drm/i915: Set persistent-mode for ILK/SNB framebuffer compression
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
blob9df96bdc002ed15c01409e3f7aaf8dc7b7313fd3
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include "drmP.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "i915_trace.h"
39 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
43 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
46 static void intel_update_watermarks(struct drm_device *dev);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
62 typedef struct {
63 int min, max;
64 } intel_range_t;
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *);
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *best_clock);
86 static bool
87 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
88 int target, int refclk, intel_clock_t *best_clock);
90 static bool
91 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92 int target, int refclk, intel_clock_t *best_clock);
93 static bool
94 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *best_clock);
97 static inline u32 /* units of 100MHz */
98 intel_fdi_link_freq(struct drm_device *dev)
100 if (IS_GEN5(dev)) {
101 struct drm_i915_private *dev_priv = dev->dev_private;
102 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
103 } else
104 return 27;
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108 .dot = { .min = 25000, .max = 350000 },
109 .vco = { .min = 930000, .max = 1400000 },
110 .n = { .min = 3, .max = 16 },
111 .m = { .min = 96, .max = 140 },
112 .m1 = { .min = 18, .max = 26 },
113 .m2 = { .min = 6, .max = 16 },
114 .p = { .min = 4, .max = 128 },
115 .p1 = { .min = 2, .max = 33 },
116 .p2 = { .dot_limit = 165000,
117 .p2_slow = 4, .p2_fast = 2 },
118 .find_pll = intel_find_best_PLL,
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122 .dot = { .min = 25000, .max = 350000 },
123 .vco = { .min = 930000, .max = 1400000 },
124 .n = { .min = 3, .max = 16 },
125 .m = { .min = 96, .max = 140 },
126 .m1 = { .min = 18, .max = 26 },
127 .m2 = { .min = 6, .max = 16 },
128 .p = { .min = 4, .max = 128 },
129 .p1 = { .min = 1, .max = 6 },
130 .p2 = { .dot_limit = 165000,
131 .p2_slow = 14, .p2_fast = 7 },
132 .find_pll = intel_find_best_PLL,
135 static const intel_limit_t intel_limits_i9xx_sdvo = {
136 .dot = { .min = 20000, .max = 400000 },
137 .vco = { .min = 1400000, .max = 2800000 },
138 .n = { .min = 1, .max = 6 },
139 .m = { .min = 70, .max = 120 },
140 .m1 = { .min = 10, .max = 22 },
141 .m2 = { .min = 5, .max = 9 },
142 .p = { .min = 5, .max = 80 },
143 .p1 = { .min = 1, .max = 8 },
144 .p2 = { .dot_limit = 200000,
145 .p2_slow = 10, .p2_fast = 5 },
146 .find_pll = intel_find_best_PLL,
149 static const intel_limit_t intel_limits_i9xx_lvds = {
150 .dot = { .min = 20000, .max = 400000 },
151 .vco = { .min = 1400000, .max = 2800000 },
152 .n = { .min = 1, .max = 6 },
153 .m = { .min = 70, .max = 120 },
154 .m1 = { .min = 10, .max = 22 },
155 .m2 = { .min = 5, .max = 9 },
156 .p = { .min = 7, .max = 98 },
157 .p1 = { .min = 1, .max = 8 },
158 .p2 = { .dot_limit = 112000,
159 .p2_slow = 14, .p2_fast = 7 },
160 .find_pll = intel_find_best_PLL,
164 static const intel_limit_t intel_limits_g4x_sdvo = {
165 .dot = { .min = 25000, .max = 270000 },
166 .vco = { .min = 1750000, .max = 3500000},
167 .n = { .min = 1, .max = 4 },
168 .m = { .min = 104, .max = 138 },
169 .m1 = { .min = 17, .max = 23 },
170 .m2 = { .min = 5, .max = 11 },
171 .p = { .min = 10, .max = 30 },
172 .p1 = { .min = 1, .max = 3},
173 .p2 = { .dot_limit = 270000,
174 .p2_slow = 10,
175 .p2_fast = 10
177 .find_pll = intel_g4x_find_best_PLL,
180 static const intel_limit_t intel_limits_g4x_hdmi = {
181 .dot = { .min = 22000, .max = 400000 },
182 .vco = { .min = 1750000, .max = 3500000},
183 .n = { .min = 1, .max = 4 },
184 .m = { .min = 104, .max = 138 },
185 .m1 = { .min = 16, .max = 23 },
186 .m2 = { .min = 5, .max = 11 },
187 .p = { .min = 5, .max = 80 },
188 .p1 = { .min = 1, .max = 8},
189 .p2 = { .dot_limit = 165000,
190 .p2_slow = 10, .p2_fast = 5 },
191 .find_pll = intel_g4x_find_best_PLL,
194 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
195 .dot = { .min = 20000, .max = 115000 },
196 .vco = { .min = 1750000, .max = 3500000 },
197 .n = { .min = 1, .max = 3 },
198 .m = { .min = 104, .max = 138 },
199 .m1 = { .min = 17, .max = 23 },
200 .m2 = { .min = 5, .max = 11 },
201 .p = { .min = 28, .max = 112 },
202 .p1 = { .min = 2, .max = 8 },
203 .p2 = { .dot_limit = 0,
204 .p2_slow = 14, .p2_fast = 14
206 .find_pll = intel_g4x_find_best_PLL,
209 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
210 .dot = { .min = 80000, .max = 224000 },
211 .vco = { .min = 1750000, .max = 3500000 },
212 .n = { .min = 1, .max = 3 },
213 .m = { .min = 104, .max = 138 },
214 .m1 = { .min = 17, .max = 23 },
215 .m2 = { .min = 5, .max = 11 },
216 .p = { .min = 14, .max = 42 },
217 .p1 = { .min = 2, .max = 6 },
218 .p2 = { .dot_limit = 0,
219 .p2_slow = 7, .p2_fast = 7
221 .find_pll = intel_g4x_find_best_PLL,
224 static const intel_limit_t intel_limits_g4x_display_port = {
225 .dot = { .min = 161670, .max = 227000 },
226 .vco = { .min = 1750000, .max = 3500000},
227 .n = { .min = 1, .max = 2 },
228 .m = { .min = 97, .max = 108 },
229 .m1 = { .min = 0x10, .max = 0x12 },
230 .m2 = { .min = 0x05, .max = 0x06 },
231 .p = { .min = 10, .max = 20 },
232 .p1 = { .min = 1, .max = 2},
233 .p2 = { .dot_limit = 0,
234 .p2_slow = 10, .p2_fast = 10 },
235 .find_pll = intel_find_pll_g4x_dp,
238 static const intel_limit_t intel_limits_pineview_sdvo = {
239 .dot = { .min = 20000, .max = 400000},
240 .vco = { .min = 1700000, .max = 3500000 },
241 /* Pineview's Ncounter is a ring counter */
242 .n = { .min = 3, .max = 6 },
243 .m = { .min = 2, .max = 256 },
244 /* Pineview only has one combined m divider, which we treat as m2. */
245 .m1 = { .min = 0, .max = 0 },
246 .m2 = { .min = 0, .max = 254 },
247 .p = { .min = 5, .max = 80 },
248 .p1 = { .min = 1, .max = 8 },
249 .p2 = { .dot_limit = 200000,
250 .p2_slow = 10, .p2_fast = 5 },
251 .find_pll = intel_find_best_PLL,
254 static const intel_limit_t intel_limits_pineview_lvds = {
255 .dot = { .min = 20000, .max = 400000 },
256 .vco = { .min = 1700000, .max = 3500000 },
257 .n = { .min = 3, .max = 6 },
258 .m = { .min = 2, .max = 256 },
259 .m1 = { .min = 0, .max = 0 },
260 .m2 = { .min = 0, .max = 254 },
261 .p = { .min = 7, .max = 112 },
262 .p1 = { .min = 1, .max = 8 },
263 .p2 = { .dot_limit = 112000,
264 .p2_slow = 14, .p2_fast = 14 },
265 .find_pll = intel_find_best_PLL,
268 /* Ironlake / Sandybridge
270 * We calculate clock using (register_value + 2) for N/M1/M2, so here
271 * the range value for them is (actual_value - 2).
273 static const intel_limit_t intel_limits_ironlake_dac = {
274 .dot = { .min = 25000, .max = 350000 },
275 .vco = { .min = 1760000, .max = 3510000 },
276 .n = { .min = 1, .max = 5 },
277 .m = { .min = 79, .max = 127 },
278 .m1 = { .min = 12, .max = 22 },
279 .m2 = { .min = 5, .max = 9 },
280 .p = { .min = 5, .max = 80 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 225000,
283 .p2_slow = 10, .p2_fast = 5 },
284 .find_pll = intel_g4x_find_best_PLL,
287 static const intel_limit_t intel_limits_ironlake_single_lvds = {
288 .dot = { .min = 25000, .max = 350000 },
289 .vco = { .min = 1760000, .max = 3510000 },
290 .n = { .min = 1, .max = 3 },
291 .m = { .min = 79, .max = 118 },
292 .m1 = { .min = 12, .max = 22 },
293 .m2 = { .min = 5, .max = 9 },
294 .p = { .min = 28, .max = 112 },
295 .p1 = { .min = 2, .max = 8 },
296 .p2 = { .dot_limit = 225000,
297 .p2_slow = 14, .p2_fast = 14 },
298 .find_pll = intel_g4x_find_best_PLL,
301 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
302 .dot = { .min = 25000, .max = 350000 },
303 .vco = { .min = 1760000, .max = 3510000 },
304 .n = { .min = 1, .max = 3 },
305 .m = { .min = 79, .max = 127 },
306 .m1 = { .min = 12, .max = 22 },
307 .m2 = { .min = 5, .max = 9 },
308 .p = { .min = 14, .max = 56 },
309 .p1 = { .min = 2, .max = 8 },
310 .p2 = { .dot_limit = 225000,
311 .p2_slow = 7, .p2_fast = 7 },
312 .find_pll = intel_g4x_find_best_PLL,
315 /* LVDS 100mhz refclk limits. */
316 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 2 },
320 .m = { .min = 79, .max = 126 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2,.max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
327 .find_pll = intel_g4x_find_best_PLL,
330 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
331 .dot = { .min = 25000, .max = 350000 },
332 .vco = { .min = 1760000, .max = 3510000 },
333 .n = { .min = 1, .max = 3 },
334 .m = { .min = 79, .max = 126 },
335 .m1 = { .min = 12, .max = 22 },
336 .m2 = { .min = 5, .max = 9 },
337 .p = { .min = 14, .max = 42 },
338 .p1 = { .min = 2,.max = 6 },
339 .p2 = { .dot_limit = 225000,
340 .p2_slow = 7, .p2_fast = 7 },
341 .find_pll = intel_g4x_find_best_PLL,
344 static const intel_limit_t intel_limits_ironlake_display_port = {
345 .dot = { .min = 25000, .max = 350000 },
346 .vco = { .min = 1760000, .max = 3510000},
347 .n = { .min = 1, .max = 2 },
348 .m = { .min = 81, .max = 90 },
349 .m1 = { .min = 12, .max = 22 },
350 .m2 = { .min = 5, .max = 9 },
351 .p = { .min = 10, .max = 20 },
352 .p1 = { .min = 1, .max = 2},
353 .p2 = { .dot_limit = 0,
354 .p2_slow = 10, .p2_fast = 10 },
355 .find_pll = intel_find_pll_ironlake_dp,
358 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
359 int refclk)
361 struct drm_device *dev = crtc->dev;
362 struct drm_i915_private *dev_priv = dev->dev_private;
363 const intel_limit_t *limit;
365 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
366 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
367 LVDS_CLKB_POWER_UP) {
368 /* LVDS dual channel */
369 if (refclk == 100000)
370 limit = &intel_limits_ironlake_dual_lvds_100m;
371 else
372 limit = &intel_limits_ironlake_dual_lvds;
373 } else {
374 if (refclk == 100000)
375 limit = &intel_limits_ironlake_single_lvds_100m;
376 else
377 limit = &intel_limits_ironlake_single_lvds;
379 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
380 HAS_eDP)
381 limit = &intel_limits_ironlake_display_port;
382 else
383 limit = &intel_limits_ironlake_dac;
385 return limit;
388 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390 struct drm_device *dev = crtc->dev;
391 struct drm_i915_private *dev_priv = dev->dev_private;
392 const intel_limit_t *limit;
394 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
395 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
396 LVDS_CLKB_POWER_UP)
397 /* LVDS with dual channel */
398 limit = &intel_limits_g4x_dual_channel_lvds;
399 else
400 /* LVDS with dual channel */
401 limit = &intel_limits_g4x_single_channel_lvds;
402 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
403 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
404 limit = &intel_limits_g4x_hdmi;
405 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
406 limit = &intel_limits_g4x_sdvo;
407 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
408 limit = &intel_limits_g4x_display_port;
409 } else /* The option is for other outputs */
410 limit = &intel_limits_i9xx_sdvo;
412 return limit;
415 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
417 struct drm_device *dev = crtc->dev;
418 const intel_limit_t *limit;
420 if (HAS_PCH_SPLIT(dev))
421 limit = intel_ironlake_limit(crtc, refclk);
422 else if (IS_G4X(dev)) {
423 limit = intel_g4x_limit(crtc);
424 } else if (IS_PINEVIEW(dev)) {
425 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
426 limit = &intel_limits_pineview_lvds;
427 else
428 limit = &intel_limits_pineview_sdvo;
429 } else if (!IS_GEN2(dev)) {
430 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431 limit = &intel_limits_i9xx_lvds;
432 else
433 limit = &intel_limits_i9xx_sdvo;
434 } else {
435 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436 limit = &intel_limits_i8xx_lvds;
437 else
438 limit = &intel_limits_i8xx_dvo;
440 return limit;
443 /* m1 is reserved as 0 in Pineview, n is a ring counter */
444 static void pineview_clock(int refclk, intel_clock_t *clock)
446 clock->m = clock->m2 + 2;
447 clock->p = clock->p1 * clock->p2;
448 clock->vco = refclk * clock->m / clock->n;
449 clock->dot = clock->vco / clock->p;
452 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
454 if (IS_PINEVIEW(dev)) {
455 pineview_clock(refclk, clock);
456 return;
458 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
459 clock->p = clock->p1 * clock->p2;
460 clock->vco = refclk * clock->m / (clock->n + 2);
461 clock->dot = clock->vco / clock->p;
465 * Returns whether any output on the specified pipe is of the specified type
467 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
469 struct drm_device *dev = crtc->dev;
470 struct drm_mode_config *mode_config = &dev->mode_config;
471 struct intel_encoder *encoder;
473 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
474 if (encoder->base.crtc == crtc && encoder->type == type)
475 return true;
477 return false;
480 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
482 * Returns whether the given set of divisors are valid for a given refclk with
483 * the given connectors.
486 static bool intel_PLL_is_valid(struct drm_device *dev,
487 const intel_limit_t *limit,
488 const intel_clock_t *clock)
490 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
491 INTELPllInvalid ("p1 out of range\n");
492 if (clock->p < limit->p.min || limit->p.max < clock->p)
493 INTELPllInvalid ("p out of range\n");
494 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
495 INTELPllInvalid ("m2 out of range\n");
496 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
497 INTELPllInvalid ("m1 out of range\n");
498 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
499 INTELPllInvalid ("m1 <= m2\n");
500 if (clock->m < limit->m.min || limit->m.max < clock->m)
501 INTELPllInvalid ("m out of range\n");
502 if (clock->n < limit->n.min || limit->n.max < clock->n)
503 INTELPllInvalid ("n out of range\n");
504 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
505 INTELPllInvalid ("vco out of range\n");
506 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
507 * connector, etc., rather than just a single range.
509 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
510 INTELPllInvalid ("dot out of range\n");
512 return true;
515 static bool
516 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
517 int target, int refclk, intel_clock_t *best_clock)
520 struct drm_device *dev = crtc->dev;
521 struct drm_i915_private *dev_priv = dev->dev_private;
522 intel_clock_t clock;
523 int err = target;
525 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
526 (I915_READ(LVDS)) != 0) {
528 * For LVDS, if the panel is on, just rely on its current
529 * settings for dual-channel. We haven't figured out how to
530 * reliably set up different single/dual channel state, if we
531 * even can.
533 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
534 LVDS_CLKB_POWER_UP)
535 clock.p2 = limit->p2.p2_fast;
536 else
537 clock.p2 = limit->p2.p2_slow;
538 } else {
539 if (target < limit->p2.dot_limit)
540 clock.p2 = limit->p2.p2_slow;
541 else
542 clock.p2 = limit->p2.p2_fast;
545 memset (best_clock, 0, sizeof (*best_clock));
547 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
548 clock.m1++) {
549 for (clock.m2 = limit->m2.min;
550 clock.m2 <= limit->m2.max; clock.m2++) {
551 /* m1 is always 0 in Pineview */
552 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
553 break;
554 for (clock.n = limit->n.min;
555 clock.n <= limit->n.max; clock.n++) {
556 for (clock.p1 = limit->p1.min;
557 clock.p1 <= limit->p1.max; clock.p1++) {
558 int this_err;
560 intel_clock(dev, refclk, &clock);
561 if (!intel_PLL_is_valid(dev, limit,
562 &clock))
563 continue;
565 this_err = abs(clock.dot - target);
566 if (this_err < err) {
567 *best_clock = clock;
568 err = this_err;
575 return (err != target);
578 static bool
579 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
580 int target, int refclk, intel_clock_t *best_clock)
582 struct drm_device *dev = crtc->dev;
583 struct drm_i915_private *dev_priv = dev->dev_private;
584 intel_clock_t clock;
585 int max_n;
586 bool found;
587 /* approximately equals target * 0.00585 */
588 int err_most = (target >> 8) + (target >> 9);
589 found = false;
591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592 int lvds_reg;
594 if (HAS_PCH_SPLIT(dev))
595 lvds_reg = PCH_LVDS;
596 else
597 lvds_reg = LVDS;
598 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
599 LVDS_CLKB_POWER_UP)
600 clock.p2 = limit->p2.p2_fast;
601 else
602 clock.p2 = limit->p2.p2_slow;
603 } else {
604 if (target < limit->p2.dot_limit)
605 clock.p2 = limit->p2.p2_slow;
606 else
607 clock.p2 = limit->p2.p2_fast;
610 memset(best_clock, 0, sizeof(*best_clock));
611 max_n = limit->n.max;
612 /* based on hardware requirement, prefer smaller n to precision */
613 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
614 /* based on hardware requirement, prefere larger m1,m2 */
615 for (clock.m1 = limit->m1.max;
616 clock.m1 >= limit->m1.min; clock.m1--) {
617 for (clock.m2 = limit->m2.max;
618 clock.m2 >= limit->m2.min; clock.m2--) {
619 for (clock.p1 = limit->p1.max;
620 clock.p1 >= limit->p1.min; clock.p1--) {
621 int this_err;
623 intel_clock(dev, refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
628 this_err = abs(clock.dot - target);
629 if (this_err < err_most) {
630 *best_clock = clock;
631 err_most = this_err;
632 max_n = clock.n;
633 found = true;
639 return found;
642 static bool
643 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
644 int target, int refclk, intel_clock_t *best_clock)
646 struct drm_device *dev = crtc->dev;
647 intel_clock_t clock;
649 if (target < 200000) {
650 clock.n = 1;
651 clock.p1 = 2;
652 clock.p2 = 10;
653 clock.m1 = 12;
654 clock.m2 = 9;
655 } else {
656 clock.n = 2;
657 clock.p1 = 1;
658 clock.p2 = 10;
659 clock.m1 = 14;
660 clock.m2 = 8;
662 intel_clock(dev, refclk, &clock);
663 memcpy(best_clock, &clock, sizeof(intel_clock_t));
664 return true;
667 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
668 static bool
669 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
670 int target, int refclk, intel_clock_t *best_clock)
672 intel_clock_t clock;
673 if (target < 200000) {
674 clock.p1 = 2;
675 clock.p2 = 10;
676 clock.n = 2;
677 clock.m1 = 23;
678 clock.m2 = 8;
679 } else {
680 clock.p1 = 1;
681 clock.p2 = 10;
682 clock.n = 1;
683 clock.m1 = 14;
684 clock.m2 = 2;
686 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
687 clock.p = (clock.p1 * clock.p2);
688 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
689 clock.vco = 0;
690 memcpy(best_clock, &clock, sizeof(intel_clock_t));
691 return true;
695 * intel_wait_for_vblank - wait for vblank on a given pipe
696 * @dev: drm device
697 * @pipe: pipe to wait for
699 * Wait for vblank to occur on a given pipe. Needed for various bits of
700 * mode setting code.
702 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
704 struct drm_i915_private *dev_priv = dev->dev_private;
705 int pipestat_reg = PIPESTAT(pipe);
707 /* Clear existing vblank status. Note this will clear any other
708 * sticky status fields as well.
710 * This races with i915_driver_irq_handler() with the result
711 * that either function could miss a vblank event. Here it is not
712 * fatal, as we will either wait upon the next vblank interrupt or
713 * timeout. Generally speaking intel_wait_for_vblank() is only
714 * called during modeset at which time the GPU should be idle and
715 * should *not* be performing page flips and thus not waiting on
716 * vblanks...
717 * Currently, the result of us stealing a vblank from the irq
718 * handler is that a single frame will be skipped during swapbuffers.
720 I915_WRITE(pipestat_reg,
721 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
723 /* Wait for vblank interrupt bit to set */
724 if (wait_for(I915_READ(pipestat_reg) &
725 PIPE_VBLANK_INTERRUPT_STATUS,
726 50))
727 DRM_DEBUG_KMS("vblank wait timed out\n");
731 * intel_wait_for_pipe_off - wait for pipe to turn off
732 * @dev: drm device
733 * @pipe: pipe to wait for
735 * After disabling a pipe, we can't wait for vblank in the usual way,
736 * spinning on the vblank interrupt status bit, since we won't actually
737 * see an interrupt when the pipe is disabled.
739 * On Gen4 and above:
740 * wait for the pipe register state bit to turn off
742 * Otherwise:
743 * wait for the display line value to settle (it usually
744 * ends up stopping at the start of the next frame).
747 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
749 struct drm_i915_private *dev_priv = dev->dev_private;
751 if (INTEL_INFO(dev)->gen >= 4) {
752 int reg = PIPECONF(pipe);
754 /* Wait for the Pipe State to go off */
755 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
756 100))
757 DRM_DEBUG_KMS("pipe_off wait timed out\n");
758 } else {
759 u32 last_line;
760 int reg = PIPEDSL(pipe);
761 unsigned long timeout = jiffies + msecs_to_jiffies(100);
763 /* Wait for the display line to settle */
764 do {
765 last_line = I915_READ(reg) & DSL_LINEMASK;
766 mdelay(5);
767 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
768 time_after(timeout, jiffies));
769 if (time_after(jiffies, timeout))
770 DRM_DEBUG_KMS("pipe_off wait timed out\n");
774 static const char *state_string(bool enabled)
776 return enabled ? "on" : "off";
779 /* Only for pre-ILK configs */
780 static void assert_pll(struct drm_i915_private *dev_priv,
781 enum pipe pipe, bool state)
783 int reg;
784 u32 val;
785 bool cur_state;
787 reg = DPLL(pipe);
788 val = I915_READ(reg);
789 cur_state = !!(val & DPLL_VCO_ENABLE);
790 WARN(cur_state != state,
791 "PLL state assertion failure (expected %s, current %s)\n",
792 state_string(state), state_string(cur_state));
794 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
795 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
797 /* For ILK+ */
798 static void assert_pch_pll(struct drm_i915_private *dev_priv,
799 enum pipe pipe, bool state)
801 int reg;
802 u32 val;
803 bool cur_state;
805 reg = PCH_DPLL(pipe);
806 val = I915_READ(reg);
807 cur_state = !!(val & DPLL_VCO_ENABLE);
808 WARN(cur_state != state,
809 "PCH PLL state assertion failure (expected %s, current %s)\n",
810 state_string(state), state_string(cur_state));
812 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
813 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
815 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
816 enum pipe pipe, bool state)
818 int reg;
819 u32 val;
820 bool cur_state;
822 reg = FDI_TX_CTL(pipe);
823 val = I915_READ(reg);
824 cur_state = !!(val & FDI_TX_ENABLE);
825 WARN(cur_state != state,
826 "FDI TX state assertion failure (expected %s, current %s)\n",
827 state_string(state), state_string(cur_state));
829 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
830 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
832 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
833 enum pipe pipe, bool state)
835 int reg;
836 u32 val;
837 bool cur_state;
839 reg = FDI_RX_CTL(pipe);
840 val = I915_READ(reg);
841 cur_state = !!(val & FDI_RX_ENABLE);
842 WARN(cur_state != state,
843 "FDI RX state assertion failure (expected %s, current %s)\n",
844 state_string(state), state_string(cur_state));
846 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
847 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
849 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
850 enum pipe pipe)
852 int reg;
853 u32 val;
855 /* ILK FDI PLL is always enabled */
856 if (dev_priv->info->gen == 5)
857 return;
859 reg = FDI_TX_CTL(pipe);
860 val = I915_READ(reg);
861 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
864 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
865 enum pipe pipe)
867 int reg;
868 u32 val;
870 reg = FDI_RX_CTL(pipe);
871 val = I915_READ(reg);
872 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
875 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
876 enum pipe pipe)
878 int pp_reg, lvds_reg;
879 u32 val;
880 enum pipe panel_pipe = PIPE_A;
881 bool locked = locked;
883 if (HAS_PCH_SPLIT(dev_priv->dev)) {
884 pp_reg = PCH_PP_CONTROL;
885 lvds_reg = PCH_LVDS;
886 } else {
887 pp_reg = PP_CONTROL;
888 lvds_reg = LVDS;
891 val = I915_READ(pp_reg);
892 if (!(val & PANEL_POWER_ON) ||
893 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
894 locked = false;
896 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
897 panel_pipe = PIPE_B;
899 WARN(panel_pipe == pipe && locked,
900 "panel assertion failure, pipe %c regs locked\n",
901 pipe_name(pipe));
904 static void assert_pipe(struct drm_i915_private *dev_priv,
905 enum pipe pipe, bool state)
907 int reg;
908 u32 val;
909 bool cur_state;
911 reg = PIPECONF(pipe);
912 val = I915_READ(reg);
913 cur_state = !!(val & PIPECONF_ENABLE);
914 WARN(cur_state != state,
915 "pipe %c assertion failure (expected %s, current %s)\n",
916 pipe_name(pipe), state_string(state), state_string(cur_state));
918 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
919 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
921 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
922 enum plane plane)
924 int reg;
925 u32 val;
927 reg = DSPCNTR(plane);
928 val = I915_READ(reg);
929 WARN(!(val & DISPLAY_PLANE_ENABLE),
930 "plane %c assertion failure, should be active but is disabled\n",
931 plane_name(plane));
934 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
935 enum pipe pipe)
937 int reg, i;
938 u32 val;
939 int cur_pipe;
941 /* Planes are fixed to pipes on ILK+ */
942 if (HAS_PCH_SPLIT(dev_priv->dev))
943 return;
945 /* Need to check both planes against the pipe */
946 for (i = 0; i < 2; i++) {
947 reg = DSPCNTR(i);
948 val = I915_READ(reg);
949 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
950 DISPPLANE_SEL_PIPE_SHIFT;
951 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
952 "plane %c assertion failure, should be off on pipe %c but is still active\n",
953 plane_name(i), pipe_name(pipe));
957 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
959 u32 val;
960 bool enabled;
962 val = I915_READ(PCH_DREF_CONTROL);
963 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
964 DREF_SUPERSPREAD_SOURCE_MASK));
965 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
968 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
969 enum pipe pipe)
971 int reg;
972 u32 val;
973 bool enabled;
975 reg = TRANSCONF(pipe);
976 val = I915_READ(reg);
977 enabled = !!(val & TRANS_ENABLE);
978 WARN(enabled,
979 "transcoder assertion failed, should be off on pipe %c but is still active\n",
980 pipe_name(pipe));
983 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
984 enum pipe pipe, int reg)
986 u32 val = I915_READ(reg);
987 WARN(DP_PIPE_ENABLED(val, pipe),
988 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
989 reg, pipe_name(pipe));
992 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
993 enum pipe pipe, int reg)
995 u32 val = I915_READ(reg);
996 WARN(HDMI_PIPE_ENABLED(val, pipe),
997 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
998 reg, pipe_name(pipe));
1001 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1002 enum pipe pipe)
1004 int reg;
1005 u32 val;
1007 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1008 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1009 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1011 reg = PCH_ADPA;
1012 val = I915_READ(reg);
1013 WARN(ADPA_PIPE_ENABLED(val, pipe),
1014 "PCH VGA enabled on transcoder %c, should be disabled\n",
1015 pipe_name(pipe));
1017 reg = PCH_LVDS;
1018 val = I915_READ(reg);
1019 WARN(LVDS_PIPE_ENABLED(val, pipe),
1020 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1021 pipe_name(pipe));
1023 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1024 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1025 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1029 * intel_enable_pll - enable a PLL
1030 * @dev_priv: i915 private structure
1031 * @pipe: pipe PLL to enable
1033 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1034 * make sure the PLL reg is writable first though, since the panel write
1035 * protect mechanism may be enabled.
1037 * Note! This is for pre-ILK only.
