode requires that the "
1450 "device tree specify a tbi-handle\n");
1454 tbiphy
= of_phy_find_device(priv
->tbi_node
);
1456 dev_err(&dev
->dev
, "error: Could not get TBI device\n");
1461 * If the link is already up, we must already be ok, and don't need to
1462 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1463 * everything for us? Resetting it takes the link down and requires
1464 * several seconds for it to come back.
1466 if (phy_read(tbiphy
, MII_BMSR
) & BMSR_LSTATUS
)
1469 /* Single clk mode, mii mode off(for serdes communication) */
1470 phy_write(tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
1472 phy_write(tbiphy
, MII_ADVERTISE
,
1473 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
1474 ADVERTISE_1000XPSE_ASYM
);
1476 phy_write(tbiphy
, MII_BMCR
, BMCR_ANENABLE
|
1477 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
1480 static void init_registers(struct net_device
*dev
)
1482 struct gfar_private
*priv
= netdev_priv(dev
);
1483 struct gfar __iomem
*regs
= NULL
;
1486 for (i
= 0; i
< priv
->num_grps
; i
++) {
1487 regs
= priv
->gfargrp
[i
].regs
;
1489 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1491 /* Initialize IMASK */
1492 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1495 regs
= priv
->gfargrp
[0].regs
;
1496 /* Init hash registers to zero */
1497 gfar_write(®s
->igaddr0
, 0);
1498 gfar_write(®s
->igaddr1
, 0);
1499 gfar_write(®s
->igaddr2
, 0);
1500 gfar_write(®s
->igaddr3
, 0);
1501 gfar_write(®s
->igaddr4
, 0);
1502 gfar_write(®s
->igaddr5
, 0);
1503 gfar_write(®s
->igaddr6
, 0);
1504 gfar_write(®s
->igaddr7
, 0);
1506 gfar_write(®s
->gaddr0
, 0);
1507 gfar_write(®s
->gaddr1
, 0);
1508 gfar_write(®s
->gaddr2
, 0);
1509 gfar_write(®s
->gaddr3
, 0);
1510 gfar_write(®s
->gaddr4
, 0);
1511 gfar_write(®s
->gaddr5
, 0);
1512 gfar_write(®s
->gaddr6
, 0);
1513 gfar_write(®s
->gaddr7
, 0);
1515 /* Zero out the rmon mib registers if it has them */
1516 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
1517 memset_io(&(regs
->rmon
), 0, sizeof (struct rmon_mib
));
1519 /* Mask off the CAM interrupts */
1520 gfar_write(®s
->rmon
.cam1
, 0xffffffff);
1521 gfar_write(®s
->rmon
.cam2
, 0xffffffff);
1524 /* Initialize the max receive buffer length */
1525 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
1527 /* Initialize the Minimum Frame Length Register */
1528 gfar_write(®s
->minflr
, MINFLR_INIT_SETTINGS
);
1532 /* Halt the receive and transmit queues */
1533 static void gfar_halt_nodisable(struct net_device
*dev
)
1535 struct gfar_private
*priv
= netdev_priv(dev
);
1536 struct gfar __iomem
*regs
= NULL
;
1540 for (i
= 0; i
< priv
->num_grps
; i
++) {
1541 regs
= priv
->gfargrp
[i
].regs
;
1542 /* Mask all interrupts */
1543 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1545 /* Clear all interrupts */
1546 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1549 regs
= priv
->gfargrp
[0].regs
;
1550 /* Stop the DMA, and wait for it to stop */
1551 tempval
= gfar_read(®s
->dmactrl
);
1552 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
1553 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
1554 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
1555 gfar_write(®s
->dmactrl
, tempval
);
1557 spin_event_timeout(((gfar_read(®s
->ievent
) &
1558 (IEVENT_GRSC
| IEVENT_GTSC
)) ==
1559 (IEVENT_GRSC
| IEVENT_GTSC
)), -1, 0);
1563 /* Halt the receive and transmit queues */
1564 void gfar_halt(struct net_device
*dev
)
1566 struct gfar_private
*priv
= netdev_priv(dev
);
1567 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1570 gfar_halt_nodisable(dev
);
1572 /* Disable Rx and Tx */
1573 tempval
= gfar_read(®s
->maccfg1
);
1574 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1575 gfar_write(®s
->maccfg1
, tempval
);
1578 static void free_grp_irqs(struct gfar_priv_grp
*grp
)
1580 free_irq(grp
->interruptError
, grp
);
1581 free_irq(grp
->interruptTransmit
, grp
);
1582 free_irq(grp
->interruptReceive
, grp
);
1585 void stop_gfar(struct net_device
*dev
)
1587 struct gfar_private
*priv
= netdev_priv(dev
);
1588 unsigned long flags
;
1591 phy_stop(priv
->phydev
);
1595 local_irq_save(flags
);
1603 local_irq_restore(flags
);
1606 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1607 for (i
= 0; i
< priv
->num_grps
; i
++)
1608 free_grp_irqs(&priv
->gfargrp
[i
]);
1610 for (i
= 0; i
< priv
->num_grps
; i
++)
1611 free_irq(priv
->gfargrp
[i
].interruptTransmit
,
1615 free_skb_resources(priv
);
1618 static void free_skb_tx_queue(struct gfar_priv_tx_q
*tx_queue
)
1620 struct txbd8
*txbdp
;
1621 struct gfar_private
*priv
= netdev_priv(tx_queue
->dev
);
1624 txbdp
= tx_queue
->tx_bd_base
;
1626 for (i
= 0; i
< tx_queue
->tx_ring_size
; i
++) {
1627 if (!tx_queue
->tx_skbuff
[i
])
1630 dma_unmap_single(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1631 txbdp
->length
, DMA_TO_DEVICE
);
1633 for (j
= 0; j
< skb_shinfo(tx_queue
->tx_skbuff
[i
])->nr_frags
;
1636 dma_unmap_page(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1637 txbdp
->length
, DMA_TO_DEVICE
);
1640 dev_kfree_skb_any(tx_queue
->tx_skbuff
[i
]);
1641 tx_queue
->tx_skbuff
[i
] = NULL
;
1643 kfree(tx_queue
->tx_skbuff
);
1646 static void free_skb_rx_queue(struct gfar_priv_rx_q
*rx_queue
)
1648 struct rxbd8
*rxbdp
;
1649 struct gfar_private
*priv
= netdev_priv(rx_queue
->dev
);
1652 rxbdp
= rx_queue
->rx_bd_base
;
1654 for (i
= 0; i
< rx_queue
->rx_ring_size
; i
++) {
1655 if (rx_queue
->rx_skbuff
[i
]) {
1656 dma_unmap_single(&priv
->ofdev
->dev
,
1657 rxbdp
->bufPtr
, priv
->rx_buffer_size
,
1659 dev_kfree_skb_any(rx_queue
->rx_skbuff
[i
]);
1660 rx_queue
->rx_skbuff
[i
] = NULL
;
1666 kfree(rx_queue
->rx_skbuff
);
1669 /* If there are any tx skbs or rx skbs still around, free them.
