2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
60 #include <net/protocol.h>
63 #include <net/checksum.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
71 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
72 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
75 * Keep out-of-line to prevent kernel bloat.
76 * __builtin_return_address is not used because it is not always
81 * skb_over_panic - private function
86 * Out of line support code for skb_put(). Not user callable.
88 void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
90 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
91 "data:%p tail:%p end:%p dev:%s\n",
92 here
, skb
->len
, sz
, skb
->head
, skb
->data
, skb
->tail
, skb
->end
,
93 skb
->dev
? skb
->dev
->name
: "<NULL>");
98 * skb_under_panic - private function
103 * Out of line support code for skb_push(). Not user callable.
106 void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
108 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
109 "data:%p tail:%p end:%p dev:%s\n",
110 here
, skb
->len
, sz
, skb
->head
, skb
->data
, skb
->tail
, skb
->end
,
111 skb
->dev
? skb
->dev
->name
: "<NULL>");
115 void skb_truesize_bug(struct sk_buff
*skb
)
117 printk(KERN_ERR
"SKB BUG: Invalid truesize (%u) "
118 "len=%u, sizeof(sk_buff)=%Zd\n",
119 skb
->truesize
, skb
->len
, sizeof(struct sk_buff
));
121 EXPORT_SYMBOL(skb_truesize_bug
);
123 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
124 * 'private' fields and also do memory statistics to find all the
130 * __alloc_skb - allocate a network buffer
131 * @size: size to allocate
132 * @gfp_mask: allocation mask
133 * @fclone: allocate from fclone cache instead of head cache
134 * and allocate a cloned (child) skb
135 * @node: numa node to allocate memory on
137 * Allocate a new &sk_buff. The returned buffer has no headroom and a
138 * tail room of size bytes. The object has a reference count of one.
139 * The return is the buffer. On a failure the return is %NULL.
141 * Buffers may only be allocated from interrupts using a @gfp_mask of
144 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
145 int fclone
, int node
)
147 struct kmem_cache
*cache
;
148 struct skb_shared_info
*shinfo
;
152 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
155 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
159 /* Get the DATA. Size must match skb_add_mtu(). */
160 size
= SKB_DATA_ALIGN(size
);
161 data
= kmalloc_node_track_caller(size
+ sizeof(struct skb_shared_info
),
166 memset(skb
, 0, offsetof(struct sk_buff
, truesize
));
167 skb
->truesize
= size
+ sizeof(struct sk_buff
);
168 atomic_set(&skb
->users
, 1);
172 skb
->end
= data
+ size
;
173 /* make sure we initialize shinfo sequentially */
174 shinfo
= skb_shinfo(skb
);
175 atomic_set(&shinfo
->dataref
, 1);
176 shinfo
->nr_frags
= 0;
177 shinfo
->gso_size
= 0;
178 shinfo
->gso_segs
= 0;
179 shinfo
->gso_type
= 0;
180 shinfo
->ip6_frag_id
= 0;
181 shinfo
->frag_list
= NULL
;
184 struct sk_buff
*child
= skb
+ 1;
185 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
187 skb
->fclone
= SKB_FCLONE_ORIG
;
188 atomic_set(fclone_ref
, 1);
190 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
195 kmem_cache_free(cache
, skb
);
201 * alloc_skb_from_cache - allocate a network buffer
202 * @cp: kmem_cache from which to allocate the data area
203 * (object size must be big enough for @size bytes + skb overheads)
204 * @size: size to allocate
205 * @gfp_mask: allocation mask
207 * Allocate a new &sk_buff. The returned buffer has no headroom and
208 * tail room of size bytes. The object has a reference count of one.
209 * The return is the buffer. On a failure the return is %NULL.
211 * Buffers may only be allocated from interrupts using a @gfp_mask of
214 struct sk_buff
*alloc_skb_from_cache(struct kmem_cache
*cp
,
222 skb
= kmem_cache_alloc(skbuff_head_cache
,
223 gfp_mask
& ~__GFP_DMA
);
228 size
= SKB_DATA_ALIGN(size
);
229 data
= kmem_cache_alloc(cp
, gfp_mask
);
233 memset(skb
, 0, offsetof(struct sk_buff
, truesize
));
234 skb
->truesize
= size
+ sizeof(struct sk_buff
);
235 atomic_set(&skb
->users
, 1);
239 skb
->end
= data
+ size
;
241 atomic_set(&(skb_shinfo(skb
)->dataref
), 1);
242 skb_shinfo(skb
)->nr_frags
= 0;
243 skb_shinfo(skb
)->gso_size
= 0;
244 skb_shinfo(skb
)->gso_segs
= 0;
245 skb_shinfo(skb
)->gso_type
= 0;
246 skb_shinfo(skb
)->frag_list
= NULL
;
250 kmem_cache_free(skbuff_head_cache
, skb
);
256 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
257 * @dev: network device to receive on
258 * @length: length to allocate
259 * @gfp_mask: get_free_pages mask, passed to alloc_skb
261 * Allocate a new &sk_buff and assign it a usage count of one. The
262 * buffer has unspecified headroom built in. Users should allocate
263 * the headroom they think they need without accounting for the
264 * built in space. The built in space is used for optimisations.
266 * %NULL is returned if there is no free memory.
268 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
269 unsigned int length
, gfp_t gfp_mask
)
271 int node
= dev
->class_dev
.dev
? dev_to_node(dev
->class_dev
.dev
) : -1;
274 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, node
);
276 skb_reserve(skb
, NET_SKB_PAD
);
282 static void skb_drop_list(struct sk_buff
**listp
)
284 struct sk_buff
*list
= *listp
;
289 struct sk_buff
*this = list
;
295 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
297 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
300 static void skb_clone_fraglist(struct sk_buff
*skb
)
302 struct sk_buff
*list
;
304 for (list
= skb_shinfo(skb
)->frag_list
; list
; list
= list
->next
)
308 static void skb_release_data(struct sk_buff
*skb
)
311 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
312 &skb_shinfo(skb
)->dataref
)) {
313 if (skb_shinfo(skb
)->nr_frags
) {
315 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
316 put_page(skb_shinfo(skb
)->frags
[i
].page
);
319 if (skb_shinfo(skb
)->frag_list
)
320 skb_drop_fraglist(skb
);
327 * Free an skbuff by memory without cleaning the state.