1039 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1041 int reg;
1042 u32 val;
1044 /* No really, not for ILK+ */
1045 BUG_ON(dev_priv->info->gen >= 5);
1047 /* PLL is protected by panel, make sure we can write it */
1048 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1049 assert_panel_unlocked(dev_priv, pipe);
1051 reg = DPLL(pipe);
1052 val = I915_READ(reg);
1053 val |= DPLL_VCO_ENABLE;
1055 /* We do this three times for luck */
1056 I915_WRITE(reg, val);
1057 POSTING_READ(reg);
1058 udelay(150); /* wait for warmup */
1059 I915_WRITE(reg, val);
1060 POSTING_READ(reg);
1061 udelay(150); /* wait for warmup */
1062 I915_WRITE(reg, val);
1063 POSTING_READ(reg);
1064 udelay(150); /* wait for warmup */
1068 * intel_disable_pll - disable a PLL
1069 * @dev_priv: i915 private structure
1070 * @pipe: pipe PLL to disable
1072 * Disable the PLL for @pipe, making sure the pipe is off first.
1074 * Note! This is for pre-ILK only.
1076 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1078 int reg;
1079 u32 val;
1081 /* Don't disable pipe A or pipe A PLLs if needed */
1082 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1083 return;
1085 /* Make sure the pipe isn't still relying on us */
1086 assert_pipe_disabled(dev_priv, pipe);
1088 reg = DPLL(pipe);
1089 val = I915_READ(reg);
1090 val &= ~DPLL_VCO_ENABLE;
1091 I915_WRITE(reg, val);
1092 POSTING_READ(reg);
1096 * intel_enable_pch_pll - enable PCH PLL
1097 * @dev_priv: i915 private structure
1098 * @pipe: pipe PLL to enable
1100 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1101 * drives the transcoder clock.
1103 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1104 enum pipe pipe)
1106 int reg;
1107 u32 val;
1109 /* PCH only available on ILK+ */
1110 BUG_ON(dev_priv->info->gen < 5);
1112 /* PCH refclock must be enabled first */
1113 assert_pch_refclk_enabled(dev_priv);
1115 reg = PCH_DPLL(pipe);
1116 val = I915_READ(reg);
1117 val |= DPLL_VCO_ENABLE;
1118 I915_WRITE(reg, val);
1119 POSTING_READ(reg);
1120 udelay(200);
1123 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1124 enum pipe pipe)
1126 int reg;
1127 u32 val;
1129 /* PCH only available on ILK+ */
1130 BUG_ON(dev_priv->info->gen < 5);
1132 /* Make sure transcoder isn't still depending on us */
1133 assert_transcoder_disabled(dev_priv, pipe);
1135 reg = PCH_DPLL(pipe);
1136 val = I915_READ(reg);
1137 val &= ~DPLL_VCO_ENABLE;
1138 I915_WRITE(reg, val);
1139 POSTING_READ(reg);
1140 udelay(200);
1143 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1144 enum pipe pipe)
1146 int reg;
1147 u32 val;
1149 /* PCH only available on ILK+ */
1150 BUG_ON(dev_priv->info->gen < 5);
1152 /* Make sure PCH DPLL is enabled */
1153 assert_pch_pll_enabled(dev_priv, pipe);
1155 /* FDI must be feeding us bits for PCH ports */
1156 assert_fdi_tx_enabled(dev_priv, pipe);
1157 assert_fdi_rx_enabled(dev_priv, pipe);
1159 reg = TRANSCONF(pipe);
1160 val = I915_READ(reg);
1162 if (HAS_PCH_IBX(dev_priv->dev)) {
1164 * make the BPC in transcoder be consistent with
1165 * that in pipeconf reg.
1167 val &= ~PIPE_BPC_MASK;
1168 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1170 I915_WRITE(reg, val | TRANS_ENABLE);
1171 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1172 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1175 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1176 enum pipe pipe)
1178 int reg;
1179 u32 val;
1181 /* FDI relies on the transcoder */
1182 assert_fdi_tx_disabled(dev_priv, pipe);
1183 assert_fdi_rx_disabled(dev_priv, pipe);
1185 /* Ports must be off as well */
1186 assert_pch_ports_disabled(dev_priv, pipe);
1188 reg = TRANSCONF(pipe);
1189 val = I915_READ(reg);
1190 val &= ~TRANS_ENABLE;
1191 I915_WRITE(reg, val);
1192 /* wait for PCH transcoder off, transcoder state */
1193 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1194 DRM_ERROR("failed to disable transcoder\n");
1198 * intel_enable_pipe - enable a pipe, asserting requirements
1199 * @dev_priv: i915 private structure
1200 * @pipe: pipe to enable
1201 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1203 * Enable @pipe, making sure that various hardware specific requirements
1204 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1206 * @pipe should be %PIPE_A or %PIPE_B.
1208 * Will wait until the pipe is actually running (i.e. first vblank) before
1209 * returning.
1211 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1212 bool pch_port)
1214 int reg;
1215 u32 val;
1218 * A pipe without a PLL won't actually be able to drive bits from
1219 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1220 * need the check.
1222 if (!HAS_PCH_SPLIT(dev_priv->dev))
1223 assert_pll_enabled(dev_priv, pipe);
1224 else {
1225 if (pch_port) {
1226 /* if driving the PCH, we need FDI enabled */
1227 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1228 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1230 /* FIXME: assert CPU port conditions for SNB+ */
1233 reg = PIPECONF(pipe);
1234 val = I915_READ(reg);
1235 if (val & PIPECONF_ENABLE)
1236 return;
1238 I915_WRITE(reg, val | PIPECONF_ENABLE);
1239 intel_wait_for_vblank(dev_priv->dev, pipe);
1243 * intel_disable_pipe - disable a pipe, asserting requirements
1244 * @dev_priv: i915 private structure
1245 * @pipe: pipe to disable
1247 * Disable @pipe, making sure that various hardware specific requirements
1248 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1250 * @pipe should be %PIPE_A or %PIPE_B.
1252 * Will wait until the pipe has shut down before returning.
1254 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1255 enum pipe pipe)
1257 int reg;
1258 u32 val;
1261 * Make sure planes won't keep trying to pump pixels to us,
1262 * or we might hang the display.
1264 assert_planes_disabled(dev_priv, pipe);
1266 /* Don't disable pipe A or pipe A PLLs if needed */
1267 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1268 return;
1270 reg = PIPECONF(pipe);
1271 val = I915_READ(reg);
1272 if ((val & PIPECONF_ENABLE) == 0)
1273 return;
1275 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1276 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1280 * intel_enable_plane - enable a display plane on a given pipe
1281 * @dev_priv: i915 private structure
1282 * @plane: plane to enable
1283 * @pipe: pipe being fed
1285 * Enable @plane on @pipe, making sure that @pipe is running first.
1287 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1288 enum plane plane, enum pipe pipe)
1290 int reg;
1291 u32 val;
1293 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1294 assert_pipe_enabled(dev_priv, pipe);
1296 reg = DSPCNTR(plane);
1297 val = I915_READ(reg);
1298 if (val & DISPLAY_PLANE_ENABLE)
1299 return;
1301 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1302 intel_wait_for_vblank(dev_priv->dev, pipe);
1306 * Plane regs are double buffered, going from enabled->disabled needs a
1307 * trigger in order to latch. The display address reg provides this.
1309 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1310 enum plane plane)
1312 u32 reg = DSPADDR(plane);
1313 I915_WRITE(reg, I915_READ(reg));
1317 * intel_disable_plane - disable a display plane
1318 * @dev_priv: i915 private structure
1319 * @plane: plane to disable
1320 * @pipe: pipe consuming the data
1322 * Disable @plane; should be an independent operation.
1324 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1325 enum plane plane, enum pipe pipe)
1327 int reg;
1328 u32 val;
1330 reg = DSPCNTR(plane);
1331 val = I915_READ(reg);
1332 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1333 return;
1335 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1336 intel_flush_display_plane(dev_priv, plane);
1337 intel_wait_for_vblank(dev_priv->dev, pipe);
1340 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, int reg)
1343 u32 val = I915_READ(reg);
1344 if (DP_PIPE_ENABLED(val, pipe))
1345 I915_WRITE(reg, val & ~DP_PORT_EN);
1348 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1349 enum pipe pipe, int reg)
1351 u32 val = I915_READ(reg);
1352 if (HDMI_PIPE_ENABLED(val, pipe))
1353 I915_WRITE(reg, val & ~PORT_ENABLE);
1356 /* Disable any ports connected to this transcoder */
1357 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1358 enum pipe pipe)
1360 u32 reg, val;
1362 val = I915_READ(PCH_PP_CONTROL);
1363 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1365 disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1366 disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1367 disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1369 reg = PCH_ADPA;
1370 val = I915_READ(reg);
1371 if (ADPA_PIPE_ENABLED(val, pipe))
1372 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1374 reg = PCH_LVDS;
1375 val = I915_READ(reg);
1376 if (LVDS_PIPE_ENABLED(val, pipe)) {
1377 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1378 POSTING_READ(reg);
1379 udelay(100);
1382 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1383 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1384 disable_pch_hdmi(dev_priv, pipe, HDMID);
1387 static void i8xx_disable_fbc(struct drm_device *dev)
1389 struct drm_i915_private *dev_priv = dev->dev_private;
1390 u32 fbc_ctl;
1392 /* Disable compression */
1393 fbc_ctl = I915_READ(FBC_CONTROL);
1394 if ((fbc_ctl & FBC_CTL_EN) == 0)
1395 return;
1397 fbc_ctl &= ~FBC_CTL_EN;
1398 I915_WRITE(FBC_CONTROL, fbc_ctl);
1400 /* Wait for compressing bit to clear */
1401 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1402 DRM_DEBUG_KMS("FBC idle timed out\n");
1403 return;
1406 DRM_DEBUG_KMS("disabled FBC\n");
1409 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1411 struct drm_device *dev = crtc->dev;
1412 struct drm_i915_private *dev_priv = dev->dev_private;
1413 struct drm_framebuffer *fb = crtc->fb;
1414 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1415 struct drm_i915_gem_object *obj = intel_fb->obj;
1416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1417 int plane, i;
1418 u32 fbc_ctl, fbc_ctl2;
1420 if (fb->pitch == dev_priv->cfb_pitch &&
1421 obj->fence_reg == dev_priv->cfb_fence &&
1422 intel_crtc->plane == dev_priv->cfb_plane &&
1423 I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1424 return;
1426 i8xx_disable_fbc(dev);
1428 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1430 if (fb->pitch < dev_priv->cfb_pitch)
1431 dev_priv->cfb_pitch = fb->pitch;
1433 /* FBC_CTL wants 64B units */
1434 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1435 dev_priv->cfb_fence = obj->fence_reg;
1436 dev_priv->cfb_plane = intel_crtc->plane;
1437 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1439 /* Clear old tags */
1440 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1441 I915_WRITE(FBC_TAG + (i * 4), 0);
1443 /* Set it up... */
1444 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1445 fbc_ctl2 |= plane;
1446 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1447 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1449 /* enable it... */
1450 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1451 if (IS_I945GM(dev))
1452 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1453 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1454 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1455 fbc_ctl |= dev_priv->cfb_fence;
1456 I915_WRITE(FBC_CONTROL, fbc_ctl);
1458 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1459 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1462 static bool i8xx_fbc_enabled(struct drm_device *dev)
1464 struct drm_i915_private *dev_priv = dev->dev_private;
1466 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1469 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1471 struct drm_device *dev = crtc->dev;
1472 struct drm_i915_private *dev_priv = dev->dev_private;
1473 struct drm_framebuffer *fb = crtc->fb;
1474 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1475 struct drm_i915_gem_object *obj = intel_fb->obj;
1476 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1477 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1478 unsigned long stall_watermark = 200;
1479 u32 dpfc_ctl;
1481 dpfc_ctl = I915_READ(DPFC_CONTROL);
1482 if (dpfc_ctl & DPFC_CTL_EN) {
1483 if (dev_priv->cfb_fence == obj->fence_reg &&
1484 dev_priv->cfb_plane == intel_crtc->plane &&
1485 dev_priv->cfb_y == crtc->y)
1486 return;
1488 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1489 intel_wait_for_vblank(dev, intel_crtc->pipe);
1492 dev_priv->cfb_fence = obj->fence_reg;
1493 dev_priv->cfb_plane = intel_crtc->plane;
1494 dev_priv->cfb_y = crtc->y;
1496 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1497 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1498 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1500 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1501 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1502 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1503 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1505 /* enable it... */
1506 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1508 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1511 static void g4x_disable_fbc(struct drm_device *dev)
1513 struct drm_i915_private *dev_priv = dev->dev_private;
1514 u32 dpfc_ctl;
1516 /* Disable compression */
1517 dpfc_ctl = I915_READ(DPFC_CONTROL);
1518 if (dpfc_ctl & DPFC_CTL_EN) {
1519 dpfc_ctl &= ~DPFC_CTL_EN;
1520 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1522 DRM_DEBUG_KMS("disabled FBC\n");
1526 static bool g4x_fbc_enabled(struct drm_device *dev)
1528 struct drm_i915_private *dev_priv = dev->dev_private;
1530 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1533 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536 u32 blt_ecoskpd;
1538 /* Make sure blitter notifies FBC of writes */
1539 gen6_gt_force_wake_get(dev_priv);
1540 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1541 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1542 GEN6_BLITTER_LOCK_SHIFT;
1543 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1544 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1545 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1546 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1547 GEN6_BLITTER_LOCK_SHIFT);
1548 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1549 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1550 gen6_gt_force_wake_put(dev_priv);
1553 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1555 struct drm_device *dev = crtc->dev;
1556 struct drm_i915_private *dev_priv = dev->dev_private;
1557 struct drm_framebuffer *fb = crtc->fb;
1558 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1559 struct drm_i915_gem_object *obj = intel_fb->obj;
1560 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1561 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1562 unsigned long stall_watermark = 200;
1563 u32 dpfc_ctl;
1565 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1566 if (dpfc_ctl & DPFC_CTL_EN) {
1567 if (dev_priv->cfb_fence == obj->fence_reg &&
1568 dev_priv->cfb_plane == intel_crtc->plane &&
1569 dev_priv->cfb_offset == obj->gtt_offset &&
1570 dev_priv->cfb_y == crtc->y)
1571 return;
1573 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1574 intel_wait_for_vblank(dev, intel_crtc->pipe);
1577 dev_priv->cfb_fence = obj->fence_reg;
1578 dev_priv->cfb_plane = intel_crtc->plane;
1579 dev_priv->cfb_offset = obj->gtt_offset;
1580 dev_priv->cfb_y = crtc->y;
1582 dpfc_ctl &= DPFC_RESERVED;
1583 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1584 /* Set persistent mode for front-buffer rendering, ala X. */
1585 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1586 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1587 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1589 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1590 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1591 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1592 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1593 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1594 /* enable it... */
1595 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1597 if (IS_GEN6(dev)) {
1598 I915_WRITE(SNB_DPFC_CTL_SA,
1599 SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1600 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1601 sandybridge_blit_fbc_update(dev);
1604 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1607 static void ironlake_disable_fbc(struct drm_device *dev)
1609 struct drm_i915_private *dev_priv = dev->dev_private;
1610 u32 dpfc_ctl;
1612 /* Disable compression */
1613 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1614 if (dpfc_ctl & DPFC_CTL_EN) {
1615 dpfc_ctl &= ~DPFC_CTL_EN;
1616 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1618 DRM_DEBUG_KMS("disabled FBC\n");
1622 static bool ironlake_fbc_enabled(struct drm_device *dev)
1624 struct drm_i915_private *dev_priv = dev->dev_private;
1626 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1629 bool intel_fbc_enabled(struct drm_device *dev)
1631 struct drm_i915_private *dev_priv = dev->dev_private;
1633 if (!dev_priv->display.fbc_enabled)
1634 return false;
1636 return dev_priv->display.fbc_enabled(dev);
1639 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1641 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1643 if (!dev_priv->display.enable_fbc)
1644 return;
1646 dev_priv->display.enable_fbc(crtc, interval);
1649 void intel_disable_fbc(struct drm_device *dev)
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1653 if (!dev_priv->display.disable_fbc)
1654 return;
1656 dev_priv->display.disable_fbc(dev);
1660 * intel_update_fbc - enable/disable FBC as needed
1661 * @dev: the drm_device
1663 * Set up the framebuffer compression hardware at mode set time. We
1664 * enable it if possible:
1665 * - plane A only (on pre-965)
1666 * - no pixel mulitply/line duplication
1667 * - no alpha buffer discard
1668 * - no dual wide
1669 * - framebuffer <= 2048 in width, 1536 in height
1671 * We can't assume that any compression will take place (worst case),
1672 * so the compressed buffer has to be the same size as the uncompressed
1673 * one. It also must reside (along with the line length buffer) in
1674 * stolen memory.
1676 * We need to enable/disable FBC on a global basis.
1678 static void intel_update_fbc(struct drm_device *dev)
1680 struct drm_i915_private *dev_priv = dev->dev_private;
1681 struct drm_crtc *crtc = NULL, *tmp_crtc;
1682 struct intel_crtc *intel_crtc;
1683 struct drm_framebuffer *fb;
1684 struct intel_framebuffer *intel_fb;
1685 struct drm_i915_gem_object *obj;
1687 DRM_DEBUG_KMS("\n");
1689 if (!i915_powersave)
1690 return;
1692 if (!I915_HAS_FBC(dev))
1693 return;
1696 * If FBC is already on, we just have to verify that we can
1697 * keep it that way...
1698 * Need to disable if:
1699 * - more than one pipe is active
1700 * - changing FBC params (stride, fence, mode)
1701 * - new fb is too large to fit in compressed buffer
1702 * - going to an unsupported config (interlace, pixel multiply, etc.)
1704 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1705 if (tmp_crtc->enabled && tmp_crtc->fb) {
1706 if (crtc) {
1707 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1708 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1709 goto out_disable;
1711 crtc = tmp_crtc;
1715 if (!crtc || crtc->fb == NULL) {
1716 DRM_DEBUG_KMS("no output, disabling\n");
1717 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1718 goto out_disable;
1721 intel_crtc = to_intel_crtc(crtc);
1722 fb = crtc->fb;
1723 intel_fb = to_intel_framebuffer(fb);
1724 obj = intel_fb->obj;
1726 if (!i915_enable_fbc) {
1727 DRM_DEBUG_KMS("fbc disabled per module param (default off)\n");
1728 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1729 goto out_disable;
1731 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1732 DRM_DEBUG_KMS("framebuffer too large, disabling "
1733 "compression\n");
1734 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1735 goto out_disable;
1737 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1738 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1739 DRM_DEBUG_KMS("mode incompatible with compression, "
1740 "disabling\n");
1741 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1742 goto out_disable;
1744 if ((crtc->mode.hdisplay > 2048) ||
1745 (crtc->mode.vdisplay > 1536)) {
1746 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1747 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1748 goto out_disable;
1750 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1751 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1752 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1753 goto out_disable;
1756 /* The use of a CPU fence is mandatory in order to detect writes
1757 * by the CPU to the scanout and trigger updates to the FBC.
1759 if (obj->tiling_mode != I915_TILING_X ||
1760 obj->fence_reg == I915_FENCE_REG_NONE) {
1761 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1762 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1763 goto out_disable;
1766 /* If the kernel debugger is active, always disable compression */
1767 if (in_dbg_master())
1768 goto out_disable;
1770 intel_enable_fbc(crtc, 500);
1771 return;
1773 out_disable:
1774 /* Multiple disables should be harmless */
1775 if (intel_fbc_enabled(dev)) {
1776 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1777 intel_disable_fbc(dev);
1782 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1783 struct drm_i915_gem_object *obj,
1784 struct intel_ring_buffer *pipelined)
1786 struct drm_i915_private *dev_priv = dev->dev_private;
1787 u32 alignment;
1788 int ret;
1790 switch (obj->tiling_mode) {
1791 case I915_TILING_NONE:
1792 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1793 alignment = 128 * 1024;
1794 else if (INTEL_INFO(dev)->gen >= 4)
1795 alignment = 4 * 1024;
1796 else
1797 alignment = 64 * 1024;
1798 break;
1799 case I915_TILING_X:
1800 /* pin() will align the object as required by fence */
1801 alignment = 0;
1802 break;
1803 case I915_TILING_Y:
1804 /* FIXME: Is this true? */
1805 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1806 return -EINVAL;
1807 default:
1808 BUG();
1811 dev_priv->mm.interruptible = false;
1812 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1813 if (ret)
1814 goto err_interruptible;
1816 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1817 * fence, whereas 965+ only requires a fence if using
1818 * framebuffer compression. For simplicity, we always install
1819 * a fence as the cost is not that onerous.
1821 if (obj->tiling_mode != I915_TILING_NONE) {
1822 ret = i915_gem_object_get_fence(obj, pipelined);
1823 if (ret)
1824 goto err_unpin;
1827 dev_priv->mm.interruptible = true;
1828 return 0;
1830 err_unpin:
1831 i915_gem_object_unpin(obj);
1832 err_interruptible:
1833 dev_priv->mm.interruptible = true;
1834 return ret;
1837 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1838 int x, int y)
1840 struct drm_device *dev = crtc->dev;
1841 struct drm_i915_private *dev_priv = dev->dev_private;
1842 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1843 struct intel_framebuffer *intel_fb;
1844 struct drm_i915_gem_object *obj;
1845 int plane = intel_crtc->plane;
1846 unsigned long Start, Offset;
1847 u32 dspcntr;
1848 u32 reg;
1850 switch (plane) {
1851 case 0:
1852 case 1:
1853 break;
1854 default:
1855 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1856 return -EINVAL;
1859 intel_fb = to_intel_framebuffer(fb);
1860 obj = intel_fb->obj;
1862 reg = DSPCNTR(plane);
1863 dspcntr = I915_READ(reg);
1864 /* Mask out pixel format bits in case we change it */
1865 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1866 switch (fb->bits_per_pixel) {
1867 case 8:
1868 dspcntr |= DISPPLANE_8BPP;
1869 break;
1870 case 16:
1871 if (fb->depth == 15)
1872 dspcntr |= DISPPLANE_15_16BPP;
1873 else
1874 dspcntr |= DISPPLANE_16BPP;
1875 break;
1876 case 24:
1877 case 32:
1878 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1879 break;
1880 default:
1881 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1882 return -EINVAL;
1884 if (INTEL_INFO(dev)->gen >= 4) {
1885 if (obj->tiling_mode != I915_TILING_NONE)
1886 dspcntr |= DISPPLANE_TILED;
1887 else
1888 dspcntr &= ~DISPPLANE_TILED;
1891 I915_WRITE(reg, dspcntr);
1893 Start = obj->gtt_offset;
1894 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1896 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1897 Start, Offset, x, y, fb->pitch);
1898 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1899 if (INTEL_INFO(dev)->gen >= 4) {
1900 I915_WRITE(DSPSURF(plane), Start);
1901 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1902 I915_WRITE(DSPADDR(plane), Offset);
1903 } else
1904 I915_WRITE(DSPADDR(plane), Start + Offset);
1905 POSTING_READ(reg);
1907 return 0;
1910 static int ironlake_update_plane(struct drm_crtc *crtc,
1911 struct drm_framebuffer *fb, int x, int y)
1913 struct drm_device *dev = crtc->dev;
1914 struct drm_i915_private *dev_priv = dev->dev_private;
1915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1916 struct intel_framebuffer *intel_fb;
1917 struct drm_i915_gem_object *obj;
1918 int plane = intel_crtc->plane;
1919 unsigned long Start, Offset;
1920 u32 dspcntr;
1921 u32 reg;
1923 switch (plane) {
1924 case 0:
1925 case 1:
1926 break;
1927 default:
1928 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1929 return -EINVAL;
1932 intel_fb = to_intel_framebuffer(fb);
1933 obj = intel_fb->obj;
1935 reg = DSPCNTR(plane);
1936 dspcntr = I915_READ(reg);
1937 /* Mask out pixel format bits in case we change it */
1938 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1939 switch (fb->bits_per_pixel) {
1940 case 8:
1941 dspcntr |= DISPPLANE_8BPP;
1942 break;
1943 case 16:
1944 if (fb->depth != 16)
1945 return -EINVAL;
1947 dspcntr |= DISPPLANE_16BPP;
1948 break;
1949 case 24:
1950 case 32:
1951 if (fb->depth == 24)
1952 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1953 else if (fb->depth == 30)
1954 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1955 else
1956 return -EINVAL;
1957 break;
1958 default:
1959 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1960 return -EINVAL;
1963 if (obj->tiling_mode != I915_TILING_NONE)
1964 dspcntr |= DISPPLANE_TILED;
1965 else
1966 dspcntr &= ~DISPPLANE_TILED;
1968 /* must disable */
1969 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1971 I915_WRITE(reg, dspcntr);
1973 Start = obj->gtt_offset;
1974 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1976 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1977 Start, Offset, x, y, fb->pitch);
1978 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1979 I915_WRITE(DSPSURF(plane), Start);
1980 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1981 I915_WRITE(DSPADDR(plane), Offset);
1982 POSTING_READ(reg);
1984 return 0;
1987 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1988 static int
1989 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1990 int x, int y, enum mode_set_atomic state)
1992 struct drm_device *dev = crtc->dev;
1993 struct drm_i915_private *dev_priv = dev->dev_private;
1994 int ret;
1996 ret = dev_priv->display.update_plane(crtc, fb, x, y);
1997 if (ret)
1998 return ret;
2000 intel_update_fbc(dev);
2001 intel_increase_pllclock(crtc);
2003 return 0;
2006 static int
2007 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2008 struct drm_framebuffer *old_fb)
2010 struct drm_device *dev = crtc->dev;
2011 struct drm_i915_master_private *master_priv;
2012 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2013 int ret;
2015 /* no fb bound */
2016 if (!crtc->fb) {
2017 DRM_DEBUG_KMS("No FB bound\n");
2018 return 0;
2021 switch (intel_crtc->plane) {
2022 case 0:
2023 case 1:
2024 break;
2025 default:
2026 return -EINVAL;
2029 mutex_lock(&dev->struct_mutex);
2030 ret = intel_pin_and_fence_fb_obj(dev,
2031 to_intel_framebuffer(crtc->fb)->obj,
2032 NULL);
2033 if (ret != 0) {
2034 mutex_unlock(&dev->struct_mutex);
2035 return ret;
2038 if (old_fb) {
2039 struct drm_i915_private *dev_priv = dev->dev_private;
2040 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2042 wait_event(dev_priv->pending_flip_queue,
2043 atomic_read(&dev_priv->mm.wedged) ||
2044 atomic_read(&obj->pending_flip) == 0);
2046 /* Big Hammer, we also need to ensure that any pending
2047 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2048 * current scanout is retired before unpinning the old
2049 * framebuffer.
2051 * This should only fail upon a hung GPU, in which case we
2052 * can safely continue.
