MFGPT: move clocksource menu
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / firewire / ohci.c
blob75dc6988cffd5d174ae8eb5445b5ce8744e0f4b0
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
49 #include "core.h"
50 #include "ohci.h"
52 #define DESCRIPTOR_OUTPUT_MORE 0
53 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST (3 << 12)
56 #define DESCRIPTOR_STATUS (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
58 #define DESCRIPTOR_PING (1 << 7)
59 #define DESCRIPTOR_YY (1 << 6)
60 #define DESCRIPTOR_NO_IRQ (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
64 #define DESCRIPTOR_WAIT (3 << 0)
66 struct descriptor {
67 __le16 req_count;
68 __le16 control;
69 __le32 data_address;
70 __le32 branch_address;
71 __le16 res_count;
72 __le16 transfer_status;
73 } __attribute__((aligned(16)));
75 #define CONTROL_SET(regs) (regs)
76 #define CONTROL_CLEAR(regs) ((regs) + 4)
77 #define COMMAND_PTR(regs) ((regs) + 12)
78 #define CONTEXT_MATCH(regs) ((regs) + 16)
80 struct ar_buffer {
81 struct descriptor descriptor;
82 struct ar_buffer *next;
83 __le32 data[0];
86 struct ar_context {
87 struct fw_ohci *ohci;
88 struct ar_buffer *current_buffer;
89 struct ar_buffer *last_buffer;
90 void *pointer;
91 u32 regs;
92 struct tasklet_struct tasklet;
95 struct context;
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98 struct descriptor *d,
99 struct descriptor *last);
102 * A buffer that contains a block of DMA-able coherent memory used for
103 * storing a portion of a DMA descriptor program.
105 struct descriptor_buffer {
106 struct list_head list;
107 dma_addr_t buffer_bus;
108 size_t buffer_size;
109 size_t used;
110 struct descriptor buffer[0];
113 struct context {
114 struct fw_ohci *ohci;
115 u32 regs;
116 int total_allocation;
119 * List of page-sized buffers for storing DMA descriptors.
120 * Head of list contains buffers in use and tail of list contains
121 * free buffers.
123 struct list_head buffer_list;
126 * Pointer to a buffer inside buffer_list that contains the tail
127 * end of the current DMA program.
129 struct descriptor_buffer *buffer_tail;
132 * The descriptor containing the branch address of the first
133 * descriptor that has not yet been filled by the device.
135 struct descriptor *last;
138 * The last descriptor in the DMA program. It contains the branch
139 * address that must be updated upon appending a new descriptor.
141 struct descriptor *prev;
143 descriptor_callback_t callback;
145 struct tasklet_struct tasklet;
148 #define IT_HEADER_SY(v) ((v) << 0)
149 #define IT_HEADER_TCODE(v) ((v) << 4)
150 #define IT_HEADER_CHANNEL(v) ((v) << 8)
151 #define IT_HEADER_TAG(v) ((v) << 14)
152 #define IT_HEADER_SPEED(v) ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
155 struct iso_context {
156 struct fw_iso_context base;
157 struct context context;
158 int excess_bytes;
159 void *header;
160 size_t header_length;
163 #define CONFIG_ROM_SIZE 1024
165 struct fw_ohci {
166 struct fw_card card;
168 __iomem char *registers;
169 int node_id;
170 int generation;
171 int request_generation; /* for timestamping incoming requests */
172 unsigned quirks;
175 * Spinlock for accessing fw_ohci data. Never call out of
176 * this driver with this lock held.
178 spinlock_t lock;
180 struct ar_context ar_request_ctx;
181 struct ar_context ar_response_ctx;
182 struct context at_request_ctx;
183 struct context at_response_ctx;
185 u32 it_context_mask;
186 struct iso_context *it_context_list;
187 u64 ir_context_channels;
188 u32 ir_context_mask;
189 struct iso_context *ir_context_list;
191 __be32 *config_rom;
192 dma_addr_t config_rom_bus;
193 __be32 *next_config_rom;
194 dma_addr_t next_config_rom_bus;
195 __be32 next_header;
197 __le32 *self_id_cpu;
198 dma_addr_t self_id_bus;
199 struct tasklet_struct bus_reset_tasklet;
201 u32 self_id_buffer[512];
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
206 return container_of(card, struct fw_ohci, card);
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
210 #define IR_CONTEXT_BUFFER_FILL 0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
216 #define CONTEXT_RUN 0x8000
217 #define CONTEXT_WAKE 0x1000
218 #define CONTEXT_DEAD 0x0800
219 #define CONTEXT_ACTIVE 0x0400
221 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
225 #define OHCI1394_REGISTER_SIZE 0x800
226 #define OHCI_LOOP_COUNT 500
227 #define OHCI1394_PCI_HCI_Control 0x40
228 #define SELF_ID_BUF_SIZE 0x800
229 #define OHCI_TCODE_PHY_PACKET 0x0e
230 #define OHCI_VERSION_1_1 0x010010
232 static char ohci_driver_name[] = KBUILD_MODNAME;
234 #define QUIRK_CYCLE_TIMER 1
235 #define QUIRK_RESET_PACKET 2
236 #define QUIRK_BE_HEADERS 4
238 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
239 static const struct {
240 unsigned short vendor, device, flags;
241 } ohci_quirks[] = {
242 {PCI_VENDOR_ID_TI, PCI_ANY_ID, QUIRK_RESET_PACKET},
243 {PCI_VENDOR_ID_AL, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
244 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
245 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
246 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
249 /* This overrides anything that was found in ohci_quirks[]. */
250 static int param_quirks;
251 module_param_named(quirks, param_quirks, int, 0644);
252 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
253 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
254 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
255 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
256 ")");
258 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
260 #define OHCI_PARAM_DEBUG_AT_AR 1
261 #define OHCI_PARAM_DEBUG_SELFIDS 2
262 #define OHCI_PARAM_DEBUG_IRQS 4
263 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
265 static int param_debug;
266 module_param_named(debug, param_debug, int, 0644);
267 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
268 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
269 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
270 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
271 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
272 ", or a combination, or all = -1)");
274 static void log_irqs(u32 evt)
276 if (likely(!(param_debug &
277 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
278 return;
280 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
281 !(evt & OHCI1394_busReset))
282 return;
284 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
285 evt & OHCI1394_selfIDComplete ? " selfID" : "",
286 evt & OHCI1394_RQPkt ? " AR_req" : "",
287 evt & OHCI1394_RSPkt ? " AR_resp" : "",
288 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
289 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
290 evt & OHCI1394_isochRx ? " IR" : "",
291 evt & OHCI1394_isochTx ? " IT" : "",
292 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
293 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
294 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
295 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
296 evt & OHCI1394_busReset ? " busReset" : "",
297 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
298 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
299 OHCI1394_respTxComplete | OHCI1394_isochRx |
300 OHCI1394_isochTx | OHCI1394_postedWriteErr |
301 OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
302 OHCI1394_regAccessFail | OHCI1394_busReset)
303 ? " ?" : "");
306 static const char *speed[] = {
307 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
309 static const char *power[] = {
310 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
311 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
313 static const char port[] = { '.', '-', 'p', 'c', };
315 static char _p(u32 *s, int shift)
317 return port[*s >> shift & 3];
320 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
322 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
323 return;
325 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
326 self_id_count, generation, node_id);
328 for (; self_id_count--; ++s)
329 if ((*s & 1 << 23) == 0)
330 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
331 "%s gc=%d %s %s%s%s\n",
332 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
333 speed[*s >> 14 & 3], *s >> 16 & 63,
334 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
335 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
336 else
337 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
338 *s, *s >> 24 & 63,
339 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
340 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
343 static const char *evts[] = {
344 [0x00] = "evt_no_status", [0x01] = "-reserved-",
345 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