1670 * Then free tx_skbuff and rx_skbuff */
1671 static void free_skb_resources(struct gfar_private
*priv
)
1673 struct gfar_priv_tx_q
*tx_queue
= NULL
;
1674 struct gfar_priv_rx_q
*rx_queue
= NULL
;
1677 /* Go through all the buffer descriptors and free their data buffers */
1678 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1679 tx_queue
= priv
->tx_queue
[i
];
1680 if(tx_queue
->tx_skbuff
)
1681 free_skb_tx_queue(tx_queue
);
1684 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1685 rx_queue
= priv
->rx_queue
[i
];
1686 if(rx_queue
->rx_skbuff
)
1687 free_skb_rx_queue(rx_queue
);
1690 dma_free_coherent(&priv
->ofdev
->dev
,
1691 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
1692 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
1693 priv
->tx_queue
[0]->tx_bd_base
,
1694 priv
->tx_queue
[0]->tx_bd_dma_base
);
1695 skb_queue_purge(&priv
->rx_recycle
);
1698 void gfar_start(struct net_device
*dev
)
1700 struct gfar_private
*priv
= netdev_priv(dev
);
1701 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1705 /* Enable Rx and Tx in MACCFG1 */
1706 tempval
= gfar_read(®s
->maccfg1
);
1707 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1708 gfar_write(®s
->maccfg1
, tempval
);
1710 /* Initialize DMACTRL to have WWR and WOP */
1711 tempval
= gfar_read(®s
->dmactrl
);
1712 tempval
|= DMACTRL_INIT_SETTINGS
;
1713 gfar_write(®s
->dmactrl
, tempval
);
1715 /* Make sure we aren't stopped */
1716 tempval
= gfar_read(®s
->dmactrl
);
1717 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
1718 gfar_write(®s
->dmactrl
, tempval
);
1720 for (i
= 0; i
< priv
->num_grps
; i
++) {
1721 regs
= priv
->gfargrp
[i
].regs
;
1722 /* Clear THLT/RHLT, so that the DMA starts polling now */
1723 gfar_write(®s
->tstat
, priv
->gfargrp
[i
].tstat
);
1724 gfar_write(®s
->rstat
, priv
->gfargrp
[i
].rstat
);
1725 /* Unmask the interrupts we look for */
1726 gfar_write(®s
->imask
, IMASK_DEFAULT
);
1729 dev
->trans_start
= jiffies
; /* prevent tx timeout */
1732 void gfar_configure_coalescing(struct gfar_private
*priv
,
1733 unsigned long tx_mask
, unsigned long rx_mask
)
1735 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1739 /* Backward compatible case ---- even if we enable
1740 * multiple queues, there's only single reg to program
1742 gfar_write(®s
->txic
, 0);
1743 if(likely(priv
->tx_queue
[0]->txcoalescing
))
1744 gfar_write(®s
->txic
, priv
->tx_queue
[0]->txic
);
1746 gfar_write(®s
->rxic
, 0);
1747 if(unlikely(priv
->rx_queue
[0]->rxcoalescing
))
1748 gfar_write(®s
->rxic
, priv
->rx_queue
[0]->rxic
);
1750 if (priv
->mode
== MQ_MG_MODE
) {
1751 baddr
= ®s
->txic0
;
1752 for_each_set_bit(i
, &tx_mask
, priv
->num_tx_queues
) {
1753 if (likely(priv
->tx_queue
[i
]->txcoalescing
)) {
1754 gfar_write(baddr
+ i
, 0);
1755 gfar_write(baddr
+ i
, priv
->tx_queue
[i
]->txic
);
1759 baddr
= ®s
->rxic0
;
1760 for_each_set_bit(i
, &rx_mask
, priv
->num_rx_queues
) {
1761 if (likely(priv
->rx_queue
[i
]->rxcoalescing
)) {
1762 gfar_write(baddr
+ i
, 0);
1763 gfar_write(baddr
+ i
, priv
->rx_queue
[i
]->rxic
);
1769 static int register_grp_irqs(struct gfar_priv_grp
*grp
)
1771 struct gfar_private
*priv
= grp
->priv
;
1772 struct net_device
*dev
= priv
->ndev
;
1775 /* If the device has multiple interrupts, register for
1776 * them. Otherwise, only register for the one */
1777 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1778 /* Install our interrupt handlers for Error,
1779 * Transmit, and Receive */
1780 if ((err
= request_irq(grp
->interruptError
, gfar_error
, 0,
1781 grp
->int_name_er
,grp
)) < 0) {
1782 if (netif_msg_intr(priv
))
1783 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1784 dev
->name
, grp
->interruptError
);
1789 if ((err
= request_irq(grp
->interruptTransmit
, gfar_transmit
,
1790 0, grp
->int_name_tx
, grp
)) < 0) {
1791 if (netif_msg_intr(priv
))
1792 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1793 dev
->name
, grp
->interruptTransmit
);
1797 if ((err
= request_irq(grp
->interruptReceive
, gfar_receive
, 0,
1798 grp
->int_name_rx
, grp
)) < 0) {
1799 if (netif_msg_intr(priv
))
1800 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1801 dev
->name
, grp
->interruptReceive
);
1805 if ((err
= request_irq(grp
->interruptTransmit
, gfar_interrupt
, 0,
1806 grp
->int_name_tx
, grp
)) < 0) {
1807 if (netif_msg_intr(priv
))
1808 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1809 dev
->name
, grp
->interruptTransmit
);
1817 free_irq(grp
->interruptTransmit
, grp
);
1819 free_irq(grp
->interruptError
, grp
);
1825 /* Bring the controller up and running */
1826 int startup_gfar(struct net_device
*ndev
)
1828 struct gfar_private
*priv
= netdev_priv(ndev
);
1829 struct gfar __iomem
*regs
= NULL
;
1832 for (i
= 0; i
< priv
->num_grps
; i
++) {
1833 regs
= priv
->gfargrp
[i
].regs
;
1834 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1837 regs
= priv
->gfargrp
[0].regs
;
1838 err
= gfar_alloc_skb_resources(ndev
);
1842 gfar_init_mac(ndev
);
1844 for (i
= 0; i
< priv
->num_grps
; i
++) {
1845 err
= register_grp_irqs(&priv
->gfargrp
[i
]);
1847 for (j
= 0; j
< i
; j
++)
1848 free_grp_irqs(&priv
->gfargrp
[j
]);
1853 /* Start the controller */
1856 phy_start(priv
->phydev
);
1858 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
1863 free_skb_resources(priv
);
1867 /* Called when something needs to use the ethernet device */
1868 /* Returns 0 for success. */
1869 static int gfar_enet_open(struct net_device
*dev
)
1871 struct gfar_private
*priv
= netdev_priv(dev
);
1876 skb_queue_head_init(&priv
->rx_recycle
);
1878 /* Initialize a bunch of registers */
1879 init_registers(dev
);
1881 gfar_set_mac_address(dev
);
1883 err
= init_phy(dev
);
1890 err
= startup_gfar(dev
);
1896 netif_tx_start_all_queues(dev
);
1898 device_set_wakeup_enable(&dev
->dev
, priv
->wol_en
);
1903 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
1905 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
1907 memset(fcb
, 0, GMAC_FCB_LEN
);
1912 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
1916 /* If we're here, it's a IP packet with a TCP or UDP
1917 * payload. We set it to checksum, using a pseudo-header
1920 flags
= TXFCB_DEFAULT
;
1922 /* Tell the controller what the protocol is */
1923 /* And provide the already calculated phcs */
1924 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
1926 fcb
->phcs
= udp_hdr(skb
)->check
;
1928 fcb
->phcs
= tcp_hdr(skb
)->check
;
1930 /* l3os is the distance between the start of the
1931 * frame (skb->data) and the start of the IP hdr.