329 void kfree_skbmem(struct sk_buff
*skb
)
331 struct sk_buff
*other
;
332 atomic_t
*fclone_ref
;
334 skb_release_data(skb
);
335 switch (skb
->fclone
) {
336 case SKB_FCLONE_UNAVAILABLE
:
337 kmem_cache_free(skbuff_head_cache
, skb
);
340 case SKB_FCLONE_ORIG
:
341 fclone_ref
= (atomic_t
*) (skb
+ 2);
342 if (atomic_dec_and_test(fclone_ref
))
343 kmem_cache_free(skbuff_fclone_cache
, skb
);
346 case SKB_FCLONE_CLONE
:
347 fclone_ref
= (atomic_t
*) (skb
+ 1);
350 /* The clone portion is available for
351 * fast-cloning again.
353 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
355 if (atomic_dec_and_test(fclone_ref
))
356 kmem_cache_free(skbuff_fclone_cache
, other
);
362 * __kfree_skb - private function
365 * Free an sk_buff. Release anything attached to the buffer.
366 * Clean the state. This is an internal helper function. Users should
367 * always call kfree_skb
370 void __kfree_skb(struct sk_buff
*skb
)
372 dst_release(skb
->dst
);
374 secpath_put(skb
->sp
);
376 if (skb
->destructor
) {
378 skb
->destructor(skb
);
380 #ifdef CONFIG_NETFILTER
381 nf_conntrack_put(skb
->nfct
);
382 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
383 nf_conntrack_put_reasm(skb
->nfct_reasm
);
385 #ifdef CONFIG_BRIDGE_NETFILTER
386 nf_bridge_put(skb
->nf_bridge
);
389 /* XXX: IS this still necessary? - JHS */
390 #ifdef CONFIG_NET_SCHED
392 #ifdef CONFIG_NET_CLS_ACT
401 * kfree_skb - free an sk_buff
402 * @skb: buffer to free
404 * Drop a reference to the buffer and free it if the usage count has
407 void kfree_skb(struct sk_buff
*skb
)
411 if (likely(atomic_read(&skb
->users
) == 1))
413 else if (likely(!atomic_dec_and_test(&skb
->users
)))
419 * skb_clone - duplicate an sk_buff
420 * @skb: buffer to clone
421 * @gfp_mask: allocation priority
423 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
424 * copies share the same packet data but not structure. The new
425 * buffer has a reference count of 1. If the allocation fails the
426 * function returns %NULL otherwise the new buffer is returned.
428 * If this function is called from an interrupt gfp_mask() must be
432 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
437 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
438 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
439 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
440 n
->fclone
= SKB_FCLONE_CLONE
;
441 atomic_inc(fclone_ref
);
443 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
446 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
449 #define C(x) n->x = skb->x
451 n
->next
= n
->prev
= NULL
;
462 secpath_get(skb
->sp
);
464 memcpy(n
->cb
, skb
->cb
, sizeof(skb
->cb
));
474 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
478 n
->destructor
= NULL
;
480 #ifdef CONFIG_NETFILTER
482 nf_conntrack_get(skb
->nfct
);
484 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
486 nf_conntrack_get_reasm(skb
->nfct_reasm
);
488 #ifdef CONFIG_BRIDGE_NETFILTER
490 nf_bridge_get(skb
->nf_bridge
);
492 #endif /*CONFIG_NETFILTER*/
493 #ifdef CONFIG_NET_SCHED
495 #ifdef CONFIG_NET_CLS_ACT
496 n
->tc_verd
= SET_TC_VERD(skb
->tc_verd
,0);
497 n
->tc_verd
= CLR_TC_OK2MUNGE(n
->tc_verd
);
498 n
->tc_verd
= CLR_TC_MUNGED(n
->tc_verd
);
501 skb_copy_secmark(n
, skb
);
504 atomic_set(&n
->users
, 1);
510 atomic_inc(&(skb_shinfo(skb
)->dataref
));
516 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
519 * Shift between the two data areas in bytes
521 unsigned long offset
= new->data
- old
->data
;
525 new->priority
= old
->priority
;
526 new->protocol
= old
->protocol
;
527 new->dst
= dst_clone(old
->dst
);
529 new->sp
= secpath_get(old
->sp
);
531 new->h
.raw
= old
->h
.raw
+ offset
;
532 new->nh
.raw
= old
->nh
.raw
+ offset
;
533 new->mac
.raw
= old
->mac
.raw
+ offset
;
534 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
535 new->local_df
= old
->local_df
;
536 new->fclone
= SKB_FCLONE_UNAVAILABLE
;
537 new->pkt_type
= old
->pkt_type
;
538 new->tstamp
= old
->tstamp
;
539 new->destructor
= NULL
;
540 new->mark
= old
->mark
;
541 #ifdef CONFIG_NETFILTER
542 new->nfct
= old
->nfct
;
543 nf_conntrack_get(old
->nfct
);
544 new->nfctinfo
= old
->nfctinfo
;
545 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
546 new->nfct_reasm
= old
->nfct_reasm
;
547 nf_conntrack_get_reasm(old
->nfct_reasm
);
549 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
550 new->ipvs_property
= old
->ipvs_property
;
552 #ifdef CONFIG_BRIDGE_NETFILTER
553 new->nf_bridge
= old
->nf_bridge
;
554 nf_bridge_get(old
->nf_bridge
);
557 #ifdef CONFIG_NET_SCHED
558 #ifdef CONFIG_NET_CLS_ACT
559 new->tc_verd
= old
->tc_verd
;
561 new->tc_index
= old
->tc_index
;
563 skb_copy_secmark(new, old
);
564 atomic_set(&new->users
, 1);
565 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
566 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
567 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
571 * skb_copy - create private copy of an sk_buff
572 * @skb: buffer to copy
573 * @gfp_mask: allocation priority
575 * Make a copy of both an &sk_buff and its data. This is used when the
576 * caller wishes to modify the data and needs a private copy of the
577 * data to alter. Returns %NULL on failure or the pointer to the buffer
578 * on success. The returned buffer has a reference count of 1.
