ext4: address scalability issue by removing extent cache statistics
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / extents.c
blob8a12cd207679de0b26d83aba1b18d12cd8bf7584
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
45 #include <trace/events/ext4.h>
48 * used by extent splitting.
50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
51 due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
55 static int ext4_split_extent(handle_t *handle,
56 struct inode *inode,
57 struct ext4_ext_path *path,
58 struct ext4_map_blocks *map,
59 int split_flag,
60 int flags);
62 static int ext4_split_extent_at(handle_t *handle,
63 struct inode *inode,
64 struct ext4_ext_path *path,
65 ext4_lblk_t split,
66 int split_flag,
67 int flags);
69 static int ext4_ext_truncate_extend_restart(handle_t *handle,
70 struct inode *inode,
71 int needed)
73 int err;
75 if (!ext4_handle_valid(handle))
76 return 0;
77 if (handle->h_buffer_credits > needed)
78 return 0;
79 err = ext4_journal_extend(handle, needed);
80 if (err <= 0)
81 return err;
82 err = ext4_truncate_restart_trans(handle, inode, needed);
83 if (err == 0)
84 err = -EAGAIN;
86 return err;
90 * could return:
91 * - EROFS
92 * - ENOMEM
94 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
95 struct ext4_ext_path *path)
97 if (path->p_bh) {
98 /* path points to block */
99 return ext4_journal_get_write_access(handle, path->p_bh);
101 /* path points to leaf/index in inode body */
102 /* we use in-core data, no need to protect them */
103 return 0;
107 * could return:
108 * - EROFS
109 * - ENOMEM
110 * - EIO
112 #define ext4_ext_dirty(handle, inode, path) \
113 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
114 static int __ext4_ext_dirty(const char *where, unsigned int line,
115 handle_t *handle, struct inode *inode,
116 struct ext4_ext_path *path)
118 int err;
119 if (path->p_bh) {
120 /* path points to block */
121 err = __ext4_handle_dirty_metadata(where, line, handle,
122 inode, path->p_bh);
123 } else {
124 /* path points to leaf/index in inode body */
125 err = ext4_mark_inode_dirty(handle, inode);
127 return err;
130 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
131 struct ext4_ext_path *path,
132 ext4_lblk_t block)
134 if (path) {
135 int depth = path->p_depth;
136 struct ext4_extent *ex;
139 * Try to predict block placement assuming that we are
140 * filling in a file which will eventually be
141 * non-sparse --- i.e., in the case of libbfd writing
142 * an ELF object sections out-of-order but in a way
143 * the eventually results in a contiguous object or
144 * executable file, or some database extending a table
145 * space file. However, this is actually somewhat
146 * non-ideal if we are writing a sparse file such as
147 * qemu or KVM writing a raw image file that is going
148 * to stay fairly sparse, since it will end up
149 * fragmenting the file system's free space. Maybe we
150 * should have some hueristics or some way to allow
151 * userspace to pass a hint to file system,
152 * especially if the latter case turns out to be
153 * common.
155 ex = path[depth].p_ext;
156 if (ex) {
157 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
158 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
160 if (block > ext_block)
161 return ext_pblk + (block - ext_block);
162 else
163 return ext_pblk - (ext_block - block);
166 /* it looks like index is empty;
167 * try to find starting block from index itself */
168 if (path[depth].p_bh)
169 return path[depth].p_bh->b_blocknr;
172 /* OK. use inode's group */
173 return ext4_inode_to_goal_block(inode);
177 * Allocation for a meta data block
179 static ext4_fsblk_t
180 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
181 struct ext4_ext_path *path,
182 struct ext4_extent *ex, int *err, unsigned int flags)
184 ext4_fsblk_t goal, newblock;
186 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
187 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
188 NULL, err);
189 return newblock;
192 static inline int ext4_ext_space_block(struct inode *inode, int check)
194 int size;
196 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
197 / sizeof(struct ext4_extent);
198 #ifdef AGGRESSIVE_TEST
199 if (!check && size > 6)
200 size = 6;
201 #endif
202 return size;
205 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
207 int size;
209 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
210 / sizeof(struct ext4_extent_idx);
211 #ifdef AGGRESSIVE_TEST
212 if (!check && size > 5)
213 size = 5;
214 #endif
215 return size;
218 static inline int ext4_ext_space_root(struct inode *inode, int check)
220 int size;
222 size = sizeof(EXT4_I(inode)->i_data);
223 size -= sizeof(struct ext4_extent_header);
224 size /= sizeof(struct ext4_extent);
225 #ifdef AGGRESSIVE_TEST
226 if (!check && size > 3)
227 size = 3;
228 #endif
229 return size;
232 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
234 int size;
236 size = sizeof(EXT4_I(inode)->i_data);
237 size -= sizeof(struct ext4_extent_header);
238 size /= sizeof(struct ext4_extent_idx);
239 #ifdef AGGRESSIVE_TEST
240 if (!check && size > 4)
241 size = 4;
242 #endif
243 return size;
247 * Calculate the number of metadata blocks needed
248 * to allocate @blocks
249 * Worse case is one block per extent
251 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
253 struct ext4_inode_info *ei = EXT4_I(inode);
254 int idxs;
256 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
257 / sizeof(struct ext4_extent_idx));
260 * If the new delayed allocation block is contiguous with the
261 * previous da block, it can share index blocks with the
262 * previous block, so we only need to allocate a new index
263 * block every idxs leaf blocks. At ldxs**2 blocks, we need
264 * an additional index block, and at ldxs**3 blocks, yet
265 * another index blocks.
267 if (ei->i_da_metadata_calc_len &&
268 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
269 int num = 0;
271 if ((ei->i_da_metadata_calc_len % idxs) == 0)
272 num++;
273 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
274 num++;
275 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
276 num++;
277 ei->i_da_metadata_calc_len = 0;
278 } else
279 ei->i_da_metadata_calc_len++;
280 ei->i_da_metadata_calc_last_lblock++;
281 return num;
285 * In the worst case we need a new set of index blocks at
286 * every level of the inode's extent tree.
288 ei->i_da_metadata_calc_len = 1;
289 ei->i_da_metadata_calc_last_lblock = lblock;
290 return ext_depth(inode) + 1;
293 static int
294 ext4_ext_max_entries(struct inode *inode, int depth)
296 int max;
298 if (depth == ext_depth(inode)) {
299 if (depth == 0)
300 max = ext4_ext_space_root(inode, 1);
301 else
302 max = ext4_ext_space_root_idx(inode, 1);
303 } else {
304 if (depth == 0)
305 max = ext4_ext_space_block(inode, 1);
306 else
307 max = ext4_ext_space_block_idx(inode, 1);
310 return max;
313 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
315 ext4_fsblk_t block = ext4_ext_pblock(ext);
316 int len = ext4_ext_get_actual_len(ext);
318 if (len == 0)
319 return 0;
320 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
323 static int ext4_valid_extent_idx(struct inode *inode,
324 struct ext4_extent_idx *ext_idx)
326 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
328 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
331 static int ext4_valid_extent_entries(struct inode *inode,
332 struct ext4_extent_header *eh,
333 int depth)
335 unsigned short entries;
336 if (eh->eh_entries == 0)
337 return 1;
339 entries = le16_to_cpu(eh->eh_entries);
341 if (depth == 0) {
342 /* leaf entries */
343 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
344 while (entries) {
345 if (!ext4_valid_extent(inode, ext))
346 return 0;
347 ext++;
348 entries--;
350 } else {
351 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
352 while (entries) {
353 if (!ext4_valid_extent_idx(inode, ext_idx))
354 return 0;
355 ext_idx++;
356 entries--;
359 return 1;
362 static int __ext4_ext_check(const char *function, unsigned int line,
363 struct inode *inode, struct ext4_extent_header *eh,
364 int depth)
366 const char *error_msg;
367 int max = 0;
369 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
370 error_msg = "invalid magic";
371 goto corrupted;
373 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
374 error_msg = "unexpected eh_depth";
375 goto corrupted;
377 if (unlikely(eh->eh_max == 0)) {
378 error_msg = "invalid eh_max";
379 goto corrupted;
381 max = ext4_ext_max_entries(inode, depth);
382 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
383 error_msg = "too large eh_max";
384 goto corrupted;
386 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
387 error_msg = "invalid eh_entries";
388 goto corrupted;
390 if (!ext4_valid_extent_entries(inode, eh, depth)) {
391 error_msg = "invalid extent entries";
392 goto corrupted;
394 return 0;
396 corrupted:
397 ext4_error_inode(inode, function, line, 0,
398 "bad header/extent: %s - magic %x, "
399 "entries %u, max %u(%u), depth %u(%u)",
400 error_msg, le16_to_cpu(eh->eh_magic),
401 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
402 max, le16_to_cpu(eh->eh_depth), depth);
404 return -EIO;
407 #define ext4_ext_check(inode, eh, depth) \
408 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
410 int ext4_ext_check_inode(struct inode *inode)
412 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
415 #ifdef EXT_DEBUG
416 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
418 int k, l = path->p_depth;
420 ext_debug("path:");
421 for (k = 0; k <= l; k++, path++) {
422 if (path->p_idx) {
423 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
424 ext4_idx_pblock(path->p_idx));
425 } else if (path->p_ext) {
426 ext_debug(" %d:[%d]%d:%llu ",
427 le32_to_cpu(path->p_ext->ee_block),
428 ext4_ext_is_uninitialized(path->p_ext),
429 ext4_ext_get_actual_len(path->p_ext),
430 ext4_ext_pblock(path->p_ext));
431 } else
432 ext_debug(" []");
434 ext_debug("\n");
437 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
439 int depth = ext_depth(inode);
440 struct ext4_extent_header *eh;
441 struct ext4_extent *ex;
442 int i;
444 if (!path)
445 return;
447 eh = path[depth].p_hdr;
448 ex = EXT_FIRST_EXTENT(eh);
450 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
452 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
453 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
454 ext4_ext_is_uninitialized(ex),
455 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
457 ext_debug("\n");
460 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
461 ext4_fsblk_t newblock, int level)
463 int depth = ext_depth(inode);
464 struct ext4_extent *ex;
466 if (depth != level) {
467 struct ext4_extent_idx *idx;
468 idx = path[level].p_idx;
469 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
470 ext_debug("%d: move %d:%llu in new index %llu\n", level,
471 le32_to_cpu(idx->ei_block),
472 ext4_idx_pblock(idx),
473 newblock);
474 idx++;
477 return;
480 ex = path[depth].p_ext;
481 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
482 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
483 le32_to_cpu(ex->ee_block),
484 ext4_ext_pblock(ex),
485 ext4_ext_is_uninitialized(ex),
486 ext4_ext_get_actual_len(ex),
487 newblock);
488 ex++;
492 #else
493 #define ext4_ext_show_path(inode, path)
494 #define ext4_ext_show_leaf(inode, path)
495 #define ext4_ext_show_move(inode, path, newblock, level)
496 #endif
498 void ext4_ext_drop_refs(struct ext4_ext_path *path)
500 int depth = path->p_depth;
501 int i;
503 for (i = 0; i <= depth; i++, path++)
504 if (path->p_bh) {
505 brelse(path->p_bh);
506 path->p_bh = NULL;
511 * ext4_ext_binsearch_idx:
512 * binary search for the closest index of the given block
513 * the header must be checked before calling this
515 static void
516 ext4_ext_binsearch_idx(struct inode *inode,
517 struct ext4_ext_path *path, ext4_lblk_t block)
519 struct ext4_extent_header *eh = path->p_hdr;
520 struct ext4_extent_idx *r, *l, *m;
523 ext_debug("binsearch for %u(idx): ", block);
525 l = EXT_FIRST_INDEX(eh) + 1;
526 r = EXT_LAST_INDEX(eh);
527 while (l <= r) {
528 m = l + (r - l) / 2;
529 if (block < le32_to_cpu(m->ei_block))
530 r = m - 1;
531 else
532 l = m + 1;
533 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
534 m, le32_to_cpu(m->ei_block),
535 r, le32_to_cpu(r->ei_block));
538 path->p_idx = l - 1;
539 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
540 ext4_idx_pblock(path->p_idx));
542 #ifdef CHECK_BINSEARCH
544 struct ext4_extent_idx *chix, *ix;
545 int k;
547 chix = ix = EXT_FIRST_INDEX(eh);
548 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
549 if (k != 0 &&
550 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
551 printk(KERN_DEBUG "k=%d, ix=0x%p, "
552 "first=0x%p\n", k,
553 ix, EXT_FIRST_INDEX(eh));
554 printk(KERN_DEBUG "%u <= %u\n",
555 le32_to_cpu(ix->ei_block),
556 le32_to_cpu(ix[-1].ei_block));
558 BUG_ON(k && le32_to_cpu(ix->ei_block)
559 <= le32_to_cpu(ix[-1].ei_block));
560 if (block < le32_to_cpu(ix->ei_block))
561 break;
562 chix = ix;
564 BUG_ON(chix != path->p_idx);
566 #endif
571 * ext4_ext_binsearch:
572 * binary search for closest extent of the given block
573 * the header must be checked before calling this
575 static void
576 ext4_ext_binsearch(struct inode *inode,
577 struct ext4_ext_path *path, ext4_lblk_t block)
579 struct ext4_extent_header *eh = path->p_hdr;
580 struct ext4_extent *r, *l, *m;
582 if (eh->eh_entries == 0) {
584 * this leaf is empty:
585 * we get such a leaf in split/add case
587 return;
590 ext_debug("binsearch for %u: ", block);
592 l = EXT_FIRST_EXTENT(eh) + 1;
593 r = EXT_LAST_EXTENT(eh);
595 while (l <= r) {
596 m = l + (r - l) / 2;
597 if (block < le32_to_cpu(m->ee_block))
598 r = m - 1;
599 else
600 l = m + 1;
601 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
602 m, le32_to_cpu(m->ee_block),
603 r, le32_to_cpu(r->ee_block));
606 path->p_ext = l - 1;
607 ext_debug(" -> %d:%llu:[%d]%d ",
608 le32_to_cpu(path->p_ext->ee_block),
609 ext4_ext_pblock(path->p_ext),
610 ext4_ext_is_uninitialized(path->p_ext),
611 ext4_ext_get_actual_len(path->p_ext));
613 #ifdef CHECK_BINSEARCH
615 struct ext4_extent *chex, *ex;
616 int k;
618 chex = ex = EXT_FIRST_EXTENT(eh);
619 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
620 BUG_ON(k && le32_to_cpu(ex->ee_block)
621 <= le32_to_cpu(ex[-1].ee_block));
622 if (block < le32_to_cpu(ex->ee_block))
623 break;
624 chex = ex;
626 BUG_ON(chex != path->p_ext);
628 #endif
632 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
634 struct ext4_extent_header *eh;
636 eh = ext_inode_hdr(inode);
637 eh->eh_depth = 0;
638 eh->eh_entries = 0;
639 eh->eh_magic = EXT4_EXT_MAGIC;
640 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
641 ext4_mark_inode_dirty(handle, inode);
642 ext4_ext_invalidate_cache(inode);
643 return 0;
646 struct ext4_ext_path *
647 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
648 struct ext4_ext_path *path)
650 struct ext4_extent_header *eh;
651 struct buffer_head *bh;
652 short int depth, i, ppos = 0, alloc = 0;
654 eh = ext_inode_hdr(inode);
655 depth = ext_depth(inode);
657 /* account possible depth increase */
658 if (!path) {
659 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
660 GFP_NOFS);
661 if (!path)
662 return ERR_PTR(-ENOMEM);
663 alloc = 1;
665 path[0].p_hdr = eh;
666 path[0].p_bh = NULL;
668 i = depth;
669 /* walk through the tree */
670 while (i) {
671 int need_to_validate = 0;
673 ext_debug("depth %d: num %d, max %d\n",
674 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
676 ext4_ext_binsearch_idx(inode, path + ppos, block);
677 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
678 path[ppos].p_depth = i;
679 path[ppos].p_ext = NULL;
681 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
682 if (unlikely(!bh))
683 goto err;
684 if (!bh_uptodate_or_lock(bh)) {
685 trace_ext4_ext_load_extent(inode, block,
686 path[ppos].p_block);
687 if (bh_submit_read(bh) < 0) {
688 put_bh(bh);
689 goto err;
691 /* validate the extent entries */
692 need_to_validate = 1;
694 eh = ext_block_hdr(bh);
695 ppos++;
696 if (unlikely(ppos > depth)) {
697 put_bh(bh);
698 EXT4_ERROR_INODE(inode,
699 "ppos %d > depth %d", ppos, depth);
700 goto err;
702 path[ppos].p_bh = bh;
703 path[ppos].p_hdr = eh;
704 i--;
706 if (need_to_validate && ext4_ext_check(inode, eh, i))
707 goto err;
710 path[ppos].p_depth = i;
711 path[ppos].p_ext = NULL;
712 path[ppos].p_idx = NULL;
714 /* find extent */
715 ext4_ext_binsearch(inode, path + ppos, block);
716 /* if not an empty leaf */
717 if (path[ppos].p_ext)
718 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
720 ext4_ext_show_path(inode, path);
722 return path;
724 err:
725 ext4_ext_drop_refs(path);
726 if (alloc)
727 kfree(path);
728 return ERR_PTR(-EIO);
732 * ext4_ext_insert_index:
733 * insert new index [@logical;@ptr] into the block at @curp;
734 * check where to insert: before @curp or after @curp
736 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
737 struct ext4_ext_path *curp,
738 int logical, ext4_fsblk_t ptr)
740 struct ext4_extent_idx *ix;
741 int len, err;
743 err = ext4_ext_get_access(handle, inode, curp);
744 if (err)
745 return err;
747 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
748 EXT4_ERROR_INODE(inode,
749 "logical %d == ei_block %d!",
750 logical, le32_to_cpu(curp->p_idx->ei_block));
751 return -EIO;
754 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
755 >= le16_to_cpu(curp->p_hdr->eh_max))) {
756 EXT4_ERROR_INODE(inode,
757 "eh_entries %d >= eh_max %d!",
758 le16_to_cpu(curp->p_hdr->eh_entries),
759 le16_to_cpu(curp->p_hdr->eh_max));
760 return -EIO;
763 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
764 /* insert after */
765 ext_debug("insert new index %d after: %llu\n", logical, ptr);
766 ix = curp->p_idx + 1;
767 } else {
768 /* insert before */
769 ext_debug("insert new index %d before: %llu\n", logical, ptr);
770 ix = curp->p_idx;
773 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
774 BUG_ON(len < 0);
775 if (len > 0) {
776 ext_debug("insert new index %d: "
777 "move %d indices from 0x%p to 0x%p\n",
778 logical, len, ix, ix + 1);
779 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
782 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
783 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
784 return -EIO;
787 ix->ei_block = cpu_to_le32(logical);
788 ext4_idx_store_pblock(ix, ptr);
789 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
791 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
792 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
793 return -EIO;
796 err = ext4_ext_dirty(handle, inode, curp);
797 ext4_std_error(inode->i_sb, err);
799 return err;
803 * ext4_ext_split:
804 * inserts new subtree into the path, using free index entry
805 * at depth @at:
806 * - allocates all needed blocks (new leaf and all intermediate index blocks)
807 * - makes decision where to split
808 * - moves remaining extents and index entries (right to the split point)
809 * into the newly allocated blocks
810 * - initializes subtree
812 static int ext4_ext_split(handle_t *handle, struct inode *inode,
813 unsigned int flags,
814 struct ext4_ext_path *path,
815 struct ext4_extent *newext, int at)
817 struct buffer_head *bh = NULL;
818 int depth = ext_depth(inode);
819 struct ext4_extent_header *neh;
820 struct ext4_extent_idx *fidx;
821 int i = at, k, m, a;
822 ext4_fsblk_t newblock, oldblock;
823 __le32 border;
824 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
825 int err = 0;
827 /* make decision: where to split? */
828 /* FIXME: now decision is simplest: at current extent */
830 /* if current leaf will be split, then we should use
831 * border from split point */
832 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
833 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
834 return -EIO;
836 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
837 border = path[depth].p_ext[1].ee_block;
838 ext_debug("leaf will be split."