2054 ret = i915_gem_object_finish_gpu(obj);
2055 (void) ret;
2058 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2059 LEAVE_ATOMIC_MODE_SET);
2060 if (ret) {
2061 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2062 mutex_unlock(&dev->struct_mutex);
2063 return ret;
2066 if (old_fb) {
2067 intel_wait_for_vblank(dev, intel_crtc->pipe);
2068 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2071 mutex_unlock(&dev->struct_mutex);
2073 if (!dev->primary->master)
2074 return 0;
2076 master_priv = dev->primary->master->driver_priv;
2077 if (!master_priv->sarea_priv)
2078 return 0;
2080 if (intel_crtc->pipe) {
2081 master_priv->sarea_priv->pipeB_x = x;
2082 master_priv->sarea_priv->pipeB_y = y;
2083 } else {
2084 master_priv->sarea_priv->pipeA_x = x;
2085 master_priv->sarea_priv->pipeA_y = y;
2088 return 0;
2091 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2093 struct drm_device *dev = crtc->dev;
2094 struct drm_i915_private *dev_priv = dev->dev_private;
2095 u32 dpa_ctl;
2097 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2098 dpa_ctl = I915_READ(DP_A);
2099 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2101 if (clock < 200000) {
2102 u32 temp;
2103 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2104 /* workaround for 160Mhz:
2105 1) program 0x4600c bits 15:0 = 0x8124
2106 2) program 0x46010 bit 0 = 1
2107 3) program 0x46034 bit 24 = 1
2108 4) program 0x64000 bit 14 = 1
2110 temp = I915_READ(0x4600c);
2111 temp &= 0xffff0000;
2112 I915_WRITE(0x4600c, temp | 0x8124);
2114 temp = I915_READ(0x46010);
2115 I915_WRITE(0x46010, temp | 1);
2117 temp = I915_READ(0x46034);
2118 I915_WRITE(0x46034, temp | (1 << 24));
2119 } else {
2120 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2122 I915_WRITE(DP_A, dpa_ctl);
2124 POSTING_READ(DP_A);
2125 udelay(500);
2128 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2130 struct drm_device *dev = crtc->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133 int pipe = intel_crtc->pipe;
2134 u32 reg, temp;
2136 /* enable normal train */
2137 reg = FDI_TX_CTL(pipe);
2138 temp = I915_READ(reg);
2139 if (IS_IVYBRIDGE(dev)) {
2140 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2141 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2142 } else {
2143 temp &= ~FDI_LINK_TRAIN_NONE;
2144 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2146 I915_WRITE(reg, temp);
2148 reg = FDI_RX_CTL(pipe);
2149 temp = I915_READ(reg);
2150 if (HAS_PCH_CPT(dev)) {
2151 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2152 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2153 } else {
2154 temp &= ~FDI_LINK_TRAIN_NONE;
2155 temp |= FDI_LINK_TRAIN_NONE;
2157 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2159 /* wait one idle pattern time */
2160 POSTING_READ(reg);
2161 udelay(1000);
2163 /* IVB wants error correction enabled */
2164 if (IS_IVYBRIDGE(dev))
2165 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2166 FDI_FE_ERRC_ENABLE);
2169 /* The FDI link training functions for ILK/Ibexpeak. */
2170 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2172 struct drm_device *dev = crtc->dev;
2173 struct drm_i915_private *dev_priv = dev->dev_private;
2174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2175 int pipe = intel_crtc->pipe;
2176 int plane = intel_crtc->plane;
2177 u32 reg, temp, tries;
2179 /* FDI needs bits from pipe & plane first */
2180 assert_pipe_enabled(dev_priv, pipe);
2181 assert_plane_enabled(dev_priv, plane);
2183 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2184 for train result */
2185 reg = FDI_RX_IMR(pipe);
2186 temp = I915_READ(reg);
2187 temp &= ~FDI_RX_SYMBOL_LOCK;
2188 temp &= ~FDI_RX_BIT_LOCK;
2189 I915_WRITE(reg, temp);
2190 I915_READ(reg);
2191 udelay(150);
2193 /* enable CPU FDI TX and PCH FDI RX */
2194 reg = FDI_TX_CTL(pipe);
2195 temp = I915_READ(reg);
2196 temp &= ~(7 << 19);
2197 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2198 temp &= ~FDI_LINK_TRAIN_NONE;
2199 temp |= FDI_LINK_TRAIN_PATTERN_1;
2200 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2202 reg = FDI_RX_CTL(pipe);
2203 temp = I915_READ(reg);
2204 temp &= ~FDI_LINK_TRAIN_NONE;
2205 temp |= FDI_LINK_TRAIN_PATTERN_1;
2206 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2208 POSTING_READ(reg);
2209 udelay(150);
2211 /* Ironlake workaround, enable clock pointer after FDI enable*/
2212 if (HAS_PCH_IBX(dev)) {
2213 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2214 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2215 FDI_RX_PHASE_SYNC_POINTER_EN);
2218 reg = FDI_RX_IIR(pipe);
2219 for (tries = 0; tries < 5; tries++) {
2220 temp = I915_READ(reg);
2221 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2223 if ((temp & FDI_RX_BIT_LOCK)) {
2224 DRM_DEBUG_KMS("FDI train 1 done.\n");
2225 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2226 break;
2229 if (tries == 5)
2230 DRM_ERROR("FDI train 1 fail!\n");
2232 /* Train 2 */
2233 reg = FDI_TX_CTL(pipe);
2234 temp = I915_READ(reg);
2235 temp &= ~FDI_LINK_TRAIN_NONE;
2236 temp |= FDI_LINK_TRAIN_PATTERN_2;
2237 I915_WRITE(reg, temp);
2239 reg = FDI_RX_CTL(pipe);
2240 temp = I915_READ(reg);
2241 temp &= ~FDI_LINK_TRAIN_NONE;
2242 temp |= FDI_LINK_TRAIN_PATTERN_2;
2243 I915_WRITE(reg, temp);
2245 POSTING_READ(reg);
2246 udelay(150);
2248 reg = FDI_RX_IIR(pipe);
2249 for (tries = 0; tries < 5; tries++) {
2250 temp = I915_READ(reg);
2251 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2253 if (temp & FDI_RX_SYMBOL_LOCK) {
2254 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2255 DRM_DEBUG_KMS("FDI train 2 done.\n");
2256 break;
2259 if (tries == 5)
2260 DRM_ERROR("FDI train 2 fail!\n");
2262 DRM_DEBUG_KMS("FDI train done\n");
2266 static const int snb_b_fdi_train_param [] = {
2267 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2268 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2269 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2270 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2273 /* The FDI link training functions for SNB/Cougarpoint. */
2274 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2276 struct drm_device *dev = crtc->dev;
2277 struct drm_i915_private *dev_priv = dev->dev_private;
2278 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2279 int pipe = intel_crtc->pipe;
2280 u32 reg, temp, i;
2282 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2283 for train result */
2284 reg = FDI_RX_IMR(pipe);
2285 temp = I915_READ(reg);
2286 temp &= ~FDI_RX_SYMBOL_LOCK;
2287 temp &= ~FDI_RX_BIT_LOCK;
2288 I915_WRITE(reg, temp);
2290 POSTING_READ(reg);
2291 udelay(150);
2293 /* enable CPU FDI TX and PCH FDI RX */
2294 reg = FDI_TX_CTL(pipe);
2295 temp = I915_READ(reg);
2296 temp &= ~(7 << 19);
2297 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2298 temp &= ~FDI_LINK_TRAIN_NONE;
2299 temp |= FDI_LINK_TRAIN_PATTERN_1;
2300 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2301 /* SNB-B */
2302 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2303 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2305 reg = FDI_RX_CTL(pipe);
2306 temp = I915_READ(reg);
2307 if (HAS_PCH_CPT(dev)) {
2308 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2309 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2310 } else {
2311 temp &= ~FDI_LINK_TRAIN_NONE;
2312 temp |= FDI_LINK_TRAIN_PATTERN_1;
2314 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2316 POSTING_READ(reg);
2317 udelay(150);
2319 for (i = 0; i < 4; i++ ) {
2320 reg = FDI_TX_CTL(pipe);
2321 temp = I915_READ(reg);
2322 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2323 temp |= snb_b_fdi_train_param[i];
2324 I915_WRITE(reg, temp);
2326 POSTING_READ(reg);
2327 udelay(500);
2329 reg = FDI_RX_IIR(pipe);
2330 temp = I915_READ(reg);
2331 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2333 if (temp & FDI_RX_BIT_LOCK) {
2334 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2335 DRM_DEBUG_KMS("FDI train 1 done.\n");
2336 break;
2339 if (i == 4)
2340 DRM_ERROR("FDI train 1 fail!\n");
2342 /* Train 2 */
2343 reg = FDI_TX_CTL(pipe);
2344 temp = I915_READ(reg);
2345 temp &= ~FDI_LINK_TRAIN_NONE;
2346 temp |= FDI_LINK_TRAIN_PATTERN_2;
2347 if (IS_GEN6(dev)) {
2348 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2349 /* SNB-B */
2350 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2352 I915_WRITE(reg, temp);
2354 reg = FDI_RX_CTL(pipe);
2355 temp = I915_READ(reg);
2356 if (HAS_PCH_CPT(dev)) {
2357 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2358 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2359 } else {
2360 temp &= ~FDI_LINK_TRAIN_NONE;
2361 temp |= FDI_LINK_TRAIN_PATTERN_2;
2363 I915_WRITE(reg, temp);
2365 POSTING_READ(reg);
2366 udelay(150);
2368 for (i = 0; i < 4; i++ ) {
2369 reg = FDI_TX_CTL(pipe);
2370 temp = I915_READ(reg);
2371 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2372 temp |= snb_b_fdi_train_param[i];
2373 I915_WRITE(reg, temp);
2375 POSTING_READ(reg);
2376 udelay(500);
2378 reg = FDI_RX_IIR(pipe);
2379 temp = I915_READ(reg);
2380 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2382 if (temp & FDI_RX_SYMBOL_LOCK) {
2383 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2384 DRM_DEBUG_KMS("FDI train 2 done.\n");
2385 break;
2388 if (i == 4)
2389 DRM_ERROR("FDI train 2 fail!\n");
2391 DRM_DEBUG_KMS("FDI train done.\n");
2394 /* Manual link training for Ivy Bridge A0 parts */
2395 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2397 struct drm_device *dev = crtc->dev;
2398 struct drm_i915_private *dev_priv = dev->dev_private;
2399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2400 int pipe = intel_crtc->pipe;
2401 u32 reg, temp, i;
2403 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2404 for train result */
2405 reg = FDI_RX_IMR(pipe);
2406 temp = I915_READ(reg);
2407 temp &= ~FDI_RX_SYMBOL_LOCK;
2408 temp &= ~FDI_RX_BIT_LOCK;
2409 I915_WRITE(reg, temp);
2411 POSTING_READ(reg);
2412 udelay(150);
2414 /* enable CPU FDI TX and PCH FDI RX */
2415 reg = FDI_TX_CTL(pipe);
2416 temp = I915_READ(reg);
2417 temp &= ~(7 << 19);
2418 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2419 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2420 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2421 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2422 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2423 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2425 reg = FDI_RX_CTL(pipe);
2426 temp = I915_READ(reg);
2427 temp &= ~FDI_LINK_TRAIN_AUTO;
2428 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2429 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2430 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2432 POSTING_READ(reg);
2433 udelay(150);
2435 for (i = 0; i < 4; i++ ) {
2436 reg = FDI_TX_CTL(pipe);
2437 temp = I915_READ(reg);
2438 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2439 temp |= snb_b_fdi_train_param[i];
2440 I915_WRITE(reg, temp);
2442 POSTING_READ(reg);
2443 udelay(500);
2445 reg = FDI_RX_IIR(pipe);
2446 temp = I915_READ(reg);
2447 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2449 if (temp & FDI_RX_BIT_LOCK ||
2450 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2451 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2452 DRM_DEBUG_KMS("FDI train 1 done.\n");
2453 break;
2456 if (i == 4)
2457 DRM_ERROR("FDI train 1 fail!\n");
2459 /* Train 2 */
2460 reg = FDI_TX_CTL(pipe);
2461 temp = I915_READ(reg);
2462 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2463 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2464 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2465 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2466 I915_WRITE(reg, temp);
2468 reg = FDI_RX_CTL(pipe);
2469 temp = I915_READ(reg);
2470 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2471 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2472 I915_WRITE(reg, temp);
2474 POSTING_READ(reg);
2475 udelay(150);
2477 for (i = 0; i < 4; i++ ) {
2478 reg = FDI_TX_CTL(pipe);
2479 temp = I915_READ(reg);
2480 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2481 temp |= snb_b_fdi_train_param[i];
2482 I915_WRITE(reg, temp);
2484 POSTING_READ(reg);
2485 udelay(500);
2487 reg = FDI_RX_IIR(pipe);
2488 temp = I915_READ(reg);
2489 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2491 if (temp & FDI_RX_SYMBOL_LOCK) {
2492 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2493 DRM_DEBUG_KMS("FDI train 2 done.\n");
2494 break;
2497 if (i == 4)
2498 DRM_ERROR("FDI train 2 fail!\n");
2500 DRM_DEBUG_KMS("FDI train done.\n");
2503 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2505 struct drm_device *dev = crtc->dev;
2506 struct drm_i915_private *dev_priv = dev->dev_private;
2507 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2508 int pipe = intel_crtc->pipe;
2509 u32 reg, temp;
2511 /* Write the TU size bits so error detection works */
2512 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2513 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2515 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2516 reg = FDI_RX_CTL(pipe);
2517 temp = I915_READ(reg);
2518 temp &= ~((0x7 << 19) | (0x7 << 16));
2519 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2520 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2521 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2523 POSTING_READ(reg);
2524 udelay(200);
2526 /* Switch from Rawclk to PCDclk */
2527 temp = I915_READ(reg);
2528 I915_WRITE(reg, temp | FDI_PCDCLK);
2530 POSTING_READ(reg);
2531 udelay(200);
2533 /* Enable CPU FDI TX PLL, always on for Ironlake */
2534 reg = FDI_TX_CTL(pipe);
2535 temp = I915_READ(reg);
2536 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2537 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2539 POSTING_READ(reg);
2540 udelay(100);
2544 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2546 struct drm_device *dev = crtc->dev;
2547 struct drm_i915_private *dev_priv = dev->dev_private;
2548 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2549 int pipe = intel_crtc->pipe;
2550 u32 reg, temp;
2552 /* disable CPU FDI tx and PCH FDI rx */
2553 reg = FDI_TX_CTL(pipe);
2554 temp = I915_READ(reg);
2555 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2556 POSTING_READ(reg);
2558 reg = FDI_RX_CTL(pipe);
2559 temp = I915_READ(reg);
2560 temp &= ~(0x7 << 16);
2561 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2562 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2564 POSTING_READ(reg);
2565 udelay(100);
2567 /* Ironlake workaround, disable clock pointer after downing FDI */
2568 if (HAS_PCH_IBX(dev)) {
2569 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2570 I915_WRITE(FDI_RX_CHICKEN(pipe),
2571 I915_READ(FDI_RX_CHICKEN(pipe) &
2572 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2575 /* still set train pattern 1 */
2576 reg = FDI_TX_CTL(pipe);
2577 temp = I915_READ(reg);
2578 temp &= ~FDI_LINK_TRAIN_NONE;
2579 temp |= FDI_LINK_TRAIN_PATTERN_1;
2580 I915_WRITE(reg, temp);
2582 reg = FDI_RX_CTL(pipe);
2583 temp = I915_READ(reg);
2584 if (HAS_PCH_CPT(dev)) {
2585 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2586 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2587 } else {
2588 temp &= ~FDI_LINK_TRAIN_NONE;
2589 temp |= FDI_LINK_TRAIN_PATTERN_1;
2591 /* BPC in FDI rx is consistent with that in PIPECONF */
2592 temp &= ~(0x07 << 16);
2593 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2594 I915_WRITE(reg, temp);
2596 POSTING_READ(reg);
2597 udelay(100);
2601 * When we disable a pipe, we need to clear any pending scanline wait events
2602 * to avoid hanging the ring, which we assume we are waiting on.
2604 static void intel_clear_scanline_wait(struct drm_device *dev)
2606 struct drm_i915_private *dev_priv = dev->dev_private;
2607 struct intel_ring_buffer *ring;
2608 u32 tmp;
2610 if (IS_GEN2(dev))
2611 /* Can't break the hang on i8xx */
2612 return;
2614 ring = LP_RING(dev_priv);
2615 tmp = I915_READ_CTL(ring);
2616 if (tmp & RING_WAIT)
2617 I915_WRITE_CTL(ring, tmp);
2620 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2622 struct drm_i915_gem_object *obj;
2623 struct drm_i915_private *dev_priv;
2625 if (crtc->fb == NULL)
2626 return;
2628 obj = to_intel_framebuffer(crtc->fb)->obj;
2629 dev_priv = crtc->dev->dev_private;
2630 wait_event(dev_priv->pending_flip_queue,
2631 atomic_read(&obj->pending_flip) == 0);
2634 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2636 struct drm_device *dev = crtc->dev;
2637 struct drm_mode_config *mode_config = &dev->mode_config;
2638 struct intel_encoder *encoder;
2641 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2642 * must be driven by its own crtc; no sharing is possible.
2644 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2645 if (encoder->base.crtc != crtc)
2646 continue;
2648 switch (encoder->type) {
2649 case INTEL_OUTPUT_EDP:
2650 if (!intel_encoder_is_pch_edp(&encoder->base))
2651 return false;
2652 continue;
2656 return true;
2660 * Enable PCH resources required for PCH ports:
2661 * - PCH PLLs
2662 * - FDI training & RX/TX
2663 * - update transcoder timings
2664 * - DP transcoding bits
2665 * - transcoder
2667 static void ironlake_pch_enable(struct drm_crtc *crtc)
2669 struct drm_device *dev = crtc->dev;
2670 struct drm_i915_private *dev_priv = dev->dev_private;
2671 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2672 int pipe = intel_crtc->pipe;
2673 u32 reg, temp;
2675 /* For PCH output, training FDI link */
2676 dev_priv->display.fdi_link_train(crtc);
2678 intel_enable_pch_pll(dev_priv, pipe);
2680 if (HAS_PCH_CPT(dev)) {
2681 /* Be sure PCH DPLL SEL is set */
2682 temp = I915_READ(PCH_DPLL_SEL);
2683 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2684 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2685 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2686 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2687 I915_WRITE(PCH_DPLL_SEL, temp);
2690 /* set transcoder timing, panel must allow it */
2691 assert_panel_unlocked(dev_priv, pipe);
2692 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2693 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2694 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2696 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2697 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2698 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2700 intel_fdi_normal_train(crtc);
2702 /* For PCH DP, enable TRANS_DP_CTL */
2703 if (HAS_PCH_CPT(dev) &&
2704 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2705 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2706 reg = TRANS_DP_CTL(pipe);
2707 temp = I915_READ(reg);
2708 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2709 TRANS_DP_SYNC_MASK |
2710 TRANS_DP_BPC_MASK);
2711 temp |= (TRANS_DP_OUTPUT_ENABLE |
2712 TRANS_DP_ENH_FRAMING);
2713 temp |= bpc << 9; /* same format but at 11:9 */
2715 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2716 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2717 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2718 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2720 switch (intel_trans_dp_port_sel(crtc)) {
2721 case PCH_DP_B:
2722 temp |= TRANS_DP_PORT_SEL_B;
2723 break;
2724 case PCH_DP_C:
2725 temp |= TRANS_DP_PORT_SEL_C;
2726 break;
2727 case PCH_DP_D:
2728 temp |= TRANS_DP_PORT_SEL_D;
2729 break;
2730 default:
2731 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2732 temp |= TRANS_DP_PORT_SEL_B;
2733 break;
2736 I915_WRITE(reg, temp);
2739 intel_enable_transcoder(dev_priv, pipe);
2742 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2744 struct drm_device *dev = crtc->dev;
2745 struct drm_i915_private *dev_priv = dev->dev_private;
2746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2747 int pipe = intel_crtc->pipe;
2748 int plane = intel_crtc->plane;
2749 u32 temp;
2750 bool is_pch_port;
2752 if (intel_crtc->active)
2753 return;
2755 intel_crtc->active = true;
2756 intel_update_watermarks(dev);
2758 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2759 temp = I915_READ(PCH_LVDS);
2760 if ((temp & LVDS_PORT_EN) == 0)
2761 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2764 is_pch_port = intel_crtc_driving_pch(crtc);
2766 if (is_pch_port)
2767 ironlake_fdi_pll_enable(crtc);
2768 else
2769 ironlake_fdi_disable(crtc);
2771 /* Enable panel fitting for LVDS */
2772 if (dev_priv->pch_pf_size &&
2773 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2774 /* Force use of hard-coded filter coefficients
2775 * as some pre-programmed values are broken,
2776 * e.g. x201.
2778 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2779 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2780 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2783 intel_enable_pipe(dev_priv, pipe, is_pch_port);
2784 intel_enable_plane(dev_priv, plane, pipe);
2786 if (is_pch_port)
2787 ironlake_pch_enable(crtc);
2789 intel_crtc_load_lut(crtc);
2791 mutex_lock(&dev->struct_mutex);
2792 intel_update_fbc(dev);
2793 mutex_unlock(&dev->struct_mutex);
2795 intel_crtc_update_cursor(crtc, true);
2798 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2800 struct drm_device *dev = crtc->dev;
2801 struct drm_i915_private *dev_priv = dev->dev_private;
2802 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2803 int pipe = intel_crtc->pipe;
2804 int plane = intel_crtc->plane;
2805 u32 reg, temp;
2807 if (!intel_crtc->active)
2808 return;
2810 intel_crtc_wait_for_pending_flips(crtc);
2811 drm_vblank_off(dev, pipe);
2812 intel_crtc_update_cursor(crtc, false);
2814 intel_disable_plane(dev_priv, plane, pipe);
2816 if (dev_priv->cfb_plane == plane)
2817 intel_disable_fbc(dev);
2819 intel_disable_pipe(dev_priv, pipe);
2821 /* Disable PF */
2822 I915_WRITE(PF_CTL(pipe), 0);
2823 I915_WRITE(PF_WIN_SZ(pipe), 0);
2825 ironlake_fdi_disable(crtc);
2827 /* This is a horrible layering violation; we should be doing this in
2828 * the connector/encoder ->prepare instead, but we don't always have
2829 * enough information there about the config to know whether it will
2830 * actually be necessary or just cause undesired flicker.
2832 intel_disable_pch_ports(dev_priv, pipe);
2834 intel_disable_transcoder(dev_priv, pipe);
2836 if (HAS_PCH_CPT(dev)) {
2837 /* disable TRANS_DP_CTL */
2838 reg = TRANS_DP_CTL(pipe);
2839 temp = I915_READ(reg);
2840 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2841 temp |= TRANS_DP_PORT_SEL_NONE;
2842 I915_WRITE(reg, temp);
2844 /* disable DPLL_SEL */
2845 temp = I915_READ(PCH_DPLL_SEL);
2846 switch (pipe) {
2847 case 0:
2848 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2849 break;
2850 case 1:
2851 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2852 break;
2853 case 2:
2854 /* FIXME: manage transcoder PLLs? */
2855 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2856 break;
2857 default:
2858 BUG(); /* wtf */
2860 I915_WRITE(PCH_DPLL_SEL, temp);
2863 /* disable PCH DPLL */
2864 intel_disable_pch_pll(dev_priv, pipe);
2866 /* Switch from PCDclk to Rawclk */
2867 reg = FDI_RX_CTL(pipe);
2868 temp = I915_READ(reg);
2869 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2871 /* Disable CPU FDI TX PLL */
2872 reg = FDI_TX_CTL(pipe);
2873 temp = I915_READ(reg);
2874 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2876 POSTING_READ(reg);
2877 udelay(100);
2879 reg = FDI_RX_CTL(pipe);
2880 temp = I915_READ(reg);
2881 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2883 /* Wait for the clocks to turn off. */
2884 POSTING_READ(reg);
2885 udelay(100);
2887 intel_crtc->active = false;
2888 intel_update_watermarks(dev);
2890 mutex_lock(&dev->struct_mutex);
2891 intel_update_fbc(dev);
2892 intel_clear_scanline_wait(dev);
2893 mutex_unlock(&dev->struct_mutex);
2896 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2898 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2899 int pipe = intel_crtc->pipe;
2900 int plane = intel_crtc->plane;
2902 /* XXX: When our outputs are all unaware of DPMS modes other than off
2903 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2905 switch (mode) {
2906 case DRM_MODE_DPMS_ON:
2907 case DRM_MODE_DPMS_STANDBY:
2908 case DRM_MODE_DPMS_SUSPEND:
2909 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2910 ironlake_crtc_enable(crtc);
2911 break;
2913 case DRM_MODE_DPMS_OFF:
2914 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2915 ironlake_crtc_disable(crtc);
2916 break;
2920 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2922 if (!enable && intel_crtc->overlay) {
2923 struct drm_device *dev = intel_crtc->base.dev;
2924 struct drm_i915_private *dev_priv = dev->dev_private;
2926 mutex_lock(&dev->struct_mutex);
2927 dev_priv->mm.interruptible = false;
2928 (void) intel_overlay_switch_off(intel_crtc->overlay);
2929 dev_priv->mm.interruptible = true;
2930 mutex_unlock(&dev->struct_mutex);
2933 /* Let userspace switch the overlay on again. In most cases userspace
2934 * has to recompute where to put it anyway.
2938 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2940 struct drm_device *dev = crtc->dev;
2941 struct drm_i915_private *dev_priv = dev->dev_private;
2942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2943 int pipe = intel_crtc->pipe;
2944 int plane = intel_crtc->plane;
2946 if (intel_crtc->active)
2947 return;
2949 intel_crtc->active = true;
2950 intel_update_watermarks(dev);
2952 intel_enable_pll(dev_priv, pipe);
2953 intel_enable_pipe(dev_priv, pipe, false);
2954 intel_enable_plane(dev_priv, plane, pipe);
2956 intel_crtc_load_lut(crtc);
2957 intel_update_fbc(dev);
2959 /* Give the overlay scaler a chance to enable if it's on this pipe */
2960 intel_crtc_dpms_overlay(intel_crtc, true);
2961 intel_crtc_update_cursor(crtc, true);
2964 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2966 struct drm_device *dev = crtc->dev;
2967 struct drm_i915_private *dev_priv = dev->dev_private;
2968 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2969 int pipe = intel_crtc->pipe;
2970 int plane = intel_crtc->plane;
2972 if (!intel_crtc->active)
2973 return;
2975 /* Give the overlay scaler a chance to disable if it's on this pipe */
2976 intel_crtc_wait_for_pending_flips(crtc);
2977 drm_vblank_off(dev, pipe);
2978 intel_crtc_dpms_overlay(intel_crtc, false);
2979 intel_crtc_update_cursor(crtc, false);
2981 if (dev_priv->cfb_plane == plane)
2982 intel_disable_fbc(dev);
2984 intel_disable_plane(dev_priv, plane, pipe);
2985 intel_disable_pipe(dev_priv, pipe);
2986 intel_disable_pll(dev_priv, pipe);
2988 intel_crtc->active = false;
2989 intel_update_fbc(dev);
2990 intel_update_watermarks(dev);
2991 intel_clear_scanline_wait(dev);
2994 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2996 /* XXX: When our outputs are all unaware of DPMS modes other than off
2997 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2999 switch (mode) {
3000 case DRM_MODE_DPMS_ON:
3001 case DRM_MODE_DPMS_STANDBY:
3002 case DRM_MODE_DPMS_SUSPEND:
3003 i9xx_crtc_enable(crtc);
3004 break;
3005 case DRM_MODE_DPMS_OFF:
3006 i9xx_crtc_disable(crtc);
3007 break;
3012 * Sets the power management mode of the pipe and plane.
3014 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3016 struct drm_device *dev = crtc->dev;
3017 struct drm_i915_private *dev_priv = dev->dev_private;
3018 struct drm_i915_master_private *master_priv;
3019 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3020 int pipe = intel_crtc->pipe;
3021 bool enabled;
3023 if (intel_crtc->dpms_mode == mode)
3024 return;
3026 intel_crtc->dpms_mode = mode;
3028 dev_priv->display.dpms(crtc, mode);
3030 if (!dev->primary->master)
3031 return;
3033 master_priv = dev->primary->master->driver_priv;
3034 if (!master_priv->sarea_priv)
3035 return;
3037 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3039 switch (pipe) {
3040 case 0:
3041 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3042 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3043 break;
3044 case 1:
3045 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3046 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3047 break;
3048 default:
3049 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3050 break;
3054 static void intel_crtc_disable(struct drm_crtc *crtc)
3056 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3057 struct drm_device *dev = crtc->dev;
3059 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3061 if (crtc->fb) {
3062 mutex_lock(&dev->struct_mutex);
3063 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3064 mutex_unlock(&dev->struct_mutex);
3068 /* Prepare for a mode set.
3070 * Note we could be a lot smarter here. We need to figure out which outputs
3071 * will be enabled, which disabled (in short, how the config will changes)
3072 * and perform the minimum necessary steps to accomplish that, e.g. updating
3073 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3074 * panel fitting is in the proper state, etc.
3076 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3078 i9xx_crtc_disable(crtc);
3081 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3083 i9xx_crtc_enable(crtc);
3086 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3088 ironlake_crtc_disable(crtc);
3091 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3093 ironlake_crtc_enable(crtc);
3096 void intel_encoder_prepare (struct drm_encoder *encoder)
3098 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3099 /* lvds has its own version of prepare see intel_lvds_prepare */
3100 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3103 void intel_encoder_commit (struct drm_encoder *encoder)
3105 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3106 /* lvds has its own version of commit see intel_lvds_commit */
3107 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3110 void intel_encoder_destroy(struct drm_encoder *encoder)
3112 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3114 drm_encoder_cleanup(encoder);
3115 kfree(intel_encoder);
3118 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3119 struct drm_display_mode *mode,
3120 struct drm_display_mode *adjusted_mode)
3122 struct drm_device *dev = crtc->dev;
3124 if (HAS_PCH_SPLIT(dev)) {
3125 /* FDI link clock is fixed at 2.7G */
3126 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3127 return false;
3130 /* XXX some encoders set the crtcinfo, others don't.
3131 * Obviously we need some form of conflict resolution here...
3133 if (adjusted_mode->crtc_htotal == 0)
3134 drm_mode_set_crtcinfo(adjusted_mode, 0);
3136 return true;
3139 static int i945_get_display_clock_speed(struct drm_device *dev)
3141 return 400000;
3144 static int i915_get_display_clock_speed(struct drm_device *dev)
3146 return 333000;
3149 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3151 return 200000;
3154 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3156 u16 gcfgc = 0;
3158 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3160 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3161 return 133000;
3162 else {
3163 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3164 case GC_DISPLAY_CLOCK_333_MHZ:
3165 return 333000;
3166 default:
3167 case GC_DISPLAY_CLOCK_190_200_MHZ:
3168 return 190000;
3173 static int i865_get_display_clock_speed(struct drm_device *dev)
3175 return 266000;
3178 static int i855_get_display_clock_speed(struct drm_device *dev)
3180 u16 hpllcc = 0;
3181 /* Assume that the hardware is in the high speed state. This
3182 * should be the default.
