writeback: remove writeback_inodes_wbc
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / fs-writeback.c
blob94a602e98bb599fde79589603fd467097a118a3f
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
31 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
34 * We don't actually have pdflush, but this one is exported though /proc...
36 int nr_pdflush_threads;
39 * Passed into wb_writeback(), essentially a subset of writeback_control
41 struct wb_writeback_args {
42 long nr_pages;
43 struct super_block *sb;
44 enum writeback_sync_modes sync_mode;
45 unsigned int for_kupdate:1;
46 unsigned int range_cyclic:1;
47 unsigned int for_background:1;
51 * Work items for the bdi_writeback threads
53 struct bdi_work {
54 struct list_head list; /* pending work list */
55 struct rcu_head rcu_head; /* for RCU free/clear of work */
57 unsigned long seen; /* threads that have seen this work */
58 atomic_t pending; /* number of threads still to do work */
60 struct wb_writeback_args args; /* writeback arguments */
62 unsigned long state; /* flag bits, see WS_* */
65 enum {
66 WS_INPROGRESS = 0,
67 WS_ONSTACK,
70 static inline void bdi_work_init(struct bdi_work *work,
71 struct wb_writeback_args *args)
73 INIT_RCU_HEAD(&work->rcu_head);
74 work->args = *args;
75 __set_bit(WS_INPROGRESS, &work->state);
78 /**
79 * writeback_in_progress - determine whether there is writeback in progress
80 * @bdi: the device's backing_dev_info structure.
82 * Determine whether there is writeback waiting to be handled against a
83 * backing device.
85 int writeback_in_progress(struct backing_dev_info *bdi)
87 return !list_empty(&bdi->work_list);
90 static void bdi_work_free(struct rcu_head *head)
92 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
94 clear_bit(WS_INPROGRESS, &work->state);
95 smp_mb__after_clear_bit();
96 wake_up_bit(&work->state, WS_INPROGRESS);
98 if (!test_bit(WS_ONSTACK, &work->state))
99 kfree(work);
102 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
105 * The caller has retrieved the work arguments from this work,
106 * drop our reference. If this is the last ref, delete and free it
108 if (atomic_dec_and_test(&work->pending)) {
109 struct backing_dev_info *bdi = wb->bdi;
111 spin_lock(&bdi->wb_lock);
112 list_del_rcu(&work->list);
113 spin_unlock(&bdi->wb_lock);
115 call_rcu(&work->rcu_head, bdi_work_free);
119 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
121 work->seen = bdi->wb_mask;
122 BUG_ON(!work->seen);
123 atomic_set(&work->pending, bdi->wb_cnt);
124 BUG_ON(!bdi->wb_cnt);
127 * list_add_tail_rcu() contains the necessary barriers to
128 * make sure the above stores are seen before the item is
129 * noticed on the list
131 spin_lock(&bdi->wb_lock);
132 list_add_tail_rcu(&work->list, &bdi->work_list);
133 spin_unlock(&bdi->wb_lock);
136 * If the default thread isn't there, make sure we add it. When
137 * it gets created and wakes up, we'll run this work.
139 if (unlikely(list_empty_careful(&bdi->wb_list)))
140 wake_up_process(default_backing_dev_info.wb.task);
141 else {
142 struct bdi_writeback *wb = &bdi->wb;
144 if (wb->task)
145 wake_up_process(wb->task);
150 * Used for on-stack allocated work items. The caller needs to wait until
151 * the wb threads have acked the work before it's safe to continue.
153 static void bdi_wait_on_work_done(struct bdi_work *work)
155 wait_on_bit(&work->state, WS_INPROGRESS, bdi_sched_wait,
156 TASK_UNINTERRUPTIBLE);
159 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
160 struct wb_writeback_args *args)
162 struct bdi_work *work;
165 * This is WB_SYNC_NONE writeback, so if allocation fails just
166 * wakeup the thread for old dirty data writeback
168 work = kmalloc(sizeof(*work), GFP_ATOMIC);
169 if (work) {
170 bdi_work_init(work, args);
171 bdi_queue_work(bdi, work);
172 } else {
173 struct bdi_writeback *wb = &bdi->wb;
175 if (wb->task)
176 wake_up_process(wb->task);
181 * bdi_queue_work_onstack - start and wait for writeback
182 * @args: parameters to control the work queue writeback
184 * Description:
185 * This function initiates writeback and waits for the operation to
186 * complete. Callers must hold the sb s_umount semaphore for
187 * reading, to avoid having the super disappear before we are done.