839 " next leaf starts at %d\n",
840 le32_to_cpu(border));
841 } else {
842 border = newext->ee_block;
843 ext_debug("leaf will be added."
844 " next leaf starts at %d\n",
845 le32_to_cpu(border));
849 * If error occurs, then we break processing
850 * and mark filesystem read-only. index won't
851 * be inserted and tree will be in consistent
852 * state. Next mount will repair buffers too.
856 * Get array to track all allocated blocks.
857 * We need this to handle errors and free blocks
858 * upon them.
860 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
861 if (!ablocks)
862 return -ENOMEM;
864 /* allocate all needed blocks */
865 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
866 for (a = 0; a < depth - at; a++) {
867 newblock = ext4_ext_new_meta_block(handle, inode, path,
868 newext, &err, flags);
869 if (newblock == 0)
870 goto cleanup;
871 ablocks[a] = newblock;
874 /* initialize new leaf */
875 newblock = ablocks[--a];
876 if (unlikely(newblock == 0)) {
877 EXT4_ERROR_INODE(inode, "newblock == 0!");
878 err = -EIO;
879 goto cleanup;
881 bh = sb_getblk(inode->i_sb, newblock);
882 if (!bh) {
883 err = -EIO;
884 goto cleanup;
886 lock_buffer(bh);
888 err = ext4_journal_get_create_access(handle, bh);
889 if (err)
890 goto cleanup;
892 neh = ext_block_hdr(bh);
893 neh->eh_entries = 0;
894 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
895 neh->eh_magic = EXT4_EXT_MAGIC;
896 neh->eh_depth = 0;
898 /* move remainder of path[depth] to the new leaf */
899 if (unlikely(path[depth].p_hdr->eh_entries !=
900 path[depth].p_hdr->eh_max)) {
901 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
902 path[depth].p_hdr->eh_entries,
903 path[depth].p_hdr->eh_max);
904 err = -EIO;
905 goto cleanup;
907 /* start copy from next extent */
908 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
909 ext4_ext_show_move(inode, path, newblock, depth);
910 if (m) {
911 struct ext4_extent *ex;
912 ex = EXT_FIRST_EXTENT(neh);
913 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
914 le16_add_cpu(&neh->eh_entries, m);
917 set_buffer_uptodate(bh);
918 unlock_buffer(bh);
920 err = ext4_handle_dirty_metadata(handle, inode, bh);
921 if (err)
922 goto cleanup;
923 brelse(bh);
924 bh = NULL;
926 /* correct old leaf */
927 if (m) {
928 err = ext4_ext_get_access(handle, inode, path + depth);
929 if (err)
930 goto cleanup;
931 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
932 err = ext4_ext_dirty(handle, inode, path + depth);
933 if (err)
934 goto cleanup;
938 /* create intermediate indexes */
939 k = depth - at - 1;
940 if (unlikely(k < 0)) {
941 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
942 err = -EIO;
943 goto cleanup;
945 if (k)
946 ext_debug("create %d intermediate indices\n", k);
947 /* insert new index into current index block */
948 /* current depth stored in i var */
949 i = depth - 1;
950 while (k--) {
951 oldblock = newblock;
952 newblock = ablocks[--a];
953 bh = sb_getblk(inode->i_sb, newblock);
954 if (!bh) {
955 err = -EIO;
956 goto cleanup;
958 lock_buffer(bh);
960 err = ext4_journal_get_create_access(handle, bh);
961 if (err)
962 goto cleanup;
964 neh = ext_block_hdr(bh);
965 neh->eh_entries = cpu_to_le16(1);
966 neh->eh_magic = EXT4_EXT_MAGIC;
967 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
968 neh->eh_depth = cpu_to_le16(depth - i);
969 fidx = EXT_FIRST_INDEX(neh);
970 fidx->ei_block = border;
971 ext4_idx_store_pblock(fidx, oldblock);
973 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
974 i, newblock, le32_to_cpu(border), oldblock);
976 /* move remainder of path[i] to the new index block */
977 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
978 EXT_LAST_INDEX(path[i].p_hdr))) {
979 EXT4_ERROR_INODE(inode,
980 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
981 le32_to_cpu(path[i].p_ext->ee_block));
982 err = -EIO;
983 goto cleanup;
985 /* start copy indexes */
986 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
987 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
988 EXT_MAX_INDEX(path[i].p_hdr));
989 ext4_ext_show_move(inode, path, newblock, i);
990 if (m) {
991 memmove(++fidx, path[i].p_idx,
992 sizeof(struct ext4_extent_idx) * m);
993 le16_add_cpu(&neh->eh_entries, m);
995 set_buffer_uptodate(bh);
996 unlock_buffer(bh);
998 err = ext4_handle_dirty_metadata(handle, inode, bh);
999 if (err)
1000 goto cleanup;
1001 brelse(bh);
1002 bh = NULL;
1004 /* correct old index */
1005 if (m) {
1006 err = ext4_ext_get_access(handle, inode, path + i);
1007 if (err)
1008 goto cleanup;
1009 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1010 err = ext4_ext_dirty(handle, inode, path + i);
1011 if (err)
1012 goto cleanup;
1015 i--;
1018 /* insert new index */
1019 err = ext4_ext_insert_index(handle, inode, path + at,
1020 le32_to_cpu(border), newblock);
1022 cleanup:
1023 if (bh) {
1024 if (buffer_locked(bh))
1025 unlock_buffer(bh);
1026 brelse(bh);
1029 if (err) {
1030 /* free all allocated blocks in error case */
1031 for (i = 0; i < depth; i++) {
1032 if (!ablocks[i])
1033 continue;
1034 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1035 EXT4_FREE_BLOCKS_METADATA);
1038 kfree(ablocks);
1040 return err;
1044 * ext4_ext_grow_indepth:
1045 * implements tree growing procedure:
1046 * - allocates new block
1047 * - moves top-level data (index block or leaf) into the new block
1048 * - initializes new top-level, creating index that points to the
1049 * just created block
1051 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1052 unsigned int flags,
1053 struct ext4_extent *newext)
1055 struct ext4_extent_header *neh;
1056 struct buffer_head *bh;
1057 ext4_fsblk_t newblock;
1058 int err = 0;
1060 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1061 newext, &err, flags);
1062 if (newblock == 0)
1063 return err;
1065 bh = sb_getblk(inode->i_sb, newblock);
1066 if (!bh) {
1067 err = -EIO;
1068 ext4_std_error(inode->i_sb, err);
1069 return err;
1071 lock_buffer(bh);
1073 err = ext4_journal_get_create_access(handle, bh);
1074 if (err) {
1075 unlock_buffer(bh);
1076 goto out;
1079 /* move top-level index/leaf into new block */
1080 memmove(bh->b_data, EXT4_I(inode)->i_data,
1081 sizeof(EXT4_I(inode)->i_data));
1083 /* set size of new block */
1084 neh = ext_block_hdr(bh);
1085 /* old root could have indexes or leaves
1086 * so calculate e_max right way */
1087 if (ext_depth(inode))
1088 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1089 else
1090 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1091 neh->eh_magic = EXT4_EXT_MAGIC;
1092 set_buffer_uptodate(bh);
1093 unlock_buffer(bh);
1095 err = ext4_handle_dirty_metadata(handle, inode, bh);
1096 if (err)
1097 goto out;
1099 /* Update top-level index: num,max,pointer */
1100 neh = ext_inode_hdr(inode);
1101 neh->eh_entries = cpu_to_le16(1);
1102 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1103 if (neh->eh_depth == 0) {
1104 /* Root extent block becomes index block */
1105 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1106 EXT_FIRST_INDEX(neh)->ei_block =
1107 EXT_FIRST_EXTENT(neh)->ee_block;
1109 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1110 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1111 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1112 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1114 neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1115 ext4_mark_inode_dirty(handle, inode);
1116 out:
1117 brelse(bh);
1119 return err;
1123 * ext4_ext_create_new_leaf:
1124 * finds empty index and adds new leaf.
1125 * if no free index is found, then it requests in-depth growing.
1127 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1128 unsigned int flags,
1129 struct ext4_ext_path *path,
1130 struct ext4_extent *newext)
1132 struct ext4_ext_path *curp;
1133 int depth, i, err = 0;
1135 repeat:
1136 i = depth = ext_depth(inode);
1138 /* walk up to the tree and look for free index entry */
1139 curp = path + depth;
1140 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1141 i--;
1142 curp--;
1145 /* we use already allocated block for index block,
1146 * so subsequent data blocks should be contiguous */
1147 if (EXT_HAS_FREE_INDEX(curp)) {
1148 /* if we found index with free entry, then use that
1149 * entry: create all needed subtree and add new leaf */
1150 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1151 if (err)
1152 goto out;
1154 /* refill path */
1155 ext4_ext_drop_refs(path);
1156 path = ext4_ext_find_extent(inode,
1157 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1158 path);
1159 if (IS_ERR(path))
1160 err = PTR_ERR(path);
1161 } else {
1162 /* tree is full, time to grow in depth */
1163 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1164 if (err)
1165 goto out;
1167 /* refill path */
1168 ext4_ext_drop_refs(path);
1169 path = ext4_ext_find_extent(inode,
1170 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1171 path);
1172 if (IS_ERR(path)) {
1173 err = PTR_ERR(path);
1174 goto out;
1178 * only first (depth 0 -> 1) produces free space;
1179 * in all other cases we have to split the grown tree
1181 depth = ext_depth(inode);
1182 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1183 /* now we need to split */
1184 goto repeat;
1188 out:
1189 return err;
1193 * search the closest allocated block to the left for *logical
1194 * and returns it at @logical + it's physical address at @phys
1195 * if *logical is the smallest allocated block, the function
1196 * returns 0 at @phys
1197 * return value contains 0 (success) or error code
1199 static int ext4_ext_search_left(struct inode *inode,
1200 struct ext4_ext_path *path,
1201 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1203 struct ext4_extent_idx *ix;
1204 struct ext4_extent *ex;
1205 int depth, ee_len;
1207 if (unlikely(path == NULL)) {
1208 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1209 return -EIO;
1211 depth = path->p_depth;
1212 *phys = 0;
1214 if (depth == 0 && path->p_ext == NULL)
1215 return 0;
1217 /* usually extent in the path covers blocks smaller
1218 * then *logical, but it can be that extent is the
1219 * first one in the file */
1221 ex = path[depth].p_ext;
1222 ee_len = ext4_ext_get_actual_len(ex);
1223 if (*logical < le32_to_cpu(ex->ee_block)) {
1224 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1225 EXT4_ERROR_INODE(inode,
1226 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1227 *logical, le32_to_cpu(ex->ee_block));
1228 return -EIO;
1230 while (--depth >= 0) {
1231 ix = path[depth].p_idx;
1232 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1233 EXT4_ERROR_INODE(inode,
1234 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1235 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1236 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1237 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1238 depth);
1239 return -EIO;
1242 return 0;
1245 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1246 EXT4_ERROR_INODE(inode,
1247 "logical %d < ee_block %d + ee_len %d!",
1248 *logical, le32_to_cpu(ex->ee_block), ee_len);
1249 return -EIO;
1252 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1253 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1254 return 0;
1258 * search the closest allocated block to the right for *logical
1259 * and returns it at @logical + it's physical address at @phys
1260 * if *logical is the largest allocated block, the function
1261 * returns 0 at @phys
1262 * return value contains 0 (success) or error code
1264 static int ext4_ext_search_right(struct inode *inode,
1265 struct ext4_ext_path *path,
1266 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1267 struct ext4_extent **ret_ex)
1269 struct buffer_head *bh = NULL;
1270 struct ext4_extent_header *eh;
1271 struct ext4_extent_idx *ix;
1272 struct ext4_extent *ex;
1273 ext4_fsblk_t block;
1274 int depth; /* Note, NOT eh_depth; depth from top of tree */
1275 int ee_len;
1277 if (unlikely(path == NULL)) {
1278 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1279 return -EIO;
1281 depth = path->p_depth;
1282 *phys = 0;
1284 if (depth == 0 && path->p_ext == NULL)
1285 return 0;
1287 /* usually extent in the path covers blocks smaller
1288 * then *logical, but it can be that extent is the
1289 * first one in the file */
1291 ex = path[depth].p_ext;
1292 ee_len = ext4_ext_get_actual_len(ex);
1293 if (*logical < le32_to_cpu(ex->ee_block)) {
1294 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1295 EXT4_ERROR_INODE(inode,
1296 "first_extent(path[%d].p_hdr) != ex",
1297 depth);
1298 return -EIO;
1300 while (--depth >= 0) {
1301 ix = path[depth].p_idx;
1302 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1303 EXT4_ERROR_INODE(inode,
1304 "ix != EXT_FIRST_INDEX *logical %d!",
1305 *logical);
1306 return -EIO;
1309 goto found_extent;
1312 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1313 EXT4_ERROR_INODE(inode,
1314 "logical %d < ee_block %d + ee_len %d!",
1315 *logical, le32_to_cpu(ex->ee_block), ee_len);
1316 return -EIO;
1319 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1320 /* next allocated block in this leaf */
1321 ex++;
1322 goto found_extent;
1325 /* go up and search for index to the right */
1326 while (--depth >= 0) {
1327 ix = path[depth].p_idx;
1328 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1329 goto got_index;
1332 /* we've gone up to the root and found no index to the right */
1333 return 0;
1335 got_index:
1336 /* we've found index to the right, let's
1337 * follow it and find the closest allocated
1338 * block to the right */
1339 ix++;
1340 block = ext4_idx_pblock(ix);
1341 while (++depth < path->p_depth) {
1342 bh = sb_bread(inode->i_sb, block);
1343 if (bh == NULL)
1344 return -EIO;
1345 eh = ext_block_hdr(bh);
1346 /* subtract from p_depth to get proper eh_depth */
1347 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1348 put_bh(bh);
1349 return -EIO;
1351 ix = EXT_FIRST_INDEX(eh);
1352 block = ext4_idx_pblock(ix);
1353 put_bh(bh);
1356 bh = sb_bread(inode->i_sb, block);
1357 if (bh == NULL)
1358 return -EIO;
1359 eh = ext_block_hdr(bh);
1360 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1361 put_bh(bh);
1362 return -EIO;
1364 ex = EXT_FIRST_EXTENT(eh);
1365 found_extent:
1366 *logical = le32_to_cpu(ex->ee_block);
1367 *phys = ext4_ext_pblock(ex);
1368 *ret_ex = ex;
1369 if (bh)
1370 put_bh(bh);
1371 return 0;
1375 * ext4_ext_next_allocated_block:
1376 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1377 * NOTE: it considers block number from index entry as
1378 * allocated block. Thus, index entries have to be consistent
1379 * with leaves.