346 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
347 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
348 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
349 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
350 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
351 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
352 [0x10] = "-reserved-", [0x11] = "ack_complete",
353 [0x12] = "ack_pending ", [0x13] = "-reserved-",
354 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
355 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
356 [0x18] = "-reserved-", [0x19] = "-reserved-",
357 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
358 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
359 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
360 [0x20] = "pending/cancelled",
362 static const char *tcodes[] = {
363 [0x0] = "QW req", [0x1] = "BW req",
364 [0x2] = "W resp", [0x3] = "-reserved-",
365 [0x4] = "QR req", [0x5] = "BR req",
366 [0x6] = "QR resp", [0x7] = "BR resp",
367 [0x8] = "cycle start", [0x9] = "Lk req",
368 [0xa] = "async stream packet", [0xb] = "Lk resp",
369 [0xc] = "-reserved-", [0xd] = "-reserved-",
370 [0xe] = "link internal", [0xf] = "-reserved-",
372 static const char *phys[] = {
373 [0x0] = "phy config packet", [0x1] = "link-on packet",
374 [0x2] = "self-id packet", [0x3] = "-reserved-",
377 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
379 int tcode = header[0] >> 4 & 0xf;
380 char specific[12];
382 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
383 return;
385 if (unlikely(evt >= ARRAY_SIZE(evts)))
386 evt = 0x1f;
388 if (evt == OHCI1394_evt_bus_reset) {
389 fw_notify("A%c evt_bus_reset, generation %d\n",
390 dir, (header[2] >> 16) & 0xff);
391 return;
394 if (header[0] == ~header[1]) {
395 fw_notify("A%c %s, %s, %08x\n",
396 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
397 return;
400 switch (tcode) {
401 case 0x0: case 0x6: case 0x8:
402 snprintf(specific, sizeof(specific), " = %08x",
403 be32_to_cpu((__force __be32)header[3]));
404 break;
405 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
406 snprintf(specific, sizeof(specific), " %x,%x",
407 header[3] >> 16, header[3] & 0xffff);
408 break;
409 default:
410 specific[0] = '\0';
413 switch (tcode) {
414 case 0xe: case 0xa:
415 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
416 break;
417 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
418 fw_notify("A%c spd %x tl %02x, "
419 "%04x -> %04x, %s, "
420 "%s, %04x%08x%s\n",
421 dir, speed, header[0] >> 10 & 0x3f,
422 header[1] >> 16, header[0] >> 16, evts[evt],
423 tcodes[tcode], header[1] & 0xffff, header[2], specific);
424 break;
425 default:
426 fw_notify("A%c spd %x tl %02x, "
427 "%04x -> %04x, %s, "
428 "%s%s\n",
429 dir, speed, header[0] >> 10 & 0x3f,
430 header[1] >> 16, header[0] >> 16, evts[evt],
431 tcodes[tcode], specific);
435 #else
437 #define log_irqs(evt)
438 #define log_selfids(node_id, generation, self_id_count, sid)
439 #define log_ar_at_event(dir, speed, header, evt)
441 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
443 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
445 writel(data, ohci->registers + offset);
448 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
450 return readl(ohci->registers + offset);
453 static inline void flush_writes(const struct fw_ohci *ohci)
455 /* Do a dummy read to flush writes. */
456 reg_read(ohci, OHCI1394_Version);
459 static int ohci_update_phy_reg(struct fw_card *card, int addr,
460 int clear_bits, int set_bits)
462 struct fw_ohci *ohci = fw_ohci(card);
463 u32 val, old;
465 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
466 flush_writes(ohci);
467 msleep(2);
468 val = reg_read(ohci, OHCI1394_PhyControl);
469 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
470 fw_error("failed to set phy reg bits.\n");
471 return -EBUSY;
474 old = OHCI1394_PhyControl_ReadData(val);
475 old = (old & ~clear_bits) | set_bits;
476 reg_write(ohci, OHCI1394_PhyControl,
477 OHCI1394_PhyControl_Write(addr, old));
479 return 0;
482 static int ar_context_add_page(struct ar_context *ctx)
484 struct device *dev = ctx->ohci->card.device;
485 struct ar_buffer *ab;
486 dma_addr_t uninitialized_var(ab_bus);
487 size_t offset;
489 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
490 if (ab == NULL)
491 return -ENOMEM;
493 ab->next = NULL;
494 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
495 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
496 DESCRIPTOR_STATUS |
497 DESCRIPTOR_BRANCH_ALWAYS);
498 offset = offsetof(struct ar_buffer, data);
499 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
500 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
501 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
502 ab->descriptor.branch_address = 0;
504 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
505 ctx->last_buffer->next = ab;
506 ctx->last_buffer = ab;
508 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
509 flush_writes(ctx->ohci);
511 return 0;
514 static void ar_context_release(struct ar_context *ctx)
516 struct ar_buffer *ab, *ab_next;
517 size_t offset;
518 dma_addr_t ab_bus;
520 for (ab = ctx->current_buffer; ab; ab = ab_next) {
521 ab_next = ab->next;
522 offset = offsetof(struct ar_buffer, data);
523 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
524 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
525 ab, ab_bus);
529 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
530 #define cond_le32_to_cpu(v) \
531 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
532 #else
533 #define cond_le32_to_cpu(v) le32_to_cpu(v)
534 #endif
536 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
538 struct fw_ohci *ohci = ctx->ohci;
539 struct fw_packet p;
540 u32 status, length, tcode;
541 int evt;
543 p.header[0] = cond_le32_to_cpu(buffer[0]);
544 p.header[1] = cond_le32_to_cpu(buffer[1]);
545 p.header[2] = cond_le32_to_cpu(buffer[2]);
547 tcode = (p.header[0] >> 4) & 0x0f;
548 switch (tcode) {
549 case TCODE_WRITE_QUADLET_REQUEST:
550 case TCODE_READ_QUADLET_RESPONSE:
551 p.header[3] = (__force __u32) buffer[3];
552 p.header_length = 16;
553 p.payload_length = 0;
554 break;
556 case TCODE_READ_BLOCK_REQUEST :
557 p.header[3] = cond_le32_to_cpu(buffer[3]);
558 p.header_length = 16;
559 p.payload_length = 0;
560 break;
562 case TCODE_WRITE_BLOCK_REQUEST:
563 case TCODE_READ_BLOCK_RESPONSE:
564 case TCODE_LOCK_REQUEST:
565 case TCODE_LOCK_RESPONSE:
566 p.header[3] = cond_le32_to_cpu(buffer[3]);
567 p.header_length = 16;
568 p.payload_length = p.header[3] >> 16;
569 break;
571 case TCODE_WRITE_RESPONSE:
572 case TCODE_READ_QUADLET_REQUEST:
573 case OHCI_TCODE_PHY_PACKET:
574 p.header_length = 12;
575 p.payload_length = 0;
576 break;
578 default:
579 /* FIXME: Stop context, discard everything, and restart? */
580 p.header_length = 0;
581 p.payload_length = 0;
584 p.payload = (void *) buffer + p.header_length;
586 /* FIXME: What to do about evt_* errors? */
587 length = (p.header_length + p.payload_length + 3) / 4;
588 status = cond_le32_to_cpu(buffer[length]);
589 evt = (status >> 16) & 0x1f;
591 p.ack = evt - 16;
592 p.speed = (status >> 21) & 0x7;
593 p.timestamp = status & 0xffff;
594 p.generation = ohci->request_generation;
596 log_ar_at_event('R', p.speed, p.header, evt);
599 * The OHCI bus reset handler synthesizes a phy packet with
600 * the new generation number when a bus reset happens (see
601 * section 8.4.2.3). This helps us determine when a request
602 * was received and make sure we send the response in the same
603 * generation. We only need this for requests; for responses
604 * we use the unique tlabel for finding the matching
605 * request.
607 * Alas some chips sometimes emit bus reset packets with a
608 * wrong generation. We set the correct generation for these
609 * at a slightly incorrect time (in bus_reset_tasklet).
611 if (evt == OHCI1394_evt_bus_reset) {
612 if (!(ohci->quirks & QUIRK_RESET_PACKET))
613 ohci->request_generation = (p.header[2] >> 16) & 0xff;
614 } else if (ctx == &ohci->ar_request_ctx) {
615 fw_core_handle_request(&ohci->card, &p);
616 } else {
617 fw_core_handle_response(&ohci->card, &p);
620 return buffer + length + 1;
623 static void ar_context_tasklet(unsigned long data)
625 struct ar_context *ctx = (struct ar_context *)data;
626 struct fw_ohci *ohci = ctx->ohci;
627 struct ar_buffer *ab;
628 struct descriptor *d;
629 void *buffer, *end;
631 ab = ctx->current_buffer;
632 d = &ab->descriptor;
634 if (d->res_count == 0) {
635 size_t size, rest, offset;
636 dma_addr_t start_bus;
637 void *start;
640 * This descriptor is finished and we may have a
641 * packet split across this and the next buffer. We
642 * reuse the page for reassembling the split packet.
