2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
35 #include "intel_drv.h"
38 #include "i915_trace.h"
39 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
43 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
);
46 static void intel_update_watermarks(struct drm_device
*dev
);
47 static void intel_increase_pllclock(struct drm_crtc
*crtc
);
48 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
, bool on
);
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t
;
74 intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
76 bool (* find_pll
)(const intel_limit_t
*, struct drm_crtc
*,
77 int, int, intel_clock_t
*);
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
84 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
85 int target
, int refclk
, intel_clock_t
*best_clock
);
87 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
88 int target
, int refclk
, intel_clock_t
*best_clock
);
91 intel_find_pll_g4x_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
92 int target
, int refclk
, intel_clock_t
*best_clock
);
94 intel_find_pll_ironlake_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
95 int target
, int refclk
, intel_clock_t
*best_clock
);
97 static inline u32
/* units of 100MHz */
98 intel_fdi_link_freq(struct drm_device
*dev
)
101 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
102 return (I915_READ(FDI_PLL_BIOS_0
) & FDI_PLL_FB_CLOCK_MASK
) + 2;
107 static const intel_limit_t intel_limits_i8xx_dvo
= {
108 .dot
= { .min
= 25000, .max
= 350000 },
109 .vco
= { .min
= 930000, .max
= 1400000 },
110 .n
= { .min
= 3, .max
= 16 },
111 .m
= { .min
= 96, .max
= 140 },
112 .m1
= { .min
= 18, .max
= 26 },
113 .m2
= { .min
= 6, .max
= 16 },
114 .p
= { .min
= 4, .max
= 128 },
115 .p1
= { .min
= 2, .max
= 33 },
116 .p2
= { .dot_limit
= 165000,
117 .p2_slow
= 4, .p2_fast
= 2 },
118 .find_pll
= intel_find_best_PLL
,
121 static const intel_limit_t intel_limits_i8xx_lvds
= {
122 .dot
= { .min
= 25000, .max
= 350000 },
123 .vco
= { .min
= 930000, .max
= 1400000 },
124 .n
= { .min
= 3, .max
= 16 },
125 .m
= { .min
= 96, .max
= 140 },
126 .m1
= { .min
= 18, .max
= 26 },
127 .m2
= { .min
= 6, .max
= 16 },
128 .p
= { .min
= 4, .max
= 128 },
129 .p1
= { .min
= 1, .max
= 6 },
130 .p2
= { .dot_limit
= 165000,
131 .p2_slow
= 14, .p2_fast
= 7 },
132 .find_pll
= intel_find_best_PLL
,
135 static const intel_limit_t intel_limits_i9xx_sdvo
= {
136 .dot
= { .min
= 20000, .max
= 400000 },
137 .vco
= { .min
= 1400000, .max
= 2800000 },
138 .n
= { .min
= 1, .max
= 6 },
139 .m
= { .min
= 70, .max
= 120 },
140 .m1
= { .min
= 10, .max
= 22 },
141 .m2
= { .min
= 5, .max
= 9 },
142 .p
= { .min
= 5, .max
= 80 },
143 .p1
= { .min
= 1, .max
= 8 },
144 .p2
= { .dot_limit
= 200000,
145 .p2_slow
= 10, .p2_fast
= 5 },
146 .find_pll
= intel_find_best_PLL
,
149 static const intel_limit_t intel_limits_i9xx_lvds
= {
150 .dot
= { .min
= 20000, .max
= 400000 },
151 .vco
= { .min
= 1400000, .max
= 2800000 },
152 .n
= { .min
= 1, .max
= 6 },
153 .m
= { .min
= 70, .max
= 120 },
154 .m1
= { .min
= 10, .max
= 22 },
155 .m2
= { .min
= 5, .max
= 9 },
156 .p
= { .min
= 7, .max
= 98 },
157 .p1
= { .min
= 1, .max
= 8 },
158 .p2
= { .dot_limit
= 112000,
159 .p2_slow
= 14, .p2_fast
= 7 },
160 .find_pll
= intel_find_best_PLL
,
164 static const intel_limit_t intel_limits_g4x_sdvo
= {
165 .dot
= { .min
= 25000, .max
= 270000 },
166 .vco
= { .min
= 1750000, .max
= 3500000},
167 .n
= { .min
= 1, .max
= 4 },
168 .m
= { .min
= 104, .max
= 138 },
169 .m1
= { .min
= 17, .max
= 23 },
170 .m2
= { .min
= 5, .max
= 11 },
171 .p
= { .min
= 10, .max
= 30 },
172 .p1
= { .min
= 1, .max
= 3},
173 .p2
= { .dot_limit
= 270000,
177 .find_pll
= intel_g4x_find_best_PLL
,
180 static const intel_limit_t intel_limits_g4x_hdmi
= {
181 .dot
= { .min
= 22000, .max
= 400000 },
182 .vco
= { .min
= 1750000, .max
= 3500000},
183 .n
= { .min
= 1, .max
= 4 },
184 .m
= { .min
= 104, .max
= 138 },
185 .m1
= { .min
= 16, .max
= 23 },
186 .m2
= { .min
= 5, .max
= 11 },
187 .p
= { .min
= 5, .max
= 80 },
188 .p1
= { .min
= 1, .max
= 8},
189 .p2
= { .dot_limit
= 165000,
190 .p2_slow
= 10, .p2_fast
= 5 },
191 .find_pll
= intel_g4x_find_best_PLL
,
194 static const intel_limit_t intel_limits_g4x_single_channel_lvds
= {
195 .dot
= { .min
= 20000, .max
= 115000 },
196 .vco
= { .min
= 1750000, .max
= 3500000 },
197 .n
= { .min
= 1, .max
= 3 },
198 .m
= { .min
= 104, .max
= 138 },
199 .m1
= { .min
= 17, .max
= 23 },
200 .m2
= { .min
= 5, .max
= 11 },
201 .p
= { .min
= 28, .max
= 112 },
202 .p1
= { .min
= 2, .max
= 8 },
203 .p2
= { .dot_limit
= 0,
204 .p2_slow
= 14, .p2_fast
= 14
206 .find_pll
= intel_g4x_find_best_PLL
,
209 static const intel_limit_t intel_limits_g4x_dual_channel_lvds
= {
210 .dot
= { .min
= 80000, .max
= 224000 },
211 .vco
= { .min
= 1750000, .max
= 3500000 },
212 .n
= { .min
= 1, .max
= 3 },
213 .m
= { .min
= 104, .max
= 138 },
214 .m1
= { .min
= 17, .max
= 23 },
215 .m2
= { .min
= 5, .max
= 11 },
216 .p
= { .min
= 14, .max
= 42 },
217 .p1
= { .min
= 2, .max
= 6 },
218 .p2
= { .dot_limit
= 0,
219 .p2_slow
= 7, .p2_fast
= 7
221 .find_pll
= intel_g4x_find_best_PLL
,
224 static const intel_limit_t intel_limits_g4x_display_port
= {
225 .dot
= { .min
= 161670, .max
= 227000 },
226 .vco
= { .min
= 1750000, .max
= 3500000},
227 .n
= { .min
= 1, .max
= 2 },
228 .m
= { .min
= 97, .max
= 108 },
229 .m1
= { .min
= 0x10, .max
= 0x12 },
230 .m2
= { .min
= 0x05, .max
= 0x06 },
231 .p
= { .min
= 10, .max
= 20 },
232 .p1
= { .min
= 1, .max
= 2},
233 .p2
= { .dot_limit
= 0,
234 .p2_slow
= 10, .p2_fast
= 10 },
235 .find_pll
= intel_find_pll_g4x_dp
,
238 static const intel_limit_t intel_limits_pineview_sdvo
= {
239 .dot
= { .min
= 20000, .max
= 400000},
240 .vco
= { .min
= 1700000, .max
= 3500000 },
241 /* Pineview's Ncounter is a ring counter */
242 .n
= { .min
= 3, .max
= 6 },
243 .m
= { .min
= 2, .max
= 256 },
244 /* Pineview only has one combined m divider, which we treat as m2. */
245 .m1
= { .min
= 0, .max
= 0 },
246 .m2
= { .min
= 0, .max
= 254 },
247 .p
= { .min
= 5, .max
= 80 },
248 .p1
= { .min
= 1, .max
= 8 },
249 .p2
= { .dot_limit
= 200000,
250 .p2_slow
= 10, .p2_fast
= 5 },
251 .find_pll
= intel_find_best_PLL
,
254 static const intel_limit_t intel_limits_pineview_lvds
= {
255 .dot
= { .min
= 20000, .max
= 400000 },
256 .vco
= { .min
= 1700000, .max
= 3500000 },
257 .n
= { .min
= 3, .max
= 6 },
258 .m
= { .min
= 2, .max
= 256 },
259 .m1
= { .min
= 0, .max
= 0 },
260 .m2
= { .min
= 0, .max
= 254 },
261 .p
= { .min
= 7, .max
= 112 },
262 .p1
= { .min
= 1, .max
= 8 },
263 .p2
= { .dot_limit
= 112000,
264 .p2_slow
= 14, .p2_fast
= 14 },
265 .find_pll
= intel_find_best_PLL
,
268 /* Ironlake / Sandybridge
270 * We calculate clock using (register_value + 2) for N/M1/M2, so here
271 * the range value for them is (actual_value - 2).
273 static const intel_limit_t intel_limits_ironlake_dac
= {
274 .dot
= { .min
= 25000, .max
= 350000 },
275 .vco
= { .min
= 1760000, .max
= 3510000 },
276 .n
= { .min
= 1, .max
= 5 },
277 .m
= { .min
= 79, .max
= 127 },
278 .m1
= { .min
= 12, .max
= 22 },
279 .m2
= { .min
= 5, .max
= 9 },
280 .p
= { .min
= 5, .max
= 80 },
281 .p1
= { .min
= 1, .max
= 8 },
282 .p2
= { .dot_limit
= 225000,
283 .p2_slow
= 10, .p2_fast
= 5 },
284 .find_pll
= intel_g4x_find_best_PLL
,
287 static const intel_limit_t intel_limits_ironlake_single_lvds
= {
288 .dot
= { .min
= 25000, .max
= 350000 },
289 .vco
= { .min
= 1760000, .max
= 3510000 },
290 .n
= { .min
= 1, .max
= 3 },
291 .m
= { .min
= 79, .max
= 118 },
292 .m1
= { .min
= 12, .max
= 22 },
293 .m2
= { .min
= 5, .max
= 9 },
294 .p
= { .min
= 28, .max
= 112 },
295 .p1
= { .min
= 2, .max
= 8 },
296 .p2
= { .dot_limit
= 225000,
297 .p2_slow
= 14, .p2_fast
= 14 },
298 .find_pll
= intel_g4x_find_best_PLL
,
301 static const intel_limit_t intel_limits_ironlake_dual_lvds
= {
302 .dot
= { .min
= 25000, .max
= 350000 },
303 .vco
= { .min
= 1760000, .max
= 3510000 },
304 .n
= { .min
= 1, .max
= 3 },
305 .m
= { .min
= 79, .max
= 127 },
306 .m1
= { .min
= 12, .max
= 22 },
307 .m2
= { .min
= 5, .max
= 9 },
308 .p
= { .min
= 14, .max
= 56 },
309 .p1
= { .min
= 2, .max
= 8 },
310 .p2
= { .dot_limit
= 225000,
311 .p2_slow
= 7, .p2_fast
= 7 },
312 .find_pll
= intel_g4x_find_best_PLL
,
315 /* LVDS 100mhz refclk limits. */
316 static const intel_limit_t intel_limits_ironlake_single_lvds_100m
= {
317 .dot
= { .min
= 25000, .max
= 350000 },
318 .vco
= { .min
= 1760000, .max
= 3510000 },
319 .n
= { .min
= 1, .max
= 2 },
320 .m
= { .min
= 79, .max
= 126 },
321 .m1
= { .min
= 12, .max
= 22 },
322 .m2
= { .min
= 5, .max
= 9 },
323 .p
= { .min
= 28, .max
= 112 },
324 .p1
= { .min
= 2,.max
= 8 },
325 .p2
= { .dot_limit
= 225000,
326 .p2_slow
= 14, .p2_fast
= 14 },
327 .find_pll
= intel_g4x_find_best_PLL
,
330 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m
= {
331 .dot
= { .min
= 25000, .max
= 350000 },
332 .vco
= { .min
= 1760000, .max
= 3510000 },
333 .n
= { .min
= 1, .max
= 3 },
334 .m
= { .min
= 79, .max
= 126 },
335 .m1
= { .min
= 12, .max
= 22 },
336 .m2
= { .min
= 5, .max
= 9 },
337 .p
= { .min
= 14, .max
= 42 },
338 .p1
= { .min
= 2,.max
= 6 },
339 .p2
= { .dot_limit
= 225000,
340 .p2_slow
= 7, .p2_fast
= 7 },
341 .find_pll
= intel_g4x_find_best_PLL
,
344 static const intel_limit_t intel_limits_ironlake_display_port
= {
345 .dot
= { .min
= 25000, .max
= 350000 },
346 .vco
= { .min
= 1760000, .max
= 3510000},
347 .n
= { .min
= 1, .max
= 2 },
348 .m
= { .min
= 81, .max
= 90 },
349 .m1
= { .min
= 12, .max
= 22 },
350 .m2
= { .min
= 5, .max
= 9 },
351 .p
= { .min
= 10, .max
= 20 },
352 .p1
= { .min
= 1, .max
= 2},
353 .p2
= { .dot_limit
= 0,
354 .p2_slow
= 10, .p2_fast
= 10 },
355 .find_pll
= intel_find_pll_ironlake_dp
,
358 static const intel_limit_t
*intel_ironlake_limit(struct drm_crtc
*crtc
,
361 struct drm_device
*dev
= crtc
->dev
;
362 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
363 const intel_limit_t
*limit
;
365 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
366 if ((I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) ==
367 LVDS_CLKB_POWER_UP
) {
368 /* LVDS dual channel */
369 if (refclk
== 100000)
370 limit
= &intel_limits_ironlake_dual_lvds_100m
;
372 limit
= &intel_limits_ironlake_dual_lvds
;
374 if (refclk
== 100000)
375 limit
= &intel_limits_ironlake_single_lvds_100m
;
377 limit
= &intel_limits_ironlake_single_lvds
;
379 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
) ||
381 limit
= &intel_limits_ironlake_display_port
;
383 limit
= &intel_limits_ironlake_dac
;
388 static const intel_limit_t
*intel_g4x_limit(struct drm_crtc
*crtc
)
390 struct drm_device
*dev
= crtc
->dev
;
391 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
392 const intel_limit_t
*limit
;
394 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
395 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
397 /* LVDS with dual channel */
398 limit
= &intel_limits_g4x_dual_channel_lvds
;
400 /* LVDS with dual channel */
401 limit
= &intel_limits_g4x_single_channel_lvds
;
402 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_HDMI
) ||
403 intel_pipe_has_type(crtc
, INTEL_OUTPUT_ANALOG
)) {
404 limit
= &intel_limits_g4x_hdmi
;
405 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_SDVO
)) {
406 limit
= &intel_limits_g4x_sdvo
;
407 } else if (intel_pipe_has_type (crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
408 limit
= &intel_limits_g4x_display_port
;
409 } else /* The option is for other outputs */
410 limit
= &intel_limits_i9xx_sdvo
;
415 static const intel_limit_t
*intel_limit(struct drm_crtc
*crtc
, int refclk
)
417 struct drm_device
*dev
= crtc
->dev
;
418 const intel_limit_t
*limit
;
420 if (HAS_PCH_SPLIT(dev
))
421 limit
= intel_ironlake_limit(crtc
, refclk
);
422 else if (IS_G4X(dev
)) {
423 limit
= intel_g4x_limit(crtc
);
424 } else if (IS_PINEVIEW(dev
)) {
425 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
426 limit
= &intel_limits_pineview_lvds
;
428 limit
= &intel_limits_pineview_sdvo
;
429 } else if (!IS_GEN2(dev
)) {
430 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
431 limit
= &intel_limits_i9xx_lvds
;
433 limit
= &intel_limits_i9xx_sdvo
;
435 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
436 limit
= &intel_limits_i8xx_lvds
;
438 limit
= &intel_limits_i8xx_dvo
;
443 /* m1 is reserved as 0 in Pineview, n is a ring counter */
444 static void pineview_clock(int refclk
, intel_clock_t
*clock
)
446 clock
->m
= clock
->m2
+ 2;
447 clock
->p
= clock
->p1
* clock
->p2
;
448 clock
->vco
= refclk
* clock
->m
/ clock
->n
;
449 clock
->dot
= clock
->vco
/ clock
->p
;
452 static void intel_clock(struct drm_device
*dev
, int refclk
, intel_clock_t
*clock
)
454 if (IS_PINEVIEW(dev
)) {
455 pineview_clock(refclk
, clock
);
458 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
459 clock
->p
= clock
->p1
* clock
->p2
;
460 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
461 clock
->dot
= clock
->vco
/ clock
->p
;
465 * Returns whether any output on the specified pipe is of the specified type
467 bool intel_pipe_has_type(struct drm_crtc
*crtc
, int type
)
469 struct drm_device
*dev
= crtc
->dev
;
470 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
471 struct intel_encoder
*encoder
;
473 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
)
474 if (encoder
->base
.crtc
== crtc
&& encoder
->type
== type
)
480 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
482 * Returns whether the given set of divisors are valid for a given refclk with
483 * the given connectors.
486 static bool intel_PLL_is_valid(struct drm_device
*dev
,
487 const intel_limit_t
*limit
,
488 const intel_clock_t
*clock
)
490 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
491 INTELPllInvalid ("p1 out of range\n");
492 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
493 INTELPllInvalid ("p out of range\n");
494 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
495 INTELPllInvalid ("m2 out of range\n");
496 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
497 INTELPllInvalid ("m1 out of range\n");
498 if (clock
->m1
<= clock
->m2
&& !IS_PINEVIEW(dev
))
499 INTELPllInvalid ("m1 <= m2\n");
500 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
501 INTELPllInvalid ("m out of range\n");
502 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
503 INTELPllInvalid ("n out of range\n");
504 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
505 INTELPllInvalid ("vco out of range\n");
506 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
507 * connector, etc., rather than just a single range.
509 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
510 INTELPllInvalid ("dot out of range\n");
516 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
517 int target
, int refclk
, intel_clock_t
*best_clock
)
520 struct drm_device
*dev
= crtc
->dev
;
521 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
525 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
526 (I915_READ(LVDS
)) != 0) {
528 * For LVDS, if the panel is on, just rely on its current
529 * settings for dual-channel. We haven't figured out how to
530 * reliably set up different single/dual channel state, if we
533 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
535 clock
.p2
= limit
->p2
.p2_fast
;
537 clock
.p2
= limit
->p2
.p2_slow
;
539 if (target
< limit
->p2
.dot_limit
)
540 clock
.p2
= limit
->p2
.p2_slow
;
542 clock
.p2
= limit
->p2
.p2_fast
;
545 memset (best_clock
, 0, sizeof (*best_clock
));
547 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
549 for (clock
.m2
= limit
->m2
.min
;
550 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
551 /* m1 is always 0 in Pineview */
552 if (clock
.m2
>= clock
.m1
&& !IS_PINEVIEW(dev
))
554 for (clock
.n
= limit
->n
.min
;
555 clock
.n
<= limit
->n
.max
; clock
.n
++) {
556 for (clock
.p1
= limit
->p1
.min
;
557 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
560 intel_clock(dev
, refclk
, &clock
);
561 if (!intel_PLL_is_valid(dev
, limit
,
565 this_err
= abs(clock
.dot
- target
);
566 if (this_err
< err
) {
575 return (err
!= target
);
579 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
580 int target
, int refclk
, intel_clock_t
*best_clock
)
582 struct drm_device
*dev
= crtc
->dev
;
583 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
587 /* approximately equals target * 0.00585 */
588 int err_most
= (target
>> 8) + (target
>> 9);
591 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
594 if (HAS_PCH_SPLIT(dev
))
598 if ((I915_READ(lvds_reg
) & LVDS_CLKB_POWER_MASK
) ==
600 clock
.p2
= limit
->p2
.p2_fast
;
602 clock
.p2
= limit
->p2
.p2_slow
;
604 if (target
< limit
->p2
.dot_limit
)
605 clock
.p2
= limit
->p2
.p2_slow
;
607 clock
.p2
= limit
->p2
.p2_fast
;
610 memset(best_clock
, 0, sizeof(*best_clock
));
611 max_n
= limit
->n
.max
;
612 /* based on hardware requirement, prefer smaller n to precision */
613 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
614 /* based on hardware requirement, prefere larger m1,m2 */
615 for (clock
.m1
= limit
->m1
.max
;
616 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
617 for (clock
.m2
= limit
->m2
.max
;
618 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
619 for (clock
.p1
= limit
->p1
.max
;
620 clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
623 intel_clock(dev
, refclk
, &clock
);
624 if (!intel_PLL_is_valid(dev
, limit
,
628 this_err
= abs(clock
.dot
- target
);
629 if (this_err
< err_most
) {
643 intel_find_pll_ironlake_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
644 int target
, int refclk
, intel_clock_t
*best_clock
)
646 struct drm_device
*dev
= crtc
->dev
;
649 if (target
< 200000) {
662 intel_clock(dev
, refclk
, &clock
);
663 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
667 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
669 intel_find_pll_g4x_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
670 int target
, int refclk
, intel_clock_t
*best_clock
)
673 if (target
< 200000) {
686 clock
.m
= 5 * (clock
.m1
+ 2) + (clock
.m2
+ 2);
687 clock
.p
= (clock
.p1
* clock
.p2
);
688 clock
.dot
= 96000 * clock
.m
/ (clock
.n
+ 2) / clock
.p
;
690 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
695 * intel_wait_for_vblank - wait for vblank on a given pipe
697 * @pipe: pipe to wait for
699 * Wait for vblank to occur on a given pipe. Needed for various bits of
702 void intel_wait_for_vblank(struct drm_device
*dev
, int pipe
)
704 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
705 int pipestat_reg
= PIPESTAT(pipe
);
707 /* Clear existing vblank status. Note this will clear any other
708 * sticky status fields as well.
710 * This races with i915_driver_irq_handler() with the result
711 * that either function could miss a vblank event. Here it is not
712 * fatal, as we will either wait upon the next vblank interrupt or
713 * timeout. Generally speaking intel_wait_for_vblank() is only
714 * called during modeset at which time the GPU should be idle and
715 * should *not* be performing page flips and thus not waiting on
717 * Currently, the result of us stealing a vblank from the irq
718 * handler is that a single frame will be skipped during swapbuffers.
720 I915_WRITE(pipestat_reg
,
721 I915_READ(pipestat_reg
) | PIPE_VBLANK_INTERRUPT_STATUS
);
723 /* Wait for vblank interrupt bit to set */
724 if (wait_for(I915_READ(pipestat_reg
) &
725 PIPE_VBLANK_INTERRUPT_STATUS
,
727 DRM_DEBUG_KMS("vblank wait timed out\n");
731 * intel_wait_for_pipe_off - wait for pipe to turn off
733 * @pipe: pipe to wait for
735 * After disabling a pipe, we can't wait for vblank in the usual way,
736 * spinning on the vblank interrupt status bit, since we won't actually
737 * see an interrupt when the pipe is disabled.
740 * wait for the pipe register state bit to turn off
743 * wait for the display line value to settle (it usually
744 * ends up stopping at the start of the next frame).
747 void intel_wait_for_pipe_off(struct drm_device
*dev
, int pipe
)
749 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
751 if (INTEL_INFO(dev
)->gen
>= 4) {
752 int reg
= PIPECONF(pipe
);
754 /* Wait for the Pipe State to go off */
755 if (wait_for((I915_READ(reg
) & I965_PIPECONF_ACTIVE
) == 0,
757 DRM_DEBUG_KMS("pipe_off wait timed out\n");
760 int reg
= PIPEDSL(pipe
);
761 unsigned long timeout
= jiffies
+ msecs_to_jiffies(100);
763 /* Wait for the display line to settle */
765 last_line
= I915_READ(reg
) & DSL_LINEMASK
;
767 } while (((I915_READ(reg
) & DSL_LINEMASK
) != last_line
) &&
768 time_after(timeout
, jiffies
));
769 if (time_after(jiffies
, timeout
))
770 DRM_DEBUG_KMS("pipe_off wait timed out\n");
774 static const char *state_string(bool enabled
)
776 return enabled
? "on" : "off";
779 /* Only for pre-ILK configs */
780 static void assert_pll(struct drm_i915_private
*dev_priv
,
781 enum pipe pipe
, bool state
)
788 val
= I915_READ(reg
);
789 cur_state
= !!(val
& DPLL_VCO_ENABLE
);
790 WARN(cur_state
!= state
,
791 "PLL state assertion failure (expected %s, current %s)\n",
792 state_string(state
), state_string(cur_state
));
794 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
795 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
798 static void assert_pch_pll(struct drm_i915_private
*dev_priv
,
799 enum pipe pipe
, bool state
)
805 reg
= PCH_DPLL(pipe
);
806 val
= I915_READ(reg
);
807 cur_state
= !!(val
& DPLL_VCO_ENABLE
);
808 WARN(cur_state
!= state
,
809 "PCH PLL state assertion failure (expected %s, current %s)\n",
810 state_string(state
), state_string(cur_state
));
812 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
813 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
815 static void assert_fdi_tx(struct drm_i915_private
*dev_priv
,
816 enum pipe pipe
, bool state
)
822 reg
= FDI_TX_CTL(pipe
);
823 val
= I915_READ(reg
);
824 cur_state
= !!(val
& FDI_TX_ENABLE
);
825 WARN(cur_state
!= state
,
826 "FDI TX state assertion failure (expected %s, current %s)\n",
827 state_string(state
), state_string(cur_state
));
829 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
830 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
832 static void assert_fdi_rx(struct drm_i915_private
*dev_priv
,
833 enum pipe pipe
, bool state
)
839 reg
= FDI_RX_CTL(pipe
);
840 val
= I915_READ(reg
);
841 cur_state
= !!(val
& FDI_RX_ENABLE
);
842 WARN(cur_state
!= state
,
843 "FDI RX state assertion failure (expected %s, current %s)\n",
844 state_string(state
), state_string(cur_state
));
846 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
847 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
849 static void assert_fdi_tx_pll_enabled(struct drm_i915_private
*dev_priv
,
855 /* ILK FDI PLL is always enabled */
856 if (dev_priv
->info
->gen
== 5)
859 reg
= FDI_TX_CTL(pipe
);
860 val
= I915_READ(reg
);
861 WARN(!(val
& FDI_TX_PLL_ENABLE
), "FDI TX PLL assertion failure, should be active but is disabled\n");
864 static void assert_fdi_rx_pll_enabled(struct drm_i915_private
*dev_priv
,
870 reg
= FDI_RX_CTL(pipe
);
871 val
= I915_READ(reg
);
872 WARN(!(val
& FDI_RX_PLL_ENABLE
), "FDI RX PLL assertion failure, should be active but is disabled\n");
875 static void assert_panel_unlocked(struct drm_i915_private
*dev_priv
,
878 int pp_reg
, lvds_reg
;
880 enum pipe panel_pipe
= PIPE_A
;
881 bool locked
= locked
;
883 if (HAS_PCH_SPLIT(dev_priv
->dev
)) {
884 pp_reg
= PCH_PP_CONTROL
;
891 val
= I915_READ(pp_reg
);
892 if (!(val
& PANEL_POWER_ON
) ||
893 ((val
& PANEL_UNLOCK_REGS
) == PANEL_UNLOCK_REGS
))
896 if (I915_READ(lvds_reg
) & LVDS_PIPEB_SELECT
)
899 WARN(panel_pipe
== pipe
&& locked
,
900 "panel assertion failure, pipe %c regs locked\n",
904 static void assert_pipe(struct drm_i915_private
*dev_priv
,
905 enum pipe pipe
, bool state
)
911 reg
= PIPECONF(pipe
);
912 val
= I915_READ(reg
);
913 cur_state
= !!(val
& PIPECONF_ENABLE
);
914 WARN(cur_state
!= state
,
915 "pipe %c assertion failure (expected %s, current %s)\n",
916 pipe_name(pipe
), state_string(state
), state_string(cur_state
));
918 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
919 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
921 static void assert_plane_enabled(struct drm_i915_private
*dev_priv
,
927 reg
= DSPCNTR(plane
);
928 val
= I915_READ(reg
);
929 WARN(!(val
& DISPLAY_PLANE_ENABLE
),
930 "plane %c assertion failure, should be active but is disabled\n",
934 static void assert_planes_disabled(struct drm_i915_private
*dev_priv
,
941 /* Planes are fixed to pipes on ILK+ */
942 if (HAS_PCH_SPLIT(dev_priv
->dev
))
945 /* Need to check both planes against the pipe */
946 for (i
= 0; i
< 2; i
++) {
948 val
= I915_READ(reg
);
949 cur_pipe
= (val
& DISPPLANE_SEL_PIPE_MASK
) >>
950 DISPPLANE_SEL_PIPE_SHIFT
;
951 WARN((val
& DISPLAY_PLANE_ENABLE
) && pipe
== cur_pipe
,
952 "plane %c assertion failure, should be off on pipe %c but is still active\n",
953 plane_name(i
), pipe_name(pipe
));
957 static void assert_pch_refclk_enabled(struct drm_i915_private
*dev_priv
)
962 val
= I915_READ(PCH_DREF_CONTROL
);
963 enabled
= !!(val
& (DREF_SSC_SOURCE_MASK
| DREF_NONSPREAD_SOURCE_MASK
|
964 DREF_SUPERSPREAD_SOURCE_MASK
));
965 WARN(!enabled
, "PCH refclk assertion failure, should be active but is disabled\n");
968 static void assert_transcoder_disabled(struct drm_i915_private
*dev_priv
,
975 reg
= TRANSCONF(pipe
);
976 val
= I915_READ(reg
);
977 enabled
= !!(val
& TRANS_ENABLE
);
979 "transcoder assertion failed, should be off on pipe %c but is still active\n",
983 static void assert_pch_dp_disabled(struct drm_i915_private
*dev_priv
,
984 enum pipe pipe
, int reg
)
986 u32 val
= I915_READ(reg
);
987 WARN(DP_PIPE_ENABLED(val
, pipe
),
988 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
989 reg
, pipe_name(pipe
));
992 static void assert_pch_hdmi_disabled(struct drm_i915_private
*dev_priv
,
993 enum pipe pipe
, int reg
)
995 u32 val
= I915_READ(reg
);
996 WARN(HDMI_PIPE_ENABLED(val
, pipe
),
997 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
998 reg
, pipe_name(pipe
));
1001 static void assert_pch_ports_disabled(struct drm_i915_private
*dev_priv
,
1007 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_B
);
1008 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_C
);
1009 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_D
);
1012 val
= I915_READ(reg
);
1013 WARN(ADPA_PIPE_ENABLED(val
, pipe
),
1014 "PCH VGA enabled on transcoder %c, should be disabled\n",
1018 val
= I915_READ(reg
);
1019 WARN(LVDS_PIPE_ENABLED(val
, pipe
),
1020 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1023 assert_pch_hdmi_disabled(dev_priv
, pipe
, HDMIB
);
1024 assert_pch_hdmi_disabled(dev_priv
, pipe
, HDMIC
);
1025 assert_pch_hdmi_disabled(dev_priv
, pipe
, HDMID
);
1029 * intel_enable_pll - enable a PLL
1030 * @dev_priv: i915 private structure
1031 * @pipe: pipe PLL to enable
1033 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1034 * make sure the PLL reg is writable first though, since the panel write
1035 * protect mechanism may be enabled.
1037 * Note! This is for pre-ILK only.
1039 static void intel_enable_pll(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1044 /* No really, not for ILK+ */
1045 BUG_ON(dev_priv
->info
->gen
>= 5);
1047 /* PLL is protected by panel, make sure we can write it */
1048 if (IS_MOBILE(dev_priv
->dev
) && !IS_I830(dev_priv
->dev
))
1049 assert_panel_unlocked(dev_priv
, pipe
);
1052 val
= I915_READ(reg
);
1053 val
|= DPLL_VCO_ENABLE
;
1055 /* We do this three times for luck */
1056 I915_WRITE(reg
, val
);
1058 udelay(150); /* wait for warmup */
1059 I915_WRITE(reg
, val
);
1061 udelay(150); /* wait for warmup */
1062 I915_WRITE(reg
, val
);
1064 udelay(150); /* wait for warmup */
1068 * intel_disable_pll - disable a PLL
1069 * @dev_priv: i915 private structure
1070 * @pipe: pipe PLL to disable
1072 * Disable the PLL for @pipe, making sure the pipe is off first.