1381 static ext4_lblk_t
1382 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1384 int depth;
1386 BUG_ON(path == NULL);
1387 depth = path->p_depth;
1389 if (depth == 0 && path->p_ext == NULL)
1390 return EXT_MAX_BLOCKS;
1392 while (depth >= 0) {
1393 if (depth == path->p_depth) {
1394 /* leaf */
1395 if (path[depth].p_ext &&
1396 path[depth].p_ext !=
1397 EXT_LAST_EXTENT(path[depth].p_hdr))
1398 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1399 } else {
1400 /* index */
1401 if (path[depth].p_idx !=
1402 EXT_LAST_INDEX(path[depth].p_hdr))
1403 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1405 depth--;
1408 return EXT_MAX_BLOCKS;
1412 * ext4_ext_next_leaf_block:
1413 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1415 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1417 int depth;
1419 BUG_ON(path == NULL);
1420 depth = path->p_depth;
1422 /* zero-tree has no leaf blocks at all */
1423 if (depth == 0)
1424 return EXT_MAX_BLOCKS;
1426 /* go to index block */
1427 depth--;
1429 while (depth >= 0) {
1430 if (path[depth].p_idx !=
1431 EXT_LAST_INDEX(path[depth].p_hdr))
1432 return (ext4_lblk_t)
1433 le32_to_cpu(path[depth].p_idx[1].ei_block);
1434 depth--;
1437 return EXT_MAX_BLOCKS;
1441 * ext4_ext_correct_indexes:
1442 * if leaf gets modified and modified extent is first in the leaf,
1443 * then we have to correct all indexes above.
1444 * TODO: do we need to correct tree in all cases?
1446 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1447 struct ext4_ext_path *path)
1449 struct ext4_extent_header *eh;
1450 int depth = ext_depth(inode);
1451 struct ext4_extent *ex;
1452 __le32 border;
1453 int k, err = 0;
1455 eh = path[depth].p_hdr;
1456 ex = path[depth].p_ext;
1458 if (unlikely(ex == NULL || eh == NULL)) {
1459 EXT4_ERROR_INODE(inode,
1460 "ex %p == NULL or eh %p == NULL", ex, eh);
1461 return -EIO;
1464 if (depth == 0) {
1465 /* there is no tree at all */
1466 return 0;
1469 if (ex != EXT_FIRST_EXTENT(eh)) {
1470 /* we correct tree if first leaf got modified only */
1471 return 0;
1475 * TODO: we need correction if border is smaller than current one
1477 k = depth - 1;
1478 border = path[depth].p_ext->ee_block;
1479 err = ext4_ext_get_access(handle, inode, path + k);
1480 if (err)
1481 return err;
1482 path[k].p_idx->ei_block = border;
1483 err = ext4_ext_dirty(handle, inode, path + k);
1484 if (err)
1485 return err;
1487 while (k--) {
1488 /* change all left-side indexes */
1489 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1490 break;
1491 err = ext4_ext_get_access(handle, inode, path + k);
1492 if (err)
1493 break;
1494 path[k].p_idx->ei_block = border;
1495 err = ext4_ext_dirty(handle, inode, path + k);
1496 if (err)
1497 break;
1500 return err;
1504 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1505 struct ext4_extent *ex2)
1507 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1510 * Make sure that either both extents are uninitialized, or
1511 * both are _not_.
1513 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1514 return 0;
1516 if (ext4_ext_is_uninitialized(ex1))
1517 max_len = EXT_UNINIT_MAX_LEN;
1518 else
1519 max_len = EXT_INIT_MAX_LEN;
1521 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1522 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1524 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1525 le32_to_cpu(ex2->ee_block))
1526 return 0;
1529 * To allow future support for preallocated extents to be added
1530 * as an RO_COMPAT feature, refuse to merge to extents if
1531 * this can result in the top bit of ee_len being set.
1533 if (ext1_ee_len + ext2_ee_len > max_len)
1534 return 0;
1535 #ifdef AGGRESSIVE_TEST
1536 if (ext1_ee_len >= 4)
1537 return 0;
1538 #endif
1540 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1541 return 1;
1542 return 0;
1546 * This function tries to merge the "ex" extent to the next extent in the tree.
1547 * It always tries to merge towards right. If you want to merge towards
1548 * left, pass "ex - 1" as argument instead of "ex".
1549 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1550 * 1 if they got merged.
1552 static int ext4_ext_try_to_merge_right(struct inode *inode,
1553 struct ext4_ext_path *path,
1554 struct ext4_extent *ex)
1556 struct ext4_extent_header *eh;
1557 unsigned int depth, len;
1558 int merge_done = 0;
1559 int uninitialized = 0;
1561 depth = ext_depth(inode);
1562 BUG_ON(path[depth].p_hdr == NULL);
1563 eh = path[depth].p_hdr;
1565 while (ex < EXT_LAST_EXTENT(eh)) {
1566 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1567 break;
1568 /* merge with next extent! */
1569 if (ext4_ext_is_uninitialized(ex))
1570 uninitialized = 1;
1571 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1572 + ext4_ext_get_actual_len(ex + 1));
1573 if (uninitialized)
1574 ext4_ext_mark_uninitialized(ex);
1576 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1577 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1578 * sizeof(struct ext4_extent);
1579 memmove(ex + 1, ex + 2, len);
1581 le16_add_cpu(&eh->eh_entries, -1);
1582 merge_done = 1;
1583 WARN_ON(eh->eh_entries == 0);
1584 if (!eh->eh_entries)
1585 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1588 return merge_done;
1592 * This function tries to merge the @ex extent to neighbours in the tree.
1593 * return 1 if merge left else 0.
1595 static int ext4_ext_try_to_merge(struct inode *inode,
1596 struct ext4_ext_path *path,
1597 struct ext4_extent *ex) {
1598 struct ext4_extent_header *eh;
1599 unsigned int depth;
1600 int merge_done = 0;
1601 int ret = 0;
1603 depth = ext_depth(inode);
1604 BUG_ON(path[depth].p_hdr == NULL);
1605 eh = path[depth].p_hdr;
1607 if (ex > EXT_FIRST_EXTENT(eh))
1608 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1610 if (!merge_done)
1611 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1613 return ret;
1617 * check if a portion of the "newext" extent overlaps with an
1618 * existing extent.
1620 * If there is an overlap discovered, it updates the length of the newext
1621 * such that there will be no overlap, and then returns 1.
1622 * If there is no overlap found, it returns 0.
1624 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1625 struct inode *inode,
1626 struct ext4_extent *newext,
1627 struct ext4_ext_path *path)
1629 ext4_lblk_t b1, b2;
1630 unsigned int depth, len1;
1631 unsigned int ret = 0;
1633 b1 = le32_to_cpu(newext->ee_block);
1634 len1 = ext4_ext_get_actual_len(newext);
1635 depth = ext_depth(inode);
1636 if (!path[depth].p_ext)
1637 goto out;
1638 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1639 b2 &= ~(sbi->s_cluster_ratio - 1);
1642 * get the next allocated block if the extent in the path
1643 * is before the requested block(s)
1645 if (b2 < b1) {
1646 b2 = ext4_ext_next_allocated_block(path);
1647 if (b2 == EXT_MAX_BLOCKS)
1648 goto out;
1649 b2 &= ~(sbi->s_cluster_ratio - 1);
1652 /* check for wrap through zero on extent logical start block*/
1653 if (b1 + len1 < b1) {
1654 len1 = EXT_MAX_BLOCKS - b1;
1655 newext->ee_len = cpu_to_le16(len1);
1656 ret = 1;
1659 /* check for overlap */
1660 if (b1 + len1 > b2) {
1661 newext->ee_len = cpu_to_le16(b2 - b1);
1662 ret = 1;
1664 out:
1665 return ret;
1669 * ext4_ext_insert_extent:
1670 * tries to merge requsted extent into the existing extent or
1671 * inserts requested extent as new one into the tree,
1672 * creating new leaf in the no-space case.
1674 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1675 struct ext4_ext_path *path,
1676 struct ext4_extent *newext, int flag)
1678 struct ext4_extent_header *eh;
1679 struct ext4_extent *ex, *fex;
1680 struct ext4_extent *nearex; /* nearest extent */
1681 struct ext4_ext_path *npath = NULL;
1682 int depth, len, err;
1683 ext4_lblk_t next;
1684 unsigned uninitialized = 0;
1685 int flags = 0;
1687 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1688 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1689 return -EIO;
1691 depth = ext_depth(inode);
1692 ex = path[depth].p_ext;
1693 if (unlikely(path[depth].p_hdr == NULL)) {
1694 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1695 return -EIO;
1698 /* try to insert block into found extent and return */
1699 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1700 && ext4_can_extents_be_merged(inode, ex, newext)) {
1701 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1702 ext4_ext_is_uninitialized(newext),
1703 ext4_ext_get_actual_len(newext),
1704 le32_to_cpu(ex->ee_block),
1705 ext4_ext_is_uninitialized(ex),
1706 ext4_ext_get_actual_len(ex),
1707 ext4_ext_pblock(ex));
1708 err = ext4_ext_get_access(handle, inode, path + depth);
1709 if (err)
1710 return err;
1713 * ext4_can_extents_be_merged should have checked that either
1714 * both extents are uninitialized, or both aren't. Thus we
1715 * need to check only one of them here.
1717 if (ext4_ext_is_uninitialized(ex))
1718 uninitialized = 1;
1719 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1720 + ext4_ext_get_actual_len(newext));
1721 if (uninitialized)
1722 ext4_ext_mark_uninitialized(ex);
1723 eh = path[depth].p_hdr;
1724 nearex = ex;
1725 goto merge;
1728 depth = ext_depth(inode);
1729 eh = path[depth].p_hdr;
1730 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1731 goto has_space;
1733 /* probably next leaf has space for us? */
1734 fex = EXT_LAST_EXTENT(eh);
1735 next = EXT_MAX_BLOCKS;
1736 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1737 next = ext4_ext_next_leaf_block(path);
1738 if (next != EXT_MAX_BLOCKS) {
1739 ext_debug("next leaf block - %u\n", next);
1740 BUG_ON(npath != NULL);
1741 npath = ext4_ext_find_extent(inode, next, NULL);
1742 if (IS_ERR(npath))
1743 return PTR_ERR(npath);
1744 BUG_ON(npath->p_depth != path->p_depth);
1745 eh = npath[depth].p_hdr;
1746 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1747 ext_debug("next leaf isn't full(%d)\n",
1748 le16_to_cpu(eh->eh_entries));
1749 path = npath;
1750 goto has_space;
1752 ext_debug("next leaf has no free space(%d,%d)\n",
1753 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1757 * There is no free space in the found leaf.
1758 * We're gonna add a new leaf in the tree.
1760 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1761 flags = EXT4_MB_USE_ROOT_BLOCKS;
1762 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1763 if (err)
1764 goto cleanup;
1765 depth = ext_depth(inode);
1766 eh = path[depth].p_hdr;
1768 has_space:
1769 nearex = path[depth].p_ext;
1771 err = ext4_ext_get_access(handle, inode, path + depth);
1772 if (err)
1773 goto cleanup;
1775 if (!nearex) {
1776 /* there is no extent in this leaf, create first one */
1777 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1778 le32_to_cpu(newext->ee_block),
1779 ext4_ext_pblock(newext),
1780 ext4_ext_is_uninitialized(newext),
1781 ext4_ext_get_actual_len(newext));
1782 nearex = EXT_FIRST_EXTENT(eh);
1783 } else {
1784 if (le32_to_cpu(newext->ee_block)
1785 > le32_to_cpu(nearex->ee_block)) {
1786 /* Insert after */
1787 ext_debug("insert %u:%llu:[%d]%d before: "
1788 "nearest %p\n",
1789 le32_to_cpu(newext->ee_block),
1790 ext4_ext_pblock(newext),
1791 ext4_ext_is_uninitialized(newext),
1792 ext4_ext_get_actual_len(newext),
1793 nearex);
1794 nearex++;
1795 } else {
1796 /* Insert before */
1797 BUG_ON(newext->ee_block == nearex->ee_block);
1798 ext_debug("insert %u:%llu:[%d]%d after: "
1799 "nearest %p\n",
1800 le32_to_cpu(newext->ee_block),
1801 ext4_ext_pblock(newext),
1802 ext4_ext_is_uninitialized(newext),
1803 ext4_ext_get_actual_len(newext),
1804 nearex);
1806 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1807 if (len > 0) {
1808 ext_debug("insert %u:%llu:[%d]%d: "
1809 "move %d extents from 0x%p to 0x%p\n",
1810 le32_to_cpu(newext->ee_block),
1811 ext4_ext_pblock(newext),
1812 ext4_ext_is_uninitialized(newext),
1813 ext4_ext_get_actual_len(newext),
1814 len, nearex, nearex + 1);
1815 memmove(nearex + 1, nearex,
1816 len * sizeof(struct ext4_extent));
1820 le16_add_cpu(&eh->eh_entries, 1);
1821 path[depth].p_ext = nearex;
1822 nearex->ee_block = newext->ee_block;
1823 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1824 nearex->ee_len = newext->ee_len;
1826 merge:
1827 /* try to merge extents to the right */
1828 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1829 ext4_ext_try_to_merge(inode, path, nearex);
1831 /* try to merge extents to the left */
1833 /* time to correct all indexes above */
1834 err = ext4_ext_correct_indexes(handle, inode, path);
1835 if (err)
1836 goto cleanup;
1838 err = ext4_ext_dirty(handle, inode, path + depth);
1840 cleanup:
1841 if (npath) {
1842 ext4_ext_drop_refs(npath);
1843 kfree(npath);
1845 ext4_ext_invalidate_cache(inode);
1846 return err;
1849 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1850 ext4_lblk_t num, ext_prepare_callback func,
1851 void *cbdata)
1853 struct ext4_ext_path *path = NULL;
1854 struct ext4_ext_cache cbex;
1855 struct ext4_extent *ex;
1856 ext4_lblk_t next, start = 0, end = 0;
1857 ext4_lblk_t last = block + num;
1858 int depth, exists, err = 0;
1860 BUG_ON(func == NULL);
1861 BUG_ON(inode == NULL);
1863 while (block < last && block != EXT_MAX_BLOCKS) {
1864 num = last - block;
1865 /* find extent for this block */
1866 down_read(&EXT4_I(inode)->i_data_sem);
1867 path = ext4_ext_find_extent(inode, block, path);
1868 up_read(&EXT4_I(inode)->i_data_sem);
1869 if (IS_ERR(path)) {
1870 err = PTR_ERR(path);
1871 path = NULL;
1872 break;
1875 depth = ext_depth(inode);
1876 if (unlikely(path[depth].p_hdr == NULL)) {
1877 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1878 err = -EIO;
1879 break;
1881 ex = path[depth].p_ext;
1882 next = ext4_ext_next_allocated_block(path);
1884 exists = 0;
1885 if (!ex) {
1886 /* there is no extent yet, so try to allocate
1887 * all requested space */
1888 start = block;
1889 end = block + num;
1890 } else if (le32_to_cpu(ex->ee_block) > block) {
1891 /* need to allocate space before found extent */
1892 start = block;
1893 end = le32_to_cpu(ex->ee_block);
1894 if (block + num < end)
1895 end = block + num;
1896 } else if (block >= le32_to_cpu(ex->ee_block)
1897 + ext4_ext_get_actual_len(ex)) {
1898 /* need to allocate space after found extent */
1899 start = block;
1900 end = block + num;
1901 if (end >= next)
1902 end = next;
1903 } else if (block >= le32_to_cpu(ex->ee_block)) {
1905 * some part of requested space is covered
1906 * by found extent
1908 start = block;
1909 end = le32_to_cpu(ex->ee_block)
1910 + ext4_ext_get_actual_len(ex);
1911 if (block + num < end)
1912 end = block + num;
1913 exists = 1;
1914 } else {
1915 BUG();
1917 BUG_ON(end <= start);
1919 if (!exists) {
1920 cbex.ec_block = start;
1921 cbex.ec_len = end - start;
1922 cbex.ec_start = 0;
1923 } else {
1924 cbex.ec_block = le32_to_cpu(ex->ee_block);
1925 cbex.ec_len = ext4_ext_get_actual_len(ex);
1926 cbex.ec_start = ext4_ext_pblock(ex);
1929 if (unlikely(cbex.ec_len == 0)) {
1930 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1931 err = -EIO;
1932 break;
1934 err = func(inode, next, &cbex, ex, cbdata);
1935 ext4_ext_drop_refs(path);
1937 if (err < 0)
1938 break;
1940 if (err == EXT_REPEAT)
1941 continue;
1942 else if (err == EXT_BREAK) {
1943 err = 0;
1944 break;
1947 if (ext_depth(inode) != depth) {
1948 /* depth was changed. we have to realloc path */
1949 kfree(path);
1950 path = NULL;
1953 block = cbex.ec_block + cbex.ec_len;
1956 if (path) {
1957 ext4_ext_drop_refs(path);
1958 kfree(path);
1961 return err;
1964 static void
1965 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1966 __u32 len, ext4_fsblk_t start)
1968 struct ext4_ext_cache *cex;
1969 BUG_ON(len == 0);
1970 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1971 trace_ext4_ext_put_in_cache(inode, block, len, start);
1972 cex = &EXT4_I(inode)->i_cached_extent;
1973 cex->ec_block = block;
1974 cex->ec_len = len;
1975 cex->ec_start = start;
1976 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1980 * ext4_ext_put_gap_in_cache:
1981 * calculate boundaries of the gap that the requested block fits into
1982 * and cache this gap
1984 static void
1985 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1986 ext4_lblk_t block)
1988 int depth = ext_depth(inode);
1989 unsigned long len;
1990 ext4_lblk_t lblock;
1991 struct ext4_extent *ex;
1993 ex = path[depth].p_ext;
1994 if (ex == NULL) {
1995 /* there is no extent yet, so gap is [0;-] */
1996 lblock = 0;
1997 len = EXT_MAX_BLOCKS;
1998 ext_debug("cache gap(whole file):");
1999 } else if (block < le32_to_cpu(ex->ee_block)) {
2000 lblock = block;
2001 len = le32_to_cpu(ex->ee_block) - block;
2002 ext_debug("cache gap(before): %u [%u:%u]",
2003 block,
2004 le32_to_cpu(ex->ee_block),
2005 ext4_ext_get_actual_len(ex));
2006 } else if (block >= le32_to_cpu(ex->ee_block)
2007 + ext4_ext_get_actual_len(ex)) {
2008 ext4_lblk_t next;
2009 lblock = le32_to_cpu(ex->ee_block)
2010 + ext4_ext_get_actual_len(ex);
2012 next = ext4_ext_next_allocated_block(path);
2013 ext_debug("cache gap(after): [%u:%u] %u",
2014 le32_to_cpu(ex->ee_block),
2015 ext4_ext_get_actual_len(ex),
2016 block);
2017 BUG_ON(next == lblock);
2018 len = next - lblock;
2019 } else {
2020 lblock = len = 0;
2021 BUG();
2024 ext_debug(" -> %u:%lu\n", lblock, len);
2025 ext4_ext_put_in_cache(inode, lblock, len, 0);
2029 * ext4_ext_check_cache()
2030 * Checks to see if the given block is in the cache.