645 offset = offsetof(struct ar_buffer, data);
646 start = buffer = ab;
647 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
649 ab = ab->next;
650 d = &ab->descriptor;
651 size = buffer + PAGE_SIZE - ctx->pointer;
652 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
653 memmove(buffer, ctx->pointer, size);
654 memcpy(buffer + size, ab->data, rest);
655 ctx->current_buffer = ab;
656 ctx->pointer = (void *) ab->data + rest;
657 end = buffer + size + rest;
659 while (buffer < end)
660 buffer = handle_ar_packet(ctx, buffer);
662 dma_free_coherent(ohci->card.device, PAGE_SIZE,
663 start, start_bus);
664 ar_context_add_page(ctx);
665 } else {
666 buffer = ctx->pointer;
667 ctx->pointer = end =
668 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
670 while (buffer < end)
671 buffer = handle_ar_packet(ctx, buffer);
675 static int ar_context_init(struct ar_context *ctx,
676 struct fw_ohci *ohci, u32 regs)
678 struct ar_buffer ab;
680 ctx->regs = regs;
681 ctx->ohci = ohci;
682 ctx->last_buffer = &ab;
683 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
685 ar_context_add_page(ctx);
686 ar_context_add_page(ctx);
687 ctx->current_buffer = ab.next;
688 ctx->pointer = ctx->current_buffer->data;
690 return 0;
693 static void ar_context_run(struct ar_context *ctx)
695 struct ar_buffer *ab = ctx->current_buffer;
696 dma_addr_t ab_bus;
697 size_t offset;
699 offset = offsetof(struct ar_buffer, data);
700 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
702 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
703 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
704 flush_writes(ctx->ohci);
707 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
709 int b, key;
711 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
712 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
714 /* figure out which descriptor the branch address goes in */
715 if (z == 2 && (b == 3 || key == 2))
716 return d;
717 else
718 return d + z - 1;
721 static void context_tasklet(unsigned long data)
723 struct context *ctx = (struct context *) data;
724 struct descriptor *d, *last;
725 u32 address;
726 int z;
727 struct descriptor_buffer *desc;
729 desc = list_entry(ctx->buffer_list.next,
730 struct descriptor_buffer, list);
731 last = ctx->last;
732 while (last->branch_address != 0) {
733 struct descriptor_buffer *old_desc = desc;
734 address = le32_to_cpu(last->branch_address);
735 z = address & 0xf;
736 address &= ~0xf;
738 /* If the branch address points to a buffer outside of the
739 * current buffer, advance to the next buffer. */
740 if (address < desc->buffer_bus ||
741 address >= desc->buffer_bus + desc->used)
742 desc = list_entry(desc->list.next,
743 struct descriptor_buffer, list);
744 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
745 last = find_branch_descriptor(d, z);
747 if (!ctx->callback(ctx, d, last))
748 break;
750 if (old_desc != desc) {
751 /* If we've advanced to the next buffer, move the
752 * previous buffer to the free list. */
753 unsigned long flags;
754 old_desc->used = 0;
755 spin_lock_irqsave(&ctx->ohci->lock, flags);
756 list_move_tail(&old_desc->list, &ctx->buffer_list);
757 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
759 ctx->last = last;
764 * Allocate a new buffer and add it to the list of free buffers for this
765 * context. Must be called with ohci->lock held.
767 static int context_add_buffer(struct context *ctx)
769 struct descriptor_buffer *desc;
770 dma_addr_t uninitialized_var(bus_addr);
771 int offset;
774 * 16MB of descriptors should be far more than enough for any DMA
775 * program. This will catch run-away userspace or DoS attacks.
777 if (ctx->total_allocation >= 16*1024*1024)
778 return -ENOMEM;
780 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
781 &bus_addr, GFP_ATOMIC);
782 if (!desc)
783 return -ENOMEM;
785 offset = (void *)&desc->buffer - (void *)desc;
786 desc->buffer_size = PAGE_SIZE - offset;
787 desc->buffer_bus = bus_addr + offset;
788 desc->used = 0;
790 list_add_tail(&desc->list, &ctx->buffer_list);
791 ctx->total_allocation += PAGE_SIZE;
793 return 0;
796 static int context_init(struct context *ctx, struct fw_ohci *ohci,
797 u32 regs, descriptor_callback_t callback)
799 ctx->ohci = ohci;
800 ctx->regs = regs;
801 ctx->total_allocation = 0;
803 INIT_LIST_HEAD(&ctx->buffer_list);
804 if (context_add_buffer(ctx) < 0)
805 return -ENOMEM;
807 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
808 struct descriptor_buffer, list);
810 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
811 ctx->callback = callback;
814 * We put a dummy descriptor in the buffer that has a NULL
815 * branch address and looks like it's been sent. That way we
816 * have a descriptor to append DMA programs to.
818 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
819 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
820 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
821 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
822 ctx->last = ctx->buffer_tail->buffer;
823 ctx->prev = ctx->buffer_tail->buffer;
825 return 0;
828 static void context_release(struct context *ctx)
830 struct fw_card *card = &ctx->ohci->card;
831 struct descriptor_buffer *desc, *tmp;
833 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
834 dma_free_coherent(card->device, PAGE_SIZE, desc,
835 desc->buffer_bus -
836 ((void *)&desc->buffer - (void *)desc));
839 /* Must be called with ohci->lock held */
840 static struct descriptor *context_get_descriptors(struct context *ctx,
841 int z, dma_addr_t *d_bus)
843 struct descriptor *d = NULL;
844 struct descriptor_buffer *desc = ctx->buffer_tail;
846 if (z * sizeof(*d) > desc->buffer_size)
847 return NULL;
849 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
850 /* No room for the descriptor in this buffer, so advance to the
851 * next one. */
853 if (desc->list.next == &ctx->buffer_list) {
854 /* If there is no free buffer next in the list,
855 * allocate one. */
856 if (context_add_buffer(ctx) < 0)
857 return NULL;
859 desc = list_entry(desc->list.next,
860 struct descriptor_buffer, list);
861 ctx->buffer_tail = desc;
864 d = desc->buffer + desc->used / sizeof(*d);
865 memset(d, 0, z * sizeof(*d));
866 *d_bus = desc->buffer_bus + desc->used;
868 return d;
871 static void context_run(struct context *ctx, u32 extra)
873 struct fw_ohci *ohci = ctx->ohci;
875 reg_write(ohci, COMMAND_PTR(ctx->regs),
876 le32_to_cpu(ctx->last->branch_address));
877 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
878 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
879 flush_writes(ohci);
882 static void context_append(struct context *ctx,
883 struct descriptor *d, int z, int extra)
885 dma_addr_t d_bus;
886 struct descriptor_buffer *desc = ctx->buffer_tail;
888 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
890 desc->used += (z + extra) * sizeof(*d);
891 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
892 ctx->prev = find_branch_descriptor(d, z);
894 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
895 flush_writes(ctx->ohci);
898 static void context_stop(struct context *ctx)
900 u32 reg;
901 int i;
903 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
904 flush_writes(ctx->ohci);
906 for (i = 0; i < 10; i++) {
907 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
908 if ((reg & CONTEXT_ACTIVE) == 0)
909 return;
911 mdelay(1);
913 fw_error("Error: DMA context still active (0x%08x)\n", reg);
916 struct driver_data {
917 struct fw_packet *packet;
921 * This function apppends a packet to the DMA queue for transmission.
922 * Must always be called with the ochi->lock held to ensure proper
923 * generation handling and locking around packet queue manipulation.
925 static int at_context_queue_packet(struct context *ctx,
926 struct fw_packet *packet)
928 struct fw_ohci *ohci = ctx->ohci;
929 dma_addr_t d_bus, uninitialized_var(payload_bus);
930 struct driver_data *driver_data;
931 struct descriptor *d, *last;
932 __le32 *header;
933 int z, tcode;
934 u32 reg;
936 d = context_get_descriptors(ctx, 4, &d_bus);
937 if (d == NULL) {
938 packet->ack = RCODE_SEND_ERROR;
939 return -1;
942 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
943 d[0].res_count = cpu_to_le16(packet->timestamp);
946 * The DMA format for asyncronous link packets is different
947 * from the IEEE1394 layout, so shift the fields around
948 * accordingly. If header_length is 8, it's a PHY packet, to
949 * which we need to prepend an extra quadlet.
952 header = (__le32 *) &d[1];
953 switch (packet->header_length) {
954 case 16:
955 case 12:
956 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
957 (packet->speed << 16));
958 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
959 (packet->header[0] & 0xffff0000));
960 header[2] = cpu_to_le32(packet->header[2]);
962 tcode = (packet->header[0] >> 4) & 0x0f;
963 if (TCODE_IS_BLOCK_PACKET(tcode))
964 header[3] = cpu_to_le32(packet->header[3]);
965 else
966 header[3] = (__force __le32) packet->header[3];
968 d[0].req_count = cpu_to_le16(packet->header_length);
969 break;
971 case 8:
972 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
973 (packet->speed << 16));
974 header[1] = cpu_to_le32(packet->header[0]);
975 header[2] = cpu_to_le32(packet->header[1]);
976 d[0].req_count = cpu_to_le16(12);
977 break;
979 case 4:
980 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
981 (packet->speed << 16));
982 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
983 d[0].req_count = cpu_to_le16(8);
984 break;
986 default:
987 /* BUG(); */
988 packet->ack = RCODE_SEND_ERROR;
989 return -1;
992 driver_data = (struct driver_data *) &d[3];
993 driver_data->packet = packet;
994 packet->driver_data = driver_data;
996 if (packet->payload_length > 0) {
997 payload_bus =
998 dma_map_single(ohci->card.device, packet->payload,
999 packet->payload_length, DMA_TO_DEVICE);
1000 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1001 packet->ack = RCODE_SEND_ERROR;
1002 return -1;
1004 packet->payload_bus = payload_bus;
1005 packet->payload_mapped = true;
1007 d[2].req_count = cpu_to_le16(packet->payload_length);
1008 d[2].data_address = cpu_to_le32(payload_bus);
1009 last = &d[2];
1010 z = 3;
1011 } else {
1012 last = &d[0];
1013 z = 2;
1016 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1017 DESCRIPTOR_IRQ_ALWAYS |
1018 DESCRIPTOR_BRANCH_ALWAYS);
1021 * If the controller and packet generations don't match, we need to
1022 * bail out and try again. If IntEvent.busReset is set, the AT context
1023 * is halted, so appending to the context and trying to run it is
1024 * futile. Most controllers do the right thing and just flush the AT
1025 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1026 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1027 * up stalling out. So we just bail out in software and try again
1028 * later, and everyone is happy.
