2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
6 #ifdef CONFIG_RT_GROUP_SCHED
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
10 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
15 return container_of(rt_se
, struct task_struct
, rt
);
18 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
23 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
28 #else /* CONFIG_RT_GROUP_SCHED */
30 #define rt_entity_is_task(rt_se) (1)
32 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
34 return container_of(rt_se
, struct task_struct
, rt
);
37 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
39 return container_of(rt_rq
, struct rq
, rt
);
42 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
44 struct task_struct
*p
= rt_task_of(rt_se
);
45 struct rq
*rq
= task_rq(p
);
50 #endif /* CONFIG_RT_GROUP_SCHED */
54 static inline int rt_overloaded(struct rq
*rq
)
56 return atomic_read(&rq
->rd
->rto_count
);
59 static inline void rt_set_overload(struct rq
*rq
)
64 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
73 atomic_inc(&rq
->rd
->rto_count
);
76 static inline void rt_clear_overload(struct rq
*rq
)
81 /* the order here really doesn't matter */
82 atomic_dec(&rq
->rd
->rto_count
);
83 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
86 static void update_rt_migration(struct rt_rq
*rt_rq
)
88 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
89 if (!rt_rq
->overloaded
) {
90 rt_set_overload(rq_of_rt_rq(rt_rq
));
91 rt_rq
->overloaded
= 1;
93 } else if (rt_rq
->overloaded
) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq
));
95 rt_rq
->overloaded
= 0;
99 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
101 if (!rt_entity_is_task(rt_se
))
104 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
106 rt_rq
->rt_nr_total
++;
107 if (rt_se
->nr_cpus_allowed
> 1)
108 rt_rq
->rt_nr_migratory
++;
110 update_rt_migration(rt_rq
);
113 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
115 if (!rt_entity_is_task(rt_se
))
118 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
120 rt_rq
->rt_nr_total
--;
121 if (rt_se
->nr_cpus_allowed
> 1)
122 rt_rq
->rt_nr_migratory
--;
124 update_rt_migration(rt_rq
);
127 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
129 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
130 plist_node_init(&p
->pushable_tasks
, p
->prio
);
131 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
134 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
136 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
139 static inline int has_pushable_tasks(struct rq
*rq
)
141 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
146 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
150 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
155 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
160 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
164 #endif /* CONFIG_SMP */
166 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
168 return !list_empty(&rt_se
->run_list
);
171 #ifdef CONFIG_RT_GROUP_SCHED
173 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
178 return rt_rq
->rt_runtime
;
181 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
183 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
186 #define for_each_leaf_rt_rq(rt_rq, rq) \
187 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
189 #define for_each_sched_rt_entity(rt_se) \
190 for (; rt_se; rt_se = rt_se->parent)
192 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
197 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
);
198 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
200 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
202 int this_cpu
= smp_processor_id();
203 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
204 struct sched_rt_entity
*rt_se
;
206 rt_se
= rt_rq
->tg
->rt_se
[this_cpu
];
208 if (rt_rq
->rt_nr_running
) {
209 if (rt_se
&& !on_rt_rq(rt_se
))
210 enqueue_rt_entity(rt_se
, false);
211 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
216 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
218 int this_cpu
= smp_processor_id();
219 struct sched_rt_entity
*rt_se
;
221 rt_se
= rt_rq
->tg
->rt_se
[this_cpu
];
223 if (rt_se
&& on_rt_rq(rt_se
))
224 dequeue_rt_entity(rt_se
);
227 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
229 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
232 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
234 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
235 struct task_struct
*p
;
238 return !!rt_rq
->rt_nr_boosted
;
240 p
= rt_task_of(rt_se
);
241 return p
->prio
!= p
->normal_prio
;
245 static inline const struct cpumask
*sched_rt_period_mask(void)
247 return cpu_rq(smp_processor_id())->rd
->span
;
250 static inline const struct cpumask
*sched_rt_period_mask(void)
252 return cpu_online_mask
;
257 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
259 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
262 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
264 return &rt_rq
->tg
->rt_bandwidth
;
267 #else /* !CONFIG_RT_GROUP_SCHED */
269 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
271 return rt_rq
->rt_runtime
;
274 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
276 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
279 #define for_each_leaf_rt_rq(rt_rq, rq) \
280 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
282 #define for_each_sched_rt_entity(rt_se) \
283 for (; rt_se; rt_se = NULL)
285 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
290 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
292 if (rt_rq
->rt_nr_running
)
293 resched_task(rq_of_rt_rq(rt_rq
)->curr
);
296 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
300 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
302 return rt_rq
->rt_throttled
;
305 static inline const struct cpumask
*sched_rt_period_mask(void)
307 return cpu_online_mask
;
311 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
313 return &cpu_rq(cpu
)->rt
;
316 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
318 return &def_rt_bandwidth
;
321 #endif /* CONFIG_RT_GROUP_SCHED */
325 * We ran out of runtime, see if we can borrow some from our neighbours.