189 static void bdi_queue_work_onstack(struct wb_writeback_args *args)
191 struct bdi_work work;
193 bdi_work_init(&work, args);
194 __set_bit(WS_ONSTACK, &work.state);
196 bdi_queue_work(args->sb->s_bdi, &work);
197 bdi_wait_on_work_done(&work);
201 * bdi_start_writeback - start writeback
202 * @bdi: the backing device to write from
203 * @nr_pages: the number of pages to write
205 * Description:
206 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
207 * started when this function returns, we make no guarentees on
208 * completion. Caller need not hold sb s_umount semaphore.
211 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
213 struct wb_writeback_args args = {
214 .sync_mode = WB_SYNC_NONE,
215 .nr_pages = nr_pages,
216 .range_cyclic = 1,
219 bdi_alloc_queue_work(bdi, &args);
223 * bdi_start_background_writeback - start background writeback
224 * @bdi: the backing device to write from
226 * Description:
227 * This does WB_SYNC_NONE background writeback. The IO is only
228 * started when this function returns, we make no guarentees on
229 * completion. Caller need not hold sb s_umount semaphore.
231 void bdi_start_background_writeback(struct backing_dev_info *bdi)
233 struct wb_writeback_args args = {
234 .sync_mode = WB_SYNC_NONE,
235 .nr_pages = LONG_MAX,
236 .for_background = 1,
237 .range_cyclic = 1,
239 bdi_alloc_queue_work(bdi, &args);
243 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
244 * furthest end of its superblock's dirty-inode list.
246 * Before stamping the inode's ->dirtied_when, we check to see whether it is
247 * already the most-recently-dirtied inode on the b_dirty list. If that is
248 * the case then the inode must have been redirtied while it was being written
249 * out and we don't reset its dirtied_when.
251 static void redirty_tail(struct inode *inode)
253 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
255 if (!list_empty(&wb->b_dirty)) {
256 struct inode *tail;
258 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
259 if (time_before(inode->dirtied_when, tail->dirtied_when))
260 inode->dirtied_when = jiffies;
262 list_move(&inode->i_list, &wb->b_dirty);
266 * requeue inode for re-scanning after bdi->b_io list is exhausted.
268 static void requeue_io(struct inode *inode)
270 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
272 list_move(&inode->i_list, &wb->b_more_io);
275 static void inode_sync_complete(struct inode *inode)
278 * Prevent speculative execution through spin_unlock(&inode_lock);
280 smp_mb();
281 wake_up_bit(&inode->i_state, __I_SYNC);
284 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
286 bool ret = time_after(inode->dirtied_when, t);
287 #ifndef CONFIG_64BIT
289 * For inodes being constantly redirtied, dirtied_when can get stuck.
290 * It _appears_ to be in the future, but is actually in distant past.
291 * This test is necessary to prevent such wrapped-around relative times
292 * from permanently stopping the whole bdi writeback.
294 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
295 #endif
296 return ret;
300 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
302 static void move_expired_inodes(struct list_head *delaying_queue,
303 struct list_head *dispatch_queue,
304 unsigned long *older_than_this)
306 LIST_HEAD(tmp);
307 struct list_head *pos, *node;
308 struct super_block *sb = NULL;
309 struct inode *inode;
310 int do_sb_sort = 0;
312 while (!list_empty(delaying_queue)) {
313 inode = list_entry(delaying_queue->prev, struct inode, i_list);
314 if (older_than_this &&
315 inode_dirtied_after(inode, *older_than_this))
316 break;
317 if (sb && sb != inode->i_sb)
318 do_sb_sort = 1;
319 sb = inode->i_sb;
320 list_move(&inode->i_list, &tmp);
323 /* just one sb in list, splice to dispatch_queue and we're done */
324 if (!do_sb_sort) {
325 list_splice(&tmp, dispatch_queue);
326 return;
329 /* Move inodes from one superblock together */
330 while (!list_empty(&tmp)) {
331 inode = list_entry(tmp.prev, struct inode, i_list);
332 sb = inode->i_sb;
333 list_for_each_prev_safe(pos, node, &tmp) {
334 inode = list_entry(pos, struct inode, i_list);
335 if (inode->i_sb == sb)
336 list_move(&inode->i_list, dispatch_queue);
342 * Queue all expired dirty inodes for io, eldest first.