1029 * FIXME: Document how the locking works.
1031 if (ohci->generation != packet->generation ||
1032 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1033 if (packet->payload_mapped)
1034 dma_unmap_single(ohci->card.device, payload_bus,
1035 packet->payload_length, DMA_TO_DEVICE);
1036 packet->ack = RCODE_GENERATION;
1037 return -1;
1040 context_append(ctx, d, z, 4 - z);
1042 /* If the context isn't already running, start it up. */
1043 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1044 if ((reg & CONTEXT_RUN) == 0)
1045 context_run(ctx, 0);
1047 return 0;
1050 static int handle_at_packet(struct context *context,
1051 struct descriptor *d,
1052 struct descriptor *last)
1054 struct driver_data *driver_data;
1055 struct fw_packet *packet;
1056 struct fw_ohci *ohci = context->ohci;
1057 int evt;
1059 if (last->transfer_status == 0)
1060 /* This descriptor isn't done yet, stop iteration. */
1061 return 0;
1063 driver_data = (struct driver_data *) &d[3];
1064 packet = driver_data->packet;
1065 if (packet == NULL)
1066 /* This packet was cancelled, just continue. */
1067 return 1;
1069 if (packet->payload_mapped)
1070 dma_unmap_single(ohci->card.device, packet->payload_bus,
1071 packet->payload_length, DMA_TO_DEVICE);
1073 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1074 packet->timestamp = le16_to_cpu(last->res_count);
1076 log_ar_at_event('T', packet->speed, packet->header, evt);
1078 switch (evt) {
1079 case OHCI1394_evt_timeout:
1080 /* Async response transmit timed out. */
1081 packet->ack = RCODE_CANCELLED;
1082 break;
1084 case OHCI1394_evt_flushed:
1086 * The packet was flushed should give same error as
1087 * when we try to use a stale generation count.
1089 packet->ack = RCODE_GENERATION;
1090 break;
1092 case OHCI1394_evt_missing_ack:
1094 * Using a valid (current) generation count, but the
1095 * node is not on the bus or not sending acks.
1097 packet->ack = RCODE_NO_ACK;
1098 break;
1100 case ACK_COMPLETE + 0x10:
1101 case ACK_PENDING + 0x10:
1102 case ACK_BUSY_X + 0x10:
1103 case ACK_BUSY_A + 0x10:
1104 case ACK_BUSY_B + 0x10:
1105 case ACK_DATA_ERROR + 0x10:
1106 case ACK_TYPE_ERROR + 0x10:
1107 packet->ack = evt - 0x10;
1108 break;
1110 default:
1111 packet->ack = RCODE_SEND_ERROR;
1112 break;
1115 packet->callback(packet, &ohci->card, packet->ack);
1117 return 1;
1120 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1121 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1122 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1123 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1124 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1126 static void handle_local_rom(struct fw_ohci *ohci,
1127 struct fw_packet *packet, u32 csr)
1129 struct fw_packet response;
1130 int tcode, length, i;
1132 tcode = HEADER_GET_TCODE(packet->header[0]);
1133 if (TCODE_IS_BLOCK_PACKET(tcode))
1134 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1135 else
1136 length = 4;
1138 i = csr - CSR_CONFIG_ROM;
1139 if (i + length > CONFIG_ROM_SIZE) {
1140 fw_fill_response(&response, packet->header,
1141 RCODE_ADDRESS_ERROR, NULL, 0);
1142 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1143 fw_fill_response(&response, packet->header,
1144 RCODE_TYPE_ERROR, NULL, 0);
1145 } else {
1146 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1147 (void *) ohci->config_rom + i, length);
1150 fw_core_handle_response(&ohci->card, &response);
1153 static void handle_local_lock(struct fw_ohci *ohci,
1154 struct fw_packet *packet, u32 csr)
1156 struct fw_packet response;
1157 int tcode, length, ext_tcode, sel;
1158 __be32 *payload, lock_old;
1159 u32 lock_arg, lock_data;
1161 tcode = HEADER_GET_TCODE(packet->header[0]);
1162 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1163 payload = packet->payload;
1164 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1166 if (tcode == TCODE_LOCK_REQUEST &&
1167 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1168 lock_arg = be32_to_cpu(payload[0]);
1169 lock_data = be32_to_cpu(payload[1]);
1170 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1171 lock_arg = 0;
1172 lock_data = 0;
1173 } else {
1174 fw_fill_response(&response, packet->header,
1175 RCODE_TYPE_ERROR, NULL, 0);
1176 goto out;
1179 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1180 reg_write(ohci, OHCI1394_CSRData, lock_data);
1181 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1182 reg_write(ohci, OHCI1394_CSRControl, sel);
1184 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1185 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1186 else
1187 fw_notify("swap not done yet\n");
1189 fw_fill_response(&response, packet->header,
1190 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1191 out:
1192 fw_core_handle_response(&ohci->card, &response);
1195 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1197 u64 offset;
1198 u32 csr;
1200 if (ctx == &ctx->ohci->at_request_ctx) {
1201 packet->ack = ACK_PENDING;
1202 packet->callback(packet, &ctx->ohci->card, packet->ack);
1205 offset =
1206 ((unsigned long long)
1207 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1208 packet->header[2];
1209 csr = offset - CSR_REGISTER_BASE;
1211 /* Handle config rom reads. */
1212 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1213 handle_local_rom(ctx->ohci, packet, csr);
1214 else switch (csr) {
1215 case CSR_BUS_MANAGER_ID:
1216 case CSR_BANDWIDTH_AVAILABLE:
1217 case CSR_CHANNELS_AVAILABLE_HI:
1218 case CSR_CHANNELS_AVAILABLE_LO:
1219 handle_local_lock(ctx->ohci, packet, csr);
1220 break;
1221 default:
1222 if (ctx == &ctx->ohci->at_request_ctx)
1223 fw_core_handle_request(&ctx->ohci->card, packet);
1224 else
1225 fw_core_handle_response(&ctx->ohci->card, packet);
1226 break;
1229 if (ctx == &ctx->ohci->at_response_ctx) {
1230 packet->ack = ACK_COMPLETE;
1231 packet->callback(packet, &ctx->ohci->card, packet->ack);
1235 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1237 unsigned long flags;
1238 int ret;
1240 spin_lock_irqsave(&ctx->ohci->lock, flags);
1242 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1243 ctx->ohci->generation == packet->generation) {
1244 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1245 handle_local_request(ctx, packet);
1246 return;
1249 ret = at_context_queue_packet(ctx, packet);
1250 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1252 if (ret < 0)
1253 packet->callback(packet, &ctx->ohci->card, packet->ack);
1257 static void bus_reset_tasklet(unsigned long data)
1259 struct fw_ohci *ohci = (struct fw_ohci *)data;
1260 int self_id_count, i, j, reg;
1261 int generation, new_generation;
1262 unsigned long flags;
1263 void *free_rom = NULL;
1264 dma_addr_t free_rom_bus = 0;
1266 reg = reg_read(ohci, OHCI1394_NodeID);
1267 if (!(reg & OHCI1394_NodeID_idValid)) {
1268 fw_notify("node ID not valid, new bus reset in progress\n");
1269 return;
1271 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1272 fw_notify("malconfigured bus\n");
1273 return;
1275 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1276 OHCI1394_NodeID_nodeNumber);
1278 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1279 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1280 fw_notify("inconsistent self IDs\n");
1281 return;
1284 * The count in the SelfIDCount register is the number of
1285 * bytes in the self ID receive buffer. Since we also receive
1286 * the inverted quadlets and a header quadlet, we shift one
1287 * bit extra to get the actual number of self IDs.
1289 self_id_count = (reg >> 3) & 0xff;
1290 if (self_id_count == 0 || self_id_count > 252) {
1291 fw_notify("inconsistent self IDs\n");
1292 return;
1294 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1295 rmb();
1297 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1298 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1299 fw_notify("inconsistent self IDs\n");
1300 return;
1302 ohci->self_id_buffer[j] =
1303 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1305 rmb();
1308 * Check the consistency of the self IDs we just read. The
1309 * problem we face is that a new bus reset can start while we
1310 * read out the self IDs from the DMA buffer. If this happens,
1311 * the DMA buffer will be overwritten with new self IDs and we
1312 * will read out inconsistent data. The OHCI specification
1313 * (section 11.2) recommends a technique similar to
1314 * linux/seqlock.h, where we remember the generation of the
1315 * self IDs in the buffer before reading them out and compare
1316 * it to the current generation after reading them out. If
1317 * the two generations match we know we have a consistent set
1318 * of self IDs.
1321 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1322 if (new_generation != generation) {
1323 fw_notify("recursive bus reset detected, "
1324 "discarding self ids\n");
1325 return;
1328 /* FIXME: Document how the locking works. */
1329 spin_lock_irqsave(&ohci->lock, flags);
1331 ohci->generation = generation;
1332 context_stop(&ohci->at_request_ctx);
1333 context_stop(&ohci->at_response_ctx);
1334 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1336 if (ohci->quirks & QUIRK_RESET_PACKET)
1337 ohci->request_generation = generation;
1340 * This next bit is unrelated to the AT context stuff but we
1341 * have to do it under the spinlock also. If a new config rom
1342 * was set up before this reset, the old one is now no longer
1343 * in use and we can free it. Update the config rom pointers
1344 * to point to the current config rom and clear the
1345 * next_config_rom pointer so a new udpate can take place.