580 * As by-product this function converts non-linear &sk_buff to linear
581 * one, so that &sk_buff becomes completely private and caller is allowed
582 * to modify all the data of returned buffer. This means that this
583 * function is not recommended for use in circumstances when only
584 * header is going to be modified. Use pskb_copy() instead.
587 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
589 int headerlen
= skb
->data
- skb
->head
;
591 * Allocate the copy buffer
593 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
+ skb
->data_len
,
598 /* Set the data pointer */
599 skb_reserve(n
, headerlen
);
600 /* Set the tail pointer and length */
601 skb_put(n
, skb
->len
);
603 n
->ip_summed
= skb
->ip_summed
;
605 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
608 copy_skb_header(n
, skb
);
614 * pskb_copy - create copy of an sk_buff with private head.
615 * @skb: buffer to copy
616 * @gfp_mask: allocation priority
618 * Make a copy of both an &sk_buff and part of its data, located
619 * in header. Fragmented data remain shared. This is used when
620 * the caller wishes to modify only header of &sk_buff and needs
621 * private copy of the header to alter. Returns %NULL on failure
622 * or the pointer to the buffer on success.
623 * The returned buffer has a reference count of 1.
626 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
629 * Allocate the copy buffer
631 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
, gfp_mask
);
636 /* Set the data pointer */
637 skb_reserve(n
, skb
->data
- skb
->head
);
638 /* Set the tail pointer and length */
639 skb_put(n
, skb_headlen(skb
));
641 memcpy(n
->data
, skb
->data
, n
->len
);
643 n
->ip_summed
= skb
->ip_summed
;
645 n
->truesize
+= skb
->data_len
;
646 n
->data_len
= skb
->data_len
;
649 if (skb_shinfo(skb
)->nr_frags
) {
652 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
653 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
654 get_page(skb_shinfo(n
)->frags
[i
].page
);
656 skb_shinfo(n
)->nr_frags
= i
;
659 if (skb_shinfo(skb
)->frag_list
) {
660 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
661 skb_clone_fraglist(n
);
664 copy_skb_header(n
, skb
);
670 * pskb_expand_head - reallocate header of &sk_buff
671 * @skb: buffer to reallocate
672 * @nhead: room to add at head
673 * @ntail: room to add at tail
674 * @gfp_mask: allocation priority
676 * Expands (or creates identical copy, if &nhead and &ntail are zero)
677 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
678 * reference count of 1. Returns zero in the case of success or error,
679 * if expansion failed. In the last case, &sk_buff is not changed.
681 * All the pointers pointing into skb header may change and must be
682 * reloaded after call to this function.
685 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
690 int size
= nhead
+ (skb
->end
- skb
->head
) + ntail
;
696 size
= SKB_DATA_ALIGN(size
);
698 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
702 /* Copy only real data... and, alas, header. This should be
703 * optimized for the cases when header is void. */
704 memcpy(data
+ nhead
, skb
->head
, skb
->tail
- skb
->head
);
705 memcpy(data
+ size
, skb
->end
, sizeof(struct skb_shared_info
));
707 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
708 get_page(skb_shinfo(skb
)->frags
[i
].page
);
710 if (skb_shinfo(skb
)->frag_list
)
711 skb_clone_fraglist(skb
);
713 skb_release_data(skb
);
715 off
= (data
+ nhead
) - skb
->head
;
718 skb
->end
= data
+ size
;
726 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
733 /* Make private copy of skb with writable head and some headroom */
735 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
737 struct sk_buff
*skb2
;
738 int delta
= headroom
- skb_headroom(skb
);
741 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
743 skb2
= skb_clone(skb
, GFP_ATOMIC
);
744 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
755 * skb_copy_expand - copy and expand sk_buff
756 * @skb: buffer to copy
757 * @newheadroom: new free bytes at head
758 * @newtailroom: new free bytes at tail
759 * @gfp_mask: allocation priority
761 * Make a copy of both an &sk_buff and its data and while doing so
762 * allocate additional space.
764 * This is used when the caller wishes to modify the data and needs a
765 * private copy of the data to alter as well as more space for new fields.
766 * Returns %NULL on failure or the pointer to the buffer
767 * on success. The returned buffer has a reference count of 1.
769 * You must pass %GFP_ATOMIC as the allocation priority if this function
770 * is called from an interrupt.
772 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
773 * only by netfilter in the cases when checksum is recalculated? --ANK
775 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
776 int newheadroom
, int newtailroom
,
780 * Allocate the copy buffer
782 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
784 int head_copy_len
, head_copy_off
;
789 skb_reserve(n
, newheadroom
);
791 /* Set the tail pointer and length */
792 skb_put(n
, skb
->len
);
794 head_copy_len
= skb_headroom(skb
);
796 if (newheadroom
<= head_copy_len
)
797 head_copy_len
= newheadroom
;
799 head_copy_off
= newheadroom
- head_copy_len
;
801 /* Copy the linear header and data. */
802 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
803 skb
->len
+ head_copy_len
))
806 copy_skb_header(n
, skb
);
812 * skb_pad - zero pad the tail of an skb
813 * @skb: buffer to pad
816 * Ensure that a buffer is followed by a padding area that is zero
817 * filled. Used by network drivers which may DMA or transfer data
818 * beyond the buffer end onto the wire.