2031 * If it is, the cached extent is stored in the given
2032 * cache extent pointer. If the cached extent is a hole,
2033 * this routine should be used instead of
2034 * ext4_ext_in_cache if the calling function needs to
2035 * know the size of the hole.
2037 * @inode: The files inode
2038 * @block: The block to look for in the cache
2039 * @ex: Pointer where the cached extent will be stored
2040 * if it contains block
2042 * Return 0 if cache is invalid; 1 if the cache is valid
2044 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2045 struct ext4_ext_cache *ex){
2046 struct ext4_ext_cache *cex;
2047 struct ext4_sb_info *sbi;
2048 int ret = 0;
2051 * We borrow i_block_reservation_lock to protect i_cached_extent
2053 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2054 cex = &EXT4_I(inode)->i_cached_extent;
2055 sbi = EXT4_SB(inode->i_sb);
2057 /* has cache valid data? */
2058 if (cex->ec_len == 0)
2059 goto errout;
2061 if (in_range(block, cex->ec_block, cex->ec_len)) {
2062 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2063 ext_debug("%u cached by %u:%u:%llu\n",
2064 block,
2065 cex->ec_block, cex->ec_len, cex->ec_start);
2066 ret = 1;
2068 errout:
2069 trace_ext4_ext_in_cache(inode, block, ret);
2070 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2071 return ret;
2075 * ext4_ext_in_cache()
2076 * Checks to see if the given block is in the cache.
2077 * If it is, the cached extent is stored in the given
2078 * extent pointer.
2080 * @inode: The files inode
2081 * @block: The block to look for in the cache
2082 * @ex: Pointer where the cached extent will be stored
2083 * if it contains block
2085 * Return 0 if cache is invalid; 1 if the cache is valid
2087 static int
2088 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2089 struct ext4_extent *ex)
2091 struct ext4_ext_cache cex;
2092 int ret = 0;
2094 if (ext4_ext_check_cache(inode, block, &cex)) {
2095 ex->ee_block = cpu_to_le32(cex.ec_block);
2096 ext4_ext_store_pblock(ex, cex.ec_start);
2097 ex->ee_len = cpu_to_le16(cex.ec_len);
2098 ret = 1;
2101 return ret;
2106 * ext4_ext_rm_idx:
2107 * removes index from the index block.
2109 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2110 struct ext4_ext_path *path)
2112 int err;
2113 ext4_fsblk_t leaf;
2115 /* free index block */
2116 path--;
2117 leaf = ext4_idx_pblock(path->p_idx);
2118 if (unlikely(path->p_hdr->eh_entries == 0)) {
2119 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2120 return -EIO;
2122 err = ext4_ext_get_access(handle, inode, path);
2123 if (err)
2124 return err;
2126 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2127 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2128 len *= sizeof(struct ext4_extent_idx);
2129 memmove(path->p_idx, path->p_idx + 1, len);
2132 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2133 err = ext4_ext_dirty(handle, inode, path);
2134 if (err)
2135 return err;
2136 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2137 trace_ext4_ext_rm_idx(inode, leaf);
2139 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2140 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2141 return err;
2145 * ext4_ext_calc_credits_for_single_extent:
2146 * This routine returns max. credits that needed to insert an extent
2147 * to the extent tree.
2148 * When pass the actual path, the caller should calculate credits
2149 * under i_data_sem.
2151 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2152 struct ext4_ext_path *path)
2154 if (path) {
2155 int depth = ext_depth(inode);
2156 int ret = 0;
2158 /* probably there is space in leaf? */
2159 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2160 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2163 * There are some space in the leaf tree, no
2164 * need to account for leaf block credit
2166 * bitmaps and block group descriptor blocks
2167 * and other metadata blocks still need to be
2168 * accounted.
2170 /* 1 bitmap, 1 block group descriptor */
2171 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2172 return ret;
2176 return ext4_chunk_trans_blocks(inode, nrblocks);
2180 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2182 * if nrblocks are fit in a single extent (chunk flag is 1), then
2183 * in the worse case, each tree level index/leaf need to be changed
2184 * if the tree split due to insert a new extent, then the old tree
2185 * index/leaf need to be updated too
2187 * If the nrblocks are discontiguous, they could cause
2188 * the whole tree split more than once, but this is really rare.
2190 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2192 int index;
2193 int depth = ext_depth(inode);
2195 if (chunk)
2196 index = depth * 2;
2197 else
2198 index = depth * 3;
2200 return index;
2203 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2204 struct ext4_extent *ex,
2205 ext4_fsblk_t *partial_cluster,
2206 ext4_lblk_t from, ext4_lblk_t to)
2208 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2209 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2210 ext4_fsblk_t pblk;
2211 int flags = EXT4_FREE_BLOCKS_FORGET;
2213 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2214 flags |= EXT4_FREE_BLOCKS_METADATA;
2216 * For bigalloc file systems, we never free a partial cluster
2217 * at the beginning of the extent. Instead, we make a note
2218 * that we tried freeing the cluster, and check to see if we
2219 * need to free it on a subsequent call to ext4_remove_blocks,
2220 * or at the end of the ext4_truncate() operation.
2222 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2224 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2226 * If we have a partial cluster, and it's different from the
2227 * cluster of the last block, we need to explicitly free the
2228 * partial cluster here.
2230 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2231 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2232 ext4_free_blocks(handle, inode, NULL,
2233 EXT4_C2B(sbi, *partial_cluster),
2234 sbi->s_cluster_ratio, flags);
2235 *partial_cluster = 0;
2238 #ifdef EXTENTS_STATS
2240 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2241 spin_lock(&sbi->s_ext_stats_lock);
2242 sbi->s_ext_blocks += ee_len;
2243 sbi->s_ext_extents++;
2244 if (ee_len < sbi->s_ext_min)
2245 sbi->s_ext_min = ee_len;
2246 if (ee_len > sbi->s_ext_max)
2247 sbi->s_ext_max = ee_len;
2248 if (ext_depth(inode) > sbi->s_depth_max)
2249 sbi->s_depth_max = ext_depth(inode);
2250 spin_unlock(&sbi->s_ext_stats_lock);
2252 #endif
2253 if (from >= le32_to_cpu(ex->ee_block)
2254 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2255 /* tail removal */
2256 ext4_lblk_t num;
2258 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2259 pblk = ext4_ext_pblock(ex) + ee_len - num;
2260 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2261 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2263 * If the block range to be freed didn't start at the
2264 * beginning of a cluster, and we removed the entire
2265 * extent, save the partial cluster here, since we
2266 * might need to delete if we determine that the
2267 * truncate operation has removed all of the blocks in
2268 * the cluster.
2270 if (pblk & (sbi->s_cluster_ratio - 1) &&
2271 (ee_len == num))
2272 *partial_cluster = EXT4_B2C(sbi, pblk);
2273 else
2274 *partial_cluster = 0;
2275 } else if (from == le32_to_cpu(ex->ee_block)
2276 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2277 /* head removal */
2278 ext4_lblk_t num;
2279 ext4_fsblk_t start;
2281 num = to - from;
2282 start = ext4_ext_pblock(ex);
2284 ext_debug("free first %u blocks starting %llu\n", num, start);
2285 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2287 } else {
2288 printk(KERN_INFO "strange request: removal(2) "
2289 "%u-%u from %u:%u\n",
2290 from, to, le32_to_cpu(ex->ee_block), ee_len);
2292 return 0;
2297 * ext4_ext_rm_leaf() Removes the extents associated with the
2298 * blocks appearing between "start" and "end", and splits the extents
2299 * if "start" and "end" appear in the same extent
2301 * @handle: The journal handle
2302 * @inode: The files inode
2303 * @path: The path to the leaf
2304 * @start: The first block to remove
2305 * @end: The last block to remove
2307 static int
2308 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2309 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2310 ext4_lblk_t start, ext4_lblk_t end)
2312 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2313 int err = 0, correct_index = 0;
2314 int depth = ext_depth(inode), credits;
2315 struct ext4_extent_header *eh;
2316 ext4_lblk_t a, b;
2317 unsigned num;
2318 ext4_lblk_t ex_ee_block;
2319 unsigned short ex_ee_len;
2320 unsigned uninitialized = 0;
2321 struct ext4_extent *ex;
2323 /* the header must be checked already in ext4_ext_remove_space() */
2324 ext_debug("truncate since %u in leaf to %u\n", start, end);
2325 if (!path[depth].p_hdr)
2326 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2327 eh = path[depth].p_hdr;
2328 if (unlikely(path[depth].p_hdr == NULL)) {
2329 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2330 return -EIO;
2332 /* find where to start removing */
2333 ex = EXT_LAST_EXTENT(eh);
2335 ex_ee_block = le32_to_cpu(ex->ee_block);
2336 ex_ee_len = ext4_ext_get_actual_len(ex);
2338 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2340 while (ex >= EXT_FIRST_EXTENT(eh) &&
2341 ex_ee_block + ex_ee_len > start) {
2343 if (ext4_ext_is_uninitialized(ex))
2344 uninitialized = 1;
2345 else
2346 uninitialized = 0;
2348 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2349 uninitialized, ex_ee_len);
2350 path[depth].p_ext = ex;
2352 a = ex_ee_block > start ? ex_ee_block : start;
2353 b = ex_ee_block+ex_ee_len - 1 < end ?
2354 ex_ee_block+ex_ee_len - 1 : end;
2356 ext_debug(" border %u:%u\n", a, b);
2358 /* If this extent is beyond the end of the hole, skip it */
2359 if (end < ex_ee_block) {
2360 ex--;
2361 ex_ee_block = le32_to_cpu(ex->ee_block);
2362 ex_ee_len = ext4_ext_get_actual_len(ex);
2363 continue;
2364 } else if (b != ex_ee_block + ex_ee_len - 1) {
2365 EXT4_ERROR_INODE(inode,
2366 "can not handle truncate %u:%u "
2367 "on extent %u:%u",
2368 start, end, ex_ee_block,
2369 ex_ee_block + ex_ee_len - 1);
2370 err = -EIO;
2371 goto out;
2372 } else if (a != ex_ee_block) {
2373 /* remove tail of the extent */
2374 num = a - ex_ee_block;
2375 } else {
2376 /* remove whole extent: excellent! */
2377 num = 0;
2380 * 3 for leaf, sb, and inode plus 2 (bmap and group
2381 * descriptor) for each block group; assume two block
2382 * groups plus ex_ee_len/blocks_per_block_group for
2383 * the worst case
2385 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2386 if (ex == EXT_FIRST_EXTENT(eh)) {
2387 correct_index = 1;
2388 credits += (ext_depth(inode)) + 1;
2390 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2392 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2393 if (err)
2394 goto out;
2396 err = ext4_ext_get_access(handle, inode, path + depth);
2397 if (err)
2398 goto out;
2400 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2401 a, b);
2402 if (err)
2403 goto out;
2405 if (num == 0)
2406 /* this extent is removed; mark slot entirely unused */
2407 ext4_ext_store_pblock(ex, 0);
2409 ex->ee_len = cpu_to_le16(num);
2411 * Do not mark uninitialized if all the blocks in the
2412 * extent have been removed.
2414 if (uninitialized && num)
2415 ext4_ext_mark_uninitialized(ex);
2417 * If the extent was completely released,
2418 * we need to remove it from the leaf
2420 if (num == 0) {
2421 if (end != EXT_MAX_BLOCKS - 1) {
2423 * For hole punching, we need to scoot all the
2424 * extents up when an extent is removed so that
2425 * we dont have blank extents in the middle
2427 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2428 sizeof(struct ext4_extent));
2430 /* Now get rid of the one at the end */
2431 memset(EXT_LAST_EXTENT(eh), 0,
2432 sizeof(struct ext4_extent));
2434 le16_add_cpu(&eh->eh_entries, -1);
2435 } else
2436 *partial_cluster = 0;
2438 err = ext4_ext_dirty(handle, inode, path + depth);
2439 if (err)
2440 goto out;
2442 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2443 ext4_ext_pblock(ex));
2444 ex--;
2445 ex_ee_block = le32_to_cpu(ex->ee_block);
2446 ex_ee_len = ext4_ext_get_actual_len(ex);
2449 if (correct_index && eh->eh_entries)
2450 err = ext4_ext_correct_indexes(handle, inode, path);
2453 * If there is still a entry in the leaf node, check to see if
2454 * it references the partial cluster. This is the only place
2455 * where it could; if it doesn't, we can free the cluster.
2457 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2458 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2459 *partial_cluster)) {
2460 int flags = EXT4_FREE_BLOCKS_FORGET;
2462 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2463 flags |= EXT4_FREE_BLOCKS_METADATA;
2465 ext4_free_blocks(handle, inode, NULL,
2466 EXT4_C2B(sbi, *partial_cluster),
2467 sbi->s_cluster_ratio, flags);
2468 *partial_cluster = 0;
2471 /* if this leaf is free, then we should
2472 * remove it from index block above */
2473 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2474 err = ext4_ext_rm_idx(handle, inode, path + depth);
2476 out:
2477 return err;
2481 * ext4_ext_more_to_rm:
2482 * returns 1 if current index has to be freed (even partial)
2484 static int
2485 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2487 BUG_ON(path->p_idx == NULL);
2489 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2490 return 0;
2493 * if truncate on deeper level happened, it wasn't partial,
2494 * so we have to consider current index for truncation
2496 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2497 return 0;
2498 return 1;
2501 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2502 ext4_lblk_t end)
2504 struct super_block *sb = inode->i_sb;
2505 int depth = ext_depth(inode);
2506 struct ext4_ext_path *path;
2507 ext4_fsblk_t partial_cluster = 0;
2508 handle_t *handle;
2509 int i, err;
2511 ext_debug("truncate since %u to %u\n", start, end);
2513 /* probably first extent we're gonna free will be last in block */
2514 handle = ext4_journal_start(inode, depth + 1);
2515 if (IS_ERR(handle))
2516 return PTR_ERR(handle);
2518 again:
2519 ext4_ext_invalidate_cache(inode);
2521 trace_ext4_ext_remove_space(inode, start, depth);
2524 * Check if we are removing extents inside the extent tree. If that
2525 * is the case, we are going to punch a hole inside the extent tree
2526 * so we have to check whether we need to split the extent covering
2527 * the last block to remove so we can easily remove the part of it
2528 * in ext4_ext_rm_leaf().