1074 * Note! This is for pre-ILK only.
1076 static void intel_disable_pll(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1081 /* Don't disable pipe A or pipe A PLLs if needed */
1082 if (pipe
== PIPE_A
&& (dev_priv
->quirks
& QUIRK_PIPEA_FORCE
))
1085 /* Make sure the pipe isn't still relying on us */
1086 assert_pipe_disabled(dev_priv
, pipe
);
1089 val
= I915_READ(reg
);
1090 val
&= ~DPLL_VCO_ENABLE
;
1091 I915_WRITE(reg
, val
);
1096 * intel_enable_pch_pll - enable PCH PLL
1097 * @dev_priv: i915 private structure
1098 * @pipe: pipe PLL to enable
1100 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1101 * drives the transcoder clock.
1103 static void intel_enable_pch_pll(struct drm_i915_private
*dev_priv
,
1109 /* PCH only available on ILK+ */
1110 BUG_ON(dev_priv
->info
->gen
< 5);
1112 /* PCH refclock must be enabled first */
1113 assert_pch_refclk_enabled(dev_priv
);
1115 reg
= PCH_DPLL(pipe
);
1116 val
= I915_READ(reg
);
1117 val
|= DPLL_VCO_ENABLE
;
1118 I915_WRITE(reg
, val
);
1123 static void intel_disable_pch_pll(struct drm_i915_private
*dev_priv
,
1129 /* PCH only available on ILK+ */
1130 BUG_ON(dev_priv
->info
->gen
< 5);
1132 /* Make sure transcoder isn't still depending on us */
1133 assert_transcoder_disabled(dev_priv
, pipe
);
1135 reg
= PCH_DPLL(pipe
);
1136 val
= I915_READ(reg
);
1137 val
&= ~DPLL_VCO_ENABLE
;
1138 I915_WRITE(reg
, val
);
1143 static void intel_enable_transcoder(struct drm_i915_private
*dev_priv
,
1149 /* PCH only available on ILK+ */
1150 BUG_ON(dev_priv
->info
->gen
< 5);
1152 /* Make sure PCH DPLL is enabled */
1153 assert_pch_pll_enabled(dev_priv
, pipe
);
1155 /* FDI must be feeding us bits for PCH ports */
1156 assert_fdi_tx_enabled(dev_priv
, pipe
);
1157 assert_fdi_rx_enabled(dev_priv
, pipe
);
1159 reg
= TRANSCONF(pipe
);
1160 val
= I915_READ(reg
);
1162 if (HAS_PCH_IBX(dev_priv
->dev
)) {
1164 * make the BPC in transcoder be consistent with
1165 * that in pipeconf reg.
1167 val
&= ~PIPE_BPC_MASK
;
1168 val
|= I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
;
1170 I915_WRITE(reg
, val
| TRANS_ENABLE
);
1171 if (wait_for(I915_READ(reg
) & TRANS_STATE_ENABLE
, 100))
1172 DRM_ERROR("failed to enable transcoder %d\n", pipe
);
1175 static void intel_disable_transcoder(struct drm_i915_private
*dev_priv
,
1181 /* FDI relies on the transcoder */
1182 assert_fdi_tx_disabled(dev_priv
, pipe
);
1183 assert_fdi_rx_disabled(dev_priv
, pipe
);
1185 /* Ports must be off as well */
1186 assert_pch_ports_disabled(dev_priv
, pipe
);
1188 reg
= TRANSCONF(pipe
);
1189 val
= I915_READ(reg
);
1190 val
&= ~TRANS_ENABLE
;
1191 I915_WRITE(reg
, val
);
1192 /* wait for PCH transcoder off, transcoder state */
1193 if (wait_for((I915_READ(reg
) & TRANS_STATE_ENABLE
) == 0, 50))
1194 DRM_ERROR("failed to disable transcoder\n");
1198 * intel_enable_pipe - enable a pipe, asserting requirements
1199 * @dev_priv: i915 private structure
1200 * @pipe: pipe to enable
1201 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1203 * Enable @pipe, making sure that various hardware specific requirements
1204 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1206 * @pipe should be %PIPE_A or %PIPE_B.
1208 * Will wait until the pipe is actually running (i.e. first vblank) before
1211 static void intel_enable_pipe(struct drm_i915_private
*dev_priv
, enum pipe pipe
,
1218 * A pipe without a PLL won't actually be able to drive bits from
1219 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1222 if (!HAS_PCH_SPLIT(dev_priv
->dev
))
1223 assert_pll_enabled(dev_priv
, pipe
);
1226 /* if driving the PCH, we need FDI enabled */
1227 assert_fdi_rx_pll_enabled(dev_priv
, pipe
);
1228 assert_fdi_tx_pll_enabled(dev_priv
, pipe
);
1230 /* FIXME: assert CPU port conditions for SNB+ */
1233 reg
= PIPECONF(pipe
);
1234 val
= I915_READ(reg
);
1235 if (val
& PIPECONF_ENABLE
)
1238 I915_WRITE(reg
, val
| PIPECONF_ENABLE
);
1239 intel_wait_for_vblank(dev_priv
->dev
, pipe
);
1243 * intel_disable_pipe - disable a pipe, asserting requirements
1244 * @dev_priv: i915 private structure
1245 * @pipe: pipe to disable
1247 * Disable @pipe, making sure that various hardware specific requirements
1248 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1250 * @pipe should be %PIPE_A or %PIPE_B.
1252 * Will wait until the pipe has shut down before returning.
1254 static void intel_disable_pipe(struct drm_i915_private
*dev_priv
,
1261 * Make sure planes won't keep trying to pump pixels to us,
1262 * or we might hang the display.
1264 assert_planes_disabled(dev_priv
, pipe
);
1266 /* Don't disable pipe A or pipe A PLLs if needed */
1267 if (pipe
== PIPE_A
&& (dev_priv
->quirks
& QUIRK_PIPEA_FORCE
))
1270 reg
= PIPECONF(pipe
);
1271 val
= I915_READ(reg
);
1272 if ((val
& PIPECONF_ENABLE
) == 0)
1275 I915_WRITE(reg
, val
& ~PIPECONF_ENABLE
);
1276 intel_wait_for_pipe_off(dev_priv
->dev
, pipe
);
1280 * intel_enable_plane - enable a display plane on a given pipe
1281 * @dev_priv: i915 private structure
1282 * @plane: plane to enable
1283 * @pipe: pipe being fed
1285 * Enable @plane on @pipe, making sure that @pipe is running first.
1287 static void intel_enable_plane(struct drm_i915_private
*dev_priv
,
1288 enum plane plane
, enum pipe pipe
)
1293 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1294 assert_pipe_enabled(dev_priv
, pipe
);
1296 reg
= DSPCNTR(plane
);
1297 val
= I915_READ(reg
);
1298 if (val
& DISPLAY_PLANE_ENABLE
)
1301 I915_WRITE(reg
, val
| DISPLAY_PLANE_ENABLE
);
1302 intel_wait_for_vblank(dev_priv
->dev
, pipe
);
1306 * Plane regs are double buffered, going from enabled->disabled needs a
1307 * trigger in order to latch. The display address reg provides this.
1309 static void intel_flush_display_plane(struct drm_i915_private
*dev_priv
,
1312 u32 reg
= DSPADDR(plane
);
1313 I915_WRITE(reg
, I915_READ(reg
));
1317 * intel_disable_plane - disable a display plane
1318 * @dev_priv: i915 private structure
1319 * @plane: plane to disable
1320 * @pipe: pipe consuming the data
1322 * Disable @plane; should be an independent operation.
1324 static void intel_disable_plane(struct drm_i915_private
*dev_priv
,
1325 enum plane plane
, enum pipe pipe
)
1330 reg
= DSPCNTR(plane
);
1331 val
= I915_READ(reg
);
1332 if ((val
& DISPLAY_PLANE_ENABLE
) == 0)
1335 I915_WRITE(reg
, val
& ~DISPLAY_PLANE_ENABLE
);
1336 intel_flush_display_plane(dev_priv
, plane
);
1337 intel_wait_for_vblank(dev_priv
->dev
, pipe
);
1340 static void disable_pch_dp(struct drm_i915_private
*dev_priv
,
1341 enum pipe pipe
, int reg
)
1343 u32 val
= I915_READ(reg
);
1344 if (DP_PIPE_ENABLED(val
, pipe
))
1345 I915_WRITE(reg
, val
& ~DP_PORT_EN
);
1348 static void disable_pch_hdmi(struct drm_i915_private
*dev_priv
,
1349 enum pipe pipe
, int reg
)
1351 u32 val
= I915_READ(reg
);
1352 if (HDMI_PIPE_ENABLED(val
, pipe
))
1353 I915_WRITE(reg
, val
& ~PORT_ENABLE
);
1356 /* Disable any ports connected to this transcoder */
1357 static void intel_disable_pch_ports(struct drm_i915_private
*dev_priv
,
1362 val
= I915_READ(PCH_PP_CONTROL
);
1363 I915_WRITE(PCH_PP_CONTROL
, val
| PANEL_UNLOCK_REGS
);
1365 disable_pch_dp(dev_priv
, pipe
, PCH_DP_B
);
1366 disable_pch_dp(dev_priv
, pipe
, PCH_DP_C
);
1367 disable_pch_dp(dev_priv
, pipe
, PCH_DP_D
);
1370 val
= I915_READ(reg
);
1371 if (ADPA_PIPE_ENABLED(val
, pipe
))
1372 I915_WRITE(reg
, val
& ~ADPA_DAC_ENABLE
);
1375 val
= I915_READ(reg
);
1376 if (LVDS_PIPE_ENABLED(val
, pipe
)) {
1377 I915_WRITE(reg
, val
& ~LVDS_PORT_EN
);
1382 disable_pch_hdmi(dev_priv
, pipe
, HDMIB
);
1383 disable_pch_hdmi(dev_priv
, pipe
, HDMIC
);
1384 disable_pch_hdmi(dev_priv
, pipe
, HDMID
);
1387 static void i8xx_disable_fbc(struct drm_device
*dev
)
1389 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1392 /* Disable compression */
1393 fbc_ctl
= I915_READ(FBC_CONTROL
);
1394 if ((fbc_ctl
& FBC_CTL_EN
) == 0)
1397 fbc_ctl
&= ~FBC_CTL_EN
;
1398 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1400 /* Wait for compressing bit to clear */
1401 if (wait_for((I915_READ(FBC_STATUS
) & FBC_STAT_COMPRESSING
) == 0, 10)) {
1402 DRM_DEBUG_KMS("FBC idle timed out\n");
1406 DRM_DEBUG_KMS("disabled FBC\n");
1409 static void i8xx_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1411 struct drm_device
*dev
= crtc
->dev
;
1412 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1413 struct drm_framebuffer
*fb
= crtc
->fb
;
1414 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1415 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
1416 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1418 u32 fbc_ctl
, fbc_ctl2
;
1420 if (fb
->pitch
== dev_priv
->cfb_pitch
&&
1421 obj
->fence_reg
== dev_priv
->cfb_fence
&&
1422 intel_crtc
->plane
== dev_priv
->cfb_plane
&&
1423 I915_READ(FBC_CONTROL
) & FBC_CTL_EN
)
1426 i8xx_disable_fbc(dev
);
1428 dev_priv
->cfb_pitch
= dev_priv
->cfb_size
/ FBC_LL_SIZE
;
1430 if (fb
->pitch
< dev_priv
->cfb_pitch
)
1431 dev_priv
->cfb_pitch
= fb
->pitch
;
1433 /* FBC_CTL wants 64B units */
1434 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
1435 dev_priv
->cfb_fence
= obj
->fence_reg
;
1436 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1437 plane
= dev_priv
->cfb_plane
== 0 ? FBC_CTL_PLANEA
: FBC_CTL_PLANEB
;
1439 /* Clear old tags */
1440 for (i
= 0; i
< (FBC_LL_SIZE
/ 32) + 1; i
++)
1441 I915_WRITE(FBC_TAG
+ (i
* 4), 0);
1444 fbc_ctl2
= FBC_CTL_FENCE_DBL
| FBC_CTL_IDLE_IMM
| FBC_CTL_CPU_FENCE
;
1446 I915_WRITE(FBC_CONTROL2
, fbc_ctl2
);
1447 I915_WRITE(FBC_FENCE_OFF
, crtc
->y
);
1450 fbc_ctl
= FBC_CTL_EN
| FBC_CTL_PERIODIC
;
1452 fbc_ctl
|= FBC_CTL_C3_IDLE
; /* 945 needs special SR handling */
1453 fbc_ctl
|= (dev_priv
->cfb_pitch
& 0xff) << FBC_CTL_STRIDE_SHIFT
;
1454 fbc_ctl
|= (interval
& 0x2fff) << FBC_CTL_INTERVAL_SHIFT
;
1455 fbc_ctl
|= dev_priv
->cfb_fence
;
1456 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1458 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1459 dev_priv
->cfb_pitch
, crtc
->y
, dev_priv
->cfb_plane
);
1462 static bool i8xx_fbc_enabled(struct drm_device
*dev
)
1464 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1466 return I915_READ(FBC_CONTROL
) & FBC_CTL_EN
;
1469 static void g4x_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1471 struct drm_device
*dev
= crtc
->dev
;
1472 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1473 struct drm_framebuffer
*fb
= crtc
->fb
;
1474 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1475 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
1476 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1477 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
1478 unsigned long stall_watermark
= 200;
1481 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
1482 if (dpfc_ctl
& DPFC_CTL_EN
) {
1483 if (dev_priv
->cfb_fence
== obj
->fence_reg
&&
1484 dev_priv
->cfb_plane
== intel_crtc
->plane
&&
1485 dev_priv
->cfb_y
== crtc
->y
)
1488 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
& ~DPFC_CTL_EN
);
1489 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
1492 dev_priv
->cfb_fence
= obj
->fence_reg
;
1493 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1494 dev_priv
->cfb_y
= crtc
->y
;
1496 dpfc_ctl
= plane
| DPFC_SR_EN
| DPFC_CTL_LIMIT_1X
;
1497 dpfc_ctl
|= DPFC_CTL_FENCE_EN
| dev_priv
->cfb_fence
;
1498 I915_WRITE(DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1500 I915_WRITE(DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1501 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1502 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1503 I915_WRITE(DPFC_FENCE_YOFF
, crtc
->y
);
1506 I915_WRITE(DPFC_CONTROL
, I915_READ(DPFC_CONTROL
) | DPFC_CTL_EN
);
1508 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1511 static void g4x_disable_fbc(struct drm_device
*dev
)
1513 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1516 /* Disable compression */
1517 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
1518 if (dpfc_ctl
& DPFC_CTL_EN
) {
1519 dpfc_ctl
&= ~DPFC_CTL_EN
;
1520 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1522 DRM_DEBUG_KMS("disabled FBC\n");
1526 static bool g4x_fbc_enabled(struct drm_device
*dev
)
1528 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1530 return I915_READ(DPFC_CONTROL
) & DPFC_CTL_EN
;
1533 static void sandybridge_blit_fbc_update(struct drm_device
*dev
)
1535 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1538 /* Make sure blitter notifies FBC of writes */
1539 gen6_gt_force_wake_get(dev_priv
);
1540 blt_ecoskpd
= I915_READ(GEN6_BLITTER_ECOSKPD
);
1541 blt_ecoskpd
|= GEN6_BLITTER_FBC_NOTIFY
<<
1542 GEN6_BLITTER_LOCK_SHIFT
;
1543 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
1544 blt_ecoskpd
|= GEN6_BLITTER_FBC_NOTIFY
;
1545 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
1546 blt_ecoskpd
&= ~(GEN6_BLITTER_FBC_NOTIFY
<<
1547 GEN6_BLITTER_LOCK_SHIFT
);
1548 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
1549 POSTING_READ(GEN6_BLITTER_ECOSKPD
);
1550 gen6_gt_force_wake_put(dev_priv
);
1553 static void ironlake_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1555 struct drm_device
*dev
= crtc
->dev
;
1556 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1557 struct drm_framebuffer
*fb
= crtc
->fb
;
1558 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1559 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
1560 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1561 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
1562 unsigned long stall_watermark
= 200;
1565 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
1566 if (dpfc_ctl
& DPFC_CTL_EN
) {
1567 if (dev_priv
->cfb_fence
== obj
->fence_reg
&&
1568 dev_priv
->cfb_plane
== intel_crtc
->plane
&&
1569 dev_priv
->cfb_offset
== obj
->gtt_offset
&&
1570 dev_priv
->cfb_y
== crtc
->y
)
1573 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
& ~DPFC_CTL_EN
);
1574 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
1577 dev_priv
->cfb_fence
= obj
->fence_reg
;
1578 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1579 dev_priv
->cfb_offset
= obj
->gtt_offset
;
1580 dev_priv
->cfb_y
= crtc
->y
;
1582 dpfc_ctl
&= DPFC_RESERVED
;
1583 dpfc_ctl
|= (plane
| DPFC_CTL_LIMIT_1X
);
1584 /* Set persistent mode for front-buffer rendering, ala X. */
1585 dpfc_ctl
|= DPFC_CTL_PERSISTENT_MODE
;
1586 dpfc_ctl
|= (DPFC_CTL_FENCE_EN
| dev_priv
->cfb_fence
);
1587 I915_WRITE(ILK_DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1589 I915_WRITE(ILK_DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1590 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1591 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1592 I915_WRITE(ILK_DPFC_FENCE_YOFF
, crtc
->y
);
1593 I915_WRITE(ILK_FBC_RT_BASE
, obj
->gtt_offset
| ILK_FBC_RT_VALID
);
1595 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
| DPFC_CTL_EN
);
1598 I915_WRITE(SNB_DPFC_CTL_SA
,
1599 SNB_CPU_FENCE_ENABLE
| dev_priv
->cfb_fence
);
1600 I915_WRITE(DPFC_CPU_FENCE_OFFSET
, crtc
->y
);
1601 sandybridge_blit_fbc_update(dev
);
1604 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1607 static void ironlake_disable_fbc(struct drm_device
*dev
)
1609 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1612 /* Disable compression */
1613 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
1614 if (dpfc_ctl
& DPFC_CTL_EN
) {
1615 dpfc_ctl
&= ~DPFC_CTL_EN
;
1616 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
);
1618 DRM_DEBUG_KMS("disabled FBC\n");
1622 static bool ironlake_fbc_enabled(struct drm_device
*dev
)
1624 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1626 return I915_READ(ILK_DPFC_CONTROL
) & DPFC_CTL_EN
;
1629 bool intel_fbc_enabled(struct drm_device
*dev
)
1631 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1633 if (!dev_priv
->display
.fbc_enabled
)
1636 return dev_priv
->display
.fbc_enabled(dev
);
1639 static void intel_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1641 struct drm_i915_private
*dev_priv
= crtc
->dev
->dev_private
;
1643 if (!dev_priv
->display
.enable_fbc
)
1646 dev_priv
->display
.enable_fbc(crtc
, interval
);
1649 void intel_disable_fbc(struct drm_device
*dev
)
1651 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1653 if (!dev_priv
->display
.disable_fbc
)
1656 dev_priv
->display
.disable_fbc(dev
);
1660 * intel_update_fbc - enable/disable FBC as needed
1661 * @dev: the drm_device
1663 * Set up the framebuffer compression hardware at mode set time. We
1664 * enable it if possible:
1665 * - plane A only (on pre-965)
1666 * - no pixel mulitply/line duplication
1667 * - no alpha buffer discard
1669 * - framebuffer <= 2048 in width, 1536 in height
1671 * We can't assume that any compression will take place (worst case),
1672 * so the compressed buffer has to be the same size as the uncompressed
1673 * one. It also must reside (along with the line length buffer) in
1676 * We need to enable/disable FBC on a global basis.
1678 static void intel_update_fbc(struct drm_device
*dev
)
1680 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1681 struct drm_crtc
*crtc
= NULL
, *tmp_crtc
;
1682 struct intel_crtc
*intel_crtc
;
1683 struct drm_framebuffer
*fb
;
1684 struct intel_framebuffer
*intel_fb
;
1685 struct drm_i915_gem_object
*obj
;
1687 DRM_DEBUG_KMS("\n");
1689 if (!i915_powersave
)
1692 if (!I915_HAS_FBC(dev
))
1696 * If FBC is already on, we just have to verify that we can
1697 * keep it that way...
1698 * Need to disable if:
1699 * - more than one pipe is active
1700 * - changing FBC params (stride, fence, mode)
1701 * - new fb is too large to fit in compressed buffer
1702 * - going to an unsupported config (interlace, pixel multiply, etc.)
1704 list_for_each_entry(tmp_crtc
, &dev
->mode_config
.crtc_list
, head
) {
1705 if (tmp_crtc
->enabled
&& tmp_crtc
->fb
) {
1707 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1708 dev_priv
->no_fbc_reason
= FBC_MULTIPLE_PIPES
;
1715 if (!crtc
|| crtc
->fb
== NULL
) {
1716 DRM_DEBUG_KMS("no output, disabling\n");
1717 dev_priv
->no_fbc_reason
= FBC_NO_OUTPUT
;
1721 intel_crtc
= to_intel_crtc(crtc
);
1723 intel_fb
= to_intel_framebuffer(fb
);
1724 obj
= intel_fb
->obj
;
1726 if (!i915_enable_fbc
) {
1727 DRM_DEBUG_KMS("fbc disabled per module param (default off)\n");
1728 dev_priv
->no_fbc_reason
= FBC_MODULE_PARAM
;
1731 if (intel_fb
->obj
->base
.size
> dev_priv
->cfb_size
) {
1732 DRM_DEBUG_KMS("framebuffer too large, disabling "
1734 dev_priv
->no_fbc_reason
= FBC_STOLEN_TOO_SMALL
;
1737 if ((crtc
->mode
.flags
& DRM_MODE_FLAG_INTERLACE
) ||
1738 (crtc
->mode
.flags
& DRM_MODE_FLAG_DBLSCAN
)) {
1739 DRM_DEBUG_KMS("mode incompatible with compression, "
1741 dev_priv
->no_fbc_reason
= FBC_UNSUPPORTED_MODE
;
1744 if ((crtc
->mode
.hdisplay
> 2048) ||
1745 (crtc
->mode
.vdisplay
> 1536)) {
1746 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1747 dev_priv
->no_fbc_reason
= FBC_MODE_TOO_LARGE
;
1750 if ((IS_I915GM(dev
) || IS_I945GM(dev
)) && intel_crtc
->plane
!= 0) {
1751 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1752 dev_priv
->no_fbc_reason
= FBC_BAD_PLANE
;
1756 /* The use of a CPU fence is mandatory in order to detect writes
1757 * by the CPU to the scanout and trigger updates to the FBC.
1759 if (obj
->tiling_mode
!= I915_TILING_X
||
1760 obj
->fence_reg
== I915_FENCE_REG_NONE
) {
1761 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1762 dev_priv
->no_fbc_reason
= FBC_NOT_TILED
;
1766 /* If the kernel debugger is active, always disable compression */
1767 if (in_dbg_master())
1770 intel_enable_fbc(crtc
, 500);
1774 /* Multiple disables should be harmless */
1775 if (intel_fbc_enabled(dev
)) {
1776 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1777 intel_disable_fbc(dev
);
1782 intel_pin_and_fence_fb_obj(struct drm_device
*dev
,
1783 struct drm_i915_gem_object
*obj
,
1784 struct intel_ring_buffer
*pipelined
)
1786 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1790 switch (obj
->tiling_mode
) {
1791 case I915_TILING_NONE
:
1792 if (IS_BROADWATER(dev
) || IS_CRESTLINE(dev
))
1793 alignment
= 128 * 1024;
1794 else if (INTEL_INFO(dev
)->gen
>= 4)
1795 alignment
= 4 * 1024;
1797 alignment
= 64 * 1024;
1800 /* pin() will align the object as required by fence */
1804 /* FIXME: Is this true? */
1805 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1811 dev_priv
->mm
.interruptible
= false;
1812 ret
= i915_gem_object_pin_to_display_plane(obj
, alignment
, pipelined
);
1814 goto err_interruptible
;
1816 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1817 * fence, whereas 965+ only requires a fence if using
1818 * framebuffer compression. For simplicity, we always install
1819 * a fence as the cost is not that onerous.
1821 if (obj
->tiling_mode
!= I915_TILING_NONE
) {
1822 ret
= i915_gem_object_get_fence(obj
, pipelined
);
1827 dev_priv
->mm
.interruptible
= true;
1831 i915_gem_object_unpin(obj
);
1833 dev_priv
->mm
.interruptible
= true;
1837 static int i9xx_update_plane(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
1840 struct drm_device
*dev
= crtc
->dev
;
1841 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1842 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1843 struct intel_framebuffer
*intel_fb
;
1844 struct drm_i915_gem_object
*obj
;
1845 int plane
= intel_crtc
->plane
;
1846 unsigned long Start
, Offset
;
1855 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
1859 intel_fb
= to_intel_framebuffer(fb
);
1860 obj
= intel_fb
->obj
;
1862 reg
= DSPCNTR(plane
);
1863 dspcntr
= I915_READ(reg
);
1864 /* Mask out pixel format bits in case we change it */
1865 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
1866 switch (fb
->bits_per_pixel
) {
1868 dspcntr
|= DISPPLANE_8BPP
;
1871 if (fb
->depth
== 15)
1872 dspcntr
|= DISPPLANE_15_16BPP
;
1874 dspcntr
|= DISPPLANE_16BPP
;
1878 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
1881 DRM_ERROR("Unknown color depth %d\n", fb
->bits_per_pixel
);
1884 if (INTEL_INFO(dev
)->gen
>= 4) {
1885 if (obj
->tiling_mode
!= I915_TILING_NONE
)
1886 dspcntr
|= DISPPLANE_TILED
;
1888 dspcntr
&= ~DISPPLANE_TILED
;
1891 I915_WRITE(reg
, dspcntr
);
1893 Start
= obj
->gtt_offset
;
1894 Offset
= y
* fb
->pitch
+ x
* (fb
->bits_per_pixel
/ 8);
1896 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1897 Start
, Offset
, x
, y
, fb
->pitch
);
1898 I915_WRITE(DSPSTRIDE(plane
), fb
->pitch
);
1899 if (INTEL_INFO(dev
)->gen
>= 4) {
1900 I915_WRITE(DSPSURF(plane
), Start
);
1901 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
1902 I915_WRITE(DSPADDR(plane
), Offset
);
1904 I915_WRITE(DSPADDR(plane
), Start
+ Offset
);
1910 static int ironlake_update_plane(struct drm_crtc
*crtc
,
1911 struct drm_framebuffer
*fb
, int x
, int y
)
1913 struct drm_device
*dev
= crtc
->dev
;
1914 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1915 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1916 struct intel_framebuffer
*intel_fb
;
1917 struct drm_i915_gem_object
*obj
;
1918 int plane
= intel_crtc
->plane
;
1919 unsigned long Start
, Offset
;
1928 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
1932 intel_fb
= to_intel_framebuffer(fb
);
1933 obj
= intel_fb
->obj
;
1935 reg
= DSPCNTR(plane
);
1936 dspcntr
= I915_READ(reg
);
1937 /* Mask out pixel format bits in case we change it */
1938 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
1939 switch (fb
->bits_per_pixel
) {
1941 dspcntr
|= DISPPLANE_8BPP
;
1944 if (fb
->depth
!= 16)
1947 dspcntr
|= DISPPLANE_16BPP
;
1951 if (fb
->depth
== 24)
1952 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
1953 else if (fb
->depth
== 30)
1954 dspcntr
|= DISPPLANE_32BPP_30BIT_NO_ALPHA
;
1959 DRM_ERROR("Unknown color depth %d\n", fb
->bits_per_pixel
);
1963 if (obj
->tiling_mode
!= I915_TILING_NONE
)
1964 dspcntr
|= DISPPLANE_TILED
;
1966 dspcntr
&= ~DISPPLANE_TILED
;
1969 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
1971 I915_WRITE(reg
, dspcntr
);
1973 Start
= obj
->gtt_offset
;
1974 Offset
= y
* fb
->pitch
+ x
* (fb
->bits_per_pixel
/ 8);
1976 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1977 Start
, Offset
, x
, y
, fb
->pitch
);
1978 I915_WRITE(DSPSTRIDE(plane
), fb
->pitch
);
1979 I915_WRITE(DSPSURF(plane
), Start
);
1980 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
1981 I915_WRITE(DSPADDR(plane
), Offset
);
1987 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1989 intel_pipe_set_base_atomic(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
1990 int x
, int y
, enum mode_set_atomic state
)
1992 struct drm_device
*dev
= crtc
->dev
;
1993 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1996 ret
= dev_priv
->display
.update_plane(crtc
, fb
, x
, y
);
2000 intel_update_fbc(dev
);
2001 intel_increase_pllclock(crtc
);
2007 intel_pipe_set_base(struct drm_crtc
*crtc
, int x
, int y
,
2008 struct drm_framebuffer
*old_fb
)
2010 struct drm_device
*dev
= crtc
->dev
;
2011 struct drm_i915_master_private
*master_priv
;
2012 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2017 DRM_DEBUG_KMS("No FB bound\n");
2021 switch (intel_crtc
->plane
) {
2029 mutex_lock(&dev
->struct_mutex
);
2030 ret
= intel_pin_and_fence_fb_obj(dev
,
2031 to_intel_framebuffer(crtc
->fb
)->obj
,
2034 mutex_unlock(&dev
->struct_mutex
);
2039 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2040 struct drm_i915_gem_object
*obj
= to_intel_framebuffer(old_fb
)->obj
;
2042 wait_event(dev_priv
->pending_flip_queue
,
2043 atomic_read(&dev_priv
->mm
.wedged
) ||
2044 atomic_read(&obj
->pending_flip
) == 0);
2046 /* Big Hammer, we also need to ensure that any pending
2047 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2048 * current scanout is retired before unpinning the old
2051 * This should only fail upon a hung GPU, in which case we
2052 * can safely continue.