344 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
346 list_splice_init(&wb->b_more_io, wb->b_io.prev);
347 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
350 static int write_inode(struct inode *inode, struct writeback_control *wbc)
352 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
353 return inode->i_sb->s_op->write_inode(inode, wbc);
354 return 0;
358 * Wait for writeback on an inode to complete.
360 static void inode_wait_for_writeback(struct inode *inode)
362 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
363 wait_queue_head_t *wqh;
365 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
366 while (inode->i_state & I_SYNC) {
367 spin_unlock(&inode_lock);
368 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
369 spin_lock(&inode_lock);
374 * Write out an inode's dirty pages. Called under inode_lock. Either the
375 * caller has ref on the inode (either via __iget or via syscall against an fd)
376 * or the inode has I_WILL_FREE set (via generic_forget_inode)
378 * If `wait' is set, wait on the writeout.
380 * The whole writeout design is quite complex and fragile. We want to avoid
381 * starvation of particular inodes when others are being redirtied, prevent
382 * livelocks, etc.
384 * Called under inode_lock.
386 static int
387 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
389 struct address_space *mapping = inode->i_mapping;
390 unsigned dirty;
391 int ret;
393 if (!atomic_read(&inode->i_count))
394 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
395 else
396 WARN_ON(inode->i_state & I_WILL_FREE);
398 if (inode->i_state & I_SYNC) {
400 * If this inode is locked for writeback and we are not doing
401 * writeback-for-data-integrity, move it to b_more_io so that
402 * writeback can proceed with the other inodes on s_io.
404 * We'll have another go at writing back this inode when we
405 * completed a full scan of b_io.
407 if (wbc->sync_mode != WB_SYNC_ALL) {
408 requeue_io(inode);
409 return 0;
413 * It's a data-integrity sync. We must wait.
415 inode_wait_for_writeback(inode);
418 BUG_ON(inode->i_state & I_SYNC);
420 /* Set I_SYNC, reset I_DIRTY_PAGES */
421 inode->i_state |= I_SYNC;
422 inode->i_state &= ~I_DIRTY_PAGES;
423 spin_unlock(&inode_lock);
425 ret = do_writepages(mapping, wbc);
428 * Make sure to wait on the data before writing out the metadata.
429 * This is important for filesystems that modify metadata on data
430 * I/O completion.
432 if (wbc->sync_mode == WB_SYNC_ALL) {
433 int err = filemap_fdatawait(mapping);
434 if (ret == 0)
435 ret = err;
439 * Some filesystems may redirty the inode during the writeback
440 * due to delalloc, clear dirty metadata flags right before
441 * write_inode()
443 spin_lock(&inode_lock);
444 dirty = inode->i_state & I_DIRTY;
445 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
446 spin_unlock(&inode_lock);
447 /* Don't write the inode if only I_DIRTY_PAGES was set */
448 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
449 int err = write_inode(inode, wbc);
450 if (ret == 0)
451 ret = err;
454 spin_lock(&inode_lock);
455 inode->i_state &= ~I_SYNC;
456 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
457 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
459 * More pages get dirtied by a fast dirtier.
461 goto select_queue;
462 } else if (inode->i_state & I_DIRTY) {
464 * At least XFS will redirty the inode during the
465 * writeback (delalloc) and on io completion (isize).
467 redirty_tail(inode);
468 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
470 * We didn't write back all the pages. nfs_writepages()
471 * sometimes bales out without doing anything. Redirty
472 * the inode; Move it from b_io onto b_more_io/b_dirty.
475 * akpm: if the caller was the kupdate function we put
476 * this inode at the head of b_dirty so it gets first
477 * consideration. Otherwise, move it to the tail, for
478 * the reasons described there. I'm not really sure
479 * how much sense this makes. Presumably I had a good
480 * reasons for doing it this way, and I'd rather not
481 * muck with it at present.
483 if (wbc->for_kupdate) {
485 * For the kupdate function we move the inode
486 * to b_more_io so it will get more writeout as
487 * soon as the queue becomes uncongested.