2530 if (end < EXT_MAX_BLOCKS - 1) {
2531 struct ext4_extent *ex;
2532 ext4_lblk_t ee_block;
2534 /* find extent for this block */
2535 path = ext4_ext_find_extent(inode, end, NULL);
2536 if (IS_ERR(path)) {
2537 ext4_journal_stop(handle);
2538 return PTR_ERR(path);
2540 depth = ext_depth(inode);
2541 ex = path[depth].p_ext;
2542 if (!ex)
2543 goto cont;
2545 ee_block = le32_to_cpu(ex->ee_block);
2548 * See if the last block is inside the extent, if so split
2549 * the extent at 'end' block so we can easily remove the
2550 * tail of the first part of the split extent in
2551 * ext4_ext_rm_leaf().
2553 if (end >= ee_block &&
2554 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2555 int split_flag = 0;
2557 if (ext4_ext_is_uninitialized(ex))
2558 split_flag = EXT4_EXT_MARK_UNINIT1 |
2559 EXT4_EXT_MARK_UNINIT2;
2562 * Split the extent in two so that 'end' is the last
2563 * block in the first new extent
2565 err = ext4_split_extent_at(handle, inode, path,
2566 end + 1, split_flag,
2567 EXT4_GET_BLOCKS_PRE_IO |
2568 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2570 if (err < 0)
2571 goto out;
2573 ext4_ext_drop_refs(path);
2574 kfree(path);
2576 cont:
2579 * We start scanning from right side, freeing all the blocks
2580 * after i_size and walking into the tree depth-wise.
2582 depth = ext_depth(inode);
2583 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2584 if (path == NULL) {
2585 ext4_journal_stop(handle);
2586 return -ENOMEM;
2588 path[0].p_depth = depth;
2589 path[0].p_hdr = ext_inode_hdr(inode);
2591 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2592 err = -EIO;
2593 goto out;
2595 i = err = 0;
2597 while (i >= 0 && err == 0) {
2598 if (i == depth) {
2599 /* this is leaf block */
2600 err = ext4_ext_rm_leaf(handle, inode, path,
2601 &partial_cluster, start,
2602 end);
2603 /* root level has p_bh == NULL, brelse() eats this */
2604 brelse(path[i].p_bh);
2605 path[i].p_bh = NULL;
2606 i--;
2607 continue;
2610 /* this is index block */
2611 if (!path[i].p_hdr) {
2612 ext_debug("initialize header\n");
2613 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2616 if (!path[i].p_idx) {
2617 /* this level hasn't been touched yet */
2618 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2619 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2620 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2621 path[i].p_hdr,
2622 le16_to_cpu(path[i].p_hdr->eh_entries));
2623 } else {
2624 /* we were already here, see at next index */
2625 path[i].p_idx--;
2628 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2629 i, EXT_FIRST_INDEX(path[i].p_hdr),
2630 path[i].p_idx);
2631 if (ext4_ext_more_to_rm(path + i)) {
2632 struct buffer_head *bh;
2633 /* go to the next level */
2634 ext_debug("move to level %d (block %llu)\n",
2635 i + 1, ext4_idx_pblock(path[i].p_idx));
2636 memset(path + i + 1, 0, sizeof(*path));
2637 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2638 if (!bh) {
2639 /* should we reset i_size? */
2640 err = -EIO;
2641 break;
2643 if (WARN_ON(i + 1 > depth)) {
2644 err = -EIO;
2645 break;
2647 if (ext4_ext_check(inode, ext_block_hdr(bh),
2648 depth - i - 1)) {
2649 err = -EIO;
2650 break;
2652 path[i + 1].p_bh = bh;
2654 /* save actual number of indexes since this
2655 * number is changed at the next iteration */
2656 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2657 i++;
2658 } else {
2659 /* we finished processing this index, go up */
2660 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2661 /* index is empty, remove it;
2662 * handle must be already prepared by the
2663 * truncatei_leaf() */
2664 err = ext4_ext_rm_idx(handle, inode, path + i);
2666 /* root level has p_bh == NULL, brelse() eats this */
2667 brelse(path[i].p_bh);
2668 path[i].p_bh = NULL;
2669 i--;
2670 ext_debug("return to level %d\n", i);
2674 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2675 path->p_hdr->eh_entries);
2677 /* If we still have something in the partial cluster and we have removed
2678 * even the first extent, then we should free the blocks in the partial
2679 * cluster as well. */
2680 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2681 int flags = EXT4_FREE_BLOCKS_FORGET;
2683 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2684 flags |= EXT4_FREE_BLOCKS_METADATA;
2686 ext4_free_blocks(handle, inode, NULL,
2687 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2688 EXT4_SB(sb)->s_cluster_ratio, flags);
2689 partial_cluster = 0;
2692 /* TODO: flexible tree reduction should be here */
2693 if (path->p_hdr->eh_entries == 0) {
2695 * truncate to zero freed all the tree,
2696 * so we need to correct eh_depth
2698 err = ext4_ext_get_access(handle, inode, path);
2699 if (err == 0) {
2700 ext_inode_hdr(inode)->eh_depth = 0;
2701 ext_inode_hdr(inode)->eh_max =
2702 cpu_to_le16(ext4_ext_space_root(inode, 0));
2703 err = ext4_ext_dirty(handle, inode, path);
2706 out:
2707 ext4_ext_drop_refs(path);
2708 kfree(path);
2709 if (err == -EAGAIN)
2710 goto again;
2711 ext4_journal_stop(handle);
2713 return err;
2717 * called at mount time
2719 void ext4_ext_init(struct super_block *sb)
2722 * possible initialization would be here
2725 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2726 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2727 printk(KERN_INFO "EXT4-fs: file extents enabled"
2728 #ifdef AGGRESSIVE_TEST
2729 ", aggressive tests"
2730 #endif
2731 #ifdef CHECK_BINSEARCH
2732 ", check binsearch"
2733 #endif
2734 #ifdef EXTENTS_STATS
2735 ", stats"
2736 #endif
2737 "\n");
2738 #endif
2739 #ifdef EXTENTS_STATS
2740 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2741 EXT4_SB(sb)->s_ext_min = 1 << 30;
2742 EXT4_SB(sb)->s_ext_max = 0;
2743 #endif
2748 * called at umount time
2750 void ext4_ext_release(struct super_block *sb)
2752 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2753 return;
2755 #ifdef EXTENTS_STATS
2756 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2757 struct ext4_sb_info *sbi = EXT4_SB(sb);
2758 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2759 sbi->s_ext_blocks, sbi->s_ext_extents,
2760 sbi->s_ext_blocks / sbi->s_ext_extents);
2761 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2762 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2764 #endif
2767 /* FIXME!! we need to try to merge to left or right after zero-out */
2768 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2770 ext4_fsblk_t ee_pblock;
2771 unsigned int ee_len;
2772 int ret;
2774 ee_len = ext4_ext_get_actual_len(ex);
2775 ee_pblock = ext4_ext_pblock(ex);
2777 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2778 if (ret > 0)
2779 ret = 0;
2781 return ret;
2785 * ext4_split_extent_at() splits an extent at given block.
2787 * @handle: the journal handle
2788 * @inode: the file inode
2789 * @path: the path to the extent
2790 * @split: the logical block where the extent is splitted.
2791 * @split_flags: indicates if the extent could be zeroout if split fails, and
2792 * the states(init or uninit) of new extents.
2793 * @flags: flags used to insert new extent to extent tree.
2796 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2797 * of which are deterimined by split_flag.
2799 * There are two cases:
2800 * a> the extent are splitted into two extent.
2801 * b> split is not needed, and just mark the extent.
2803 * return 0 on success.
2805 static int ext4_split_extent_at(handle_t *handle,
2806 struct inode *inode,
2807 struct ext4_ext_path *path,
2808 ext4_lblk_t split,
2809 int split_flag,
2810 int flags)
2812 ext4_fsblk_t newblock;
2813 ext4_lblk_t ee_block;
2814 struct ext4_extent *ex, newex, orig_ex;
2815 struct ext4_extent *ex2 = NULL;
2816 unsigned int ee_len, depth;
2817 int err = 0;
2819 ext_debug("ext4_split_extents_at: inode %lu, logical"
2820 "block %llu\n", inode->i_ino, (unsigned long long)split);
2822 ext4_ext_show_leaf(inode, path);
2824 depth = ext_depth(inode);
2825 ex = path[depth].p_ext;
2826 ee_block = le32_to_cpu(ex->ee_block);
2827 ee_len = ext4_ext_get_actual_len(ex);
2828 newblock = split - ee_block + ext4_ext_pblock(ex);
2830 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2832 err = ext4_ext_get_access(handle, inode, path + depth);
2833 if (err)
2834 goto out;
2836 if (split == ee_block) {
2838 * case b: block @split is the block that the extent begins with
2839 * then we just change the state of the extent, and splitting
2840 * is not needed.
2842 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2843 ext4_ext_mark_uninitialized(ex);
2844 else
2845 ext4_ext_mark_initialized(ex);
2847 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2848 ext4_ext_try_to_merge(inode, path, ex);
2850 err = ext4_ext_dirty(handle, inode, path + depth);
2851 goto out;
2854 /* case a */
2855 memcpy(&orig_ex, ex, sizeof(orig_ex));
2856 ex->ee_len = cpu_to_le16(split - ee_block);
2857 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2858 ext4_ext_mark_uninitialized(ex);
2861 * path may lead to new leaf, not to original leaf any more
2862 * after ext4_ext_insert_extent() returns,
2864 err = ext4_ext_dirty(handle, inode, path + depth);
2865 if (err)
2866 goto fix_extent_len;
2868 ex2 = &newex;
2869 ex2->ee_block = cpu_to_le32(split);
2870 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2871 ext4_ext_store_pblock(ex2, newblock);
2872 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2873 ext4_ext_mark_uninitialized(ex2);
2875 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2876 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2877 err = ext4_ext_zeroout(inode, &orig_ex);
2878 if (err)
2879 goto fix_extent_len;
2880 /* update the extent length and mark as initialized */
2881 ex->ee_len = cpu_to_le32(ee_len);
2882 ext4_ext_try_to_merge(inode, path, ex);
2883 err = ext4_ext_dirty(handle, inode, path + depth);
2884 goto out;
2885 } else if (err)
2886 goto fix_extent_len;
2888 out:
2889 ext4_ext_show_leaf(inode, path);
2890 return err;
2892 fix_extent_len:
2893 ex->ee_len = orig_ex.ee_len;
2894 ext4_ext_dirty(handle, inode, path + depth);
2895 return err;
2899 * ext4_split_extents() splits an extent and mark extent which is covered
2900 * by @map as split_flags indicates
2902 * It may result in splitting the extent into multiple extents (upto three)
2903 * There are three possibilities:
2904 * a> There is no split required
2905 * b> Splits in two extents: Split is happening at either end of the extent
2906 * c> Splits in three extents: Somone is splitting in middle of the extent
2909 static int ext4_split_extent(handle_t *handle,
2910 struct inode *inode,
2911 struct ext4_ext_path *path,
2912 struct ext4_map_blocks *map,
2913 int split_flag,
2914 int flags)
2916 ext4_lblk_t ee_block;
2917 struct ext4_extent *ex;
2918 unsigned int ee_len, depth;
2919 int err = 0;
2920 int uninitialized;
2921 int split_flag1, flags1;
2923 depth = ext_depth(inode);
2924 ex = path[depth].p_ext;
2925 ee_block = le32_to_cpu(ex->ee_block);
2926 ee_len = ext4_ext_get_actual_len(ex);
2927 uninitialized = ext4_ext_is_uninitialized(ex);
2929 if (map->m_lblk + map->m_len < ee_block + ee_len) {
2930 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2931 EXT4_EXT_MAY_ZEROOUT : 0;
2932 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2933 if (uninitialized)
2934 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2935 EXT4_EXT_MARK_UNINIT2;
2936 err = ext4_split_extent_at(handle, inode, path,
2937 map->m_lblk + map->m_len, split_flag1, flags1);
2938 if (err)
2939 goto out;
2942 ext4_ext_drop_refs(path);
2943 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2944 if (IS_ERR(path))
2945 return PTR_ERR(path);
2947 if (map->m_lblk >= ee_block) {
2948 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2949 EXT4_EXT_MAY_ZEROOUT : 0;
2950 if (uninitialized)
2951 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2952 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2953 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2954 err = ext4_split_extent_at(handle, inode, path,
2955 map->m_lblk, split_flag1, flags);
2956 if (err)
2957 goto out;
2960 ext4_ext_show_leaf(inode, path);
2961 out:
2962 return err ? err : map->m_len;
2965 #define EXT4_EXT_ZERO_LEN 7
2967 * This function is called by ext4_ext_map_blocks() if someone tries to write
2968 * to an uninitialized extent. It may result in splitting the uninitialized
2969 * extent into multiple extents (up to three - one initialized and two
2970 * uninitialized).
2971 * There are three possibilities:
2972 * a> There is no split required: Entire extent should be initialized
2973 * b> Splits in two extents: Write is happening at either end of the extent
2974 * c> Splits in three extents: Somone is writing in middle of the extent
2976 * Pre-conditions:
2977 * - The extent pointed to by 'path' is uninitialized.
2978 * - The extent pointed to by 'path' contains a superset
2979 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
2981 * Post-conditions on success:
2982 * - the returned value is the number of blocks beyond map->l_lblk
2983 * that are allocated and initialized.
2984 * It is guaranteed to be >= map->m_len.
2986 static int ext4_ext_convert_to_initialized(handle_t *handle,
2987 struct inode *inode,
2988 struct ext4_map_blocks *map,
2989 struct ext4_ext_path *path)
2991 struct ext4_extent_header *eh;
2992 struct ext4_map_blocks split_map;
2993 struct ext4_extent zero_ex;
2994 struct ext4_extent *ex;
2995 ext4_lblk_t ee_block, eof_block;
2996 unsigned int ee_len, depth;
2997 int allocated;
2998 int err = 0;
2999 int split_flag = 0;
3001 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3002 "block %llu, max_blocks %u\n", inode->i_ino,
3003 (unsigned long long)map->m_lblk, map->m_len);
3005 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3006 inode->i_sb->s_blocksize_bits;
3007 if (eof_block < map->m_lblk + map->m_len)
3008 eof_block = map->m_lblk + map->m_len;
3010 depth = ext_depth(inode);
3011 eh = path[depth].p_hdr;
3012 ex = path[depth].p_ext;
3013 ee_block = le32_to_cpu(ex->ee_block);
3014 ee_len = ext4_ext_get_actual_len(ex);
3015 allocated = ee_len - (map->m_lblk - ee_block);
3017 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3019 /* Pre-conditions */
3020 BUG_ON(!ext4_ext_is_uninitialized(ex));
3021 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3024 * Attempt to transfer newly initialized blocks from the currently
3025 * uninitialized extent to its left neighbor. This is much cheaper
3026 * than an insertion followed by a merge as those involve costly
3027 * memmove() calls. This is the common case in steady state for
3028 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3029 * writes.
3031 * Limitations of the current logic:
3032 * - L1: we only deal with writes at the start of the extent.
3033 * The approach could be extended to writes at the end
3034 * of the extent but this scenario was deemed less common.
3035 * - L2: we do not deal with writes covering the whole extent.
3036 * This would require removing the extent if the transfer
3037 * is possible.
3038 * - L3: we only attempt to merge with an extent stored in the
3039 * same extent tree node.
3041 if ((map->m_lblk == ee_block) && /*L1*/
3042 (map->m_len < ee_len) && /*L2*/
3043 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3044 struct ext4_extent *prev_ex;
3045 ext4_lblk_t prev_lblk;
3046 ext4_fsblk_t prev_pblk, ee_pblk;
3047 unsigned int prev_len, write_len;
3049 prev_ex = ex - 1;
3050 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3051 prev_len = ext4_ext_get_actual_len(prev_ex);
3052 prev_pblk = ext4_ext_pblock(prev_ex);
3053 ee_pblk = ext4_ext_pblock(ex);
3054 write_len = map->m_len;
3057 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3058 * upon those conditions:
3059 * - C1: prev_ex is initialized,
3060 * - C2: prev_ex is logically abutting ex,
3061 * - C3: prev_ex is physically abutting ex,
3062 * - C4: prev_ex can receive the additional blocks without
3063 * overflowing the (initialized) length limit.
3065 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3066 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3067 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3068 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3069 err = ext4_ext_get_access(handle, inode, path + depth);
3070 if (err)
3071 goto out;
3073 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3074 map, ex, prev_ex);
3076 /* Shift the start of ex by 'write_len' blocks */
3077 ex->ee_block = cpu_to_le32(ee_block + write_len);
3078 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3079 ex->ee_len = cpu_to_le16(ee_len - write_len);
3080 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3082 /* Extend prev_ex by 'write_len' blocks */
3083 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3085 /* Mark the block containing both extents as dirty */
3086 ext4_ext_dirty(handle, inode, path + depth);
3088 /* Update path to point to the right extent */
3089 path[depth].p_ext = prev_ex;
3091 /* Result: number of initialized blocks past m_lblk */
3092 allocated = write_len;
3093 goto out;
3097 WARN_ON(map->m_lblk < ee_block);
3099 * It is safe to convert extent to initialized via explicit
3100 * zeroout only if extent is fully insde i_size or new_size.