327 static int do_balance_runtime(struct rt_rq
*rt_rq
)
329 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
330 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
331 int i
, weight
, more
= 0;
334 weight
= cpumask_weight(rd
->span
);
336 raw_spin_lock(&rt_b
->rt_runtime_lock
);
337 rt_period
= ktime_to_ns(rt_b
->rt_period
);
338 for_each_cpu(i
, rd
->span
) {
339 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
345 raw_spin_lock(&iter
->rt_runtime_lock
);
347 * Either all rqs have inf runtime and there's nothing to steal
348 * or __disable_runtime() below sets a specific rq to inf to
349 * indicate its been disabled and disalow stealing.
351 if (iter
->rt_runtime
== RUNTIME_INF
)
355 * From runqueues with spare time, take 1/n part of their
356 * spare time, but no more than our period.
358 diff
= iter
->rt_runtime
- iter
->rt_time
;
360 diff
= div_u64((u64
)diff
, weight
);
361 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
362 diff
= rt_period
- rt_rq
->rt_runtime
;
363 iter
->rt_runtime
-= diff
;
364 rt_rq
->rt_runtime
+= diff
;
366 if (rt_rq
->rt_runtime
== rt_period
) {
367 raw_spin_unlock(&iter
->rt_runtime_lock
);
372 raw_spin_unlock(&iter
->rt_runtime_lock
);
374 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
380 * Ensure this RQ takes back all the runtime it lend to its neighbours.
382 static void __disable_runtime(struct rq
*rq
)
384 struct root_domain
*rd
= rq
->rd
;
387 if (unlikely(!scheduler_running
))
390 for_each_leaf_rt_rq(rt_rq
, rq
) {
391 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
395 raw_spin_lock(&rt_b
->rt_runtime_lock
);
396 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
398 * Either we're all inf and nobody needs to borrow, or we're
399 * already disabled and thus have nothing to do, or we have
400 * exactly the right amount of runtime to take out.
402 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
403 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
405 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
408 * Calculate the difference between what we started out with
409 * and what we current have, that's the amount of runtime
410 * we lend and now have to reclaim.
412 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
415 * Greedy reclaim, take back as much as we can.
417 for_each_cpu(i
, rd
->span
) {
418 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
422 * Can't reclaim from ourselves or disabled runqueues.
424 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
427 raw_spin_lock(&iter
->rt_runtime_lock
);
429 diff
= min_t(s64
, iter
->rt_runtime
, want
);
430 iter
->rt_runtime
-= diff
;
433 iter
->rt_runtime
-= want
;
436 raw_spin_unlock(&iter
->rt_runtime_lock
);
442 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
444 * We cannot be left wanting - that would mean some runtime
445 * leaked out of the system.
450 * Disable all the borrow logic by pretending we have inf
451 * runtime - in which case borrowing doesn't make sense.