820 * May return error in out of memory cases. The skb is freed on error.
823 int skb_pad(struct sk_buff
*skb
, int pad
)
828 /* If the skbuff is non linear tailroom is always zero.. */
829 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
830 memset(skb
->data
+skb
->len
, 0, pad
);
834 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
835 if (likely(skb_cloned(skb
) || ntail
> 0)) {
836 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
841 /* FIXME: The use of this function with non-linear skb's really needs
844 err
= skb_linearize(skb
);
848 memset(skb
->data
+ skb
->len
, 0, pad
);
856 /* Trims skb to length len. It can change skb pointers.
859 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
861 struct sk_buff
**fragp
;
862 struct sk_buff
*frag
;
863 int offset
= skb_headlen(skb
);
864 int nfrags
= skb_shinfo(skb
)->nr_frags
;
868 if (skb_cloned(skb
) &&
869 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
876 for (; i
< nfrags
; i
++) {
877 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
884 skb_shinfo(skb
)->frags
[i
++].size
= len
- offset
;
887 skb_shinfo(skb
)->nr_frags
= i
;
889 for (; i
< nfrags
; i
++)
890 put_page(skb_shinfo(skb
)->frags
[i
].page
);
892 if (skb_shinfo(skb
)->frag_list
)
893 skb_drop_fraglist(skb
);
897 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
898 fragp
= &frag
->next
) {
899 int end
= offset
+ frag
->len
;
901 if (skb_shared(frag
)) {
902 struct sk_buff
*nfrag
;
904 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
905 if (unlikely(!nfrag
))
908 nfrag
->next
= frag
->next
;
920 unlikely((err
= pskb_trim(frag
, len
- offset
))))
924 skb_drop_list(&frag
->next
);
929 if (len
> skb_headlen(skb
)) {
930 skb
->data_len
-= skb
->len
- len
;
935 skb
->tail
= skb
->data
+ len
;
942 * __pskb_pull_tail - advance tail of skb header
943 * @skb: buffer to reallocate
944 * @delta: number of bytes to advance tail
946 * The function makes a sense only on a fragmented &sk_buff,
947 * it expands header moving its tail forward and copying necessary
948 * data from fragmented part.
950 * &sk_buff MUST have reference count of 1.
952 * Returns %NULL (and &sk_buff does not change) if pull failed
953 * or value of new tail of skb in the case of success.
955 * All the pointers pointing into skb header may change and must be
956 * reloaded after call to this function.
959 /* Moves tail of skb head forward, copying data from fragmented part,
960 * when it is necessary.
961 * 1. It may fail due to malloc failure.
962 * 2. It may change skb pointers.
964 * It is pretty complicated. Luckily, it is called only in exceptional cases.
966 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
968 /* If skb has not enough free space at tail, get new one
969 * plus 128 bytes for future expansions. If we have enough
970 * room at tail, reallocate without expansion only if skb is cloned.
972 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
974 if (eat
> 0 || skb_cloned(skb
)) {
975 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
980 if (skb_copy_bits(skb
, skb_headlen(skb
), skb
->tail
, delta
))
983 /* Optimization: no fragments, no reasons to preestimate
984 * size of pulled pages. Superb.
986 if (!skb_shinfo(skb
)->frag_list
)
989 /* Estimate size of pulled pages. */
991 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
992 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
994 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
997 /* If we need update frag list, we are in troubles.
998 * Certainly, it possible to add an offset to skb data,
999 * but taking into account that pulling is expected to
1000 * be very rare operation, it is worth to fight against
1001 * further bloating skb head and crucify ourselves here instead.
1002 * Pure masohism, indeed. 8)8)
1005 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1006 struct sk_buff
*clone
= NULL
;
1007 struct sk_buff
*insp
= NULL
;
1012 if (list
->len
<= eat
) {
1013 /* Eaten as whole. */
1018 /* Eaten partially. */
1020 if (skb_shared(list
)) {
1021 /* Sucks! We need to fork list. :-( */
1022 clone
= skb_clone(list
, GFP_ATOMIC
);
1028 /* This may be pulled without
1032 if (!pskb_pull(list
, eat
)) {
1041 /* Free pulled out fragments. */
1042 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1043 skb_shinfo(skb
)->frag_list
= list
->next
;
1046 /* And insert new clone at head. */
1049 skb_shinfo(skb
)->frag_list
= clone
;
1052 /* Success! Now we may commit changes to skb data. */
1057 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1058 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
1059 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1060 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1062 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1064 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1065 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
1071 skb_shinfo(skb
)->nr_frags
= k
;
1074 skb
->data_len
-= delta
;
1079 /* Copy some data bits from skb to kernel buffer. */
1081 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1084 int start
= skb_headlen(skb
);
1086 if (offset
> (int)skb
->len
- len
)
1090 if ((copy
= start
- offset
) > 0) {
1093 memcpy(to
, skb
->data
+ offset
, copy
);
1094 if ((len
-= copy
) == 0)
1100 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1103 BUG_TRAP(start
<= offset
+ len
);
1105 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1106 if ((copy
= end
- offset
) > 0) {
1112 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1114 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1115 offset
- start
, copy
);
1116 kunmap_skb_frag(vaddr
);
1118 if ((len
-= copy
) == 0)
1126 if (skb_shinfo(skb
)->frag_list
) {
1127 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1129 for (; list
; list
= list
->next
) {
1132 BUG_TRAP(start
<= offset
+ len
);
1134 end
= start
+ list
->len
;
1135 if ((copy
= end
- offset
) > 0) {
1138 if (skb_copy_bits(list
, offset
- start
,
1141 if ((len
-= copy
) == 0)
1157 * skb_store_bits - store bits from kernel buffer to skb
1158 * @skb: destination buffer
1159 * @offset: offset in destination
1160 * @from: source buffer
1161 * @len: number of bytes to copy
1163 * Copy the specified number of bytes from the source buffer to the
1164 * destination skb. This function handles all the messy bits of
1165 * traversing fragment lists and such.