489 inode->i_state |= I_DIRTY_PAGES;
490 select_queue:
491 if (wbc->nr_to_write <= 0) {
493 * slice used up: queue for next turn
495 requeue_io(inode);
496 } else {
498 * somehow blocked: retry later
500 redirty_tail(inode);
502 } else {
504 * Otherwise fully redirty the inode so that
505 * other inodes on this superblock will get some
506 * writeout. Otherwise heavy writing to one
507 * file would indefinitely suspend writeout of
508 * all the other files.
510 inode->i_state |= I_DIRTY_PAGES;
511 redirty_tail(inode);
513 } else if (atomic_read(&inode->i_count)) {
515 * The inode is clean, inuse
517 list_move(&inode->i_list, &inode_in_use);
518 } else {
520 * The inode is clean, unused
522 list_move(&inode->i_list, &inode_unused);
525 inode_sync_complete(inode);
526 return ret;
530 * For background writeback the caller does not have the sb pinned
531 * before calling writeback. So make sure that we do pin it, so it doesn't
532 * go away while we are writing inodes from it.
534 static bool pin_sb_for_writeback(struct super_block *sb)
536 spin_lock(&sb_lock);
537 if (list_empty(&sb->s_instances)) {
538 spin_unlock(&sb_lock);
539 return false;
542 sb->s_count++;
543 spin_unlock(&sb_lock);
545 if (down_read_trylock(&sb->s_umount)) {
546 if (sb->s_root)
547 return true;
548 up_read(&sb->s_umount);
551 put_super(sb);
552 return false;
556 * Write a portion of b_io inodes which belong to @sb.
557 * If @wbc->sb != NULL, then find and write all such
558 * inodes. Otherwise write only ones which go sequentially
559 * in reverse order.
560 * Return 1, if the caller writeback routine should be
561 * interrupted. Otherwise return 0.
563 static int writeback_sb_inodes(struct super_block *sb,
564 struct bdi_writeback *wb,
565 struct writeback_control *wbc)
567 while (!list_empty(&wb->b_io)) {
568 long pages_skipped;
569 struct inode *inode = list_entry(wb->b_io.prev,
570 struct inode, i_list);
571 if (wbc->sb && sb != inode->i_sb) {
572 /* super block given and doesn't
573 match, skip this inode */
574 redirty_tail(inode);
575 continue;
577 if (sb != inode->i_sb)
578 /* finish with this superblock */
579 return 0;
580 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
581 requeue_io(inode);
582 continue;
585 * Was this inode dirtied after sync_sb_inodes was called?
586 * This keeps sync from extra jobs and livelock.
588 if (inode_dirtied_after(inode, wbc->wb_start))
589 return 1;
591 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
592 __iget(inode);
593 pages_skipped = wbc->pages_skipped;
594 writeback_single_inode(inode, wbc);
595 if (wbc->pages_skipped != pages_skipped) {
597 * writeback is not making progress due to locked
598 * buffers. Skip this inode for now.
600 redirty_tail(inode);
602 spin_unlock(&inode_lock);
603 iput(inode);
604 cond_resched();
605 spin_lock(&inode_lock);
606 if (wbc->nr_to_write <= 0) {
607 wbc->more_io = 1;
608 return 1;
610 if (!list_empty(&wb->b_more_io))
611 wbc->more_io = 1;
613 /* b_io is empty */
614 return 1;
617 void writeback_inodes_wb(struct bdi_writeback *wb,
618 struct writeback_control *wbc)
620 int ret = 0;
622 wbc->wb_start = jiffies; /* livelock avoidance */
623 spin_lock(&inode_lock);
624 if (!wbc->for_kupdate || list_empty(&wb->b_io))
625 queue_io(wb, wbc->older_than_this);
627 while (!list_empty(&wb->b_io)) {
628 struct inode *inode = list_entry(wb->b_io.prev,
629 struct inode, i_list);
630 struct super_block *sb = inode->i_sb;
632 if (wbc->sb) {
634 * We are requested to write out inodes for a specific
635 * superblock. This means we already have s_umount
636 * taken by the caller which also waits for us to
637 * complete the writeout.