453 rt_rq
->rt_runtime
= RUNTIME_INF
;
454 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
455 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
459 static void disable_runtime(struct rq
*rq
)
463 raw_spin_lock_irqsave(&rq
->lock
, flags
);
464 __disable_runtime(rq
);
465 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
468 static void __enable_runtime(struct rq
*rq
)
472 if (unlikely(!scheduler_running
))
476 * Reset each runqueue's bandwidth settings
478 for_each_leaf_rt_rq(rt_rq
, rq
) {
479 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
481 raw_spin_lock(&rt_b
->rt_runtime_lock
);
482 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
483 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
485 rt_rq
->rt_throttled
= 0;
486 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
487 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
491 static void enable_runtime(struct rq
*rq
)
495 raw_spin_lock_irqsave(&rq
->lock
, flags
);
496 __enable_runtime(rq
);
497 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
500 static int balance_runtime(struct rt_rq
*rt_rq
)
504 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
505 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
506 more
= do_balance_runtime(rt_rq
);
507 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
512 #else /* !CONFIG_SMP */
513 static inline int balance_runtime(struct rt_rq
*rt_rq
)
517 #endif /* CONFIG_SMP */
519 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
522 const struct cpumask
*span
;
524 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
527 span
= sched_rt_period_mask();
528 for_each_cpu(i
, span
) {
530 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
531 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
533 raw_spin_lock(&rq
->lock
);
534 if (rt_rq
->rt_time
) {
537 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
538 if (rt_rq
->rt_throttled
)
539 balance_runtime(rt_rq
);
540 runtime
= rt_rq
->rt_runtime
;
541 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
542 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
543 rt_rq
->rt_throttled
= 0;
546 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
548 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
549 } else if (rt_rq
->rt_nr_running
)
553 sched_rt_rq_enqueue(rt_rq
);
554 raw_spin_unlock(&rq
->lock
);
560 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
562 #ifdef CONFIG_RT_GROUP_SCHED
563 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
566 return rt_rq
->highest_prio
.curr
;
569 return rt_task_of(rt_se
)->prio
;
572 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
574 u64 runtime
= sched_rt_runtime(rt_rq
);
576 if (rt_rq
->rt_throttled
)
577 return rt_rq_throttled(rt_rq
);
579 if (sched_rt_runtime(rt_rq
) >= sched_rt_period(rt_rq
))
582 balance_runtime(rt_rq
);
583 runtime
= sched_rt_runtime(rt_rq
);
584 if (runtime
== RUNTIME_INF
)
587 if (rt_rq
->rt_time
> runtime
) {
588 rt_rq
->rt_throttled
= 1;
589 if (rt_rq_throttled(rt_rq
)) {
590 sched_rt_rq_dequeue(rt_rq
);
599 * Update the current task's runtime statistics. Skip current tasks that
600 * are not in our scheduling class.
602 static void update_curr_rt(struct rq
*rq
)
604 struct task_struct
*curr
= rq
->curr
;
605 struct sched_rt_entity
*rt_se
= &curr
->rt
;
606 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
609 if (!task_has_rt_policy(curr
))
612 delta_exec
= rq
->clock_task
- curr
->se
.exec_start
;
613 if (unlikely((s64
)delta_exec
< 0))
616 schedstat_set(curr
->se
.statistics
.exec_max
, max(curr
->se
.statistics
.exec_max
, delta_exec
));
618 curr
->se
.sum_exec_runtime
+= delta_exec
;
619 account_group_exec_runtime(curr
, delta_exec
);
621 curr
->se
.exec_start
= rq
->clock_task
;
622 cpuacct_charge(curr
, delta_exec
);
624 sched_rt_avg_update(rq
, delta_exec
);
626 if (!rt_bandwidth_enabled())
629 for_each_sched_rt_entity(rt_se
) {
630 rt_rq
= rt_rq_of_se(rt_se
);
632 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
633 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
634 rt_rq
->rt_time
+= delta_exec
;
635 if (sched_rt_runtime_exceeded(rt_rq
))
637 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
642 #if defined CONFIG_SMP
644 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
);
646 static inline int next_prio(struct rq
*rq
)
648 struct task_struct
*next
= pick_next_highest_task_rt(rq
, rq
->cpu
);
650 if (next
&& rt_prio(next
->prio
))
657 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
659 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
661 if (prio
< prev_prio
) {
664 * If the new task is higher in priority than anything on the
665 * run-queue, we know that the previous high becomes our
668 rt_rq
->highest_prio
.next
= prev_prio
;
671 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
673 } else if (prio
== rt_rq
->highest_prio
.curr
)
675 * If the next task is equal in priority to the highest on
676 * the run-queue, then we implicitly know that the next highest
677 * task cannot be any lower than current
679 rt_rq
->highest_prio
.next
= prio
;
680 else if (prio
< rt_rq
->highest_prio
.next
)
682 * Otherwise, we need to recompute next-highest
684 rt_rq
->highest_prio
.next
= next_prio(rq
);
688 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
690 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
692 if (rt_rq
->rt_nr_running
&& (prio
<= rt_rq
->highest_prio
.next
))
693 rt_rq
->highest_prio
.next
= next_prio(rq
);
695 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
696 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
699 #else /* CONFIG_SMP */
702 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
704 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