3184 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3185 case GC_CLOCK_133_200:
3186 case GC_CLOCK_100_200:
3187 return 200000;
3188 case GC_CLOCK_166_250:
3189 return 250000;
3190 case GC_CLOCK_100_133:
3191 return 133000;
3194 /* Shouldn't happen */
3195 return 0;
3198 static int i830_get_display_clock_speed(struct drm_device *dev)
3200 return 133000;
3203 struct fdi_m_n {
3204 u32 tu;
3205 u32 gmch_m;
3206 u32 gmch_n;
3207 u32 link_m;
3208 u32 link_n;
3211 static void
3212 fdi_reduce_ratio(u32 *num, u32 *den)
3214 while (*num > 0xffffff || *den > 0xffffff) {
3215 *num >>= 1;
3216 *den >>= 1;
3220 static void
3221 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3222 int link_clock, struct fdi_m_n *m_n)
3224 m_n->tu = 64; /* default size */
3226 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3227 m_n->gmch_m = bits_per_pixel * pixel_clock;
3228 m_n->gmch_n = link_clock * nlanes * 8;
3229 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3231 m_n->link_m = pixel_clock;
3232 m_n->link_n = link_clock;
3233 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3237 struct intel_watermark_params {
3238 unsigned long fifo_size;
3239 unsigned long max_wm;
3240 unsigned long default_wm;
3241 unsigned long guard_size;
3242 unsigned long cacheline_size;
3245 /* Pineview has different values for various configs */
3246 static const struct intel_watermark_params pineview_display_wm = {
3247 PINEVIEW_DISPLAY_FIFO,
3248 PINEVIEW_MAX_WM,
3249 PINEVIEW_DFT_WM,
3250 PINEVIEW_GUARD_WM,
3251 PINEVIEW_FIFO_LINE_SIZE
3253 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3254 PINEVIEW_DISPLAY_FIFO,
3255 PINEVIEW_MAX_WM,
3256 PINEVIEW_DFT_HPLLOFF_WM,
3257 PINEVIEW_GUARD_WM,
3258 PINEVIEW_FIFO_LINE_SIZE
3260 static const struct intel_watermark_params pineview_cursor_wm = {
3261 PINEVIEW_CURSOR_FIFO,
3262 PINEVIEW_CURSOR_MAX_WM,
3263 PINEVIEW_CURSOR_DFT_WM,
3264 PINEVIEW_CURSOR_GUARD_WM,
3265 PINEVIEW_FIFO_LINE_SIZE,
3267 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3268 PINEVIEW_CURSOR_FIFO,
3269 PINEVIEW_CURSOR_MAX_WM,
3270 PINEVIEW_CURSOR_DFT_WM,
3271 PINEVIEW_CURSOR_GUARD_WM,
3272 PINEVIEW_FIFO_LINE_SIZE
3274 static const struct intel_watermark_params g4x_wm_info = {
3275 G4X_FIFO_SIZE,
3276 G4X_MAX_WM,
3277 G4X_MAX_WM,
3279 G4X_FIFO_LINE_SIZE,
3281 static const struct intel_watermark_params g4x_cursor_wm_info = {
3282 I965_CURSOR_FIFO,
3283 I965_CURSOR_MAX_WM,
3284 I965_CURSOR_DFT_WM,
3286 G4X_FIFO_LINE_SIZE,
3288 static const struct intel_watermark_params i965_cursor_wm_info = {
3289 I965_CURSOR_FIFO,
3290 I965_CURSOR_MAX_WM,
3291 I965_CURSOR_DFT_WM,
3293 I915_FIFO_LINE_SIZE,
3295 static const struct intel_watermark_params i945_wm_info = {
3296 I945_FIFO_SIZE,
3297 I915_MAX_WM,
3300 I915_FIFO_LINE_SIZE
3302 static const struct intel_watermark_params i915_wm_info = {
3303 I915_FIFO_SIZE,
3304 I915_MAX_WM,
3307 I915_FIFO_LINE_SIZE
3309 static const struct intel_watermark_params i855_wm_info = {
3310 I855GM_FIFO_SIZE,
3311 I915_MAX_WM,
3314 I830_FIFO_LINE_SIZE
3316 static const struct intel_watermark_params i830_wm_info = {
3317 I830_FIFO_SIZE,
3318 I915_MAX_WM,
3321 I830_FIFO_LINE_SIZE
3324 static const struct intel_watermark_params ironlake_display_wm_info = {
3325 ILK_DISPLAY_FIFO,
3326 ILK_DISPLAY_MAXWM,
3327 ILK_DISPLAY_DFTWM,
3329 ILK_FIFO_LINE_SIZE
3331 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3332 ILK_CURSOR_FIFO,
3333 ILK_CURSOR_MAXWM,
3334 ILK_CURSOR_DFTWM,
3336 ILK_FIFO_LINE_SIZE
3338 static const struct intel_watermark_params ironlake_display_srwm_info = {
3339 ILK_DISPLAY_SR_FIFO,
3340 ILK_DISPLAY_MAX_SRWM,
3341 ILK_DISPLAY_DFT_SRWM,
3343 ILK_FIFO_LINE_SIZE
3345 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3346 ILK_CURSOR_SR_FIFO,
3347 ILK_CURSOR_MAX_SRWM,
3348 ILK_CURSOR_DFT_SRWM,
3350 ILK_FIFO_LINE_SIZE
3353 static const struct intel_watermark_params sandybridge_display_wm_info = {
3354 SNB_DISPLAY_FIFO,
3355 SNB_DISPLAY_MAXWM,
3356 SNB_DISPLAY_DFTWM,
3358 SNB_FIFO_LINE_SIZE
3360 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3361 SNB_CURSOR_FIFO,
3362 SNB_CURSOR_MAXWM,
3363 SNB_CURSOR_DFTWM,
3365 SNB_FIFO_LINE_SIZE
3367 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3368 SNB_DISPLAY_SR_FIFO,
3369 SNB_DISPLAY_MAX_SRWM,
3370 SNB_DISPLAY_DFT_SRWM,
3372 SNB_FIFO_LINE_SIZE
3374 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3375 SNB_CURSOR_SR_FIFO,
3376 SNB_CURSOR_MAX_SRWM,
3377 SNB_CURSOR_DFT_SRWM,
3379 SNB_FIFO_LINE_SIZE
3384 * intel_calculate_wm - calculate watermark level
3385 * @clock_in_khz: pixel clock
3386 * @wm: chip FIFO params
3387 * @pixel_size: display pixel size
3388 * @latency_ns: memory latency for the platform
3390 * Calculate the watermark level (the level at which the display plane will
3391 * start fetching from memory again). Each chip has a different display
3392 * FIFO size and allocation, so the caller needs to figure that out and pass
3393 * in the correct intel_watermark_params structure.
3395 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3396 * on the pixel size. When it reaches the watermark level, it'll start
3397 * fetching FIFO line sized based chunks from memory until the FIFO fills
3398 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3399 * will occur, and a display engine hang could result.
3401 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3402 const struct intel_watermark_params *wm,
3403 int fifo_size,
3404 int pixel_size,
3405 unsigned long latency_ns)
3407 long entries_required, wm_size;
3410 * Note: we need to make sure we don't overflow for various clock &
3411 * latency values.
3412 * clocks go from a few thousand to several hundred thousand.
3413 * latency is usually a few thousand
3415 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3416 1000;
3417 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3419 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3421 wm_size = fifo_size - (entries_required + wm->guard_size);
3423 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3425 /* Don't promote wm_size to unsigned... */
3426 if (wm_size > (long)wm->max_wm)
3427 wm_size = wm->max_wm;
3428 if (wm_size <= 0)
3429 wm_size = wm->default_wm;
3430 return wm_size;
3433 struct cxsr_latency {
3434 int is_desktop;
3435 int is_ddr3;
3436 unsigned long fsb_freq;
3437 unsigned long mem_freq;
3438 unsigned long display_sr;
3439 unsigned long display_hpll_disable;
3440 unsigned long cursor_sr;
3441 unsigned long cursor_hpll_disable;
3444 static const struct cxsr_latency cxsr_latency_table[] = {
3445 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3446 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3447 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3448 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3449 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3451 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3452 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3453 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3454 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3455 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3457 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3458 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3459 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3460 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3461 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3463 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3464 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3465 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3466 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3467 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3469 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3470 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3471 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3472 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3473 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3475 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3476 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3477 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3478 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3479 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3482 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3483 int is_ddr3,
3484 int fsb,
3485 int mem)
3487 const struct cxsr_latency *latency;
3488 int i;
3490 if (fsb == 0 || mem == 0)
3491 return NULL;
3493 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3494 latency = &cxsr_latency_table[i];
3495 if (is_desktop == latency->is_desktop &&
3496 is_ddr3 == latency->is_ddr3 &&
3497 fsb == latency->fsb_freq && mem == latency->mem_freq)
3498 return latency;
3501 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3503 return NULL;
3506 static void pineview_disable_cxsr(struct drm_device *dev)
3508 struct drm_i915_private *dev_priv = dev->dev_private;
3510 /* deactivate cxsr */
3511 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3515 * Latency for FIFO fetches is dependent on several factors:
3516 * - memory configuration (speed, channels)
3517 * - chipset
3518 * - current MCH state
3519 * It can be fairly high in some situations, so here we assume a fairly
3520 * pessimal value. It's a tradeoff between extra memory fetches (if we
3521 * set this value too high, the FIFO will fetch frequently to stay full)
3522 * and power consumption (set it too low to save power and we might see
3523 * FIFO underruns and display "flicker").
3525 * A value of 5us seems to be a good balance; safe for very low end
3526 * platforms but not overly aggressive on lower latency configs.
3528 static const int latency_ns = 5000;
3530 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3532 struct drm_i915_private *dev_priv = dev->dev_private;
3533 uint32_t dsparb = I915_READ(DSPARB);
3534 int size;
3536 size = dsparb & 0x7f;
3537 if (plane)
3538 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3540 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3541 plane ? "B" : "A", size);
3543 return size;
3546 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3548 struct drm_i915_private *dev_priv = dev->dev_private;
3549 uint32_t dsparb = I915_READ(DSPARB);
3550 int size;
3552 size = dsparb & 0x1ff;
3553 if (plane)
3554 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3555 size >>= 1; /* Convert to cachelines */
3557 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3558 plane ? "B" : "A", size);
3560 return size;
3563 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3565 struct drm_i915_private *dev_priv = dev->dev_private;
3566 uint32_t dsparb = I915_READ(DSPARB);
3567 int size;
3569 size = dsparb & 0x7f;
3570 size >>= 2; /* Convert to cachelines */
3572 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3573 plane ? "B" : "A",
3574 size);
3576 return size;
3579 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3581 struct drm_i915_private *dev_priv = dev->dev_private;
3582 uint32_t dsparb = I915_READ(DSPARB);
3583 int size;
3585 size = dsparb & 0x7f;
3586 size >>= 1; /* Convert to cachelines */
3588 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3589 plane ? "B" : "A", size);
3591 return size;
3594 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3596 struct drm_crtc *crtc, *enabled = NULL;
3598 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3599 if (crtc->enabled && crtc->fb) {
3600 if (enabled)
3601 return NULL;
3602 enabled = crtc;
3606 return enabled;
3609 static void pineview_update_wm(struct drm_device *dev)
3611 struct drm_i915_private *dev_priv = dev->dev_private;
3612 struct drm_crtc *crtc;
3613 const struct cxsr_latency *latency;
3614 u32 reg;
3615 unsigned long wm;
3617 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3618 dev_priv->fsb_freq, dev_priv->mem_freq);
3619 if (!latency) {
3620 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3621 pineview_disable_cxsr(dev);
3622 return;
3625 crtc = single_enabled_crtc(dev);
3626 if (crtc) {
3627 int clock = crtc->mode.clock;
3628 int pixel_size = crtc->fb->bits_per_pixel / 8;
3630 /* Display SR */
3631 wm = intel_calculate_wm(clock, &pineview_display_wm,
3632 pineview_display_wm.fifo_size,
3633 pixel_size, latency->display_sr);
3634 reg = I915_READ(DSPFW1);
3635 reg &= ~DSPFW_SR_MASK;
3636 reg |= wm << DSPFW_SR_SHIFT;
3637 I915_WRITE(DSPFW1, reg);
3638 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3640 /* cursor SR */
3641 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3642 pineview_display_wm.fifo_size,
3643 pixel_size, latency->cursor_sr);
3644 reg = I915_READ(DSPFW3);
3645 reg &= ~DSPFW_CURSOR_SR_MASK;
3646 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3647 I915_WRITE(DSPFW3, reg);
3649 /* Display HPLL off SR */
3650 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3651 pineview_display_hplloff_wm.fifo_size,
3652 pixel_size, latency->display_hpll_disable);
3653 reg = I915_READ(DSPFW3);
3654 reg &= ~DSPFW_HPLL_SR_MASK;
3655 reg |= wm & DSPFW_HPLL_SR_MASK;
3656 I915_WRITE(DSPFW3, reg);
3658 /* cursor HPLL off SR */
3659 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3660 pineview_display_hplloff_wm.fifo_size,
3661 pixel_size, latency->cursor_hpll_disable);
3662 reg = I915_READ(DSPFW3);
3663 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3664 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3665 I915_WRITE(DSPFW3, reg);
3666 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3668 /* activate cxsr */
3669 I915_WRITE(DSPFW3,
3670 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3671 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3672 } else {
3673 pineview_disable_cxsr(dev);
3674 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3678 static bool g4x_compute_wm0(struct drm_device *dev,
3679 int plane,
3680 const struct intel_watermark_params *display,
3681 int display_latency_ns,
3682 const struct intel_watermark_params *cursor,
3683 int cursor_latency_ns,
3684 int *plane_wm,
3685 int *cursor_wm)
3687 struct drm_crtc *crtc;
3688 int htotal, hdisplay, clock, pixel_size;
3689 int line_time_us, line_count;
3690 int entries, tlb_miss;
3692 crtc = intel_get_crtc_for_plane(dev, plane);
3693 if (crtc->fb == NULL || !crtc->enabled) {
3694 *cursor_wm = cursor->guard_size;
3695 *plane_wm = display->guard_size;
3696 return false;
3699 htotal = crtc->mode.htotal;
3700 hdisplay = crtc->mode.hdisplay;
3701 clock = crtc->mode.clock;
3702 pixel_size = crtc->fb->bits_per_pixel / 8;
3704 /* Use the small buffer method to calculate plane watermark */
3705 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3706 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3707 if (tlb_miss > 0)
3708 entries += tlb_miss;
3709 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3710 *plane_wm = entries + display->guard_size;
3711 if (*plane_wm > (int)display->max_wm)
3712 *plane_wm = display->max_wm;
3714 /* Use the large buffer method to calculate cursor watermark */
3715 line_time_us = ((htotal * 1000) / clock);
3716 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3717 entries = line_count * 64 * pixel_size;
3718 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3719 if (tlb_miss > 0)
3720 entries += tlb_miss;
3721 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3722 *cursor_wm = entries + cursor->guard_size;
3723 if (*cursor_wm > (int)cursor->max_wm)
3724 *cursor_wm = (int)cursor->max_wm;
3726 return true;
3730 * Check the wm result.
3732 * If any calculated watermark values is larger than the maximum value that
3733 * can be programmed into the associated watermark register, that watermark
3734 * must be disabled.
3736 static bool g4x_check_srwm(struct drm_device *dev,
3737 int display_wm, int cursor_wm,
3738 const struct intel_watermark_params *display,
3739 const struct intel_watermark_params *cursor)
3741 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3742 display_wm, cursor_wm);
3744 if (display_wm > display->max_wm) {
3745 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3746 display_wm, display->max_wm);
3747 return false;
3750 if (cursor_wm > cursor->max_wm) {
3751 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3752 cursor_wm, cursor->max_wm);
3753 return false;
3756 if (!(display_wm || cursor_wm)) {
3757 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3758 return false;
3761 return true;
3764 static bool g4x_compute_srwm(struct drm_device *dev,
3765 int plane,
3766 int latency_ns,
3767 const struct intel_watermark_params *display,
3768 const struct intel_watermark_params *cursor,
3769 int *display_wm, int *cursor_wm)
3771 struct drm_crtc *crtc;
3772 int hdisplay, htotal, pixel_size, clock;
3773 unsigned long line_time_us;
3774 int line_count, line_size;
3775 int small, large;
3776 int entries;
3778 if (!latency_ns) {
3779 *display_wm = *cursor_wm = 0;
3780 return false;
3783 crtc = intel_get_crtc_for_plane(dev, plane);
3784 hdisplay = crtc->mode.hdisplay;
3785 htotal = crtc->mode.htotal;
3786 clock = crtc->mode.clock;
3787 pixel_size = crtc->fb->bits_per_pixel / 8;
3789 line_time_us = (htotal * 1000) / clock;
3790 line_count = (latency_ns / line_time_us + 1000) / 1000;
3791 line_size = hdisplay * pixel_size;
3793 /* Use the minimum of the small and large buffer method for primary */
3794 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3795 large = line_count * line_size;
3797 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3798 *display_wm = entries + display->guard_size;
3800 /* calculate the self-refresh watermark for display cursor */
3801 entries = line_count * pixel_size * 64;
3802 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3803 *cursor_wm = entries + cursor->guard_size;
3805 return g4x_check_srwm(dev,
3806 *display_wm, *cursor_wm,
3807 display, cursor);
3810 #define single_plane_enabled(mask) is_power_of_2(mask)
3812 static void g4x_update_wm(struct drm_device *dev)
3814 static const int sr_latency_ns = 12000;
3815 struct drm_i915_private *dev_priv = dev->dev_private;
3816 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3817 int plane_sr, cursor_sr;
3818 unsigned int enabled = 0;
3820 if (g4x_compute_wm0(dev, 0,
3821 &g4x_wm_info, latency_ns,
3822 &g4x_cursor_wm_info, latency_ns,
3823 &planea_wm, &cursora_wm))
3824 enabled |= 1;
3826 if (g4x_compute_wm0(dev, 1,
3827 &g4x_wm_info, latency_ns,
3828 &g4x_cursor_wm_info, latency_ns,
3829 &planeb_wm, &cursorb_wm))
3830 enabled |= 2;
3832 plane_sr = cursor_sr = 0;
3833 if (single_plane_enabled(enabled) &&
3834 g4x_compute_srwm(dev, ffs(enabled) - 1,
3835 sr_latency_ns,
3836 &g4x_wm_info,
3837 &g4x_cursor_wm_info,
3838 &plane_sr, &cursor_sr))
3839 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3840 else
3841 I915_WRITE(FW_BLC_SELF,
3842 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3844 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3845 planea_wm, cursora_wm,
3846 planeb_wm, cursorb_wm,
3847 plane_sr, cursor_sr);
3849 I915_WRITE(DSPFW1,
3850 (plane_sr << DSPFW_SR_SHIFT) |
3851 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3852 (planeb_wm << DSPFW_PLANEB_SHIFT) |
3853 planea_wm);
3854 I915_WRITE(DSPFW2,
3855 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3856 (cursora_wm << DSPFW_CURSORA_SHIFT));
3857 /* HPLL off in SR has some issues on G4x... disable it */
3858 I915_WRITE(DSPFW3,
3859 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3860 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3863 static void i965_update_wm(struct drm_device *dev)
3865 struct drm_i915_private *dev_priv = dev->dev_private;
3866 struct drm_crtc *crtc;
3867 int srwm = 1;
3868 int cursor_sr = 16;
3870 /* Calc sr entries for one plane configs */
3871 crtc = single_enabled_crtc(dev);
3872 if (crtc) {
3873 /* self-refresh has much higher latency */
3874 static const int sr_latency_ns = 12000;
3875 int clock = crtc->mode.clock;
3876 int htotal = crtc->mode.htotal;
3877 int hdisplay = crtc->mode.hdisplay;
3878 int pixel_size = crtc->fb->bits_per_pixel / 8;
3879 unsigned long line_time_us;
3880 int entries;
3882 line_time_us = ((htotal * 1000) / clock);
3884 /* Use ns/us then divide to preserve precision */
3885 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3886 pixel_size * hdisplay;
3887 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3888 srwm = I965_FIFO_SIZE - entries;
3889 if (srwm < 0)
3890 srwm = 1;
3891 srwm &= 0x1ff;
3892 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3893 entries, srwm);
3895 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3896 pixel_size * 64;
3897 entries = DIV_ROUND_UP(entries,
3898 i965_cursor_wm_info.cacheline_size);
3899 cursor_sr = i965_cursor_wm_info.fifo_size -
3900 (entries + i965_cursor_wm_info.guard_size);
3902 if (cursor_sr > i965_cursor_wm_info.max_wm)
3903 cursor_sr = i965_cursor_wm_info.max_wm;
3905 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3906 "cursor %d\n", srwm, cursor_sr);
3908 if (IS_CRESTLINE(dev))
3909 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3910 } else {
3911 /* Turn off self refresh if both pipes are enabled */
3912 if (IS_CRESTLINE(dev))
3913 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3914 & ~FW_BLC_SELF_EN);
3917 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3918 srwm);
3920 /* 965 has limitations... */
3921 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
3922 (8 << 16) | (8 << 8) | (8 << 0));
3923 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3924 /* update cursor SR watermark */
3925 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3928 static void i9xx_update_wm(struct drm_device *dev)
3930 struct drm_i915_private *dev_priv = dev->dev_private;
3931 const struct intel_watermark_params *wm_info;
3932 uint32_t fwater_lo;
3933 uint32_t fwater_hi;
3934 int cwm, srwm = 1;
3935 int fifo_size;
3936 int planea_wm, planeb_wm;
3937 struct drm_crtc *crtc, *enabled = NULL;
3939 if (IS_I945GM(dev))
3940 wm_info = &i945_wm_info;
3941 else if (!IS_GEN2(dev))
3942 wm_info = &i915_wm_info;
3943 else
3944 wm_info = &i855_wm_info;
3946 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3947 crtc = intel_get_crtc_for_plane(dev, 0);
3948 if (crtc->enabled && crtc->fb) {
3949 planea_wm = intel_calculate_wm(crtc->mode.clock,
3950 wm_info, fifo_size,
3951 crtc->fb->bits_per_pixel / 8,
3952 latency_ns);
3953 enabled = crtc;
3954 } else
3955 planea_wm = fifo_size - wm_info->guard_size;
3957 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3958 crtc = intel_get_crtc_for_plane(dev, 1);
3959 if (crtc->enabled && crtc->fb) {
3960 planeb_wm = intel_calculate_wm(crtc->mode.clock,
3961 wm_info, fifo_size,
3962 crtc->fb->bits_per_pixel / 8,
3963 latency_ns);
3964 if (enabled == NULL)
3965 enabled = crtc;
3966 else
3967 enabled = NULL;
3968 } else
3969 planeb_wm = fifo_size - wm_info->guard_size;
3971 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3974 * Overlay gets an aggressive default since video jitter is bad.
3976 cwm = 2;
3978 /* Play safe and disable self-refresh before adjusting watermarks. */
3979 if (IS_I945G(dev) || IS_I945GM(dev))
3980 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
3981 else if (IS_I915GM(dev))
3982 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3984 /* Calc sr entries for one plane configs */
3985 if (HAS_FW_BLC(dev) && enabled) {
3986 /* self-refresh has much higher latency */
3987 static const int sr_latency_ns = 6000;
3988 int clock = enabled->mode.clock;
3989 int htotal = enabled->mode.htotal;
3990 int hdisplay = enabled->mode.hdisplay;
3991 int pixel_size = enabled->fb->bits_per_pixel / 8;
3992 unsigned long line_time_us;
3993 int entries;
3995 line_time_us = (htotal * 1000) / clock;
3997 /* Use ns/us then divide to preserve precision */
3998 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3999 pixel_size * hdisplay;
4000 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4001 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4002 srwm = wm_info->fifo_size - entries;
4003 if (srwm < 0)
4004 srwm = 1;
4006 if (IS_I945G(dev) || IS_I945GM(dev))
4007 I915_WRITE(FW_BLC_SELF,
4008 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4009 else if (IS_I915GM(dev))
4010 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4013 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4014 planea_wm, planeb_wm, cwm, srwm);
4016 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4017 fwater_hi = (cwm & 0x1f);
4019 /* Set request length to 8 cachelines per fetch */
4020 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4021 fwater_hi = fwater_hi | (1 << 8);
4023 I915_WRITE(FW_BLC, fwater_lo);
4024 I915_WRITE(FW_BLC2, fwater_hi);
4026 if (HAS_FW_BLC(dev)) {
4027 if (enabled) {
4028 if (IS_I945G(dev) || IS_I945GM(dev))
4029 I915_WRITE(FW_BLC_SELF,
4030 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4031 else if (IS_I915GM(dev))
4032 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4033 DRM_DEBUG_KMS("memory self refresh enabled\n");
4034 } else
4035 DRM_DEBUG_KMS("memory self refresh disabled\n");
4039 static void i830_update_wm(struct drm_device *dev)
4041 struct drm_i915_private *dev_priv = dev->dev_private;
4042 struct drm_crtc *crtc;
4043 uint32_t fwater_lo;
4044 int planea_wm;
4046 crtc = single_enabled_crtc(dev);
4047 if (crtc == NULL)
4048 return;
4050 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4051 dev_priv->display.get_fifo_size(dev, 0),
4052 crtc->fb->bits_per_pixel / 8,
4053 latency_ns);
4054 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4055 fwater_lo |= (3<<8) | planea_wm;
4057 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4059 I915_WRITE(FW_BLC, fwater_lo);
4062 #define ILK_LP0_PLANE_LATENCY 700
4063 #define ILK_LP0_CURSOR_LATENCY 1300
4066 * Check the wm result.
4068 * If any calculated watermark values is larger than the maximum value that
4069 * can be programmed into the associated watermark register, that watermark
4070 * must be disabled.
4072 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4073 int fbc_wm, int display_wm, int cursor_wm,
4074 const struct intel_watermark_params *display,
4075 const struct intel_watermark_params *cursor)
4077 struct drm_i915_private *dev_priv = dev->dev_private;
4079 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4080 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4082 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4083 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4084 fbc_wm, SNB_FBC_MAX_SRWM, level);
4086 /* fbc has it's own way to disable FBC WM */
4087 I915_WRITE(DISP_ARB_CTL,
4088 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4089 return false;
4092 if (display_wm > display->max_wm) {
4093 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4094 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4095 return false;
4098 if (cursor_wm > cursor->max_wm) {
4099 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4100 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4101 return false;
4104 if (!(fbc_wm || display_wm || cursor_wm)) {
4105 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4106 return false;
4109 return true;
4113 * Compute watermark values of WM[1-3],
4115 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4116 int latency_ns,
4117 const struct intel_watermark_params *display,
4118 const struct intel_watermark_params *cursor,
4119 int *fbc_wm, int *display_wm, int *cursor_wm)
4121 struct drm_crtc *crtc;
4122 unsigned long line_time_us;
4123 int hdisplay, htotal, pixel_size, clock;
4124 int line_count, line_size;
4125 int small, large;
4126 int entries;
4128 if (!latency_ns) {
4129 *fbc_wm = *display_wm = *cursor_wm = 0;
4130 return false;
4133 crtc = intel_get_crtc_for_plane(dev, plane);
4134 hdisplay = crtc->mode.hdisplay;
4135 htotal = crtc->mode.htotal;
4136 clock = crtc->mode.clock;
4137 pixel_size = crtc->fb->bits_per_pixel / 8;
4139 line_time_us = (htotal * 1000) / clock;
4140 line_count = (latency_ns / line_time_us + 1000) / 1000;
4141 line_size = hdisplay * pixel_size;
4143 /* Use the minimum of the small and large buffer method for primary */
4144 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4145 large = line_count * line_size;
4147 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4148 *display_wm = entries + display->guard_size;
4151 * Spec says:
4152 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4154 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4156 /* calculate the self-refresh watermark for display cursor */
4157 entries = line_count * pixel_size * 64;
4158 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4159 *cursor_wm = entries + cursor->guard_size;
4161 return ironlake_check_srwm(dev, level,
4162 *fbc_wm, *display_wm, *cursor_wm,
4163 display, cursor);
4166 static void ironlake_update_wm(struct drm_device *dev)
4168 struct drm_i915_private *dev_priv = dev->dev_private;
4169 int fbc_wm, plane_wm, cursor_wm;
4170 unsigned int enabled;
4172 enabled = 0;
4173 if (g4x_compute_wm0(dev, 0,
4174 &ironlake_display_wm_info,
4175 ILK_LP0_PLANE_LATENCY,
4176 &ironlake_cursor_wm_info,
4177 ILK_LP0_CURSOR_LATENCY,
4178 &plane_wm, &cursor_wm)) {
4179 I915_WRITE(WM0_PIPEA_ILK,
4180 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4181 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4182 " plane %d, " "cursor: %d\n",
4183 plane_wm, cursor_wm);
4184 enabled |= 1;
4187 if (g4x_compute_wm0(dev, 1,
4188 &ironlake_display_wm_info,
4189 ILK_LP0_PLANE_LATENCY,
4190 &ironlake_cursor_wm_info,
4191 ILK_LP0_CURSOR_LATENCY,
4192 &plane_wm, &cursor_wm)) {
4193 I915_WRITE(WM0_PIPEB_ILK,
4194 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4195 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4196 " plane %d, cursor: %d\n",
4197 plane_wm, cursor_wm);
4198 enabled |= 2;
4202 * Calculate and update the self-refresh watermark only when one
4203 * display plane is used.
4205 I915_WRITE(WM3_LP_ILK, 0);
4206 I915_WRITE(WM2_LP_ILK, 0);
4207 I915_WRITE(WM1_LP_ILK, 0);
4209 if (!single_plane_enabled(enabled))
4210 return;
4211 enabled = ffs(enabled) - 1;
4213 /* WM1 */
4214 if (!ironlake_compute_srwm(dev, 1, enabled,
4215 ILK_READ_WM1_LATENCY() * 500,
4216 &ironlake_display_srwm_info,
4217 &ironlake_cursor_srwm_info,
4218 &fbc_wm, &plane_wm, &cursor_wm))
4219 return;
4221 I915_WRITE(WM1_LP_ILK,
4222 WM1_LP_SR_EN |
4223 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4224 (fbc_wm << WM1_LP_FBC_SHIFT) |
4225 (plane_wm << WM1_LP_SR_SHIFT) |
4226 cursor_wm);
4228 /* WM2 */
4229 if (!ironlake_compute_srwm(dev, 2, enabled,
4230 ILK_READ_WM2_LATENCY() * 500,
4231 &ironlake_display_srwm_info,
4232 &ironlake_cursor_srwm_info,
4233 &fbc_wm, &plane_wm, &cursor_wm))
4234 return;
4236 I915_WRITE(WM2_LP_ILK,
4237 WM2_LP_EN |
4238 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4239 (fbc_wm << WM1_LP_FBC_SHIFT) |
4240 (plane_wm << WM1_LP_SR_SHIFT) |
4241 cursor_wm);
4244 * WM3 is unsupported on ILK, probably because we don't have latency
4245 * data for that power state
4249 static void sandybridge_update_wm(struct drm_device *dev)
4251 struct drm_i915_private *dev_priv = dev->dev_private;
4252 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4253 int fbc_wm, plane_wm, cursor_wm;
4254 unsigned int enabled;
4256 enabled = 0;
4257 if (g4x_compute_wm0(dev, 0,
4258 &sandybridge_display_wm_info, latency,
4259 &sandybridge_cursor_wm_info, latency,
4260 &plane_wm, &cursor_wm)) {
4261 I915_WRITE(WM0_PIPEA_ILK,
4262 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4263 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4264 " plane %d, " "cursor: %d\n",
4265 plane_wm, cursor_wm);
4266 enabled |= 1;
4269 if (g4x_compute_wm0(dev, 1,
4270 &sandybridge_display_wm_info, latency,
4271 &sandybridge_cursor_wm_info, latency,
4272 &plane_wm, &cursor_wm)) {
4273 I915_WRITE(WM0_PIPEB_ILK,
4274 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4275 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4276 " plane %d, cursor: %d\n",
4277 plane_wm, cursor_wm);
4278 enabled |= 2;
4282 * Calculate and update the self-refresh watermark only when one
4283 * display plane is used.