639 if (sb != wbc->sb) {
640 redirty_tail(inode);
641 continue;
644 WARN_ON(!rwsem_is_locked(&sb->s_umount));
646 ret = writeback_sb_inodes(sb, wb, wbc);
647 } else {
648 if (!pin_sb_for_writeback(sb)) {
649 requeue_io(inode);
650 continue;
652 ret = writeback_sb_inodes(sb, wb, wbc);
653 drop_super(sb);
656 if (ret)
657 break;
659 spin_unlock(&inode_lock);
660 /* Leave any unwritten inodes on b_io */
664 * The maximum number of pages to writeout in a single bdi flush/kupdate
665 * operation. We do this so we don't hold I_SYNC against an inode for
666 * enormous amounts of time, which would block a userspace task which has
667 * been forced to throttle against that inode. Also, the code reevaluates
668 * the dirty each time it has written this many pages.
670 #define MAX_WRITEBACK_PAGES 1024
672 static inline bool over_bground_thresh(void)
674 unsigned long background_thresh, dirty_thresh;
676 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
678 return (global_page_state(NR_FILE_DIRTY) +
679 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
683 * Explicit flushing or periodic writeback of "old" data.
685 * Define "old": the first time one of an inode's pages is dirtied, we mark the
686 * dirtying-time in the inode's address_space. So this periodic writeback code
687 * just walks the superblock inode list, writing back any inodes which are
688 * older than a specific point in time.
690 * Try to run once per dirty_writeback_interval. But if a writeback event
691 * takes longer than a dirty_writeback_interval interval, then leave a
692 * one-second gap.
694 * older_than_this takes precedence over nr_to_write. So we'll only write back
695 * all dirty pages if they are all attached to "old" mappings.
697 static long wb_writeback(struct bdi_writeback *wb,
698 struct wb_writeback_args *args)
700 struct writeback_control wbc = {
701 .sb = args->sb,
702 .sync_mode = args->sync_mode,
703 .older_than_this = NULL,
704 .for_kupdate = args->for_kupdate,
705 .for_background = args->for_background,
706 .range_cyclic = args->range_cyclic,
708 unsigned long oldest_jif;
709 long wrote = 0;
710 struct inode *inode;
712 if (wbc.for_kupdate) {
713 wbc.older_than_this = &oldest_jif;
714 oldest_jif = jiffies -
715 msecs_to_jiffies(dirty_expire_interval * 10);
717 if (!wbc.range_cyclic) {
718 wbc.range_start = 0;
719 wbc.range_end = LLONG_MAX;
722 for (;;) {
724 * Stop writeback when nr_pages has been consumed
726 if (args->nr_pages <= 0)
727 break;
730 * For background writeout, stop when we are below the
731 * background dirty threshold
733 if (args->for_background && !over_bground_thresh())
734 break;
736 wbc.more_io = 0;
737 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
738 wbc.pages_skipped = 0;
739 writeback_inodes_wb(wb, &wbc);
740 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
741 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
744 * If we consumed everything, see if we have more
746 if (wbc.nr_to_write <= 0)
747 continue;
749 * Didn't write everything and we don't have more IO, bail
751 if (!wbc.more_io)
752 break;
754 * Did we write something? Try for more
756 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
757 continue;
759 * Nothing written. Wait for some inode to
760 * become available for writeback. Otherwise
761 * we'll just busyloop.
763 spin_lock(&inode_lock);
764 if (!list_empty(&wb->b_more_io)) {
765 inode = list_entry(wb->b_more_io.prev,
766 struct inode, i_list);
767 inode_wait_for_writeback(inode);
769 spin_unlock(&inode_lock);
772 return wrote;
776 * Return the next bdi_work struct that hasn't been processed by this
777 * wb thread yet. ->seen is initially set for each thread that exists
778 * for this device, when a thread first notices a piece of work it
779 * clears its bit. Depending on writeback type, the thread will notify
780 * completion on either receiving the work (WB_SYNC_NONE) or after
781 * it is done (WB_SYNC_ALL).