706 #endif /* CONFIG_SMP */
708 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
710 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
712 int prev_prio
= rt_rq
->highest_prio
.curr
;
714 if (prio
< prev_prio
)
715 rt_rq
->highest_prio
.curr
= prio
;
717 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
721 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
723 int prev_prio
= rt_rq
->highest_prio
.curr
;
725 if (rt_rq
->rt_nr_running
) {
727 WARN_ON(prio
< prev_prio
);
730 * This may have been our highest task, and therefore
731 * we may have some recomputation to do
733 if (prio
== prev_prio
) {
734 struct rt_prio_array
*array
= &rt_rq
->active
;
736 rt_rq
->highest_prio
.curr
=
737 sched_find_first_bit(array
->bitmap
);
741 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
743 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
748 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
749 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
751 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
753 #ifdef CONFIG_RT_GROUP_SCHED
756 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
758 if (rt_se_boosted(rt_se
))
759 rt_rq
->rt_nr_boosted
++;
762 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
766 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
768 if (rt_se_boosted(rt_se
))
769 rt_rq
->rt_nr_boosted
--;
771 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
774 #else /* CONFIG_RT_GROUP_SCHED */
777 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
779 start_rt_bandwidth(&def_rt_bandwidth
);
783 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
785 #endif /* CONFIG_RT_GROUP_SCHED */
788 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
790 int prio
= rt_se_prio(rt_se
);
792 WARN_ON(!rt_prio(prio
));
793 rt_rq
->rt_nr_running
++;
795 inc_rt_prio(rt_rq
, prio
);
796 inc_rt_migration(rt_se
, rt_rq
);
797 inc_rt_group(rt_se
, rt_rq
);
801 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
803 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
804 WARN_ON(!rt_rq
->rt_nr_running
);
805 rt_rq
->rt_nr_running
--;
807 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
808 dec_rt_migration(rt_se
, rt_rq
);
809 dec_rt_group(rt_se
, rt_rq
);
812 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
814 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
815 struct rt_prio_array
*array
= &rt_rq
->active
;
816 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
817 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
820 * Don't enqueue the group if its throttled, or when empty.
821 * The latter is a consequence of the former when a child group
822 * get throttled and the current group doesn't have any other
825 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
829 list_add(&rt_se
->run_list
, queue
);
831 list_add_tail(&rt_se
->run_list
, queue
);
832 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
834 inc_rt_tasks(rt_se
, rt_rq
);
837 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
839 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
840 struct rt_prio_array
*array
= &rt_rq
->active
;
842 list_del_init(&rt_se
->run_list
);
843 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
844 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
846 dec_rt_tasks(rt_se
, rt_rq
);
850 * Because the prio of an upper entry depends on the lower
851 * entries, we must remove entries top - down.
853 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
855 struct sched_rt_entity
*back
= NULL
;
857 for_each_sched_rt_entity(rt_se
) {
862 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
864 __dequeue_rt_entity(rt_se
);
868 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
870 dequeue_rt_stack(rt_se
);
871 for_each_sched_rt_entity(rt_se
)
872 __enqueue_rt_entity(rt_se
, head
);
875 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
877 dequeue_rt_stack(rt_se
);
879 for_each_sched_rt_entity(rt_se
) {
880 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
882 if (rt_rq
&& rt_rq
->rt_nr_running
)
883 __enqueue_rt_entity(rt_se
, false);
888 * Adding/removing a task to/from a priority array:
891 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
893 struct sched_rt_entity
*rt_se
= &p
->rt
;
895 if (flags
& ENQUEUE_WAKEUP
)
898 enqueue_rt_entity(rt_se
, flags
& ENQUEUE_HEAD
);
900 if (!task_current(rq
, p
) && p
->rt
.nr_cpus_allowed
> 1)
901 enqueue_pushable_task(rq
, p
);
904 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
906 struct sched_rt_entity
*rt_se
= &p
->rt
;
909 dequeue_rt_entity(rt_se
);
911 dequeue_pushable_task(rq
, p
);
915 * Put task to the end of the run list without the overhead of dequeue
916 * followed by enqueue.
919 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
921 if (on_rt_rq(rt_se
)) {
922 struct rt_prio_array
*array
= &rt_rq
->active
;
923 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
926 list_move(&rt_se
->run_list
, queue
);
928 list_move_tail(&rt_se
->run_list
, queue
);
932 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
934 struct sched_rt_entity
*rt_se
= &p
->rt
;
937 for_each_sched_rt_entity(rt_se
) {
938 rt_rq
= rt_rq_of_se(rt_se
);
939 requeue_rt_entity(rt_rq
, rt_se
, head
);
943 static void yield_task_rt(struct rq
*rq
)
945 requeue_task_rt(rq
, rq
->curr
, 0);
949 static int find_lowest_rq(struct task_struct
*task
);
952 select_task_rq_rt(struct rq
*rq
, struct task_struct
*p
, int sd_flag
, int flags
)
954 if (sd_flag
!= SD_BALANCE_WAKE
)
955 return smp_processor_id();
958 * If the current task is an RT task, then
959 * try to see if we can wake this RT task up on another
960 * runqueue. Otherwise simply start this RT task
961 * on its current runqueue.