1932 * l4os is the distance between the start of the
1933 * l3 hdr and the l4 hdr */
1934 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
1935 fcb
->l4os
= skb_network_header_len(skb
);
1940 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
1942 fcb
->flags
|= TXFCB_VLN
;
1943 fcb
->vlctl
= vlan_tx_tag_get(skb
);
1946 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
1947 struct txbd8
*base
, int ring_size
)
1949 struct txbd8
*new_bd
= bdp
+ stride
;
1951 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
1954 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
1957 return skip_txbd(bdp
, 1, base
, ring_size
);
1960 /* This is called by the kernel when a frame is ready for transmission. */
1961 /* It is pointed to by the dev->hard_start_xmit function pointer */
1962 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1964 struct gfar_private
*priv
= netdev_priv(dev
);
1965 struct gfar_priv_tx_q
*tx_queue
= NULL
;
1966 struct netdev_queue
*txq
;
1967 struct gfar __iomem
*regs
= NULL
;
1968 struct txfcb
*fcb
= NULL
;
1969 struct txbd8
*txbdp
, *txbdp_start
, *base
, *txbdp_tstamp
= NULL
;
1971 int i
, rq
= 0, do_tstamp
= 0;
1973 unsigned long flags
;
1974 unsigned int nr_frags
, nr_txbds
, length
;
1975 union skb_shared_tx
*shtx
;
1977 rq
= skb
->queue_mapping
;
1978 tx_queue
= priv
->tx_queue
[rq
];
1979 txq
= netdev_get_tx_queue(dev
, rq
);
1980 base
= tx_queue
->tx_bd_base
;
1981 regs
= tx_queue
->grp
->regs
;
1984 /* check if time stamp should be generated */
1985 if (unlikely(shtx
->hardware
&& priv
->hwts_tx_en
))
1988 /* make space for additional header when fcb is needed */
1989 if (((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
1990 (priv
->vlgrp
&& vlan_tx_tag_present(skb
)) ||
1991 unlikely(do_tstamp
)) &&
1992 (skb_headroom(skb
) < GMAC_FCB_LEN
)) {
1993 struct sk_buff
*skb_new
;
1995 skb_new
= skb_realloc_headroom(skb
, GMAC_FCB_LEN
);
1997 dev
->stats
.tx_errors
++;
1999 return NETDEV_TX_OK
;
2005 /* total number of fragments in the SKB */
2006 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2008 /* calculate the required number of TxBDs for this skb */
2009 if (unlikely(do_tstamp
))
2010 nr_txbds
= nr_frags
+ 2;
2012 nr_txbds
= nr_frags
+ 1;
2014 /* check if there is space to queue this packet */
2015 if (nr_txbds
> tx_queue
->num_txbdfree
) {
2016 /* no space, stop the queue */
2017 netif_tx_stop_queue(txq
);
2018 dev
->stats
.tx_fifo_errors
++;
2019 return NETDEV_TX_BUSY
;
2022 /* Update transmit stats */
2023 txq
->tx_bytes
+= skb
->len
;
2026 txbdp
= txbdp_start
= tx_queue
->cur_tx
;
2027 lstatus
= txbdp
->lstatus
;
2029 /* Time stamp insertion requires one additional TxBD */
2030 if (unlikely(do_tstamp
))
2031 txbdp_tstamp
= txbdp
= next_txbd(txbdp
, base
,
2032 tx_queue
->tx_ring_size
);
2034 if (nr_frags
== 0) {
2035 if (unlikely(do_tstamp
))
2036 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_LAST
|
2039 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2041 /* Place the fragment addresses and lengths into the TxBDs */
2042 for (i
= 0; i
< nr_frags
; i
++) {
2043 /* Point at the next BD, wrapping as needed */
2044 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2046 length
= skb_shinfo(skb
)->frags
[i
].size
;
2048 lstatus
= txbdp
->lstatus
| length
|
2049 BD_LFLAG(TXBD_READY
);
2051 /* Handle the last BD specially */
2052 if (i
== nr_frags
- 1)
2053 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2055 bufaddr
= dma_map_page(&priv
->ofdev
->dev
,
2056 skb_shinfo(skb
)->frags
[i
].page
,
2057 skb_shinfo(skb
)->frags
[i
].page_offset
,
2061 /* set the TxBD length and buffer pointer */
2062 txbdp
->bufPtr
= bufaddr
;
2063 txbdp
->lstatus
= lstatus
;
2066 lstatus
= txbdp_start
->lstatus
;
2069 /* Set up checksumming */
2070 if (CHECKSUM_PARTIAL
== skb
->ip_summed
) {
2071 fcb
= gfar_add_fcb(skb
);
2072 lstatus
|= BD_LFLAG(TXBD_TOE
);
2073 gfar_tx_checksum(skb
, fcb
);
2076 if (priv
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2077 if (unlikely(NULL
== fcb
)) {
2078 fcb
= gfar_add_fcb(skb
);
2079 lstatus
|= BD_LFLAG(TXBD_TOE
);
2082 gfar_tx_vlan(skb
, fcb
);
2085 /* Setup tx hardware time stamping if requested */
2086 if (unlikely(do_tstamp
)) {
2087 shtx
->in_progress
= 1;
2089 fcb
= gfar_add_fcb(skb
);
2091 lstatus
|= BD_LFLAG(TXBD_TOE
);
2094 txbdp_start
->bufPtr
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2095 skb_headlen(skb
), DMA_TO_DEVICE
);
2098 * If time stamping is requested one additional TxBD must be set up. The
2099 * first TxBD points to the FCB and must have a data length of
2100 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2101 * the full frame length.