4285 * SNB support 3 levels of watermark.
4287 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4288 * and disabled in the descending order
4291 I915_WRITE(WM3_LP_ILK, 0);
4292 I915_WRITE(WM2_LP_ILK, 0);
4293 I915_WRITE(WM1_LP_ILK, 0);
4295 if (!single_plane_enabled(enabled))
4296 return;
4297 enabled = ffs(enabled) - 1;
4299 /* WM1 */
4300 if (!ironlake_compute_srwm(dev, 1, enabled,
4301 SNB_READ_WM1_LATENCY() * 500,
4302 &sandybridge_display_srwm_info,
4303 &sandybridge_cursor_srwm_info,
4304 &fbc_wm, &plane_wm, &cursor_wm))
4305 return;
4307 I915_WRITE(WM1_LP_ILK,
4308 WM1_LP_SR_EN |
4309 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4310 (fbc_wm << WM1_LP_FBC_SHIFT) |
4311 (plane_wm << WM1_LP_SR_SHIFT) |
4312 cursor_wm);
4314 /* WM2 */
4315 if (!ironlake_compute_srwm(dev, 2, enabled,
4316 SNB_READ_WM2_LATENCY() * 500,
4317 &sandybridge_display_srwm_info,
4318 &sandybridge_cursor_srwm_info,
4319 &fbc_wm, &plane_wm, &cursor_wm))
4320 return;
4322 I915_WRITE(WM2_LP_ILK,
4323 WM2_LP_EN |
4324 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4325 (fbc_wm << WM1_LP_FBC_SHIFT) |
4326 (plane_wm << WM1_LP_SR_SHIFT) |
4327 cursor_wm);
4329 /* WM3 */
4330 if (!ironlake_compute_srwm(dev, 3, enabled,
4331 SNB_READ_WM3_LATENCY() * 500,
4332 &sandybridge_display_srwm_info,
4333 &sandybridge_cursor_srwm_info,
4334 &fbc_wm, &plane_wm, &cursor_wm))
4335 return;
4337 I915_WRITE(WM3_LP_ILK,
4338 WM3_LP_EN |
4339 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4340 (fbc_wm << WM1_LP_FBC_SHIFT) |
4341 (plane_wm << WM1_LP_SR_SHIFT) |
4342 cursor_wm);
4346 * intel_update_watermarks - update FIFO watermark values based on current modes
4348 * Calculate watermark values for the various WM regs based on current mode
4349 * and plane configuration.
4351 * There are several cases to deal with here:
4352 * - normal (i.e. non-self-refresh)
4353 * - self-refresh (SR) mode
4354 * - lines are large relative to FIFO size (buffer can hold up to 2)
4355 * - lines are small relative to FIFO size (buffer can hold more than 2
4356 * lines), so need to account for TLB latency
4358 * The normal calculation is:
4359 * watermark = dotclock * bytes per pixel * latency
4360 * where latency is platform & configuration dependent (we assume pessimal
4361 * values here).
4363 * The SR calculation is:
4364 * watermark = (trunc(latency/line time)+1) * surface width *
4365 * bytes per pixel
4366 * where
4367 * line time = htotal / dotclock
4368 * surface width = hdisplay for normal plane and 64 for cursor
4369 * and latency is assumed to be high, as above.
4371 * The final value programmed to the register should always be rounded up,
4372 * and include an extra 2 entries to account for clock crossings.
4374 * We don't use the sprite, so we can ignore that. And on Crestline we have
4375 * to set the non-SR watermarks to 8.
4377 static void intel_update_watermarks(struct drm_device *dev)
4379 struct drm_i915_private *dev_priv = dev->dev_private;
4381 if (dev_priv->display.update_wm)
4382 dev_priv->display.update_wm(dev);
4385 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4387 return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
4391 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4392 * @crtc: CRTC structure
4394 * A pipe may be connected to one or more outputs. Based on the depth of the
4395 * attached framebuffer, choose a good color depth to use on the pipe.
4397 * If possible, match the pipe depth to the fb depth. In some cases, this
4398 * isn't ideal, because the connected output supports a lesser or restricted
4399 * set of depths. Resolve that here:
4400 * LVDS typically supports only 6bpc, so clamp down in that case
4401 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4402 * Displays may support a restricted set as well, check EDID and clamp as
4403 * appropriate.
4405 * RETURNS:
4406 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4407 * true if they don't match).
4409 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4410 unsigned int *pipe_bpp)
4412 struct drm_device *dev = crtc->dev;
4413 struct drm_i915_private *dev_priv = dev->dev_private;
4414 struct drm_encoder *encoder;
4415 struct drm_connector *connector;
4416 unsigned int display_bpc = UINT_MAX, bpc;
4418 /* Walk the encoders & connectors on this crtc, get min bpc */
4419 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4420 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4422 if (encoder->crtc != crtc)
4423 continue;
4425 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4426 unsigned int lvds_bpc;
4428 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4429 LVDS_A3_POWER_UP)
4430 lvds_bpc = 8;
4431 else
4432 lvds_bpc = 6;
4434 if (lvds_bpc < display_bpc) {
4435 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4436 display_bpc = lvds_bpc;
4438 continue;
4441 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4442 /* Use VBT settings if we have an eDP panel */
4443 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4445 if (edp_bpc < display_bpc) {
4446 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4447 display_bpc = edp_bpc;
4449 continue;
4452 /* Not one of the known troublemakers, check the EDID */
4453 list_for_each_entry(connector, &dev->mode_config.connector_list,
4454 head) {
4455 if (connector->encoder != encoder)
4456 continue;
4458 if (connector->display_info.bpc < display_bpc) {
4459 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4460 display_bpc = connector->display_info.bpc;
4465 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4466 * through, clamp it down. (Note: >12bpc will be caught below.)
4468 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4469 if (display_bpc > 8 && display_bpc < 12) {
4470 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4471 display_bpc = 12;
4472 } else {
4473 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4474 display_bpc = 8;
4480 * We could just drive the pipe at the highest bpc all the time and
4481 * enable dithering as needed, but that costs bandwidth. So choose
4482 * the minimum value that expresses the full color range of the fb but
4483 * also stays within the max display bpc discovered above.
4486 switch (crtc->fb->depth) {
4487 case 8:
4488 bpc = 8; /* since we go through a colormap */
4489 break;
4490 case 15:
4491 case 16:
4492 bpc = 6; /* min is 18bpp */
4493 break;
4494 case 24:
4495 bpc = min((unsigned int)8, display_bpc);
4496 break;
4497 case 30:
4498 bpc = min((unsigned int)10, display_bpc);
4499 break;
4500 case 48:
4501 bpc = min((unsigned int)12, display_bpc);
4502 break;
4503 default:
4504 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4505 bpc = min((unsigned int)8, display_bpc);
4506 break;
4509 DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4510 bpc, display_bpc);
4512 *pipe_bpp = bpc * 3;
4514 return display_bpc != bpc;
4517 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4518 struct drm_display_mode *mode,
4519 struct drm_display_mode *adjusted_mode,
4520 int x, int y,
4521 struct drm_framebuffer *old_fb)
4523 struct drm_device *dev = crtc->dev;
4524 struct drm_i915_private *dev_priv = dev->dev_private;
4525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4526 int pipe = intel_crtc->pipe;
4527 int plane = intel_crtc->plane;
4528 int refclk, num_connectors = 0;
4529 intel_clock_t clock, reduced_clock;
4530 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4531 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4532 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4533 struct drm_mode_config *mode_config = &dev->mode_config;
4534 struct intel_encoder *encoder;
4535 const intel_limit_t *limit;
4536 int ret;
4537 u32 temp;
4538 u32 lvds_sync = 0;
4540 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4541 if (encoder->base.crtc != crtc)
4542 continue;
4544 switch (encoder->type) {
4545 case INTEL_OUTPUT_LVDS:
4546 is_lvds = true;
4547 break;
4548 case INTEL_OUTPUT_SDVO:
4549 case INTEL_OUTPUT_HDMI:
4550 is_sdvo = true;
4551 if (encoder->needs_tv_clock)
4552 is_tv = true;
4553 break;
4554 case INTEL_OUTPUT_DVO:
4555 is_dvo = true;
4556 break;
4557 case INTEL_OUTPUT_TVOUT:
4558 is_tv = true;
4559 break;
4560 case INTEL_OUTPUT_ANALOG:
4561 is_crt = true;
4562 break;
4563 case INTEL_OUTPUT_DISPLAYPORT:
4564 is_dp = true;
4565 break;
4568 num_connectors++;
4571 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4572 refclk = dev_priv->lvds_ssc_freq * 1000;
4573 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4574 refclk / 1000);
4575 } else if (!IS_GEN2(dev)) {
4576 refclk = 96000;
4577 } else {
4578 refclk = 48000;
4582 * Returns a set of divisors for the desired target clock with the given
4583 * refclk, or FALSE. The returned values represent the clock equation:
4584 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4586 limit = intel_limit(crtc, refclk);
4587 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4588 if (!ok) {
4589 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4590 return -EINVAL;
4593 /* Ensure that the cursor is valid for the new mode before changing... */
4594 intel_crtc_update_cursor(crtc, true);
4596 if (is_lvds && dev_priv->lvds_downclock_avail) {
4597 has_reduced_clock = limit->find_pll(limit, crtc,
4598 dev_priv->lvds_downclock,
4599 refclk,
4600 &reduced_clock);
4601 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4603 * If the different P is found, it means that we can't
4604 * switch the display clock by using the FP0/FP1.
4605 * In such case we will disable the LVDS downclock
4606 * feature.
4608 DRM_DEBUG_KMS("Different P is found for "
4609 "LVDS clock/downclock\n");
4610 has_reduced_clock = 0;
4613 /* SDVO TV has fixed PLL values depend on its clock range,
4614 this mirrors vbios setting. */
4615 if (is_sdvo && is_tv) {
4616 if (adjusted_mode->clock >= 100000
4617 && adjusted_mode->clock < 140500) {
4618 clock.p1 = 2;
4619 clock.p2 = 10;
4620 clock.n = 3;
4621 clock.m1 = 16;
4622 clock.m2 = 8;
4623 } else if (adjusted_mode->clock >= 140500
4624 && adjusted_mode->clock <= 200000) {
4625 clock.p1 = 1;
4626 clock.p2 = 10;
4627 clock.n = 6;
4628 clock.m1 = 12;
4629 clock.m2 = 8;
4633 if (IS_PINEVIEW(dev)) {
4634 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4635 if (has_reduced_clock)
4636 fp2 = (1 << reduced_clock.n) << 16 |
4637 reduced_clock.m1 << 8 | reduced_clock.m2;
4638 } else {
4639 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4640 if (has_reduced_clock)
4641 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4642 reduced_clock.m2;
4645 dpll = DPLL_VGA_MODE_DIS;
4647 if (!IS_GEN2(dev)) {
4648 if (is_lvds)
4649 dpll |= DPLLB_MODE_LVDS;
4650 else
4651 dpll |= DPLLB_MODE_DAC_SERIAL;
4652 if (is_sdvo) {
4653 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4654 if (pixel_multiplier > 1) {
4655 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4656 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4658 dpll |= DPLL_DVO_HIGH_SPEED;
4660 if (is_dp)
4661 dpll |= DPLL_DVO_HIGH_SPEED;
4663 /* compute bitmask from p1 value */
4664 if (IS_PINEVIEW(dev))
4665 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4666 else {
4667 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4668 if (IS_G4X(dev) && has_reduced_clock)
4669 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4671 switch (clock.p2) {
4672 case 5:
4673 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4674 break;
4675 case 7:
4676 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4677 break;
4678 case 10:
4679 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4680 break;
4681 case 14:
4682 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4683 break;
4685 if (INTEL_INFO(dev)->gen >= 4)
4686 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4687 } else {
4688 if (is_lvds) {
4689 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4690 } else {
4691 if (clock.p1 == 2)
4692 dpll |= PLL_P1_DIVIDE_BY_TWO;
4693 else
4694 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4695 if (clock.p2 == 4)
4696 dpll |= PLL_P2_DIVIDE_BY_4;
4700 if (is_sdvo && is_tv)
4701 dpll |= PLL_REF_INPUT_TVCLKINBC;
4702 else if (is_tv)
4703 /* XXX: just matching BIOS for now */
4704 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4705 dpll |= 3;
4706 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4707 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4708 else
4709 dpll |= PLL_REF_INPUT_DREFCLK;
4711 /* setup pipeconf */
4712 pipeconf = I915_READ(PIPECONF(pipe));
4714 /* Set up the display plane register */
4715 dspcntr = DISPPLANE_GAMMA_ENABLE;
4717 /* Ironlake's plane is forced to pipe, bit 24 is to
4718 enable color space conversion */
4719 if (pipe == 0)
4720 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4721 else
4722 dspcntr |= DISPPLANE_SEL_PIPE_B;
4724 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4725 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4726 * core speed.
4728 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4729 * pipe == 0 check?
4731 if (mode->clock >
4732 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4733 pipeconf |= PIPECONF_DOUBLE_WIDE;
4734 else
4735 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4738 dpll |= DPLL_VCO_ENABLE;
4740 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4741 drm_mode_debug_printmodeline(mode);
4743 I915_WRITE(FP0(pipe), fp);
4744 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4746 POSTING_READ(DPLL(pipe));
4747 udelay(150);
4749 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4750 * This is an exception to the general rule that mode_set doesn't turn
4751 * things on.
4753 if (is_lvds) {
4754 temp = I915_READ(LVDS);
4755 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4756 if (pipe == 1) {
4757 temp |= LVDS_PIPEB_SELECT;
4758 } else {
4759 temp &= ~LVDS_PIPEB_SELECT;
4761 /* set the corresponsding LVDS_BORDER bit */
4762 temp |= dev_priv->lvds_border_bits;
4763 /* Set the B0-B3 data pairs corresponding to whether we're going to
4764 * set the DPLLs for dual-channel mode or not.
4766 if (clock.p2 == 7)
4767 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4768 else
4769 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4771 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4772 * appropriately here, but we need to look more thoroughly into how
4773 * panels behave in the two modes.
4775 /* set the dithering flag on LVDS as needed */
4776 if (INTEL_INFO(dev)->gen >= 4) {
4777 if (dev_priv->lvds_dither)
4778 temp |= LVDS_ENABLE_DITHER;
4779 else
4780 temp &= ~LVDS_ENABLE_DITHER;
4782 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4783 lvds_sync |= LVDS_HSYNC_POLARITY;
4784 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4785 lvds_sync |= LVDS_VSYNC_POLARITY;
4786 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4787 != lvds_sync) {
4788 char flags[2] = "-+";
4789 DRM_INFO("Changing LVDS panel from "
4790 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4791 flags[!(temp & LVDS_HSYNC_POLARITY)],
4792 flags[!(temp & LVDS_VSYNC_POLARITY)],
4793 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4794 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4795 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4796 temp |= lvds_sync;
4798 I915_WRITE(LVDS, temp);
4801 if (is_dp) {
4802 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4805 I915_WRITE(DPLL(pipe), dpll);
4807 /* Wait for the clocks to stabilize. */
4808 POSTING_READ(DPLL(pipe));
4809 udelay(150);
4811 if (INTEL_INFO(dev)->gen >= 4) {
4812 temp = 0;
4813 if (is_sdvo) {
4814 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4815 if (temp > 1)
4816 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4817 else
4818 temp = 0;
4820 I915_WRITE(DPLL_MD(pipe), temp);
4821 } else {
4822 /* The pixel multiplier can only be updated once the
4823 * DPLL is enabled and the clocks are stable.
4825 * So write it again.
4827 I915_WRITE(DPLL(pipe), dpll);
4830 intel_crtc->lowfreq_avail = false;
4831 if (is_lvds && has_reduced_clock && i915_powersave) {
4832 I915_WRITE(FP1(pipe), fp2);
4833 intel_crtc->lowfreq_avail = true;
4834 if (HAS_PIPE_CXSR(dev)) {
4835 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4836 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4838 } else {
4839 I915_WRITE(FP1(pipe), fp);
4840 if (HAS_PIPE_CXSR(dev)) {
4841 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4842 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4846 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4847 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4848 /* the chip adds 2 halflines automatically */
4849 adjusted_mode->crtc_vdisplay -= 1;
4850 adjusted_mode->crtc_vtotal -= 1;
4851 adjusted_mode->crtc_vblank_start -= 1;
4852 adjusted_mode->crtc_vblank_end -= 1;
4853 adjusted_mode->crtc_vsync_end -= 1;
4854 adjusted_mode->crtc_vsync_start -= 1;
4855 } else
4856 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4858 I915_WRITE(HTOTAL(pipe),
4859 (adjusted_mode->crtc_hdisplay - 1) |
4860 ((adjusted_mode->crtc_htotal - 1) << 16));
4861 I915_WRITE(HBLANK(pipe),
4862 (adjusted_mode->crtc_hblank_start - 1) |
4863 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4864 I915_WRITE(HSYNC(pipe),
4865 (adjusted_mode->crtc_hsync_start - 1) |
4866 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4868 I915_WRITE(VTOTAL(pipe),
4869 (adjusted_mode->crtc_vdisplay - 1) |
4870 ((adjusted_mode->crtc_vtotal - 1) << 16));
4871 I915_WRITE(VBLANK(pipe),
4872 (adjusted_mode->crtc_vblank_start - 1) |
4873 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4874 I915_WRITE(VSYNC(pipe),
4875 (adjusted_mode->crtc_vsync_start - 1) |
4876 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4878 /* pipesrc and dspsize control the size that is scaled from,
4879 * which should always be the user's requested size.
4881 I915_WRITE(DSPSIZE(plane),
4882 ((mode->vdisplay - 1) << 16) |
4883 (mode->hdisplay - 1));
4884 I915_WRITE(DSPPOS(plane), 0);
4885 I915_WRITE(PIPESRC(pipe),
4886 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4888 I915_WRITE(PIPECONF(pipe), pipeconf);
4889 POSTING_READ(PIPECONF(pipe));
4890 intel_enable_pipe(dev_priv, pipe, false);
4892 intel_wait_for_vblank(dev, pipe);
4894 I915_WRITE(DSPCNTR(plane), dspcntr);
4895 POSTING_READ(DSPCNTR(plane));
4896 intel_enable_plane(dev_priv, plane, pipe);
4898 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4900 intel_update_watermarks(dev);
4902 return ret;
4905 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4906 struct drm_display_mode *mode,
4907 struct drm_display_mode *adjusted_mode,
4908 int x, int y,
4909 struct drm_framebuffer *old_fb)
4911 struct drm_device *dev = crtc->dev;
4912 struct drm_i915_private *dev_priv = dev->dev_private;
4913 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4914 int pipe = intel_crtc->pipe;
4915 int plane = intel_crtc->plane;
4916 int refclk, num_connectors = 0;
4917 intel_clock_t clock, reduced_clock;
4918 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4919 bool ok, has_reduced_clock = false, is_sdvo = false;
4920 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4921 struct intel_encoder *has_edp_encoder = NULL;
4922 struct drm_mode_config *mode_config = &dev->mode_config;
4923 struct intel_encoder *encoder;
4924 const intel_limit_t *limit;
4925 int ret;
4926 struct fdi_m_n m_n = {0};
4927 u32 temp;
4928 u32 lvds_sync = 0;
4929 int target_clock, pixel_multiplier, lane, link_bw, factor;
4930 unsigned int pipe_bpp;
4931 bool dither;
4933 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4934 if (encoder->base.crtc != crtc)
4935 continue;
4937 switch (encoder->type) {
4938 case INTEL_OUTPUT_LVDS:
4939 is_lvds = true;
4940 break;
4941 case INTEL_OUTPUT_SDVO:
4942 case INTEL_OUTPUT_HDMI:
4943 is_sdvo = true;
4944 if (encoder->needs_tv_clock)
4945 is_tv = true;
4946 break;
4947 case INTEL_OUTPUT_TVOUT:
4948 is_tv = true;
4949 break;
4950 case INTEL_OUTPUT_ANALOG:
4951 is_crt = true;
4952 break;
4953 case INTEL_OUTPUT_DISPLAYPORT:
4954 is_dp = true;
4955 break;
4956 case INTEL_OUTPUT_EDP:
4957 has_edp_encoder = encoder;
4958 break;
4961 num_connectors++;
4964 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4965 refclk = dev_priv->lvds_ssc_freq * 1000;
4966 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4967 refclk / 1000);
4968 } else {
4969 refclk = 96000;
4970 if (!has_edp_encoder ||
4971 intel_encoder_is_pch_edp(&has_edp_encoder->base))
4972 refclk = 120000; /* 120Mhz refclk */
4976 * Returns a set of divisors for the desired target clock with the given
4977 * refclk, or FALSE. The returned values represent the clock equation:
4978 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4980 limit = intel_limit(crtc, refclk);
4981 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4982 if (!ok) {
4983 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4984 return -EINVAL;
4987 /* Ensure that the cursor is valid for the new mode before changing... */
4988 intel_crtc_update_cursor(crtc, true);
4990 if (is_lvds && dev_priv->lvds_downclock_avail) {
4991 has_reduced_clock = limit->find_pll(limit, crtc,
4992 dev_priv->lvds_downclock,
4993 refclk,
4994 &reduced_clock);
4995 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4997 * If the different P is found, it means that we can't
4998 * switch the display clock by using the FP0/FP1.
4999 * In such case we will disable the LVDS downclock
5000 * feature.
5002 DRM_DEBUG_KMS("Different P is found for "
5003 "LVDS clock/downclock\n");
5004 has_reduced_clock = 0;
5007 /* SDVO TV has fixed PLL values depend on its clock range,
5008 this mirrors vbios setting. */
5009 if (is_sdvo && is_tv) {
5010 if (adjusted_mode->clock >= 100000
5011 && adjusted_mode->clock < 140500) {
5012 clock.p1 = 2;
5013 clock.p2 = 10;
5014 clock.n = 3;
5015 clock.m1 = 16;
5016 clock.m2 = 8;
5017 } else if (adjusted_mode->clock >= 140500
5018 && adjusted_mode->clock <= 200000) {
5019 clock.p1 = 1;
5020 clock.p2 = 10;
5021 clock.n = 6;
5022 clock.m1 = 12;
5023 clock.m2 = 8;
5027 /* FDI link */
5028 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5029 lane = 0;
5030 /* CPU eDP doesn't require FDI link, so just set DP M/N
5031 according to current link config */
5032 if (has_edp_encoder &&
5033 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5034 target_clock = mode->clock;
5035 intel_edp_link_config(has_edp_encoder,
5036 &lane, &link_bw);
5037 } else {
5038 /* [e]DP over FDI requires target mode clock
5039 instead of link clock */
5040 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5041 target_clock = mode->clock;
5042 else
5043 target_clock = adjusted_mode->clock;
5045 /* FDI is a binary signal running at ~2.7GHz, encoding
5046 * each output octet as 10 bits. The actual frequency
5047 * is stored as a divider into a 100MHz clock, and the
5048 * mode pixel clock is stored in units of 1KHz.
5049 * Hence the bw of each lane in terms of the mode signal
5050 * is:
5052 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5055 /* determine panel color depth */
5056 temp = I915_READ(PIPECONF(pipe));
5057 temp &= ~PIPE_BPC_MASK;
5058 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5059 switch (pipe_bpp) {
5060 case 18:
5061 temp |= PIPE_6BPC;
5062 break;
5063 case 24:
5064 temp |= PIPE_8BPC;
5065 break;
5066 case 30:
5067 temp |= PIPE_10BPC;
5068 break;
5069 case 36:
5070 temp |= PIPE_12BPC;
5071 break;
5072 default:
5073 WARN(1, "intel_choose_pipe_bpp returned invalid value\n");
5074 temp |= PIPE_8BPC;
5075 pipe_bpp = 24;
5076 break;
5079 intel_crtc->bpp = pipe_bpp;
5080 I915_WRITE(PIPECONF(pipe), temp);
5082 if (!lane) {
5084 * Account for spread spectrum to avoid
5085 * oversubscribing the link. Max center spread
5086 * is 2.5%; use 5% for safety's sake.
5088 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5089 lane = bps / (link_bw * 8) + 1;
5092 intel_crtc->fdi_lanes = lane;
5094 if (pixel_multiplier > 1)
5095 link_bw *= pixel_multiplier;
5096 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5097 &m_n);
5099 /* Ironlake: try to setup display ref clock before DPLL
5100 * enabling. This is only under driver's control after
5101 * PCH B stepping, previous chipset stepping should be
5102 * ignoring this setting.
5104 temp = I915_READ(PCH_DREF_CONTROL);
5105 /* Always enable nonspread source */
5106 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5107 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5108 temp &= ~DREF_SSC_SOURCE_MASK;
5109 temp |= DREF_SSC_SOURCE_ENABLE;
5110 I915_WRITE(PCH_DREF_CONTROL, temp);
5112 POSTING_READ(PCH_DREF_CONTROL);
5113 udelay(200);
5115 if (has_edp_encoder) {
5116 if (intel_panel_use_ssc(dev_priv)) {
5117 temp |= DREF_SSC1_ENABLE;
5118 I915_WRITE(PCH_DREF_CONTROL, temp);
5120 POSTING_READ(PCH_DREF_CONTROL);
5121 udelay(200);
5123 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5125 /* Enable CPU source on CPU attached eDP */
5126 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5127 if (intel_panel_use_ssc(dev_priv))
5128 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5129 else
5130 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5131 } else {
5132 /* Enable SSC on PCH eDP if needed */
5133 if (intel_panel_use_ssc(dev_priv)) {
5134 DRM_ERROR("enabling SSC on PCH\n");
5135 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
5138 I915_WRITE(PCH_DREF_CONTROL, temp);
5139 POSTING_READ(PCH_DREF_CONTROL);
5140 udelay(200);
5143 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5144 if (has_reduced_clock)
5145 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5146 reduced_clock.m2;
5148 /* Enable autotuning of the PLL clock (if permissible) */
5149 factor = 21;
5150 if (is_lvds) {
5151 if ((intel_panel_use_ssc(dev_priv) &&
5152 dev_priv->lvds_ssc_freq == 100) ||
5153 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5154 factor = 25;
5155 } else if (is_sdvo && is_tv)
5156 factor = 20;
5158 if (clock.m1 < factor * clock.n)
5159 fp |= FP_CB_TUNE;
5161 dpll = 0;
5163 if (is_lvds)
5164 dpll |= DPLLB_MODE_LVDS;
5165 else
5166 dpll |= DPLLB_MODE_DAC_SERIAL;
5167 if (is_sdvo) {
5168 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5169 if (pixel_multiplier > 1) {
5170 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5172 dpll |= DPLL_DVO_HIGH_SPEED;
5174 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5175 dpll |= DPLL_DVO_HIGH_SPEED;
5177 /* compute bitmask from p1 value */
5178 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5179 /* also FPA1 */
5180 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5182 switch (clock.p2) {
5183 case 5:
5184 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5185 break;
5186 case 7:
5187 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5188 break;
5189 case 10:
5190 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5191 break;
5192 case 14:
5193 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5194 break;
5197 if (is_sdvo && is_tv)
5198 dpll |= PLL_REF_INPUT_TVCLKINBC;
5199 else if (is_tv)
5200 /* XXX: just matching BIOS for now */
5201 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5202 dpll |= 3;
5203 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5204 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5205 else
5206 dpll |= PLL_REF_INPUT_DREFCLK;
5208 /* setup pipeconf */
5209 pipeconf = I915_READ(PIPECONF(pipe));
5211 /* Set up the display plane register */
5212 dspcntr = DISPPLANE_GAMMA_ENABLE;
5214 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5215 drm_mode_debug_printmodeline(mode);
5217 /* PCH eDP needs FDI, but CPU eDP does not */
5218 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5219 I915_WRITE(PCH_FP0(pipe), fp);
5220 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5222 POSTING_READ(PCH_DPLL(pipe));
5223 udelay(150);
5226 /* enable transcoder DPLL */
5227 if (HAS_PCH_CPT(dev)) {
5228 temp = I915_READ(PCH_DPLL_SEL);
5229 switch (pipe) {
5230 case 0:
5231 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5232 break;
5233 case 1:
5234 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5235 break;
5236 case 2:
5237 /* FIXME: manage transcoder PLLs? */
5238 temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5239 break;
5240 default:
5241 BUG();
5243 I915_WRITE(PCH_DPLL_SEL, temp);
5245 POSTING_READ(PCH_DPLL_SEL);
5246 udelay(150);
5249 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5250 * This is an exception to the general rule that mode_set doesn't turn
5251 * things on.
5253 if (is_lvds) {
5254 temp = I915_READ(PCH_LVDS);
5255 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5256 if (pipe == 1) {
5257 if (HAS_PCH_CPT(dev))
5258 temp |= PORT_TRANS_B_SEL_CPT;
5259 else
5260 temp |= LVDS_PIPEB_SELECT;
5261 } else {
5262 if (HAS_PCH_CPT(dev))
5263 temp &= ~PORT_TRANS_SEL_MASK;
5264 else
5265 temp &= ~LVDS_PIPEB_SELECT;
5267 /* set the corresponsding LVDS_BORDER bit */
5268 temp |= dev_priv->lvds_border_bits;
5269 /* Set the B0-B3 data pairs corresponding to whether we're going to
5270 * set the DPLLs for dual-channel mode or not.