1168 int skb_store_bits(const struct sk_buff
*skb
, int offset
, void *from
, int len
)
1171 int start
= skb_headlen(skb
);
1173 if (offset
> (int)skb
->len
- len
)
1176 if ((copy
= start
- offset
) > 0) {
1179 memcpy(skb
->data
+ offset
, from
, copy
);
1180 if ((len
-= copy
) == 0)
1186 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1187 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1190 BUG_TRAP(start
<= offset
+ len
);
1192 end
= start
+ frag
->size
;
1193 if ((copy
= end
- offset
) > 0) {
1199 vaddr
= kmap_skb_frag(frag
);
1200 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1202 kunmap_skb_frag(vaddr
);
1204 if ((len
-= copy
) == 0)
1212 if (skb_shinfo(skb
)->frag_list
) {
1213 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1215 for (; list
; list
= list
->next
) {
1218 BUG_TRAP(start
<= offset
+ len
);
1220 end
= start
+ list
->len
;
1221 if ((copy
= end
- offset
) > 0) {
1224 if (skb_store_bits(list
, offset
- start
,
1227 if ((len
-= copy
) == 0)
1242 EXPORT_SYMBOL(skb_store_bits
);
1244 /* Checksum skb data. */
1246 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1247 int len
, __wsum csum
)
1249 int start
= skb_headlen(skb
);
1250 int i
, copy
= start
- offset
;
1253 /* Checksum header. */
1257 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1258 if ((len
-= copy
) == 0)
1264 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1267 BUG_TRAP(start
<= offset
+ len
);
1269 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1270 if ((copy
= end
- offset
) > 0) {
1273 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1277 vaddr
= kmap_skb_frag(frag
);
1278 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1279 offset
- start
, copy
, 0);
1280 kunmap_skb_frag(vaddr
);
1281 csum
= csum_block_add(csum
, csum2
, pos
);
1290 if (skb_shinfo(skb
)->frag_list
) {
1291 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1293 for (; list
; list
= list
->next
) {
1296 BUG_TRAP(start
<= offset
+ len
);
1298 end
= start
+ list
->len
;
1299 if ((copy
= end
- offset
) > 0) {
1303 csum2
= skb_checksum(list
, offset
- start
,
1305 csum
= csum_block_add(csum
, csum2
, pos
);
1306 if ((len
-= copy
) == 0)
1319 /* Both of above in one bottle. */
1321 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1322 u8
*to
, int len
, __wsum csum
)
1324 int start
= skb_headlen(skb
);
1325 int i
, copy
= start
- offset
;
1332 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1334 if ((len
-= copy
) == 0)
1341 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1344 BUG_TRAP(start
<= offset
+ len
);
1346 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1347 if ((copy
= end
- offset
) > 0) {
1350 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1354 vaddr
= kmap_skb_frag(frag
);
1355 csum2
= csum_partial_copy_nocheck(vaddr
+
1359 kunmap_skb_frag(vaddr
);
1360 csum
= csum_block_add(csum
, csum2
, pos
);
1370 if (skb_shinfo(skb
)->frag_list
) {
1371 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1373 for (; list
; list
= list
->next
) {
1377 BUG_TRAP(start
<= offset
+ len
);
1379 end
= start
+ list
->len
;
1380 if ((copy
= end
- offset
) > 0) {
1383 csum2
= skb_copy_and_csum_bits(list
,
1386 csum
= csum_block_add(csum
, csum2
, pos
);
1387 if ((len
-= copy
) == 0)
1400 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1405 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1406 csstart
= skb
->h
.raw
- skb
->data
;
1408 csstart
= skb_headlen(skb
);
1410 BUG_ON(csstart
> skb_headlen(skb
));
1412 memcpy(to
, skb
->data
, csstart
);
1415 if (csstart
!= skb
->len
)
1416 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1417 skb
->len
- csstart
, 0);
1419 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1420 long csstuff
= csstart
+ skb
->csum_offset
;
1422 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1427 * skb_dequeue - remove from the head of the queue
1428 * @list: list to dequeue from
1430 * Remove the head of the list. The list lock is taken so the function
1431 * may be used safely with other locking list functions. The head item is
1432 * returned or %NULL if the list is empty.
1435 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1437 unsigned long flags
;
1438 struct sk_buff
*result
;
1440 spin_lock_irqsave(&list
->lock
, flags
);
1441 result
= __skb_dequeue(list
);
1442 spin_unlock_irqrestore(&list
->lock
, flags
);
1447 * skb_dequeue_tail - remove from the tail of the queue
1448 * @list: list to dequeue from
1450 * Remove the tail of the list. The list lock is taken so the function
1451 * may be used safely with other locking list functions. The tail item is
1452 * returned or %NULL if the list is empty.
1454 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1456 unsigned long flags
;
1457 struct sk_buff
*result
;
1459 spin_lock_irqsave(&list
->lock
, flags
);
1460 result
= __skb_dequeue_tail(list
);
1461 spin_unlock_irqrestore(&list
->lock
, flags
);
1466 * skb_queue_purge - empty a list
1467 * @list: list to empty
1469 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1470 * the list and one reference dropped. This function takes the list
1471 * lock and is atomic with respect to other list locking functions.
1473 void skb_queue_purge(struct sk_buff_head
*list
)
1475 struct sk_buff
*skb
;
1476 while ((skb
= skb_dequeue(list
)) != NULL
)
1481 * skb_queue_head - queue a buffer at the list head
1482 * @list: list to use
1483 * @newsk: buffer to queue
1485 * Queue a buffer at the start of the list. This function takes the
1486 * list lock and can be used safely with other locking &sk_buff functions
1489 * A buffer cannot be placed on two lists at the same time.