2103 if (unlikely(do_tstamp
)) {
2104 txbdp_tstamp
->bufPtr
= txbdp_start
->bufPtr
+ GMAC_FCB_LEN
;
2105 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_READY
) |
2106 (skb_headlen(skb
) - GMAC_FCB_LEN
);
2107 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | GMAC_FCB_LEN
;
2109 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
2113 * We can work in parallel with gfar_clean_tx_ring(), except
2114 * when modifying num_txbdfree. Note that we didn't grab the lock
2115 * when we were reading the num_txbdfree and checking for available
2116 * space, that's because outside of this function it can only grow,
2117 * and once we've got needed space, it cannot suddenly disappear.
2119 * The lock also protects us from gfar_error(), which can modify
2120 * regs->tstat and thus retrigger the transfers, which is why we
2121 * also must grab the lock before setting ready bit for the first
2122 * to be transmitted BD.
2124 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2127 * The powerpc-specific eieio() is used, as wmb() has too strong
2128 * semantics (it requires synchronization between cacheable and
2129 * uncacheable mappings, which eieio doesn't provide and which we
2130 * don't need), thus requiring a more expensive sync instruction. At
2131 * some point, the set of architecture-independent barrier functions
2132 * should be expanded to include weaker barriers.
2136 txbdp_start
->lstatus
= lstatus
;
2138 eieio(); /* force lstatus write before tx_skbuff */
2140 tx_queue
->tx_skbuff
[tx_queue
->skb_curtx
] = skb
;
2142 /* Update the current skb pointer to the next entry we will use
2143 * (wrapping if necessary) */
2144 tx_queue
->skb_curtx
= (tx_queue
->skb_curtx
+ 1) &
2145 TX_RING_MOD_MASK(tx_queue
->tx_ring_size
);
2147 tx_queue
->cur_tx
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2149 /* reduce TxBD free count */
2150 tx_queue
->num_txbdfree
-= (nr_txbds
);
2152 /* If the next BD still needs to be cleaned up, then the bds
2153 are full. We need to tell the kernel to stop sending us stuff. */
2154 if (!tx_queue
->num_txbdfree
) {
2155 netif_tx_stop_queue(txq
);
2157 dev
->stats
.tx_fifo_errors
++;
2160 /* Tell the DMA to go go go */
2161 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
>> tx_queue
->qindex
);
2164 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2166 return NETDEV_TX_OK
;
2169 /* Stops the kernel queue, and halts the controller */
2170 static int gfar_close(struct net_device
*dev
)
2172 struct gfar_private
*priv
= netdev_priv(dev
);
2176 cancel_work_sync(&priv
->reset_task
);
2179 /* Disconnect from the PHY */
2180 phy_disconnect(priv
->phydev
);
2181 priv
->phydev
= NULL
;
2183 netif_tx_stop_all_queues(dev
);
2188 /* Changes the mac address if the controller is not running. */
2189 static int gfar_set_mac_address(struct net_device
*dev
)
2191 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
2197 /* Enables and disables VLAN insertion/extraction */
2198 static void gfar_vlan_rx_register(struct net_device
*dev
,
2199 struct vlan_group
*grp
)
2201 struct gfar_private
*priv
= netdev_priv(dev
);
2202 struct gfar __iomem
*regs
= NULL
;
2203 unsigned long flags
;
2206 regs
= priv
->gfargrp
[0].regs
;
2207 local_irq_save(flags
);
2213 /* Enable VLAN tag insertion */
2214 tempval
= gfar_read(®s
->tctrl
);
2215 tempval
|= TCTRL_VLINS
;
2217 gfar_write(®s
->tctrl
, tempval
);
2219 /* Enable VLAN tag extraction */
2220 tempval
= gfar_read(®s
->rctrl
);
2221 tempval
|= (RCTRL_VLEX
| RCTRL_PRSDEP_INIT
);
2222 gfar_write(®s
->rctrl
, tempval
);
2224 /* Disable VLAN tag insertion */
2225 tempval
= gfar_read(®s
->tctrl
);
2226 tempval
&= ~TCTRL_VLINS
;
2227 gfar_write(®s
->tctrl
, tempval
);
2229 /* Disable VLAN tag extraction */
2230 tempval
= gfar_read(®s
->rctrl
);
2231 tempval
&= ~RCTRL_VLEX
;
2232 /* If parse is no longer required, then disable parser */
2233 if (tempval
& RCTRL_REQ_PARSER
)
2234 tempval
|= RCTRL_PRSDEP_INIT
;
2236 tempval
&= ~RCTRL_PRSDEP_INIT
;
2237 gfar_write(®s
->rctrl
, tempval
);
2240 gfar_change_mtu(dev
, dev
->mtu
);
2243 local_irq_restore(flags
);
2246 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
2248 int tempsize
, tempval
;
2249 struct gfar_private
*priv
= netdev_priv(dev
);
2250 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2251 int oldsize
= priv
->rx_buffer_size
;
2252 int frame_size
= new_mtu
+ ETH_HLEN
;
2255 frame_size
+= VLAN_HLEN
;
2257 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
2258 if (netif_msg_drv(priv
))
2259 printk(KERN_ERR
"%s: Invalid MTU setting\n",
2264 if (gfar_uses_fcb(priv
))
2265 frame_size
+= GMAC_FCB_LEN
;
2267 frame_size
+= priv
->padding
;
2270 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
2271 INCREMENTAL_BUFFER_SIZE
;
2273 /* Only stop and start the controller if it isn't already
2274 * stopped, and we changed something */
2275 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2278 priv
->rx_buffer_size
= tempsize
;
2282 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
2283 gfar_write(®s
->maxfrm
, priv
->rx_buffer_size
);
2285 /* If the mtu is larger than the max size for standard
2286 * ethernet frames (ie, a jumbo frame), then set maccfg2
2287 * to allow huge frames, and to check the length */
2288 tempval
= gfar_read(®s
->maccfg2
);
2290 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
2291 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2293 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2295 gfar_write(®s
->maccfg2
, tempval
);
2297 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2303 /* gfar_reset_task gets scheduled when a packet has not been
2304 * transmitted after a set amount of time.
2305 * For now, assume that clearing out all the structures, and
2306 * starting over will fix the problem.