2054 ret
= i915_gem_object_finish_gpu(obj
);
2058 ret
= intel_pipe_set_base_atomic(crtc
, crtc
->fb
, x
, y
,
2059 LEAVE_ATOMIC_MODE_SET
);
2061 i915_gem_object_unpin(to_intel_framebuffer(crtc
->fb
)->obj
);
2062 mutex_unlock(&dev
->struct_mutex
);
2067 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
2068 i915_gem_object_unpin(to_intel_framebuffer(old_fb
)->obj
);
2071 mutex_unlock(&dev
->struct_mutex
);
2073 if (!dev
->primary
->master
)
2076 master_priv
= dev
->primary
->master
->driver_priv
;
2077 if (!master_priv
->sarea_priv
)
2080 if (intel_crtc
->pipe
) {
2081 master_priv
->sarea_priv
->pipeB_x
= x
;
2082 master_priv
->sarea_priv
->pipeB_y
= y
;
2084 master_priv
->sarea_priv
->pipeA_x
= x
;
2085 master_priv
->sarea_priv
->pipeA_y
= y
;
2091 static void ironlake_set_pll_edp(struct drm_crtc
*crtc
, int clock
)
2093 struct drm_device
*dev
= crtc
->dev
;
2094 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2097 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock
);
2098 dpa_ctl
= I915_READ(DP_A
);
2099 dpa_ctl
&= ~DP_PLL_FREQ_MASK
;
2101 if (clock
< 200000) {
2103 dpa_ctl
|= DP_PLL_FREQ_160MHZ
;
2104 /* workaround for 160Mhz:
2105 1) program 0x4600c bits 15:0 = 0x8124
2106 2) program 0x46010 bit 0 = 1
2107 3) program 0x46034 bit 24 = 1
2108 4) program 0x64000 bit 14 = 1
2110 temp
= I915_READ(0x4600c);
2112 I915_WRITE(0x4600c, temp
| 0x8124);
2114 temp
= I915_READ(0x46010);
2115 I915_WRITE(0x46010, temp
| 1);
2117 temp
= I915_READ(0x46034);
2118 I915_WRITE(0x46034, temp
| (1 << 24));
2120 dpa_ctl
|= DP_PLL_FREQ_270MHZ
;
2122 I915_WRITE(DP_A
, dpa_ctl
);
2128 static void intel_fdi_normal_train(struct drm_crtc
*crtc
)
2130 struct drm_device
*dev
= crtc
->dev
;
2131 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2132 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2133 int pipe
= intel_crtc
->pipe
;
2136 /* enable normal train */
2137 reg
= FDI_TX_CTL(pipe
);
2138 temp
= I915_READ(reg
);
2139 if (IS_IVYBRIDGE(dev
)) {
2140 temp
&= ~FDI_LINK_TRAIN_NONE_IVB
;
2141 temp
|= FDI_LINK_TRAIN_NONE_IVB
| FDI_TX_ENHANCE_FRAME_ENABLE
;
2143 temp
&= ~FDI_LINK_TRAIN_NONE
;
2144 temp
|= FDI_LINK_TRAIN_NONE
| FDI_TX_ENHANCE_FRAME_ENABLE
;
2146 I915_WRITE(reg
, temp
);
2148 reg
= FDI_RX_CTL(pipe
);
2149 temp
= I915_READ(reg
);
2150 if (HAS_PCH_CPT(dev
)) {
2151 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2152 temp
|= FDI_LINK_TRAIN_NORMAL_CPT
;
2154 temp
&= ~FDI_LINK_TRAIN_NONE
;
2155 temp
|= FDI_LINK_TRAIN_NONE
;
2157 I915_WRITE(reg
, temp
| FDI_RX_ENHANCE_FRAME_ENABLE
);
2159 /* wait one idle pattern time */
2163 /* IVB wants error correction enabled */
2164 if (IS_IVYBRIDGE(dev
))
2165 I915_WRITE(reg
, I915_READ(reg
) | FDI_FS_ERRC_ENABLE
|
2166 FDI_FE_ERRC_ENABLE
);
2169 /* The FDI link training functions for ILK/Ibexpeak. */
2170 static void ironlake_fdi_link_train(struct drm_crtc
*crtc
)
2172 struct drm_device
*dev
= crtc
->dev
;
2173 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2174 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2175 int pipe
= intel_crtc
->pipe
;
2176 int plane
= intel_crtc
->plane
;
2177 u32 reg
, temp
, tries
;
2179 /* FDI needs bits from pipe & plane first */
2180 assert_pipe_enabled(dev_priv
, pipe
);
2181 assert_plane_enabled(dev_priv
, plane
);
2183 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2185 reg
= FDI_RX_IMR(pipe
);
2186 temp
= I915_READ(reg
);
2187 temp
&= ~FDI_RX_SYMBOL_LOCK
;
2188 temp
&= ~FDI_RX_BIT_LOCK
;
2189 I915_WRITE(reg
, temp
);
2193 /* enable CPU FDI TX and PCH FDI RX */
2194 reg
= FDI_TX_CTL(pipe
);
2195 temp
= I915_READ(reg
);
2197 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2198 temp
&= ~FDI_LINK_TRAIN_NONE
;
2199 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2200 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
2202 reg
= FDI_RX_CTL(pipe
);
2203 temp
= I915_READ(reg
);
2204 temp
&= ~FDI_LINK_TRAIN_NONE
;
2205 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2206 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
2211 /* Ironlake workaround, enable clock pointer after FDI enable*/
2212 if (HAS_PCH_IBX(dev
)) {
2213 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
);
2214 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
|
2215 FDI_RX_PHASE_SYNC_POINTER_EN
);
2218 reg
= FDI_RX_IIR(pipe
);
2219 for (tries
= 0; tries
< 5; tries
++) {
2220 temp
= I915_READ(reg
);
2221 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2223 if ((temp
& FDI_RX_BIT_LOCK
)) {
2224 DRM_DEBUG_KMS("FDI train 1 done.\n");
2225 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
2230 DRM_ERROR("FDI train 1 fail!\n");
2233 reg
= FDI_TX_CTL(pipe
);
2234 temp
= I915_READ(reg
);
2235 temp
&= ~FDI_LINK_TRAIN_NONE
;
2236 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2237 I915_WRITE(reg
, temp
);
2239 reg
= FDI_RX_CTL(pipe
);
2240 temp
= I915_READ(reg
);
2241 temp
&= ~FDI_LINK_TRAIN_NONE
;
2242 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2243 I915_WRITE(reg
, temp
);
2248 reg
= FDI_RX_IIR(pipe
);
2249 for (tries
= 0; tries
< 5; tries
++) {
2250 temp
= I915_READ(reg
);
2251 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2253 if (temp
& FDI_RX_SYMBOL_LOCK
) {
2254 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
2255 DRM_DEBUG_KMS("FDI train 2 done.\n");
2260 DRM_ERROR("FDI train 2 fail!\n");
2262 DRM_DEBUG_KMS("FDI train done\n");
2266 static const int snb_b_fdi_train_param
[] = {
2267 FDI_LINK_TRAIN_400MV_0DB_SNB_B
,
2268 FDI_LINK_TRAIN_400MV_6DB_SNB_B
,
2269 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B
,
2270 FDI_LINK_TRAIN_800MV_0DB_SNB_B
,
2273 /* The FDI link training functions for SNB/Cougarpoint. */
2274 static void gen6_fdi_link_train(struct drm_crtc
*crtc
)
2276 struct drm_device
*dev
= crtc
->dev
;
2277 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2278 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2279 int pipe
= intel_crtc
->pipe
;
2282 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2284 reg
= FDI_RX_IMR(pipe
);
2285 temp
= I915_READ(reg
);
2286 temp
&= ~FDI_RX_SYMBOL_LOCK
;
2287 temp
&= ~FDI_RX_BIT_LOCK
;
2288 I915_WRITE(reg
, temp
);
2293 /* enable CPU FDI TX and PCH FDI RX */
2294 reg
= FDI_TX_CTL(pipe
);
2295 temp
= I915_READ(reg
);
2297 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2298 temp
&= ~FDI_LINK_TRAIN_NONE
;
2299 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2300 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2302 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2303 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
2305 reg
= FDI_RX_CTL(pipe
);
2306 temp
= I915_READ(reg
);
2307 if (HAS_PCH_CPT(dev
)) {
2308 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2309 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2311 temp
&= ~FDI_LINK_TRAIN_NONE
;
2312 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2314 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
2319 for (i
= 0; i
< 4; i
++ ) {
2320 reg
= FDI_TX_CTL(pipe
);
2321 temp
= I915_READ(reg
);
2322 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2323 temp
|= snb_b_fdi_train_param
[i
];
2324 I915_WRITE(reg
, temp
);
2329 reg
= FDI_RX_IIR(pipe
);
2330 temp
= I915_READ(reg
);
2331 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2333 if (temp
& FDI_RX_BIT_LOCK
) {
2334 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
2335 DRM_DEBUG_KMS("FDI train 1 done.\n");
2340 DRM_ERROR("FDI train 1 fail!\n");
2343 reg
= FDI_TX_CTL(pipe
);
2344 temp
= I915_READ(reg
);
2345 temp
&= ~FDI_LINK_TRAIN_NONE
;
2346 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2348 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2350 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2352 I915_WRITE(reg
, temp
);
2354 reg
= FDI_RX_CTL(pipe
);
2355 temp
= I915_READ(reg
);
2356 if (HAS_PCH_CPT(dev
)) {
2357 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2358 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
2360 temp
&= ~FDI_LINK_TRAIN_NONE
;
2361 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2363 I915_WRITE(reg
, temp
);
2368 for (i
= 0; i
< 4; i
++ ) {
2369 reg
= FDI_TX_CTL(pipe
);
2370 temp
= I915_READ(reg
);
2371 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2372 temp
|= snb_b_fdi_train_param
[i
];
2373 I915_WRITE(reg
, temp
);
2378 reg
= FDI_RX_IIR(pipe
);
2379 temp
= I915_READ(reg
);
2380 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2382 if (temp
& FDI_RX_SYMBOL_LOCK
) {
2383 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
2384 DRM_DEBUG_KMS("FDI train 2 done.\n");
2389 DRM_ERROR("FDI train 2 fail!\n");
2391 DRM_DEBUG_KMS("FDI train done.\n");
2394 /* Manual link training for Ivy Bridge A0 parts */
2395 static void ivb_manual_fdi_link_train(struct drm_crtc
*crtc
)
2397 struct drm_device
*dev
= crtc
->dev
;
2398 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2399 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2400 int pipe
= intel_crtc
->pipe
;
2403 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2405 reg
= FDI_RX_IMR(pipe
);
2406 temp
= I915_READ(reg
);
2407 temp
&= ~FDI_RX_SYMBOL_LOCK
;
2408 temp
&= ~FDI_RX_BIT_LOCK
;
2409 I915_WRITE(reg
, temp
);
2414 /* enable CPU FDI TX and PCH FDI RX */
2415 reg
= FDI_TX_CTL(pipe
);
2416 temp
= I915_READ(reg
);
2418 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2419 temp
&= ~(FDI_LINK_TRAIN_AUTO
| FDI_LINK_TRAIN_NONE_IVB
);
2420 temp
|= FDI_LINK_TRAIN_PATTERN_1_IVB
;
2421 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2422 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2423 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
2425 reg
= FDI_RX_CTL(pipe
);
2426 temp
= I915_READ(reg
);
2427 temp
&= ~FDI_LINK_TRAIN_AUTO
;
2428 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2429 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2430 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
2435 for (i
= 0; i
< 4; i
++ ) {
2436 reg
= FDI_TX_CTL(pipe
);
2437 temp
= I915_READ(reg
);
2438 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2439 temp
|= snb_b_fdi_train_param
[i
];
2440 I915_WRITE(reg
, temp
);
2445 reg
= FDI_RX_IIR(pipe
);
2446 temp
= I915_READ(reg
);
2447 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2449 if (temp
& FDI_RX_BIT_LOCK
||
2450 (I915_READ(reg
) & FDI_RX_BIT_LOCK
)) {
2451 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
2452 DRM_DEBUG_KMS("FDI train 1 done.\n");
2457 DRM_ERROR("FDI train 1 fail!\n");
2460 reg
= FDI_TX_CTL(pipe
);
2461 temp
= I915_READ(reg
);
2462 temp
&= ~FDI_LINK_TRAIN_NONE_IVB
;
2463 temp
|= FDI_LINK_TRAIN_PATTERN_2_IVB
;
2464 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2465 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2466 I915_WRITE(reg
, temp
);
2468 reg
= FDI_RX_CTL(pipe
);
2469 temp
= I915_READ(reg
);
2470 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2471 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
2472 I915_WRITE(reg
, temp
);
2477 for (i
= 0; i
< 4; i
++ ) {
2478 reg
= FDI_TX_CTL(pipe
);
2479 temp
= I915_READ(reg
);
2480 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2481 temp
|= snb_b_fdi_train_param
[i
];
2482 I915_WRITE(reg
, temp
);
2487 reg
= FDI_RX_IIR(pipe
);
2488 temp
= I915_READ(reg
);
2489 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2491 if (temp
& FDI_RX_SYMBOL_LOCK
) {
2492 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
2493 DRM_DEBUG_KMS("FDI train 2 done.\n");
2498 DRM_ERROR("FDI train 2 fail!\n");
2500 DRM_DEBUG_KMS("FDI train done.\n");
2503 static void ironlake_fdi_pll_enable(struct drm_crtc
*crtc
)
2505 struct drm_device
*dev
= crtc
->dev
;
2506 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2507 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2508 int pipe
= intel_crtc
->pipe
;
2511 /* Write the TU size bits so error detection works */
2512 I915_WRITE(FDI_RX_TUSIZE1(pipe
),
2513 I915_READ(PIPE_DATA_M1(pipe
)) & TU_SIZE_MASK
);
2515 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2516 reg
= FDI_RX_CTL(pipe
);
2517 temp
= I915_READ(reg
);
2518 temp
&= ~((0x7 << 19) | (0x7 << 16));
2519 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2520 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2521 I915_WRITE(reg
, temp
| FDI_RX_PLL_ENABLE
);
2526 /* Switch from Rawclk to PCDclk */
2527 temp
= I915_READ(reg
);
2528 I915_WRITE(reg
, temp
| FDI_PCDCLK
);
2533 /* Enable CPU FDI TX PLL, always on for Ironlake */
2534 reg
= FDI_TX_CTL(pipe
);
2535 temp
= I915_READ(reg
);
2536 if ((temp
& FDI_TX_PLL_ENABLE
) == 0) {
2537 I915_WRITE(reg
, temp
| FDI_TX_PLL_ENABLE
);
2544 static void ironlake_fdi_disable(struct drm_crtc
*crtc
)
2546 struct drm_device
*dev
= crtc
->dev
;
2547 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2548 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2549 int pipe
= intel_crtc
->pipe
;
2552 /* disable CPU FDI tx and PCH FDI rx */
2553 reg
= FDI_TX_CTL(pipe
);
2554 temp
= I915_READ(reg
);
2555 I915_WRITE(reg
, temp
& ~FDI_TX_ENABLE
);
2558 reg
= FDI_RX_CTL(pipe
);
2559 temp
= I915_READ(reg
);
2560 temp
&= ~(0x7 << 16);
2561 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2562 I915_WRITE(reg
, temp
& ~FDI_RX_ENABLE
);
2567 /* Ironlake workaround, disable clock pointer after downing FDI */
2568 if (HAS_PCH_IBX(dev
)) {
2569 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
);
2570 I915_WRITE(FDI_RX_CHICKEN(pipe
),
2571 I915_READ(FDI_RX_CHICKEN(pipe
) &
2572 ~FDI_RX_PHASE_SYNC_POINTER_EN
));
2575 /* still set train pattern 1 */
2576 reg
= FDI_TX_CTL(pipe
);
2577 temp
= I915_READ(reg
);
2578 temp
&= ~FDI_LINK_TRAIN_NONE
;
2579 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2580 I915_WRITE(reg
, temp
);
2582 reg
= FDI_RX_CTL(pipe
);
2583 temp
= I915_READ(reg
);
2584 if (HAS_PCH_CPT(dev
)) {
2585 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2586 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2588 temp
&= ~FDI_LINK_TRAIN_NONE
;
2589 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2591 /* BPC in FDI rx is consistent with that in PIPECONF */
2592 temp
&= ~(0x07 << 16);
2593 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2594 I915_WRITE(reg
, temp
);
2601 * When we disable a pipe, we need to clear any pending scanline wait events
2602 * to avoid hanging the ring, which we assume we are waiting on.
2604 static void intel_clear_scanline_wait(struct drm_device
*dev
)
2606 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2607 struct intel_ring_buffer
*ring
;
2611 /* Can't break the hang on i8xx */
2614 ring
= LP_RING(dev_priv
);
2615 tmp
= I915_READ_CTL(ring
);
2616 if (tmp
& RING_WAIT
)
2617 I915_WRITE_CTL(ring
, tmp
);
2620 static void intel_crtc_wait_for_pending_flips(struct drm_crtc
*crtc
)
2622 struct drm_i915_gem_object
*obj
;
2623 struct drm_i915_private
*dev_priv
;
2625 if (crtc
->fb
== NULL
)
2628 obj
= to_intel_framebuffer(crtc
->fb
)->obj
;
2629 dev_priv
= crtc
->dev
->dev_private
;
2630 wait_event(dev_priv
->pending_flip_queue
,
2631 atomic_read(&obj
->pending_flip
) == 0);
2634 static bool intel_crtc_driving_pch(struct drm_crtc
*crtc
)
2636 struct drm_device
*dev
= crtc
->dev
;
2637 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
2638 struct intel_encoder
*encoder
;
2641 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2642 * must be driven by its own crtc; no sharing is possible.
2644 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
2645 if (encoder
->base
.crtc
!= crtc
)
2648 switch (encoder
->type
) {
2649 case INTEL_OUTPUT_EDP
:
2650 if (!intel_encoder_is_pch_edp(&encoder
->base
))
2660 * Enable PCH resources required for PCH ports:
2662 * - FDI training & RX/TX
2663 * - update transcoder timings
2664 * - DP transcoding bits
2667 static void ironlake_pch_enable(struct drm_crtc
*crtc
)
2669 struct drm_device
*dev
= crtc
->dev
;
2670 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2671 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2672 int pipe
= intel_crtc
->pipe
;
2675 /* For PCH output, training FDI link */
2676 dev_priv
->display
.fdi_link_train(crtc
);
2678 intel_enable_pch_pll(dev_priv
, pipe
);
2680 if (HAS_PCH_CPT(dev
)) {
2681 /* Be sure PCH DPLL SEL is set */
2682 temp
= I915_READ(PCH_DPLL_SEL
);
2683 if (pipe
== 0 && (temp
& TRANSA_DPLL_ENABLE
) == 0)
2684 temp
|= (TRANSA_DPLL_ENABLE
| TRANSA_DPLLA_SEL
);
2685 else if (pipe
== 1 && (temp
& TRANSB_DPLL_ENABLE
) == 0)
2686 temp
|= (TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
);
2687 I915_WRITE(PCH_DPLL_SEL
, temp
);
2690 /* set transcoder timing, panel must allow it */
2691 assert_panel_unlocked(dev_priv
, pipe
);
2692 I915_WRITE(TRANS_HTOTAL(pipe
), I915_READ(HTOTAL(pipe
)));
2693 I915_WRITE(TRANS_HBLANK(pipe
), I915_READ(HBLANK(pipe
)));
2694 I915_WRITE(TRANS_HSYNC(pipe
), I915_READ(HSYNC(pipe
)));
2696 I915_WRITE(TRANS_VTOTAL(pipe
), I915_READ(VTOTAL(pipe
)));
2697 I915_WRITE(TRANS_VBLANK(pipe
), I915_READ(VBLANK(pipe
)));
2698 I915_WRITE(TRANS_VSYNC(pipe
), I915_READ(VSYNC(pipe
)));
2700 intel_fdi_normal_train(crtc
);
2702 /* For PCH DP, enable TRANS_DP_CTL */
2703 if (HAS_PCH_CPT(dev
) &&
2704 intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
2705 u32 bpc
= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) >> 5;
2706 reg
= TRANS_DP_CTL(pipe
);
2707 temp
= I915_READ(reg
);
2708 temp
&= ~(TRANS_DP_PORT_SEL_MASK
|
2709 TRANS_DP_SYNC_MASK
|
2711 temp
|= (TRANS_DP_OUTPUT_ENABLE
|
2712 TRANS_DP_ENH_FRAMING
);
2713 temp
|= bpc
<< 9; /* same format but at 11:9 */
2715 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PHSYNC
)
2716 temp
|= TRANS_DP_HSYNC_ACTIVE_HIGH
;
2717 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PVSYNC
)
2718 temp
|= TRANS_DP_VSYNC_ACTIVE_HIGH
;
2720 switch (intel_trans_dp_port_sel(crtc
)) {
2722 temp
|= TRANS_DP_PORT_SEL_B
;
2725 temp
|= TRANS_DP_PORT_SEL_C
;
2728 temp
|= TRANS_DP_PORT_SEL_D
;
2731 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2732 temp
|= TRANS_DP_PORT_SEL_B
;
2736 I915_WRITE(reg
, temp
);
2739 intel_enable_transcoder(dev_priv
, pipe
);
2742 static void ironlake_crtc_enable(struct drm_crtc
*crtc
)
2744 struct drm_device
*dev
= crtc
->dev
;
2745 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2746 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2747 int pipe
= intel_crtc
->pipe
;
2748 int plane
= intel_crtc
->plane
;
2752 if (intel_crtc
->active
)
2755 intel_crtc
->active
= true;
2756 intel_update_watermarks(dev
);
2758 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
2759 temp
= I915_READ(PCH_LVDS
);
2760 if ((temp
& LVDS_PORT_EN
) == 0)
2761 I915_WRITE(PCH_LVDS
, temp
| LVDS_PORT_EN
);
2764 is_pch_port
= intel_crtc_driving_pch(crtc
);
2767 ironlake_fdi_pll_enable(crtc
);
2769 ironlake_fdi_disable(crtc
);
2771 /* Enable panel fitting for LVDS */
2772 if (dev_priv
->pch_pf_size
&&
2773 (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) || HAS_eDP
)) {
2774 /* Force use of hard-coded filter coefficients
2775 * as some pre-programmed values are broken,
2778 I915_WRITE(PF_CTL(pipe
), PF_ENABLE
| PF_FILTER_MED_3x3
);
2779 I915_WRITE(PF_WIN_POS(pipe
), dev_priv
->pch_pf_pos
);
2780 I915_WRITE(PF_WIN_SZ(pipe
), dev_priv
->pch_pf_size
);
2783 intel_enable_pipe(dev_priv
, pipe
, is_pch_port
);
2784 intel_enable_plane(dev_priv
, plane
, pipe
);
2787 ironlake_pch_enable(crtc
);
2789 intel_crtc_load_lut(crtc
);
2791 mutex_lock(&dev
->struct_mutex
);
2792 intel_update_fbc(dev
);
2793 mutex_unlock(&dev
->struct_mutex
);
2795 intel_crtc_update_cursor(crtc
, true);
2798 static void ironlake_crtc_disable(struct drm_crtc
*crtc
)
2800 struct drm_device
*dev
= crtc
->dev
;
2801 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2802 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2803 int pipe
= intel_crtc
->pipe
;
2804 int plane
= intel_crtc
->plane
;
2807 if (!intel_crtc
->active
)
2810 intel_crtc_wait_for_pending_flips(crtc
);
2811 drm_vblank_off(dev
, pipe
);
2812 intel_crtc_update_cursor(crtc
, false);
2814 intel_disable_plane(dev_priv
, plane
, pipe
);
2816 if (dev_priv
->cfb_plane
== plane
)
2817 intel_disable_fbc(dev
);
2819 intel_disable_pipe(dev_priv
, pipe
);
2822 I915_WRITE(PF_CTL(pipe
), 0);
2823 I915_WRITE(PF_WIN_SZ(pipe
), 0);
2825 ironlake_fdi_disable(crtc
);
2827 /* This is a horrible layering violation; we should be doing this in
2828 * the connector/encoder ->prepare instead, but we don't always have
2829 * enough information there about the config to know whether it will
2830 * actually be necessary or just cause undesired flicker.
2832 intel_disable_pch_ports(dev_priv
, pipe
);
2834 intel_disable_transcoder(dev_priv
, pipe
);
2836 if (HAS_PCH_CPT(dev
)) {
2837 /* disable TRANS_DP_CTL */
2838 reg
= TRANS_DP_CTL(pipe
);
2839 temp
= I915_READ(reg
);
2840 temp
&= ~(TRANS_DP_OUTPUT_ENABLE
| TRANS_DP_PORT_SEL_MASK
);
2841 temp
|= TRANS_DP_PORT_SEL_NONE
;
2842 I915_WRITE(reg
, temp
);
2844 /* disable DPLL_SEL */
2845 temp
= I915_READ(PCH_DPLL_SEL
);
2848 temp
&= ~(TRANSA_DPLL_ENABLE
| TRANSA_DPLLA_SEL
);
2851 temp
&= ~(TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
);
2854 /* FIXME: manage transcoder PLLs? */
2855 temp
&= ~(TRANSC_DPLL_ENABLE
| TRANSC_DPLLB_SEL
);
2860 I915_WRITE(PCH_DPLL_SEL
, temp
);
2863 /* disable PCH DPLL */
2864 intel_disable_pch_pll(dev_priv
, pipe
);
2866 /* Switch from PCDclk to Rawclk */
2867 reg
= FDI_RX_CTL(pipe
);
2868 temp
= I915_READ(reg
);
2869 I915_WRITE(reg
, temp
& ~FDI_PCDCLK
);
2871 /* Disable CPU FDI TX PLL */
2872 reg
= FDI_TX_CTL(pipe
);
2873 temp
= I915_READ(reg
);
2874 I915_WRITE(reg
, temp
& ~FDI_TX_PLL_ENABLE
);
2879 reg
= FDI_RX_CTL(pipe
);
2880 temp
= I915_READ(reg
);
2881 I915_WRITE(reg
, temp
& ~FDI_RX_PLL_ENABLE
);
2883 /* Wait for the clocks to turn off. */
2887 intel_crtc
->active
= false;
2888 intel_update_watermarks(dev
);
2890 mutex_lock(&dev
->struct_mutex
);
2891 intel_update_fbc(dev
);
2892 intel_clear_scanline_wait(dev
);
2893 mutex_unlock(&dev
->struct_mutex
);
2896 static void ironlake_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
2898 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2899 int pipe
= intel_crtc
->pipe
;
2900 int plane
= intel_crtc
->plane
;
2902 /* XXX: When our outputs are all unaware of DPMS modes other than off
2903 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2906 case DRM_MODE_DPMS_ON
:
2907 case DRM_MODE_DPMS_STANDBY
:
2908 case DRM_MODE_DPMS_SUSPEND
:
2909 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe
, plane
);
2910 ironlake_crtc_enable(crtc
);
2913 case DRM_MODE_DPMS_OFF
:
2914 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe
, plane
);
2915 ironlake_crtc_disable(crtc
);
2920 static void intel_crtc_dpms_overlay(struct intel_crtc
*intel_crtc
, bool enable
)
2922 if (!enable
&& intel_crtc
->overlay
) {
2923 struct drm_device
*dev
= intel_crtc
->base
.dev
;
2924 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2926 mutex_lock(&dev
->struct_mutex
);
2927 dev_priv
->mm
.interruptible
= false;
2928 (void) intel_overlay_switch_off(intel_crtc
->overlay
);
2929 dev_priv
->mm
.interruptible
= true;
2930 mutex_unlock(&dev
->struct_mutex
);
2933 /* Let userspace switch the overlay on again. In most cases userspace
2934 * has to recompute where to put it anyway.
2938 static void i9xx_crtc_enable(struct drm_crtc
*crtc
)
2940 struct drm_device
*dev
= crtc
->dev
;
2941 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2942 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2943 int pipe
= intel_crtc
->pipe
;
2944 int plane
= intel_crtc
->plane
;
2946 if (intel_crtc
->active
)
2949 intel_crtc
->active
= true;
2950 intel_update_watermarks(dev
);
2952 intel_enable_pll(dev_priv
, pipe
);
2953 intel_enable_pipe(dev_priv
, pipe
, false);
2954 intel_enable_plane(dev_priv
, plane
, pipe
);
2956 intel_crtc_load_lut(crtc
);
2957 intel_update_fbc(dev
);
2959 /* Give the overlay scaler a chance to enable if it's on this pipe */
2960 intel_crtc_dpms_overlay(intel_crtc
, true);
2961 intel_crtc_update_cursor(crtc
, true);
2964 static void i9xx_crtc_disable(struct drm_crtc
*crtc
)
2966 struct drm_device
*dev
= crtc
->dev
;
2967 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2968 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2969 int pipe
= intel_crtc
->pipe
;
2970 int plane
= intel_crtc
->plane
;
2972 if (!intel_crtc
->active
)
2975 /* Give the overlay scaler a chance to disable if it's on this pipe */
2976 intel_crtc_wait_for_pending_flips(crtc
);
2977 drm_vblank_off(dev
, pipe
);
2978 intel_crtc_dpms_overlay(intel_crtc
, false);
2979 intel_crtc_update_cursor(crtc
, false);
2981 if (dev_priv
->cfb_plane
== plane
)
2982 intel_disable_fbc(dev
);
2984 intel_disable_plane(dev_priv
, plane
, pipe
);
2985 intel_disable_pipe(dev_priv
, pipe
);
2986 intel_disable_pll(dev_priv
, pipe
);
2988 intel_crtc
->active
= false;
2989 intel_update_fbc(dev
);
2990 intel_update_watermarks(dev
);
2991 intel_clear_scanline_wait(dev
);
2994 static void i9xx_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
2996 /* XXX: When our outputs are all unaware of DPMS modes other than off
2997 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3000 case DRM_MODE_DPMS_ON
:
3001 case DRM_MODE_DPMS_STANDBY
:
3002 case DRM_MODE_DPMS_SUSPEND
:
3003 i9xx_crtc_enable(crtc
);
3005 case DRM_MODE_DPMS_OFF
:
3006 i9xx_crtc_disable(crtc
);
3012 * Sets the power management mode of the pipe and plane.
3014 static void intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
3016 struct drm_device
*dev
= crtc
->dev
;
3017 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3018 struct drm_i915_master_private
*master_priv
;
3019 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3020 int pipe
= intel_crtc
->pipe
;
3023 if (intel_crtc
->dpms_mode
== mode
)
3026 intel_crtc
->dpms_mode
= mode
;
3028 dev_priv
->display
.dpms(crtc
, mode
);
3030 if (!dev
->primary
->master
)
3033 master_priv
= dev
->primary
->master
->driver_priv
;
3034 if (!master_priv
->sarea_priv
)
3037 enabled
= crtc
->enabled
&& mode
!= DRM_MODE_DPMS_OFF
;
3041 master_priv
->sarea_priv
->pipeA_w
= enabled
? crtc
->mode
.hdisplay
: 0;
3042 master_priv
->sarea_priv
->pipeA_h
= enabled
? crtc
->mode
.vdisplay
: 0;
3045 master_priv
->sarea_priv
->pipeB_w
= enabled
? crtc
->mode
.hdisplay
: 0;
3046 master_priv
->sarea_priv
->pipeB_h
= enabled
? crtc
->mode
.vdisplay
: 0;
3049 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe
));
3054 static void intel_crtc_disable(struct drm_crtc
*crtc
)
3056 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
3057 struct drm_device
*dev
= crtc
->dev
;
3059 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
3062 mutex_lock(&dev
->struct_mutex
);
3063 i915_gem_object_unpin(to_intel_framebuffer(crtc
->fb
)->obj
);
3064 mutex_unlock(&dev
->struct_mutex
);
3068 /* Prepare for a mode set.
3070 * Note we could be a lot smarter here. We need to figure out which outputs
3071 * will be enabled, which disabled (in short, how the config will changes)
3072 * and perform the minimum necessary steps to accomplish that, e.g. updating
3073 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3074 * panel fitting is in the proper state, etc.
3076 static void i9xx_crtc_prepare(struct drm_crtc
*crtc
)
3078 i9xx_crtc_disable(crtc
);
3081 static void i9xx_crtc_commit(struct drm_crtc
*crtc
)
3083 i9xx_crtc_enable(crtc
);
3086 static void ironlake_crtc_prepare(struct drm_crtc
*crtc
)
3088 ironlake_crtc_disable(crtc
);
3091 static void ironlake_crtc_commit(struct drm_crtc
*crtc
)
3093 ironlake_crtc_enable(crtc
);
3096 void intel_encoder_prepare (struct drm_encoder
*encoder
)
3098 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3099 /* lvds has its own version of prepare see intel_lvds_prepare */
3100 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
3103 void intel_encoder_commit (struct drm_encoder
*encoder
)
3105 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3106 /* lvds has its own version of commit see intel_lvds_commit */
3107 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
3110 void intel_encoder_destroy(struct drm_encoder
*encoder
)
3112 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
3114 drm_encoder_cleanup(encoder
);
3115 kfree(intel_encoder
);
3118 static bool intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
3119 struct drm_display_mode
*mode
,
3120 struct drm_display_mode
*adjusted_mode
)
3122 struct drm_device
*dev
= crtc
->dev
;
3124 if (HAS_PCH_SPLIT(dev
)) {
3125 /* FDI link clock is fixed at 2.7G */
3126 if (mode
->clock
* 3 > IRONLAKE_FDI_FREQ
* 4)
3130 /* XXX some encoders set the crtcinfo, others don't.
3131 * Obviously we need some form of conflict resolution here...
3133 if (adjusted_mode
->crtc_htotal
== 0)
3134 drm_mode_set_crtcinfo(adjusted_mode
, 0);
3139 static int i945_get_display_clock_speed(struct drm_device
*dev
)
3144 static int i915_get_display_clock_speed(struct drm_device
*dev
)
3149 static int i9xx_misc_get_display_clock_speed(struct drm_device
*dev
)
3154 static int i915gm_get_display_clock_speed(struct drm_device
*dev
)
3158 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
3160 if (gcfgc
& GC_LOW_FREQUENCY_ENABLE
)
3163 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
3164 case GC_DISPLAY_CLOCK_333_MHZ
:
3167 case GC_DISPLAY_CLOCK_190_200_MHZ
:
3173 static int i865_get_display_clock_speed(struct drm_device
*dev
)
3178 static int i855_get_display_clock_speed(struct drm_device
*dev
)
3181 /* Assume that the hardware is in the high speed state. This
3182 * should be the default.