1491 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1493 unsigned long flags
;
1495 spin_lock_irqsave(&list
->lock
, flags
);
1496 __skb_queue_head(list
, newsk
);
1497 spin_unlock_irqrestore(&list
->lock
, flags
);
1501 * skb_queue_tail - queue a buffer at the list tail
1502 * @list: list to use
1503 * @newsk: buffer to queue
1505 * Queue a buffer at the tail of the list. This function takes the
1506 * list lock and can be used safely with other locking &sk_buff functions
1509 * A buffer cannot be placed on two lists at the same time.
1511 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1513 unsigned long flags
;
1515 spin_lock_irqsave(&list
->lock
, flags
);
1516 __skb_queue_tail(list
, newsk
);
1517 spin_unlock_irqrestore(&list
->lock
, flags
);
1521 * skb_unlink - remove a buffer from a list
1522 * @skb: buffer to remove
1523 * @list: list to use
1525 * Remove a packet from a list. The list locks are taken and this
1526 * function is atomic with respect to other list locked calls
1528 * You must know what list the SKB is on.
1530 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1532 unsigned long flags
;
1534 spin_lock_irqsave(&list
->lock
, flags
);
1535 __skb_unlink(skb
, list
);
1536 spin_unlock_irqrestore(&list
->lock
, flags
);
1540 * skb_append - append a buffer
1541 * @old: buffer to insert after
1542 * @newsk: buffer to insert
1543 * @list: list to use
1545 * Place a packet after a given packet in a list. The list locks are taken
1546 * and this function is atomic with respect to other list locked calls.
1547 * A buffer cannot be placed on two lists at the same time.
1549 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1551 unsigned long flags
;
1553 spin_lock_irqsave(&list
->lock
, flags
);
1554 __skb_append(old
, newsk
, list
);
1555 spin_unlock_irqrestore(&list
->lock
, flags
);
1560 * skb_insert - insert a buffer
1561 * @old: buffer to insert before
1562 * @newsk: buffer to insert
1563 * @list: list to use
1565 * Place a packet before a given packet in a list. The list locks are
1566 * taken and this function is atomic with respect to other list locked
1569 * A buffer cannot be placed on two lists at the same time.
1571 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1573 unsigned long flags
;
1575 spin_lock_irqsave(&list
->lock
, flags
);
1576 __skb_insert(newsk
, old
->prev
, old
, list
);
1577 spin_unlock_irqrestore(&list
->lock
, flags
);
1582 * Tune the memory allocator for a new MTU size.
1584 void skb_add_mtu(int mtu
)
1586 /* Must match allocation in alloc_skb */
1587 mtu
= SKB_DATA_ALIGN(mtu
) + sizeof(struct skb_shared_info
);
1589 kmem_add_cache_size(mtu
);
1593 static inline void skb_split_inside_header(struct sk_buff
*skb
,
1594 struct sk_buff
* skb1
,
1595 const u32 len
, const int pos
)
1599 memcpy(skb_put(skb1
, pos
- len
), skb
->data
+ len
, pos
- len
);
1601 /* And move data appendix as is. */
1602 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1603 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1605 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
1606 skb_shinfo(skb
)->nr_frags
= 0;
1607 skb1
->data_len
= skb
->data_len
;
1608 skb1
->len
+= skb1
->data_len
;
1611 skb
->tail
= skb
->data
+ len
;
1614 static inline void skb_split_no_header(struct sk_buff
*skb
,
1615 struct sk_buff
* skb1
,
1616 const u32 len
, int pos
)
1619 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
1621 skb_shinfo(skb
)->nr_frags
= 0;
1622 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
1624 skb
->data_len
= len
- pos
;
1626 for (i
= 0; i
< nfrags
; i
++) {
1627 int size
= skb_shinfo(skb
)->frags
[i
].size
;
1629 if (pos
+ size
> len
) {
1630 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1634 * We have two variants in this case:
1635 * 1. Move all the frag to the second
1636 * part, if it is possible. F.e.
1637 * this approach is mandatory for TUX,
1638 * where splitting is expensive.
1639 * 2. Split is accurately. We make this.
1641 get_page(skb_shinfo(skb
)->frags
[i
].page
);
1642 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
1643 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
1644 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
1645 skb_shinfo(skb
)->nr_frags
++;
1649 skb_shinfo(skb
)->nr_frags
++;
1652 skb_shinfo(skb1
)->nr_frags
= k
;
1656 * skb_split - Split fragmented skb to two parts at length len.
1657 * @skb: the buffer to split
1658 * @skb1: the buffer to receive the second part
1659 * @len: new length for skb
1661 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
1663 int pos
= skb_headlen(skb
);
1665 if (len
< pos
) /* Split line is inside header. */
1666 skb_split_inside_header(skb
, skb1
, len
, pos
);
1667 else /* Second chunk has no header, nothing to copy. */
1668 skb_split_no_header(skb
, skb1
, len
, pos
);
1672 * skb_prepare_seq_read - Prepare a sequential read of skb data
1673 * @skb: the buffer to read
1674 * @from: lower offset of data to be read
1675 * @to: upper offset of data to be read
1676 * @st: state variable
1678 * Initializes the specified state variable. Must be called before
1679 * invoking skb_seq_read() for the first time.