2308 static void gfar_reset_task(struct work_struct
*work
)
2310 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
2312 struct net_device
*dev
= priv
->ndev
;
2314 if (dev
->flags
& IFF_UP
) {
2315 netif_tx_stop_all_queues(dev
);
2318 netif_tx_start_all_queues(dev
);
2321 netif_tx_schedule_all(dev
);
2324 static void gfar_timeout(struct net_device
*dev
)
2326 struct gfar_private
*priv
= netdev_priv(dev
);
2328 dev
->stats
.tx_errors
++;
2329 schedule_work(&priv
->reset_task
);
2332 /* Interrupt Handler for Transmit complete */
2333 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
)
2335 struct net_device
*dev
= tx_queue
->dev
;
2336 struct gfar_private
*priv
= netdev_priv(dev
);
2337 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2338 struct txbd8
*bdp
, *next
= NULL
;
2339 struct txbd8
*lbdp
= NULL
;
2340 struct txbd8
*base
= tx_queue
->tx_bd_base
;
2341 struct sk_buff
*skb
;
2343 int tx_ring_size
= tx_queue
->tx_ring_size
;
2344 int frags
= 0, nr_txbds
= 0;
2349 union skb_shared_tx
*shtx
;
2351 rx_queue
= priv
->rx_queue
[tx_queue
->qindex
];
2352 bdp
= tx_queue
->dirty_tx
;
2353 skb_dirtytx
= tx_queue
->skb_dirtytx
;
2355 while ((skb
= tx_queue
->tx_skbuff
[skb_dirtytx
])) {
2356 unsigned long flags
;
2358 frags
= skb_shinfo(skb
)->nr_frags
;
2361 * When time stamping, one additional TxBD must be freed.
2362 * Also, we need to dma_unmap_single() the TxPAL.
2365 if (unlikely(shtx
->in_progress
))
2366 nr_txbds
= frags
+ 2;
2368 nr_txbds
= frags
+ 1;
2370 lbdp
= skip_txbd(bdp
, nr_txbds
- 1, base
, tx_ring_size
);
2372 lstatus
= lbdp
->lstatus
;
2374 /* Only clean completed frames */
2375 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
2376 (lstatus
& BD_LENGTH_MASK
))
2379 if (unlikely(shtx
->in_progress
)) {
2380 next
= next_txbd(bdp
, base
, tx_ring_size
);
2381 buflen
= next
->length
+ GMAC_FCB_LEN
;
2383 buflen
= bdp
->length
;
2385 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2386 buflen
, DMA_TO_DEVICE
);
2388 if (unlikely(shtx
->in_progress
)) {
2389 struct skb_shared_hwtstamps shhwtstamps
;
2390 u64
*ns
= (u64
*) (((u32
)skb
->data
+ 0x10) & ~0x7);
2391 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
2392 shhwtstamps
.hwtstamp
= ns_to_ktime(*ns
);
2393 skb_tstamp_tx(skb
, &shhwtstamps
);
2394 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2398 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2399 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2401 for (i
= 0; i
< frags
; i
++) {
2402 dma_unmap_page(&priv
->ofdev
->dev
,
2406 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2407 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2411 * If there's room in the queue (limit it to rx_buffer_size)
2412 * we add this skb back into the pool, if it's the right size
2414 if (skb_queue_len(&priv
->rx_recycle
) < rx_queue
->rx_ring_size
&&
2415 skb_recycle_check(skb
, priv
->rx_buffer_size
+
2417 __skb_queue_head(&priv
->rx_recycle
, skb
);
2419 dev_kfree_skb_any(skb
);
2421 tx_queue
->tx_skbuff
[skb_dirtytx
] = NULL
;
2423 skb_dirtytx
= (skb_dirtytx
+ 1) &
2424 TX_RING_MOD_MASK(tx_ring_size
);
2427 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2428 tx_queue
->num_txbdfree
+= nr_txbds
;
2429 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2432 /* If we freed a buffer, we can restart transmission, if necessary */
2433 if (__netif_subqueue_stopped(dev
, tx_queue
->qindex
) && tx_queue
->num_txbdfree
)
2434 netif_wake_subqueue(dev
, tx_queue
->qindex
);
2436 /* Update dirty indicators */
2437 tx_queue
->skb_dirtytx
= skb_dirtytx
;
2438 tx_queue
->dirty_tx
= bdp
;
2443 static void gfar_schedule_cleanup(struct gfar_priv_grp
*gfargrp
)
2445 unsigned long flags
;
2447 spin_lock_irqsave(&gfargrp
->grplock
, flags
);
2448 if (napi_schedule_prep(&gfargrp
->napi
)) {
2449 gfar_write(&gfargrp
->regs
->imask
, IMASK_RTX_DISABLED
);
2450 __napi_schedule(&gfargrp
->napi
);
2453 * Clear IEVENT, so interrupts aren't called again
2454 * because of the packets that have already arrived.
2456 gfar_write(&gfargrp
->regs
->ievent
, IEVENT_RTX_MASK
);
2458 spin_unlock_irqrestore(&gfargrp
->grplock
, flags
);
2462 /* Interrupt Handler for Transmit complete */
2463 static irqreturn_t
gfar_transmit(int irq
, void *grp_id
)
2465 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2469 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
2470 struct sk_buff
*skb
)
2472 struct net_device
*dev
= rx_queue
->dev
;
2473 struct gfar_private
*priv
= netdev_priv(dev
);
2476 buf
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2477 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2478 gfar_init_rxbdp(rx_queue
, bdp
, buf
);
2482 struct sk_buff
* gfar_new_skb(struct net_device
*dev
)
2484 unsigned int alignamount
;
2485 struct gfar_private
*priv
= netdev_priv(dev
);
2486 struct sk_buff
*skb
= NULL
;
2488 skb
= __skb_dequeue(&priv
->rx_recycle
);
2490 skb
= netdev_alloc_skb(dev
,
2491 priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
2496 alignamount
= RXBUF_ALIGNMENT
-
2497 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
2499 /* We need the data buffer to be aligned properly. We will reserve
2500 * as many bytes as needed to align the data properly
2502 skb_reserve(skb
, alignamount
);
2503 GFAR_CB(skb
)->alignamount
= alignamount
;
2508 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
2510 struct gfar_private
*priv
= netdev_priv(dev
);
2511 struct net_device_stats
*stats
= &dev
->stats
;
2512 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
2514 /* If the packet was truncated, none of the other errors
2516 if (status
& RXBD_TRUNCATED
) {
2517 stats
->rx_length_errors
++;
2523 /* Count the errors, if there were any */
2524 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
2525 stats
->rx_length_errors
++;
2527 if (status
& RXBD_LARGE
)
2532 if (status
& RXBD_NONOCTET
) {
2533 stats
->rx_frame_errors
++;
2534 estats
->rx_nonoctet
++;
2536 if (status
& RXBD_CRCERR
) {
2537 estats
->rx_crcerr
++;
2538 stats
->rx_crc_errors
++;
2540 if (status
& RXBD_OVERRUN
) {
2541 estats
->rx_overrun
++;
2542 stats
->rx_crc_errors
++;
2546 irqreturn_t
gfar_receive(int irq