3184 switch (hpllcc
& GC_CLOCK_CONTROL_MASK
) {
3185 case GC_CLOCK_133_200
:
3186 case GC_CLOCK_100_200
:
3188 case GC_CLOCK_166_250
:
3190 case GC_CLOCK_100_133
:
3194 /* Shouldn't happen */
3198 static int i830_get_display_clock_speed(struct drm_device
*dev
)
3212 fdi_reduce_ratio(u32
*num
, u32
*den
)
3214 while (*num
> 0xffffff || *den
> 0xffffff) {
3221 ironlake_compute_m_n(int bits_per_pixel
, int nlanes
, int pixel_clock
,
3222 int link_clock
, struct fdi_m_n
*m_n
)
3224 m_n
->tu
= 64; /* default size */
3226 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3227 m_n
->gmch_m
= bits_per_pixel
* pixel_clock
;
3228 m_n
->gmch_n
= link_clock
* nlanes
* 8;
3229 fdi_reduce_ratio(&m_n
->gmch_m
, &m_n
->gmch_n
);
3231 m_n
->link_m
= pixel_clock
;
3232 m_n
->link_n
= link_clock
;
3233 fdi_reduce_ratio(&m_n
->link_m
, &m_n
->link_n
);
3237 struct intel_watermark_params
{
3238 unsigned long fifo_size
;
3239 unsigned long max_wm
;
3240 unsigned long default_wm
;
3241 unsigned long guard_size
;
3242 unsigned long cacheline_size
;
3245 /* Pineview has different values for various configs */
3246 static const struct intel_watermark_params pineview_display_wm
= {
3247 PINEVIEW_DISPLAY_FIFO
,
3251 PINEVIEW_FIFO_LINE_SIZE
3253 static const struct intel_watermark_params pineview_display_hplloff_wm
= {
3254 PINEVIEW_DISPLAY_FIFO
,
3256 PINEVIEW_DFT_HPLLOFF_WM
,
3258 PINEVIEW_FIFO_LINE_SIZE
3260 static const struct intel_watermark_params pineview_cursor_wm
= {
3261 PINEVIEW_CURSOR_FIFO
,
3262 PINEVIEW_CURSOR_MAX_WM
,
3263 PINEVIEW_CURSOR_DFT_WM
,
3264 PINEVIEW_CURSOR_GUARD_WM
,
3265 PINEVIEW_FIFO_LINE_SIZE
,
3267 static const struct intel_watermark_params pineview_cursor_hplloff_wm
= {
3268 PINEVIEW_CURSOR_FIFO
,
3269 PINEVIEW_CURSOR_MAX_WM
,
3270 PINEVIEW_CURSOR_DFT_WM
,
3271 PINEVIEW_CURSOR_GUARD_WM
,
3272 PINEVIEW_FIFO_LINE_SIZE
3274 static const struct intel_watermark_params g4x_wm_info
= {
3281 static const struct intel_watermark_params g4x_cursor_wm_info
= {
3288 static const struct intel_watermark_params i965_cursor_wm_info
= {
3293 I915_FIFO_LINE_SIZE
,
3295 static const struct intel_watermark_params i945_wm_info
= {
3302 static const struct intel_watermark_params i915_wm_info
= {
3309 static const struct intel_watermark_params i855_wm_info
= {
3316 static const struct intel_watermark_params i830_wm_info
= {
3324 static const struct intel_watermark_params ironlake_display_wm_info
= {
3331 static const struct intel_watermark_params ironlake_cursor_wm_info
= {
3338 static const struct intel_watermark_params ironlake_display_srwm_info
= {
3339 ILK_DISPLAY_SR_FIFO
,
3340 ILK_DISPLAY_MAX_SRWM
,
3341 ILK_DISPLAY_DFT_SRWM
,
3345 static const struct intel_watermark_params ironlake_cursor_srwm_info
= {
3347 ILK_CURSOR_MAX_SRWM
,
3348 ILK_CURSOR_DFT_SRWM
,
3353 static const struct intel_watermark_params sandybridge_display_wm_info
= {
3360 static const struct intel_watermark_params sandybridge_cursor_wm_info
= {
3367 static const struct intel_watermark_params sandybridge_display_srwm_info
= {
3368 SNB_DISPLAY_SR_FIFO
,
3369 SNB_DISPLAY_MAX_SRWM
,
3370 SNB_DISPLAY_DFT_SRWM
,
3374 static const struct intel_watermark_params sandybridge_cursor_srwm_info
= {
3376 SNB_CURSOR_MAX_SRWM
,
3377 SNB_CURSOR_DFT_SRWM
,
3384 * intel_calculate_wm - calculate watermark level
3385 * @clock_in_khz: pixel clock
3386 * @wm: chip FIFO params
3387 * @pixel_size: display pixel size
3388 * @latency_ns: memory latency for the platform
3390 * Calculate the watermark level (the level at which the display plane will
3391 * start fetching from memory again). Each chip has a different display
3392 * FIFO size and allocation, so the caller needs to figure that out and pass
3393 * in the correct intel_watermark_params structure.
3395 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3396 * on the pixel size. When it reaches the watermark level, it'll start
3397 * fetching FIFO line sized based chunks from memory until the FIFO fills
3398 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3399 * will occur, and a display engine hang could result.
3401 static unsigned long intel_calculate_wm(unsigned long clock_in_khz
,
3402 const struct intel_watermark_params
*wm
,
3405 unsigned long latency_ns
)
3407 long entries_required
, wm_size
;
3410 * Note: we need to make sure we don't overflow for various clock &
3412 * clocks go from a few thousand to several hundred thousand.
3413 * latency is usually a few thousand
3415 entries_required
= ((clock_in_khz
/ 1000) * pixel_size
* latency_ns
) /
3417 entries_required
= DIV_ROUND_UP(entries_required
, wm
->cacheline_size
);
3419 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required
);
3421 wm_size
= fifo_size
- (entries_required
+ wm
->guard_size
);
3423 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size
);
3425 /* Don't promote wm_size to unsigned... */
3426 if (wm_size
> (long)wm
->max_wm
)
3427 wm_size
= wm
->max_wm
;
3429 wm_size
= wm
->default_wm
;
3433 struct cxsr_latency
{
3436 unsigned long fsb_freq
;
3437 unsigned long mem_freq
;
3438 unsigned long display_sr
;
3439 unsigned long display_hpll_disable
;
3440 unsigned long cursor_sr
;
3441 unsigned long cursor_hpll_disable
;
3444 static const struct cxsr_latency cxsr_latency_table
[] = {
3445 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3446 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3447 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3448 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3449 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3451 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3452 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3453 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3454 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3455 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3457 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3458 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3459 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3460 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3461 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3463 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3464 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3465 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3466 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3467 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3469 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3470 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3471 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3472 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3473 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3475 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3476 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3477 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3478 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3479 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3482 static const struct cxsr_latency
*intel_get_cxsr_latency(int is_desktop
,
3487 const struct cxsr_latency
*latency
;
3490 if (fsb
== 0 || mem
== 0)
3493 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
3494 latency
= &cxsr_latency_table
[i
];
3495 if (is_desktop
== latency
->is_desktop
&&
3496 is_ddr3
== latency
->is_ddr3
&&
3497 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
3501 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3506 static void pineview_disable_cxsr(struct drm_device
*dev
)
3508 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3510 /* deactivate cxsr */
3511 I915_WRITE(DSPFW3
, I915_READ(DSPFW3
) & ~PINEVIEW_SELF_REFRESH_EN
);
3515 * Latency for FIFO fetches is dependent on several factors:
3516 * - memory configuration (speed, channels)
3518 * - current MCH state
3519 * It can be fairly high in some situations, so here we assume a fairly
3520 * pessimal value. It's a tradeoff between extra memory fetches (if we
3521 * set this value too high, the FIFO will fetch frequently to stay full)
3522 * and power consumption (set it too low to save power and we might see
3523 * FIFO underruns and display "flicker").
3525 * A value of 5us seems to be a good balance; safe for very low end
3526 * platforms but not overly aggressive on lower latency configs.
3528 static const int latency_ns
= 5000;
3530 static int i9xx_get_fifo_size(struct drm_device
*dev
, int plane
)
3532 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3533 uint32_t dsparb
= I915_READ(DSPARB
);
3536 size
= dsparb
& 0x7f;
3538 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) - size
;
3540 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3541 plane
? "B" : "A", size
);
3546 static int i85x_get_fifo_size(struct drm_device
*dev
, int plane
)
3548 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3549 uint32_t dsparb
= I915_READ(DSPARB
);
3552 size
= dsparb
& 0x1ff;
3554 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) - size
;
3555 size
>>= 1; /* Convert to cachelines */
3557 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3558 plane
? "B" : "A", size
);
3563 static int i845_get_fifo_size(struct drm_device
*dev
, int plane
)
3565 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3566 uint32_t dsparb
= I915_READ(DSPARB
);
3569 size
= dsparb
& 0x7f;
3570 size
>>= 2; /* Convert to cachelines */
3572 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3579 static int i830_get_fifo_size(struct drm_device
*dev
, int plane
)
3581 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3582 uint32_t dsparb
= I915_READ(DSPARB
);
3585 size
= dsparb
& 0x7f;
3586 size
>>= 1; /* Convert to cachelines */
3588 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3589 plane
? "B" : "A", size
);
3594 static struct drm_crtc
*single_enabled_crtc(struct drm_device
*dev
)
3596 struct drm_crtc
*crtc
, *enabled
= NULL
;
3598 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
3599 if (crtc
->enabled
&& crtc
->fb
) {
3609 static void pineview_update_wm(struct drm_device
*dev
)
3611 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3612 struct drm_crtc
*crtc
;
3613 const struct cxsr_latency
*latency
;
3617 latency
= intel_get_cxsr_latency(IS_PINEVIEW_G(dev
), dev_priv
->is_ddr3
,
3618 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
3620 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3621 pineview_disable_cxsr(dev
);
3625 crtc
= single_enabled_crtc(dev
);
3627 int clock
= crtc
->mode
.clock
;
3628 int pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3631 wm
= intel_calculate_wm(clock
, &pineview_display_wm
,
3632 pineview_display_wm
.fifo_size
,
3633 pixel_size
, latency
->display_sr
);
3634 reg
= I915_READ(DSPFW1
);
3635 reg
&= ~DSPFW_SR_MASK
;
3636 reg
|= wm
<< DSPFW_SR_SHIFT
;
3637 I915_WRITE(DSPFW1
, reg
);
3638 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg
);
3641 wm
= intel_calculate_wm(clock
, &pineview_cursor_wm
,
3642 pineview_display_wm
.fifo_size
,
3643 pixel_size
, latency
->cursor_sr
);
3644 reg
= I915_READ(DSPFW3
);
3645 reg
&= ~DSPFW_CURSOR_SR_MASK
;
3646 reg
|= (wm
& 0x3f) << DSPFW_CURSOR_SR_SHIFT
;
3647 I915_WRITE(DSPFW3
, reg
);
3649 /* Display HPLL off SR */
3650 wm
= intel_calculate_wm(clock
, &pineview_display_hplloff_wm
,
3651 pineview_display_hplloff_wm
.fifo_size
,
3652 pixel_size
, latency
->display_hpll_disable
);
3653 reg
= I915_READ(DSPFW3
);
3654 reg
&= ~DSPFW_HPLL_SR_MASK
;
3655 reg
|= wm
& DSPFW_HPLL_SR_MASK
;
3656 I915_WRITE(DSPFW3
, reg
);
3658 /* cursor HPLL off SR */
3659 wm
= intel_calculate_wm(clock
, &pineview_cursor_hplloff_wm
,
3660 pineview_display_hplloff_wm
.fifo_size
,
3661 pixel_size
, latency
->cursor_hpll_disable
);
3662 reg
= I915_READ(DSPFW3
);
3663 reg
&= ~DSPFW_HPLL_CURSOR_MASK
;
3664 reg
|= (wm
& 0x3f) << DSPFW_HPLL_CURSOR_SHIFT
;
3665 I915_WRITE(DSPFW3
, reg
);
3666 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg
);
3670 I915_READ(DSPFW3
) | PINEVIEW_SELF_REFRESH_EN
);
3671 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3673 pineview_disable_cxsr(dev
);
3674 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3678 static bool g4x_compute_wm0(struct drm_device
*dev
,
3680 const struct intel_watermark_params
*display
,
3681 int display_latency_ns
,
3682 const struct intel_watermark_params
*cursor
,
3683 int cursor_latency_ns
,
3687 struct drm_crtc
*crtc
;
3688 int htotal
, hdisplay
, clock
, pixel_size
;
3689 int line_time_us
, line_count
;
3690 int entries
, tlb_miss
;
3692 crtc
= intel_get_crtc_for_plane(dev
, plane
);
3693 if (crtc
->fb
== NULL
|| !crtc
->enabled
) {
3694 *cursor_wm
= cursor
->guard_size
;
3695 *plane_wm
= display
->guard_size
;
3699 htotal
= crtc
->mode
.htotal
;
3700 hdisplay
= crtc
->mode
.hdisplay
;
3701 clock
= crtc
->mode
.clock
;
3702 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3704 /* Use the small buffer method to calculate plane watermark */
3705 entries
= ((clock
* pixel_size
/ 1000) * display_latency_ns
) / 1000;
3706 tlb_miss
= display
->fifo_size
*display
->cacheline_size
- hdisplay
* 8;
3708 entries
+= tlb_miss
;
3709 entries
= DIV_ROUND_UP(entries
, display
->cacheline_size
);
3710 *plane_wm
= entries
+ display
->guard_size
;
3711 if (*plane_wm
> (int)display
->max_wm
)
3712 *plane_wm
= display
->max_wm
;
3714 /* Use the large buffer method to calculate cursor watermark */
3715 line_time_us
= ((htotal
* 1000) / clock
);
3716 line_count
= (cursor_latency_ns
/ line_time_us
+ 1000) / 1000;
3717 entries
= line_count
* 64 * pixel_size
;
3718 tlb_miss
= cursor
->fifo_size
*cursor
->cacheline_size
- hdisplay
* 8;
3720 entries
+= tlb_miss
;
3721 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
3722 *cursor_wm
= entries
+ cursor
->guard_size
;
3723 if (*cursor_wm
> (int)cursor
->max_wm
)
3724 *cursor_wm
= (int)cursor
->max_wm
;
3730 * Check the wm result.
3732 * If any calculated watermark values is larger than the maximum value that
3733 * can be programmed into the associated watermark register, that watermark
3736 static bool g4x_check_srwm(struct drm_device
*dev
,
3737 int display_wm
, int cursor_wm
,
3738 const struct intel_watermark_params
*display
,
3739 const struct intel_watermark_params
*cursor
)
3741 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3742 display_wm
, cursor_wm
);
3744 if (display_wm
> display
->max_wm
) {
3745 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3746 display_wm
, display
->max_wm
);
3750 if (cursor_wm
> cursor
->max_wm
) {
3751 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3752 cursor_wm
, cursor
->max_wm
);
3756 if (!(display_wm
|| cursor_wm
)) {
3757 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3764 static bool g4x_compute_srwm(struct drm_device
*dev
,
3767 const struct intel_watermark_params
*display
,
3768 const struct intel_watermark_params
*cursor
,
3769 int *display_wm
, int *cursor_wm
)
3771 struct drm_crtc
*crtc
;
3772 int hdisplay
, htotal
, pixel_size
, clock
;
3773 unsigned long line_time_us
;
3774 int line_count
, line_size
;
3779 *display_wm
= *cursor_wm
= 0;
3783 crtc
= intel_get_crtc_for_plane(dev
, plane
);
3784 hdisplay
= crtc
->mode
.hdisplay
;
3785 htotal
= crtc
->mode
.htotal
;
3786 clock
= crtc
->mode
.clock
;
3787 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3789 line_time_us
= (htotal
* 1000) / clock
;
3790 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
3791 line_size
= hdisplay
* pixel_size
;
3793 /* Use the minimum of the small and large buffer method for primary */
3794 small
= ((clock
* pixel_size
/ 1000) * latency_ns
) / 1000;
3795 large
= line_count
* line_size
;
3797 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
3798 *display_wm
= entries
+ display
->guard_size
;
3800 /* calculate the self-refresh watermark for display cursor */
3801 entries
= line_count
* pixel_size
* 64;
3802 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
3803 *cursor_wm
= entries
+ cursor
->guard_size
;
3805 return g4x_check_srwm(dev
,
3806 *display_wm
, *cursor_wm
,
3810 #define single_plane_enabled(mask) is_power_of_2(mask)
3812 static void g4x_update_wm(struct drm_device
*dev
)
3814 static const int sr_latency_ns
= 12000;
3815 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3816 int planea_wm
, planeb_wm
, cursora_wm
, cursorb_wm
;
3817 int plane_sr
, cursor_sr
;
3818 unsigned int enabled
= 0;
3820 if (g4x_compute_wm0(dev
, 0,
3821 &g4x_wm_info
, latency_ns
,
3822 &g4x_cursor_wm_info
, latency_ns
,
3823 &planea_wm
, &cursora_wm
))
3826 if (g4x_compute_wm0(dev
, 1,
3827 &g4x_wm_info
, latency_ns
,
3828 &g4x_cursor_wm_info
, latency_ns
,
3829 &planeb_wm
, &cursorb_wm
))
3832 plane_sr
= cursor_sr
= 0;
3833 if (single_plane_enabled(enabled
) &&
3834 g4x_compute_srwm(dev
, ffs(enabled
) - 1,
3837 &g4x_cursor_wm_info
,
3838 &plane_sr
, &cursor_sr
))
3839 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
3841 I915_WRITE(FW_BLC_SELF
,
3842 I915_READ(FW_BLC_SELF
) & ~FW_BLC_SELF_EN
);
3844 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3845 planea_wm
, cursora_wm
,
3846 planeb_wm
, cursorb_wm
,
3847 plane_sr
, cursor_sr
);
3850 (plane_sr
<< DSPFW_SR_SHIFT
) |
3851 (cursorb_wm
<< DSPFW_CURSORB_SHIFT
) |
3852 (planeb_wm
<< DSPFW_PLANEB_SHIFT
) |
3855 (I915_READ(DSPFW2
) & DSPFW_CURSORA_MASK
) |
3856 (cursora_wm
<< DSPFW_CURSORA_SHIFT
));
3857 /* HPLL off in SR has some issues on G4x... disable it */
3859 (I915_READ(DSPFW3
) & ~DSPFW_HPLL_SR_EN
) |
3860 (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
3863 static void i965_update_wm(struct drm_device
*dev
)
3865 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3866 struct drm_crtc
*crtc
;
3870 /* Calc sr entries for one plane configs */
3871 crtc
= single_enabled_crtc(dev
);
3873 /* self-refresh has much higher latency */
3874 static const int sr_latency_ns
= 12000;
3875 int clock
= crtc
->mode
.clock
;
3876 int htotal
= crtc
->mode
.htotal
;
3877 int hdisplay
= crtc
->mode
.hdisplay
;
3878 int pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3879 unsigned long line_time_us
;
3882 line_time_us
= ((htotal
* 1000) / clock
);
3884 /* Use ns/us then divide to preserve precision */
3885 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
3886 pixel_size
* hdisplay
;
3887 entries
= DIV_ROUND_UP(entries
, I915_FIFO_LINE_SIZE
);
3888 srwm
= I965_FIFO_SIZE
- entries
;
3892 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3895 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
3897 entries
= DIV_ROUND_UP(entries
,
3898 i965_cursor_wm_info
.cacheline_size
);
3899 cursor_sr
= i965_cursor_wm_info
.fifo_size
-
3900 (entries
+ i965_cursor_wm_info
.guard_size
);
3902 if (cursor_sr
> i965_cursor_wm_info
.max_wm
)
3903 cursor_sr
= i965_cursor_wm_info
.max_wm
;
3905 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3906 "cursor %d\n", srwm
, cursor_sr
);
3908 if (IS_CRESTLINE(dev
))
3909 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
3911 /* Turn off self refresh if both pipes are enabled */
3912 if (IS_CRESTLINE(dev
))
3913 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
3917 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3920 /* 965 has limitations... */
3921 I915_WRITE(DSPFW1
, (srwm
<< DSPFW_SR_SHIFT
) |
3922 (8 << 16) | (8 << 8) | (8 << 0));
3923 I915_WRITE(DSPFW2
, (8 << 8) | (8 << 0));
3924 /* update cursor SR watermark */
3925 I915_WRITE(DSPFW3
, (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
3928 static void i9xx_update_wm(struct drm_device
*dev
)
3930 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3931 const struct intel_watermark_params
*wm_info
;
3936 int planea_wm
, planeb_wm
;
3937 struct drm_crtc
*crtc
, *enabled
= NULL
;
3940 wm_info
= &i945_wm_info
;
3941 else if (!IS_GEN2(dev
))
3942 wm_info
= &i915_wm_info
;
3944 wm_info
= &i855_wm_info
;
3946 fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
3947 crtc
= intel_get_crtc_for_plane(dev
, 0);
3948 if (crtc
->enabled
&& crtc
->fb
) {
3949 planea_wm
= intel_calculate_wm(crtc
->mode
.clock
,
3951 crtc
->fb
->bits_per_pixel
/ 8,
3955 planea_wm
= fifo_size
- wm_info
->guard_size
;
3957 fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 1);
3958 crtc
= intel_get_crtc_for_plane(dev
, 1);
3959 if (crtc
->enabled
&& crtc
->fb
) {
3960 planeb_wm
= intel_calculate_wm(crtc
->mode
.clock
,
3962 crtc
->fb
->bits_per_pixel
/ 8,
3964 if (enabled
== NULL
)
3969 planeb_wm
= fifo_size
- wm_info
->guard_size
;
3971 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
3974 * Overlay gets an aggressive default since video jitter is bad.
3978 /* Play safe and disable self-refresh before adjusting watermarks. */
3979 if (IS_I945G(dev
) || IS_I945GM(dev
))
3980 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN_MASK
| 0);
3981 else if (IS_I915GM(dev
))
3982 I915_WRITE(INSTPM
, I915_READ(INSTPM
) & ~INSTPM_SELF_EN
);
3984 /* Calc sr entries for one plane configs */
3985 if (HAS_FW_BLC(dev
) && enabled
) {
3986 /* self-refresh has much higher latency */
3987 static const int sr_latency_ns
= 6000;
3988 int clock
= enabled
->mode
.clock
;
3989 int htotal
= enabled
->mode
.htotal
;
3990 int hdisplay
= enabled
->mode
.hdisplay
;
3991 int pixel_size
= enabled
->fb
->bits_per_pixel
/ 8;
3992 unsigned long line_time_us
;
3995 line_time_us
= (htotal
* 1000) / clock
;
3997 /* Use ns/us then divide to preserve precision */
3998 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
3999 pixel_size
* hdisplay
;
4000 entries
= DIV_ROUND_UP(entries
, wm_info
->cacheline_size
);
4001 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries
);
4002 srwm
= wm_info
->fifo_size
- entries
;
4006 if (IS_I945G(dev
) || IS_I945GM(dev
))
4007 I915_WRITE(FW_BLC_SELF
,
4008 FW_BLC_SELF_FIFO_MASK
| (srwm
& 0xff));
4009 else if (IS_I915GM(dev
))
4010 I915_WRITE(FW_BLC_SELF
, srwm
& 0x3f);
4013 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4014 planea_wm
, planeb_wm
, cwm
, srwm
);
4016 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
4017 fwater_hi
= (cwm
& 0x1f);
4019 /* Set request length to 8 cachelines per fetch */
4020 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
4021 fwater_hi
= fwater_hi
| (1 << 8);
4023 I915_WRITE(FW_BLC
, fwater_lo
);
4024 I915_WRITE(FW_BLC2
, fwater_hi
);
4026 if (HAS_FW_BLC(dev
)) {
4028 if (IS_I945G(dev
) || IS_I945GM(dev
))
4029 I915_WRITE(FW_BLC_SELF
,
4030 FW_BLC_SELF_EN_MASK
| FW_BLC_SELF_EN
);
4031 else if (IS_I915GM(dev
))
4032 I915_WRITE(INSTPM
, I915_READ(INSTPM
) | INSTPM_SELF_EN
);
4033 DRM_DEBUG_KMS("memory self refresh enabled\n");
4035 DRM_DEBUG_KMS("memory self refresh disabled\n");
4039 static void i830_update_wm(struct drm_device
*dev
)
4041 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4042 struct drm_crtc
*crtc
;
4046 crtc
= single_enabled_crtc(dev
);
4050 planea_wm
= intel_calculate_wm(crtc
->mode
.clock
, &i830_wm_info
,
4051 dev_priv
->display
.get_fifo_size(dev
, 0),
4052 crtc
->fb
->bits_per_pixel
/ 8,
4054 fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
4055 fwater_lo
|= (3<<8) | planea_wm
;
4057 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm
);
4059 I915_WRITE(FW_BLC
, fwater_lo
);
4062 #define ILK_LP0_PLANE_LATENCY 700
4063 #define ILK_LP0_CURSOR_LATENCY 1300
4066 * Check the wm result.
4068 * If any calculated watermark values is larger than the maximum value that
4069 * can be programmed into the associated watermark register, that watermark
4072 static bool ironlake_check_srwm(struct drm_device
*dev
, int level
,
4073 int fbc_wm
, int display_wm
, int cursor_wm
,
4074 const struct intel_watermark_params
*display
,
4075 const struct intel_watermark_params
*cursor
)
4077 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4079 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4080 " cursor %d\n", level
, display_wm
, fbc_wm
, cursor_wm
);
4082 if (fbc_wm
> SNB_FBC_MAX_SRWM
) {
4083 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4084 fbc_wm
, SNB_FBC_MAX_SRWM
, level
);
4086 /* fbc has it's own way to disable FBC WM */
4087 I915_WRITE(DISP_ARB_CTL
,
4088 I915_READ(DISP_ARB_CTL
) | DISP_FBC_WM_DIS
);
4092 if (display_wm
> display
->max_wm
) {
4093 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4094 display_wm
, SNB_DISPLAY_MAX_SRWM
, level
);
4098 if (cursor_wm
> cursor
->max_wm
) {
4099 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4100 cursor_wm
, SNB_CURSOR_MAX_SRWM
, level
);
4104 if (!(fbc_wm
|| display_wm
|| cursor_wm
)) {
4105 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level
, level
);
4113 * Compute watermark values of WM[1-3],
4115 static bool ironlake_compute_srwm(struct drm_device
*dev
, int level
, int plane
,
4117 const struct intel_watermark_params
*display
,
4118 const struct intel_watermark_params
*cursor
,
4119 int *fbc_wm
, int *display_wm
, int *cursor_wm
)
4121 struct drm_crtc
*crtc
;
4122 unsigned long line_time_us
;
4123 int hdisplay
, htotal
, pixel_size
, clock
;
4124 int line_count
, line_size
;
4129 *fbc_wm
= *display_wm
= *cursor_wm
= 0;
4133 crtc
= intel_get_crtc_for_plane(dev
, plane
);
4134 hdisplay
= crtc
->mode
.hdisplay
;
4135 htotal
= crtc
->mode
.htotal
;
4136 clock
= crtc
->mode
.clock
;
4137 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
4139 line_time_us
= (htotal
* 1000) / clock
;
4140 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
4141 line_size
= hdisplay
* pixel_size
;
4143 /* Use the minimum of the small and large buffer method for primary */
4144 small
= ((clock
* pixel_size
/ 1000) * latency_ns
) / 1000;
4145 large
= line_count
* line_size
;
4147 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
4148 *display_wm
= entries
+ display
->guard_size
;
4152 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4154 *fbc_wm
= DIV_ROUND_UP(*display_wm
* 64, line_size
) + 2;
4156 /* calculate the self-refresh watermark for display cursor */
4157 entries
= line_count
* pixel_size
* 64;
4158 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
4159 *cursor_wm
= entries
+ cursor
->guard_size
;
4161 return ironlake_check_srwm(dev
, level
,
4162 *fbc_wm
, *display_wm
, *cursor_wm
,
4166 static void ironlake_update_wm(struct drm_device
*dev
)
4168 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4169 int fbc_wm
, plane_wm
, cursor_wm
;
4170 unsigned int enabled
;
4173 if (g4x_compute_wm0(dev
, 0,
4174 &ironlake_display_wm_info
,
4175 ILK_LP0_PLANE_LATENCY
,
4176 &ironlake_cursor_wm_info
,
4177 ILK_LP0_CURSOR_LATENCY
,
4178 &plane_wm
, &cursor_wm
)) {
4179 I915_WRITE(WM0_PIPEA_ILK
,
4180 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4181 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4182 " plane %d, " "cursor: %d\n",
4183 plane_wm
, cursor_wm
);
4187 if (g4x_compute_wm0(dev
, 1,
4188 &ironlake_display_wm_info
,
4189 ILK_LP0_PLANE_LATENCY
,
4190 &ironlake_cursor_wm_info
,
4191 ILK_LP0_CURSOR_LATENCY
,
4192 &plane_wm
, &cursor_wm
)) {
4193 I915_WRITE(WM0_PIPEB_ILK
,
4194 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4195 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4196 " plane %d, cursor: %d\n",
4197 plane_wm
, cursor_wm
);
4202 * Calculate and update the self-refresh watermark only when one
4203 * display plane is used.
4205 I915_WRITE(WM3_LP_ILK
, 0);
4206 I915_WRITE(WM2_LP_ILK
, 0);
4207 I915_WRITE(WM1_LP_ILK
, 0);
4209 if (!single_plane_enabled(enabled
))
4211 enabled
= ffs(enabled
) - 1;
4214 if (!ironlake_compute_srwm(dev
, 1, enabled
,
4215 ILK_READ_WM1_LATENCY() * 500,
4216 &ironlake_display_srwm_info
,
4217 &ironlake_cursor_srwm_info
,
4218 &fbc_wm
, &plane_wm
, &cursor_wm
))
4221 I915_WRITE(WM1_LP_ILK
,
4223 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4224 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4225 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4229 if (!ironlake_compute_srwm(dev
, 2, enabled
,
4230 ILK_READ_WM2_LATENCY() * 500,
4231 &ironlake_display_srwm_info
,
4232 &ironlake_cursor_srwm_info
,
4233 &fbc_wm
, &plane_wm
, &cursor_wm
))
4236 I915_WRITE(WM2_LP_ILK
,
4238 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4239 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4240 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4244 * WM3 is unsupported on ILK, probably because we don't have latency
4245 * data for that power state
4249 static void sandybridge_update_wm(struct drm_device
*dev
)
4251 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4252 int latency
= SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4253 int fbc_wm
, plane_wm
, cursor_wm
;
4254 unsigned int enabled
;
4257 if (g4x_compute_wm0(dev
, 0,
4258 &sandybridge_display_wm_info
, latency
,
4259 &sandybridge_cursor_wm_info
, latency
,
4260 &plane_wm
, &cursor_wm
)) {
4261 I915_WRITE(WM0_PIPEA_ILK
,
4262 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4263 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4264 " plane %d, " "cursor: %d\n",
4265 plane_wm
, cursor_wm
);
4269 if (g4x_compute_wm0(dev
, 1,
4270 &sandybridge_display_wm_info
, latency
,
4271 &sandybridge_cursor_wm_info
, latency
,
4272 &plane_wm
, &cursor_wm
)) {
4273 I915_WRITE(WM0_PIPEB_ILK
,
4274 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4275 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4276 " plane %d, cursor: %d\n",
4277 plane_wm
, cursor_wm
);
4282 * Calculate and update the self-refresh watermark only when one
4283 * display plane is used.
4285 * SNB support 3 levels of watermark.