1348 if (ohci->next_config_rom != NULL) {
1349 if (ohci->next_config_rom != ohci->config_rom) {
1350 free_rom = ohci->config_rom;
1351 free_rom_bus = ohci->config_rom_bus;
1353 ohci->config_rom = ohci->next_config_rom;
1354 ohci->config_rom_bus = ohci->next_config_rom_bus;
1355 ohci->next_config_rom = NULL;
1358 * Restore config_rom image and manually update
1359 * config_rom registers. Writing the header quadlet
1360 * will indicate that the config rom is ready, so we
1361 * do that last.
1363 reg_write(ohci, OHCI1394_BusOptions,
1364 be32_to_cpu(ohci->config_rom[2]));
1365 ohci->config_rom[0] = ohci->next_header;
1366 reg_write(ohci, OHCI1394_ConfigROMhdr,
1367 be32_to_cpu(ohci->next_header));
1370 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1371 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1372 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1373 #endif
1375 spin_unlock_irqrestore(&ohci->lock, flags);
1377 if (free_rom)
1378 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1379 free_rom, free_rom_bus);
1381 log_selfids(ohci->node_id, generation,
1382 self_id_count, ohci->self_id_buffer);
1384 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1385 self_id_count, ohci->self_id_buffer);
1388 static irqreturn_t irq_handler(int irq, void *data)
1390 struct fw_ohci *ohci = data;
1391 u32 event, iso_event;
1392 int i;
1394 event = reg_read(ohci, OHCI1394_IntEventClear);
1396 if (!event || !~event)
1397 return IRQ_NONE;
1399 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1400 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1401 log_irqs(event);
1403 if (event & OHCI1394_selfIDComplete)
1404 tasklet_schedule(&ohci->bus_reset_tasklet);
1406 if (event & OHCI1394_RQPkt)
1407 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1409 if (event & OHCI1394_RSPkt)
1410 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1412 if (event & OHCI1394_reqTxComplete)
1413 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1415 if (event & OHCI1394_respTxComplete)
1416 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1418 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1419 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1421 while (iso_event) {
1422 i = ffs(iso_event) - 1;
1423 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1424 iso_event &= ~(1 << i);
1427 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1428 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1430 while (iso_event) {
1431 i = ffs(iso_event) - 1;
1432 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1433 iso_event &= ~(1 << i);
1436 if (unlikely(event & OHCI1394_regAccessFail))
1437 fw_error("Register access failure - "
1438 "please notify linux1394-devel@lists.sf.net\n");
1440 if (unlikely(event & OHCI1394_postedWriteErr))
1441 fw_error("PCI posted write error\n");
1443 if (unlikely(event & OHCI1394_cycleTooLong)) {
1444 if (printk_ratelimit())
1445 fw_notify("isochronous cycle too long\n");
1446 reg_write(ohci, OHCI1394_LinkControlSet,
1447 OHCI1394_LinkControl_cycleMaster);
1450 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1452 * We need to clear this event bit in order to make
1453 * cycleMatch isochronous I/O work. In theory we should
1454 * stop active cycleMatch iso contexts now and restart
1455 * them at least two cycles later. (FIXME?)
1457 if (printk_ratelimit())
1458 fw_notify("isochronous cycle inconsistent\n");
1461 return IRQ_HANDLED;
1464 static int software_reset(struct fw_ohci *ohci)
1466 int i;
1468 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1470 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1471 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1472 OHCI1394_HCControl_softReset) == 0)
1473 return 0;
1474 msleep(1);
1477 return -EBUSY;
1480 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1482 size_t size = length * 4;
1484 memcpy(dest, src, size);
1485 if (size < CONFIG_ROM_SIZE)
1486 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1489 static int ohci_enable(struct fw_card *card,
1490 const __be32 *config_rom, size_t length)
1492 struct fw_ohci *ohci = fw_ohci(card);
1493 struct pci_dev *dev = to_pci_dev(card->device);
1494 u32 lps;
1495 int i;
1497 if (software_reset(ohci)) {
1498 fw_error("Failed to reset ohci card.\n");
1499 return -EBUSY;
1503 * Now enable LPS, which we need in order to start accessing
1504 * most of the registers. In fact, on some cards (ALI M5251),
1505 * accessing registers in the SClk domain without LPS enabled
1506 * will lock up the machine. Wait 50msec to make sure we have
1507 * full link enabled. However, with some cards (well, at least
1508 * a JMicron PCIe card), we have to try again sometimes.
1510 reg_write(ohci, OHCI1394_HCControlSet,
1511 OHCI1394_HCControl_LPS |
1512 OHCI1394_HCControl_postedWriteEnable);
1513 flush_writes(ohci);
1515 for (lps = 0, i = 0; !lps && i < 3; i++) {
1516 msleep(50);
1517 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1518 OHCI1394_HCControl_LPS;
1521 if (!lps) {
1522 fw_error("Failed to set Link Power Status\n");
1523 return -EIO;
1526 reg_write(ohci, OHCI1394_HCControlClear,
1527 OHCI1394_HCControl_noByteSwapData);
1529 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1530 reg_write(ohci, OHCI1394_LinkControlClear,
1531 OHCI1394_LinkControl_rcvPhyPkt);
1532 reg_write(ohci, OHCI1394_LinkControlSet,
1533 OHCI1394_LinkControl_rcvSelfID |
1534 OHCI1394_LinkControl_cycleTimerEnable |
1535 OHCI1394_LinkControl_cycleMaster);
1537 reg_write(ohci, OHCI1394_ATRetries,
1538 OHCI1394_MAX_AT_REQ_RETRIES |
1539 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1540 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1542 ar_context_run(&ohci->ar_request_ctx);
1543 ar_context_run(&ohci->ar_response_ctx);
1545 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1546 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1547 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1548 reg_write(ohci, OHCI1394_IntMaskSet,
1549 OHCI1394_selfIDComplete |
1550 OHCI1394_RQPkt | OHCI1394_RSPkt |
1551 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1552 OHCI1394_isochRx | OHCI1394_isochTx |
1553 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1554 OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1555 OHCI1394_masterIntEnable);
1556 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1557 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1559 /* Activate link_on bit and contender bit in our self ID packets.*/
1560 if (ohci_update_phy_reg(card, 4, 0,
1561 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1562 return -EIO;
1565 * When the link is not yet enabled, the atomic config rom
1566 * update mechanism described below in ohci_set_config_rom()
1567 * is not active. We have to update ConfigRomHeader and
1568 * BusOptions manually, and the write to ConfigROMmap takes
1569 * effect immediately. We tie this to the enabling of the
1570 * link, so we have a valid config rom before enabling - the
1571 * OHCI requires that ConfigROMhdr and BusOptions have valid
1572 * values before enabling.
1574 * However, when the ConfigROMmap is written, some controllers
1575 * always read back quadlets 0 and 2 from the config rom to
1576 * the ConfigRomHeader and BusOptions registers on bus reset.
1577 * They shouldn't do that in this initial case where the link
1578 * isn't enabled. This means we have to use the same
1579 * workaround here, setting the bus header to 0 and then write
1580 * the right values in the bus reset tasklet.
1583 if (config_rom) {
1584 ohci->next_config_rom =
1585 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1586 &ohci->next_config_rom_bus,
1587 GFP_KERNEL);
1588 if (ohci->next_config_rom == NULL)
1589 return -ENOMEM;
1591 copy_config_rom(ohci->next_config_rom, config_rom, length);
1592 } else {
1594 * In the suspend case, config_rom is NULL, which
1595 * means that we just reuse the old config rom.
1597 ohci->next_config_rom = ohci->config_rom;
1598 ohci->next_config_rom_bus = ohci->config_rom_bus;
1601 ohci->next_header = ohci->next_config_rom[0];
1602 ohci->next_config_rom[0] = 0;
1603 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1604 reg_write(ohci, OHCI1394_BusOptions,
1605 be32_to_cpu(ohci->next_config_rom[2]));
1606 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1608 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1610 if (request_irq(dev->irq, irq_handler,
1611 IRQF_SHARED, ohci_driver_name, ohci)) {
1612 fw_error("Failed to allocate shared interrupt %d.\n",
1613 dev->irq);
1614 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1615 ohci->config_rom, ohci->config_rom_bus);
1616 return -EIO;
1619 reg_write(ohci, OHCI1394_HCControlSet,
1620 OHCI1394_HCControl_linkEnable |
1621 OHCI1394_HCControl_BIBimageValid);
1622 flush_writes(ohci);
1625 * We are ready to go, initiate bus reset to finish the
1626 * initialization.
1629 fw_core_initiate_bus_reset(&ohci->card, 1);
1631 return 0;
1634 static int ohci_set_config_rom(struct fw_card *card,
1635 const __be32 *config_rom, size_t length)
1637 struct fw_ohci *ohci;
1638 unsigned long flags;
1639 int ret = -EBUSY;
1640 __be32 *next_config_rom;
1641 dma_addr_t uninitialized_var(next_config_rom_bus);
1643 ohci = fw_ohci(card);
1646 * When the OHCI controller is enabled, the config rom update
1647 * mechanism is a bit tricky, but easy enough to use. See
1648 * section 5.5.6 in the OHCI specification.