783 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
784 struct bdi_writeback *wb)
786 struct bdi_work *work, *ret = NULL;
788 rcu_read_lock();
790 list_for_each_entry_rcu(work, &bdi->work_list, list) {
791 if (!test_bit(wb->nr, &work->seen))
792 continue;
793 clear_bit(wb->nr, &work->seen);
795 ret = work;
796 break;
799 rcu_read_unlock();
800 return ret;
803 static long wb_check_old_data_flush(struct bdi_writeback *wb)
805 unsigned long expired;
806 long nr_pages;
809 * When set to zero, disable periodic writeback
811 if (!dirty_writeback_interval)
812 return 0;
814 expired = wb->last_old_flush +
815 msecs_to_jiffies(dirty_writeback_interval * 10);
816 if (time_before(jiffies, expired))
817 return 0;
819 wb->last_old_flush = jiffies;
820 nr_pages = global_page_state(NR_FILE_DIRTY) +
821 global_page_state(NR_UNSTABLE_NFS) +
822 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
824 if (nr_pages) {
825 struct wb_writeback_args args = {
826 .nr_pages = nr_pages,
827 .sync_mode = WB_SYNC_NONE,
828 .for_kupdate = 1,
829 .range_cyclic = 1,
832 return wb_writeback(wb, &args);
835 return 0;
839 * Retrieve work items and do the writeback they describe
841 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
843 struct backing_dev_info *bdi = wb->bdi;
844 struct bdi_work *work;
845 long wrote = 0;
847 while ((work = get_next_work_item(bdi, wb)) != NULL) {
848 struct wb_writeback_args args = work->args;
851 * Override sync mode, in case we must wait for completion
853 if (force_wait)
854 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
857 * If this isn't a data integrity operation, just notify
858 * that we have seen this work and we are now starting it.
860 if (!test_bit(WS_ONSTACK, &work->state))
861 wb_clear_pending(wb, work);
863 wrote += wb_writeback(wb, &args);
866 * This is a data integrity writeback, so only do the
867 * notification when we have completed the work.
869 if (test_bit(WS_ONSTACK, &work->state))
870 wb_clear_pending(wb, work);
874 * Check for periodic writeback, kupdated() style
876 wrote += wb_check_old_data_flush(wb);
878 return wrote;
882 * Handle writeback of dirty data for the device backed by this bdi. Also
883 * wakes up periodically and does kupdated style flushing.
885 int bdi_writeback_task(struct bdi_writeback *wb)
887 unsigned long last_active = jiffies;
888 unsigned long wait_jiffies = -1UL;
889 long pages_written;
891 while (!kthread_should_stop()) {
892 pages_written = wb_do_writeback(wb, 0);
894 if (pages_written)
895 last_active = jiffies;
896 else if (wait_jiffies != -1UL) {
897 unsigned long max_idle;
900 * Longest period of inactivity that we tolerate. If we
901 * see dirty data again later, the task will get
902 * recreated automatically.
904 max_idle = max(5UL * 60 * HZ, wait_jiffies);
905 if (time_after(jiffies, max_idle + last_active))
906 break;
909 if (dirty_writeback_interval) {
910 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
911 schedule_timeout_interruptible(wait_jiffies);
912 } else {
913 set_current_state(TASK_INTERRUPTIBLE);
914 if (list_empty_careful(&wb->bdi->work_list) &&
915 !kthread_should_stop())
916 schedule();
917 __set_current_state(TASK_RUNNING);
920 try_to_freeze();
923 return 0;
927 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
928 * the whole world.
930 void wakeup_flusher_threads(long nr_pages)
932 struct backing_dev_info *bdi;
933 struct wb_writeback_args args = {
934 .sync_mode = WB_SYNC_NONE,
937 if (nr_pages) {
938 args.nr_pages = nr_pages;
939 } else {
940 args.nr_pages = global_page_state(NR_FILE_DIRTY) +
941 global_page_state(NR_UNSTABLE_NFS);
944 rcu_read_lock();
945 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
946 if (!bdi_has_dirty_io(bdi))
947 continue;
948 bdi_alloc_queue_work(bdi, &args);
950 rcu_read_unlock();
953 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
955 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
956 struct dentry *dentry;
957 const char *name = "?";
959 dentry = d_find_alias(inode);
960 if (dentry) {
961 spin_lock(&dentry->d_lock);
962 name = (const char *) dentry->d_name.name;
964 printk(KERN_DEBUG
965 "%s(%d): dirtied inode %lu (%s) on %s\n",
966 current->comm, task_pid_nr(current), inode->i_ino,
967 name, inode->i_sb->s_id);
968 if (dentry) {
969 spin_unlock(&dentry->d_lock);
970 dput(dentry);
976 * __mark_inode_dirty - internal function
977 * @inode: inode to mark
978 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
979 * Mark an inode as dirty. Callers should use mark_inode_dirty or
980 * mark_inode_dirty_sync.