3102 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3104 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3105 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3106 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3107 err = ext4_ext_zeroout(inode, ex);
3108 if (err)
3109 goto out;
3111 err = ext4_ext_get_access(handle, inode, path + depth);
3112 if (err)
3113 goto out;
3114 ext4_ext_mark_initialized(ex);
3115 ext4_ext_try_to_merge(inode, path, ex);
3116 err = ext4_ext_dirty(handle, inode, path + depth);
3117 goto out;
3121 * four cases:
3122 * 1. split the extent into three extents.
3123 * 2. split the extent into two extents, zeroout the first half.
3124 * 3. split the extent into two extents, zeroout the second half.
3125 * 4. split the extent into two extents with out zeroout.
3127 split_map.m_lblk = map->m_lblk;
3128 split_map.m_len = map->m_len;
3130 if (allocated > map->m_len) {
3131 if (allocated <= EXT4_EXT_ZERO_LEN &&
3132 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3133 /* case 3 */
3134 zero_ex.ee_block =
3135 cpu_to_le32(map->m_lblk);
3136 zero_ex.ee_len = cpu_to_le16(allocated);
3137 ext4_ext_store_pblock(&zero_ex,
3138 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3139 err = ext4_ext_zeroout(inode, &zero_ex);
3140 if (err)
3141 goto out;
3142 split_map.m_lblk = map->m_lblk;
3143 split_map.m_len = allocated;
3144 } else if ((map->m_lblk - ee_block + map->m_len <
3145 EXT4_EXT_ZERO_LEN) &&
3146 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3147 /* case 2 */
3148 if (map->m_lblk != ee_block) {
3149 zero_ex.ee_block = ex->ee_block;
3150 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3151 ee_block);
3152 ext4_ext_store_pblock(&zero_ex,
3153 ext4_ext_pblock(ex));
3154 err = ext4_ext_zeroout(inode, &zero_ex);
3155 if (err)
3156 goto out;
3159 split_map.m_lblk = ee_block;
3160 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3161 allocated = map->m_len;
3165 allocated = ext4_split_extent(handle, inode, path,
3166 &split_map, split_flag, 0);
3167 if (allocated < 0)
3168 err = allocated;
3170 out:
3171 return err ? err : allocated;
3175 * This function is called by ext4_ext_map_blocks() from
3176 * ext4_get_blocks_dio_write() when DIO to write
3177 * to an uninitialized extent.
3179 * Writing to an uninitialized extent may result in splitting the uninitialized
3180 * extent into multiple /initialized uninitialized extents (up to three)
3181 * There are three possibilities:
3182 * a> There is no split required: Entire extent should be uninitialized
3183 * b> Splits in two extents: Write is happening at either end of the extent
3184 * c> Splits in three extents: Somone is writing in middle of the extent
3186 * One of more index blocks maybe needed if the extent tree grow after
3187 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3188 * complete, we need to split the uninitialized extent before DIO submit
3189 * the IO. The uninitialized extent called at this time will be split
3190 * into three uninitialized extent(at most). After IO complete, the part
3191 * being filled will be convert to initialized by the end_io callback function
3192 * via ext4_convert_unwritten_extents().
3194 * Returns the size of uninitialized extent to be written on success.
3196 static int ext4_split_unwritten_extents(handle_t *handle,
3197 struct inode *inode,
3198 struct ext4_map_blocks *map,
3199 struct ext4_ext_path *path,
3200 int flags)
3202 ext4_lblk_t eof_block;
3203 ext4_lblk_t ee_block;
3204 struct ext4_extent *ex;
3205 unsigned int ee_len;
3206 int split_flag = 0, depth;
3208 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3209 "block %llu, max_blocks %u\n", inode->i_ino,
3210 (unsigned long long)map->m_lblk, map->m_len);
3212 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3213 inode->i_sb->s_blocksize_bits;
3214 if (eof_block < map->m_lblk + map->m_len)
3215 eof_block = map->m_lblk + map->m_len;
3217 * It is safe to convert extent to initialized via explicit
3218 * zeroout only if extent is fully insde i_size or new_size.
3220 depth = ext_depth(inode);
3221 ex = path[depth].p_ext;
3222 ee_block = le32_to_cpu(ex->ee_block);
3223 ee_len = ext4_ext_get_actual_len(ex);
3225 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3226 split_flag |= EXT4_EXT_MARK_UNINIT2;
3228 flags |= EXT4_GET_BLOCKS_PRE_IO;
3229 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3232 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3233 struct inode *inode,
3234 struct ext4_ext_path *path)
3236 struct ext4_extent *ex;
3237 int depth;
3238 int err = 0;
3240 depth = ext_depth(inode);
3241 ex = path[depth].p_ext;
3243 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3244 "block %llu, max_blocks %u\n", inode->i_ino,
3245 (unsigned long long)le32_to_cpu(ex->ee_block),
3246 ext4_ext_get_actual_len(ex));
3248 err = ext4_ext_get_access(handle, inode, path + depth);
3249 if (err)
3250 goto out;
3251 /* first mark the extent as initialized */
3252 ext4_ext_mark_initialized(ex);
3254 /* note: ext4_ext_correct_indexes() isn't needed here because
3255 * borders are not changed
3257 ext4_ext_try_to_merge(inode, path, ex);
3259 /* Mark modified extent as dirty */
3260 err = ext4_ext_dirty(handle, inode, path + depth);
3261 out:
3262 ext4_ext_show_leaf(inode, path);
3263 return err;
3266 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3267 sector_t block, int count)
3269 int i;
3270 for (i = 0; i < count; i++)
3271 unmap_underlying_metadata(bdev, block + i);
3275 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3277 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3278 ext4_lblk_t lblk,
3279 struct ext4_ext_path *path,
3280 unsigned int len)
3282 int i, depth;
3283 struct ext4_extent_header *eh;
3284 struct ext4_extent *last_ex;
3286 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3287 return 0;
3289 depth = ext_depth(inode);
3290 eh = path[depth].p_hdr;
3293 * We're going to remove EOFBLOCKS_FL entirely in future so we
3294 * do not care for this case anymore. Simply remove the flag
3295 * if there are no extents.
3297 if (unlikely(!eh->eh_entries))
3298 goto out;
3299 last_ex = EXT_LAST_EXTENT(eh);
3301 * We should clear the EOFBLOCKS_FL flag if we are writing the
3302 * last block in the last extent in the file. We test this by
3303 * first checking to see if the caller to
3304 * ext4_ext_get_blocks() was interested in the last block (or
3305 * a block beyond the last block) in the current extent. If
3306 * this turns out to be false, we can bail out from this
3307 * function immediately.
3309 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3310 ext4_ext_get_actual_len(last_ex))
3311 return 0;
3313 * If the caller does appear to be planning to write at or
3314 * beyond the end of the current extent, we then test to see
3315 * if the current extent is the last extent in the file, by
3316 * checking to make sure it was reached via the rightmost node
3317 * at each level of the tree.
3319 for (i = depth-1; i >= 0; i--)
3320 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3321 return 0;
3322 out:
3323 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3324 return ext4_mark_inode_dirty(handle, inode);
3328 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3330 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3331 * whether there are any buffers marked for delayed allocation. It returns '1'
3332 * on the first delalloc'ed buffer head found. If no buffer head in the given
3333 * range is marked for delalloc, it returns 0.
3334 * lblk_start should always be <= lblk_end.
3335 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3336 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3337 * block sooner). This is useful when blocks are truncated sequentially from
3338 * lblk_start towards lblk_end.
3340 static int ext4_find_delalloc_range(struct inode *inode,
3341 ext4_lblk_t lblk_start,
3342 ext4_lblk_t lblk_end,
3343 int search_hint_reverse)
3345 struct address_space *mapping = inode->i_mapping;
3346 struct buffer_head *head, *bh = NULL;
3347 struct page *page;
3348 ext4_lblk_t i, pg_lblk;
3349 pgoff_t index;
3351 if (!test_opt(inode->i_sb, DELALLOC))
3352 return 0;
3354 /* reverse search wont work if fs block size is less than page size */
3355 if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3356 search_hint_reverse = 0;
3358 if (search_hint_reverse)
3359 i = lblk_end;
3360 else
3361 i = lblk_start;
3363 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3365 while ((i >= lblk_start) && (i <= lblk_end)) {
3366 page = find_get_page(mapping, index);
3367 if (!page)
3368 goto nextpage;
3370 if (!page_has_buffers(page))
3371 goto nextpage;
3373 head = page_buffers(page);
3374 if (!head)
3375 goto nextpage;
3377 bh = head;
3378 pg_lblk = index << (PAGE_CACHE_SHIFT -
3379 inode->i_blkbits);
3380 do {
3381 if (unlikely(pg_lblk < lblk_start)) {
3383 * This is possible when fs block size is less
3384 * than page size and our cluster starts/ends in
3385 * middle of the page. So we need to skip the
3386 * initial few blocks till we reach the 'lblk'
3388 pg_lblk++;
3389 continue;
3392 /* Check if the buffer is delayed allocated and that it
3393 * is not yet mapped. (when da-buffers are mapped during
3394 * their writeout, their da_mapped bit is set.)
3396 if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3397 page_cache_release(page);
3398 trace_ext4_find_delalloc_range(inode,
3399 lblk_start, lblk_end,
3400 search_hint_reverse,
3401 1, i);
3402 return 1;
3404 if (search_hint_reverse)
3405 i--;
3406 else
3407 i++;
3408 } while ((i >= lblk_start) && (i <= lblk_end) &&
3409 ((bh = bh->b_this_page) != head));
3410 nextpage:
3411 if (page)
3412 page_cache_release(page);
3414 * Move to next page. 'i' will be the first lblk in the next
3415 * page.
3417 if (search_hint_reverse)
3418 index--;
3419 else
3420 index++;
3421 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3424 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3425 search_hint_reverse, 0, 0);
3426 return 0;
3429 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3430 int search_hint_reverse)
3432 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3433 ext4_lblk_t lblk_start, lblk_end;
3434 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3435 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3437 return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3438 search_hint_reverse);
3442 * Determines how many complete clusters (out of those specified by the 'map')
3443 * are under delalloc and were reserved quota for.
3444 * This function is called when we are writing out the blocks that were
3445 * originally written with their allocation delayed, but then the space was
3446 * allocated using fallocate() before the delayed allocation could be resolved.
3447 * The cases to look for are:
3448 * ('=' indicated delayed allocated blocks
3449 * '-' indicates non-delayed allocated blocks)
3450 * (a) partial clusters towards beginning and/or end outside of allocated range
3451 * are not delalloc'ed.
3452 * Ex:
3453 * |----c---=|====c====|====c====|===-c----|
3454 * |++++++ allocated ++++++|
3455 * ==> 4 complete clusters in above example
3457 * (b) partial cluster (outside of allocated range) towards either end is
3458 * marked for delayed allocation. In this case, we will exclude that
3459 * cluster.
3460 * Ex:
3461 * |----====c========|========c========|
3462 * |++++++ allocated ++++++|
3463 * ==> 1 complete clusters in above example
3465 * Ex:
3466 * |================c================|
3467 * |++++++ allocated ++++++|
3468 * ==> 0 complete clusters in above example
3470 * The ext4_da_update_reserve_space will be called only if we
3471 * determine here that there were some "entire" clusters that span
3472 * this 'allocated' range.
3473 * In the non-bigalloc case, this function will just end up returning num_blks
3474 * without ever calling ext4_find_delalloc_range.
3476 static unsigned int
3477 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3478 unsigned int num_blks)
3480 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3481 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3482 ext4_lblk_t lblk_from, lblk_to, c_offset;
3483 unsigned int allocated_clusters = 0;
3485 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3486 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3488 /* max possible clusters for this allocation */
3489 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3491 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3493 /* Check towards left side */
3494 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3495 if (c_offset) {
3496 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3497 lblk_to = lblk_from + c_offset - 1;
3499 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3500 allocated_clusters--;
3503 /* Now check towards right. */
3504 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3505 if (allocated_clusters && c_offset) {
3506 lblk_from = lblk_start + num_blks;
3507 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3509 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3510 allocated_clusters--;
3513 return allocated_clusters;
3516 static int
3517 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3518 struct ext4_map_blocks *map,
3519 struct ext4_ext_path *path, int flags,
3520 unsigned int allocated, ext4_fsblk_t newblock)
3522 int ret = 0;
3523 int err = 0;
3524 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3526 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3527 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3528 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3529 flags, allocated);
3530 ext4_ext_show_leaf(inode, path);
3532 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3533 newblock);
3535 /* get_block() before submit the IO, split the extent */
3536 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3537 ret = ext4_split_unwritten_extents(handle, inode, map,
3538 path, flags);
3540 * Flag the inode(non aio case) or end_io struct (aio case)
3541 * that this IO needs to conversion to written when IO is
3542 * completed
3544 if (io)
3545 ext4_set_io_unwritten_flag(inode, io);
3546 else
3547 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3548 if (ext4_should_dioread_nolock(inode))
3549 map->m_flags |= EXT4_MAP_UNINIT;
3550 goto out;
3552 /* IO end_io complete, convert the filled extent to written */
3553 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3554 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3555 path);
3556 if (ret >= 0) {
3557 ext4_update_inode_fsync_trans(handle, inode, 1);
3558 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3559 path, map->m_len);
3560 } else
3561 err = ret;
3562 goto out2;
3564 /* buffered IO case */
3566 * repeat fallocate creation request
3567 * we already have an unwritten extent
3569 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3570 goto map_out;
3572 /* buffered READ or buffered write_begin() lookup */
3573 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3575 * We have blocks reserved already. We
3576 * return allocated blocks so that delalloc
3577 * won't do block reservation for us. But
3578 * the buffer head will be unmapped so that
3579 * a read from the block returns 0s.
3581 map->m_flags |= EXT4_MAP_UNWRITTEN;
3582 goto out1;
3585 /* buffered write, writepage time, convert*/
3586 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3587 if (ret >= 0)
3588 ext4_update_inode_fsync_trans(handle, inode, 1);
3589 out:
3590 if (ret <= 0) {
3591 err = ret;
3592 goto out2;
3593 } else
3594 allocated = ret;
3595 map->m_flags |= EXT4_MAP_NEW;
3597 * if we allocated more blocks than requested
3598 * we need to make sure we unmap the extra block
3599 * allocated. The actual needed block will get
3600 * unmapped later when we find the buffer_head marked
3601 * new.
3603 if (allocated > map->m_len) {
3604 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3605 newblock + map->m_len,
3606 allocated - map->m_len);
3607 allocated = map->m_len;
3611 * If we have done fallocate with the offset that is already
3612 * delayed allocated, we would have block reservation
3613 * and quota reservation done in the delayed write path.
3614 * But fallocate would have already updated quota and block
3615 * count for this offset. So cancel these reservation
3617 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3618 unsigned int reserved_clusters;
3619 reserved_clusters = get_reserved_cluster_alloc(inode,
3620 map->m_lblk, map->m_len);
3621 if (reserved_clusters)
3622 ext4_da_update_reserve_space(inode,
3623 reserved_clusters,
3627 map_out:
3628 map->m_flags |= EXT4_MAP_MAPPED;
3629 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3630 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3631 map->m_len);
3632 if (err < 0)
3633 goto out2;
3635 out1:
3636 if (allocated > map->m_len)
3637 allocated = map->m_len;
3638 ext4_ext_show_leaf(inode, path);
3639 map->m_pblk = newblock;
3640 map->m_len = allocated;
3641 out2:
3642 if (path) {
3643 ext4_ext_drop_refs(path);
3644 kfree(path);
3646 return err ? err : allocated;
3650 * get_implied_cluster_alloc - check to see if the requested
3651 * allocation (in the map structure) overlaps with a cluster already
3652 * allocated in an extent.
3653 * @sb The filesystem superblock structure
3654 * @map The requested lblk->pblk mapping
3655 * @ex The extent structure which might contain an implied
3656 * cluster allocation
3658 * This function is called by ext4_ext_map_blocks() after we failed to
3659 * find blocks that were already in the inode's extent tree. Hence,
3660 * we know that the beginning of the requested region cannot overlap
3661 * the extent from the inode's extent tree. There are three cases we
3662 * want to catch. The first is this case:
3664 * |--- cluster # N--|
3665 * |--- extent ---| |---- requested region ---|
3666 * |==========|
3668 * The second case that we need to test for is this one:
3670 * |--------- cluster # N ----------------|
3671 * |--- requested region --| |------- extent ----|
3672 * |=======================|
3674 * The third case is when the requested region lies between two extents
3675 * within the same cluster:
3676 * |------------- cluster # N-------------|
3677 * |----- ex -----| |---- ex_right ----|
3678 * |------ requested region ------|
3679 * |================|
3681 * In each of the above cases, we need to set the map->m_pblk and
3682 * map->m_len so it corresponds to the return the extent labelled as
3683 * "|====|" from cluster #N, since it is already in use for data in
3684 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3685 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3686 * as a new "allocated" block region. Otherwise, we will return 0 and
3687 * ext4_ext_map_blocks() will then allocate one or more new clusters
3688 * by calling ext4_mb_new_blocks().