963 * We want to avoid overloading runqueues. If the woken
964 * task is a higher priority, then it will stay on this CPU
965 * and the lower prio task should be moved to another CPU.
966 * Even though this will probably make the lower prio task
967 * lose its cache, we do not want to bounce a higher task
968 * around just because it gave up its CPU, perhaps for a
971 * For equal prio tasks, we just let the scheduler sort it out.
973 if (unlikely(rt_task(rq
->curr
)) &&
974 (rq
->curr
->rt
.nr_cpus_allowed
< 2 ||
975 rq
->curr
->prio
< p
->prio
) &&
976 (p
->rt
.nr_cpus_allowed
> 1)) {
977 int cpu
= find_lowest_rq(p
);
979 return (cpu
== -1) ? task_cpu(p
) : cpu
;
983 * Otherwise, just let it ride on the affined RQ and the
984 * post-schedule router will push the preempted task away
989 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
991 if (rq
->curr
->rt
.nr_cpus_allowed
== 1)
994 if (p
->rt
.nr_cpus_allowed
!= 1
995 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
998 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1002 * There appears to be other cpus that can accept
1003 * current and none to run 'p', so lets reschedule
1004 * to try and push current away:
1006 requeue_task_rt(rq
, p
, 1);
1007 resched_task(rq
->curr
);
1010 #endif /* CONFIG_SMP */
1013 * Preempt the current task with a newly woken task if needed:
1015 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1017 if (p
->prio
< rq
->curr
->prio
) {
1018 resched_task(rq
->curr
);
1026 * - the newly woken task is of equal priority to the current task
1027 * - the newly woken task is non-migratable while current is migratable
1028 * - current will be preempted on the next reschedule
1030 * we should check to see if current can readily move to a different
1031 * cpu. If so, we will reschedule to allow the push logic to try
1032 * to move current somewhere else, making room for our non-migratable
1035 if (p
->prio
== rq
->curr
->prio
&& !need_resched())
1036 check_preempt_equal_prio(rq
, p
);
1040 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1041 struct rt_rq
*rt_rq
)
1043 struct rt_prio_array
*array
= &rt_rq
->active
;
1044 struct sched_rt_entity
*next
= NULL
;
1045 struct list_head
*queue
;
1048 idx
= sched_find_first_bit(array
->bitmap
);
1049 BUG_ON(idx
>= MAX_RT_PRIO
);
1051 queue
= array
->queue
+ idx
;
1052 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1057 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1059 struct sched_rt_entity
*rt_se
;
1060 struct task_struct
*p
;
1061 struct rt_rq
*rt_rq
;
1065 if (unlikely(!rt_rq
->rt_nr_running
))
1068 if (rt_rq_throttled(rt_rq
))
1072 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1074 rt_rq
= group_rt_rq(rt_se
);
1077 p
= rt_task_of(rt_se
);
1078 p
->se
.exec_start
= rq
->clock_task
;
1083 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
1085 struct task_struct
*p
= _pick_next_task_rt(rq
);
1087 /* The running task is never eligible for pushing */
1089 dequeue_pushable_task(rq
, p
);
1093 * We detect this state here so that we can avoid taking the RQ
1094 * lock again later if there is no need to push
1096 rq
->post_schedule
= has_pushable_tasks(rq
);
1102 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1105 p
->se
.exec_start
= 0;
1108 * The previous task needs to be made eligible for pushing
1109 * if it is still active
1111 if (p
->se
.on_rq
&& p
->rt
.nr_cpus_allowed
> 1)
1112 enqueue_pushable_task(rq
, p
);
1117 /* Only try algorithms three times */
1118 #define RT_MAX_TRIES 3
1120 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
);
1122 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1124 if (!task_running(rq
, p
) &&
1125 (cpu
< 0 || cpumask_test_cpu(cpu
, &p
->cpus_allowed
)) &&
1126 (p
->rt
.nr_cpus_allowed
> 1))
1131 /* Return the second highest RT task, NULL otherwise */
1132 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
1134 struct task_struct
*next
= NULL
;
1135 struct sched_rt_entity
*rt_se
;
1136 struct rt_prio_array
*array
;
1137 struct rt_rq
*rt_rq
;
1140 for_each_leaf_rt_rq(rt_rq
, rq
) {
1141 array
= &rt_rq
->active
;
1142 idx
= sched_find_first_bit(array
->bitmap
);
1144 if (idx
>= MAX_RT_PRIO
)
1146 if (next
&& next
->prio
< idx
)
1148 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
1149 struct task_struct
*p
;
1151 if (!rt_entity_is_task(rt_se
))
1154 p
= rt_task_of(rt_se
);
1155 if (pick_rt_task(rq
, p
, cpu
)) {
1161 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
1169 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1171 static int find_lowest_rq(struct task_struct
*task
)
1173 struct sched_domain
*sd
;
1174 struct cpumask
*lowest_mask
= __get_cpu_var(local_cpu_mask
);
1175 int this_cpu
= smp_processor_id();
1176 int cpu
= task_cpu(task
);
1178 if (task
->rt
.nr_cpus_allowed
== 1)
1179 return -1; /* No other targets possible */
1181 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1182 return -1; /* No targets found */
1185 * At this point we have built a mask of cpus representing the
1186 * lowest priority tasks in the system. Now we want to elect
1187 * the best one based on our affinity and topology.