982 * Put the inode on the super block's dirty list.
984 * CAREFUL! We mark it dirty unconditionally, but move it onto the
985 * dirty list only if it is hashed or if it refers to a blockdev.
986 * If it was not hashed, it will never be added to the dirty list
987 * even if it is later hashed, as it will have been marked dirty already.
989 * In short, make sure you hash any inodes _before_ you start marking
990 * them dirty.
992 * This function *must* be atomic for the I_DIRTY_PAGES case -
993 * set_page_dirty() is called under spinlock in several places.
995 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
996 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
997 * the kernel-internal blockdev inode represents the dirtying time of the
998 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
999 * page->mapping->host, so the page-dirtying time is recorded in the internal
1000 * blockdev inode.
1002 void __mark_inode_dirty(struct inode *inode, int flags)
1004 struct super_block *sb = inode->i_sb;
1007 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1008 * dirty the inode itself
1010 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1011 if (sb->s_op->dirty_inode)
1012 sb->s_op->dirty_inode(inode);
1016 * make sure that changes are seen by all cpus before we test i_state
1017 * -- mikulas
1019 smp_mb();
1021 /* avoid the locking if we can */
1022 if ((inode->i_state & flags) == flags)
1023 return;
1025 if (unlikely(block_dump))
1026 block_dump___mark_inode_dirty(inode);
1028 spin_lock(&inode_lock);
1029 if ((inode->i_state & flags) != flags) {
1030 const int was_dirty = inode->i_state & I_DIRTY;
1032 inode->i_state |= flags;
1035 * If the inode is being synced, just update its dirty state.
1036 * The unlocker will place the inode on the appropriate
1037 * superblock list, based upon its state.
1039 if (inode->i_state & I_SYNC)
1040 goto out;
1043 * Only add valid (hashed) inodes to the superblock's
1044 * dirty list. Add blockdev inodes as well.
1046 if (!S_ISBLK(inode->i_mode)) {
1047 if (hlist_unhashed(&inode->i_hash))
1048 goto out;
1050 if (inode->i_state & (I_FREEING|I_CLEAR))
1051 goto out;
1054 * If the inode was already on b_dirty/b_io/b_more_io, don't
1055 * reposition it (that would break b_dirty time-ordering).
1057 if (!was_dirty) {
1058 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1059 struct backing_dev_info *bdi = wb->bdi;
1061 if (bdi_cap_writeback_dirty(bdi) &&
1062 !test_bit(BDI_registered, &bdi->state)) {
1063 WARN_ON(1);
1064 printk(KERN_ERR "bdi-%s not registered\n",
1065 bdi->name);
1068 inode->dirtied_when = jiffies;
1069 list_move(&inode->i_list, &wb->b_dirty);
1072 out:
1073 spin_unlock(&inode_lock);
1075 EXPORT_SYMBOL(__mark_inode_dirty);
1078 * Write out a superblock's list of dirty inodes. A wait will be performed
1079 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1081 * If older_than_this is non-NULL, then only write out inodes which
1082 * had their first dirtying at a time earlier than *older_than_this.
1084 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1085 * This function assumes that the blockdev superblock's inodes are backed by
1086 * a variety of queues, so all inodes are searched. For other superblocks,
1087 * assume that all inodes are backed by the same queue.
1089 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1090 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1091 * on the writer throttling path, and we get decent balancing between many
1092 * throttled threads: we don't want them all piling up on inode_sync_wait.
1094 static void wait_sb_inodes(struct super_block *sb)
1096 struct inode *inode, *old_inode = NULL;
1099 * We need to be protected against the filesystem going from
1100 * r/o to r/w or vice versa.
1102 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1104 spin_lock(&inode_lock);
1107 * Data integrity sync. Must wait for all pages under writeback,
1108 * because there may have been pages dirtied before our sync
1109 * call, but which had writeout started before we write it out.
1110 * In which case, the inode may not be on the dirty list, but
1111 * we still have to wait for that writeout.