1650 * The OHCI controller caches the new config rom address in a
1651 * shadow register (ConfigROMmapNext) and needs a bus reset
1652 * for the changes to take place. When the bus reset is
1653 * detected, the controller loads the new values for the
1654 * ConfigRomHeader and BusOptions registers from the specified
1655 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1656 * shadow register. All automatically and atomically.
1658 * Now, there's a twist to this story. The automatic load of
1659 * ConfigRomHeader and BusOptions doesn't honor the
1660 * noByteSwapData bit, so with a be32 config rom, the
1661 * controller will load be32 values in to these registers
1662 * during the atomic update, even on litte endian
1663 * architectures. The workaround we use is to put a 0 in the
1664 * header quadlet; 0 is endian agnostic and means that the
1665 * config rom isn't ready yet. In the bus reset tasklet we
1666 * then set up the real values for the two registers.
1668 * We use ohci->lock to avoid racing with the code that sets
1669 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1672 next_config_rom =
1673 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1674 &next_config_rom_bus, GFP_KERNEL);
1675 if (next_config_rom == NULL)
1676 return -ENOMEM;
1678 spin_lock_irqsave(&ohci->lock, flags);
1680 if (ohci->next_config_rom == NULL) {
1681 ohci->next_config_rom = next_config_rom;
1682 ohci->next_config_rom_bus = next_config_rom_bus;
1684 copy_config_rom(ohci->next_config_rom, config_rom, length);
1686 ohci->next_header = config_rom[0];
1687 ohci->next_config_rom[0] = 0;
1689 reg_write(ohci, OHCI1394_ConfigROMmap,
1690 ohci->next_config_rom_bus);
1691 ret = 0;
1694 spin_unlock_irqrestore(&ohci->lock, flags);
1697 * Now initiate a bus reset to have the changes take
1698 * effect. We clean up the old config rom memory and DMA
1699 * mappings in the bus reset tasklet, since the OHCI
1700 * controller could need to access it before the bus reset
1701 * takes effect.
1703 if (ret == 0)
1704 fw_core_initiate_bus_reset(&ohci->card, 1);
1705 else
1706 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1707 next_config_rom, next_config_rom_bus);
1709 return ret;
1712 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1714 struct fw_ohci *ohci = fw_ohci(card);
1716 at_context_transmit(&ohci->at_request_ctx, packet);
1719 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1721 struct fw_ohci *ohci = fw_ohci(card);
1723 at_context_transmit(&ohci->at_response_ctx, packet);
1726 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1728 struct fw_ohci *ohci = fw_ohci(card);
1729 struct context *ctx = &ohci->at_request_ctx;
1730 struct driver_data *driver_data = packet->driver_data;
1731 int ret = -ENOENT;
1733 tasklet_disable(&ctx->tasklet);
1735 if (packet->ack != 0)
1736 goto out;
1738 if (packet->payload_mapped)
1739 dma_unmap_single(ohci->card.device, packet->payload_bus,
1740 packet->payload_length, DMA_TO_DEVICE);
1742 log_ar_at_event('T', packet->speed, packet->header, 0x20);
1743 driver_data->packet = NULL;
1744 packet->ack = RCODE_CANCELLED;
1745 packet->callback(packet, &ohci->card, packet->ack);
1746 ret = 0;
1747 out:
1748 tasklet_enable(&ctx->tasklet);
1750 return ret;
1753 static int ohci_enable_phys_dma(struct fw_card *card,
1754 int node_id, int generation)
1756 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1757 return 0;
1758 #else
1759 struct fw_ohci *ohci = fw_ohci(card);
1760 unsigned long flags;
1761 int n, ret = 0;
1764 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1765 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1768 spin_lock_irqsave(&ohci->lock, flags);
1770 if (ohci->generation != generation) {
1771 ret = -ESTALE;
1772 goto out;
1776 * Note, if the node ID contains a non-local bus ID, physical DMA is
1777 * enabled for _all_ nodes on remote buses.
1780 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1781 if (n < 32)
1782 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1783 else
1784 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1786 flush_writes(ohci);
1787 out:
1788 spin_unlock_irqrestore(&ohci->lock, flags);
1790 return ret;
1791 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1794 static u32 cycle_timer_ticks(u32 cycle_timer)
1796 u32 ticks;
1798 ticks = cycle_timer & 0xfff;
1799 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1800 ticks += (3072 * 8000) * (cycle_timer >> 25);
1802 return ticks;
1806 * Some controllers exhibit one or more of the following bugs when updating the
1807 * iso cycle timer register:
1808 * - When the lowest six bits are wrapping around to zero, a read that happens
1809 * at the same time will return garbage in the lowest ten bits.
1810 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1811 * not incremented for about 60 ns.
1812 * - Occasionally, the entire register reads zero.
1814 * To catch these, we read the register three times and ensure that the
1815 * difference between each two consecutive reads is approximately the same, i.e.
1816 * less than twice the other. Furthermore, any negative difference indicates an
1817 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1818 * execute, so we have enough precision to compute the ratio of the differences.)
1820 static u32 ohci_get_cycle_time(struct fw_card *card)
1822 struct fw_ohci *ohci = fw_ohci(card);
1823 u32 c0, c1, c2;
1824 u32 t0, t1, t2;
1825 s32 diff01, diff12;
1826 int i;
1828 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1830 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1831 i = 0;
1832 c1 = c2;
1833 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1834 do {
1835 c0 = c1;
1836 c1 = c2;
1837 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1838 t0 = cycle_timer_ticks(c0);
1839 t1 = cycle_timer_ticks(c1);
1840 t2 = cycle_timer_ticks(c2);
1841 diff01 = t1 - t0;
1842 diff12 = t2 - t1;
1843 } while ((diff01 <= 0 || diff12 <= 0 ||
1844 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1845 && i++ < 20);
1848 return c2;
1851 static void copy_iso_headers(struct iso_context *ctx, void *p)
1853 int i = ctx->header_length;
1855 if (i + ctx->base.header_size > PAGE_SIZE)
1856 return;
1859 * The iso header is byteswapped to little endian by
1860 * the controller, but the remaining header quadlets
1861 * are big endian. We want to present all the headers
1862 * as big endian, so we have to swap the first quadlet.