3690 static int get_implied_cluster_alloc(struct super_block *sb,
3691 struct ext4_map_blocks *map,
3692 struct ext4_extent *ex,
3693 struct ext4_ext_path *path)
3695 struct ext4_sb_info *sbi = EXT4_SB(sb);
3696 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3697 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3698 ext4_lblk_t rr_cluster_start;
3699 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3700 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3701 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3703 /* The extent passed in that we are trying to match */
3704 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3705 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3707 /* The requested region passed into ext4_map_blocks() */
3708 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3710 if ((rr_cluster_start == ex_cluster_end) ||
3711 (rr_cluster_start == ex_cluster_start)) {
3712 if (rr_cluster_start == ex_cluster_end)
3713 ee_start += ee_len - 1;
3714 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3715 c_offset;
3716 map->m_len = min(map->m_len,
3717 (unsigned) sbi->s_cluster_ratio - c_offset);
3719 * Check for and handle this case:
3721 * |--------- cluster # N-------------|
3722 * |------- extent ----|
3723 * |--- requested region ---|
3724 * |===========|
3727 if (map->m_lblk < ee_block)
3728 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3731 * Check for the case where there is already another allocated
3732 * block to the right of 'ex' but before the end of the cluster.
3734 * |------------- cluster # N-------------|
3735 * |----- ex -----| |---- ex_right ----|
3736 * |------ requested region ------|
3737 * |================|
3739 if (map->m_lblk > ee_block) {
3740 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3741 map->m_len = min(map->m_len, next - map->m_lblk);
3744 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3745 return 1;
3748 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3749 return 0;
3754 * Block allocation/map/preallocation routine for extents based files
3757 * Need to be called with
3758 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3759 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3761 * return > 0, number of of blocks already mapped/allocated
3762 * if create == 0 and these are pre-allocated blocks
3763 * buffer head is unmapped
3764 * otherwise blocks are mapped
3766 * return = 0, if plain look up failed (blocks have not been allocated)
3767 * buffer head is unmapped
3769 * return < 0, error case.
3771 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3772 struct ext4_map_blocks *map, int flags)
3774 struct ext4_ext_path *path = NULL;
3775 struct ext4_extent newex, *ex, *ex2;
3776 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3777 ext4_fsblk_t newblock = 0;
3778 int free_on_err = 0, err = 0, depth, ret;
3779 unsigned int allocated = 0, offset = 0;
3780 unsigned int allocated_clusters = 0;
3781 struct ext4_allocation_request ar;
3782 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3783 ext4_lblk_t cluster_offset;
3785 ext_debug("blocks %u/%u requested for inode %lu\n",
3786 map->m_lblk, map->m_len, inode->i_ino);
3787 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3789 /* check in cache */
3790 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3791 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3792 if ((sbi->s_cluster_ratio > 1) &&
3793 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3794 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3796 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3798 * block isn't allocated yet and
3799 * user doesn't want to allocate it
3801 goto out2;
3803 /* we should allocate requested block */
3804 } else {
3805 /* block is already allocated */
3806 if (sbi->s_cluster_ratio > 1)
3807 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3808 newblock = map->m_lblk
3809 - le32_to_cpu(newex.ee_block)
3810 + ext4_ext_pblock(&newex);
3811 /* number of remaining blocks in the extent */
3812 allocated = ext4_ext_get_actual_len(&newex) -
3813 (map->m_lblk - le32_to_cpu(newex.ee_block));
3814 goto out;
3818 /* find extent for this block */
3819 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3820 if (IS_ERR(path)) {
3821 err = PTR_ERR(path);
3822 path = NULL;
3823 goto out2;
3826 depth = ext_depth(inode);
3829 * consistent leaf must not be empty;
3830 * this situation is possible, though, _during_ tree modification;
3831 * this is why assert can't be put in ext4_ext_find_extent()
3833 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3834 EXT4_ERROR_INODE(inode, "bad extent address "
3835 "lblock: %lu, depth: %d pblock %lld",
3836 (unsigned long) map->m_lblk, depth,
3837 path[depth].p_block);
3838 err = -EIO;
3839 goto out2;
3842 ex = path[depth].p_ext;
3843 if (ex) {
3844 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3845 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3846 unsigned short ee_len;
3849 * Uninitialized extents are treated as holes, except that
3850 * we split out initialized portions during a write.
3852 ee_len = ext4_ext_get_actual_len(ex);
3854 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3856 /* if found extent covers block, simply return it */
3857 if (in_range(map->m_lblk, ee_block, ee_len)) {
3858 newblock = map->m_lblk - ee_block + ee_start;
3859 /* number of remaining blocks in the extent */
3860 allocated = ee_len - (map->m_lblk - ee_block);
3861 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3862 ee_block, ee_len, newblock);
3865 * Do not put uninitialized extent
3866 * in the cache
3868 if (!ext4_ext_is_uninitialized(ex)) {
3869 ext4_ext_put_in_cache(inode, ee_block,
3870 ee_len, ee_start);
3871 goto out;
3873 ret = ext4_ext_handle_uninitialized_extents(
3874 handle, inode, map, path, flags,
3875 allocated, newblock);
3876 return ret;
3880 if ((sbi->s_cluster_ratio > 1) &&
3881 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3882 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3885 * requested block isn't allocated yet;
3886 * we couldn't try to create block if create flag is zero
3888 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3890 * put just found gap into cache to speed up
3891 * subsequent requests
3893 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3894 goto out2;
3898 * Okay, we need to do block allocation.
3900 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3901 newex.ee_block = cpu_to_le32(map->m_lblk);
3902 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3905 * If we are doing bigalloc, check to see if the extent returned
3906 * by ext4_ext_find_extent() implies a cluster we can use.
3908 if (cluster_offset && ex &&
3909 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3910 ar.len = allocated = map->m_len;
3911 newblock = map->m_pblk;
3912 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3913 goto got_allocated_blocks;
3916 /* find neighbour allocated blocks */
3917 ar.lleft = map->m_lblk;
3918 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3919 if (err)
3920 goto out2;
3921 ar.lright = map->m_lblk;
3922 ex2 = NULL;
3923 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3924 if (err)
3925 goto out2;
3927 /* Check if the extent after searching to the right implies a
3928 * cluster we can use. */
3929 if ((sbi->s_cluster_ratio > 1) && ex2 &&
3930 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3931 ar.len = allocated = map->m_len;
3932 newblock = map->m_pblk;
3933 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3934 goto got_allocated_blocks;
3938 * See if request is beyond maximum number of blocks we can have in
3939 * a single extent. For an initialized extent this limit is
3940 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3941 * EXT_UNINIT_MAX_LEN.
3943 if (map->m_len > EXT_INIT_MAX_LEN &&
3944 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3945 map->m_len = EXT_INIT_MAX_LEN;
3946 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3947 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3948 map->m_len = EXT_UNINIT_MAX_LEN;
3950 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3951 newex.ee_len = cpu_to_le16(map->m_len);
3952 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
3953 if (err)
3954 allocated = ext4_ext_get_actual_len(&newex);
3955 else
3956 allocated = map->m_len;
3958 /* allocate new block */
3959 ar.inode = inode;
3960 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3961 ar.logical = map->m_lblk;
3963 * We calculate the offset from the beginning of the cluster
3964 * for the logical block number, since when we allocate a
3965 * physical cluster, the physical block should start at the
3966 * same offset from the beginning of the cluster. This is
3967 * needed so that future calls to get_implied_cluster_alloc()
3968 * work correctly.
3970 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
3971 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
3972 ar.goal -= offset;
3973 ar.logical -= offset;
3974 if (S_ISREG(inode->i_mode))
3975 ar.flags = EXT4_MB_HINT_DATA;
3976 else
3977 /* disable in-core preallocation for non-regular files */
3978 ar.flags = 0;
3979 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3980 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
3981 newblock = ext4_mb_new_blocks(handle, &ar, &err);
3982 if (!newblock)
3983 goto out2;
3984 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3985 ar.goal, newblock, allocated);
3986 free_on_err = 1;
3987 allocated_clusters = ar.len;
3988 ar.len = EXT4_C2B(sbi, ar.len) - offset;
3989 if (ar.len > allocated)
3990 ar.len = allocated;
3992 got_allocated_blocks:
3993 /* try to insert new extent into found leaf and return */
3994 ext4_ext_store_pblock(&newex, newblock + offset);
3995 newex.ee_len = cpu_to_le16(ar.len);
3996 /* Mark uninitialized */
3997 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3998 ext4_ext_mark_uninitialized(&newex);
4000 * io_end structure was created for every IO write to an
4001 * uninitialized extent. To avoid unnecessary conversion,
4002 * here we flag the IO that really needs the conversion.
4003 * For non asycn direct IO case, flag the inode state
4004 * that we need to perform conversion when IO is done.
4006 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4007 if (io)
4008 ext4_set_io_unwritten_flag(inode, io);
4009 else
4010 ext4_set_inode_state(inode,
4011 EXT4_STATE_DIO_UNWRITTEN);
4013 if (ext4_should_dioread_nolock(inode))
4014 map->m_flags |= EXT4_MAP_UNINIT;
4017 err = 0;
4018 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4019 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4020 path, ar.len);
4021 if (!err)
4022 err = ext4_ext_insert_extent(handle, inode, path,
4023 &newex, flags);
4024 if (err && free_on_err) {
4025 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4026 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4027 /* free data blocks we just allocated */
4028 /* not a good idea to call discard here directly,
4029 * but otherwise we'd need to call it every free() */
4030 ext4_discard_preallocations(inode);
4031 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4032 ext4_ext_get_actual_len(&newex), fb_flags);
4033 goto out2;
4036 /* previous routine could use block we allocated */
4037 newblock = ext4_ext_pblock(&newex);
4038 allocated = ext4_ext_get_actual_len(&newex);
4039 if (allocated > map->m_len)
4040 allocated = map->m_len;
4041 map->m_flags |= EXT4_MAP_NEW;
4044 * Update reserved blocks/metadata blocks after successful
4045 * block allocation which had been deferred till now.
4047 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4048 unsigned int reserved_clusters;
4050 * Check how many clusters we had reserved this allocated range
4052 reserved_clusters = get_reserved_cluster_alloc(inode,
4053 map->m_lblk, allocated);
4054 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4055 if (reserved_clusters) {
4057 * We have clusters reserved for this range.
4058 * But since we are not doing actual allocation
4059 * and are simply using blocks from previously
4060 * allocated cluster, we should release the
4061 * reservation and not claim quota.
4063 ext4_da_update_reserve_space(inode,
4064 reserved_clusters, 0);
4066 } else {
4067 BUG_ON(allocated_clusters < reserved_clusters);
4068 /* We will claim quota for all newly allocated blocks.*/
4069 ext4_da_update_reserve_space(inode, allocated_clusters,
4071 if (reserved_clusters < allocated_clusters) {
4072 struct ext4_inode_info *ei = EXT4_I(inode);
4073 int reservation = allocated_clusters -
4074 reserved_clusters;
4076 * It seems we claimed few clusters outside of
4077 * the range of this allocation. We should give
4078 * it back to the reservation pool. This can
4079 * happen in the following case:
4081 * * Suppose s_cluster_ratio is 4 (i.e., each
4082 * cluster has 4 blocks. Thus, the clusters
4083 * are [0-3],[4-7],[8-11]...
4084 * * First comes delayed allocation write for
4085 * logical blocks 10 & 11. Since there were no
4086 * previous delayed allocated blocks in the
4087 * range [8-11], we would reserve 1 cluster
4088 * for this write.
4089 * * Next comes write for logical blocks 3 to 8.
4090 * In this case, we will reserve 2 clusters
4091 * (for [0-3] and [4-7]; and not for [8-11] as
4092 * that range has a delayed allocated blocks.
4093 * Thus total reserved clusters now becomes 3.
4094 * * Now, during the delayed allocation writeout
4095 * time, we will first write blocks [3-8] and
4096 * allocate 3 clusters for writing these
4097 * blocks. Also, we would claim all these
4098 * three clusters above.
4099 * * Now when we come here to writeout the
4100 * blocks [10-11], we would expect to claim
4101 * the reservation of 1 cluster we had made
4102 * (and we would claim it since there are no
4103 * more delayed allocated blocks in the range
4104 * [8-11]. But our reserved cluster count had
4105 * already gone to 0.
4107 * Thus, at the step 4 above when we determine
4108 * that there are still some unwritten delayed
4109 * allocated blocks outside of our current
4110 * block range, we should increment the
4111 * reserved clusters count so that when the
4112 * remaining blocks finally gets written, we
4113 * could claim them.
4115 dquot_reserve_block(inode,
4116 EXT4_C2B(sbi, reservation));
4117 spin_lock(&ei->i_block_reservation_lock);
4118 ei->i_reserved_data_blocks += reservation;
4119 spin_unlock(&ei->i_block_reservation_lock);
4125 * Cache the extent and update transaction to commit on fdatasync only
4126 * when it is _not_ an uninitialized extent.
4128 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4129 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4130 ext4_update_inode_fsync_trans(handle, inode, 1);
4131 } else
4132 ext4_update_inode_fsync_trans(handle, inode, 0);
4133 out:
4134 if (allocated > map->m_len)
4135 allocated = map->m_len;
4136 ext4_ext_show_leaf(inode, path);
4137 map->m_flags |= EXT4_MAP_MAPPED;
4138 map->m_pblk = newblock;
4139 map->m_len = allocated;
4140 out2:
4141 if (path) {
4142 ext4_ext_drop_refs(path);
4143 kfree(path);
4146 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4147 newblock, map->m_len, err ? err : allocated);
4149 return err ? err : allocated;
4152 void ext4_ext_truncate(struct inode *inode)
4154 struct address_space *mapping = inode->i_mapping;
4155 struct super_block *sb = inode->i_sb;
4156 ext4_lblk_t last_block;
4157 handle_t *handle;
4158 loff_t page_len;
4159 int err = 0;
4162 * finish any pending end_io work so we won't run the risk of
4163 * converting any truncated blocks to initialized later
4165 ext4_flush_completed_IO(inode);
4168 * probably first extent we're gonna free will be last in block
4170 err = ext4_writepage_trans_blocks(inode);
4171 handle = ext4_journal_start(inode, err);
4172 if (IS_ERR(handle))
4173 return;
4175 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4176 page_len = PAGE_CACHE_SIZE -
4177 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4179 err = ext4_discard_partial_page_buffers(handle,
4180 mapping, inode->i_size, page_len, 0);
4182 if (err)
4183 goto out_stop;
4186 if (ext4_orphan_add(handle, inode))
4187 goto out_stop;
4189 down_write(&EXT4_I(inode)->i_data_sem);
4190 ext4_ext_invalidate_cache(inode);
4192 ext4_discard_preallocations(inode);
4195 * TODO: optimization is possible here.
4196 * Probably we need not scan at all,
4197 * because page truncation is enough.
4200 /* we have to know where to truncate from in crash case */
4201 EXT4_I(inode)->i_disksize = inode->i_size;
4202 ext4_mark_inode_dirty(handle, inode);
4204 last_block = (inode->i_size + sb->s_blocksize - 1)
4205 >> EXT4_BLOCK_SIZE_BITS(sb);
4206 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4208 /* In a multi-transaction truncate, we only make the final
4209 * transaction synchronous.
4211 if (IS_SYNC(inode))
4212 ext4_handle_sync(handle);
4214 up_write(&EXT4_I(inode)->i_data_sem);
4216 out_stop:
4218 * If this was a simple ftruncate() and the file will remain alive,
4219 * then we need to clear up the orphan record which we created above.
4220 * However, if this was a real unlink then we were called by
4221 * ext4_delete_inode(), and we allow that function to clean up the
4222 * orphan info for us.
4224 if (inode->i_nlink)
4225 ext4_orphan_del(handle, inode);
4227 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4228 ext4_mark_inode_dirty(handle, inode);
4229 ext4_journal_stop(handle);
4232 static void ext4_falloc_update_inode(struct inode *inode,
4233 int mode, loff_t new_size, int update_ctime)
4235 struct timespec now;
4237 if (update_ctime) {
4238 now = current_fs_time(inode->i_sb);
4239 if (!timespec_equal(&inode->i_ctime, &now))
4240 inode->i_ctime = now;
4243 * Update only when preallocation was requested beyond
4244 * the file size.
4246 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4247 if (new_size > i_size_read(inode))
4248 i_size_write(inode, new_size);
4249 if (new_size > EXT4_I(inode)->i_disksize)
4250 ext4_update_i_disksize(inode, new_size);
4251 } else {
4253 * Mark that we allocate beyond EOF so the subsequent truncate
4254 * can proceed even if the new size is the same as i_size.
4256 if (new_size > i_size_read(inode))
4257 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4263 * preallocate space for a file. This implements ext4's fallocate file
4264 * operation, which gets called from sys_fallocate system call.
4265 * For block-mapped files, posix_fallocate should fall back to the method
4266 * of writing zeroes to the required new blocks (the same behavior which is
4267 * expected for file systems which do not support fallocate() system call).