4287 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4288 * and disabled in the descending order
4291 I915_WRITE(WM3_LP_ILK
, 0);
4292 I915_WRITE(WM2_LP_ILK
, 0);
4293 I915_WRITE(WM1_LP_ILK
, 0);
4295 if (!single_plane_enabled(enabled
))
4297 enabled
= ffs(enabled
) - 1;
4300 if (!ironlake_compute_srwm(dev
, 1, enabled
,
4301 SNB_READ_WM1_LATENCY() * 500,
4302 &sandybridge_display_srwm_info
,
4303 &sandybridge_cursor_srwm_info
,
4304 &fbc_wm
, &plane_wm
, &cursor_wm
))
4307 I915_WRITE(WM1_LP_ILK
,
4309 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4310 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4311 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4315 if (!ironlake_compute_srwm(dev
, 2, enabled
,
4316 SNB_READ_WM2_LATENCY() * 500,
4317 &sandybridge_display_srwm_info
,
4318 &sandybridge_cursor_srwm_info
,
4319 &fbc_wm
, &plane_wm
, &cursor_wm
))
4322 I915_WRITE(WM2_LP_ILK
,
4324 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4325 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4326 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4330 if (!ironlake_compute_srwm(dev
, 3, enabled
,
4331 SNB_READ_WM3_LATENCY() * 500,
4332 &sandybridge_display_srwm_info
,
4333 &sandybridge_cursor_srwm_info
,
4334 &fbc_wm
, &plane_wm
, &cursor_wm
))
4337 I915_WRITE(WM3_LP_ILK
,
4339 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4340 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4341 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4346 * intel_update_watermarks - update FIFO watermark values based on current modes
4348 * Calculate watermark values for the various WM regs based on current mode
4349 * and plane configuration.
4351 * There are several cases to deal with here:
4352 * - normal (i.e. non-self-refresh)
4353 * - self-refresh (SR) mode
4354 * - lines are large relative to FIFO size (buffer can hold up to 2)
4355 * - lines are small relative to FIFO size (buffer can hold more than 2
4356 * lines), so need to account for TLB latency
4358 * The normal calculation is:
4359 * watermark = dotclock * bytes per pixel * latency
4360 * where latency is platform & configuration dependent (we assume pessimal
4363 * The SR calculation is:
4364 * watermark = (trunc(latency/line time)+1) * surface width *
4367 * line time = htotal / dotclock
4368 * surface width = hdisplay for normal plane and 64 for cursor
4369 * and latency is assumed to be high, as above.
4371 * The final value programmed to the register should always be rounded up,
4372 * and include an extra 2 entries to account for clock crossings.
4374 * We don't use the sprite, so we can ignore that. And on Crestline we have
4375 * to set the non-SR watermarks to 8.
4377 static void intel_update_watermarks(struct drm_device
*dev
)
4379 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4381 if (dev_priv
->display
.update_wm
)
4382 dev_priv
->display
.update_wm(dev
);
4385 static inline bool intel_panel_use_ssc(struct drm_i915_private
*dev_priv
)
4387 return dev_priv
->lvds_use_ssc
&& i915_panel_use_ssc
;
4391 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4392 * @crtc: CRTC structure
4394 * A pipe may be connected to one or more outputs. Based on the depth of the
4395 * attached framebuffer, choose a good color depth to use on the pipe.
4397 * If possible, match the pipe depth to the fb depth. In some cases, this
4398 * isn't ideal, because the connected output supports a lesser or restricted
4399 * set of depths. Resolve that here:
4400 * LVDS typically supports only 6bpc, so clamp down in that case
4401 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4402 * Displays may support a restricted set as well, check EDID and clamp as
4406 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4407 * true if they don't match).
4409 static bool intel_choose_pipe_bpp_dither(struct drm_crtc
*crtc
,
4410 unsigned int *pipe_bpp
)
4412 struct drm_device
*dev
= crtc
->dev
;
4413 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4414 struct drm_encoder
*encoder
;
4415 struct drm_connector
*connector
;
4416 unsigned int display_bpc
= UINT_MAX
, bpc
;
4418 /* Walk the encoders & connectors on this crtc, get min bpc */
4419 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, head
) {
4420 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
4422 if (encoder
->crtc
!= crtc
)
4425 if (intel_encoder
->type
== INTEL_OUTPUT_LVDS
) {
4426 unsigned int lvds_bpc
;
4428 if ((I915_READ(PCH_LVDS
) & LVDS_A3_POWER_MASK
) ==
4434 if (lvds_bpc
< display_bpc
) {
4435 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc
, lvds_bpc
);
4436 display_bpc
= lvds_bpc
;
4441 if (intel_encoder
->type
== INTEL_OUTPUT_EDP
) {
4442 /* Use VBT settings if we have an eDP panel */
4443 unsigned int edp_bpc
= dev_priv
->edp
.bpp
/ 3;
4445 if (edp_bpc
< display_bpc
) {
4446 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc
, edp_bpc
);
4447 display_bpc
= edp_bpc
;
4452 /* Not one of the known troublemakers, check the EDID */
4453 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
,
4455 if (connector
->encoder
!= encoder
)
4458 if (connector
->display_info
.bpc
< display_bpc
) {
4459 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc
, connector
->display_info
.bpc
);
4460 display_bpc
= connector
->display_info
.bpc
;
4465 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4466 * through, clamp it down. (Note: >12bpc will be caught below.)
4468 if (intel_encoder
->type
== INTEL_OUTPUT_HDMI
) {
4469 if (display_bpc
> 8 && display_bpc
< 12) {
4470 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4473 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4480 * We could just drive the pipe at the highest bpc all the time and
4481 * enable dithering as needed, but that costs bandwidth. So choose
4482 * the minimum value that expresses the full color range of the fb but
4483 * also stays within the max display bpc discovered above.
4486 switch (crtc
->fb
->depth
) {
4488 bpc
= 8; /* since we go through a colormap */
4492 bpc
= 6; /* min is 18bpp */
4495 bpc
= min((unsigned int)8, display_bpc
);
4498 bpc
= min((unsigned int)10, display_bpc
);
4501 bpc
= min((unsigned int)12, display_bpc
);
4504 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4505 bpc
= min((unsigned int)8, display_bpc
);
4509 DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4512 *pipe_bpp
= bpc
* 3;
4514 return display_bpc
!= bpc
;
4517 static int i9xx_crtc_mode_set(struct drm_crtc
*crtc
,
4518 struct drm_display_mode
*mode
,
4519 struct drm_display_mode
*adjusted_mode
,
4521 struct drm_framebuffer
*old_fb
)
4523 struct drm_device
*dev
= crtc
->dev
;
4524 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4525 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4526 int pipe
= intel_crtc
->pipe
;
4527 int plane
= intel_crtc
->plane
;
4528 int refclk
, num_connectors
= 0;
4529 intel_clock_t clock
, reduced_clock
;
4530 u32 dpll
, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
4531 bool ok
, has_reduced_clock
= false, is_sdvo
= false, is_dvo
= false;
4532 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
4533 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
4534 struct intel_encoder
*encoder
;
4535 const intel_limit_t
*limit
;
4540 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
4541 if (encoder
->base
.crtc
!= crtc
)
4544 switch (encoder
->type
) {
4545 case INTEL_OUTPUT_LVDS
:
4548 case INTEL_OUTPUT_SDVO
:
4549 case INTEL_OUTPUT_HDMI
:
4551 if (encoder
->needs_tv_clock
)
4554 case INTEL_OUTPUT_DVO
:
4557 case INTEL_OUTPUT_TVOUT
:
4560 case INTEL_OUTPUT_ANALOG
:
4563 case INTEL_OUTPUT_DISPLAYPORT
:
4571 if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2) {
4572 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
4573 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4575 } else if (!IS_GEN2(dev
)) {
4582 * Returns a set of divisors for the desired target clock with the given
4583 * refclk, or FALSE. The returned values represent the clock equation:
4584 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4586 limit
= intel_limit(crtc
, refclk
);
4587 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
4589 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4593 /* Ensure that the cursor is valid for the new mode before changing... */
4594 intel_crtc_update_cursor(crtc
, true);
4596 if (is_lvds
&& dev_priv
->lvds_downclock_avail
) {
4597 has_reduced_clock
= limit
->find_pll(limit
, crtc
,
4598 dev_priv
->lvds_downclock
,
4601 if (has_reduced_clock
&& (clock
.p
!= reduced_clock
.p
)) {
4603 * If the different P is found, it means that we can't
4604 * switch the display clock by using the FP0/FP1.
4605 * In such case we will disable the LVDS downclock
4608 DRM_DEBUG_KMS("Different P is found for "
4609 "LVDS clock/downclock\n");
4610 has_reduced_clock
= 0;
4613 /* SDVO TV has fixed PLL values depend on its clock range,
4614 this mirrors vbios setting. */
4615 if (is_sdvo
&& is_tv
) {
4616 if (adjusted_mode
->clock
>= 100000
4617 && adjusted_mode
->clock
< 140500) {
4623 } else if (adjusted_mode
->clock
>= 140500
4624 && adjusted_mode
->clock
<= 200000) {
4633 if (IS_PINEVIEW(dev
)) {
4634 fp
= (1 << clock
.n
) << 16 | clock
.m1
<< 8 | clock
.m2
;
4635 if (has_reduced_clock
)
4636 fp2
= (1 << reduced_clock
.n
) << 16 |
4637 reduced_clock
.m1
<< 8 | reduced_clock
.m2
;
4639 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
4640 if (has_reduced_clock
)
4641 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
4645 dpll
= DPLL_VGA_MODE_DIS
;
4647 if (!IS_GEN2(dev
)) {
4649 dpll
|= DPLLB_MODE_LVDS
;
4651 dpll
|= DPLLB_MODE_DAC_SERIAL
;
4653 int pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
4654 if (pixel_multiplier
> 1) {
4655 if (IS_I945G(dev
) || IS_I945GM(dev
) || IS_G33(dev
))
4656 dpll
|= (pixel_multiplier
- 1) << SDVO_MULTIPLIER_SHIFT_HIRES
;
4658 dpll
|= DPLL_DVO_HIGH_SPEED
;
4661 dpll
|= DPLL_DVO_HIGH_SPEED
;
4663 /* compute bitmask from p1 value */
4664 if (IS_PINEVIEW(dev
))
4665 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
;
4667 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
4668 if (IS_G4X(dev
) && has_reduced_clock
)
4669 dpll
|= (1 << (reduced_clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
4673 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
4676 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
4679 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
4682 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
4685 if (INTEL_INFO(dev
)->gen
>= 4)
4686 dpll
|= (6 << PLL_LOAD_PULSE_PHASE_SHIFT
);
4689 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
4692 dpll
|= PLL_P1_DIVIDE_BY_TWO
;
4694 dpll
|= (clock
.p1
- 2) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
4696 dpll
|= PLL_P2_DIVIDE_BY_4
;
4700 if (is_sdvo
&& is_tv
)
4701 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
4703 /* XXX: just matching BIOS for now */
4704 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4706 else if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2)
4707 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
4709 dpll
|= PLL_REF_INPUT_DREFCLK
;
4711 /* setup pipeconf */
4712 pipeconf
= I915_READ(PIPECONF(pipe
));
4714 /* Set up the display plane register */
4715 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
4717 /* Ironlake's plane is forced to pipe, bit 24 is to
4718 enable color space conversion */
4720 dspcntr
&= ~DISPPLANE_SEL_PIPE_MASK
;
4722 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
4724 if (pipe
== 0 && INTEL_INFO(dev
)->gen
< 4) {
4725 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4728 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4732 dev_priv
->display
.get_display_clock_speed(dev
) * 9 / 10)
4733 pipeconf
|= PIPECONF_DOUBLE_WIDE
;
4735 pipeconf
&= ~PIPECONF_DOUBLE_WIDE
;
4738 dpll
|= DPLL_VCO_ENABLE
;
4740 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
4741 drm_mode_debug_printmodeline(mode
);
4743 I915_WRITE(FP0(pipe
), fp
);
4744 I915_WRITE(DPLL(pipe
), dpll
& ~DPLL_VCO_ENABLE
);
4746 POSTING_READ(DPLL(pipe
));
4749 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4750 * This is an exception to the general rule that mode_set doesn't turn
4754 temp
= I915_READ(LVDS
);
4755 temp
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
;
4757 temp
|= LVDS_PIPEB_SELECT
;
4759 temp
&= ~LVDS_PIPEB_SELECT
;
4761 /* set the corresponsding LVDS_BORDER bit */
4762 temp
|= dev_priv
->lvds_border_bits
;
4763 /* Set the B0-B3 data pairs corresponding to whether we're going to
4764 * set the DPLLs for dual-channel mode or not.
4767 temp
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
4769 temp
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
4771 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4772 * appropriately here, but we need to look more thoroughly into how
4773 * panels behave in the two modes.
4775 /* set the dithering flag on LVDS as needed */
4776 if (INTEL_INFO(dev
)->gen
>= 4) {
4777 if (dev_priv
->lvds_dither
)
4778 temp
|= LVDS_ENABLE_DITHER
;
4780 temp
&= ~LVDS_ENABLE_DITHER
;
4782 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
4783 lvds_sync
|= LVDS_HSYNC_POLARITY
;
4784 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
4785 lvds_sync
|= LVDS_VSYNC_POLARITY
;
4786 if ((temp
& (LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
))
4788 char flags
[2] = "-+";
4789 DRM_INFO("Changing LVDS panel from "
4790 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4791 flags
[!(temp
& LVDS_HSYNC_POLARITY
)],
4792 flags
[!(temp
& LVDS_VSYNC_POLARITY
)],
4793 flags
[!(lvds_sync
& LVDS_HSYNC_POLARITY
)],
4794 flags
[!(lvds_sync
& LVDS_VSYNC_POLARITY
)]);
4795 temp
&= ~(LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
);
4798 I915_WRITE(LVDS
, temp
);
4802 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
4805 I915_WRITE(DPLL(pipe
), dpll
);
4807 /* Wait for the clocks to stabilize. */
4808 POSTING_READ(DPLL(pipe
));
4811 if (INTEL_INFO(dev
)->gen
>= 4) {
4814 temp
= intel_mode_get_pixel_multiplier(adjusted_mode
);
4816 temp
= (temp
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
;
4820 I915_WRITE(DPLL_MD(pipe
), temp
);
4822 /* The pixel multiplier can only be updated once the
4823 * DPLL is enabled and the clocks are stable.
4825 * So write it again.
4827 I915_WRITE(DPLL(pipe
), dpll
);
4830 intel_crtc
->lowfreq_avail
= false;
4831 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
4832 I915_WRITE(FP1(pipe
), fp2
);
4833 intel_crtc
->lowfreq_avail
= true;
4834 if (HAS_PIPE_CXSR(dev
)) {
4835 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4836 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
4839 I915_WRITE(FP1(pipe
), fp
);
4840 if (HAS_PIPE_CXSR(dev
)) {
4841 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4842 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
4846 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
4847 pipeconf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
4848 /* the chip adds 2 halflines automatically */
4849 adjusted_mode
->crtc_vdisplay
-= 1;
4850 adjusted_mode
->crtc_vtotal
-= 1;
4851 adjusted_mode
->crtc_vblank_start
-= 1;
4852 adjusted_mode
->crtc_vblank_end
-= 1;
4853 adjusted_mode
->crtc_vsync_end
-= 1;
4854 adjusted_mode
->crtc_vsync_start
-= 1;
4856 pipeconf
&= ~PIPECONF_INTERLACE_W_FIELD_INDICATION
; /* progressive */
4858 I915_WRITE(HTOTAL(pipe
),
4859 (adjusted_mode
->crtc_hdisplay
- 1) |
4860 ((adjusted_mode
->crtc_htotal
- 1) << 16));
4861 I915_WRITE(HBLANK(pipe
),
4862 (adjusted_mode
->crtc_hblank_start
- 1) |
4863 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
4864 I915_WRITE(HSYNC(pipe
),
4865 (adjusted_mode
->crtc_hsync_start
- 1) |
4866 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
4868 I915_WRITE(VTOTAL(pipe
),
4869 (adjusted_mode
->crtc_vdisplay
- 1) |
4870 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
4871 I915_WRITE(VBLANK(pipe
),
4872 (adjusted_mode
->crtc_vblank_start
- 1) |
4873 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
4874 I915_WRITE(VSYNC(pipe
),
4875 (adjusted_mode
->crtc_vsync_start
- 1) |
4876 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
4878 /* pipesrc and dspsize control the size that is scaled from,
4879 * which should always be the user's requested size.
4881 I915_WRITE(DSPSIZE(plane
),
4882 ((mode
->vdisplay
- 1) << 16) |
4883 (mode
->hdisplay
- 1));
4884 I915_WRITE(DSPPOS(plane
), 0);
4885 I915_WRITE(PIPESRC(pipe
),
4886 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
4888 I915_WRITE(PIPECONF(pipe
), pipeconf
);
4889 POSTING_READ(PIPECONF(pipe
));
4890 intel_enable_pipe(dev_priv
, pipe
, false);
4892 intel_wait_for_vblank(dev
, pipe
);
4894 I915_WRITE(DSPCNTR(plane
), dspcntr
);
4895 POSTING_READ(DSPCNTR(plane
));
4896 intel_enable_plane(dev_priv
, plane
, pipe
);
4898 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
4900 intel_update_watermarks(dev
);
4905 static int ironlake_crtc_mode_set(struct drm_crtc
*crtc
,
4906 struct drm_display_mode
*mode
,
4907 struct drm_display_mode
*adjusted_mode
,
4909 struct drm_framebuffer
*old_fb
)
4911 struct drm_device
*dev
= crtc
->dev
;
4912 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4913 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4914 int pipe
= intel_crtc
->pipe
;
4915 int plane
= intel_crtc
->plane
;
4916 int refclk
, num_connectors
= 0;
4917 intel_clock_t clock
, reduced_clock
;
4918 u32 dpll
, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
4919 bool ok
, has_reduced_clock
= false, is_sdvo
= false;
4920 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
4921 struct intel_encoder
*has_edp_encoder
= NULL
;
4922 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
4923 struct intel_encoder
*encoder
;
4924 const intel_limit_t
*limit
;
4926 struct fdi_m_n m_n
= {0};
4929 int target_clock
, pixel_multiplier
, lane
, link_bw
, factor
;
4930 unsigned int pipe_bpp
;
4933 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
4934 if (encoder
->base
.crtc
!= crtc
)
4937 switch (encoder
->type
) {
4938 case INTEL_OUTPUT_LVDS
:
4941 case INTEL_OUTPUT_SDVO
:
4942 case INTEL_OUTPUT_HDMI
:
4944 if (encoder
->needs_tv_clock
)
4947 case INTEL_OUTPUT_TVOUT
:
4950 case INTEL_OUTPUT_ANALOG
:
4953 case INTEL_OUTPUT_DISPLAYPORT
:
4956 case INTEL_OUTPUT_EDP
:
4957 has_edp_encoder
= encoder
;
4964 if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2) {
4965 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
4966 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4970 if (!has_edp_encoder
||
4971 intel_encoder_is_pch_edp(&has_edp_encoder
->base
))
4972 refclk
= 120000; /* 120Mhz refclk */
4976 * Returns a set of divisors for the desired target clock with the given
4977 * refclk, or FALSE. The returned values represent the clock equation:
4978 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4980 limit
= intel_limit(crtc
, refclk
);
4981 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
4983 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4987 /* Ensure that the cursor is valid for the new mode before changing... */
4988 intel_crtc_update_cursor(crtc
, true);
4990 if (is_lvds
&& dev_priv
->lvds_downclock_avail
) {
4991 has_reduced_clock
= limit
->find_pll(limit
, crtc
,
4992 dev_priv
->lvds_downclock
,
4995 if (has_reduced_clock
&& (clock
.p
!= reduced_clock
.p
)) {
4997 * If the different P is found, it means that we can't
4998 * switch the display clock by using the FP0/FP1.
4999 * In such case we will disable the LVDS downclock
5002 DRM_DEBUG_KMS("Different P is found for "
5003 "LVDS clock/downclock\n");
5004 has_reduced_clock
= 0;
5007 /* SDVO TV has fixed PLL values depend on its clock range,
5008 this mirrors vbios setting. */
5009 if (is_sdvo
&& is_tv
) {
5010 if (adjusted_mode
->clock
>= 100000
5011 && adjusted_mode
->clock
< 140500) {
5017 } else if (adjusted_mode
->clock
>= 140500
5018 && adjusted_mode
->clock
<= 200000) {
5028 pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
5030 /* CPU eDP doesn't require FDI link, so just set DP M/N
5031 according to current link config */
5032 if (has_edp_encoder
&&
5033 !intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5034 target_clock
= mode
->clock
;
5035 intel_edp_link_config(has_edp_encoder
,
5038 /* [e]DP over FDI requires target mode clock
5039 instead of link clock */
5040 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
))
5041 target_clock
= mode
->clock
;
5043 target_clock
= adjusted_mode
->clock
;
5045 /* FDI is a binary signal running at ~2.7GHz, encoding
5046 * each output octet as 10 bits. The actual frequency
5047 * is stored as a divider into a 100MHz clock, and the
5048 * mode pixel clock is stored in units of 1KHz.
5049 * Hence the bw of each lane in terms of the mode signal
5052 link_bw
= intel_fdi_link_freq(dev
) * MHz(100)/KHz(1)/10;
5055 /* determine panel color depth */
5056 temp
= I915_READ(PIPECONF(pipe
));
5057 temp
&= ~PIPE_BPC_MASK
;
5058 dither
= intel_choose_pipe_bpp_dither(crtc
, &pipe_bpp
);
5073 WARN(1, "intel_choose_pipe_bpp returned invalid value\n");
5079 intel_crtc
->bpp
= pipe_bpp
;
5080 I915_WRITE(PIPECONF(pipe
), temp
);
5084 * Account for spread spectrum to avoid
5085 * oversubscribing the link. Max center spread
5086 * is 2.5%; use 5% for safety's sake.
5088 u32 bps
= target_clock
* intel_crtc
->bpp
* 21 / 20;
5089 lane
= bps
/ (link_bw
* 8) + 1;
5092 intel_crtc
->fdi_lanes
= lane
;
5094 if (pixel_multiplier
> 1)
5095 link_bw
*= pixel_multiplier
;
5096 ironlake_compute_m_n(intel_crtc
->bpp
, lane
, target_clock
, link_bw
,
5099 /* Ironlake: try to setup display ref clock before DPLL
5100 * enabling. This is only under driver's control after
5101 * PCH B stepping, previous chipset stepping should be
5102 * ignoring this setting.
5104 temp
= I915_READ(PCH_DREF_CONTROL
);
5105 /* Always enable nonspread source */
5106 temp
&= ~DREF_NONSPREAD_SOURCE_MASK
;
5107 temp
|= DREF_NONSPREAD_SOURCE_ENABLE
;
5108 temp
&= ~DREF_SSC_SOURCE_MASK
;
5109 temp
|= DREF_SSC_SOURCE_ENABLE
;
5110 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5112 POSTING_READ(PCH_DREF_CONTROL
);
5115 if (has_edp_encoder
) {
5116 if (intel_panel_use_ssc(dev_priv
)) {
5117 temp
|= DREF_SSC1_ENABLE
;
5118 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5120 POSTING_READ(PCH_DREF_CONTROL
);
5123 temp
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
5125 /* Enable CPU source on CPU attached eDP */
5126 if (!intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5127 if (intel_panel_use_ssc(dev_priv
))
5128 temp
|= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD
;
5130 temp
|= DREF_CPU_SOURCE_OUTPUT_NONSPREAD
;
5132 /* Enable SSC on PCH eDP if needed */
5133 if (intel_panel_use_ssc(dev_priv
)) {
5134 DRM_ERROR("enabling SSC on PCH\n");
5135 temp
|= DREF_SUPERSPREAD_SOURCE_ENABLE
;
5138 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5139 POSTING_READ(PCH_DREF_CONTROL
);
5143 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
5144 if (has_reduced_clock
)
5145 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
5148 /* Enable autotuning of the PLL clock (if permissible) */
5151 if ((intel_panel_use_ssc(dev_priv
) &&
5152 dev_priv
->lvds_ssc_freq
== 100) ||
5153 (I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) == LVDS_CLKB_POWER_UP
)
5155 } else if (is_sdvo
&& is_tv
)
5158 if (clock
.m1
< factor
* clock
.n
)
5164 dpll
|= DPLLB_MODE_LVDS
;
5166 dpll
|= DPLLB_MODE_DAC_SERIAL
;
5168 int pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
5169 if (pixel_multiplier
> 1) {
5170 dpll
|= (pixel_multiplier
- 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
;
5172 dpll
|= DPLL_DVO_HIGH_SPEED
;
5174 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
))
5175 dpll
|= DPLL_DVO_HIGH_SPEED
;
5177 /* compute bitmask from p1 value */
5178 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
5180 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
5184 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
5187 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
5190 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
5193 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
5197 if (is_sdvo
&& is_tv
)
5198 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
5200 /* XXX: just matching BIOS for now */
5201 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5203 else if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2)
5204 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
5206 dpll
|= PLL_REF_INPUT_DREFCLK
;
5208 /* setup pipeconf */
5209 pipeconf
= I915_READ(PIPECONF(pipe
));
5211 /* Set up the display plane register */
5212 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
5214 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
5215 drm_mode_debug_printmodeline(mode
);
5217 /* PCH eDP needs FDI, but CPU eDP does not */
5218 if (!has_edp_encoder
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5219 I915_WRITE(PCH_FP0(pipe
), fp
);
5220 I915_WRITE(PCH_DPLL(pipe
), dpll
& ~DPLL_VCO_ENABLE
);
5222 POSTING_READ(PCH_DPLL(pipe
));
5226 /* enable transcoder DPLL */
5227 if (HAS_PCH_CPT(dev
)) {
5228 temp
= I915_READ(PCH_DPLL_SEL
);
5231 temp
|= TRANSA_DPLL_ENABLE
| TRANSA_DPLLA_SEL
;
5234 temp
|= TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
;
5237 /* FIXME: manage transcoder PLLs? */
5238 temp
|= TRANSC_DPLL_ENABLE
| TRANSC_DPLLB_SEL
;
5243 I915_WRITE(PCH_DPLL_SEL
, temp
);
5245 POSTING_READ(PCH_DPLL_SEL
);
5249 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5250 * This is an exception to the general rule that mode_set doesn't turn
5254 temp
= I915_READ(PCH_LVDS
);
5255 temp
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
;
5257 if (HAS_PCH_CPT(dev
))
5258 temp
|= PORT_TRANS_B_SEL_CPT
;
5260 temp
|= LVDS_PIPEB_SELECT
;
5262 if (HAS_PCH_CPT(dev
))
5263 temp
&= ~PORT_TRANS_SEL_MASK
;
5265 temp
&= ~LVDS_PIPEB_SELECT
;
5267 /* set the corresponsding LVDS_BORDER bit */
5268 temp
|= dev_priv
->lvds_border_bits
;
5269 /* Set the B0-B3 data pairs corresponding to whether we're going to
5270 * set the DPLLs for dual-channel mode or not.
5273 temp
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
5275 temp
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
5277 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5278 * appropriately here, but we need to look more thoroughly into how
5279 * panels behave in the two modes.
5281 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
5282 lvds_sync
|= LVDS_HSYNC_POLARITY
;
5283 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
5284 lvds_sync
|= LVDS_VSYNC_POLARITY
;
5285 if ((temp
& (LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
))
5287 char flags
[2] = "-+";
5288 DRM_INFO("Changing LVDS panel from "
5289 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5290 flags
[!(temp
& LVDS_HSYNC_POLARITY
)],
5291 flags
[!(temp
& LVDS_VSYNC_POLARITY
)],
5292 flags
[!(lvds_sync
& LVDS_HSYNC_POLARITY
)],
5293 flags
[!(lvds_sync
& LVDS_VSYNC_POLARITY
)]);
5294 temp
&= ~(LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
);
5297 I915_WRITE(PCH_LVDS
, temp
);
5300 pipeconf
&= ~PIPECONF_DITHER_EN
;
5301 pipeconf
&= ~PIPECONF_DITHER_TYPE_MASK
;
5302 if ((is_lvds
&& dev_priv
->lvds_dither
) || dither
) {
5303 pipeconf
|= PIPECONF_DITHER_EN
;
5304 pipeconf
|= PIPECONF_DITHER_TYPE_ST1
;
5306 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5307 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
5309 /* For non-DP output, clear any trans DP clock recovery setting.*/
5310 I915_WRITE(TRANSDATA_M1(pipe
), 0);
5311 I915_WRITE(TRANSDATA_N1(pipe
), 0);
5312 I915_WRITE(TRANSDPLINK_M1(pipe
), 0);
5313 I915_WRITE(TRANSDPLINK_N1(pipe
), 0);
5316 if (!has_edp_encoder
||
5317 intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5318 I915_WRITE(PCH_DPLL(pipe
), dpll
);
5320 /* Wait for the clocks to stabilize. */
5321 POSTING_READ(PCH_DPLL(pipe
));
5324 /* The pixel multiplier can only be updated once the
5325 * DPLL is enabled and the clocks are stable.
5327 * So write it again.
5329 I915_WRITE(PCH_DPLL(pipe
), dpll
);
5332 intel_crtc
->lowfreq_avail
= false;
5333 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
5334 I915_WRITE(PCH_FP1(pipe
), fp2
);
5335 intel_crtc
->lowfreq_avail
= true;
5336 if (HAS_PIPE_CXSR(dev
)) {
5337 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5338 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
5341 I915_WRITE(PCH_FP1(pipe
), fp
);
5342 if (HAS_PIPE_CXSR(dev
)) {
5343 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5344 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
5348 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
5349 pipeconf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
5350 /* the chip adds 2 halflines automatically */
5351 adjusted_mode
->crtc_vdisplay
-= 1;
5352 adjusted_mode
->crtc_vtotal
-= 1;
5353 adjusted_mode
->crtc_vblank_start
-= 1;
5354 adjusted_mode
->crtc_vblank_end
-= 1;
5355 adjusted_mode
->crtc_vsync_end
-= 1;
5356 adjusted_mode
->crtc_vsync_start
-= 1;
5358 pipeconf
&= ~PIPECONF_INTERLACE_W_FIELD_INDICATION
; /* progressive */
5360 I915_WRITE(HTOTAL(pipe
),
5361 (adjusted_mode
->crtc_hdisplay
- 1) |
5362 ((adjusted_mode
->crtc_htotal
- 1) << 16));
5363 I915_WRITE(HBLANK(pipe
),
5364 (adjusted_mode
->crtc_hblank_start
- 1) |
5365 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
5366 I915_WRITE(HSYNC(pipe
),
5367 (adjusted_mode
->crtc_hsync_start
- 1) |
5368 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
5370 I915_WRITE(VTOTAL(pipe
),
5371 (adjusted_mode
->crtc_vdisplay
- 1) |
5372 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
5373 I915_WRITE(VBLANK(pipe
),
5374 (adjusted_mode
->crtc_vblank_start
- 1) |
5375 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
5376 I915_WRITE(VSYNC(pipe
),
5377 (adjusted_mode
->crtc_vsync_start
- 1) |
5378 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
5380 /* pipesrc controls the size that is scaled from, which should
5381 * always be the user's requested size.