1681 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
1682 unsigned int to
, struct skb_seq_state
*st
)
1684 st
->lower_offset
= from
;
1685 st
->upper_offset
= to
;
1686 st
->root_skb
= st
->cur_skb
= skb
;
1687 st
->frag_idx
= st
->stepped_offset
= 0;
1688 st
->frag_data
= NULL
;
1692 * skb_seq_read - Sequentially read skb data
1693 * @consumed: number of bytes consumed by the caller so far
1694 * @data: destination pointer for data to be returned
1695 * @st: state variable
1697 * Reads a block of skb data at &consumed relative to the
1698 * lower offset specified to skb_prepare_seq_read(). Assigns
1699 * the head of the data block to &data and returns the length
1700 * of the block or 0 if the end of the skb data or the upper
1701 * offset has been reached.
1703 * The caller is not required to consume all of the data
1704 * returned, i.e. &consumed is typically set to the number
1705 * of bytes already consumed and the next call to
1706 * skb_seq_read() will return the remaining part of the block.
1708 * Note: The size of each block of data returned can be arbitary,
1709 * this limitation is the cost for zerocopy seqeuental
1710 * reads of potentially non linear data.
1712 * Note: Fragment lists within fragments are not implemented
1713 * at the moment, state->root_skb could be replaced with
1714 * a stack for this purpose.
1716 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
1717 struct skb_seq_state
*st
)
1719 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
1722 if (unlikely(abs_offset
>= st
->upper_offset
))
1726 block_limit
= skb_headlen(st
->cur_skb
);
1728 if (abs_offset
< block_limit
) {
1729 *data
= st
->cur_skb
->data
+ abs_offset
;
1730 return block_limit
- abs_offset
;
1733 if (st
->frag_idx
== 0 && !st
->frag_data
)
1734 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
1736 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
1737 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
1738 block_limit
= frag
->size
+ st
->stepped_offset
;
1740 if (abs_offset
< block_limit
) {
1742 st
->frag_data
= kmap_skb_frag(frag
);
1744 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
1745 (abs_offset
- st
->stepped_offset
);
1747 return block_limit
- abs_offset
;
1750 if (st
->frag_data
) {
1751 kunmap_skb_frag(st
->frag_data
);
1752 st
->frag_data
= NULL
;
1756 st
->stepped_offset
+= frag
->size
;
1759 if (st
->cur_skb
->next
) {
1760 st
->cur_skb
= st
->cur_skb
->next
;
1763 } else if (st
->root_skb
== st
->cur_skb
&&
1764 skb_shinfo(st
->root_skb
)->frag_list
) {
1765 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
1773 * skb_abort_seq_read - Abort a sequential read of skb data
1774 * @st: state variable
1776 * Must be called if skb_seq_read() was not called until it
1779 void skb_abort_seq_read(struct skb_seq_state
*st
)
1782 kunmap_skb_frag(st
->frag_data
);
1785 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1787 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
1788 struct ts_config
*conf
,
1789 struct ts_state
*state
)
1791 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
1794 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
1796 skb_abort_seq_read(TS_SKB_CB(state
));
1800 * skb_find_text - Find a text pattern in skb data
1801 * @skb: the buffer to look in
1802 * @from: search offset
1804 * @config: textsearch configuration
1805 * @state: uninitialized textsearch state variable
1807 * Finds a pattern in the skb data according to the specified
1808 * textsearch configuration. Use textsearch_next() to retrieve
1809 * subsequent occurrences of the pattern. Returns the offset
1810 * to the first occurrence or UINT_MAX if no match was found.
1812 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
1813 unsigned int to
, struct ts_config
*config
,
1814 struct ts_state
*state
)
1818 config
->get_next_block
= skb_ts_get_next_block
;
1819 config
->finish
= skb_ts_finish
;
1821 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
1823 ret
= textsearch_find(config
, state
);
1824 return (ret
<= to
- from
? ret
: UINT_MAX
);
1828 * skb_append_datato_frags: - append the user data to a skb
1829 * @sk: sock structure
1830 * @skb: skb structure to be appened with user data.
1831 * @getfrag: call back function to be used for getting the user data
1832 * @from: pointer to user message iov
1833 * @length: length of the iov message
1835 * Description: This procedure append the user data in the fragment part
1836 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1838 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
1839 int (*getfrag
)(void *from
, char *to
, int offset
,
1840 int len
, int odd
, struct sk_buff
*skb
),
1841 void *from
, int length
)
1844 skb_frag_t
*frag
= NULL
;
1845 struct page
*page
= NULL
;
1851 /* Return error if we don't have space for new frag */
1852 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
1853 if (frg_cnt
>= MAX_SKB_FRAGS
)
1856 /* allocate a new page for next frag */
1857 page
= alloc_pages(sk
->sk_allocation
, 0);
1859 /* If alloc_page fails just return failure and caller will
1860 * free previous allocated pages by doing kfree_skb()
1865 /* initialize the next frag */
1866 sk
->sk_sndmsg_page
= page
;
1867 sk
->sk_sndmsg_off
= 0;
1868 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
1869 skb
->truesize
+= PAGE_SIZE
;
1870 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
1872 /* get the new initialized frag */
1873 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
1874 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
1876 /* copy the user data to page */
1877 left
= PAGE_SIZE
- frag
->page_offset
;
1878 copy
= (length
> left
)? left
: length
;
1880 ret
= getfrag(from
, (page_address(frag
->page
) +
1881 frag
->page_offset
+ frag
->size
),
1882 offset
, copy
, 0, skb
);
1886 /* copy was successful so update the size parameters */
1887 sk
->sk_sndmsg_off
+= copy
;
1890 skb
->data_len
+= copy
;
1894 } while (length
> 0);
1900 * skb_pull_rcsum - pull skb and update receive checksum
1901 * @skb: buffer to update
1902 * @start: start of data before pull
1903 * @len: length of data pulled
1905 * This function performs an skb_pull on the packet and updates
1906 * update the CHECKSUM_COMPLETE checksum. It should be used on
1907 * receive path processing instead of skb_pull unless you know
1908 * that the checksum difference is zero (e.g., a valid IP header)
1909 * or you are setting ip_summed to CHECKSUM_NONE.