1189 * We prioritize the last cpu that the task executed on since
1190 * it is most likely cache-hot in that location.
1192 if (cpumask_test_cpu(cpu
, lowest_mask
))
1196 * Otherwise, we consult the sched_domains span maps to figure
1197 * out which cpu is logically closest to our hot cache data.
1199 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1200 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1202 for_each_domain(cpu
, sd
) {
1203 if (sd
->flags
& SD_WAKE_AFFINE
) {
1207 * "this_cpu" is cheaper to preempt than a
1210 if (this_cpu
!= -1 &&
1211 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
)))
1214 best_cpu
= cpumask_first_and(lowest_mask
,
1215 sched_domain_span(sd
));
1216 if (best_cpu
< nr_cpu_ids
)
1222 * And finally, if there were no matches within the domains
1223 * just give the caller *something* to work with from the compatible
1229 cpu
= cpumask_any(lowest_mask
);
1230 if (cpu
< nr_cpu_ids
)
1235 /* Will lock the rq it finds */
1236 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1238 struct rq
*lowest_rq
= NULL
;
1242 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1243 cpu
= find_lowest_rq(task
);
1245 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1248 lowest_rq
= cpu_rq(cpu
);
1250 /* if the prio of this runqueue changed, try again */
1251 if (double_lock_balance(rq
, lowest_rq
)) {
1253 * We had to unlock the run queue. In
1254 * the mean time, task could have
1255 * migrated already or had its affinity changed.
1256 * Also make sure that it wasn't scheduled on its rq.
1258 if (unlikely(task_rq(task
) != rq
||
1259 !cpumask_test_cpu(lowest_rq
->cpu
,
1260 &task
->cpus_allowed
) ||
1261 task_running(rq
, task
) ||
1264 raw_spin_unlock(&lowest_rq
->lock
);
1270 /* If this rq is still suitable use it. */
1271 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1275 double_unlock_balance(rq
, lowest_rq
);
1282 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1284 struct task_struct
*p
;
1286 if (!has_pushable_tasks(rq
))
1289 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1290 struct task_struct
, pushable_tasks
);
1292 BUG_ON(rq
->cpu
!= task_cpu(p
));
1293 BUG_ON(task_current(rq
, p
));
1294 BUG_ON(p
->rt
.nr_cpus_allowed
<= 1);
1296 BUG_ON(!p
->se
.on_rq
);
1297 BUG_ON(!rt_task(p
));
1303 * If the current CPU has more than one RT task, see if the non
1304 * running task can migrate over to a CPU that is running a task
1305 * of lesser priority.
1307 static int push_rt_task(struct rq
*rq
)
1309 struct task_struct
*next_task
;
1310 struct rq
*lowest_rq
;
1312 if (!rq
->rt
.overloaded
)
1315 next_task
= pick_next_pushable_task(rq
);
1320 if (unlikely(next_task
== rq
->curr
)) {
1326 * It's possible that the next_task slipped in of
1327 * higher priority than current. If that's the case
1328 * just reschedule current.
1330 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1331 resched_task(rq
->curr
);
1335 /* We might release rq lock */
1336 get_task_struct(next_task
);
1338 /* find_lock_lowest_rq locks the rq if found */
1339 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1341 struct task_struct
*task
;
1343 * find lock_lowest_rq releases rq->lock
1344 * so it is possible that next_task has migrated.