5272 if (clock.p2 == 7)
5273 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5274 else
5275 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5277 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5278 * appropriately here, but we need to look more thoroughly into how
5279 * panels behave in the two modes.
5281 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5282 lvds_sync |= LVDS_HSYNC_POLARITY;
5283 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5284 lvds_sync |= LVDS_VSYNC_POLARITY;
5285 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5286 != lvds_sync) {
5287 char flags[2] = "-+";
5288 DRM_INFO("Changing LVDS panel from "
5289 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5290 flags[!(temp & LVDS_HSYNC_POLARITY)],
5291 flags[!(temp & LVDS_VSYNC_POLARITY)],
5292 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5293 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5294 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5295 temp |= lvds_sync;
5297 I915_WRITE(PCH_LVDS, temp);
5300 pipeconf &= ~PIPECONF_DITHER_EN;
5301 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5302 if ((is_lvds && dev_priv->lvds_dither) || dither) {
5303 pipeconf |= PIPECONF_DITHER_EN;
5304 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5306 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5307 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5308 } else {
5309 /* For non-DP output, clear any trans DP clock recovery setting.*/
5310 I915_WRITE(TRANSDATA_M1(pipe), 0);
5311 I915_WRITE(TRANSDATA_N1(pipe), 0);
5312 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5313 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5316 if (!has_edp_encoder ||
5317 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5318 I915_WRITE(PCH_DPLL(pipe), dpll);
5320 /* Wait for the clocks to stabilize. */
5321 POSTING_READ(PCH_DPLL(pipe));
5322 udelay(150);
5324 /* The pixel multiplier can only be updated once the
5325 * DPLL is enabled and the clocks are stable.
5327 * So write it again.
5329 I915_WRITE(PCH_DPLL(pipe), dpll);
5332 intel_crtc->lowfreq_avail = false;
5333 if (is_lvds && has_reduced_clock && i915_powersave) {
5334 I915_WRITE(PCH_FP1(pipe), fp2);
5335 intel_crtc->lowfreq_avail = true;
5336 if (HAS_PIPE_CXSR(dev)) {
5337 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5338 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5340 } else {
5341 I915_WRITE(PCH_FP1(pipe), fp);
5342 if (HAS_PIPE_CXSR(dev)) {
5343 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5344 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5348 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5349 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5350 /* the chip adds 2 halflines automatically */
5351 adjusted_mode->crtc_vdisplay -= 1;
5352 adjusted_mode->crtc_vtotal -= 1;
5353 adjusted_mode->crtc_vblank_start -= 1;
5354 adjusted_mode->crtc_vblank_end -= 1;
5355 adjusted_mode->crtc_vsync_end -= 1;
5356 adjusted_mode->crtc_vsync_start -= 1;
5357 } else
5358 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5360 I915_WRITE(HTOTAL(pipe),
5361 (adjusted_mode->crtc_hdisplay - 1) |
5362 ((adjusted_mode->crtc_htotal - 1) << 16));
5363 I915_WRITE(HBLANK(pipe),
5364 (adjusted_mode->crtc_hblank_start - 1) |
5365 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5366 I915_WRITE(HSYNC(pipe),
5367 (adjusted_mode->crtc_hsync_start - 1) |
5368 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5370 I915_WRITE(VTOTAL(pipe),
5371 (adjusted_mode->crtc_vdisplay - 1) |
5372 ((adjusted_mode->crtc_vtotal - 1) << 16));
5373 I915_WRITE(VBLANK(pipe),
5374 (adjusted_mode->crtc_vblank_start - 1) |
5375 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5376 I915_WRITE(VSYNC(pipe),
5377 (adjusted_mode->crtc_vsync_start - 1) |
5378 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5380 /* pipesrc controls the size that is scaled from, which should
5381 * always be the user's requested size.
5383 I915_WRITE(PIPESRC(pipe),
5384 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5386 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5387 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5388 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5389 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5391 if (has_edp_encoder &&
5392 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5393 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5396 I915_WRITE(PIPECONF(pipe), pipeconf);
5397 POSTING_READ(PIPECONF(pipe));
5399 intel_wait_for_vblank(dev, pipe);
5401 if (IS_GEN5(dev)) {
5402 /* enable address swizzle for tiling buffer */
5403 temp = I915_READ(DISP_ARB_CTL);
5404 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5407 I915_WRITE(DSPCNTR(plane), dspcntr);
5408 POSTING_READ(DSPCNTR(plane));
5410 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5412 intel_update_watermarks(dev);
5414 return ret;
5417 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5418 struct drm_display_mode *mode,
5419 struct drm_display_mode *adjusted_mode,
5420 int x, int y,
5421 struct drm_framebuffer *old_fb)
5423 struct drm_device *dev = crtc->dev;
5424 struct drm_i915_private *dev_priv = dev->dev_private;
5425 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5426 int pipe = intel_crtc->pipe;
5427 int ret;
5429 drm_vblank_pre_modeset(dev, pipe);
5431 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5432 x, y, old_fb);
5434 drm_vblank_post_modeset(dev, pipe);
5436 return ret;
5439 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5440 void intel_crtc_load_lut(struct drm_crtc *crtc)
5442 struct drm_device *dev = crtc->dev;
5443 struct drm_i915_private *dev_priv = dev->dev_private;
5444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5445 int palreg = PALETTE(intel_crtc->pipe);
5446 int i;
5448 /* The clocks have to be on to load the palette. */
5449 if (!crtc->enabled)
5450 return;
5452 /* use legacy palette for Ironlake */
5453 if (HAS_PCH_SPLIT(dev))
5454 palreg = LGC_PALETTE(intel_crtc->pipe);
5456 for (i = 0; i < 256; i++) {
5457 I915_WRITE(palreg + 4 * i,
5458 (intel_crtc->lut_r[i] << 16) |
5459 (intel_crtc->lut_g[i] << 8) |
5460 intel_crtc->lut_b[i]);
5464 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5466 struct drm_device *dev = crtc->dev;
5467 struct drm_i915_private *dev_priv = dev->dev_private;
5468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5469 bool visible = base != 0;
5470 u32 cntl;
5472 if (intel_crtc->cursor_visible == visible)
5473 return;
5475 cntl = I915_READ(_CURACNTR);
5476 if (visible) {
5477 /* On these chipsets we can only modify the base whilst
5478 * the cursor is disabled.
5480 I915_WRITE(_CURABASE, base);
5482 cntl &= ~(CURSOR_FORMAT_MASK);
5483 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5484 cntl |= CURSOR_ENABLE |
5485 CURSOR_GAMMA_ENABLE |
5486 CURSOR_FORMAT_ARGB;
5487 } else
5488 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5489 I915_WRITE(_CURACNTR, cntl);
5491 intel_crtc->cursor_visible = visible;
5494 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5496 struct drm_device *dev = crtc->dev;
5497 struct drm_i915_private *dev_priv = dev->dev_private;
5498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5499 int pipe = intel_crtc->pipe;
5500 bool visible = base != 0;
5502 if (intel_crtc->cursor_visible != visible) {
5503 uint32_t cntl = I915_READ(CURCNTR(pipe));
5504 if (base) {
5505 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5506 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5507 cntl |= pipe << 28; /* Connect to correct pipe */
5508 } else {
5509 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5510 cntl |= CURSOR_MODE_DISABLE;
5512 I915_WRITE(CURCNTR(pipe), cntl);
5514 intel_crtc->cursor_visible = visible;
5516 /* and commit changes on next vblank */
5517 I915_WRITE(CURBASE(pipe), base);
5520 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5521 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5522 bool on)
5524 struct drm_device *dev = crtc->dev;
5525 struct drm_i915_private *dev_priv = dev->dev_private;
5526 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5527 int pipe = intel_crtc->pipe;
5528 int x = intel_crtc->cursor_x;
5529 int y = intel_crtc->cursor_y;
5530 u32 base, pos;
5531 bool visible;
5533 pos = 0;
5535 if (on && crtc->enabled && crtc->fb) {
5536 base = intel_crtc->cursor_addr;
5537 if (x > (int) crtc->fb->width)
5538 base = 0;
5540 if (y > (int) crtc->fb->height)
5541 base = 0;
5542 } else
5543 base = 0;
5545 if (x < 0) {
5546 if (x + intel_crtc->cursor_width < 0)
5547 base = 0;
5549 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5550 x = -x;
5552 pos |= x << CURSOR_X_SHIFT;
5554 if (y < 0) {
5555 if (y + intel_crtc->cursor_height < 0)
5556 base = 0;
5558 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5559 y = -y;
5561 pos |= y << CURSOR_Y_SHIFT;
5563 visible = base != 0;
5564 if (!visible && !intel_crtc->cursor_visible)
5565 return;
5567 I915_WRITE(CURPOS(pipe), pos);
5568 if (IS_845G(dev) || IS_I865G(dev))
5569 i845_update_cursor(crtc, base);
5570 else
5571 i9xx_update_cursor(crtc, base);
5573 if (visible)
5574 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5577 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5578 struct drm_file *file,
5579 uint32_t handle,
5580 uint32_t width, uint32_t height)
5582 struct drm_device *dev = crtc->dev;
5583 struct drm_i915_private *dev_priv = dev->dev_private;
5584 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5585 struct drm_i915_gem_object *obj;
5586 uint32_t addr;
5587 int ret;
5589 DRM_DEBUG_KMS("\n");
5591 /* if we want to turn off the cursor ignore width and height */
5592 if (!handle) {
5593 DRM_DEBUG_KMS("cursor off\n");
5594 addr = 0;
5595 obj = NULL;
5596 mutex_lock(&dev->struct_mutex);
5597 goto finish;
5600 /* Currently we only support 64x64 cursors */
5601 if (width != 64 || height != 64) {
5602 DRM_ERROR("we currently only support 64x64 cursors\n");
5603 return -EINVAL;
5606 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5607 if (&obj->base == NULL)
5608 return -ENOENT;
5610 if (obj->base.size < width * height * 4) {
5611 DRM_ERROR("buffer is to small\n");
5612 ret = -ENOMEM;
5613 goto fail;
5616 /* we only need to pin inside GTT if cursor is non-phy */
5617 mutex_lock(&dev->struct_mutex);
5618 if (!dev_priv->info->cursor_needs_physical) {
5619 if (obj->tiling_mode) {
5620 DRM_ERROR("cursor cannot be tiled\n");
5621 ret = -EINVAL;
5622 goto fail_locked;
5625 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5626 if (ret) {
5627 DRM_ERROR("failed to move cursor bo into the GTT\n");
5628 goto fail_locked;
5631 ret = i915_gem_object_put_fence(obj);
5632 if (ret) {
5633 DRM_ERROR("failed to release fence for cursor");
5634 goto fail_unpin;
5637 addr = obj->gtt_offset;
5638 } else {
5639 int align = IS_I830(dev) ? 16 * 1024 : 256;
5640 ret = i915_gem_attach_phys_object(dev, obj,
5641 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5642 align);
5643 if (ret) {
5644 DRM_ERROR("failed to attach phys object\n");
5645 goto fail_locked;
5647 addr = obj->phys_obj->handle->busaddr;
5650 if (IS_GEN2(dev))
5651 I915_WRITE(CURSIZE, (height << 12) | width);
5653 finish:
5654 if (intel_crtc->cursor_bo) {
5655 if (dev_priv->info->cursor_needs_physical) {
5656 if (intel_crtc->cursor_bo != obj)
5657 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5658 } else
5659 i915_gem_object_unpin(intel_crtc->cursor_bo);
5660 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5663 mutex_unlock(&dev->struct_mutex);
5665 intel_crtc->cursor_addr = addr;
5666 intel_crtc->cursor_bo = obj;
5667 intel_crtc->cursor_width = width;
5668 intel_crtc->cursor_height = height;
5670 intel_crtc_update_cursor(crtc, true);
5672 return 0;
5673 fail_unpin:
5674 i915_gem_object_unpin(obj);
5675 fail_locked:
5676 mutex_unlock(&dev->struct_mutex);
5677 fail:
5678 drm_gem_object_unreference_unlocked(&obj->base);
5679 return ret;
5682 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5684 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5686 intel_crtc->cursor_x = x;
5687 intel_crtc->cursor_y = y;
5689 intel_crtc_update_cursor(crtc, true);
5691 return 0;
5694 /** Sets the color ramps on behalf of RandR */
5695 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5696 u16 blue, int regno)
5698 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5700 intel_crtc->lut_r[regno] = red >> 8;
5701 intel_crtc->lut_g[regno] = green >> 8;
5702 intel_crtc->lut_b[regno] = blue >> 8;
5705 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5706 u16 *blue, int regno)
5708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5710 *red = intel_crtc->lut_r[regno] << 8;
5711 *green = intel_crtc->lut_g[regno] << 8;
5712 *blue = intel_crtc->lut_b[regno] << 8;
5715 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5716 u16 *blue, uint32_t start, uint32_t size)
5718 int end = (start + size > 256) ? 256 : start + size, i;
5719 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5721 for (i = start; i < end; i++) {
5722 intel_crtc->lut_r[i] = red[i] >> 8;
5723 intel_crtc->lut_g[i] = green[i] >> 8;
5724 intel_crtc->lut_b[i] = blue[i] >> 8;
5727 intel_crtc_load_lut(crtc);
5731 * Get a pipe with a simple mode set on it for doing load-based monitor
5732 * detection.
5734 * It will be up to the load-detect code to adjust the pipe as appropriate for
5735 * its requirements. The pipe will be connected to no other encoders.
5737 * Currently this code will only succeed if there is a pipe with no encoders
5738 * configured for it. In the future, it could choose to temporarily disable
5739 * some outputs to free up a pipe for its use.
5741 * \return crtc, or NULL if no pipes are available.
5744 /* VESA 640x480x72Hz mode to set on the pipe */
5745 static struct drm_display_mode load_detect_mode = {
5746 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5747 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5750 static struct drm_framebuffer *
5751 intel_framebuffer_create(struct drm_device *dev,
5752 struct drm_mode_fb_cmd *mode_cmd,
5753 struct drm_i915_gem_object *obj)
5755 struct intel_framebuffer *intel_fb;
5756 int ret;
5758 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5759 if (!intel_fb) {
5760 drm_gem_object_unreference_unlocked(&obj->base);
5761 return ERR_PTR(-ENOMEM);
5764 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5765 if (ret) {
5766 drm_gem_object_unreference_unlocked(&obj->base);
5767 kfree(intel_fb);
5768 return ERR_PTR(ret);
5771 return &intel_fb->base;
5774 static u32
5775 intel_framebuffer_pitch_for_width(int width, int bpp)
5777 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5778 return ALIGN(pitch, 64);
5781 static u32
5782 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5784 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5785 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5788 static struct drm_framebuffer *
5789 intel_framebuffer_create_for_mode(struct drm_device *dev,
5790 struct drm_display_mode *mode,
5791 int depth, int bpp)
5793 struct drm_i915_gem_object *obj;
5794 struct drm_mode_fb_cmd mode_cmd;
5796 obj = i915_gem_alloc_object(dev,
5797 intel_framebuffer_size_for_mode(mode, bpp));
5798 if (obj == NULL)
5799 return ERR_PTR(-ENOMEM);
5801 mode_cmd.width = mode->hdisplay;
5802 mode_cmd.height = mode->vdisplay;
5803 mode_cmd.depth = depth;
5804 mode_cmd.bpp = bpp;
5805 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5807 return intel_framebuffer_create(dev, &mode_cmd, obj);
5810 static struct drm_framebuffer *
5811 mode_fits_in_fbdev(struct drm_device *dev,
5812 struct drm_display_mode *mode)
5814 struct drm_i915_private *dev_priv = dev->dev_private;
5815 struct drm_i915_gem_object *obj;
5816 struct drm_framebuffer *fb;
5818 if (dev_priv->fbdev == NULL)
5819 return NULL;
5821 obj = dev_priv->fbdev->ifb.obj;
5822 if (obj == NULL)
5823 return NULL;
5825 fb = &dev_priv->fbdev->ifb.base;
5826 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5827 fb->bits_per_pixel))
5828 return NULL;
5830 if (obj->base.size < mode->vdisplay * fb->pitch)
5831 return NULL;
5833 return fb;
5836 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5837 struct drm_connector *connector,
5838 struct drm_display_mode *mode,
5839 struct intel_load_detect_pipe *old)
5841 struct intel_crtc *intel_crtc;
5842 struct drm_crtc *possible_crtc;
5843 struct drm_encoder *encoder = &intel_encoder->base;
5844 struct drm_crtc *crtc = NULL;
5845 struct drm_device *dev = encoder->dev;
5846 struct drm_framebuffer *old_fb;
5847 int i = -1;
5849 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5850 connector->base.id, drm_get_connector_name(connector),
5851 encoder->base.id, drm_get_encoder_name(encoder));
5854 * Algorithm gets a little messy:
5856 * - if the connector already has an assigned crtc, use it (but make
5857 * sure it's on first)
5859 * - try to find the first unused crtc that can drive this connector,
5860 * and use that if we find one
5863 /* See if we already have a CRTC for this connector */
5864 if (encoder->crtc) {
5865 crtc = encoder->crtc;
5867 intel_crtc = to_intel_crtc(crtc);
5868 old->dpms_mode = intel_crtc->dpms_mode;
5869 old->load_detect_temp = false;
5871 /* Make sure the crtc and connector are running */
5872 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5873 struct drm_encoder_helper_funcs *encoder_funcs;
5874 struct drm_crtc_helper_funcs *crtc_funcs;
5876 crtc_funcs = crtc->helper_private;
5877 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5879 encoder_funcs = encoder->helper_private;
5880 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5883 return true;
5886 /* Find an unused one (if possible) */
5887 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5888 i++;
5889 if (!(encoder->possible_crtcs & (1 << i)))
5890 continue;
5891 if (!possible_crtc->enabled) {
5892 crtc = possible_crtc;
5893 break;
5898 * If we didn't find an unused CRTC, don't use any.
5900 if (!crtc) {
5901 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5902 return false;
5905 encoder->crtc = crtc;
5906 connector->encoder = encoder;
5908 intel_crtc = to_intel_crtc(crtc);
5909 old->dpms_mode = intel_crtc->dpms_mode;
5910 old->load_detect_temp = true;
5911 old->release_fb = NULL;
5913 if (!mode)
5914 mode = &load_detect_mode;
5916 old_fb = crtc->fb;
5918 /* We need a framebuffer large enough to accommodate all accesses
5919 * that the plane may generate whilst we perform load detection.
5920 * We can not rely on the fbcon either being present (we get called
5921 * during its initialisation to detect all boot displays, or it may
5922 * not even exist) or that it is large enough to satisfy the
5923 * requested mode.
5925 crtc->fb = mode_fits_in_fbdev(dev, mode);
5926 if (crtc->fb == NULL) {
5927 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5928 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5929 old->release_fb = crtc->fb;
5930 } else
5931 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5932 if (IS_ERR(crtc->fb)) {
5933 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5934 crtc->fb = old_fb;
5935 return false;
5938 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5939 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5940 if (old->release_fb)
5941 old->release_fb->funcs->destroy(old->release_fb);
5942 crtc->fb = old_fb;
5943 return false;
5946 /* let the connector get through one full cycle before testing */
5947 intel_wait_for_vblank(dev, intel_crtc->pipe);
5949 return true;
5952 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5953 struct drm_connector *connector,
5954 struct intel_load_detect_pipe *old)
5956 struct drm_encoder *encoder = &intel_encoder->base;
5957 struct drm_device *dev = encoder->dev;
5958 struct drm_crtc *crtc = encoder->crtc;
5959 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5960 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5962 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5963 connector->base.id, drm_get_connector_name(connector),
5964 encoder->base.id, drm_get_encoder_name(encoder));
5966 if (old->load_detect_temp) {
5967 connector->encoder = NULL;
5968 drm_helper_disable_unused_functions(dev);
5970 if (old->release_fb)
5971 old->release_fb->funcs->destroy(old->release_fb);
5973 return;
5976 /* Switch crtc and encoder back off if necessary */
5977 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5978 encoder_funcs->dpms(encoder, old->dpms_mode);
5979 crtc_funcs->dpms(crtc, old->dpms_mode);
5983 /* Returns the clock of the currently programmed mode of the given pipe. */
5984 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5986 struct drm_i915_private *dev_priv = dev->dev_private;
5987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5988 int pipe = intel_crtc->pipe;
5989 u32 dpll = I915_READ(DPLL(pipe));
5990 u32 fp;
5991 intel_clock_t clock;
5993 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5994 fp = I915_READ(FP0(pipe));
5995 else
5996 fp = I915_READ(FP1(pipe));
5998 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5999 if (IS_PINEVIEW(dev)) {
6000 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6001 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6002 } else {
6003 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6004 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6007 if (!IS_GEN2(dev)) {
6008 if (IS_PINEVIEW(dev))
6009 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6010 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6011 else
6012 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6013 DPLL_FPA01_P1_POST_DIV_SHIFT);
6015 switch (dpll & DPLL_MODE_MASK) {
6016 case DPLLB_MODE_DAC_SERIAL:
6017 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6018 5 : 10;
6019 break;
6020 case DPLLB_MODE_LVDS:
6021 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6022 7 : 14;
6023 break;
6024 default:
6025 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6026 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6027 return 0;
6030 /* XXX: Handle the 100Mhz refclk */
6031 intel_clock(dev, 96000, &clock);
6032 } else {
6033 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6035 if (is_lvds) {
6036 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6037 DPLL_FPA01_P1_POST_DIV_SHIFT);
6038 clock.p2 = 14;
6040 if ((dpll & PLL_REF_INPUT_MASK) ==
6041 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6042 /* XXX: might not be 66MHz */
6043 intel_clock(dev, 66000, &clock);
6044 } else
6045 intel_clock(dev, 48000, &clock);
6046 } else {
6047 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6048 clock.p1 = 2;
6049 else {
6050 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6051 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6053 if (dpll & PLL_P2_DIVIDE_BY_4)
6054 clock.p2 = 4;
6055 else
6056 clock.p2 = 2;
6058 intel_clock(dev, 48000, &clock);
6062 /* XXX: It would be nice to validate the clocks, but we can't reuse
6063 * i830PllIsValid() because it relies on the xf86_config connector
6064 * configuration being accurate, which it isn't necessarily.
6067 return clock.dot;
6070 /** Returns the currently programmed mode of the given pipe. */
6071 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6072 struct drm_crtc *crtc)
6074 struct drm_i915_private *dev_priv = dev->dev_private;
6075 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6076 int pipe = intel_crtc->pipe;
6077 struct drm_display_mode *mode;
6078 int htot = I915_READ(HTOTAL(pipe));
6079 int hsync = I915_READ(HSYNC(pipe));
6080 int vtot = I915_READ(VTOTAL(pipe));
6081 int vsync = I915_READ(VSYNC(pipe));
6083 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6084 if (!mode)
6085 return NULL;
6087 mode->clock = intel_crtc_clock_get(dev, crtc);
6088 mode->hdisplay = (htot & 0xffff) + 1;
6089 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6090 mode->hsync_start = (hsync & 0xffff) + 1;
6091 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6092 mode->vdisplay = (vtot & 0xffff) + 1;
6093 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6094 mode->vsync_start = (vsync & 0xffff) + 1;
6095 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6097 drm_mode_set_name(mode);
6098 drm_mode_set_crtcinfo(mode, 0);
6100 return mode;
6103 #define GPU_IDLE_TIMEOUT 500 /* ms */
6105 /* When this timer fires, we've been idle for awhile */
6106 static void intel_gpu_idle_timer(unsigned long arg)
6108 struct drm_device *dev = (struct drm_device *)arg;
6109 drm_i915_private_t *dev_priv = dev->dev_private;
6111 if (!list_empty(&dev_priv->mm.active_list)) {
6112 /* Still processing requests, so just re-arm the timer. */
6113 mod_timer(&dev_priv->idle_timer, jiffies +
6114 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6115 return;
6118 dev_priv->busy = false;
6119 queue_work(dev_priv->wq, &dev_priv->idle_work);
6122 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6124 static void intel_crtc_idle_timer(unsigned long arg)
6126 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6127 struct drm_crtc *crtc = &intel_crtc->base;
6128 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6129 struct intel_framebuffer *intel_fb;
6131 intel_fb = to_intel_framebuffer(crtc->fb);
6132 if (intel_fb && intel_fb->obj->active) {
6133 /* The framebuffer is still being accessed by the GPU. */
6134 mod_timer(&intel_crtc->idle_timer, jiffies +
6135 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6136 return;
6139 intel_crtc->busy = false;
6140 queue_work(dev_priv->wq, &dev_priv->idle_work);
6143 static void intel_increase_pllclock(struct drm_crtc *crtc)
6145 struct drm_device *dev = crtc->dev;
6146 drm_i915_private_t *dev_priv = dev->dev_private;
6147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6148 int pipe = intel_crtc->pipe;
6149 int dpll_reg = DPLL(pipe);
6150 int dpll;
6152 if (HAS_PCH_SPLIT(dev))
6153 return;
6155 if (!dev_priv->lvds_downclock_avail)
6156 return;
6158 dpll = I915_READ(dpll_reg);
6159 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6160 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6162 /* Unlock panel regs */
6163 I915_WRITE(PP_CONTROL,
6164 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6166 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6167 I915_WRITE(dpll_reg, dpll);
6168 intel_wait_for_vblank(dev, pipe);
6170 dpll = I915_READ(dpll_reg);
6171 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6172 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6174 /* ...and lock them again */
6175 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6178 /* Schedule downclock */
6179 mod_timer(&intel_crtc->idle_timer, jiffies +
6180 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6183 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6185 struct drm_device *dev = crtc->dev;
6186 drm_i915_private_t *dev_priv = dev->dev_private;
6187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6188 int pipe = intel_crtc->pipe;
6189 int dpll_reg = DPLL(pipe);
6190 int dpll = I915_READ(dpll_reg);
6192 if (HAS_PCH_SPLIT(dev))
6193 return;
6195 if (!dev_priv->lvds_downclock_avail)
6196 return;
6199 * Since this is called by a timer, we should never get here in
6200 * the manual case.
6202 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6203 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6205 /* Unlock panel regs */
6206 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6207 PANEL_UNLOCK_REGS);
6209 dpll |= DISPLAY_RATE_SELECT_FPA1;
6210 I915_WRITE(dpll_reg, dpll);
6211 intel_wait_for_vblank(dev, pipe);
6212 dpll = I915_READ(dpll_reg);
6213 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6214 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6216 /* ...and lock them again */
6217 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6223 * intel_idle_update - adjust clocks for idleness
6224 * @work: work struct
6226 * Either the GPU or display (or both) went idle. Check the busy status
6227 * here and adjust the CRTC and GPU clocks as necessary.
6229 static void intel_idle_update(struct work_struct *work)
6231 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6232 idle_work);
6233 struct drm_device *dev = dev_priv->dev;
6234 struct drm_crtc *crtc;
6235 struct intel_crtc *intel_crtc;
6237 if (!i915_powersave)
6238 return;
6240 mutex_lock(&dev->struct_mutex);
6242 i915_update_gfx_val(dev_priv);
6244 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6245 /* Skip inactive CRTCs */
6246 if (!crtc->fb)
6247 continue;
6249 intel_crtc = to_intel_crtc(crtc);
6250 if (!intel_crtc->busy)
6251 intel_decrease_pllclock(crtc);
6255 mutex_unlock(&dev->struct_mutex);
6259 * intel_mark_busy - mark the GPU and possibly the display busy
6260 * @dev: drm device
6261 * @obj: object we're operating on
6263 * Callers can use this function to indicate that the GPU is busy processing
6264 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6265 * buffer), we'll also mark the display as busy, so we know to increase its
6266 * clock frequency.
6268 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6270 drm_i915_private_t *dev_priv = dev->dev_private;
6271 struct drm_crtc *crtc = NULL;
6272 struct intel_framebuffer *intel_fb;
6273 struct intel_crtc *intel_crtc;
6275 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6276 return;
6278 if (!dev_priv->busy)
6279 dev_priv->busy = true;
6280 else
6281 mod_timer(&dev_priv->idle_timer, jiffies +
6282 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6284 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6285 if (!crtc->fb)
6286 continue;
6288 intel_crtc = to_intel_crtc(crtc);
6289 intel_fb = to_intel_framebuffer(crtc->fb);
6290 if (intel_fb->obj == obj) {
6291 if (!intel_crtc->busy) {
6292 /* Non-busy -> busy, upclock */
6293 intel_increase_pllclock(crtc);
6294 intel_crtc->busy = true;
6295 } else {
6296 /* Busy -> busy, put off timer */
6297 mod_timer(&intel_crtc->idle_timer, jiffies +
6298 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6304 static void intel_crtc_destroy(struct drm_crtc *crtc)
6306 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6307 struct drm_device *dev = crtc->dev;
6308 struct intel_unpin_work *work;
6309 unsigned long flags;
6311 spin_lock_irqsave(&dev->event_lock, flags);
6312 work = intel_crtc->unpin_work;
6313 intel_crtc->unpin_work = NULL;
6314 spin_unlock_irqrestore(&dev->event_lock, flags);
6316 if (work) {
6317 cancel_work_sync(&work->work);
6318 kfree(work);
6321 drm_crtc_cleanup(crtc);
6323 kfree(intel_crtc);
6326 static void intel_unpin_work_fn(struct work_struct *__work)
6328 struct intel_unpin_work *work =
6329 container_of(__work, struct intel_unpin_work, work);
6331 mutex_lock(&work->dev->struct_mutex);
6332 i915_gem_object_unpin(work->old_fb_obj);
6333 drm_gem_object_unreference(&work->pending_flip_obj->base);
6334 drm_gem_object_unreference(&work->old_fb_obj->base);
6336 mutex_unlock(&work->dev->struct_mutex);
6337 kfree(work);
6340 static void do_intel_finish_page_flip(struct drm_device *dev,
6341 struct drm_crtc *crtc)
6343 drm_i915_private_t *dev_priv = dev->dev_private;
6344 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6345 struct intel_unpin_work *work;
6346 struct drm_i915_gem_object *obj;
6347 struct drm_pending_vblank_event *e;
6348 struct timeval tnow, tvbl;
6349 unsigned long flags;
6351 /* Ignore early vblank irqs */
6352 if (intel_crtc == NULL)
6353 return;
6355 do_gettimeofday(&tnow);
6357 spin_lock_irqsave(&dev->event_lock, flags);
6358 work = intel_crtc->unpin_work;
6359 if (work == NULL || !work->pending) {
6360 spin_unlock_irqrestore(&dev->event_lock, flags);
6361 return;
6364 intel_crtc->unpin_work = NULL;
6366 if (work->event) {
6367 e = work->event;
6368 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6370 /* Called before vblank count and timestamps have
6371 * been updated for the vblank interval of flip
6372 * completion? Need to increment vblank count and
6373 * add one videorefresh duration to returned timestamp
6374 * to account for this. We assume this happened if we
6375 * get called over 0.9 frame durations after the last
6376 * timestamped vblank.