1864 if (ctx->base.header_size > 0)
1865 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1866 if (ctx->base.header_size > 4)
1867 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1868 if (ctx->base.header_size > 8)
1869 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1870 ctx->header_length += ctx->base.header_size;
1873 static int handle_ir_packet_per_buffer(struct context *context,
1874 struct descriptor *d,
1875 struct descriptor *last)
1877 struct iso_context *ctx =
1878 container_of(context, struct iso_context, context);
1879 struct descriptor *pd;
1880 __le32 *ir_header;
1881 void *p;
1883 for (pd = d; pd <= last; pd++) {
1884 if (pd->transfer_status)
1885 break;
1887 if (pd > last)
1888 /* Descriptor(s) not done yet, stop iteration */
1889 return 0;
1891 p = last + 1;
1892 copy_iso_headers(ctx, p);
1894 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1895 ir_header = (__le32 *) p;
1896 ctx->base.callback(&ctx->base,
1897 le32_to_cpu(ir_header[0]) & 0xffff,
1898 ctx->header_length, ctx->header,
1899 ctx->base.callback_data);
1900 ctx->header_length = 0;
1903 return 1;
1906 static int handle_it_packet(struct context *context,
1907 struct descriptor *d,
1908 struct descriptor *last)
1910 struct iso_context *ctx =
1911 container_of(context, struct iso_context, context);
1912 int i;
1913 struct descriptor *pd;
1915 for (pd = d; pd <= last; pd++)
1916 if (pd->transfer_status)
1917 break;
1918 if (pd > last)
1919 /* Descriptor(s) not done yet, stop iteration */
1920 return 0;
1922 i = ctx->header_length;
1923 if (i + 4 < PAGE_SIZE) {
1924 /* Present this value as big-endian to match the receive code */
1925 *(__be32 *)(ctx->header + i) = cpu_to_be32(
1926 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
1927 le16_to_cpu(pd->res_count));
1928 ctx->header_length += 4;
1930 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1931 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1932 ctx->header_length, ctx->header,
1933 ctx->base.callback_data);
1934 ctx->header_length = 0;
1936 return 1;
1939 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1940 int type, int channel, size_t header_size)
1942 struct fw_ohci *ohci = fw_ohci(card);
1943 struct iso_context *ctx, *list;
1944 descriptor_callback_t callback;
1945 u64 *channels, dont_care = ~0ULL;
1946 u32 *mask, regs;
1947 unsigned long flags;
1948 int index, ret = -ENOMEM;
1950 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1951 channels = &dont_care;
1952 mask = &ohci->it_context_mask;
1953 list = ohci->it_context_list;
1954 callback = handle_it_packet;
1955 } else {
1956 channels = &ohci->ir_context_channels;
1957 mask = &ohci->ir_context_mask;
1958 list = ohci->ir_context_list;
1959 callback = handle_ir_packet_per_buffer;
1962 spin_lock_irqsave(&ohci->lock, flags);
1963 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1964 if (index >= 0) {
1965 *channels &= ~(1ULL << channel);
1966 *mask &= ~(1 << index);
1968 spin_unlock_irqrestore(&ohci->lock, flags);
1970 if (index < 0)
1971 return ERR_PTR(-EBUSY);
1973 if (type == FW_ISO_CONTEXT_TRANSMIT)
1974 regs = OHCI1394_IsoXmitContextBase(index);
1975 else
1976 regs = OHCI1394_IsoRcvContextBase(index);
1978 ctx = &list[index];
1979 memset(ctx, 0, sizeof(*ctx));
1980 ctx->header_length = 0;
1981 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1982 if (ctx->header == NULL)
1983 goto out;
1985 ret = context_init(&ctx->context, ohci, regs, callback);
1986 if (ret < 0)
1987 goto out_with_header;
1989 return &ctx->base;
1991 out_with_header:
1992 free_page((unsigned long)ctx->header);
1993 out:
1994 spin_lock_irqsave(&ohci->lock, flags);
1995 *mask |= 1 << index;
1996 spin_unlock_irqrestore(&ohci->lock, flags);
1998 return ERR_PTR(ret);
2001 static int ohci_start_iso(struct fw_iso_context *base,
2002 s32 cycle, u32 sync, u32 tags)
2004 struct iso_context *ctx = container_of(base, struct iso_context, base);
2005 struct fw_ohci *ohci = ctx->context.ohci;
2006 u32 control, match;
2007 int index;
2009 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2010 index = ctx - ohci->it_context_list;
2011 match = 0;
2012 if (cycle >= 0)
2013 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2014 (cycle & 0x7fff) << 16;
2016 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2017 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2018 context_run(&ctx->context, match);
2019 } else {
2020 index = ctx - ohci->ir_context_list;
2021 control = IR_CONTEXT_ISOCH_HEADER;
2022 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2023 if (cycle >= 0) {
2024 match |= (cycle & 0x07fff) << 12;
2025 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2028 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2029 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2030 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2031 context_run(&ctx->context, control);
2034 return 0;
2037 static int ohci_stop_iso(struct fw_iso_context *base)
2039 struct fw_ohci *ohci = fw_ohci(base->card);
2040 struct iso_context *ctx = container_of(base, struct iso_context, base);
2041 int index;
2043 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2044 index = ctx - ohci->it_context_list;
2045 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2046 } else {
2047 index = ctx - ohci->ir_context_list;
2048 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2050 flush_writes(ohci);
2051 context_stop(&ctx->context);
2053 return 0;
2056 static void ohci_free_iso_context(struct fw_iso_context *base)
2058 struct fw_ohci *ohci = fw_ohci(base->card);
2059 struct iso_context *ctx = container_of(base, struct iso_context, base);
2060 unsigned long flags;
2061 int index;
2063 ohci_stop_iso(base);
2064 context_release(&ctx->context);
2065 free_page((unsigned long)ctx->header);
2067 spin_lock_irqsave(&ohci->lock, flags);
2069 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2070 index = ctx - ohci->it_context_list;
2071 ohci->it_context_mask |= 1 << index;
2072 } else {
2073 index = ctx - ohci->ir_context_list;
2074 ohci->ir_context_mask |= 1 << index;
2075 ohci->ir_context_channels |= 1ULL << base->channel;
2078 spin_unlock_irqrestore(&ohci->lock, flags);
2081 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2082 struct fw_iso_packet *packet,
2083 struct fw_iso_buffer *buffer,
2084 unsigned long payload)
2086 struct iso_context *ctx = container_of(base, struct iso_context, base);
2087 struct descriptor *d, *last, *pd;
2088 struct fw_iso_packet *p;
2089 __le32 *header;
2090 dma_addr_t d_bus, page_bus;
2091 u32 z, header_z, payload_z, irq;
2092 u32 payload_index, payload_end_index, next_page_index;
2093 int page, end_page, i, length, offset;
2095 p = packet;
2096 payload_index = payload;
2098 if (p->skip)
2099 z = 1;
2100 else
2101 z = 2;
2102 if (p->header_length > 0)
2103 z++;
2105 /* Determine the first page the payload isn't contained in. */
2106 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2107 if (p->payload_length > 0)
2108 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2109 else
2110 payload_z = 0;
2112 z += payload_z;
2114 /* Get header size in number of descriptors. */
2115 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2117 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2118 if (d == NULL)
2119 return -ENOMEM;
2121 if (!p->skip) {
2122 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2123 d[0].req_count = cpu_to_le16(8);
2125 * Link the skip address to this descriptor itself. This causes
2126 * a context to skip a cycle whenever lost cycles or FIFO
2127 * overruns occur, without dropping the data. The application
2128 * should then decide whether this is an error condition or not.
2129 * FIXME: Make the context's cycle-lost behaviour configurable?
2131 d[0].branch_address = cpu_to_le32(d_bus | z);
2133 header = (__le32 *) &d[1];
2134 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2135 IT_HEADER_TAG(p->tag) |
2136 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2137 IT_HEADER_CHANNEL(ctx->base.channel) |
2138 IT_HEADER_SPEED(ctx->base.speed));
2139 header[1] =
2140 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2141 p->payload_length));
2144 if (p->header_length > 0) {
2145 d[2].req_count = cpu_to_le16(p->header_length);
2146 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2147 memcpy(&d[z], p->header, p->header_length);
2150 pd = d + z - payload_z;
2151 payload_end_index = payload_index + p->payload_length;
2152 for (i = 0; i < payload_z; i++) {
2153 page = payload_index >> PAGE_SHIFT;
2154 offset = payload_index & ~PAGE_MASK;
2155 next_page_index = (page + 1) << PAGE_SHIFT;
2156 length =
2157 min(next_page_index, payload_end_index) - payload_index;
2158 pd[i].req_count = cpu_to_le16(length);
2160 page_bus = page_private(buffer->pages[page]);
2161 pd[i].data_address = cpu_to_le32(page_bus + offset);
2163 payload_index += length;
2166 if (p->interrupt)
2167 irq = DESCRIPTOR_IRQ_ALWAYS;
2168 else
2169 irq = DESCRIPTOR_NO_IRQ;
2171 last = z == 2 ? d : d + z - 1;
2172 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2173 DESCRIPTOR_STATUS |
2174 DESCRIPTOR_BRANCH_ALWAYS |
2175 irq);
2177 context_append(&ctx->context, d, z, header_z);
2179 return 0;
2182 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2183 struct fw_iso_packet *packet,
2184 struct fw_iso_buffer *buffer,
2185 unsigned long payload)
2187 struct iso_context *ctx = container_of(base, struct iso_context, base);
2188 struct descriptor *d, *pd;
2189 struct fw_iso_packet *p = packet;
2190 dma_addr_t d_bus, page_bus;
2191 u32 z, header_z, rest;
2192 int i, j, length;
2193 int page, offset, packet_count, header_size, payload_per_buffer;
2196 * The OHCI controller puts the isochronous header and trailer in the
2197 * buffer, so we need at least 8 bytes.