5383 I915_WRITE(PIPESRC(pipe
),
5384 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
5386 I915_WRITE(PIPE_DATA_M1(pipe
), TU_SIZE(m_n
.tu
) | m_n
.gmch_m
);
5387 I915_WRITE(PIPE_DATA_N1(pipe
), m_n
.gmch_n
);
5388 I915_WRITE(PIPE_LINK_M1(pipe
), m_n
.link_m
);
5389 I915_WRITE(PIPE_LINK_N1(pipe
), m_n
.link_n
);
5391 if (has_edp_encoder
&&
5392 !intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5393 ironlake_set_pll_edp(crtc
, adjusted_mode
->clock
);
5396 I915_WRITE(PIPECONF(pipe
), pipeconf
);
5397 POSTING_READ(PIPECONF(pipe
));
5399 intel_wait_for_vblank(dev
, pipe
);
5402 /* enable address swizzle for tiling buffer */
5403 temp
= I915_READ(DISP_ARB_CTL
);
5404 I915_WRITE(DISP_ARB_CTL
, temp
| DISP_TILE_SURFACE_SWIZZLING
);
5407 I915_WRITE(DSPCNTR(plane
), dspcntr
);
5408 POSTING_READ(DSPCNTR(plane
));
5410 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
5412 intel_update_watermarks(dev
);
5417 static int intel_crtc_mode_set(struct drm_crtc
*crtc
,
5418 struct drm_display_mode
*mode
,
5419 struct drm_display_mode
*adjusted_mode
,
5421 struct drm_framebuffer
*old_fb
)
5423 struct drm_device
*dev
= crtc
->dev
;
5424 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5425 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5426 int pipe
= intel_crtc
->pipe
;
5429 drm_vblank_pre_modeset(dev
, pipe
);
5431 ret
= dev_priv
->display
.crtc_mode_set(crtc
, mode
, adjusted_mode
,
5434 drm_vblank_post_modeset(dev
, pipe
);
5439 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5440 void intel_crtc_load_lut(struct drm_crtc
*crtc
)
5442 struct drm_device
*dev
= crtc
->dev
;
5443 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5444 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5445 int palreg
= PALETTE(intel_crtc
->pipe
);
5448 /* The clocks have to be on to load the palette. */
5452 /* use legacy palette for Ironlake */
5453 if (HAS_PCH_SPLIT(dev
))
5454 palreg
= LGC_PALETTE(intel_crtc
->pipe
);
5456 for (i
= 0; i
< 256; i
++) {
5457 I915_WRITE(palreg
+ 4 * i
,
5458 (intel_crtc
->lut_r
[i
] << 16) |
5459 (intel_crtc
->lut_g
[i
] << 8) |
5460 intel_crtc
->lut_b
[i
]);
5464 static void i845_update_cursor(struct drm_crtc
*crtc
, u32 base
)
5466 struct drm_device
*dev
= crtc
->dev
;
5467 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5468 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5469 bool visible
= base
!= 0;
5472 if (intel_crtc
->cursor_visible
== visible
)
5475 cntl
= I915_READ(_CURACNTR
);
5477 /* On these chipsets we can only modify the base whilst
5478 * the cursor is disabled.
5480 I915_WRITE(_CURABASE
, base
);
5482 cntl
&= ~(CURSOR_FORMAT_MASK
);
5483 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5484 cntl
|= CURSOR_ENABLE
|
5485 CURSOR_GAMMA_ENABLE
|
5488 cntl
&= ~(CURSOR_ENABLE
| CURSOR_GAMMA_ENABLE
);
5489 I915_WRITE(_CURACNTR
, cntl
);
5491 intel_crtc
->cursor_visible
= visible
;
5494 static void i9xx_update_cursor(struct drm_crtc
*crtc
, u32 base
)
5496 struct drm_device
*dev
= crtc
->dev
;
5497 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5498 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5499 int pipe
= intel_crtc
->pipe
;
5500 bool visible
= base
!= 0;
5502 if (intel_crtc
->cursor_visible
!= visible
) {
5503 uint32_t cntl
= I915_READ(CURCNTR(pipe
));
5505 cntl
&= ~(CURSOR_MODE
| MCURSOR_PIPE_SELECT
);
5506 cntl
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
5507 cntl
|= pipe
<< 28; /* Connect to correct pipe */
5509 cntl
&= ~(CURSOR_MODE
| MCURSOR_GAMMA_ENABLE
);
5510 cntl
|= CURSOR_MODE_DISABLE
;
5512 I915_WRITE(CURCNTR(pipe
), cntl
);
5514 intel_crtc
->cursor_visible
= visible
;
5516 /* and commit changes on next vblank */
5517 I915_WRITE(CURBASE(pipe
), base
);
5520 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5521 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
,
5524 struct drm_device
*dev
= crtc
->dev
;
5525 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5526 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5527 int pipe
= intel_crtc
->pipe
;
5528 int x
= intel_crtc
->cursor_x
;
5529 int y
= intel_crtc
->cursor_y
;
5535 if (on
&& crtc
->enabled
&& crtc
->fb
) {
5536 base
= intel_crtc
->cursor_addr
;
5537 if (x
> (int) crtc
->fb
->width
)
5540 if (y
> (int) crtc
->fb
->height
)
5546 if (x
+ intel_crtc
->cursor_width
< 0)
5549 pos
|= CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
;
5552 pos
|= x
<< CURSOR_X_SHIFT
;
5555 if (y
+ intel_crtc
->cursor_height
< 0)
5558 pos
|= CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
;
5561 pos
|= y
<< CURSOR_Y_SHIFT
;
5563 visible
= base
!= 0;
5564 if (!visible
&& !intel_crtc
->cursor_visible
)
5567 I915_WRITE(CURPOS(pipe
), pos
);
5568 if (IS_845G(dev
) || IS_I865G(dev
))
5569 i845_update_cursor(crtc
, base
);
5571 i9xx_update_cursor(crtc
, base
);
5574 intel_mark_busy(dev
, to_intel_framebuffer(crtc
->fb
)->obj
);
5577 static int intel_crtc_cursor_set(struct drm_crtc
*crtc
,
5578 struct drm_file
*file
,
5580 uint32_t width
, uint32_t height
)
5582 struct drm_device
*dev
= crtc
->dev
;
5583 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5584 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5585 struct drm_i915_gem_object
*obj
;
5589 DRM_DEBUG_KMS("\n");
5591 /* if we want to turn off the cursor ignore width and height */
5593 DRM_DEBUG_KMS("cursor off\n");
5596 mutex_lock(&dev
->struct_mutex
);
5600 /* Currently we only support 64x64 cursors */
5601 if (width
!= 64 || height
!= 64) {
5602 DRM_ERROR("we currently only support 64x64 cursors\n");
5606 obj
= to_intel_bo(drm_gem_object_lookup(dev
, file
, handle
));
5607 if (&obj
->base
== NULL
)
5610 if (obj
->base
.size
< width
* height
* 4) {
5611 DRM_ERROR("buffer is to small\n");
5616 /* we only need to pin inside GTT if cursor is non-phy */
5617 mutex_lock(&dev
->struct_mutex
);
5618 if (!dev_priv
->info
->cursor_needs_physical
) {
5619 if (obj
->tiling_mode
) {
5620 DRM_ERROR("cursor cannot be tiled\n");
5625 ret
= i915_gem_object_pin_to_display_plane(obj
, 0, NULL
);
5627 DRM_ERROR("failed to move cursor bo into the GTT\n");
5631 ret
= i915_gem_object_put_fence(obj
);
5633 DRM_ERROR("failed to release fence for cursor");
5637 addr
= obj
->gtt_offset
;
5639 int align
= IS_I830(dev
) ? 16 * 1024 : 256;
5640 ret
= i915_gem_attach_phys_object(dev
, obj
,
5641 (intel_crtc
->pipe
== 0) ? I915_GEM_PHYS_CURSOR_0
: I915_GEM_PHYS_CURSOR_1
,
5644 DRM_ERROR("failed to attach phys object\n");
5647 addr
= obj
->phys_obj
->handle
->busaddr
;
5651 I915_WRITE(CURSIZE
, (height
<< 12) | width
);
5654 if (intel_crtc
->cursor_bo
) {
5655 if (dev_priv
->info
->cursor_needs_physical
) {
5656 if (intel_crtc
->cursor_bo
!= obj
)
5657 i915_gem_detach_phys_object(dev
, intel_crtc
->cursor_bo
);
5659 i915_gem_object_unpin(intel_crtc
->cursor_bo
);
5660 drm_gem_object_unreference(&intel_crtc
->cursor_bo
->base
);
5663 mutex_unlock(&dev
->struct_mutex
);
5665 intel_crtc
->cursor_addr
= addr
;
5666 intel_crtc
->cursor_bo
= obj
;
5667 intel_crtc
->cursor_width
= width
;
5668 intel_crtc
->cursor_height
= height
;
5670 intel_crtc_update_cursor(crtc
, true);
5674 i915_gem_object_unpin(obj
);
5676 mutex_unlock(&dev
->struct_mutex
);
5678 drm_gem_object_unreference_unlocked(&obj
->base
);
5682 static int intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
5684 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5686 intel_crtc
->cursor_x
= x
;
5687 intel_crtc
->cursor_y
= y
;
5689 intel_crtc_update_cursor(crtc
, true);
5694 /** Sets the color ramps on behalf of RandR */
5695 void intel_crtc_fb_gamma_set(struct drm_crtc
*crtc
, u16 red
, u16 green
,
5696 u16 blue
, int regno
)
5698 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5700 intel_crtc
->lut_r
[regno
] = red
>> 8;
5701 intel_crtc
->lut_g
[regno
] = green
>> 8;
5702 intel_crtc
->lut_b
[regno
] = blue
>> 8;
5705 void intel_crtc_fb_gamma_get(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
5706 u16
*blue
, int regno
)
5708 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5710 *red
= intel_crtc
->lut_r
[regno
] << 8;
5711 *green
= intel_crtc
->lut_g
[regno
] << 8;
5712 *blue
= intel_crtc
->lut_b
[regno
] << 8;
5715 static void intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
5716 u16
*blue
, uint32_t start
, uint32_t size
)
5718 int end
= (start
+ size
> 256) ? 256 : start
+ size
, i
;
5719 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5721 for (i
= start
; i
< end
; i
++) {
5722 intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
5723 intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
5724 intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
5727 intel_crtc_load_lut(crtc
);
5731 * Get a pipe with a simple mode set on it for doing load-based monitor
5734 * It will be up to the load-detect code to adjust the pipe as appropriate for
5735 * its requirements. The pipe will be connected to no other encoders.
5737 * Currently this code will only succeed if there is a pipe with no encoders
5738 * configured for it. In the future, it could choose to temporarily disable
5739 * some outputs to free up a pipe for its use.
5741 * \return crtc, or NULL if no pipes are available.
5744 /* VESA 640x480x72Hz mode to set on the pipe */
5745 static struct drm_display_mode load_detect_mode
= {
5746 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT
, 31500, 640, 664,
5747 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC
| DRM_MODE_FLAG_NVSYNC
),
5750 static struct drm_framebuffer
*
5751 intel_framebuffer_create(struct drm_device
*dev
,
5752 struct drm_mode_fb_cmd
*mode_cmd
,
5753 struct drm_i915_gem_object
*obj
)
5755 struct intel_framebuffer
*intel_fb
;
5758 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
5760 drm_gem_object_unreference_unlocked(&obj
->base
);
5761 return ERR_PTR(-ENOMEM
);
5764 ret
= intel_framebuffer_init(dev
, intel_fb
, mode_cmd
, obj
);
5766 drm_gem_object_unreference_unlocked(&obj
->base
);
5768 return ERR_PTR(ret
);
5771 return &intel_fb
->base
;
5775 intel_framebuffer_pitch_for_width(int width
, int bpp
)
5777 u32 pitch
= DIV_ROUND_UP(width
* bpp
, 8);
5778 return ALIGN(pitch
, 64);
5782 intel_framebuffer_size_for_mode(struct drm_display_mode
*mode
, int bpp
)
5784 u32 pitch
= intel_framebuffer_pitch_for_width(mode
->hdisplay
, bpp
);
5785 return ALIGN(pitch
* mode
->vdisplay
, PAGE_SIZE
);
5788 static struct drm_framebuffer
*
5789 intel_framebuffer_create_for_mode(struct drm_device
*dev
,
5790 struct drm_display_mode
*mode
,
5793 struct drm_i915_gem_object
*obj
;
5794 struct drm_mode_fb_cmd mode_cmd
;
5796 obj
= i915_gem_alloc_object(dev
,
5797 intel_framebuffer_size_for_mode(mode
, bpp
));
5799 return ERR_PTR(-ENOMEM
);
5801 mode_cmd
.width
= mode
->hdisplay
;
5802 mode_cmd
.height
= mode
->vdisplay
;
5803 mode_cmd
.depth
= depth
;
5805 mode_cmd
.pitch
= intel_framebuffer_pitch_for_width(mode_cmd
.width
, bpp
);
5807 return intel_framebuffer_create(dev
, &mode_cmd
, obj
);
5810 static struct drm_framebuffer
*
5811 mode_fits_in_fbdev(struct drm_device
*dev
,
5812 struct drm_display_mode
*mode
)
5814 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5815 struct drm_i915_gem_object
*obj
;
5816 struct drm_framebuffer
*fb
;
5818 if (dev_priv
->fbdev
== NULL
)
5821 obj
= dev_priv
->fbdev
->ifb
.obj
;
5825 fb
= &dev_priv
->fbdev
->ifb
.base
;
5826 if (fb
->pitch
< intel_framebuffer_pitch_for_width(mode
->hdisplay
,
5827 fb
->bits_per_pixel
))
5830 if (obj
->base
.size
< mode
->vdisplay
* fb
->pitch
)
5836 bool intel_get_load_detect_pipe(struct intel_encoder
*intel_encoder
,
5837 struct drm_connector
*connector
,
5838 struct drm_display_mode
*mode
,
5839 struct intel_load_detect_pipe
*old
)
5841 struct intel_crtc
*intel_crtc
;
5842 struct drm_crtc
*possible_crtc
;
5843 struct drm_encoder
*encoder
= &intel_encoder
->base
;
5844 struct drm_crtc
*crtc
= NULL
;
5845 struct drm_device
*dev
= encoder
->dev
;
5846 struct drm_framebuffer
*old_fb
;
5849 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5850 connector
->base
.id
, drm_get_connector_name(connector
),
5851 encoder
->base
.id
, drm_get_encoder_name(encoder
));
5854 * Algorithm gets a little messy:
5856 * - if the connector already has an assigned crtc, use it (but make
5857 * sure it's on first)
5859 * - try to find the first unused crtc that can drive this connector,
5860 * and use that if we find one
5863 /* See if we already have a CRTC for this connector */
5864 if (encoder
->crtc
) {
5865 crtc
= encoder
->crtc
;
5867 intel_crtc
= to_intel_crtc(crtc
);
5868 old
->dpms_mode
= intel_crtc
->dpms_mode
;
5869 old
->load_detect_temp
= false;
5871 /* Make sure the crtc and connector are running */
5872 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
5873 struct drm_encoder_helper_funcs
*encoder_funcs
;
5874 struct drm_crtc_helper_funcs
*crtc_funcs
;
5876 crtc_funcs
= crtc
->helper_private
;
5877 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
5879 encoder_funcs
= encoder
->helper_private
;
5880 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
5886 /* Find an unused one (if possible) */
5887 list_for_each_entry(possible_crtc
, &dev
->mode_config
.crtc_list
, head
) {
5889 if (!(encoder
->possible_crtcs
& (1 << i
)))
5891 if (!possible_crtc
->enabled
) {
5892 crtc
= possible_crtc
;
5898 * If we didn't find an unused CRTC, don't use any.
5901 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5905 encoder
->crtc
= crtc
;
5906 connector
->encoder
= encoder
;
5908 intel_crtc
= to_intel_crtc(crtc
);
5909 old
->dpms_mode
= intel_crtc
->dpms_mode
;
5910 old
->load_detect_temp
= true;
5911 old
->release_fb
= NULL
;
5914 mode
= &load_detect_mode
;
5918 /* We need a framebuffer large enough to accommodate all accesses
5919 * that the plane may generate whilst we perform load detection.
5920 * We can not rely on the fbcon either being present (we get called
5921 * during its initialisation to detect all boot displays, or it may
5922 * not even exist) or that it is large enough to satisfy the
5925 crtc
->fb
= mode_fits_in_fbdev(dev
, mode
);
5926 if (crtc
->fb
== NULL
) {
5927 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5928 crtc
->fb
= intel_framebuffer_create_for_mode(dev
, mode
, 24, 32);
5929 old
->release_fb
= crtc
->fb
;
5931 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5932 if (IS_ERR(crtc
->fb
)) {
5933 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5938 if (!drm_crtc_helper_set_mode(crtc
, mode
, 0, 0, old_fb
)) {
5939 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5940 if (old
->release_fb
)
5941 old
->release_fb
->funcs
->destroy(old
->release_fb
);
5946 /* let the connector get through one full cycle before testing */
5947 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
5952 void intel_release_load_detect_pipe(struct intel_encoder
*intel_encoder
,
5953 struct drm_connector
*connector
,
5954 struct intel_load_detect_pipe
*old
)
5956 struct drm_encoder
*encoder
= &intel_encoder
->base
;
5957 struct drm_device
*dev
= encoder
->dev
;
5958 struct drm_crtc
*crtc
= encoder
->crtc
;
5959 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
5960 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
5962 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5963 connector
->base
.id
, drm_get_connector_name(connector
),
5964 encoder
->base
.id
, drm_get_encoder_name(encoder
));
5966 if (old
->load_detect_temp
) {
5967 connector
->encoder
= NULL
;
5968 drm_helper_disable_unused_functions(dev
);
5970 if (old
->release_fb
)
5971 old
->release_fb
->funcs
->destroy(old
->release_fb
);
5976 /* Switch crtc and encoder back off if necessary */
5977 if (old
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
5978 encoder_funcs
->dpms(encoder
, old
->dpms_mode
);
5979 crtc_funcs
->dpms(crtc
, old
->dpms_mode
);
5983 /* Returns the clock of the currently programmed mode of the given pipe. */
5984 static int intel_crtc_clock_get(struct drm_device
*dev
, struct drm_crtc
*crtc
)
5986 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5987 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5988 int pipe
= intel_crtc
->pipe
;
5989 u32 dpll
= I915_READ(DPLL(pipe
));
5991 intel_clock_t clock
;
5993 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
5994 fp
= I915_READ(FP0(pipe
));
5996 fp
= I915_READ(FP1(pipe
));
5998 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
5999 if (IS_PINEVIEW(dev
)) {
6000 clock
.n
= ffs((fp
& FP_N_PINEVIEW_DIV_MASK
) >> FP_N_DIV_SHIFT
) - 1;
6001 clock
.m2
= (fp
& FP_M2_PINEVIEW_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
6003 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
6004 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
6007 if (!IS_GEN2(dev
)) {
6008 if (IS_PINEVIEW(dev
))
6009 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW
) >>
6010 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
);
6012 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK
) >>
6013 DPLL_FPA01_P1_POST_DIV_SHIFT
);
6015 switch (dpll
& DPLL_MODE_MASK
) {
6016 case DPLLB_MODE_DAC_SERIAL
:
6017 clock
.p2
= dpll
& DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
?
6020 case DPLLB_MODE_LVDS
:
6021 clock
.p2
= dpll
& DPLLB_LVDS_P2_CLOCK_DIV_7
?
6025 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6026 "mode\n", (int)(dpll
& DPLL_MODE_MASK
));
6030 /* XXX: Handle the 100Mhz refclk */
6031 intel_clock(dev
, 96000, &clock
);
6033 bool is_lvds
= (pipe
== 1) && (I915_READ(LVDS
) & LVDS_PORT_EN
);
6036 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
6037 DPLL_FPA01_P1_POST_DIV_SHIFT
);
6040 if ((dpll
& PLL_REF_INPUT_MASK
) ==
6041 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
6042 /* XXX: might not be 66MHz */
6043 intel_clock(dev
, 66000, &clock
);
6045 intel_clock(dev
, 48000, &clock
);
6047 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
6050 clock
.p1
= ((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
6051 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
6053 if (dpll
& PLL_P2_DIVIDE_BY_4
)
6058 intel_clock(dev
, 48000, &clock
);
6062 /* XXX: It would be nice to validate the clocks, but we can't reuse
6063 * i830PllIsValid() because it relies on the xf86_config connector
6064 * configuration being accurate, which it isn't necessarily.
6070 /** Returns the currently programmed mode of the given pipe. */
6071 struct drm_display_mode
*intel_crtc_mode_get(struct drm_device
*dev
,
6072 struct drm_crtc
*crtc
)
6074 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6075 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6076 int pipe
= intel_crtc
->pipe
;
6077 struct drm_display_mode
*mode
;
6078 int htot
= I915_READ(HTOTAL(pipe
));
6079 int hsync
= I915_READ(HSYNC(pipe
));
6080 int vtot
= I915_READ(VTOTAL(pipe
));
6081 int vsync
= I915_READ(VSYNC(pipe
));
6083 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
6087 mode
->clock
= intel_crtc_clock_get(dev
, crtc
);
6088 mode
->hdisplay
= (htot
& 0xffff) + 1;
6089 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
6090 mode
->hsync_start
= (hsync
& 0xffff) + 1;
6091 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
6092 mode
->vdisplay
= (vtot
& 0xffff) + 1;
6093 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
6094 mode
->vsync_start
= (vsync
& 0xffff) + 1;
6095 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
6097 drm_mode_set_name(mode
);
6098 drm_mode_set_crtcinfo(mode
, 0);
6103 #define GPU_IDLE_TIMEOUT 500 /* ms */
6105 /* When this timer fires, we've been idle for awhile */
6106 static void intel_gpu_idle_timer(unsigned long arg
)
6108 struct drm_device
*dev
= (struct drm_device
*)arg
;
6109 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6111 if (!list_empty(&dev_priv
->mm
.active_list
)) {
6112 /* Still processing requests, so just re-arm the timer. */
6113 mod_timer(&dev_priv
->idle_timer
, jiffies
+
6114 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
6118 dev_priv
->busy
= false;
6119 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
6122 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6124 static void intel_crtc_idle_timer(unsigned long arg
)
6126 struct intel_crtc
*intel_crtc
= (struct intel_crtc
*)arg
;
6127 struct drm_crtc
*crtc
= &intel_crtc
->base
;
6128 drm_i915_private_t
*dev_priv
= crtc
->dev
->dev_private
;
6129 struct intel_framebuffer
*intel_fb
;
6131 intel_fb
= to_intel_framebuffer(crtc
->fb
);
6132 if (intel_fb
&& intel_fb
->obj
->active
) {
6133 /* The framebuffer is still being accessed by the GPU. */
6134 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
6135 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
6139 intel_crtc
->busy
= false;
6140 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
6143 static void intel_increase_pllclock(struct drm_crtc
*crtc
)
6145 struct drm_device
*dev
= crtc
->dev
;
6146 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6147 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6148 int pipe
= intel_crtc
->pipe
;
6149 int dpll_reg
= DPLL(pipe
);
6152 if (HAS_PCH_SPLIT(dev
))
6155 if (!dev_priv
->lvds_downclock_avail
)
6158 dpll
= I915_READ(dpll_reg
);
6159 if (!HAS_PIPE_CXSR(dev
) && (dpll
& DISPLAY_RATE_SELECT_FPA1
)) {
6160 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6162 /* Unlock panel regs */
6163 I915_WRITE(PP_CONTROL
,
6164 I915_READ(PP_CONTROL
) | PANEL_UNLOCK_REGS
);
6166 dpll
&= ~DISPLAY_RATE_SELECT_FPA1
;
6167 I915_WRITE(dpll_reg
, dpll
);
6168 intel_wait_for_vblank(dev
, pipe
);
6170 dpll
= I915_READ(dpll_reg
);
6171 if (dpll
& DISPLAY_RATE_SELECT_FPA1
)
6172 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6174 /* ...and lock them again */
6175 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
6178 /* Schedule downclock */
6179 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
6180 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
6183 static void intel_decrease_pllclock(struct drm_crtc
*crtc
)
6185 struct drm_device
*dev
= crtc
->dev
;
6186 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6187 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6188 int pipe
= intel_crtc
->pipe
;
6189 int dpll_reg
= DPLL(pipe
);
6190 int dpll
= I915_READ(dpll_reg
);
6192 if (HAS_PCH_SPLIT(dev
))
6195 if (!dev_priv
->lvds_downclock_avail
)
6199 * Since this is called by a timer, we should never get here in
6202 if (!HAS_PIPE_CXSR(dev
) && intel_crtc
->lowfreq_avail
) {
6203 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6205 /* Unlock panel regs */
6206 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) |
6209 dpll
|= DISPLAY_RATE_SELECT_FPA1
;
6210 I915_WRITE(dpll_reg
, dpll
);
6211 intel_wait_for_vblank(dev
, pipe
);
6212 dpll
= I915_READ(dpll_reg
);
6213 if (!(dpll
& DISPLAY_RATE_SELECT_FPA1
))
6214 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6216 /* ...and lock them again */
6217 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
6223 * intel_idle_update - adjust clocks for idleness
6224 * @work: work struct
6226 * Either the GPU or display (or both) went idle. Check the busy status
6227 * here and adjust the CRTC and GPU clocks as necessary.
6229 static void intel_idle_update(struct work_struct
*work
)
6231 drm_i915_private_t
*dev_priv
= container_of(work
, drm_i915_private_t
,
6233 struct drm_device
*dev
= dev_priv
->dev
;
6234 struct drm_crtc
*crtc
;
6235 struct intel_crtc
*intel_crtc
;
6237 if (!i915_powersave
)
6240 mutex_lock(&dev
->struct_mutex
);
6242 i915_update_gfx_val(dev_priv
);
6244 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
6245 /* Skip inactive CRTCs */
6249 intel_crtc
= to_intel_crtc(crtc
);
6250 if (!intel_crtc
->busy
)
6251 intel_decrease_pllclock(crtc
);
6255 mutex_unlock(&dev
->struct_mutex
);
6259 * intel_mark_busy - mark the GPU and possibly the display busy
6261 * @obj: object we're operating on
6263 * Callers can use this function to indicate that the GPU is busy processing
6264 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6265 * buffer), we'll also mark the display as busy, so we know to increase its
6268 void intel_mark_busy(struct drm_device
*dev
, struct drm_i915_gem_object
*obj
)
6270 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6271 struct drm_crtc
*crtc
= NULL
;
6272 struct intel_framebuffer
*intel_fb
;
6273 struct intel_crtc
*intel_crtc
;
6275 if (!drm_core_check_feature(dev
, DRIVER_MODESET
))
6278 if (!dev_priv
->busy
)
6279 dev_priv
->busy
= true;
6281 mod_timer(&dev_priv
->idle_timer
, jiffies
+
6282 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
6284 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
6288 intel_crtc
= to_intel_crtc(crtc
);
6289 intel_fb
= to_intel_framebuffer(crtc
->fb
);
6290 if (intel_fb
->obj
== obj
) {
6291 if (!intel_crtc
->busy
) {
6292 /* Non-busy -> busy, upclock */
6293 intel_increase_pllclock(crtc
);
6294 intel_crtc
->busy
= true;
6296 /* Busy -> busy, put off timer */
6297 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
6298 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
6304 static void intel_crtc_destroy(struct drm_crtc
*crtc
)
6306 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6307 struct drm_device
*dev
= crtc
->dev
;
6308 struct intel_unpin_work
*work
;
6309 unsigned long flags
;
6311 spin_lock_irqsave(&dev
->event_lock
, flags
);
6312 work
= intel_crtc
->unpin_work
;
6313 intel_crtc
->unpin_work
= NULL
;
6314 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6317 cancel_work_sync(&work
->work
);
6321 drm_crtc_cleanup(crtc
);
6326 static void intel_unpin_work_fn(struct work_struct
*__work
)
6328 struct intel_unpin_work
*work
=
6329 container_of(__work
, struct intel_unpin_work
, work
);
6331 mutex_lock(&work
->dev
->struct_mutex
);
6332 i915_gem_object_unpin(work
->old_fb_obj
);
6333 drm_gem_object_unreference(&work
->pending_flip_obj
->base
);
6334 drm_gem_object_unreference(&work
->old_fb_obj
->base
);
6336 mutex_unlock(&work
->dev
->struct_mutex
);
6340 static void do_intel_finish_page_flip(struct drm_device
*dev
,
6341 struct drm_crtc
*crtc
)
6343 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6344 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6345 struct intel_unpin_work
*work
;
6346 struct drm_i915_gem_object
*obj
;
6347 struct drm_pending_vblank_event
*e
;
6348 struct timeval tnow
, tvbl
;
6349 unsigned long flags
;
6351 /* Ignore early vblank irqs */
6352 if (intel_crtc
== NULL
)
6355 do_gettimeofday(&tnow
);
6357 spin_lock_irqsave(&dev
->event_lock
, flags
);
6358 work
= intel_crtc
->unpin_work
;
6359 if (work
== NULL
|| !work
->pending
) {
6360 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6364 intel_crtc
->unpin_work
= NULL
;
6368 e
->event
.sequence
= drm_vblank_count_and_time(dev
, intel_crtc
->pipe
, &tvbl
);
6370 /* Called before vblank count and timestamps have
6371 * been updated for the vblank interval of flip
6372 * completion? Need to increment vblank count and
6373 * add one videorefresh duration to returned timestamp
6374 * to account for this. We assume this happened if we
6375 * get called over 0.9 frame durations after the last
6376 * timestamped vblank.
6378 * This calculation can not be used with vrefresh rates
6379 * below 5Hz (10Hz to be on the safe side) without
6380 * promoting to 64 integers.
6382 if (10 * (timeval_to_ns(&tnow
) - timeval_to_ns(&tvbl
)) >
6383 9 * crtc
->framedur_ns
) {
6384 e
->event
.sequence
++;
6385 tvbl
= ns_to_timeval(timeval_to_ns(&tvbl
) +
6389 e
->event
.tv_sec
= tvbl
.tv_sec
;
6390 e
->event
.tv_usec
= tvbl
.tv_usec
;
6392 list_add_tail(&e
->base
.link
,
6393 &e
->base
.file_priv
->event_list
);
6394 wake_up_interruptible(&e
->base
.file_priv
->event_wait
);
6397 drm_vblank_put(dev
, intel_crtc
->pipe
);
6399 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6401 obj
= work
->old_fb_obj
;
6403 atomic_clear_mask(1 << intel_crtc
->plane
,
6404 &obj
->pending_flip
.counter
);
6405 if (atomic_read(&obj
->pending_flip
) == 0)
6406 wake_up(&dev_priv
->pending_flip_queue
);
6408 schedule_work(&work
->work
);
6410 trace_i915_flip_complete(intel_crtc
->plane
, work
->pending_flip_obj
);
6413 void intel_finish_page_flip(struct drm_device
*dev
, int pipe
)
6415 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6416 struct drm_crtc
*crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
6418 do_intel_finish_page_flip(dev
, crtc
);
6421 void intel_finish_page_flip_plane(struct drm_device
*dev
, int plane
)
6423 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6424 struct drm_crtc
*crtc
= dev_priv
->plane_to_crtc_mapping
[plane
];
6426 do_intel_finish_page_flip(dev
, crtc
);
6429 void intel_prepare_page_flip(struct drm_device
*dev
, int plane
)
6431 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6432 struct intel_crtc
*intel_crtc
=
6433 to_intel_crtc(dev_priv
->plane_to_crtc_mapping
[plane
]);
6434 unsigned long flags
;
6436 spin_lock_irqsave(&dev
->event_lock
, flags
);
6437 if (intel_crtc
->unpin_work
) {
6438 if ((++intel_crtc
->unpin_work
->pending
) > 1)
6439 DRM_ERROR("Prepared flip multiple times\n");
6441 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6443 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6446 static int intel_gen2_queue_flip(struct drm_device
*dev
,
6447 struct drm_crtc
*crtc
,
6448 struct drm_framebuffer
*fb
,
6449 struct drm_i915_gem_object
*obj
)
6451 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6452 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6453 unsigned long offset
;
6457 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
6461 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6462 offset
= crtc
->y
* fb
->pitch
+ crtc
->x
* fb
->bits_per_pixel
/8;
6464 ret
= BEGIN_LP_RING(6);
6468 /* Can't queue multiple flips, so wait for the previous
6469 * one to finish before executing the next.
6471 if (intel_crtc
->plane
)
6472 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
6474 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
6475 OUT_RING(MI_WAIT_FOR_EVENT
| flip_mask
);
6477 OUT_RING(MI_DISPLAY_FLIP
|
6478 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
6479 OUT_RING(fb
->pitch
);
6480 OUT_RING(obj
->gtt_offset
+ offset
);
6487 static int intel_gen3_queue_flip(struct drm_device
*dev
,
6488 struct drm_crtc
*crtc
,
6489 struct drm_framebuffer
*fb
,
6490 struct drm_i915_gem_object
*obj
)
6492 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6493 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6494 unsigned long offset
;
6498 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
6502 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6503 offset
= crtc
->y
* fb
->pitch
+ crtc
->x
* fb
->bits_per_pixel
/8;
6505 ret
= BEGIN_LP_RING(6);
6509 if (intel_crtc
->plane
)
6510 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
6512 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
6513 OUT_RING(MI_WAIT_FOR_EVENT
| flip_mask
);
6515 OUT_RING(MI_DISPLAY_FLIP_I915
|
6516 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
6517 OUT_RING(fb
->pitch
);
6518 OUT_RING(obj
->gtt_offset
+ offset
);
6526 static int intel_gen4_queue_flip(struct drm_device
*dev
,
6527 struct drm_crtc
*crtc
,
6528 struct drm_framebuffer
*fb
,
6529 struct drm_i915_gem_object
*obj
)
6531 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6532 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6533 uint32_t pf
, pipesrc
;
6536 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
6540 ret
= BEGIN_LP_RING(4);
6544 /* i965+ uses the linear or tiled offsets from the
6545 * Display Registers (which do not change across a page-flip)
6546 * so we need only reprogram the base address.