6378 * This calculation can not be used with vrefresh rates
6379 * below 5Hz (10Hz to be on the safe side) without
6380 * promoting to 64 integers.
6382 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6383 9 * crtc->framedur_ns) {
6384 e->event.sequence++;
6385 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6386 crtc->framedur_ns);
6389 e->event.tv_sec = tvbl.tv_sec;
6390 e->event.tv_usec = tvbl.tv_usec;
6392 list_add_tail(&e->base.link,
6393 &e->base.file_priv->event_list);
6394 wake_up_interruptible(&e->base.file_priv->event_wait);
6397 drm_vblank_put(dev, intel_crtc->pipe);
6399 spin_unlock_irqrestore(&dev->event_lock, flags);
6401 obj = work->old_fb_obj;
6403 atomic_clear_mask(1 << intel_crtc->plane,
6404 &obj->pending_flip.counter);
6405 if (atomic_read(&obj->pending_flip) == 0)
6406 wake_up(&dev_priv->pending_flip_queue);
6408 schedule_work(&work->work);
6410 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6413 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6415 drm_i915_private_t *dev_priv = dev->dev_private;
6416 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6418 do_intel_finish_page_flip(dev, crtc);
6421 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6423 drm_i915_private_t *dev_priv = dev->dev_private;
6424 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6426 do_intel_finish_page_flip(dev, crtc);
6429 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6431 drm_i915_private_t *dev_priv = dev->dev_private;
6432 struct intel_crtc *intel_crtc =
6433 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6434 unsigned long flags;
6436 spin_lock_irqsave(&dev->event_lock, flags);
6437 if (intel_crtc->unpin_work) {
6438 if ((++intel_crtc->unpin_work->pending) > 1)
6439 DRM_ERROR("Prepared flip multiple times\n");
6440 } else {
6441 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6443 spin_unlock_irqrestore(&dev->event_lock, flags);
6446 static int intel_gen2_queue_flip(struct drm_device *dev,
6447 struct drm_crtc *crtc,
6448 struct drm_framebuffer *fb,
6449 struct drm_i915_gem_object *obj)
6451 struct drm_i915_private *dev_priv = dev->dev_private;
6452 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6453 unsigned long offset;
6454 u32 flip_mask;
6455 int ret;
6457 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6458 if (ret)
6459 goto out;
6461 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6462 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6464 ret = BEGIN_LP_RING(6);
6465 if (ret)
6466 goto out;
6468 /* Can't queue multiple flips, so wait for the previous
6469 * one to finish before executing the next.
6471 if (intel_crtc->plane)
6472 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6473 else
6474 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6475 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6476 OUT_RING(MI_NOOP);
6477 OUT_RING(MI_DISPLAY_FLIP |
6478 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6479 OUT_RING(fb->pitch);
6480 OUT_RING(obj->gtt_offset + offset);
6481 OUT_RING(MI_NOOP);
6482 ADVANCE_LP_RING();
6483 out:
6484 return ret;
6487 static int intel_gen3_queue_flip(struct drm_device *dev,
6488 struct drm_crtc *crtc,
6489 struct drm_framebuffer *fb,
6490 struct drm_i915_gem_object *obj)
6492 struct drm_i915_private *dev_priv = dev->dev_private;
6493 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6494 unsigned long offset;
6495 u32 flip_mask;
6496 int ret;
6498 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6499 if (ret)
6500 goto out;
6502 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6503 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6505 ret = BEGIN_LP_RING(6);
6506 if (ret)
6507 goto out;
6509 if (intel_crtc->plane)
6510 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6511 else
6512 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6513 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6514 OUT_RING(MI_NOOP);
6515 OUT_RING(MI_DISPLAY_FLIP_I915 |
6516 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6517 OUT_RING(fb->pitch);
6518 OUT_RING(obj->gtt_offset + offset);
6519 OUT_RING(MI_NOOP);
6521 ADVANCE_LP_RING();
6522 out:
6523 return ret;
6526 static int intel_gen4_queue_flip(struct drm_device *dev,
6527 struct drm_crtc *crtc,
6528 struct drm_framebuffer *fb,
6529 struct drm_i915_gem_object *obj)
6531 struct drm_i915_private *dev_priv = dev->dev_private;
6532 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6533 uint32_t pf, pipesrc;
6534 int ret;
6536 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6537 if (ret)
6538 goto out;
6540 ret = BEGIN_LP_RING(4);
6541 if (ret)
6542 goto out;
6544 /* i965+ uses the linear or tiled offsets from the
6545 * Display Registers (which do not change across a page-flip)
6546 * so we need only reprogram the base address.
6548 OUT_RING(MI_DISPLAY_FLIP |
6549 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6550 OUT_RING(fb->pitch);
6551 OUT_RING(obj->gtt_offset | obj->tiling_mode);
6553 /* XXX Enabling the panel-fitter across page-flip is so far
6554 * untested on non-native modes, so ignore it for now.
6555 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6557 pf = 0;
6558 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6559 OUT_RING(pf | pipesrc);
6560 ADVANCE_LP_RING();
6561 out:
6562 return ret;
6565 static int intel_gen6_queue_flip(struct drm_device *dev,
6566 struct drm_crtc *crtc,
6567 struct drm_framebuffer *fb,
6568 struct drm_i915_gem_object *obj)
6570 struct drm_i915_private *dev_priv = dev->dev_private;
6571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6572 uint32_t pf, pipesrc;
6573 int ret;
6575 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6576 if (ret)
6577 goto out;
6579 ret = BEGIN_LP_RING(4);
6580 if (ret)
6581 goto out;
6583 OUT_RING(MI_DISPLAY_FLIP |
6584 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6585 OUT_RING(fb->pitch | obj->tiling_mode);
6586 OUT_RING(obj->gtt_offset);
6588 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6589 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6590 OUT_RING(pf | pipesrc);
6591 ADVANCE_LP_RING();
6592 out:
6593 return ret;
6597 * On gen7 we currently use the blit ring because (in early silicon at least)
6598 * the render ring doesn't give us interrpts for page flip completion, which
6599 * means clients will hang after the first flip is queued. Fortunately the
6600 * blit ring generates interrupts properly, so use it instead.
6602 static int intel_gen7_queue_flip(struct drm_device *dev,
6603 struct drm_crtc *crtc,
6604 struct drm_framebuffer *fb,
6605 struct drm_i915_gem_object *obj)
6607 struct drm_i915_private *dev_priv = dev->dev_private;
6608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6609 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6610 int ret;
6612 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6613 if (ret)
6614 goto out;
6616 ret = intel_ring_begin(ring, 4);
6617 if (ret)
6618 goto out;
6620 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
6621 intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
6622 intel_ring_emit(ring, (obj->gtt_offset));
6623 intel_ring_emit(ring, (MI_NOOP));
6624 intel_ring_advance(ring);
6625 out:
6626 return ret;
6629 static int intel_default_queue_flip(struct drm_device *dev,
6630 struct drm_crtc *crtc,
6631 struct drm_framebuffer *fb,
6632 struct drm_i915_gem_object *obj)
6634 return -ENODEV;
6637 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6638 struct drm_framebuffer *fb,
6639 struct drm_pending_vblank_event *event)
6641 struct drm_device *dev = crtc->dev;
6642 struct drm_i915_private *dev_priv = dev->dev_private;
6643 struct intel_framebuffer *intel_fb;
6644 struct drm_i915_gem_object *obj;
6645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6646 struct intel_unpin_work *work;
6647 unsigned long flags;
6648 int ret;
6650 work = kzalloc(sizeof *work, GFP_KERNEL);
6651 if (work == NULL)
6652 return -ENOMEM;
6654 work->event = event;
6655 work->dev = crtc->dev;
6656 intel_fb = to_intel_framebuffer(crtc->fb);
6657 work->old_fb_obj = intel_fb->obj;
6658 INIT_WORK(&work->work, intel_unpin_work_fn);
6660 /* We borrow the event spin lock for protecting unpin_work */
6661 spin_lock_irqsave(&dev->event_lock, flags);
6662 if (intel_crtc->unpin_work) {
6663 spin_unlock_irqrestore(&dev->event_lock, flags);
6664 kfree(work);
6666 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6667 return -EBUSY;
6669 intel_crtc->unpin_work = work;
6670 spin_unlock_irqrestore(&dev->event_lock, flags);
6672 intel_fb = to_intel_framebuffer(fb);
6673 obj = intel_fb->obj;
6675 mutex_lock(&dev->struct_mutex);
6677 /* Reference the objects for the scheduled work. */
6678 drm_gem_object_reference(&work->old_fb_obj->base);
6679 drm_gem_object_reference(&obj->base);
6681 crtc->fb = fb;
6683 ret = drm_vblank_get(dev, intel_crtc->pipe);
6684 if (ret)
6685 goto cleanup_objs;
6687 work->pending_flip_obj = obj;
6689 work->enable_stall_check = true;
6691 /* Block clients from rendering to the new back buffer until
6692 * the flip occurs and the object is no longer visible.
6694 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6696 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6697 if (ret)
6698 goto cleanup_pending;
6700 mutex_unlock(&dev->struct_mutex);
6702 trace_i915_flip_request(intel_crtc->plane, obj);
6704 return 0;
6706 cleanup_pending:
6707 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6708 cleanup_objs:
6709 drm_gem_object_unreference(&work->old_fb_obj->base);
6710 drm_gem_object_unreference(&obj->base);
6711 mutex_unlock(&dev->struct_mutex);
6713 spin_lock_irqsave(&dev->event_lock, flags);
6714 intel_crtc->unpin_work = NULL;
6715 spin_unlock_irqrestore(&dev->event_lock, flags);
6717 kfree(work);
6719 return ret;
6722 static void intel_sanitize_modesetting(struct drm_device *dev,
6723 int pipe, int plane)
6725 struct drm_i915_private *dev_priv = dev->dev_private;
6726 u32 reg, val;
6728 if (HAS_PCH_SPLIT(dev))
6729 return;
6731 /* Who knows what state these registers were left in by the BIOS or
6732 * grub?
6734 * If we leave the registers in a conflicting state (e.g. with the
6735 * display plane reading from the other pipe than the one we intend
6736 * to use) then when we attempt to teardown the active mode, we will
6737 * not disable the pipes and planes in the correct order -- leaving
6738 * a plane reading from a disabled pipe and possibly leading to
6739 * undefined behaviour.
6742 reg = DSPCNTR(plane);
6743 val = I915_READ(reg);
6745 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6746 return;
6747 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6748 return;
6750 /* This display plane is active and attached to the other CPU pipe. */
6751 pipe = !pipe;
6753 /* Disable the plane and wait for it to stop reading from the pipe. */
6754 intel_disable_plane(dev_priv, plane, pipe);
6755 intel_disable_pipe(dev_priv, pipe);
6758 static void intel_crtc_reset(struct drm_crtc *crtc)
6760 struct drm_device *dev = crtc->dev;
6761 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6763 /* Reset flags back to the 'unknown' status so that they
6764 * will be correctly set on the initial modeset.
6766 intel_crtc->dpms_mode = -1;
6768 /* We need to fix up any BIOS configuration that conflicts with
6769 * our expectations.
6771 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6774 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6775 .dpms = intel_crtc_dpms,
6776 .mode_fixup = intel_crtc_mode_fixup,
6777 .mode_set = intel_crtc_mode_set,
6778 .mode_set_base = intel_pipe_set_base,
6779 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6780 .load_lut = intel_crtc_load_lut,
6781 .disable = intel_crtc_disable,
6784 static const struct drm_crtc_funcs intel_crtc_funcs = {
6785 .reset = intel_crtc_reset,
6786 .cursor_set = intel_crtc_cursor_set,
6787 .cursor_move = intel_crtc_cursor_move,
6788 .gamma_set = intel_crtc_gamma_set,
6789 .set_config = drm_crtc_helper_set_config,
6790 .destroy = intel_crtc_destroy,
6791 .page_flip = intel_crtc_page_flip,
6794 static void intel_crtc_init(struct drm_device *dev, int pipe)
6796 drm_i915_private_t *dev_priv = dev->dev_private;
6797 struct intel_crtc *intel_crtc;
6798 int i;
6800 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6801 if (intel_crtc == NULL)
6802 return;
6804 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6806 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6807 for (i = 0; i < 256; i++) {
6808 intel_crtc->lut_r[i] = i;
6809 intel_crtc->lut_g[i] = i;
6810 intel_crtc->lut_b[i] = i;
6813 /* Swap pipes & planes for FBC on pre-965 */
6814 intel_crtc->pipe = pipe;
6815 intel_crtc->plane = pipe;
6816 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6817 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6818 intel_crtc->plane = !pipe;
6821 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6822 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6823 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6824 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6826 intel_crtc_reset(&intel_crtc->base);
6827 intel_crtc->active = true; /* force the pipe off on setup_init_config */
6828 intel_crtc->bpp = 24; /* default for pre-Ironlake */
6830 if (HAS_PCH_SPLIT(dev)) {
6831 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6832 intel_helper_funcs.commit = ironlake_crtc_commit;
6833 } else {
6834 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6835 intel_helper_funcs.commit = i9xx_crtc_commit;
6838 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6840 intel_crtc->busy = false;
6842 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6843 (unsigned long)intel_crtc);
6846 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6847 struct drm_file *file)
6849 drm_i915_private_t *dev_priv = dev->dev_private;
6850 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6851 struct drm_mode_object *drmmode_obj;
6852 struct intel_crtc *crtc;
6854 if (!dev_priv) {
6855 DRM_ERROR("called with no initialization\n");
6856 return -EINVAL;
6859 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6860 DRM_MODE_OBJECT_CRTC);
6862 if (!drmmode_obj) {
6863 DRM_ERROR("no such CRTC id\n");
6864 return -EINVAL;
6867 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6868 pipe_from_crtc_id->pipe = crtc->pipe;
6870 return 0;
6873 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6875 struct intel_encoder *encoder;
6876 int index_mask = 0;
6877 int entry = 0;
6879 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6880 if (type_mask & encoder->clone_mask)
6881 index_mask |= (1 << entry);
6882 entry++;
6885 return index_mask;
6888 static bool has_edp_a(struct drm_device *dev)
6890 struct drm_i915_private *dev_priv = dev->dev_private;
6892 if (!IS_MOBILE(dev))
6893 return false;
6895 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6896 return false;
6898 if (IS_GEN5(dev) &&
6899 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6900 return false;
6902 return true;
6905 static void intel_setup_outputs(struct drm_device *dev)
6907 struct drm_i915_private *dev_priv = dev->dev_private;
6908 struct intel_encoder *encoder;
6909 bool dpd_is_edp = false;
6910 bool has_lvds = false;
6912 if (IS_MOBILE(dev) && !IS_I830(dev))
6913 has_lvds = intel_lvds_init(dev);
6914 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6915 /* disable the panel fitter on everything but LVDS */
6916 I915_WRITE(PFIT_CONTROL, 0);
6919 if (HAS_PCH_SPLIT(dev)) {
6920 dpd_is_edp = intel_dpd_is_edp(dev);
6922 if (has_edp_a(dev))
6923 intel_dp_init(dev, DP_A);
6925 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6926 intel_dp_init(dev, PCH_DP_D);
6929 intel_crt_init(dev);
6931 if (HAS_PCH_SPLIT(dev)) {
6932 int found;
6934 if (I915_READ(HDMIB) & PORT_DETECTED) {
6935 /* PCH SDVOB multiplex with HDMIB */
6936 found = intel_sdvo_init(dev, PCH_SDVOB);
6937 if (!found)
6938 intel_hdmi_init(dev, HDMIB);
6939 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6940 intel_dp_init(dev, PCH_DP_B);
6943 if (I915_READ(HDMIC) & PORT_DETECTED)
6944 intel_hdmi_init(dev, HDMIC);
6946 if (I915_READ(HDMID) & PORT_DETECTED)
6947 intel_hdmi_init(dev, HDMID);
6949 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6950 intel_dp_init(dev, PCH_DP_C);
6952 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6953 intel_dp_init(dev, PCH_DP_D);
6955 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6956 bool found = false;
6958 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6959 DRM_DEBUG_KMS("probing SDVOB\n");
6960 found = intel_sdvo_init(dev, SDVOB);
6961 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6962 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6963 intel_hdmi_init(dev, SDVOB);
6966 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6967 DRM_DEBUG_KMS("probing DP_B\n");
6968 intel_dp_init(dev, DP_B);
6972 /* Before G4X SDVOC doesn't have its own detect register */
6974 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6975 DRM_DEBUG_KMS("probing SDVOC\n");
6976 found = intel_sdvo_init(dev, SDVOC);
6979 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6981 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6982 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6983 intel_hdmi_init(dev, SDVOC);
6985 if (SUPPORTS_INTEGRATED_DP(dev)) {
6986 DRM_DEBUG_KMS("probing DP_C\n");
6987 intel_dp_init(dev, DP_C);
6991 if (SUPPORTS_INTEGRATED_DP(dev) &&
6992 (I915_READ(DP_D) & DP_DETECTED)) {
6993 DRM_DEBUG_KMS("probing DP_D\n");
6994 intel_dp_init(dev, DP_D);
6996 } else if (IS_GEN2(dev))
6997 intel_dvo_init(dev);
6999 if (SUPPORTS_TV(dev))
7000 intel_tv_init(dev);
7002 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7003 encoder->base.possible_crtcs = encoder->crtc_mask;
7004 encoder->base.possible_clones =
7005 intel_encoder_clones(dev, encoder->clone_mask);
7008 intel_panel_setup_backlight(dev);
7010 /* disable all the possible outputs/crtcs before entering KMS mode */
7011 drm_helper_disable_unused_functions(dev);
7014 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7016 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7018 drm_framebuffer_cleanup(fb);
7019 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7021 kfree(intel_fb);
7024 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7025 struct drm_file *file,
7026 unsigned int *handle)
7028 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7029 struct drm_i915_gem_object *obj = intel_fb->obj;
7031 return drm_gem_handle_create(file, &obj->base, handle);
7034 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7035 .destroy = intel_user_framebuffer_destroy,
7036 .create_handle = intel_user_framebuffer_create_handle,
7039 int intel_framebuffer_init(struct drm_device *dev,
7040 struct intel_framebuffer *intel_fb,
7041 struct drm_mode_fb_cmd *mode_cmd,
7042 struct drm_i915_gem_object *obj)
7044 int ret;
7046 if (obj->tiling_mode == I915_TILING_Y)
7047 return -EINVAL;
7049 if (mode_cmd->pitch & 63)
7050 return -EINVAL;
7052 switch (mode_cmd->bpp) {
7053 case 8:
7054 case 16:
7055 /* Only pre-ILK can handle 5:5:5 */
7056 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7057 return -EINVAL;
7058 break;
7060 case 24:
7061 case 32:
7062 break;
7063 default:
7064 return -EINVAL;
7067 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7068 if (ret) {
7069 DRM_ERROR("framebuffer init failed %d\n", ret);
7070 return ret;
7073 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7074 intel_fb->obj = obj;
7075 return 0;
7078 static struct drm_framebuffer *
7079 intel_user_framebuffer_create(struct drm_device *dev,
7080 struct drm_file *filp,
7081 struct drm_mode_fb_cmd *mode_cmd)
7083 struct drm_i915_gem_object *obj;
7085 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7086 if (&obj->base == NULL)
7087 return ERR_PTR(-ENOENT);
7089 return intel_framebuffer_create(dev, mode_cmd, obj);
7092 static const struct drm_mode_config_funcs intel_mode_funcs = {
7093 .fb_create = intel_user_framebuffer_create,
7094 .output_poll_changed = intel_fb_output_poll_changed,
7097 static struct drm_i915_gem_object *
7098 intel_alloc_context_page(struct drm_device *dev)
7100 struct drm_i915_gem_object *ctx;
7101 int ret;
7103 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7105 ctx = i915_gem_alloc_object(dev, 4096);
7106 if (!ctx) {
7107 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7108 return NULL;
7111 ret = i915_gem_object_pin(ctx, 4096, true);
7112 if (ret) {
7113 DRM_ERROR("failed to pin power context: %d\n", ret);
7114 goto err_unref;
7117 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7118 if (ret) {
7119 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7120 goto err_unpin;
7123 return ctx;
7125 err_unpin:
7126 i915_gem_object_unpin(ctx);
7127 err_unref:
7128 drm_gem_object_unreference(&ctx->base);
7129 mutex_unlock(&dev->struct_mutex);
7130 return NULL;
7133 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7135 struct drm_i915_private *dev_priv = dev->dev_private;
7136 u16 rgvswctl;
7138 rgvswctl = I915_READ16(MEMSWCTL);
7139 if (rgvswctl & MEMCTL_CMD_STS) {
7140 DRM_DEBUG("gpu busy, RCS change rejected\n");
7141 return false; /* still busy with another command */
7144 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7145 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7146 I915_WRITE16(MEMSWCTL, rgvswctl);
7147 POSTING_READ16(MEMSWCTL);
7149 rgvswctl |= MEMCTL_CMD_STS;
7150 I915_WRITE16(MEMSWCTL, rgvswctl);
7152 return true;
7155 void ironlake_enable_drps(struct drm_device *dev)
7157 struct drm_i915_private *dev_priv = dev->dev_private;
7158 u32 rgvmodectl = I915_READ(MEMMODECTL);
7159 u8 fmax, fmin, fstart, vstart;
7161 /* Enable temp reporting */
7162 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7163 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7165 /* 100ms RC evaluation intervals */
7166 I915_WRITE(RCUPEI, 100000);
7167 I915_WRITE(RCDNEI, 100000);
7169 /* Set max/min thresholds to 90ms and 80ms respectively */
7170 I915_WRITE(RCBMAXAVG, 90000);
7171 I915_WRITE(RCBMINAVG, 80000);
7173 I915_WRITE(MEMIHYST, 1);
7175 /* Set up min, max, and cur for interrupt handling */
7176 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7177 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7178 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7179 MEMMODE_FSTART_SHIFT;
7181 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7182 PXVFREQ_PX_SHIFT;
7184 dev_priv->fmax = fmax; /* IPS callback will increase this */
7185 dev_priv->fstart = fstart;
7187 dev_priv->max_delay = fstart;
7188 dev_priv->min_delay = fmin;
7189 dev_priv->cur_delay = fstart;
7191 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7192 fmax, fmin, fstart);
7194 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7197 * Interrupts will be enabled in ironlake_irq_postinstall
7200 I915_WRITE(VIDSTART, vstart);
7201 POSTING_READ(VIDSTART);
7203 rgvmodectl |= MEMMODE_SWMODE_EN;
7204 I915_WRITE(MEMMODECTL, rgvmodectl);
7206 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7207 DRM_ERROR("stuck trying to change perf mode\n");
7208 msleep(1);
7210 ironlake_set_drps(dev, fstart);
7212 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7213 I915_READ(0x112e0);
7214 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7215 dev_priv->last_count2 = I915_READ(0x112f4);
7216 getrawmonotonic(&dev_priv->last_time2);
7219 void ironlake_disable_drps(struct drm_device *dev)
7221 struct drm_i915_private *dev_priv = dev->dev_private;
7222 u16 rgvswctl = I915_READ16(MEMSWCTL);
7224 /* Ack interrupts, disable EFC interrupt */
7225 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7226 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7227 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7228 I915_WRITE(DEIIR, DE_PCU_EVENT);
7229 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7231 /* Go back to the starting frequency */
7232 ironlake_set_drps(dev, dev_priv->fstart);
7233 msleep(1);
7234 rgvswctl |= MEMCTL_CMD_STS;
7235 I915_WRITE(MEMSWCTL, rgvswctl);
7236 msleep(1);
7240 void gen6_set_rps(struct drm_device *dev, u8 val)
7242 struct drm_i915_private *dev_priv = dev->dev_private;
7243 u32 swreq;
7245 swreq = (val & 0x3ff) << 25;
7246 I915_WRITE(GEN6_RPNSWREQ, swreq);
7249 void gen6_disable_rps(struct drm_device *dev)
7251 struct drm_i915_private *dev_priv = dev->dev_private;
7253 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7254 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7255 I915_WRITE(GEN6_PMIER, 0);
7257 spin_lock_irq(&dev_priv->rps_lock);
7258 dev_priv->pm_iir = 0;
7259 spin_unlock_irq(&dev_priv->rps_lock);
7261 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7264 static unsigned long intel_pxfreq(u32 vidfreq)
7266 unsigned long freq;
7267 int div = (vidfreq & 0x3f0000) >> 16;
7268 int post = (vidfreq & 0x3000) >> 12;
7269 int pre = (vidfreq & 0x7);
7271 if (!pre)
7272 return 0;
7274 freq = ((div * 133333) / ((1<<post) * pre));
7276 return freq;
7279 void intel_init_emon(struct drm_device *dev)
7281 struct drm_i915_private *dev_priv = dev->dev_private;
7282 u32 lcfuse;
7283 u8 pxw[16];
7284 int i;
7286 /* Disable to program */
7287 I915_WRITE(ECR, 0);
7288 POSTING_READ(ECR);
7290 /* Program energy weights for various events */
7291 I915_WRITE(SDEW, 0x15040d00);
7292 I915_WRITE(CSIEW0, 0x007f0000);
7293 I915_WRITE(CSIEW1, 0x1e220004);
7294 I915_WRITE(CSIEW2, 0x04000004);
7296 for (i = 0; i < 5; i++)
7297 I915_WRITE(PEW + (i * 4), 0);
7298 for (i = 0; i < 3; i++)
7299 I915_WRITE(DEW + (i * 4), 0);
7301 /* Program P-state weights to account for frequency power adjustment */
7302 for (i = 0; i < 16; i++) {
7303 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7304 unsigned long freq = intel_pxfreq(pxvidfreq);
7305 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7306 PXVFREQ_PX_SHIFT;
7307 unsigned long val;
7309 val = vid * vid;
7310 val *= (freq / 1000);
7311 val *= 255;
7312 val /= (127*127*900);
7313 if (val > 0xff)
7314 DRM_ERROR("bad pxval: %ld\n", val);
7315 pxw[i] = val;
7317 /* Render standby states get 0 weight */
7318 pxw[14] = 0;
7319 pxw[15] = 0;
7321 for (i = 0; i < 4; i++) {
7322 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7323 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7324 I915_WRITE(PXW + (i * 4), val);
7327 /* Adjust magic regs to magic values (more experimental results) */
7328 I915_WRITE(OGW0, 0);
7329 I915_WRITE(OGW1, 0);
7330 I915_WRITE(EG0, 0x00007f00);
7331 I915_WRITE(EG1, 0x0000000e);
7332 I915_WRITE(EG2, 0x000e0000);
7333 I915_WRITE(EG3, 0x68000300);
7334 I915_WRITE(EG4, 0x42000000);
7335 I915_WRITE(EG5, 0x00140031);
7336 I915_WRITE(EG6, 0);
7337 I915_WRITE(EG7, 0);
7339 for (i = 0; i < 8; i++)
7340 I915_WRITE(PXWL + (i * 4), 0);
7342 /* Enable PMON + select events */
7343 I915_WRITE(ECR, 0x80000019);
7345 lcfuse = I915_READ(LCFUSE02);
7347 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7350 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7352 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7353 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7354 u32 pcu_mbox, rc6_mask = 0;
7355 int cur_freq, min_freq, max_freq;
7356 int i;
7358 /* Here begins a magic sequence of register writes to enable
7359 * auto-downclocking.
7361 * Perhaps there might be some value in exposing these to
7362 * userspace...