1346 * We need to make sure that the task is still on the same
1347 * run-queue and is also still the next task eligible for
1350 task
= pick_next_pushable_task(rq
);
1351 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1353 * If we get here, the task hasnt moved at all, but
1354 * it has failed to push. We will not try again,
1355 * since the other cpus will pull from us when they
1358 dequeue_pushable_task(rq
, next_task
);
1363 /* No more tasks, just exit */
1367 * Something has shifted, try again.
1369 put_task_struct(next_task
);
1374 deactivate_task(rq
, next_task
, 0);
1375 set_task_cpu(next_task
, lowest_rq
->cpu
);
1376 activate_task(lowest_rq
, next_task
, 0);
1378 resched_task(lowest_rq
->curr
);
1380 double_unlock_balance(rq
, lowest_rq
);
1383 put_task_struct(next_task
);
1388 static void push_rt_tasks(struct rq
*rq
)
1390 /* push_rt_task will return true if it moved an RT */
1391 while (push_rt_task(rq
))
1395 static int pull_rt_task(struct rq
*this_rq
)
1397 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1398 struct task_struct
*p
;
1401 if (likely(!rt_overloaded(this_rq
)))
1404 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
1405 if (this_cpu
== cpu
)
1408 src_rq
= cpu_rq(cpu
);
1411 * Don't bother taking the src_rq->lock if the next highest
1412 * task is known to be lower-priority than our current task.
1413 * This may look racy, but if this value is about to go
1414 * logically higher, the src_rq will push this task away.
1415 * And if its going logically lower, we do not care
1417 if (src_rq
->rt
.highest_prio
.next
>=
1418 this_rq
->rt
.highest_prio
.curr
)
1422 * We can potentially drop this_rq's lock in
1423 * double_lock_balance, and another CPU could
1426 double_lock_balance(this_rq
, src_rq
);
1429 * Are there still pullable RT tasks?
1431 if (src_rq
->rt
.rt_nr_running
<= 1)
1434 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
1437 * Do we have an RT task that preempts
1438 * the to-be-scheduled task?
1440 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
1441 WARN_ON(p
== src_rq
->curr
);
1442 WARN_ON(!p
->se
.on_rq
);
1445 * There's a chance that p is higher in priority
1446 * than what's currently running on its cpu.
1447 * This is just that p is wakeing up and hasn't
1448 * had a chance to schedule. We only pull
1449 * p if it is lower in priority than the
1450 * current task on the run queue
1452 if (p
->prio
< src_rq
->curr
->prio
)
1457 deactivate_task(src_rq
, p
, 0);
1458 set_task_cpu(p
, this_cpu
);
1459 activate_task(this_rq
, p
, 0);
1461 * We continue with the search, just in
1462 * case there's an even higher prio task
1463 * in another runqueue. (low likelyhood
1468 double_unlock_balance(this_rq
, src_rq
);
1474 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
1476 /* Try to pull RT tasks here if we lower this rq's prio */
1477 if (unlikely(rt_task(prev
)) && rq
->rt
.highest_prio
.curr
> prev
->prio
)
1481 static void post_schedule_rt(struct rq
*rq
)
1487 * If we are not running and we are not going to reschedule soon, we should
1488 * try to push tasks away now
1490 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
1492 if (!task_running(rq
, p
) &&
1493 !test_tsk_need_resched(rq
->curr
) &&
1494 has_pushable_tasks(rq
) &&
1495 p
->rt
.nr_cpus_allowed
> 1 &&
1496 rt_task(rq
->curr
) &&
1497 (rq
->curr
->rt
.nr_cpus_allowed
< 2 ||
1498 rq
->curr
->prio
< p
->prio
))
1502 static void set_cpus_allowed_rt(struct task_struct
*p
,
1503 const struct cpumask
*new_mask
)
1505 int weight
= cpumask_weight(new_mask
);
1507 BUG_ON(!rt_task(p
));
1510 * Update the migration status of the RQ if we have an RT task
1511 * which is running AND changing its weight value.