6548 OUT_RING(MI_DISPLAY_FLIP
|
6549 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
6550 OUT_RING(fb
->pitch
);
6551 OUT_RING(obj
->gtt_offset
| obj
->tiling_mode
);
6553 /* XXX Enabling the panel-fitter across page-flip is so far
6554 * untested on non-native modes, so ignore it for now.
6555 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6558 pipesrc
= I915_READ(PIPESRC(intel_crtc
->pipe
)) & 0x0fff0fff;
6559 OUT_RING(pf
| pipesrc
);
6565 static int intel_gen6_queue_flip(struct drm_device
*dev
,
6566 struct drm_crtc
*crtc
,
6567 struct drm_framebuffer
*fb
,
6568 struct drm_i915_gem_object
*obj
)
6570 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6571 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6572 uint32_t pf
, pipesrc
;
6575 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
6579 ret
= BEGIN_LP_RING(4);
6583 OUT_RING(MI_DISPLAY_FLIP
|
6584 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
6585 OUT_RING(fb
->pitch
| obj
->tiling_mode
);
6586 OUT_RING(obj
->gtt_offset
);
6588 pf
= I915_READ(PF_CTL(intel_crtc
->pipe
)) & PF_ENABLE
;
6589 pipesrc
= I915_READ(PIPESRC(intel_crtc
->pipe
)) & 0x0fff0fff;
6590 OUT_RING(pf
| pipesrc
);
6597 * On gen7 we currently use the blit ring because (in early silicon at least)
6598 * the render ring doesn't give us interrpts for page flip completion, which
6599 * means clients will hang after the first flip is queued. Fortunately the
6600 * blit ring generates interrupts properly, so use it instead.
6602 static int intel_gen7_queue_flip(struct drm_device
*dev
,
6603 struct drm_crtc
*crtc
,
6604 struct drm_framebuffer
*fb
,
6605 struct drm_i915_gem_object
*obj
)
6607 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6608 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6609 struct intel_ring_buffer
*ring
= &dev_priv
->ring
[BCS
];
6612 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, ring
);
6616 ret
= intel_ring_begin(ring
, 4);
6620 intel_ring_emit(ring
, MI_DISPLAY_FLIP_I915
| (intel_crtc
->plane
<< 19));
6621 intel_ring_emit(ring
, (fb
->pitch
| obj
->tiling_mode
));
6622 intel_ring_emit(ring
, (obj
->gtt_offset
));
6623 intel_ring_emit(ring
, (MI_NOOP
));
6624 intel_ring_advance(ring
);
6629 static int intel_default_queue_flip(struct drm_device
*dev
,
6630 struct drm_crtc
*crtc
,
6631 struct drm_framebuffer
*fb
,
6632 struct drm_i915_gem_object
*obj
)
6637 static int intel_crtc_page_flip(struct drm_crtc
*crtc
,
6638 struct drm_framebuffer
*fb
,
6639 struct drm_pending_vblank_event
*event
)
6641 struct drm_device
*dev
= crtc
->dev
;
6642 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6643 struct intel_framebuffer
*intel_fb
;
6644 struct drm_i915_gem_object
*obj
;
6645 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6646 struct intel_unpin_work
*work
;
6647 unsigned long flags
;
6650 work
= kzalloc(sizeof *work
, GFP_KERNEL
);
6654 work
->event
= event
;
6655 work
->dev
= crtc
->dev
;
6656 intel_fb
= to_intel_framebuffer(crtc
->fb
);
6657 work
->old_fb_obj
= intel_fb
->obj
;
6658 INIT_WORK(&work
->work
, intel_unpin_work_fn
);
6660 /* We borrow the event spin lock for protecting unpin_work */
6661 spin_lock_irqsave(&dev
->event_lock
, flags
);
6662 if (intel_crtc
->unpin_work
) {
6663 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6666 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6669 intel_crtc
->unpin_work
= work
;
6670 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6672 intel_fb
= to_intel_framebuffer(fb
);
6673 obj
= intel_fb
->obj
;
6675 mutex_lock(&dev
->struct_mutex
);
6677 /* Reference the objects for the scheduled work. */
6678 drm_gem_object_reference(&work
->old_fb_obj
->base
);
6679 drm_gem_object_reference(&obj
->base
);
6683 ret
= drm_vblank_get(dev
, intel_crtc
->pipe
);
6687 work
->pending_flip_obj
= obj
;
6689 work
->enable_stall_check
= true;
6691 /* Block clients from rendering to the new back buffer until
6692 * the flip occurs and the object is no longer visible.
6694 atomic_add(1 << intel_crtc
->plane
, &work
->old_fb_obj
->pending_flip
);
6696 ret
= dev_priv
->display
.queue_flip(dev
, crtc
, fb
, obj
);
6698 goto cleanup_pending
;
6700 mutex_unlock(&dev
->struct_mutex
);
6702 trace_i915_flip_request(intel_crtc
->plane
, obj
);
6707 atomic_sub(1 << intel_crtc
->plane
, &work
->old_fb_obj
->pending_flip
);
6709 drm_gem_object_unreference(&work
->old_fb_obj
->base
);
6710 drm_gem_object_unreference(&obj
->base
);
6711 mutex_unlock(&dev
->struct_mutex
);
6713 spin_lock_irqsave(&dev
->event_lock
, flags
);
6714 intel_crtc
->unpin_work
= NULL
;
6715 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6722 static void intel_sanitize_modesetting(struct drm_device
*dev
,
6723 int pipe
, int plane
)
6725 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6728 if (HAS_PCH_SPLIT(dev
))
6731 /* Who knows what state these registers were left in by the BIOS or
6734 * If we leave the registers in a conflicting state (e.g. with the
6735 * display plane reading from the other pipe than the one we intend
6736 * to use) then when we attempt to teardown the active mode, we will
6737 * not disable the pipes and planes in the correct order -- leaving
6738 * a plane reading from a disabled pipe and possibly leading to
6739 * undefined behaviour.
6742 reg
= DSPCNTR(plane
);
6743 val
= I915_READ(reg
);
6745 if ((val
& DISPLAY_PLANE_ENABLE
) == 0)
6747 if (!!(val
& DISPPLANE_SEL_PIPE_MASK
) == pipe
)
6750 /* This display plane is active and attached to the other CPU pipe. */
6753 /* Disable the plane and wait for it to stop reading from the pipe. */
6754 intel_disable_plane(dev_priv
, plane
, pipe
);
6755 intel_disable_pipe(dev_priv
, pipe
);
6758 static void intel_crtc_reset(struct drm_crtc
*crtc
)
6760 struct drm_device
*dev
= crtc
->dev
;
6761 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6763 /* Reset flags back to the 'unknown' status so that they
6764 * will be correctly set on the initial modeset.
6766 intel_crtc
->dpms_mode
= -1;
6768 /* We need to fix up any BIOS configuration that conflicts with
6771 intel_sanitize_modesetting(dev
, intel_crtc
->pipe
, intel_crtc
->plane
);
6774 static struct drm_crtc_helper_funcs intel_helper_funcs
= {
6775 .dpms
= intel_crtc_dpms
,
6776 .mode_fixup
= intel_crtc_mode_fixup
,
6777 .mode_set
= intel_crtc_mode_set
,
6778 .mode_set_base
= intel_pipe_set_base
,
6779 .mode_set_base_atomic
= intel_pipe_set_base_atomic
,
6780 .load_lut
= intel_crtc_load_lut
,
6781 .disable
= intel_crtc_disable
,
6784 static const struct drm_crtc_funcs intel_crtc_funcs
= {
6785 .reset
= intel_crtc_reset
,
6786 .cursor_set
= intel_crtc_cursor_set
,
6787 .cursor_move
= intel_crtc_cursor_move
,
6788 .gamma_set
= intel_crtc_gamma_set
,
6789 .set_config
= drm_crtc_helper_set_config
,
6790 .destroy
= intel_crtc_destroy
,
6791 .page_flip
= intel_crtc_page_flip
,
6794 static void intel_crtc_init(struct drm_device
*dev
, int pipe
)
6796 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6797 struct intel_crtc
*intel_crtc
;
6800 intel_crtc
= kzalloc(sizeof(struct intel_crtc
) + (INTELFB_CONN_LIMIT
* sizeof(struct drm_connector
*)), GFP_KERNEL
);
6801 if (intel_crtc
== NULL
)
6804 drm_crtc_init(dev
, &intel_crtc
->base
, &intel_crtc_funcs
);
6806 drm_mode_crtc_set_gamma_size(&intel_crtc
->base
, 256);
6807 for (i
= 0; i
< 256; i
++) {
6808 intel_crtc
->lut_r
[i
] = i
;
6809 intel_crtc
->lut_g
[i
] = i
;
6810 intel_crtc
->lut_b
[i
] = i
;
6813 /* Swap pipes & planes for FBC on pre-965 */
6814 intel_crtc
->pipe
= pipe
;
6815 intel_crtc
->plane
= pipe
;
6816 if (IS_MOBILE(dev
) && IS_GEN3(dev
)) {
6817 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6818 intel_crtc
->plane
= !pipe
;
6821 BUG_ON(pipe
>= ARRAY_SIZE(dev_priv
->plane_to_crtc_mapping
) ||
6822 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] != NULL
);
6823 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] = &intel_crtc
->base
;
6824 dev_priv
->pipe_to_crtc_mapping
[intel_crtc
->pipe
] = &intel_crtc
->base
;
6826 intel_crtc_reset(&intel_crtc
->base
);
6827 intel_crtc
->active
= true; /* force the pipe off on setup_init_config */
6828 intel_crtc
->bpp
= 24; /* default for pre-Ironlake */
6830 if (HAS_PCH_SPLIT(dev
)) {
6831 intel_helper_funcs
.prepare
= ironlake_crtc_prepare
;
6832 intel_helper_funcs
.commit
= ironlake_crtc_commit
;
6834 intel_helper_funcs
.prepare
= i9xx_crtc_prepare
;
6835 intel_helper_funcs
.commit
= i9xx_crtc_commit
;
6838 drm_crtc_helper_add(&intel_crtc
->base
, &intel_helper_funcs
);
6840 intel_crtc
->busy
= false;
6842 setup_timer(&intel_crtc
->idle_timer
, intel_crtc_idle_timer
,
6843 (unsigned long)intel_crtc
);
6846 int intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
6847 struct drm_file
*file
)
6849 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6850 struct drm_i915_get_pipe_from_crtc_id
*pipe_from_crtc_id
= data
;
6851 struct drm_mode_object
*drmmode_obj
;
6852 struct intel_crtc
*crtc
;
6855 DRM_ERROR("called with no initialization\n");
6859 drmmode_obj
= drm_mode_object_find(dev
, pipe_from_crtc_id
->crtc_id
,
6860 DRM_MODE_OBJECT_CRTC
);
6863 DRM_ERROR("no such CRTC id\n");
6867 crtc
= to_intel_crtc(obj_to_crtc(drmmode_obj
));
6868 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
6873 static int intel_encoder_clones(struct drm_device
*dev
, int type_mask
)
6875 struct intel_encoder
*encoder
;
6879 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, base
.head
) {
6880 if (type_mask
& encoder
->clone_mask
)
6881 index_mask
|= (1 << entry
);
6888 static bool has_edp_a(struct drm_device
*dev
)
6890 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6892 if (!IS_MOBILE(dev
))
6895 if ((I915_READ(DP_A
) & DP_DETECTED
) == 0)
6899 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES
) & ILK_eDP_A_DISABLE
))
6905 static void intel_setup_outputs(struct drm_device
*dev
)
6907 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6908 struct intel_encoder
*encoder
;
6909 bool dpd_is_edp
= false;
6910 bool has_lvds
= false;
6912 if (IS_MOBILE(dev
) && !IS_I830(dev
))
6913 has_lvds
= intel_lvds_init(dev
);
6914 if (!has_lvds
&& !HAS_PCH_SPLIT(dev
)) {
6915 /* disable the panel fitter on everything but LVDS */
6916 I915_WRITE(PFIT_CONTROL
, 0);
6919 if (HAS_PCH_SPLIT(dev
)) {
6920 dpd_is_edp
= intel_dpd_is_edp(dev
);
6923 intel_dp_init(dev
, DP_A
);
6925 if (dpd_is_edp
&& (I915_READ(PCH_DP_D
) & DP_DETECTED
))
6926 intel_dp_init(dev
, PCH_DP_D
);
6929 intel_crt_init(dev
);
6931 if (HAS_PCH_SPLIT(dev
)) {
6934 if (I915_READ(HDMIB
) & PORT_DETECTED
) {
6935 /* PCH SDVOB multiplex with HDMIB */
6936 found
= intel_sdvo_init(dev
, PCH_SDVOB
);
6938 intel_hdmi_init(dev
, HDMIB
);
6939 if (!found
&& (I915_READ(PCH_DP_B
) & DP_DETECTED
))
6940 intel_dp_init(dev
, PCH_DP_B
);
6943 if (I915_READ(HDMIC
) & PORT_DETECTED
)
6944 intel_hdmi_init(dev
, HDMIC
);
6946 if (I915_READ(HDMID
) & PORT_DETECTED
)
6947 intel_hdmi_init(dev
, HDMID
);
6949 if (I915_READ(PCH_DP_C
) & DP_DETECTED
)
6950 intel_dp_init(dev
, PCH_DP_C
);
6952 if (!dpd_is_edp
&& (I915_READ(PCH_DP_D
) & DP_DETECTED
))
6953 intel_dp_init(dev
, PCH_DP_D
);
6955 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev
)) {
6958 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
6959 DRM_DEBUG_KMS("probing SDVOB\n");
6960 found
= intel_sdvo_init(dev
, SDVOB
);
6961 if (!found
&& SUPPORTS_INTEGRATED_HDMI(dev
)) {
6962 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6963 intel_hdmi_init(dev
, SDVOB
);
6966 if (!found
&& SUPPORTS_INTEGRATED_DP(dev
)) {
6967 DRM_DEBUG_KMS("probing DP_B\n");
6968 intel_dp_init(dev
, DP_B
);
6972 /* Before G4X SDVOC doesn't have its own detect register */
6974 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
6975 DRM_DEBUG_KMS("probing SDVOC\n");
6976 found
= intel_sdvo_init(dev
, SDVOC
);
6979 if (!found
&& (I915_READ(SDVOC
) & SDVO_DETECTED
)) {
6981 if (SUPPORTS_INTEGRATED_HDMI(dev
)) {
6982 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6983 intel_hdmi_init(dev
, SDVOC
);
6985 if (SUPPORTS_INTEGRATED_DP(dev
)) {
6986 DRM_DEBUG_KMS("probing DP_C\n");
6987 intel_dp_init(dev
, DP_C
);
6991 if (SUPPORTS_INTEGRATED_DP(dev
) &&
6992 (I915_READ(DP_D
) & DP_DETECTED
)) {
6993 DRM_DEBUG_KMS("probing DP_D\n");
6994 intel_dp_init(dev
, DP_D
);
6996 } else if (IS_GEN2(dev
))
6997 intel_dvo_init(dev
);
6999 if (SUPPORTS_TV(dev
))
7002 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, base
.head
) {
7003 encoder
->base
.possible_crtcs
= encoder
->crtc_mask
;
7004 encoder
->base
.possible_clones
=
7005 intel_encoder_clones(dev
, encoder
->clone_mask
);
7008 intel_panel_setup_backlight(dev
);
7010 /* disable all the possible outputs/crtcs before entering KMS mode */
7011 drm_helper_disable_unused_functions(dev
);
7014 static void intel_user_framebuffer_destroy(struct drm_framebuffer
*fb
)
7016 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
7018 drm_framebuffer_cleanup(fb
);
7019 drm_gem_object_unreference_unlocked(&intel_fb
->obj
->base
);
7024 static int intel_user_framebuffer_create_handle(struct drm_framebuffer
*fb
,
7025 struct drm_file
*file
,
7026 unsigned int *handle
)
7028 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
7029 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
7031 return drm_gem_handle_create(file
, &obj
->base
, handle
);
7034 static const struct drm_framebuffer_funcs intel_fb_funcs
= {
7035 .destroy
= intel_user_framebuffer_destroy
,
7036 .create_handle
= intel_user_framebuffer_create_handle
,
7039 int intel_framebuffer_init(struct drm_device
*dev
,
7040 struct intel_framebuffer
*intel_fb
,
7041 struct drm_mode_fb_cmd
*mode_cmd
,
7042 struct drm_i915_gem_object
*obj
)
7046 if (obj
->tiling_mode
== I915_TILING_Y
)
7049 if (mode_cmd
->pitch
& 63)
7052 switch (mode_cmd
->bpp
) {
7055 /* Only pre-ILK can handle 5:5:5 */
7056 if (mode_cmd
->depth
== 15 && !HAS_PCH_SPLIT(dev
))
7067 ret
= drm_framebuffer_init(dev
, &intel_fb
->base
, &intel_fb_funcs
);
7069 DRM_ERROR("framebuffer init failed %d\n", ret
);
7073 drm_helper_mode_fill_fb_struct(&intel_fb
->base
, mode_cmd
);
7074 intel_fb
->obj
= obj
;
7078 static struct drm_framebuffer
*
7079 intel_user_framebuffer_create(struct drm_device
*dev
,
7080 struct drm_file
*filp
,
7081 struct drm_mode_fb_cmd
*mode_cmd
)
7083 struct drm_i915_gem_object
*obj
;
7085 obj
= to_intel_bo(drm_gem_object_lookup(dev
, filp
, mode_cmd
->handle
));
7086 if (&obj
->base
== NULL
)
7087 return ERR_PTR(-ENOENT
);
7089 return intel_framebuffer_create(dev
, mode_cmd
, obj
);
7092 static const struct drm_mode_config_funcs intel_mode_funcs
= {
7093 .fb_create
= intel_user_framebuffer_create
,
7094 .output_poll_changed
= intel_fb_output_poll_changed
,
7097 static struct drm_i915_gem_object
*
7098 intel_alloc_context_page(struct drm_device
*dev
)
7100 struct drm_i915_gem_object
*ctx
;
7103 WARN_ON(!mutex_is_locked(&dev
->struct_mutex
));
7105 ctx
= i915_gem_alloc_object(dev
, 4096);
7107 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7111 ret
= i915_gem_object_pin(ctx
, 4096, true);
7113 DRM_ERROR("failed to pin power context: %d\n", ret
);
7117 ret
= i915_gem_object_set_to_gtt_domain(ctx
, 1);
7119 DRM_ERROR("failed to set-domain on power context: %d\n", ret
);
7126 i915_gem_object_unpin(ctx
);
7128 drm_gem_object_unreference(&ctx
->base
);
7129 mutex_unlock(&dev
->struct_mutex
);
7133 bool ironlake_set_drps(struct drm_device
*dev
, u8 val
)
7135 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7138 rgvswctl
= I915_READ16(MEMSWCTL
);
7139 if (rgvswctl
& MEMCTL_CMD_STS
) {
7140 DRM_DEBUG("gpu busy, RCS change rejected\n");
7141 return false; /* still busy with another command */
7144 rgvswctl
= (MEMCTL_CMD_CHFREQ
<< MEMCTL_CMD_SHIFT
) |
7145 (val
<< MEMCTL_FREQ_SHIFT
) | MEMCTL_SFCAVM
;
7146 I915_WRITE16(MEMSWCTL
, rgvswctl
);
7147 POSTING_READ16(MEMSWCTL
);
7149 rgvswctl
|= MEMCTL_CMD_STS
;
7150 I915_WRITE16(MEMSWCTL
, rgvswctl
);
7155 void ironlake_enable_drps(struct drm_device
*dev
)
7157 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7158 u32 rgvmodectl
= I915_READ(MEMMODECTL
);
7159 u8 fmax
, fmin
, fstart
, vstart
;
7161 /* Enable temp reporting */
7162 I915_WRITE16(PMMISC
, I915_READ(PMMISC
) | MCPPCE_EN
);
7163 I915_WRITE16(TSC1
, I915_READ(TSC1
) | TSE
);
7165 /* 100ms RC evaluation intervals */
7166 I915_WRITE(RCUPEI
, 100000);
7167 I915_WRITE(RCDNEI
, 100000);
7169 /* Set max/min thresholds to 90ms and 80ms respectively */
7170 I915_WRITE(RCBMAXAVG
, 90000);
7171 I915_WRITE(RCBMINAVG
, 80000);
7173 I915_WRITE(MEMIHYST
, 1);
7175 /* Set up min, max, and cur for interrupt handling */
7176 fmax
= (rgvmodectl
& MEMMODE_FMAX_MASK
) >> MEMMODE_FMAX_SHIFT
;
7177 fmin
= (rgvmodectl
& MEMMODE_FMIN_MASK
);
7178 fstart
= (rgvmodectl
& MEMMODE_FSTART_MASK
) >>
7179 MEMMODE_FSTART_SHIFT
;
7181 vstart
= (I915_READ(PXVFREQ_BASE
+ (fstart
* 4)) & PXVFREQ_PX_MASK
) >>
7184 dev_priv
->fmax
= fmax
; /* IPS callback will increase this */
7185 dev_priv
->fstart
= fstart
;
7187 dev_priv
->max_delay
= fstart
;
7188 dev_priv
->min_delay
= fmin
;
7189 dev_priv
->cur_delay
= fstart
;
7191 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7192 fmax
, fmin
, fstart
);
7194 I915_WRITE(MEMINTREN
, MEMINT_CX_SUPR_EN
| MEMINT_EVAL_CHG_EN
);
7197 * Interrupts will be enabled in ironlake_irq_postinstall
7200 I915_WRITE(VIDSTART
, vstart
);
7201 POSTING_READ(VIDSTART
);
7203 rgvmodectl
|= MEMMODE_SWMODE_EN
;
7204 I915_WRITE(MEMMODECTL
, rgvmodectl
);
7206 if (wait_for((I915_READ(MEMSWCTL
) & MEMCTL_CMD_STS
) == 0, 10))
7207 DRM_ERROR("stuck trying to change perf mode\n");
7210 ironlake_set_drps(dev
, fstart
);
7212 dev_priv
->last_count1
= I915_READ(0x112e4) + I915_READ(0x112e8) +
7214 dev_priv
->last_time1
= jiffies_to_msecs(jiffies
);
7215 dev_priv
->last_count2
= I915_READ(0x112f4);
7216 getrawmonotonic(&dev_priv
->last_time2
);
7219 void ironlake_disable_drps(struct drm_device
*dev
)
7221 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7222 u16 rgvswctl
= I915_READ16(MEMSWCTL
);
7224 /* Ack interrupts, disable EFC interrupt */
7225 I915_WRITE(MEMINTREN
, I915_READ(MEMINTREN
) & ~MEMINT_EVAL_CHG_EN
);
7226 I915_WRITE(MEMINTRSTS
, MEMINT_EVAL_CHG
);
7227 I915_WRITE(DEIER
, I915_READ(DEIER
) & ~DE_PCU_EVENT
);
7228 I915_WRITE(DEIIR
, DE_PCU_EVENT
);
7229 I915_WRITE(DEIMR
, I915_READ(DEIMR
) | DE_PCU_EVENT
);
7231 /* Go back to the starting frequency */
7232 ironlake_set_drps(dev
, dev_priv
->fstart
);
7234 rgvswctl
|= MEMCTL_CMD_STS
;
7235 I915_WRITE(MEMSWCTL
, rgvswctl
);
7240 void gen6_set_rps(struct drm_device
*dev
, u8 val
)
7242 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7245 swreq
= (val
& 0x3ff) << 25;
7246 I915_WRITE(GEN6_RPNSWREQ
, swreq
);
7249 void gen6_disable_rps(struct drm_device
*dev
)
7251 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7253 I915_WRITE(GEN6_RPNSWREQ
, 1 << 31);
7254 I915_WRITE(GEN6_PMINTRMSK
, 0xffffffff);
7255 I915_WRITE(GEN6_PMIER
, 0);
7257 spin_lock_irq(&dev_priv
->rps_lock
);
7258 dev_priv
->pm_iir
= 0;
7259 spin_unlock_irq(&dev_priv
->rps_lock
);
7261 I915_WRITE(GEN6_PMIIR
, I915_READ(GEN6_PMIIR
));
7264 static unsigned long intel_pxfreq(u32 vidfreq
)
7267 int div
= (vidfreq
& 0x3f0000) >> 16;
7268 int post
= (vidfreq
& 0x3000) >> 12;
7269 int pre
= (vidfreq
& 0x7);
7274 freq
= ((div
* 133333) / ((1<<post
) * pre
));
7279 void intel_init_emon(struct drm_device
*dev
)
7281 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7286 /* Disable to program */
7290 /* Program energy weights for various events */
7291 I915_WRITE(SDEW
, 0x15040d00);
7292 I915_WRITE(CSIEW0
, 0x007f0000);
7293 I915_WRITE(CSIEW1
, 0x1e220004);
7294 I915_WRITE(CSIEW2
, 0x04000004);
7296 for (i
= 0; i
< 5; i
++)
7297 I915_WRITE(PEW
+ (i
* 4), 0);
7298 for (i
= 0; i
< 3; i
++)
7299 I915_WRITE(DEW
+ (i
* 4), 0);
7301 /* Program P-state weights to account for frequency power adjustment */
7302 for (i
= 0; i
< 16; i
++) {
7303 u32 pxvidfreq
= I915_READ(PXVFREQ_BASE
+ (i
* 4));
7304 unsigned long freq
= intel_pxfreq(pxvidfreq
);
7305 unsigned long vid
= (pxvidfreq
& PXVFREQ_PX_MASK
) >>
7310 val
*= (freq
/ 1000);
7312 val
/= (127*127*900);
7314 DRM_ERROR("bad pxval: %ld\n", val
);
7317 /* Render standby states get 0 weight */
7321 for (i
= 0; i
< 4; i
++) {
7322 u32 val
= (pxw
[i
*4] << 24) | (pxw
[(i
*4)+1] << 16) |
7323 (pxw
[(i
*4)+2] << 8) | (pxw
[(i
*4)+3]);
7324 I915_WRITE(PXW
+ (i
* 4), val
);
7327 /* Adjust magic regs to magic values (more experimental results) */
7328 I915_WRITE(OGW0
, 0);
7329 I915_WRITE(OGW1
, 0);
7330 I915_WRITE(EG0
, 0x00007f00);
7331 I915_WRITE(EG1
, 0x0000000e);
7332 I915_WRITE(EG2
, 0x000e0000);
7333 I915_WRITE(EG3
, 0x68000300);
7334 I915_WRITE(EG4
, 0x42000000);
7335 I915_WRITE(EG5
, 0x00140031);
7339 for (i
= 0; i
< 8; i
++)
7340 I915_WRITE(PXWL
+ (i
* 4), 0);
7342 /* Enable PMON + select events */
7343 I915_WRITE(ECR
, 0x80000019);
7345 lcfuse
= I915_READ(LCFUSE02
);
7347 dev_priv
->corr
= (lcfuse
& LCFUSE_HIV_MASK
);
7350 void gen6_enable_rps(struct drm_i915_private
*dev_priv
)
7352 u32 rp_state_cap
= I915_READ(GEN6_RP_STATE_CAP
);
7353 u32 gt_perf_status
= I915_READ(GEN6_GT_PERF_STATUS
);
7354 u32 pcu_mbox
, rc6_mask
= 0;
7355 int cur_freq
, min_freq
, max_freq
;
7358 /* Here begins a magic sequence of register writes to enable
7359 * auto-downclocking.
7361 * Perhaps there might be some value in exposing these to
7364 I915_WRITE(GEN6_RC_STATE
, 0);
7365 mutex_lock(&dev_priv
->dev
->struct_mutex
);
7366 gen6_gt_force_wake_get(dev_priv
);
7368 /* disable the counters and set deterministic thresholds */
7369 I915_WRITE(GEN6_RC_CONTROL
, 0);
7371 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT
, 1000 << 16);
7372 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 40 << 16 | 30);
7373 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT
, 30);
7374 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000);
7375 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25);
7377 for (i
= 0; i
< I915_NUM_RINGS
; i
++)
7378 I915_WRITE(RING_MAX_IDLE(dev_priv
->ring
[i
].mmio_base
), 10);
7380 I915_WRITE(GEN6_RC_SLEEP
, 0);
7381 I915_WRITE(GEN6_RC1e_THRESHOLD
, 1000);
7382 I915_WRITE(GEN6_RC6_THRESHOLD
, 50000);
7383 I915_WRITE(GEN6_RC6p_THRESHOLD
, 100000);
7384 I915_WRITE(GEN6_RC6pp_THRESHOLD
, 64000); /* unused */
7386 if (i915_enable_rc6
)
7387 rc6_mask
= GEN6_RC_CTL_RC6p_ENABLE
|
7388 GEN6_RC_CTL_RC6_ENABLE
;
7390 I915_WRITE(GEN6_RC_CONTROL
,
7392 GEN6_RC_CTL_EI_MODE(1) |
7393 GEN6_RC_CTL_HW_ENABLE
);
7395 I915_WRITE(GEN6_RPNSWREQ
,
7396 GEN6_FREQUENCY(10) |
7398 GEN6_AGGRESSIVE_TURBO
);
7399 I915_WRITE(GEN6_RC_VIDEO_FREQ
,
7400 GEN6_FREQUENCY(12));
7402 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
, 1000000);
7403 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS
,
7406 I915_WRITE(GEN6_RP_UP_THRESHOLD
, 10000);
7407 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
, 1000000);
7408 I915_WRITE(GEN6_RP_UP_EI
, 100000);
7409 I915_WRITE(GEN6_RP_DOWN_EI
, 5000000);
7410 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
7411 I915_WRITE(GEN6_RP_CONTROL
,
7412 GEN6_RP_MEDIA_TURBO
|
7413 GEN6_RP_USE_NORMAL_FREQ
|
7414 GEN6_RP_MEDIA_IS_GFX
|
7416 GEN6_RP_UP_BUSY_AVG
|
7417 GEN6_RP_DOWN_IDLE_CONT
);
7419 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7421 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7423 I915_WRITE(GEN6_PCODE_DATA
, 0);
7424 I915_WRITE(GEN6_PCODE_MAILBOX
,
7426 GEN6_PCODE_WRITE_MIN_FREQ_TABLE
);
7427 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7429 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7431 min_freq
= (rp_state_cap
& 0xff0000) >> 16;
7432 max_freq
= rp_state_cap
& 0xff;
7433 cur_freq
= (gt_perf_status
& 0xff00) >> 8;
7435 /* Check for overclock support */
7436 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7438 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7439 I915_WRITE(GEN6_PCODE_MAILBOX
, GEN6_READ_OC_PARAMS
);
7440 pcu_mbox
= I915_READ(GEN6_PCODE_DATA
);
7441 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7443 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7444 if (pcu_mbox
& (1<<31)) { /* OC supported */
7445 max_freq
= pcu_mbox
& 0xff;
7446 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox
* 50);
7449 /* In units of 100MHz */
7450 dev_priv
->max_delay
= max_freq
;
7451 dev_priv
->min_delay
= min_freq
;
7452 dev_priv
->cur_delay
= cur_freq
;
7454 /* requires MSI enabled */
7455 I915_WRITE(GEN6_PMIER
,
7456 GEN6_PM_MBOX_EVENT
|
7457 GEN6_PM_THERMAL_EVENT
|
7458 GEN6_PM_RP_DOWN_TIMEOUT
|
7459 GEN6_PM_RP_UP_THRESHOLD
|
7460 GEN6_PM_RP_DOWN_THRESHOLD
|
7461 GEN6_PM_RP_UP_EI_EXPIRED
|
7462 GEN6_PM_RP_DOWN_EI_EXPIRED
);
7463 spin_lock_irq(&dev_priv
->rps_lock
);
7464 WARN_ON(dev_priv
->pm_iir
!= 0);
7465 I915_WRITE(GEN6_PMIMR
, 0);
7466 spin_unlock_irq(&dev_priv
->rps_lock
);
7467 /* enable all PM interrupts */
7468 I915_WRITE(GEN6_PMINTRMSK
, 0);
7470 gen6_gt_force_wake_put(dev_priv
);
7471 mutex_unlock(&dev_priv
->dev
->struct_mutex
);
7474 void gen6_update_ring_freq(struct drm_i915_private
*dev_priv
)
7477 int gpu_freq
, ia_freq
, max_ia_freq
;
7478 int scaling_factor
= 180;
7480 max_ia_freq
= cpufreq_quick_get_max(0);
7482 * Default to measured freq if none found, PCU will ensure we don't go
7486 max_ia_freq
= tsc_khz
;
7488 /* Convert from kHz to MHz */
7489 max_ia_freq
/= 1000;
7491 mutex_lock(&dev_priv
->dev
->struct_mutex
);
7494 * For each potential GPU frequency, load a ring frequency we'd like
7495 * to use for memory access. We do this by specifying the IA frequency
7496 * the PCU should use as a reference to determine the ring frequency.