2199 packet_count = p->header_length / ctx->base.header_size;
2200 header_size = max(ctx->base.header_size, (size_t)8);
2202 /* Get header size in number of descriptors. */
2203 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2204 page = payload >> PAGE_SHIFT;
2205 offset = payload & ~PAGE_MASK;
2206 payload_per_buffer = p->payload_length / packet_count;
2208 for (i = 0; i < packet_count; i++) {
2209 /* d points to the header descriptor */
2210 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2211 d = context_get_descriptors(&ctx->context,
2212 z + header_z, &d_bus);
2213 if (d == NULL)
2214 return -ENOMEM;
2216 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2217 DESCRIPTOR_INPUT_MORE);
2218 if (p->skip && i == 0)
2219 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2220 d->req_count = cpu_to_le16(header_size);
2221 d->res_count = d->req_count;
2222 d->transfer_status = 0;
2223 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2225 rest = payload_per_buffer;
2226 pd = d;
2227 for (j = 1; j < z; j++) {
2228 pd++;
2229 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2230 DESCRIPTOR_INPUT_MORE);
2232 if (offset + rest < PAGE_SIZE)
2233 length = rest;
2234 else
2235 length = PAGE_SIZE - offset;
2236 pd->req_count = cpu_to_le16(length);
2237 pd->res_count = pd->req_count;
2238 pd->transfer_status = 0;
2240 page_bus = page_private(buffer->pages[page]);
2241 pd->data_address = cpu_to_le32(page_bus + offset);
2243 offset = (offset + length) & ~PAGE_MASK;
2244 rest -= length;
2245 if (offset == 0)
2246 page++;
2248 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2249 DESCRIPTOR_INPUT_LAST |
2250 DESCRIPTOR_BRANCH_ALWAYS);
2251 if (p->interrupt && i == packet_count - 1)
2252 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2254 context_append(&ctx->context, d, z, header_z);
2257 return 0;
2260 static int ohci_queue_iso(struct fw_iso_context *base,
2261 struct fw_iso_packet *packet,
2262 struct fw_iso_buffer *buffer,
2263 unsigned long payload)
2265 struct iso_context *ctx = container_of(base, struct iso_context, base);
2266 unsigned long flags;
2267 int ret;
2269 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2270 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2271 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2272 else
2273 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2274 buffer, payload);
2275 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2277 return ret;
2280 static const struct fw_card_driver ohci_driver = {
2281 .enable = ohci_enable,
2282 .update_phy_reg = ohci_update_phy_reg,
2283 .set_config_rom = ohci_set_config_rom,
2284 .send_request = ohci_send_request,
2285 .send_response = ohci_send_response,
2286 .cancel_packet = ohci_cancel_packet,
2287 .enable_phys_dma = ohci_enable_phys_dma,
2288 .get_cycle_time = ohci_get_cycle_time,
2290 .allocate_iso_context = ohci_allocate_iso_context,
2291 .free_iso_context = ohci_free_iso_context,
2292 .queue_iso = ohci_queue_iso,
2293 .start_iso = ohci_start_iso,
2294 .stop_iso = ohci_stop_iso,
2297 #ifdef CONFIG_PPC_PMAC
2298 static void ohci_pmac_on(struct pci_dev *dev)
2300 if (machine_is(powermac)) {
2301 struct device_node *ofn = pci_device_to_OF_node(dev);
2303 if (ofn) {
2304 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2305 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2310 static void ohci_pmac_off(struct pci_dev *dev)
2312 if (machine_is(powermac)) {
2313 struct device_node *ofn = pci_device_to_OF_node(dev);
2315 if (ofn) {
2316 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2317 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2321 #else
2322 #define ohci_pmac_on(dev)
2323 #define ohci_pmac_off(dev)
2324 #endif /* CONFIG_PPC_PMAC */
2326 static int __devinit pci_probe(struct pci_dev *dev,
2327 const struct pci_device_id *ent)
2329 struct fw_ohci *ohci;
2330 u32 bus_options, max_receive, link_speed, version;
2331 u64 guid;
2332 int i, err, n_ir, n_it;
2333 size_t size;
2335 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2336 if (ohci == NULL) {
2337 err = -ENOMEM;
2338 goto fail;
2341 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2343 ohci_pmac_on(dev);
2345 err = pci_enable_device(dev);
2346 if (err) {
2347 fw_error("Failed to enable OHCI hardware\n");
2348 goto fail_free;
2351 pci_set_master(dev);
2352 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2353 pci_set_drvdata(dev, ohci);
2355 spin_lock_init(&ohci->lock);
2357 tasklet_init(&ohci->bus_reset_tasklet,
2358 bus_reset_tasklet, (unsigned long)ohci);
2360 err = pci_request_region(dev, 0, ohci_driver_name);
2361 if (err) {
2362 fw_error("MMIO resource unavailable\n");
2363 goto fail_disable;
2366 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2367 if (ohci->registers == NULL) {
2368 fw_error("Failed to remap registers\n");
2369 err = -ENXIO;
2370 goto fail_iomem;
2373 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2374 if (ohci_quirks[i].vendor == dev->vendor &&
2375 (ohci_quirks[i].device == dev->device ||
2376 ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2377 ohci->quirks = ohci_quirks[i].flags;
2378 break;
2380 if (param_quirks)
2381 ohci->quirks = param_quirks;
2383 ar_context_init(&ohci->ar_request_ctx, ohci,
2384 OHCI1394_AsReqRcvContextControlSet);
2386 ar_context_init(&ohci->ar_response_ctx, ohci,
2387 OHCI1394_AsRspRcvContextControlSet);
2389 context_init(&ohci->at_request_ctx, ohci,
2390 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2392 context_init(&ohci->at_response_ctx, ohci,
2393 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2395 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2396 ohci->ir_context_channels = ~0ULL;
2397 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2398 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2399 n_ir = hweight32(ohci->ir_context_mask);
2400 size = sizeof(struct iso_context) * n_ir;
2401 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2403 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2404 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2405 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2406 n_it = hweight32(ohci->it_context_mask);
2407 size = sizeof(struct iso_context) * n_it;
2408 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2410 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2411 err = -ENOMEM;
2412 goto fail_contexts;
2415 /* self-id dma buffer allocation */
2416 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2417 SELF_ID_BUF_SIZE,
2418 &ohci->self_id_bus,
2419 GFP_KERNEL);
2420 if (ohci->self_id_cpu == NULL) {
2421 err = -ENOMEM;
2422 goto fail_contexts;
2425 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2426 max_receive = (bus_options >> 12) & 0xf;
2427 link_speed = bus_options & 0x7;
2428 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2429 reg_read(ohci, OHCI1394_GUIDLo);
2431 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2432 if (err)
2433 goto fail_self_id;
2435 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2436 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2437 "%d IR + %d IT contexts, quirks 0x%x\n",
2438 dev_name(&dev->dev), version >> 16, version & 0xff,
2439 n_ir, n_it, ohci->quirks);
2441 return 0;
2443 fail_self_id:
2444 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2445 ohci->self_id_cpu, ohci->self_id_bus);
2446 fail_contexts:
2447 kfree(ohci->ir_context_list);
2448 kfree(ohci->it_context_list);
2449 context_release(&ohci->at_response_ctx);
2450 context_release(&ohci->at_request_ctx);
2451 ar_context_release(&ohci->ar_response_ctx);
2452 ar_context_release(&ohci->ar_request_ctx);
2453 pci_iounmap(dev, ohci->registers);
2454 fail_iomem:
2455 pci_release_region(dev, 0);
2456 fail_disable:
2457 pci_disable_device(dev);
2458 fail_free:
2459 kfree(&ohci->card);
2460 ohci_pmac_off(dev);
2461 fail:
2462 if (err == -ENOMEM)
2463 fw_error("Out of memory\n");
2465 return err;
2468 static void pci_remove(struct pci_dev *dev)
2470 struct fw_ohci *ohci;
2472 ohci = pci_get_drvdata(dev);
2473 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2474 flush_writes(ohci);
2475 fw_core_remove_card(&ohci->card);
2478 * FIXME: Fail all pending packets here, now that the upper
2479 * layers can't queue any more.
2482 software_reset(ohci);
2483 free_irq(dev->irq, ohci);
2485 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2486 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2487 ohci->next_config_rom, ohci->next_config_rom_bus);
2488 if (ohci->config_rom)
2489 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2490 ohci->config_rom, ohci->config_rom_bus);
2491 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2492 ohci->self_id_cpu, ohci->self_id_bus);
2493 ar_context_release(&ohci->ar_request_ctx);
2494 ar_context_release(&ohci->ar_response_ctx);
2495 context_release(&ohci->at_request_ctx);
2496 context_release(&ohci->at_response_ctx);
2497 kfree(ohci->it_context_list);
2498 kfree(ohci->ir_context_list);
2499 pci_iounmap(dev, ohci->registers);
2500 pci_release_region(dev, 0);
2501 pci_disable_device(dev);
2502 kfree(&ohci->card);
2503 ohci_pmac_off(dev);
2505 fw_notify("Removed fw-ohci device.\n");
2508 #ifdef CONFIG_PM
2509 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2511 struct fw_ohci *ohci = pci_get_drvdata(dev);
2512 int err;
2514 software_reset(ohci);
2515 free_irq(dev->irq, ohci);
2516 err = pci_save_state(dev);
2517 if (err) {
2518 fw_error("pci_save_state failed\n");
2519 return err;
2521 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2522 if (err)
2523 fw_error("pci_set_power_state failed with %d\n", err);
2524 ohci_pmac_off(dev);
2526 return 0;
2529 static int pci_resume(struct pci_dev *dev)
2531 struct fw_ohci *ohci = pci_get_drvdata(dev);
2532 int err;
2534 ohci_pmac_on(dev);
2535 pci_set_power_state(dev, PCI_D0);
2536 pci_restore_state(dev);
2537 err = pci_enable_device(dev);
2538 if (err) {
2539 fw_error("pci_enable_device failed\n");
2540 return err;
2543 return ohci_enable(&ohci->card, NULL, 0);
2545 #endif
2547 static const struct pci_device_id pci_table[] = {
2548 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2552 MODULE_DEVICE_TABLE(pci, pci_table);
2554 static struct pci_driver fw_ohci_pci_driver = {
2555 .name = ohci_driver_name,
2556 .id_table = pci_table,
2557 .probe = pci_probe,
2558 .remove = pci_remove,
2559 #ifdef CONFIG_PM
2560 .resume = pci_resume,
2561 .suspend = pci_suspend,
2562 #endif
2565 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2566 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2567 MODULE_LICENSE("GPL");
2569 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2570 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2571 MODULE_ALIAS("ohci1394");
2572 #endif
2574 static int __init fw_ohci_init(void)
2576 return pci_register_driver(&fw_ohci_pci_driver);
2579 static void __exit fw_ohci_cleanup(void)
2581 pci_unregister_driver(&fw_ohci_pci_driver);
2584 module_init(fw_ohci_init);
2585 module_exit(fw_ohci_cleanup);