4269 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4271 struct inode *inode = file->f_path.dentry->d_inode;
4272 handle_t *handle;
4273 loff_t new_size;
4274 unsigned int max_blocks;
4275 int ret = 0;
4276 int ret2 = 0;
4277 int retries = 0;
4278 int flags;
4279 struct ext4_map_blocks map;
4280 unsigned int credits, blkbits = inode->i_blkbits;
4283 * currently supporting (pre)allocate mode for extent-based
4284 * files _only_
4286 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4287 return -EOPNOTSUPP;
4289 /* Return error if mode is not supported */
4290 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4291 return -EOPNOTSUPP;
4293 if (mode & FALLOC_FL_PUNCH_HOLE)
4294 return ext4_punch_hole(file, offset, len);
4296 trace_ext4_fallocate_enter(inode, offset, len, mode);
4297 map.m_lblk = offset >> blkbits;
4299 * We can't just convert len to max_blocks because
4300 * If blocksize = 4096 offset = 3072 and len = 2048
4302 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4303 - map.m_lblk;
4305 * credits to insert 1 extent into extent tree
4307 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4308 mutex_lock(&inode->i_mutex);
4309 ret = inode_newsize_ok(inode, (len + offset));
4310 if (ret) {
4311 mutex_unlock(&inode->i_mutex);
4312 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4313 return ret;
4315 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4316 if (mode & FALLOC_FL_KEEP_SIZE)
4317 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4319 * Don't normalize the request if it can fit in one extent so
4320 * that it doesn't get unnecessarily split into multiple
4321 * extents.
4323 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4324 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4325 retry:
4326 while (ret >= 0 && ret < max_blocks) {
4327 map.m_lblk = map.m_lblk + ret;
4328 map.m_len = max_blocks = max_blocks - ret;
4329 handle = ext4_journal_start(inode, credits);
4330 if (IS_ERR(handle)) {
4331 ret = PTR_ERR(handle);
4332 break;
4334 ret = ext4_map_blocks(handle, inode, &map, flags);
4335 if (ret <= 0) {
4336 #ifdef EXT4FS_DEBUG
4337 WARN_ON(ret <= 0);
4338 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4339 "returned error inode#%lu, block=%u, "
4340 "max_blocks=%u", __func__,
4341 inode->i_ino, map.m_lblk, max_blocks);
4342 #endif
4343 ext4_mark_inode_dirty(handle, inode);
4344 ret2 = ext4_journal_stop(handle);
4345 break;
4347 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4348 blkbits) >> blkbits))
4349 new_size = offset + len;
4350 else
4351 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4353 ext4_falloc_update_inode(inode, mode, new_size,
4354 (map.m_flags & EXT4_MAP_NEW));
4355 ext4_mark_inode_dirty(handle, inode);
4356 ret2 = ext4_journal_stop(handle);
4357 if (ret2)
4358 break;
4360 if (ret == -ENOSPC &&
4361 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4362 ret = 0;
4363 goto retry;
4365 mutex_unlock(&inode->i_mutex);
4366 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4367 ret > 0 ? ret2 : ret);
4368 return ret > 0 ? ret2 : ret;
4372 * This function convert a range of blocks to written extents
4373 * The caller of this function will pass the start offset and the size.
4374 * all unwritten extents within this range will be converted to
4375 * written extents.
4377 * This function is called from the direct IO end io call back
4378 * function, to convert the fallocated extents after IO is completed.
4379 * Returns 0 on success.
4381 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4382 ssize_t len)
4384 handle_t *handle;
4385 unsigned int max_blocks;
4386 int ret = 0;
4387 int ret2 = 0;
4388 struct ext4_map_blocks map;
4389 unsigned int credits, blkbits = inode->i_blkbits;
4391 map.m_lblk = offset >> blkbits;
4393 * We can't just convert len to max_blocks because
4394 * If blocksize = 4096 offset = 3072 and len = 2048
4396 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4397 map.m_lblk);
4399 * credits to insert 1 extent into extent tree
4401 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4402 while (ret >= 0 && ret < max_blocks) {
4403 map.m_lblk += ret;
4404 map.m_len = (max_blocks -= ret);
4405 handle = ext4_journal_start(inode, credits);
4406 if (IS_ERR(handle)) {
4407 ret = PTR_ERR(handle);
4408 break;
4410 ret = ext4_map_blocks(handle, inode, &map,
4411 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4412 if (ret <= 0) {
4413 WARN_ON(ret <= 0);
4414 ext4_msg(inode->i_sb, KERN_ERR,
4415 "%s:%d: inode #%lu: block %u: len %u: "
4416 "ext4_ext_map_blocks returned %d",
4417 __func__, __LINE__, inode->i_ino, map.m_lblk,
4418 map.m_len, ret);
4420 ext4_mark_inode_dirty(handle, inode);
4421 ret2 = ext4_journal_stop(handle);
4422 if (ret <= 0 || ret2 )
4423 break;
4425 return ret > 0 ? ret2 : ret;
4429 * Callback function called for each extent to gather FIEMAP information.
4431 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4432 struct ext4_ext_cache *newex, struct ext4_extent *ex,
4433 void *data)
4435 __u64 logical;
4436 __u64 physical;
4437 __u64 length;
4438 __u32 flags = 0;
4439 int ret = 0;
4440 struct fiemap_extent_info *fieinfo = data;
4441 unsigned char blksize_bits;
4443 blksize_bits = inode->i_sb->s_blocksize_bits;
4444 logical = (__u64)newex->ec_block << blksize_bits;
4446 if (newex->ec_start == 0) {
4448 * No extent in extent-tree contains block @newex->ec_start,
4449 * then the block may stay in 1)a hole or 2)delayed-extent.
4451 * Holes or delayed-extents are processed as follows.
4452 * 1. lookup dirty pages with specified range in pagecache.
4453 * If no page is got, then there is no delayed-extent and
4454 * return with EXT_CONTINUE.
4455 * 2. find the 1st mapped buffer,
4456 * 3. check if the mapped buffer is both in the request range
4457 * and a delayed buffer. If not, there is no delayed-extent,
4458 * then return.
4459 * 4. a delayed-extent is found, the extent will be collected.
4461 ext4_lblk_t end = 0;
4462 pgoff_t last_offset;
4463 pgoff_t offset;
4464 pgoff_t index;
4465 pgoff_t start_index = 0;
4466 struct page **pages = NULL;
4467 struct buffer_head *bh = NULL;
4468 struct buffer_head *head = NULL;
4469 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4471 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4472 if (pages == NULL)
4473 return -ENOMEM;
4475 offset = logical >> PAGE_SHIFT;
4476 repeat:
4477 last_offset = offset;
4478 head = NULL;
4479 ret = find_get_pages_tag(inode->i_mapping, &offset,
4480 PAGECACHE_TAG_DIRTY, nr_pages, pages);
4482 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4483 /* First time, try to find a mapped buffer. */
4484 if (ret == 0) {
4485 out:
4486 for (index = 0; index < ret; index++)
4487 page_cache_release(pages[index]);
4488 /* just a hole. */
4489 kfree(pages);
4490 return EXT_CONTINUE;
4492 index = 0;
4494 next_page:
4495 /* Try to find the 1st mapped buffer. */
4496 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4497 blksize_bits;
4498 if (!page_has_buffers(pages[index]))
4499 goto out;
4500 head = page_buffers(pages[index]);
4501 if (!head)
4502 goto out;
4504 index++;
4505 bh = head;
4506 do {
4507 if (end >= newex->ec_block +
4508 newex->ec_len)
4509 /* The buffer is out of
4510 * the request range.
4512 goto out;
4514 if (buffer_mapped(bh) &&
4515 end >= newex->ec_block) {
4516 start_index = index - 1;
4517 /* get the 1st mapped buffer. */
4518 goto found_mapped_buffer;
4521 bh = bh->b_this_page;
4522 end++;
4523 } while (bh != head);
4525 /* No mapped buffer in the range found in this page,
4526 * We need to look up next page.
4528 if (index >= ret) {
4529 /* There is no page left, but we need to limit
4530 * newex->ec_len.
4532 newex->ec_len = end - newex->ec_block;
4533 goto out;
4535 goto next_page;
4536 } else {
4537 /*Find contiguous delayed buffers. */
4538 if (ret > 0 && pages[0]->index == last_offset)
4539 head = page_buffers(pages[0]);
4540 bh = head;
4541 index = 1;
4542 start_index = 0;
4545 found_mapped_buffer:
4546 if (bh != NULL && buffer_delay(bh)) {
4547 /* 1st or contiguous delayed buffer found. */
4548 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4550 * 1st delayed buffer found, record
4551 * the start of extent.
4553 flags |= FIEMAP_EXTENT_DELALLOC;
4554 newex->ec_block = end;
4555 logical = (__u64)end << blksize_bits;
4557 /* Find contiguous delayed buffers. */
4558 do {
4559 if (!buffer_delay(bh))
4560 goto found_delayed_extent;
4561 bh = bh->b_this_page;
4562 end++;
4563 } while (bh != head);
4565 for (; index < ret; index++) {
4566 if (!page_has_buffers(pages[index])) {
4567 bh = NULL;
4568 break;
4570 head = page_buffers(pages[index]);
4571 if (!head) {
4572 bh = NULL;
4573 break;
4576 if (pages[index]->index !=
4577 pages[start_index]->index + index
4578 - start_index) {
4579 /* Blocks are not contiguous. */
4580 bh = NULL;
4581 break;
4583 bh = head;
4584 do {
4585 if (!buffer_delay(bh))
4586 /* Delayed-extent ends. */
4587 goto found_delayed_extent;
4588 bh = bh->b_this_page;
4589 end++;
4590 } while (bh != head);
4592 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4593 /* a hole found. */
4594 goto out;
4596 found_delayed_extent:
4597 newex->ec_len = min(end - newex->ec_block,
4598 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4599 if (ret == nr_pages && bh != NULL &&
4600 newex->ec_len < EXT_INIT_MAX_LEN &&
4601 buffer_delay(bh)) {
4602 /* Have not collected an extent and continue. */
4603 for (index = 0; index < ret; index++)
4604 page_cache_release(pages[index]);
4605 goto repeat;
4608 for (index = 0; index < ret; index++)
4609 page_cache_release(pages[index]);
4610 kfree(pages);
4613 physical = (__u64)newex->ec_start << blksize_bits;
4614 length = (__u64)newex->ec_len << blksize_bits;
4616 if (ex && ext4_ext_is_uninitialized(ex))
4617 flags |= FIEMAP_EXTENT_UNWRITTEN;
4619 if (next == EXT_MAX_BLOCKS)
4620 flags |= FIEMAP_EXTENT_LAST;
4622 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4623 length, flags);
4624 if (ret < 0)
4625 return ret;
4626 if (ret == 1)
4627 return EXT_BREAK;
4628 return EXT_CONTINUE;
4630 /* fiemap flags we can handle specified here */
4631 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4633 static int ext4_xattr_fiemap(struct inode *inode,
4634 struct fiemap_extent_info *fieinfo)
4636 __u64 physical = 0;
4637 __u64 length;
4638 __u32 flags = FIEMAP_EXTENT_LAST;
4639 int blockbits = inode->i_sb->s_blocksize_bits;
4640 int error = 0;
4642 /* in-inode? */
4643 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4644 struct ext4_iloc iloc;
4645 int offset; /* offset of xattr in inode */
4647 error = ext4_get_inode_loc(inode, &iloc);
4648 if (error)
4649 return error;
4650 physical = iloc.bh->b_blocknr << blockbits;
4651 offset = EXT4_GOOD_OLD_INODE_SIZE +
4652 EXT4_I(inode)->i_extra_isize;
4653 physical += offset;
4654 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4655 flags |= FIEMAP_EXTENT_DATA_INLINE;
4656 brelse(iloc.bh);
4657 } else { /* external block */
4658 physical = EXT4_I(inode)->i_file_acl << blockbits;
4659 length = inode->i_sb->s_blocksize;
4662 if (physical)
4663 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4664 length, flags);
4665 return (error < 0 ? error : 0);
4669 * ext4_ext_punch_hole
4671 * Punches a hole of "length" bytes in a file starting
4672 * at byte "offset"
4674 * @inode: The inode of the file to punch a hole in
4675 * @offset: The starting byte offset of the hole
4676 * @length: The length of the hole
4678 * Returns the number of blocks removed or negative on err
4680 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4682 struct inode *inode = file->f_path.dentry->d_inode;
4683 struct super_block *sb = inode->i_sb;
4684 ext4_lblk_t first_block, stop_block;
4685 struct address_space *mapping = inode->i_mapping;
4686 handle_t *handle;
4687 loff_t first_page, last_page, page_len;
4688 loff_t first_page_offset, last_page_offset;
4689 int credits, err = 0;
4691 /* No need to punch hole beyond i_size */
4692 if (offset >= inode->i_size)
4693 return 0;
4696 * If the hole extends beyond i_size, set the hole
4697 * to end after the page that contains i_size
4699 if (offset + length > inode->i_size) {
4700 length = inode->i_size +
4701 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4702 offset;
4705 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4706 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4708 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4709 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4712 * Write out all dirty pages to avoid race conditions
4713 * Then release them.
4715 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4716 err = filemap_write_and_wait_range(mapping,
4717 offset, offset + length - 1);
4719 if (err)
4720 return err;
4723 /* Now release the pages */
4724 if (last_page_offset > first_page_offset) {
4725 truncate_inode_pages_range(mapping, first_page_offset,
4726 last_page_offset-1);
4729 /* finish any pending end_io work */
4730 ext4_flush_completed_IO(inode);
4732 credits = ext4_writepage_trans_blocks(inode);
4733 handle = ext4_journal_start(inode, credits);
4734 if (IS_ERR(handle))
4735 return PTR_ERR(handle);
4737 err = ext4_orphan_add(handle, inode);
4738 if (err)
4739 goto out;
4742 * Now we need to zero out the non-page-aligned data in the
4743 * pages at the start and tail of the hole, and unmap the buffer
4744 * heads for the block aligned regions of the page that were
4745 * completely zeroed.
4747 if (first_page > last_page) {
4749 * If the file space being truncated is contained within a page
4750 * just zero out and unmap the middle of that page
4752 err = ext4_discard_partial_page_buffers(handle,
4753 mapping, offset, length, 0);
4755 if (err)
4756 goto out;
4757 } else {
4759 * zero out and unmap the partial page that contains
4760 * the start of the hole
4762 page_len = first_page_offset - offset;
4763 if (page_len > 0) {
4764 err = ext4_discard_partial_page_buffers(handle, mapping,
4765 offset, page_len, 0);
4766 if (err)
4767 goto out;
4771 * zero out and unmap the partial page that contains
4772 * the end of the hole
4774 page_len = offset + length - last_page_offset;
4775 if (page_len > 0) {
4776 err = ext4_discard_partial_page_buffers(handle, mapping,
4777 last_page_offset, page_len, 0);
4778 if (err)
4779 goto out;
4784 * If i_size is contained in the last page, we need to
4785 * unmap and zero the partial page after i_size
4787 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4788 inode->i_size % PAGE_CACHE_SIZE != 0) {
4790 page_len = PAGE_CACHE_SIZE -
4791 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4793 if (page_len > 0) {
4794 err = ext4_discard_partial_page_buffers(handle,
4795 mapping, inode->i_size, page_len, 0);
4797 if (err)
4798 goto out;
4802 first_block = (offset + sb->s_blocksize - 1) >>
4803 EXT4_BLOCK_SIZE_BITS(sb);
4804 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4806 /* If there are no blocks to remove, return now */
4807 if (first_block >= stop_block)
4808 goto out;
4810 down_write(&EXT4_I(inode)->i_data_sem);
4811 ext4_ext_invalidate_cache(inode);
4812 ext4_discard_preallocations(inode);
4814 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4816 ext4_ext_invalidate_cache(inode);
4817 ext4_discard_preallocations(inode);
4819 if (IS_SYNC(inode))
4820 ext4_handle_sync(handle);
4822 up_write(&EXT4_I(inode)->i_data_sem);
4824 out:
4825 ext4_orphan_del(handle, inode);
4826 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4827 ext4_mark_inode_dirty(handle, inode);
4828 ext4_journal_stop(handle);
4829 return err;
4831 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4832 __u64 start, __u64 len)
4834 ext4_lblk_t start_blk;
4835 int error = 0;
4837 /* fallback to generic here if not in extents fmt */
4838 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4839 return generic_block_fiemap(inode, fieinfo, start, len,
4840 ext4_get_block);
4842 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4843 return -EBADR;
4845 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4846 error = ext4_xattr_fiemap(inode, fieinfo);
4847 } else {
4848 ext4_lblk_t len_blks;
4849 __u64 last_blk;
4851 start_blk = start >> inode->i_sb->s_blocksize_bits;
4852 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4853 if (last_blk >= EXT_MAX_BLOCKS)
4854 last_blk = EXT_MAX_BLOCKS-1;
4855 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4858 * Walk the extent tree gathering extent information.
4859 * ext4_ext_fiemap_cb will push extents back to user.
4861 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4862 ext4_ext_fiemap_cb, fieinfo);
4865 return error;