, void *grp_id
)
2548 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2552 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
2554 /* If valid headers were found, and valid sums
2555 * were verified, then we tell the kernel that no
2556 * checksumming is necessary. Otherwise, it is */
2557 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
2558 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2560 skb
->ip_summed
= CHECKSUM_NONE
;
2564 /* gfar_process_frame() -- handle one incoming packet if skb
2566 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
2569 struct gfar_private
*priv
= netdev_priv(dev
);
2570 struct rxfcb
*fcb
= NULL
;
2574 /* fcb is at the beginning if exists */
2575 fcb
= (struct rxfcb
*)skb
->data
;
2577 /* Remove the FCB from the skb */
2578 /* Remove the padded bytes, if there are any */
2580 skb_record_rx_queue(skb
, fcb
->rq
);
2581 skb_pull(skb
, amount_pull
);
2584 /* Get receive timestamp from the skb */
2585 if (priv
->hwts_rx_en
) {
2586 struct skb_shared_hwtstamps
*shhwtstamps
= skb_hwtstamps(skb
);
2587 u64
*ns
= (u64
*) skb
->data
;
2588 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
2589 shhwtstamps
->hwtstamp
= ns_to_ktime(*ns
);
2593 skb_pull(skb
, priv
->padding
);
2595 if (priv
->rx_csum_enable
)
2596 gfar_rx_checksum(skb
, fcb
);
2598 /* Tell the skb what kind of packet this is */
2599 skb
->protocol
= eth_type_trans(skb
, dev
);
2601 /* Send the packet up the stack */
2602 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
2603 ret
= vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
, fcb
->vlctl
);
2605 ret
= netif_receive_skb(skb
);
2607 if (NET_RX_DROP
== ret
)
2608 priv
->extra_stats
.kernel_dropped
++;
2613 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2614 * until the budget/quota has been reached. Returns the number
2617 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
)
2619 struct net_device
*dev
= rx_queue
->dev
;
2620 struct rxbd8
*bdp
, *base
;
2621 struct sk_buff
*skb
;
2625 struct gfar_private
*priv
= netdev_priv(dev
);
2627 /* Get the first full descriptor */
2628 bdp
= rx_queue
->cur_rx
;
2629 base
= rx_queue
->rx_bd_base
;
2631 amount_pull
= (gfar_uses_fcb(priv
) ? GMAC_FCB_LEN
: 0);
2633 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
2634 struct sk_buff
*newskb
;
2637 /* Add another skb for the future */
2638 newskb
= gfar_new_skb(dev
);
2640 skb
= rx_queue
->rx_skbuff
[rx_queue
->skb_currx
];
2642 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2643 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2645 /* We drop the frame if we failed to allocate a new buffer */
2646 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
2647 bdp
->status
& RXBD_ERR
)) {
2648 count_errors(bdp
->status
, dev
);
2650 if (unlikely(!newskb
))
2654 * We need to un-reserve() the skb to what it
2655 * was before gfar_new_skb() re-aligned
2656 * it to an RXBUF_ALIGNMENT boundary
2657 * before we put the skb back on the
2660 skb_reserve(skb
, -GFAR_CB(skb
)->alignamount
);
2661 __skb_queue_head(&priv
->rx_recycle
, skb
);
2664 /* Increment the number of packets */
2665 rx_queue
->stats
.rx_packets
++;
2669 pkt_len
= bdp
->length
- ETH_FCS_LEN
;
2670 /* Remove the FCS from the packet length */
2671 skb_put(skb
, pkt_len
);
2672 rx_queue
->stats
.rx_bytes
+= pkt_len
;
2673 skb_record_rx_queue(skb
, rx_queue
->qindex
);
2674 gfar_process_frame(dev
, skb
, amount_pull
);
2677 if (netif_msg_rx_err(priv
))
2679 "%s: Missing skb!\n", dev
->name
);
2680 rx_queue
->stats
.rx_dropped
++;
2681 priv
->extra_stats
.rx_skbmissing
++;
2686 rx_queue
->rx_skbuff
[rx_queue
->skb_currx
] = newskb
;
2688 /* Setup the new bdp */
2689 gfar_new_rxbdp(rx_queue
, bdp
, newskb
);
2691 /* Update to the next pointer */
2692 bdp
= next_bd(bdp
, base
, rx_queue
->rx_ring_size
);
2694 /* update to point at the next skb */
2695 rx_queue
->skb_currx
=
2696 (rx_queue
->skb_currx
+ 1) &
2697 RX_RING_MOD_MASK(rx_queue
->rx_ring_size
);
2700 /* Update the current rxbd pointer to be the next one */
2701 rx_queue
->cur_rx
= bdp
;
2706 static int gfar_poll(struct napi_struct
*napi
, int budget
)
2708 struct gfar_priv_grp
*gfargrp
= container_of(napi
,
2709 struct gfar_priv_grp
, napi
);
2710 struct gfar_private
*priv
= gfargrp
->priv
;
2711 struct gfar __iomem
*regs
= gfargrp
->regs
;
2712 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2713 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2714 int rx_cleaned
= 0, budget_per_queue
= 0, rx_cleaned_per_queue
= 0;
2715 int tx_cleaned
= 0, i
, left_over_budget
= budget
;
2716 unsigned long serviced_queues
= 0;
2719 num_queues
= gfargrp
->num_rx_queues
;
2720 budget_per_queue
= budget
/num_queues
;
2722 /* Clear IEVENT, so interrupts aren't called again
2723 * because of the packets that have already arrived */
2724 gfar_write(®s
->ievent
, IEVENT_RTX_MASK
);
2726 while (num_queues
&& left_over_budget
) {
2728 budget_per_queue
= left_over_budget
/num_queues
;
2729 left_over_budget
= 0;
2731 for_each_set_bit(i
, &gfargrp
->rx_bit_map
, priv
->num_rx_queues
) {
2732 if (test_bit(i
, &serviced_queues
))
2734 rx_queue
= priv
->rx_queue
[i
];
2735 tx_queue
= priv
->tx_queue
[rx_queue
->qindex
];
2737 tx_cleaned
+= gfar_clean_tx_ring(tx_queue
);
2738 rx_cleaned_per_queue
= gfar_clean_rx_ring(rx_queue
,
2740 rx_cleaned
+= rx_cleaned_per_queue
;
2741 if(rx_cleaned_per_queue
< budget_per_queue
) {
2742 left_over_budget
= left_over_budget
+
2743 (budget_per_queue
- rx_cleaned_per_queue
);
2744 set_bit(i
, &serviced_queues
);
2753 if (rx_cleaned
< budget
) {
2754 napi_complete(napi
);
2756 /* Clear the halt bit in RSTAT */
2757 gfar_write(®s
->rstat
, gfargrp
->rstat
);
2759 gfar_write(®s
->imask
, IMASK_DEFAULT
);
2761 /* If we are coalescing interrupts, update the timer */
2762 /* Otherwise, clear it */
2763 gfar_configure_coalescing(priv
,
2764 gfargrp
->rx_bit_map
, gfargrp
->tx_bit_map
);
2770 #ifdef CONFIG_NET_POLL_CONTROLLER
2772 * Polling 'interrupt' - used by things like netconsole to send skbs
2773 * without having to re-enable interrupts. It's not called while
2774 * the interrupt routine is executing.