7364 I915_WRITE(GEN6_RC_STATE, 0);
7365 mutex_lock(&dev_priv->dev->struct_mutex);
7366 gen6_gt_force_wake_get(dev_priv);
7368 /* disable the counters and set deterministic thresholds */
7369 I915_WRITE(GEN6_RC_CONTROL, 0);
7371 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7372 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7373 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7374 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7375 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7377 for (i = 0; i < I915_NUM_RINGS; i++)
7378 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7380 I915_WRITE(GEN6_RC_SLEEP, 0);
7381 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7382 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7383 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7384 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7386 if (i915_enable_rc6)
7387 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7388 GEN6_RC_CTL_RC6_ENABLE;
7390 I915_WRITE(GEN6_RC_CONTROL,
7391 rc6_mask |
7392 GEN6_RC_CTL_EI_MODE(1) |
7393 GEN6_RC_CTL_HW_ENABLE);
7395 I915_WRITE(GEN6_RPNSWREQ,
7396 GEN6_FREQUENCY(10) |
7397 GEN6_OFFSET(0) |
7398 GEN6_AGGRESSIVE_TURBO);
7399 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7400 GEN6_FREQUENCY(12));
7402 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7403 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7404 18 << 24 |
7405 6 << 16);
7406 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7407 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7408 I915_WRITE(GEN6_RP_UP_EI, 100000);
7409 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7410 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7411 I915_WRITE(GEN6_RP_CONTROL,
7412 GEN6_RP_MEDIA_TURBO |
7413 GEN6_RP_USE_NORMAL_FREQ |
7414 GEN6_RP_MEDIA_IS_GFX |
7415 GEN6_RP_ENABLE |
7416 GEN6_RP_UP_BUSY_AVG |
7417 GEN6_RP_DOWN_IDLE_CONT);
7419 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7420 500))
7421 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7423 I915_WRITE(GEN6_PCODE_DATA, 0);
7424 I915_WRITE(GEN6_PCODE_MAILBOX,
7425 GEN6_PCODE_READY |
7426 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7427 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7428 500))
7429 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7431 min_freq = (rp_state_cap & 0xff0000) >> 16;
7432 max_freq = rp_state_cap & 0xff;
7433 cur_freq = (gt_perf_status & 0xff00) >> 8;
7435 /* Check for overclock support */
7436 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7437 500))
7438 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7439 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7440 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7441 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7442 500))
7443 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7444 if (pcu_mbox & (1<<31)) { /* OC supported */
7445 max_freq = pcu_mbox & 0xff;
7446 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7449 /* In units of 100MHz */
7450 dev_priv->max_delay = max_freq;
7451 dev_priv->min_delay = min_freq;
7452 dev_priv->cur_delay = cur_freq;
7454 /* requires MSI enabled */
7455 I915_WRITE(GEN6_PMIER,
7456 GEN6_PM_MBOX_EVENT |
7457 GEN6_PM_THERMAL_EVENT |
7458 GEN6_PM_RP_DOWN_TIMEOUT |
7459 GEN6_PM_RP_UP_THRESHOLD |
7460 GEN6_PM_RP_DOWN_THRESHOLD |
7461 GEN6_PM_RP_UP_EI_EXPIRED |
7462 GEN6_PM_RP_DOWN_EI_EXPIRED);
7463 spin_lock_irq(&dev_priv->rps_lock);
7464 WARN_ON(dev_priv->pm_iir != 0);
7465 I915_WRITE(GEN6_PMIMR, 0);
7466 spin_unlock_irq(&dev_priv->rps_lock);
7467 /* enable all PM interrupts */
7468 I915_WRITE(GEN6_PMINTRMSK, 0);
7470 gen6_gt_force_wake_put(dev_priv);
7471 mutex_unlock(&dev_priv->dev->struct_mutex);
7474 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7476 int min_freq = 15;
7477 int gpu_freq, ia_freq, max_ia_freq;
7478 int scaling_factor = 180;
7480 max_ia_freq = cpufreq_quick_get_max(0);
7482 * Default to measured freq if none found, PCU will ensure we don't go
7483 * over
7485 if (!max_ia_freq)
7486 max_ia_freq = tsc_khz;
7488 /* Convert from kHz to MHz */
7489 max_ia_freq /= 1000;
7491 mutex_lock(&dev_priv->dev->struct_mutex);
7494 * For each potential GPU frequency, load a ring frequency we'd like
7495 * to use for memory access. We do this by specifying the IA frequency
7496 * the PCU should use as a reference to determine the ring frequency.
7498 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
7499 gpu_freq--) {
7500 int diff = dev_priv->max_delay - gpu_freq;
7503 * For GPU frequencies less than 750MHz, just use the lowest
7504 * ring freq.
7506 if (gpu_freq < min_freq)
7507 ia_freq = 800;
7508 else
7509 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7510 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7512 I915_WRITE(GEN6_PCODE_DATA,
7513 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
7514 gpu_freq);
7515 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
7516 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7517 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
7518 GEN6_PCODE_READY) == 0, 10)) {
7519 DRM_ERROR("pcode write of freq table timed out\n");
7520 continue;
7524 mutex_unlock(&dev_priv->dev->struct_mutex);
7527 static void ironlake_init_clock_gating(struct drm_device *dev)
7529 struct drm_i915_private *dev_priv = dev->dev_private;
7530 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7532 /* Required for FBC */
7533 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7534 DPFCRUNIT_CLOCK_GATE_DISABLE |
7535 DPFDUNIT_CLOCK_GATE_DISABLE;
7536 /* Required for CxSR */
7537 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7539 I915_WRITE(PCH_3DCGDIS0,
7540 MARIUNIT_CLOCK_GATE_DISABLE |
7541 SVSMUNIT_CLOCK_GATE_DISABLE);
7542 I915_WRITE(PCH_3DCGDIS1,
7543 VFMUNIT_CLOCK_GATE_DISABLE);
7545 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7548 * According to the spec the following bits should be set in
7549 * order to enable memory self-refresh
7550 * The bit 22/21 of 0x42004
7551 * The bit 5 of 0x42020
7552 * The bit 15 of 0x45000
7554 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7555 (I915_READ(ILK_DISPLAY_CHICKEN2) |
7556 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7557 I915_WRITE(ILK_DSPCLK_GATE,
7558 (I915_READ(ILK_DSPCLK_GATE) |
7559 ILK_DPARB_CLK_GATE));
7560 I915_WRITE(DISP_ARB_CTL,
7561 (I915_READ(DISP_ARB_CTL) |
7562 DISP_FBC_WM_DIS));
7563 I915_WRITE(WM3_LP_ILK, 0);
7564 I915_WRITE(WM2_LP_ILK, 0);
7565 I915_WRITE(WM1_LP_ILK, 0);
7568 * Based on the document from hardware guys the following bits
7569 * should be set unconditionally in order to enable FBC.
7570 * The bit 22 of 0x42000
7571 * The bit 22 of 0x42004
7572 * The bit 7,8,9 of 0x42020.
7574 if (IS_IRONLAKE_M(dev)) {
7575 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7576 I915_READ(ILK_DISPLAY_CHICKEN1) |
7577 ILK_FBCQ_DIS);
7578 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7579 I915_READ(ILK_DISPLAY_CHICKEN2) |
7580 ILK_DPARB_GATE);
7581 I915_WRITE(ILK_DSPCLK_GATE,
7582 I915_READ(ILK_DSPCLK_GATE) |
7583 ILK_DPFC_DIS1 |
7584 ILK_DPFC_DIS2 |
7585 ILK_CLK_FBC);
7588 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7589 I915_READ(ILK_DISPLAY_CHICKEN2) |
7590 ILK_ELPIN_409_SELECT);
7591 I915_WRITE(_3D_CHICKEN2,
7592 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7593 _3D_CHICKEN2_WM_READ_PIPELINED);
7596 static void gen6_init_clock_gating(struct drm_device *dev)
7598 struct drm_i915_private *dev_priv = dev->dev_private;
7599 int pipe;
7600 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7602 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7604 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7605 I915_READ(ILK_DISPLAY_CHICKEN2) |
7606 ILK_ELPIN_409_SELECT);
7608 I915_WRITE(WM3_LP_ILK, 0);
7609 I915_WRITE(WM2_LP_ILK, 0);
7610 I915_WRITE(WM1_LP_ILK, 0);
7613 * According to the spec the following bits should be
7614 * set in order to enable memory self-refresh and fbc:
7615 * The bit21 and bit22 of 0x42000
7616 * The bit21 and bit22 of 0x42004
7617 * The bit5 and bit7 of 0x42020
7618 * The bit14 of 0x70180
7619 * The bit14 of 0x71180
7621 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7622 I915_READ(ILK_DISPLAY_CHICKEN1) |
7623 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7624 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7625 I915_READ(ILK_DISPLAY_CHICKEN2) |
7626 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7627 I915_WRITE(ILK_DSPCLK_GATE,
7628 I915_READ(ILK_DSPCLK_GATE) |
7629 ILK_DPARB_CLK_GATE |
7630 ILK_DPFD_CLK_GATE);
7632 for_each_pipe(pipe)
7633 I915_WRITE(DSPCNTR(pipe),
7634 I915_READ(DSPCNTR(pipe)) |
7635 DISPPLANE_TRICKLE_FEED_DISABLE);
7638 static void ivybridge_init_clock_gating(struct drm_device *dev)
7640 struct drm_i915_private *dev_priv = dev->dev_private;
7641 int pipe;
7642 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7644 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7646 I915_WRITE(WM3_LP_ILK, 0);
7647 I915_WRITE(WM2_LP_ILK, 0);
7648 I915_WRITE(WM1_LP_ILK, 0);
7650 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
7652 for_each_pipe(pipe)
7653 I915_WRITE(DSPCNTR(pipe),
7654 I915_READ(DSPCNTR(pipe)) |
7655 DISPPLANE_TRICKLE_FEED_DISABLE);
7658 static void g4x_init_clock_gating(struct drm_device *dev)
7660 struct drm_i915_private *dev_priv = dev->dev_private;
7661 uint32_t dspclk_gate;
7663 I915_WRITE(RENCLK_GATE_D1, 0);
7664 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7665 GS_UNIT_CLOCK_GATE_DISABLE |
7666 CL_UNIT_CLOCK_GATE_DISABLE);
7667 I915_WRITE(RAMCLK_GATE_D, 0);
7668 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7669 OVRUNIT_CLOCK_GATE_DISABLE |
7670 OVCUNIT_CLOCK_GATE_DISABLE;
7671 if (IS_GM45(dev))
7672 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7673 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7676 static void crestline_init_clock_gating(struct drm_device *dev)
7678 struct drm_i915_private *dev_priv = dev->dev_private;
7680 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7681 I915_WRITE(RENCLK_GATE_D2, 0);
7682 I915_WRITE(DSPCLK_GATE_D, 0);
7683 I915_WRITE(RAMCLK_GATE_D, 0);
7684 I915_WRITE16(DEUC, 0);
7687 static void broadwater_init_clock_gating(struct drm_device *dev)
7689 struct drm_i915_private *dev_priv = dev->dev_private;
7691 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7692 I965_RCC_CLOCK_GATE_DISABLE |
7693 I965_RCPB_CLOCK_GATE_DISABLE |
7694 I965_ISC_CLOCK_GATE_DISABLE |
7695 I965_FBC_CLOCK_GATE_DISABLE);
7696 I915_WRITE(RENCLK_GATE_D2, 0);
7699 static void gen3_init_clock_gating(struct drm_device *dev)
7701 struct drm_i915_private *dev_priv = dev->dev_private;
7702 u32 dstate = I915_READ(D_STATE);
7704 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7705 DSTATE_DOT_CLOCK_GATING;
7706 I915_WRITE(D_STATE, dstate);
7709 static void i85x_init_clock_gating(struct drm_device *dev)
7711 struct drm_i915_private *dev_priv = dev->dev_private;
7713 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7716 static void i830_init_clock_gating(struct drm_device *dev)
7718 struct drm_i915_private *dev_priv = dev->dev_private;
7720 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7723 static void ibx_init_clock_gating(struct drm_device *dev)
7725 struct drm_i915_private *dev_priv = dev->dev_private;
7728 * On Ibex Peak and Cougar Point, we need to disable clock
7729 * gating for the panel power sequencer or it will fail to
7730 * start up when no ports are active.
7732 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7735 static void cpt_init_clock_gating(struct drm_device *dev)
7737 struct drm_i915_private *dev_priv = dev->dev_private;
7740 * On Ibex Peak and Cougar Point, we need to disable clock
7741 * gating for the panel power sequencer or it will fail to
7742 * start up when no ports are active.
7744 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7745 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7746 DPLS_EDP_PPS_FIX_DIS);
7749 static void ironlake_teardown_rc6(struct drm_device *dev)
7751 struct drm_i915_private *dev_priv = dev->dev_private;
7753 if (dev_priv->renderctx) {
7754 i915_gem_object_unpin(dev_priv->renderctx);
7755 drm_gem_object_unreference(&dev_priv->renderctx->base);
7756 dev_priv->renderctx = NULL;
7759 if (dev_priv->pwrctx) {
7760 i915_gem_object_unpin(dev_priv->pwrctx);
7761 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7762 dev_priv->pwrctx = NULL;
7766 static void ironlake_disable_rc6(struct drm_device *dev)
7768 struct drm_i915_private *dev_priv = dev->dev_private;
7770 if (I915_READ(PWRCTXA)) {
7771 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7772 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7773 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7774 50);
7776 I915_WRITE(PWRCTXA, 0);
7777 POSTING_READ(PWRCTXA);
7779 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7780 POSTING_READ(RSTDBYCTL);
7783 ironlake_teardown_rc6(dev);
7786 static int ironlake_setup_rc6(struct drm_device *dev)
7788 struct drm_i915_private *dev_priv = dev->dev_private;
7790 if (dev_priv->renderctx == NULL)
7791 dev_priv->renderctx = intel_alloc_context_page(dev);
7792 if (!dev_priv->renderctx)
7793 return -ENOMEM;
7795 if (dev_priv->pwrctx == NULL)
7796 dev_priv->pwrctx = intel_alloc_context_page(dev);
7797 if (!dev_priv->pwrctx) {
7798 ironlake_teardown_rc6(dev);
7799 return -ENOMEM;
7802 return 0;
7805 void ironlake_enable_rc6(struct drm_device *dev)
7807 struct drm_i915_private *dev_priv = dev->dev_private;
7808 int ret;
7810 /* rc6 disabled by default due to repeated reports of hanging during
7811 * boot and resume.
7813 if (!i915_enable_rc6)
7814 return;
7816 mutex_lock(&dev->struct_mutex);
7817 ret = ironlake_setup_rc6(dev);
7818 if (ret) {
7819 mutex_unlock(&dev->struct_mutex);
7820 return;
7824 * GPU can automatically power down the render unit if given a page
7825 * to save state.
7827 ret = BEGIN_LP_RING(6);
7828 if (ret) {
7829 ironlake_teardown_rc6(dev);
7830 mutex_unlock(&dev->struct_mutex);
7831 return;
7834 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7835 OUT_RING(MI_SET_CONTEXT);
7836 OUT_RING(dev_priv->renderctx->gtt_offset |
7837 MI_MM_SPACE_GTT |
7838 MI_SAVE_EXT_STATE_EN |
7839 MI_RESTORE_EXT_STATE_EN |
7840 MI_RESTORE_INHIBIT);
7841 OUT_RING(MI_SUSPEND_FLUSH);
7842 OUT_RING(MI_NOOP);
7843 OUT_RING(MI_FLUSH);
7844 ADVANCE_LP_RING();
7847 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
7848 * does an implicit flush, combined with MI_FLUSH above, it should be
7849 * safe to assume that renderctx is valid
7851 ret = intel_wait_ring_idle(LP_RING(dev_priv));
7852 if (ret) {
7853 DRM_ERROR("failed to enable ironlake power power savings\n");
7854 ironlake_teardown_rc6(dev);
7855 mutex_unlock(&dev->struct_mutex);
7856 return;
7859 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7860 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7861 mutex_unlock(&dev->struct_mutex);
7864 void intel_init_clock_gating(struct drm_device *dev)
7866 struct drm_i915_private *dev_priv = dev->dev_private;
7868 dev_priv->display.init_clock_gating(dev);
7870 if (dev_priv->display.init_pch_clock_gating)
7871 dev_priv->display.init_pch_clock_gating(dev);
7874 /* Set up chip specific display functions */
7875 static void intel_init_display(struct drm_device *dev)
7877 struct drm_i915_private *dev_priv = dev->dev_private;
7879 /* We always want a DPMS function */
7880 if (HAS_PCH_SPLIT(dev)) {
7881 dev_priv->display.dpms = ironlake_crtc_dpms;
7882 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7883 dev_priv->display.update_plane = ironlake_update_plane;
7884 } else {
7885 dev_priv->display.dpms = i9xx_crtc_dpms;
7886 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7887 dev_priv->display.update_plane = i9xx_update_plane;
7890 if (I915_HAS_FBC(dev)) {
7891 if (HAS_PCH_SPLIT(dev)) {
7892 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7893 dev_priv->display.enable_fbc = ironlake_enable_fbc;
7894 dev_priv->display.disable_fbc = ironlake_disable_fbc;
7895 } else if (IS_GM45(dev)) {
7896 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7897 dev_priv->display.enable_fbc = g4x_enable_fbc;
7898 dev_priv->display.disable_fbc = g4x_disable_fbc;
7899 } else if (IS_CRESTLINE(dev)) {
7900 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7901 dev_priv->display.enable_fbc = i8xx_enable_fbc;
7902 dev_priv->display.disable_fbc = i8xx_disable_fbc;
7904 /* 855GM needs testing */
7907 /* Returns the core display clock speed */
7908 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
7909 dev_priv->display.get_display_clock_speed =
7910 i945_get_display_clock_speed;
7911 else if (IS_I915G(dev))
7912 dev_priv->display.get_display_clock_speed =
7913 i915_get_display_clock_speed;
7914 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7915 dev_priv->display.get_display_clock_speed =
7916 i9xx_misc_get_display_clock_speed;
7917 else if (IS_I915GM(dev))
7918 dev_priv->display.get_display_clock_speed =
7919 i915gm_get_display_clock_speed;
7920 else if (IS_I865G(dev))
7921 dev_priv->display.get_display_clock_speed =
7922 i865_get_display_clock_speed;
7923 else if (IS_I85X(dev))
7924 dev_priv->display.get_display_clock_speed =
7925 i855_get_display_clock_speed;
7926 else /* 852, 830 */
7927 dev_priv->display.get_display_clock_speed =
7928 i830_get_display_clock_speed;
7930 /* For FIFO watermark updates */
7931 if (HAS_PCH_SPLIT(dev)) {
7932 if (HAS_PCH_IBX(dev))
7933 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
7934 else if (HAS_PCH_CPT(dev))
7935 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
7937 if (IS_GEN5(dev)) {
7938 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
7939 dev_priv->display.update_wm = ironlake_update_wm;
7940 else {
7941 DRM_DEBUG_KMS("Failed to get proper latency. "
7942 "Disable CxSR\n");
7943 dev_priv->display.update_wm = NULL;
7945 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7946 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7947 } else if (IS_GEN6(dev)) {
7948 if (SNB_READ_WM0_LATENCY()) {
7949 dev_priv->display.update_wm = sandybridge_update_wm;
7950 } else {
7951 DRM_DEBUG_KMS("Failed to read display plane latency. "
7952 "Disable CxSR\n");
7953 dev_priv->display.update_wm = NULL;
7955 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7956 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7957 } else if (IS_IVYBRIDGE(dev)) {
7958 /* FIXME: detect B0+ stepping and use auto training */
7959 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7960 if (SNB_READ_WM0_LATENCY()) {
7961 dev_priv->display.update_wm = sandybridge_update_wm;
7962 } else {
7963 DRM_DEBUG_KMS("Failed to read display plane latency. "
7964 "Disable CxSR\n");
7965 dev_priv->display.update_wm = NULL;
7967 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7969 } else
7970 dev_priv->display.update_wm = NULL;
7971 } else if (IS_PINEVIEW(dev)) {
7972 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7973 dev_priv->is_ddr3,
7974 dev_priv->fsb_freq,
7975 dev_priv->mem_freq)) {
7976 DRM_INFO("failed to find known CxSR latency "
7977 "(found ddr%s fsb freq %d, mem freq %d), "
7978 "disabling CxSR\n",
7979 (dev_priv->is_ddr3 == 1) ? "3": "2",
7980 dev_priv->fsb_freq, dev_priv->mem_freq);
7981 /* Disable CxSR and never update its watermark again */
7982 pineview_disable_cxsr(dev);
7983 dev_priv->display.update_wm = NULL;
7984 } else
7985 dev_priv->display.update_wm = pineview_update_wm;
7986 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7987 } else if (IS_G4X(dev)) {
7988 dev_priv->display.update_wm = g4x_update_wm;
7989 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7990 } else if (IS_GEN4(dev)) {
7991 dev_priv->display.update_wm = i965_update_wm;
7992 if (IS_CRESTLINE(dev))
7993 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7994 else if (IS_BROADWATER(dev))
7995 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7996 } else if (IS_GEN3(dev)) {
7997 dev_priv->display.update_wm = i9xx_update_wm;
7998 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7999 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8000 } else if (IS_I865G(dev)) {
8001 dev_priv->display.update_wm = i830_update_wm;
8002 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8003 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8004 } else if (IS_I85X(dev)) {
8005 dev_priv->display.update_wm = i9xx_update_wm;
8006 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8007 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8008 } else {
8009 dev_priv->display.update_wm = i830_update_wm;
8010 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8011 if (IS_845G(dev))
8012 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8013 else
8014 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8017 /* Default just returns -ENODEV to indicate unsupported */
8018 dev_priv->display.queue_flip = intel_default_queue_flip;
8020 switch (INTEL_INFO(dev)->gen) {
8021 case 2:
8022 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8023 break;
8025 case 3:
8026 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8027 break;
8029 case 4:
8030 case 5:
8031 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8032 break;
8034 case 6:
8035 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8036 break;
8037 case 7:
8038 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8039 break;
8044 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8045 * resume, or other times. This quirk makes sure that's the case for
8046 * affected systems.
8048 static void quirk_pipea_force (struct drm_device *dev)
8050 struct drm_i915_private *dev_priv = dev->dev_private;
8052 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8053 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8056 struct intel_quirk {
8057 int device;
8058 int subsystem_vendor;
8059 int subsystem_device;
8060 void (*hook)(struct drm_device *dev);
8063 struct intel_quirk intel_quirks[] = {
8064 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8065 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8066 /* HP Mini needs pipe A force quirk (LP: #322104) */
8067 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
8069 /* Thinkpad R31 needs pipe A force quirk */
8070 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8071 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8072 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8074 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8075 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8076 /* ThinkPad X40 needs pipe A force quirk */
8078 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8079 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8081 /* 855 & before need to leave pipe A & dpll A up */
8082 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8083 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8086 static void intel_init_quirks(struct drm_device *dev)
8088 struct pci_dev *d = dev->pdev;
8089 int i;
8091 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8092 struct intel_quirk *q = &intel_quirks[i];
8094 if (d->device == q->device &&
8095 (d->subsystem_vendor == q->subsystem_vendor ||
8096 q->subsystem_vendor == PCI_ANY_ID) &&
8097 (d->subsystem_device == q->subsystem_device ||
8098 q->subsystem_device == PCI_ANY_ID))
8099 q->hook(dev);
8103 /* Disable the VGA plane that we never use */
8104 static void i915_disable_vga(struct drm_device *dev)
8106 struct drm_i915_private *dev_priv = dev->dev_private;
8107 u8 sr1;
8108 u32 vga_reg;
8110 if (HAS_PCH_SPLIT(dev))
8111 vga_reg = CPU_VGACNTRL;
8112 else
8113 vga_reg = VGACNTRL;
8115 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8116 outb(1, VGA_SR_INDEX);
8117 sr1 = inb(VGA_SR_DATA);
8118 outb(sr1 | 1<<5, VGA_SR_DATA);
8119 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8120 udelay(300);
8122 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8123 POSTING_READ(vga_reg);
8126 void intel_modeset_init(struct drm_device *dev)
8128 struct drm_i915_private *dev_priv = dev->dev_private;
8129 int i;
8131 drm_mode_config_init(dev);
8133 dev->mode_config.min_width = 0;
8134 dev->mode_config.min_height = 0;
8136 dev->mode_config.funcs = (void *)&intel_mode_funcs;
8138 intel_init_quirks(dev);
8140 intel_init_display(dev);
8142 if (IS_GEN2(dev)) {
8143 dev->mode_config.max_width = 2048;
8144 dev->mode_config.max_height = 2048;
8145 } else if (IS_GEN3(dev)) {
8146 dev->mode_config.max_width = 4096;
8147 dev->mode_config.max_height = 4096;
8148 } else {
8149 dev->mode_config.max_width = 8192;
8150 dev->mode_config.max_height = 8192;
8152 dev->mode_config.fb_base = dev->agp->base;
8154 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8155 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8157 for (i = 0; i < dev_priv->num_pipe; i++) {
8158 intel_crtc_init(dev, i);
8161 /* Just disable it once at startup */
8162 i915_disable_vga(dev);
8163 intel_setup_outputs(dev);
8165 intel_init_clock_gating(dev);
8167 if (IS_IRONLAKE_M(dev)) {
8168 ironlake_enable_drps(dev);
8169 intel_init_emon(dev);
8172 if (IS_GEN6(dev) || IS_GEN7(dev)) {
8173 gen6_enable_rps(dev_priv);
8174 gen6_update_ring_freq(dev_priv);
8177 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8178 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8179 (unsigned long)dev);
8182 void intel_modeset_gem_init(struct drm_device *dev)
8184 if (IS_IRONLAKE_M(dev))
8185 ironlake_enable_rc6(dev);
8187 intel_setup_overlay(dev);
8190 void intel_modeset_cleanup(struct drm_device *dev)
8192 struct drm_i915_private *dev_priv = dev->dev_private;
8193 struct drm_crtc *crtc;
8194 struct intel_crtc *intel_crtc;
8196 drm_kms_helper_poll_fini(dev);
8197 mutex_lock(&dev->struct_mutex);
8199 intel_unregister_dsm_handler();
8202 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8203 /* Skip inactive CRTCs */
8204 if (!crtc->fb)
8205 continue;
8207 intel_crtc = to_intel_crtc(crtc);
8208 intel_increase_pllclock(crtc);
8211 intel_disable_fbc(dev);
8213 if (IS_IRONLAKE_M(dev))
8214 ironlake_disable_drps(dev);
8215 if (IS_GEN6(dev) || IS_GEN7(dev))
8216 gen6_disable_rps(dev);
8218 if (IS_IRONLAKE_M(dev))
8219 ironlake_disable_rc6(dev);
8221 mutex_unlock(&dev->struct_mutex);
8223 /* Disable the irq before mode object teardown, for the irq might
8224 * enqueue unpin/hotplug work. */
8225 drm_irq_uninstall(dev);
8226 cancel_work_sync(&dev_priv->hotplug_work);
8228 /* Shut off idle work before the crtcs get freed. */
8229 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8230 intel_crtc = to_intel_crtc(crtc);
8231 del_timer_sync(&intel_crtc->idle_timer);
8233 del_timer_sync(&dev_priv->idle_timer);
8234 cancel_work_sync(&dev_priv->idle_work);
8236 drm_mode_config_cleanup(dev);
8240 * Return which encoder is currently attached for connector.
8242 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8244 return &intel_attached_encoder(connector)->base;
8247 void intel_connector_attach_encoder(struct intel_connector *connector,
8248 struct intel_encoder *encoder)
8250 connector->encoder = encoder;
8251 drm_mode_connector_attach_encoder(&connector->base,
8252 &encoder->base);
8256 * set vga decode state - true == enable VGA decode
8258 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8260 struct drm_i915_private *dev_priv = dev->dev_private;
8261 u16 gmch_ctrl;
8263 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8264 if (state)
8265 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8266 else
8267 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8268 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8269 return 0;
8272 #ifdef CONFIG_DEBUG_FS
8273 #include <linux/seq_file.h>
8275 struct intel_display_error_state {
8276 struct intel_cursor_error_state {
8277 u32 control;
8278 u32 position;
8279 u32 base;
8280 u32 size;
8281 } cursor[2];
8283 struct intel_pipe_error_state {
8284 u32 conf;
8285 u32 source;
8287 u32 htotal;
8288 u32 hblank;
8289 u32 hsync;
8290 u32 vtotal;
8291 u32 vblank;
8292 u32 vsync;
8293 } pipe[2];
8295 struct intel_plane_error_state {
8296 u32 control;
8297 u32 stride;
8298 u32 size;
8299 u32 pos;
8300 u32 addr;
8301 u32 surface;
8302 u32 tile_offset;
8303 } plane[2];
8306 struct intel_display_error_state *
8307 intel_display_capture_error_state(struct drm_device *dev)
8309 drm_i915_private_t *dev_priv = dev->dev_private;
8310 struct intel_display_error_state *error;
8311 int i;
8313 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8314 if (error == NULL)
8315 return NULL;
8317 for (i = 0; i < 2; i++) {
8318 error->cursor[i].control = I915_READ(CURCNTR(i));
8319 error->cursor[i].position = I915_READ(CURPOS(i));
8320 error->cursor[i].base = I915_READ(CURBASE(i));
8322 error->plane[i].control = I915_READ(DSPCNTR(i));
8323 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8324 error->plane[i].size = I915_READ(DSPSIZE(i));
8325 error->plane[i].pos= I915_READ(DSPPOS(i));
8326 error->plane[i].addr = I915_READ(DSPADDR(i));
8327 if (INTEL_INFO(dev)->gen >= 4) {
8328 error->plane[i].surface = I915_READ(DSPSURF(i));
8329 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8332 error->pipe[i].conf = I915_READ(PIPECONF(i));
8333 error->pipe[i].source = I915_READ(PIPESRC(i));
8334 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8335 error->pipe[i].hblank = I915_READ(HBLANK(i));
8336 error->pipe[i].hsync = I915_READ(HSYNC(i));
8337 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8338 error->pipe[i].vblank = I915_READ(VBLANK(i));
8339 error->pipe[i].vsync = I915_READ(VSYNC(i));
8342 return error;
8345 void
8346 intel_display_print_error_state(struct seq_file *m,
8347 struct drm_device *dev,
8348 struct intel_display_error_state *error)
8350 int i;
8352 for (i = 0; i < 2; i++) {
8353 seq_printf(m, "Pipe [%d]:\n", i);
8354 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8355 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8356 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8357 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8358 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8359 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8360 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8361 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8363 seq_printf(m, "Plane [%d]:\n", i);
8364 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8365 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8366 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8367 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8368 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8369 if (INTEL_INFO(dev)->gen >= 4) {
8370 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8371 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8374 seq_printf(m, "Cursor [%d]:\n", i);
8375 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8376 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8377 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8380 #endif