1113 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1114 struct address_space *mapping;
1116 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1117 continue;
1118 mapping = inode->i_mapping;
1119 if (mapping->nrpages == 0)
1120 continue;
1121 __iget(inode);
1122 spin_unlock(&inode_lock);
1124 * We hold a reference to 'inode' so it couldn't have
1125 * been removed from s_inodes list while we dropped the
1126 * inode_lock. We cannot iput the inode now as we can
1127 * be holding the last reference and we cannot iput it
1128 * under inode_lock. So we keep the reference and iput
1129 * it later.
1131 iput(old_inode);
1132 old_inode = inode;
1134 filemap_fdatawait(mapping);
1136 cond_resched();
1138 spin_lock(&inode_lock);
1140 spin_unlock(&inode_lock);
1141 iput(old_inode);
1145 * writeback_inodes_sb - writeback dirty inodes from given super_block
1146 * @sb: the superblock
1148 * Start writeback on some inodes on this super_block. No guarantees are made
1149 * on how many (if any) will be written, and this function does not wait
1150 * for IO completion of submitted IO. The number of pages submitted is
1151 * returned.
1153 void writeback_inodes_sb(struct super_block *sb)
1155 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1156 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1157 struct wb_writeback_args args = {
1158 .sb = sb,
1159 .sync_mode = WB_SYNC_NONE,
1162 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1164 args.nr_pages = nr_dirty + nr_unstable +
1165 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1167 bdi_queue_work_onstack(&args);
1169 EXPORT_SYMBOL(writeback_inodes_sb);
1172 * writeback_inodes_sb_if_idle - start writeback if none underway
1173 * @sb: the superblock
1175 * Invoke writeback_inodes_sb if no writeback is currently underway.
1176 * Returns 1 if writeback was started, 0 if not.
1178 int writeback_inodes_sb_if_idle(struct super_block *sb)
1180 if (!writeback_in_progress(sb->s_bdi)) {
1181 down_read(&sb->s_umount);
1182 writeback_inodes_sb(sb);
1183 up_read(&sb->s_umount);
1184 return 1;
1185 } else
1186 return 0;
1188 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1191 * sync_inodes_sb - sync sb inode pages
1192 * @sb: the superblock
1194 * This function writes and waits on any dirty inode belonging to this
1195 * super_block. The number of pages synced is returned.
1197 void sync_inodes_sb(struct super_block *sb)
1199 struct wb_writeback_args args = {
1200 .sb = sb,
1201 .sync_mode = WB_SYNC_ALL,
1202 .nr_pages = LONG_MAX,
1203 .range_cyclic = 0,
1206 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1208 bdi_queue_work_onstack(&args);
1209 wait_sb_inodes(sb);
1211 EXPORT_SYMBOL(sync_inodes_sb);
1214 * write_inode_now - write an inode to disk
1215 * @inode: inode to write to disk
1216 * @sync: whether the write should be synchronous or not
1218 * This function commits an inode to disk immediately if it is dirty. This is
1219 * primarily needed by knfsd.
1221 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1223 int write_inode_now(struct inode *inode, int sync)
1225 int ret;
1226 struct writeback_control wbc = {
1227 .nr_to_write = LONG_MAX,
1228 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1229 .range_start = 0,
1230 .range_end = LLONG_MAX,
1233 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1234 wbc.nr_to_write = 0;
1236 might_sleep();
1237 spin_lock(&inode_lock);
1238 ret = writeback_single_inode(inode, &wbc);
1239 spin_unlock(&inode_lock);
1240 if (sync)
1241 inode_sync_wait(inode);
1242 return ret;
1244 EXPORT_SYMBOL(write_inode_now);
1247 * sync_inode - write an inode and its pages to disk.
1248 * @inode: the inode to sync
1249 * @wbc: controls the writeback mode
1251 * sync_inode() will write an inode and its pages to disk. It will also
1252 * correctly update the inode on its superblock's dirty inode lists and will
1253 * update inode->i_state.
1255 * The caller must have a ref on the inode.
1257 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1259 int ret;
1261 spin_lock(&inode_lock);
1262 ret = writeback_single_inode(inode, wbc);
1263 spin_unlock(&inode_lock);
1264 return ret;
1266 EXPORT_SYMBOL(sync_inode);