2776 static void gfar_netpoll(struct net_device
*dev
)
2778 struct gfar_private
*priv
= netdev_priv(dev
);
2781 /* If the device has multiple interrupts, run tx/rx */
2782 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2783 for (i
= 0; i
< priv
->num_grps
; i
++) {
2784 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2785 disable_irq(priv
->gfargrp
[i
].interruptReceive
);
2786 disable_irq(priv
->gfargrp
[i
].interruptError
);
2787 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2789 enable_irq(priv
->gfargrp
[i
].interruptError
);
2790 enable_irq(priv
->gfargrp
[i
].interruptReceive
);
2791 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2794 for (i
= 0; i
< priv
->num_grps
; i
++) {
2795 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2796 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2798 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2804 /* The interrupt handler for devices with one interrupt */
2805 static irqreturn_t
gfar_interrupt(int irq
, void *grp_id
)
2807 struct gfar_priv_grp
*gfargrp
= grp_id
;
2809 /* Save ievent for future reference */
2810 u32 events
= gfar_read(&gfargrp
->regs
->ievent
);
2812 /* Check for reception */
2813 if (events
& IEVENT_RX_MASK
)
2814 gfar_receive(irq
, grp_id
);
2816 /* Check for transmit completion */
2817 if (events
& IEVENT_TX_MASK
)
2818 gfar_transmit(irq
, grp_id
);
2820 /* Check for errors */
2821 if (events
& IEVENT_ERR_MASK
)
2822 gfar_error(irq
, grp_id
);
2827 /* Called every time the controller might need to be made
2828 * aware of new link state. The PHY code conveys this
2829 * information through variables in the phydev structure, and this
2830 * function converts those variables into the appropriate
2831 * register values, and can bring down the device if needed.
2833 static void adjust_link(struct net_device
*dev
)
2835 struct gfar_private
*priv
= netdev_priv(dev
);
2836 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2837 unsigned long flags
;
2838 struct phy_device
*phydev
= priv
->phydev
;
2841 local_irq_save(flags
);
2845 u32 tempval
= gfar_read(®s
->maccfg2
);
2846 u32 ecntrl
= gfar_read(®s
->ecntrl
);
2848 /* Now we make sure that we can be in full duplex mode.
2849 * If not, we operate in half-duplex mode. */
2850 if (phydev
->duplex
!= priv
->oldduplex
) {
2852 if (!(phydev
->duplex
))
2853 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
2855 tempval
|= MACCFG2_FULL_DUPLEX
;
2857 priv
->oldduplex
= phydev
->duplex
;
2860 if (phydev
->speed
!= priv
->oldspeed
) {
2862 switch (phydev
->speed
) {
2865 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
2867 ecntrl
&= ~(ECNTRL_R100
);
2872 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
2874 /* Reduced mode distinguishes
2875 * between 10 and 100 */
2876 if (phydev
->speed
== SPEED_100
)
2877 ecntrl
|= ECNTRL_R100
;
2879 ecntrl
&= ~(ECNTRL_R100
);
2882 if (netif_msg_link(priv
))
2884 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2885 dev
->name
, phydev
->speed
);
2889 priv
->oldspeed
= phydev
->speed
;
2892 gfar_write(®s
->maccfg2
, tempval
);
2893 gfar_write(®s
->ecntrl
, ecntrl
);
2895 if (!priv
->oldlink
) {
2899 } else if (priv
->oldlink
) {
2903 priv
->oldduplex
= -1;
2906 if (new_state
&& netif_msg_link(priv
))
2907 phy_print_status(phydev
);
2909 local_irq_restore(flags
);
2912 /* Update the hash table based on the current list of multicast
2913 * addresses we subscribe to. Also, change the promiscuity of
2914 * the device based on the flags (this function is called
2915 * whenever dev->flags is changed */
2916 static void gfar_set_multi(struct net_device
*dev
)
2918 struct netdev_hw_addr
*ha
;
2919 struct gfar_private
*priv
= netdev_priv(dev
);
2920 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2923 if (dev
->flags
& IFF_PROMISC
) {
2924 /* Set RCTRL to PROM */
2925 tempval
= gfar_read(®s
->rctrl
);
2926 tempval
|= RCTRL_PROM
;
2927 gfar_write(®s
->rctrl
, tempval
);
2929 /* Set RCTRL to not PROM */
2930 tempval
= gfar_read(®s
->rctrl
);
2931 tempval
&= ~(RCTRL_PROM
);
2932 gfar_write(®s
->rctrl
, tempval
);
2935 if (dev
->flags
& IFF_ALLMULTI
) {
2936 /* Set the hash to rx all multicast frames */
2937 gfar_write(®s
->igaddr0
, 0xffffffff);
2938 gfar_write(®s
->igaddr1
, 0xffffffff);
2939 gfar_write(®s
->igaddr2
, 0xffffffff);
2940 gfar_write(®s
->igaddr3
, 0xffffffff);
2941 gfar_write(®s
->igaddr4
, 0xffffffff);
2942 gfar_write(®s
->igaddr5
, 0xffffffff);
2943 gfar_write(®s
->igaddr6
, 0xffffffff);
2944 gfar_write(®s
->igaddr7
, 0xffffffff);
2945 gfar_write(®s
->gaddr0
, 0xffffffff);
2946 gfar_write(®s
->gaddr1
, 0xffffffff);
2947 gfar_write(®s
->gaddr2
, 0xffffffff);
2948 gfar_write(®s
->gaddr3
, 0xffffffff);
2949 gfar_write(®s
->gaddr4
, 0xffffffff);
2950 gfar_write(®s
->gaddr5
, 0xffffffff);
2951 gfar_write(®s
->gaddr6
, 0xffffffff);
2952 gfar_write(®s
->gaddr7
, 0xffffffff);
2957 /* zero out the hash */
2958 gfar_write(®s
->igaddr0
, 0x0);
2959 gfar_write(®s
->igaddr1
, 0x0);
2960 gfar_write(®s
->igaddr2
, 0x0);
2961 gfar_write(®s
->igaddr3
, 0x0);
2962 gfar_write(®s
->igaddr4
, 0x0);
2963 gfar_write(®s
->igaddr5
, 0x0);
2964 gfar_write(®s
->igaddr6
, 0x0);
2965 gfar_write(®s
->igaddr7
, 0x0);
2966 gfar_write(®s
->gaddr0
, 0x0);
2967 gfar_write(®s
->gaddr1
, 0x0);
2968 gfar_write(®s
->gaddr2
, 0x0);
2969 gfar_write(®s
->gaddr3
, 0x0);
2970 gfar_write(®s
->gaddr4
, 0x0);
2971 gfar_write(®s
->gaddr5
, 0x0);
2972 gfar_write(®s
->gaddr6
, 0x0);
2973 gfar_write(®s
->gaddr7
, 0x0);
2975 /* If we have extended hash tables, we need to
2976 * clear the exact match registers to prepare for
2978 if (priv
->extended_hash
) {