1911 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
1913 BUG_ON(len
> skb
->len
);
1915 BUG_ON(skb
->len
< skb
->data_len
);
1916 skb_postpull_rcsum(skb
, skb
->data
, len
);
1917 return skb
->data
+= len
;
1920 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
1923 * skb_segment - Perform protocol segmentation on skb.
1924 * @skb: buffer to segment
1925 * @features: features for the output path (see dev->features)
1927 * This function performs segmentation on the given skb. It returns
1928 * the segment at the given position. It returns NULL if there are
1929 * no more segments to generate, or when an error is encountered.
1931 struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
)
1933 struct sk_buff
*segs
= NULL
;
1934 struct sk_buff
*tail
= NULL
;
1935 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
1936 unsigned int doffset
= skb
->data
- skb
->mac
.raw
;
1937 unsigned int offset
= doffset
;
1938 unsigned int headroom
;
1940 int sg
= features
& NETIF_F_SG
;
1941 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1946 __skb_push(skb
, doffset
);
1947 headroom
= skb_headroom(skb
);
1948 pos
= skb_headlen(skb
);
1951 struct sk_buff
*nskb
;
1957 len
= skb
->len
- offset
;
1961 hsize
= skb_headlen(skb
) - offset
;
1964 if (hsize
> len
|| !sg
)
1967 nskb
= alloc_skb(hsize
+ doffset
+ headroom
, GFP_ATOMIC
);
1968 if (unlikely(!nskb
))
1977 nskb
->dev
= skb
->dev
;
1978 nskb
->priority
= skb
->priority
;
1979 nskb
->protocol
= skb
->protocol
;
1980 nskb
->dst
= dst_clone(skb
->dst
);
1981 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
1982 nskb
->pkt_type
= skb
->pkt_type
;
1983 nskb
->mac_len
= skb
->mac_len
;
1985 skb_reserve(nskb
, headroom
);
1986 nskb
->mac
.raw
= nskb
->data
;
1987 nskb
->nh
.raw
= nskb
->data
+ skb
->mac_len
;
1988 nskb
->h
.raw
= nskb
->nh
.raw
+ (skb
->h
.raw
- skb
->nh
.raw
);
1989 memcpy(skb_put(nskb
, doffset
), skb
->data
, doffset
);
1992 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
1998 frag
= skb_shinfo(nskb
)->frags
;
2001 nskb
->ip_summed
= CHECKSUM_PARTIAL
;
2002 nskb
->csum
= skb
->csum
;
2003 memcpy(skb_put(nskb
, hsize
), skb
->data
+ offset
, hsize
);
2005 while (pos
< offset
+ len
) {
2006 BUG_ON(i
>= nfrags
);
2008 *frag
= skb_shinfo(skb
)->frags
[i
];
2009 get_page(frag
->page
);
2013 frag
->page_offset
+= offset
- pos
;
2014 frag
->size
-= offset
- pos
;
2019 if (pos
+ size
<= offset
+ len
) {
2023 frag
->size
-= pos
+ size
- (offset
+ len
);
2030 skb_shinfo(nskb
)->nr_frags
= k
;
2031 nskb
->data_len
= len
- hsize
;
2032 nskb
->len
+= nskb
->data_len
;
2033 nskb
->truesize
+= nskb
->data_len
;
2034 } while ((offset
+= len
) < skb
->len
);
2039 while ((skb
= segs
)) {
2043 return ERR_PTR(err
);
2046 EXPORT_SYMBOL_GPL(skb_segment
);
2048 void __init
skb_init(void)
2050 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2051 sizeof(struct sk_buff
),
2053 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2055 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2056 (2*sizeof(struct sk_buff
)) +
2059 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2063 EXPORT_SYMBOL(___pskb_trim
);
2064 EXPORT_SYMBOL(__kfree_skb
);
2065 EXPORT_SYMBOL(kfree_skb
);
2066 EXPORT_SYMBOL(__pskb_pull_tail
);
2067 EXPORT_SYMBOL(__alloc_skb
);
2068 EXPORT_SYMBOL(__netdev_alloc_skb
);
2069 EXPORT_SYMBOL(pskb_copy
);
2070 EXPORT_SYMBOL(pskb_expand_head
);
2071 EXPORT_SYMBOL(skb_checksum
);
2072 EXPORT_SYMBOL(skb_clone
);
2073 EXPORT_SYMBOL(skb_clone_fraglist
);
2074 EXPORT_SYMBOL(skb_copy
);
2075 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2076 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2077 EXPORT_SYMBOL(skb_copy_bits
);
2078 EXPORT_SYMBOL(skb_copy_expand
);
2079 EXPORT_SYMBOL(skb_over_panic
);
2080 EXPORT_SYMBOL(skb_pad
);
2081 EXPORT_SYMBOL(skb_realloc_headroom
);
2082 EXPORT_SYMBOL(skb_under_panic
);
2083 EXPORT_SYMBOL(skb_dequeue
);
2084 EXPORT_SYMBOL(skb_dequeue_tail
);
2085 EXPORT_SYMBOL(skb_insert
);
2086 EXPORT_SYMBOL(skb_queue_purge
);
2087 EXPORT_SYMBOL(skb_queue_head
);
2088 EXPORT_SYMBOL(skb_queue_tail
);
2089 EXPORT_SYMBOL(skb_unlink
);
2090 EXPORT_SYMBOL(skb_append
);
2091 EXPORT_SYMBOL(skb_split
);
2092 EXPORT_SYMBOL(skb_prepare_seq_read
);
2093 EXPORT_SYMBOL(skb_seq_read
);
2094 EXPORT_SYMBOL(skb_abort_seq_read
);
2095 EXPORT_SYMBOL(skb_find_text
);
2096 EXPORT_SYMBOL(skb_append_datato_frags
);