7498 for (gpu_freq
= dev_priv
->max_delay
; gpu_freq
>= dev_priv
->min_delay
;
7500 int diff
= dev_priv
->max_delay
- gpu_freq
;
7503 * For GPU frequencies less than 750MHz, just use the lowest
7506 if (gpu_freq
< min_freq
)
7509 ia_freq
= max_ia_freq
- ((diff
* scaling_factor
) / 2);
7510 ia_freq
= DIV_ROUND_CLOSEST(ia_freq
, 100);
7512 I915_WRITE(GEN6_PCODE_DATA
,
7513 (ia_freq
<< GEN6_PCODE_FREQ_IA_RATIO_SHIFT
) |
7515 I915_WRITE(GEN6_PCODE_MAILBOX
, GEN6_PCODE_READY
|
7516 GEN6_PCODE_WRITE_MIN_FREQ_TABLE
);
7517 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) &
7518 GEN6_PCODE_READY
) == 0, 10)) {
7519 DRM_ERROR("pcode write of freq table timed out\n");
7524 mutex_unlock(&dev_priv
->dev
->struct_mutex
);
7527 static void ironlake_init_clock_gating(struct drm_device
*dev
)
7529 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7530 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
7532 /* Required for FBC */
7533 dspclk_gate
|= DPFCUNIT_CLOCK_GATE_DISABLE
|
7534 DPFCRUNIT_CLOCK_GATE_DISABLE
|
7535 DPFDUNIT_CLOCK_GATE_DISABLE
;
7536 /* Required for CxSR */
7537 dspclk_gate
|= DPARBUNIT_CLOCK_GATE_DISABLE
;
7539 I915_WRITE(PCH_3DCGDIS0
,
7540 MARIUNIT_CLOCK_GATE_DISABLE
|
7541 SVSMUNIT_CLOCK_GATE_DISABLE
);
7542 I915_WRITE(PCH_3DCGDIS1
,
7543 VFMUNIT_CLOCK_GATE_DISABLE
);
7545 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
7548 * According to the spec the following bits should be set in
7549 * order to enable memory self-refresh
7550 * The bit 22/21 of 0x42004
7551 * The bit 5 of 0x42020
7552 * The bit 15 of 0x45000
7554 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
7555 (I915_READ(ILK_DISPLAY_CHICKEN2
) |
7556 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
));
7557 I915_WRITE(ILK_DSPCLK_GATE
,
7558 (I915_READ(ILK_DSPCLK_GATE
) |
7559 ILK_DPARB_CLK_GATE
));
7560 I915_WRITE(DISP_ARB_CTL
,
7561 (I915_READ(DISP_ARB_CTL
) |
7563 I915_WRITE(WM3_LP_ILK
, 0);
7564 I915_WRITE(WM2_LP_ILK
, 0);
7565 I915_WRITE(WM1_LP_ILK
, 0);
7568 * Based on the document from hardware guys the following bits
7569 * should be set unconditionally in order to enable FBC.
7570 * The bit 22 of 0x42000
7571 * The bit 22 of 0x42004
7572 * The bit 7,8,9 of 0x42020.
7574 if (IS_IRONLAKE_M(dev
)) {
7575 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
7576 I915_READ(ILK_DISPLAY_CHICKEN1
) |
7578 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
7579 I915_READ(ILK_DISPLAY_CHICKEN2
) |
7581 I915_WRITE(ILK_DSPCLK_GATE
,
7582 I915_READ(ILK_DSPCLK_GATE
) |
7588 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
7589 I915_READ(ILK_DISPLAY_CHICKEN2
) |
7590 ILK_ELPIN_409_SELECT
);
7591 I915_WRITE(_3D_CHICKEN2
,
7592 _3D_CHICKEN2_WM_READ_PIPELINED
<< 16 |
7593 _3D_CHICKEN2_WM_READ_PIPELINED
);
7596 static void gen6_init_clock_gating(struct drm_device
*dev
)
7598 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7600 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
7602 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
7604 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
7605 I915_READ(ILK_DISPLAY_CHICKEN2
) |
7606 ILK_ELPIN_409_SELECT
);
7608 I915_WRITE(WM3_LP_ILK
, 0);
7609 I915_WRITE(WM2_LP_ILK
, 0);
7610 I915_WRITE(WM1_LP_ILK
, 0);
7613 * According to the spec the following bits should be
7614 * set in order to enable memory self-refresh and fbc:
7615 * The bit21 and bit22 of 0x42000
7616 * The bit21 and bit22 of 0x42004
7617 * The bit5 and bit7 of 0x42020
7618 * The bit14 of 0x70180
7619 * The bit14 of 0x71180
7621 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
7622 I915_READ(ILK_DISPLAY_CHICKEN1
) |
7623 ILK_FBCQ_DIS
| ILK_PABSTRETCH_DIS
);
7624 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
7625 I915_READ(ILK_DISPLAY_CHICKEN2
) |
7626 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
);
7627 I915_WRITE(ILK_DSPCLK_GATE
,
7628 I915_READ(ILK_DSPCLK_GATE
) |
7629 ILK_DPARB_CLK_GATE
|
7633 I915_WRITE(DSPCNTR(pipe
),
7634 I915_READ(DSPCNTR(pipe
)) |
7635 DISPPLANE_TRICKLE_FEED_DISABLE
);
7638 static void ivybridge_init_clock_gating(struct drm_device
*dev
)
7640 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7642 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
7644 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
7646 I915_WRITE(WM3_LP_ILK
, 0);
7647 I915_WRITE(WM2_LP_ILK
, 0);
7648 I915_WRITE(WM1_LP_ILK
, 0);
7650 I915_WRITE(ILK_DSPCLK_GATE
, IVB_VRHUNIT_CLK_GATE
);
7653 I915_WRITE(DSPCNTR(pipe
),
7654 I915_READ(DSPCNTR(pipe
)) |
7655 DISPPLANE_TRICKLE_FEED_DISABLE
);
7658 static void g4x_init_clock_gating(struct drm_device
*dev
)
7660 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7661 uint32_t dspclk_gate
;
7663 I915_WRITE(RENCLK_GATE_D1
, 0);
7664 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
7665 GS_UNIT_CLOCK_GATE_DISABLE
|
7666 CL_UNIT_CLOCK_GATE_DISABLE
);
7667 I915_WRITE(RAMCLK_GATE_D
, 0);
7668 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
7669 OVRUNIT_CLOCK_GATE_DISABLE
|
7670 OVCUNIT_CLOCK_GATE_DISABLE
;
7672 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
7673 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
7676 static void crestline_init_clock_gating(struct drm_device
*dev
)
7678 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7680 I915_WRITE(RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
7681 I915_WRITE(RENCLK_GATE_D2
, 0);
7682 I915_WRITE(DSPCLK_GATE_D
, 0);
7683 I915_WRITE(RAMCLK_GATE_D
, 0);
7684 I915_WRITE16(DEUC
, 0);
7687 static void broadwater_init_clock_gating(struct drm_device
*dev
)
7689 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7691 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
7692 I965_RCC_CLOCK_GATE_DISABLE
|
7693 I965_RCPB_CLOCK_GATE_DISABLE
|
7694 I965_ISC_CLOCK_GATE_DISABLE
|
7695 I965_FBC_CLOCK_GATE_DISABLE
);
7696 I915_WRITE(RENCLK_GATE_D2
, 0);
7699 static void gen3_init_clock_gating(struct drm_device
*dev
)
7701 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7702 u32 dstate
= I915_READ(D_STATE
);
7704 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
7705 DSTATE_DOT_CLOCK_GATING
;
7706 I915_WRITE(D_STATE
, dstate
);
7709 static void i85x_init_clock_gating(struct drm_device
*dev
)
7711 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7713 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
7716 static void i830_init_clock_gating(struct drm_device
*dev
)
7718 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7720 I915_WRITE(DSPCLK_GATE_D
, OVRUNIT_CLOCK_GATE_DISABLE
);
7723 static void ibx_init_clock_gating(struct drm_device
*dev
)
7725 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7728 * On Ibex Peak and Cougar Point, we need to disable clock
7729 * gating for the panel power sequencer or it will fail to
7730 * start up when no ports are active.
7732 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
);
7735 static void cpt_init_clock_gating(struct drm_device
*dev
)
7737 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7740 * On Ibex Peak and Cougar Point, we need to disable clock
7741 * gating for the panel power sequencer or it will fail to
7742 * start up when no ports are active.
7744 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
);
7745 I915_WRITE(SOUTH_CHICKEN2
, I915_READ(SOUTH_CHICKEN2
) |
7746 DPLS_EDP_PPS_FIX_DIS
);
7749 static void ironlake_teardown_rc6(struct drm_device
*dev
)
7751 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7753 if (dev_priv
->renderctx
) {
7754 i915_gem_object_unpin(dev_priv
->renderctx
);
7755 drm_gem_object_unreference(&dev_priv
->renderctx
->base
);
7756 dev_priv
->renderctx
= NULL
;
7759 if (dev_priv
->pwrctx
) {
7760 i915_gem_object_unpin(dev_priv
->pwrctx
);
7761 drm_gem_object_unreference(&dev_priv
->pwrctx
->base
);
7762 dev_priv
->pwrctx
= NULL
;
7766 static void ironlake_disable_rc6(struct drm_device
*dev
)
7768 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7770 if (I915_READ(PWRCTXA
)) {
7771 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7772 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) | RCX_SW_EXIT
);
7773 wait_for(((I915_READ(RSTDBYCTL
) & RSX_STATUS_MASK
) == RSX_STATUS_ON
),
7776 I915_WRITE(PWRCTXA
, 0);
7777 POSTING_READ(PWRCTXA
);
7779 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) & ~RCX_SW_EXIT
);
7780 POSTING_READ(RSTDBYCTL
);
7783 ironlake_teardown_rc6(dev
);
7786 static int ironlake_setup_rc6(struct drm_device
*dev
)
7788 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7790 if (dev_priv
->renderctx
== NULL
)
7791 dev_priv
->renderctx
= intel_alloc_context_page(dev
);
7792 if (!dev_priv
->renderctx
)
7795 if (dev_priv
->pwrctx
== NULL
)
7796 dev_priv
->pwrctx
= intel_alloc_context_page(dev
);
7797 if (!dev_priv
->pwrctx
) {
7798 ironlake_teardown_rc6(dev
);
7805 void ironlake_enable_rc6(struct drm_device
*dev
)
7807 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7810 /* rc6 disabled by default due to repeated reports of hanging during
7813 if (!i915_enable_rc6
)
7816 mutex_lock(&dev
->struct_mutex
);
7817 ret
= ironlake_setup_rc6(dev
);
7819 mutex_unlock(&dev
->struct_mutex
);
7824 * GPU can automatically power down the render unit if given a page
7827 ret
= BEGIN_LP_RING(6);
7829 ironlake_teardown_rc6(dev
);
7830 mutex_unlock(&dev
->struct_mutex
);
7834 OUT_RING(MI_SUSPEND_FLUSH
| MI_SUSPEND_FLUSH_EN
);
7835 OUT_RING(MI_SET_CONTEXT
);
7836 OUT_RING(dev_priv
->renderctx
->gtt_offset
|
7838 MI_SAVE_EXT_STATE_EN
|
7839 MI_RESTORE_EXT_STATE_EN
|
7840 MI_RESTORE_INHIBIT
);
7841 OUT_RING(MI_SUSPEND_FLUSH
);
7847 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
7848 * does an implicit flush, combined with MI_FLUSH above, it should be
7849 * safe to assume that renderctx is valid
7851 ret
= intel_wait_ring_idle(LP_RING(dev_priv
));
7853 DRM_ERROR("failed to enable ironlake power power savings\n");
7854 ironlake_teardown_rc6(dev
);
7855 mutex_unlock(&dev
->struct_mutex
);
7859 I915_WRITE(PWRCTXA
, dev_priv
->pwrctx
->gtt_offset
| PWRCTX_EN
);
7860 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) & ~RCX_SW_EXIT
);
7861 mutex_unlock(&dev
->struct_mutex
);
7864 void intel_init_clock_gating(struct drm_device
*dev
)
7866 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7868 dev_priv
->display
.init_clock_gating(dev
);
7870 if (dev_priv
->display
.init_pch_clock_gating
)
7871 dev_priv
->display
.init_pch_clock_gating(dev
);
7874 /* Set up chip specific display functions */
7875 static void intel_init_display(struct drm_device
*dev
)
7877 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7879 /* We always want a DPMS function */
7880 if (HAS_PCH_SPLIT(dev
)) {
7881 dev_priv
->display
.dpms
= ironlake_crtc_dpms
;
7882 dev_priv
->display
.crtc_mode_set
= ironlake_crtc_mode_set
;
7883 dev_priv
->display
.update_plane
= ironlake_update_plane
;
7885 dev_priv
->display
.dpms
= i9xx_crtc_dpms
;
7886 dev_priv
->display
.crtc_mode_set
= i9xx_crtc_mode_set
;
7887 dev_priv
->display
.update_plane
= i9xx_update_plane
;
7890 if (I915_HAS_FBC(dev
)) {
7891 if (HAS_PCH_SPLIT(dev
)) {
7892 dev_priv
->display
.fbc_enabled
= ironlake_fbc_enabled
;
7893 dev_priv
->display
.enable_fbc
= ironlake_enable_fbc
;
7894 dev_priv
->display
.disable_fbc
= ironlake_disable_fbc
;
7895 } else if (IS_GM45(dev
)) {
7896 dev_priv
->display
.fbc_enabled
= g4x_fbc_enabled
;
7897 dev_priv
->display
.enable_fbc
= g4x_enable_fbc
;
7898 dev_priv
->display
.disable_fbc
= g4x_disable_fbc
;
7899 } else if (IS_CRESTLINE(dev
)) {
7900 dev_priv
->display
.fbc_enabled
= i8xx_fbc_enabled
;
7901 dev_priv
->display
.enable_fbc
= i8xx_enable_fbc
;
7902 dev_priv
->display
.disable_fbc
= i8xx_disable_fbc
;
7904 /* 855GM needs testing */
7907 /* Returns the core display clock speed */
7908 if (IS_I945G(dev
) || (IS_G33(dev
) && ! IS_PINEVIEW_M(dev
)))
7909 dev_priv
->display
.get_display_clock_speed
=
7910 i945_get_display_clock_speed
;
7911 else if (IS_I915G(dev
))
7912 dev_priv
->display
.get_display_clock_speed
=
7913 i915_get_display_clock_speed
;
7914 else if (IS_I945GM(dev
) || IS_845G(dev
) || IS_PINEVIEW_M(dev
))
7915 dev_priv
->display
.get_display_clock_speed
=
7916 i9xx_misc_get_display_clock_speed
;
7917 else if (IS_I915GM(dev
))
7918 dev_priv
->display
.get_display_clock_speed
=
7919 i915gm_get_display_clock_speed
;
7920 else if (IS_I865G(dev
))
7921 dev_priv
->display
.get_display_clock_speed
=
7922 i865_get_display_clock_speed
;
7923 else if (IS_I85X(dev
))
7924 dev_priv
->display
.get_display_clock_speed
=
7925 i855_get_display_clock_speed
;
7927 dev_priv
->display
.get_display_clock_speed
=
7928 i830_get_display_clock_speed
;
7930 /* For FIFO watermark updates */
7931 if (HAS_PCH_SPLIT(dev
)) {
7932 if (HAS_PCH_IBX(dev
))
7933 dev_priv
->display
.init_pch_clock_gating
= ibx_init_clock_gating
;
7934 else if (HAS_PCH_CPT(dev
))
7935 dev_priv
->display
.init_pch_clock_gating
= cpt_init_clock_gating
;
7938 if (I915_READ(MLTR_ILK
) & ILK_SRLT_MASK
)
7939 dev_priv
->display
.update_wm
= ironlake_update_wm
;
7941 DRM_DEBUG_KMS("Failed to get proper latency. "
7943 dev_priv
->display
.update_wm
= NULL
;
7945 dev_priv
->display
.fdi_link_train
= ironlake_fdi_link_train
;
7946 dev_priv
->display
.init_clock_gating
= ironlake_init_clock_gating
;
7947 } else if (IS_GEN6(dev
)) {
7948 if (SNB_READ_WM0_LATENCY()) {
7949 dev_priv
->display
.update_wm
= sandybridge_update_wm
;
7951 DRM_DEBUG_KMS("Failed to read display plane latency. "
7953 dev_priv
->display
.update_wm
= NULL
;
7955 dev_priv
->display
.fdi_link_train
= gen6_fdi_link_train
;
7956 dev_priv
->display
.init_clock_gating
= gen6_init_clock_gating
;
7957 } else if (IS_IVYBRIDGE(dev
)) {
7958 /* FIXME: detect B0+ stepping and use auto training */
7959 dev_priv
->display
.fdi_link_train
= ivb_manual_fdi_link_train
;
7960 if (SNB_READ_WM0_LATENCY()) {
7961 dev_priv
->display
.update_wm
= sandybridge_update_wm
;
7963 DRM_DEBUG_KMS("Failed to read display plane latency. "
7965 dev_priv
->display
.update_wm
= NULL
;
7967 dev_priv
->display
.init_clock_gating
= ivybridge_init_clock_gating
;
7970 dev_priv
->display
.update_wm
= NULL
;
7971 } else if (IS_PINEVIEW(dev
)) {
7972 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev
),
7975 dev_priv
->mem_freq
)) {
7976 DRM_INFO("failed to find known CxSR latency "
7977 "(found ddr%s fsb freq %d, mem freq %d), "
7979 (dev_priv
->is_ddr3
== 1) ? "3": "2",
7980 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
7981 /* Disable CxSR and never update its watermark again */
7982 pineview_disable_cxsr(dev
);
7983 dev_priv
->display
.update_wm
= NULL
;
7985 dev_priv
->display
.update_wm
= pineview_update_wm
;
7986 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
7987 } else if (IS_G4X(dev
)) {
7988 dev_priv
->display
.update_wm
= g4x_update_wm
;
7989 dev_priv
->display
.init_clock_gating
= g4x_init_clock_gating
;
7990 } else if (IS_GEN4(dev
)) {
7991 dev_priv
->display
.update_wm
= i965_update_wm
;
7992 if (IS_CRESTLINE(dev
))
7993 dev_priv
->display
.init_clock_gating
= crestline_init_clock_gating
;
7994 else if (IS_BROADWATER(dev
))
7995 dev_priv
->display
.init_clock_gating
= broadwater_init_clock_gating
;
7996 } else if (IS_GEN3(dev
)) {
7997 dev_priv
->display
.update_wm
= i9xx_update_wm
;
7998 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
7999 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
8000 } else if (IS_I865G(dev
)) {
8001 dev_priv
->display
.update_wm
= i830_update_wm
;
8002 dev_priv
->display
.init_clock_gating
= i85x_init_clock_gating
;
8003 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
8004 } else if (IS_I85X(dev
)) {
8005 dev_priv
->display
.update_wm
= i9xx_update_wm
;
8006 dev_priv
->display
.get_fifo_size
= i85x_get_fifo_size
;
8007 dev_priv
->display
.init_clock_gating
= i85x_init_clock_gating
;
8009 dev_priv
->display
.update_wm
= i830_update_wm
;
8010 dev_priv
->display
.init_clock_gating
= i830_init_clock_gating
;
8012 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
8014 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
8017 /* Default just returns -ENODEV to indicate unsupported */
8018 dev_priv
->display
.queue_flip
= intel_default_queue_flip
;
8020 switch (INTEL_INFO(dev
)->gen
) {
8022 dev_priv
->display
.queue_flip
= intel_gen2_queue_flip
;
8026 dev_priv
->display
.queue_flip
= intel_gen3_queue_flip
;
8031 dev_priv
->display
.queue_flip
= intel_gen4_queue_flip
;
8035 dev_priv
->display
.queue_flip
= intel_gen6_queue_flip
;
8038 dev_priv
->display
.queue_flip
= intel_gen7_queue_flip
;
8044 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8045 * resume, or other times. This quirk makes sure that's the case for
8048 static void quirk_pipea_force (struct drm_device
*dev
)
8050 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8052 dev_priv
->quirks
|= QUIRK_PIPEA_FORCE
;
8053 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8056 struct intel_quirk
{
8058 int subsystem_vendor
;
8059 int subsystem_device
;
8060 void (*hook
)(struct drm_device
*dev
);
8063 struct intel_quirk intel_quirks
[] = {
8064 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8065 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force
},
8066 /* HP Mini needs pipe A force quirk (LP: #322104) */
8067 { 0x27ae,0x103c, 0x361a, quirk_pipea_force
},
8069 /* Thinkpad R31 needs pipe A force quirk */
8070 { 0x3577, 0x1014, 0x0505, quirk_pipea_force
},
8071 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8072 { 0x2592, 0x1179, 0x0001, quirk_pipea_force
},
8074 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8075 { 0x3577, 0x1014, 0x0513, quirk_pipea_force
},
8076 /* ThinkPad X40 needs pipe A force quirk */
8078 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8079 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force
},
8081 /* 855 & before need to leave pipe A & dpll A up */
8082 { 0x3582, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
8083 { 0x2562, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
8086 static void intel_init_quirks(struct drm_device
*dev
)
8088 struct pci_dev
*d
= dev
->pdev
;
8091 for (i
= 0; i
< ARRAY_SIZE(intel_quirks
); i
++) {
8092 struct intel_quirk
*q
= &intel_quirks
[i
];
8094 if (d
->device
== q
->device
&&
8095 (d
->subsystem_vendor
== q
->subsystem_vendor
||
8096 q
->subsystem_vendor
== PCI_ANY_ID
) &&
8097 (d
->subsystem_device
== q
->subsystem_device
||
8098 q
->subsystem_device
== PCI_ANY_ID
))
8103 /* Disable the VGA plane that we never use */
8104 static void i915_disable_vga(struct drm_device
*dev
)
8106 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8110 if (HAS_PCH_SPLIT(dev
))
8111 vga_reg
= CPU_VGACNTRL
;
8115 vga_get_uninterruptible(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
8116 outb(1, VGA_SR_INDEX
);
8117 sr1
= inb(VGA_SR_DATA
);
8118 outb(sr1
| 1<<5, VGA_SR_DATA
);
8119 vga_put(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
8122 I915_WRITE(vga_reg
, VGA_DISP_DISABLE
);
8123 POSTING_READ(vga_reg
);
8126 void intel_modeset_init(struct drm_device
*dev
)
8128 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8131 drm_mode_config_init(dev
);
8133 dev
->mode_config
.min_width
= 0;
8134 dev
->mode_config
.min_height
= 0;
8136 dev
->mode_config
.funcs
= (void *)&intel_mode_funcs
;
8138 intel_init_quirks(dev
);
8140 intel_init_display(dev
);
8143 dev
->mode_config
.max_width
= 2048;
8144 dev
->mode_config
.max_height
= 2048;
8145 } else if (IS_GEN3(dev
)) {
8146 dev
->mode_config
.max_width
= 4096;
8147 dev
->mode_config
.max_height
= 4096;
8149 dev
->mode_config
.max_width
= 8192;
8150 dev
->mode_config
.max_height
= 8192;
8152 dev
->mode_config
.fb_base
= dev
->agp
->base
;
8154 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8155 dev_priv
->num_pipe
, dev_priv
->num_pipe
> 1 ? "s" : "");
8157 for (i
= 0; i
< dev_priv
->num_pipe
; i
++) {
8158 intel_crtc_init(dev
, i
);
8161 /* Just disable it once at startup */
8162 i915_disable_vga(dev
);
8163 intel_setup_outputs(dev
);
8165 intel_init_clock_gating(dev
);
8167 if (IS_IRONLAKE_M(dev
)) {
8168 ironlake_enable_drps(dev
);
8169 intel_init_emon(dev
);
8172 if (IS_GEN6(dev
) || IS_GEN7(dev
)) {
8173 gen6_enable_rps(dev_priv
);
8174 gen6_update_ring_freq(dev_priv
);
8177 INIT_WORK(&dev_priv
->idle_work
, intel_idle_update
);
8178 setup_timer(&dev_priv
->idle_timer
, intel_gpu_idle_timer
,
8179 (unsigned long)dev
);
8182 void intel_modeset_gem_init(struct drm_device
*dev
)
8184 if (IS_IRONLAKE_M(dev
))
8185 ironlake_enable_rc6(dev
);
8187 intel_setup_overlay(dev
);
8190 void intel_modeset_cleanup(struct drm_device
*dev
)
8192 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8193 struct drm_crtc
*crtc
;
8194 struct intel_crtc
*intel_crtc
;
8196 drm_kms_helper_poll_fini(dev
);
8197 mutex_lock(&dev
->struct_mutex
);
8199 intel_unregister_dsm_handler();
8202 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
8203 /* Skip inactive CRTCs */
8207 intel_crtc
= to_intel_crtc(crtc
);
8208 intel_increase_pllclock(crtc
);
8211 intel_disable_fbc(dev
);
8213 if (IS_IRONLAKE_M(dev
))
8214 ironlake_disable_drps(dev
);
8215 if (IS_GEN6(dev
) || IS_GEN7(dev
))
8216 gen6_disable_rps(dev
);
8218 if (IS_IRONLAKE_M(dev
))
8219 ironlake_disable_rc6(dev
);
8221 mutex_unlock(&dev
->struct_mutex
);
8223 /* Disable the irq before mode object teardown, for the irq might
8224 * enqueue unpin/hotplug work. */
8225 drm_irq_uninstall(dev
);
8226 cancel_work_sync(&dev_priv
->hotplug_work
);
8228 /* Shut off idle work before the crtcs get freed. */
8229 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
8230 intel_crtc
= to_intel_crtc(crtc
);
8231 del_timer_sync(&intel_crtc
->idle_timer
);
8233 del_timer_sync(&dev_priv
->idle_timer
);
8234 cancel_work_sync(&dev_priv
->idle_work
);
8236 drm_mode_config_cleanup(dev
);
8240 * Return which encoder is currently attached for connector.
8242 struct drm_encoder
*intel_best_encoder(struct drm_connector
*connector
)
8244 return &intel_attached_encoder(connector
)->base
;
8247 void intel_connector_attach_encoder(struct intel_connector
*connector
,
8248 struct intel_encoder
*encoder
)
8250 connector
->encoder
= encoder
;
8251 drm_mode_connector_attach_encoder(&connector
->base
,
8256 * set vga decode state - true == enable VGA decode
8258 int intel_modeset_vga_set_state(struct drm_device
*dev
, bool state
)
8260 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8263 pci_read_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, &gmch_ctrl
);
8265 gmch_ctrl
&= ~INTEL_GMCH_VGA_DISABLE
;
8267 gmch_ctrl
|= INTEL_GMCH_VGA_DISABLE
;
8268 pci_write_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, gmch_ctrl
);
8272 #ifdef CONFIG_DEBUG_FS
8273 #include <linux/seq_file.h>
8275 struct intel_display_error_state
{
8276 struct intel_cursor_error_state
{
8283 struct intel_pipe_error_state
{
8295 struct intel_plane_error_state
{
8306 struct intel_display_error_state
*
8307 intel_display_capture_error_state(struct drm_device
*dev
)
8309 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
8310 struct intel_display_error_state
*error
;
8313 error
= kmalloc(sizeof(*error
), GFP_ATOMIC
);
8317 for (i
= 0; i
< 2; i
++) {
8318 error
->cursor
[i
].control
= I915_READ(CURCNTR(i
));
8319 error
->cursor
[i
].position
= I915_READ(CURPOS(i
));
8320 error
->cursor
[i
].base
= I915_READ(CURBASE(i
));
8322 error
->plane
[i
].control
= I915_READ(DSPCNTR(i
));
8323 error
->plane
[i
].stride
= I915_READ(DSPSTRIDE(i
));
8324 error
->plane
[i
].size
= I915_READ(DSPSIZE(i
));
8325 error
->plane
[i
].pos
= I915_READ(DSPPOS(i
));
8326 error
->plane
[i
].addr
= I915_READ(DSPADDR(i
));
8327 if (INTEL_INFO(dev
)->gen
>= 4) {
8328 error
->plane
[i
].surface
= I915_READ(DSPSURF(i
));
8329 error
->plane
[i
].tile_offset
= I915_READ(DSPTILEOFF(i
));
8332 error
->pipe
[i
].conf
= I915_READ(PIPECONF(i
));
8333 error
->pipe
[i
].source
= I915_READ(PIPESRC(i
));
8334 error
->pipe
[i
].htotal
= I915_READ(HTOTAL(i
));
8335 error
->pipe
[i
].hblank
= I915_READ(HBLANK(i
));
8336 error
->pipe
[i
].hsync
= I915_READ(HSYNC(i
));
8337 error
->pipe
[i
].vtotal
= I915_READ(VTOTAL(i
));
8338 error
->pipe
[i
].vblank
= I915_READ(VBLANK(i
));
8339 error
->pipe
[i
].vsync
= I915_READ(VSYNC(i
));
8346 intel_display_print_error_state(struct seq_file
*m
,
8347 struct drm_device
*dev
,
8348 struct intel_display_error_state
*error
)
8352 for (i
= 0; i
< 2; i
++) {
8353 seq_printf(m
, "Pipe [%d]:\n", i
);
8354 seq_printf(m
, " CONF: %08x\n", error
->pipe
[i
].conf
);
8355 seq_printf(m
, " SRC: %08x\n", error
->pipe
[i
].source
);
8356 seq_printf(m
, " HTOTAL: %08x\n", error
->pipe
[i
].htotal
);
8357 seq_printf(m
, " HBLANK: %08x\n", error
->pipe
[i
].hblank
);
8358 seq_printf(m
, " HSYNC: %08x\n", error
->pipe
[i
].hsync
);
8359 seq_printf(m
, " VTOTAL: %08x\n", error
->pipe
[i
].vtotal
);
8360 seq_printf(m
, " VBLANK: %08x\n", error
->pipe
[i
].vblank
);
8361 seq_printf(m
, " VSYNC: %08x\n", error
->pipe
[i
].vsync
);
8363 seq_printf(m
, "Plane [%d]:\n", i
);
8364 seq_printf(m
, " CNTR: %08x\n", error
->plane
[i
].control
);
8365 seq_printf(m
, " STRIDE: %08x\n", error
->plane
[i
].stride
);
8366 seq_printf(m
, " SIZE: %08x\n", error
->plane
[i
].size
);
8367 seq_printf(m
, " POS: %08x\n", error
->plane
[i
].pos
);
8368 seq_printf(m
, " ADDR: %08x\n", error
->plane
[i
].addr
);
8369 if (INTEL_INFO(dev
)->gen
>= 4) {
8370 seq_printf(m
, " SURF: %08x\n", error
->plane
[i
].surface
);
8371 seq_printf(m
, " TILEOFF: %08x\n", error
->plane
[i
].tile_offset
);
8374 seq_printf(m
, "Cursor [%d]:\n", i
);
8375 seq_printf(m
, " CNTR: %08x\n", error
->cursor
[i
].control
);
8376 seq_printf(m
, " POS: %08x\n", error
->cursor
[i
].position
);
8377 seq_printf(m
, " BASE: %08x\n", error
->cursor
[i
].base
);