2979 em_num
= GFAR_EM_NUM
+ 1;
2980 gfar_clear_exact_match(dev
);
2987 if (netdev_mc_empty(dev
))
2990 /* Parse the list, and set the appropriate bits */
2991 netdev_for_each_mc_addr(ha
, dev
) {
2993 gfar_set_mac_for_addr(dev
, idx
, ha
->addr
);
2996 gfar_set_hash_for_addr(dev
, ha
->addr
);
3002 /* Clears each of the exact match registers to zero, so they
3003 * don't interfere with normal reception */
3004 static void gfar_clear_exact_match(struct net_device
*dev
)
3007 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
3009 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
3010 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
3013 /* Set the appropriate hash bit for the given addr */
3014 /* The algorithm works like so:
3015 * 1) Take the Destination Address (ie the multicast address), and
3016 * do a CRC on it (little endian), and reverse the bits of the
3018 * 2) Use the 8 most significant bits as a hash into a 256-entry
3019 * table. The table is controlled through 8 32-bit registers:
3020 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3021 * gaddr7. This means that the 3 most significant bits in the
3022 * hash index which gaddr register to use, and the 5 other bits
3023 * indicate which bit (assuming an IBM numbering scheme, which
3024 * for PowerPC (tm) is usually the case) in the register holds
3026 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
3029 struct gfar_private
*priv
= netdev_priv(dev
);
3030 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
3031 int width
= priv
->hash_width
;
3032 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
3033 u8 whichreg
= result
>> (32 - width
+ 5);
3034 u32 value
= (1 << (31-whichbit
));
3036 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
3038 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
3042 /* There are multiple MAC Address register pairs on some controllers
3043 * This function sets the numth pair to a given address
3045 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
3047 struct gfar_private
*priv
= netdev_priv(dev
);
3048 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3050 char tmpbuf
[MAC_ADDR_LEN
];
3052 u32 __iomem
*macptr
= ®s
->macstnaddr1
;
3056 /* Now copy it into the mac registers backwards, cuz */
3057 /* little endian is silly */
3058 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
3059 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
3061 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
3063 tempval
= *((u32
*) (tmpbuf
+ 4));
3065 gfar_write(macptr
+1, tempval
);
3068 /* GFAR error interrupt handler */
3069 static irqreturn_t
gfar_error(int irq
, void *grp_id
)
3071 struct gfar_priv_grp
*gfargrp
= grp_id
;
3072 struct gfar __iomem
*regs
= gfargrp
->regs
;
3073 struct gfar_private
*priv
= gfargrp
->priv
;
3074 struct net_device
*dev
= priv
->ndev
;
3076 /* Save ievent for future reference */
3077 u32 events
= gfar_read(®s
->ievent
);
3080 gfar_write(®s
->ievent
, events
& IEVENT_ERR_MASK
);
3082 /* Magic Packet is not an error. */
3083 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
3084 (events
& IEVENT_MAG
))
3085 events
&= ~IEVENT_MAG
;
3088 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
3089 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3090 dev
->name
, events
, gfar_read(®s
->imask
));
3092 /* Update the error counters */
3093 if (events
& IEVENT_TXE
) {
3094 dev
->stats
.tx_errors
++;
3096 if (events
& IEVENT_LC
)
3097 dev
->stats
.tx_window_errors
++;
3098 if (events
& IEVENT_CRL
)
3099 dev
->stats
.tx_aborted_errors
++;
3100 if (events
& IEVENT_XFUN
) {
3101 unsigned long flags
;
3103 if (netif_msg_tx_err(priv
))
3104 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
3105 "packet dropped.\n", dev
->name
);
3106 dev
->stats
.tx_dropped
++;
3107 priv
->extra_stats
.tx_underrun
++;
3109 local_irq_save(flags
);
3112 /* Reactivate the Tx Queues */
3113 gfar_write(®s
->tstat
, gfargrp
->tstat
);
3116 local_irq_restore(flags
);
3118 if (netif_msg_tx_err(priv
))
3119 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
3121 if (events
& IEVENT_BSY
) {
3122 dev
->stats
.rx_errors
++;
3123 priv
->extra_stats
.rx_bsy
++;
3125 gfar_receive(irq
, grp_id
);
3127 if (netif_msg_rx_err(priv
))
3128 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
3129 dev
->name
, gfar_read(®s
->rstat
));
3131 if (events
& IEVENT_BABR
) {
3132 dev
->stats
.rx_errors
++;
3133 priv
->extra_stats
.rx_babr
++;
3135 if (netif_msg_rx_err(priv
))
3136 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
3138 if (events
& IEVENT_EBERR
) {
3139 priv
->extra_stats
.eberr
++;
3140 if (netif_msg_rx_err(priv
))
3141 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
3143 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
3144 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
3146 if (events
& IEVENT_BABT
) {
3147 priv
->extra_stats
.tx_babt
++;
3148 if (netif_msg_tx_err(priv
))
3149 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
3154 static struct of_device_id gfar_match
[] =
3158 .compatible
= "gianfar",
3161 .compatible
= "fsl,etsec2",
3165 MODULE_DEVICE_TABLE(of
, gfar_match
);
3167 /* Structure for a device driver */
3168 static struct of_platform_driver gfar_driver
= {
3170 .name
= "fsl-gianfar",
3171 .owner
= THIS_MODULE
,
3173 .of_match_table
= gfar_match
,
3175 .probe
= gfar_probe
,
3176 .remove
= gfar_remove
,
3179 static int __init
gfar_init(void)
3181 return of_register_platform_driver(&gfar_driver
);
3184 static void __exit
gfar_exit(void)
3186 of_unregister_platform_driver(&gfar_driver
);
3189 module_init(gfar_init
);
3190 module_exit(gfar_exit
);