1513 if (p
->se
.on_rq
&& (weight
!= p
->rt
.nr_cpus_allowed
)) {
1514 struct rq
*rq
= task_rq(p
);
1516 if (!task_current(rq
, p
)) {
1518 * Make sure we dequeue this task from the pushable list
1519 * before going further. It will either remain off of
1520 * the list because we are no longer pushable, or it
1523 if (p
->rt
.nr_cpus_allowed
> 1)
1524 dequeue_pushable_task(rq
, p
);
1527 * Requeue if our weight is changing and still > 1
1530 enqueue_pushable_task(rq
, p
);
1534 if ((p
->rt
.nr_cpus_allowed
<= 1) && (weight
> 1)) {
1535 rq
->rt
.rt_nr_migratory
++;
1536 } else if ((p
->rt
.nr_cpus_allowed
> 1) && (weight
<= 1)) {
1537 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1538 rq
->rt
.rt_nr_migratory
--;
1541 update_rt_migration(&rq
->rt
);
1544 cpumask_copy(&p
->cpus_allowed
, new_mask
);
1545 p
->rt
.nr_cpus_allowed
= weight
;
1548 /* Assumes rq->lock is held */
1549 static void rq_online_rt(struct rq
*rq
)
1551 if (rq
->rt
.overloaded
)
1552 rt_set_overload(rq
);
1554 __enable_runtime(rq
);
1556 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1559 /* Assumes rq->lock is held */
1560 static void rq_offline_rt(struct rq
*rq
)
1562 if (rq
->rt
.overloaded
)
1563 rt_clear_overload(rq
);
1565 __disable_runtime(rq
);
1567 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1571 * When switch from the rt queue, we bring ourselves to a position
1572 * that we might want to pull RT tasks from other runqueues.
1574 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
,
1578 * If there are other RT tasks then we will reschedule
1579 * and the scheduling of the other RT tasks will handle
1580 * the balancing. But if we are the last RT task
1581 * we may need to handle the pulling of RT tasks
1584 if (!rq
->rt
.rt_nr_running
)
1588 static inline void init_sched_rt_class(void)
1592 for_each_possible_cpu(i
)
1593 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
1594 GFP_KERNEL
, cpu_to_node(i
));
1596 #endif /* CONFIG_SMP */
1599 * When switching a task to RT, we may overload the runqueue
1600 * with RT tasks. In this case we try to push them off to
1603 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
,
1606 int check_resched
= 1;
1609 * If we are already running, then there's nothing
1610 * that needs to be done. But if we are not running
1611 * we may need to preempt the current running task.
1612 * If that current running task is also an RT task
1613 * then see if we can move to another run queue.
1617 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1618 /* Don't resched if we changed runqueues */
1621 #endif /* CONFIG_SMP */
1622 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1623 resched_task(rq
->curr
);
1628 * Priority of the task has changed. This may cause
1629 * us to initiate a push or pull.
1631 static void prio_changed_rt(struct rq
*rq
, struct task_struct
*p
,
1632 int oldprio
, int running
)
1637 * If our priority decreases while running, we
1638 * may need to pull tasks to this runqueue.
1640 if (oldprio
< p
->prio
)
1643 * If there's a higher priority task waiting to run
1644 * then reschedule. Note, the above pull_rt_task
1645 * can release the rq lock and p could migrate.
1646 * Only reschedule if p is still on the same runqueue.
1648 if (p
->prio
> rq
->rt
.highest_prio
.curr
&& rq
->curr
== p
)
1651 /* For UP simply resched on drop of prio */
1652 if (oldprio
< p
->prio
)
1654 #endif /* CONFIG_SMP */
1657 * This task is not running, but if it is
1658 * greater than the current running task
1661 if (p
->prio
< rq
->curr
->prio
)
1662 resched_task(rq
->curr
);
1666 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1668 unsigned long soft
, hard
;
1673 /* max may change after cur was read, this will be fixed next tick */
1674 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
1675 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
1677 if (soft
!= RLIM_INFINITY
) {
1681 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1682 if (p
->rt
.timeout
> next
)
1683 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
1687 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1694 * RR tasks need a special form of timeslice management.
1695 * FIFO tasks have no timeslices.
1697 if (p
->policy
!= SCHED_RR
)
1700 if (--p
->rt
.time_slice
)
1703 p
->rt
.time_slice
= DEF_TIMESLICE
;
1706 * Requeue to the end of queue if we are not the only element
1709 if (p
->rt
.run_list
.prev
!= p
->rt
.run_list
.next
) {
1710 requeue_task_rt(rq
, p
, 0);
1711 set_tsk_need_resched(p
);
1715 static void set_curr_task_rt(struct rq
*rq
)
1717 struct task_struct
*p
= rq
->curr
;
1719 p
->se
.exec_start
= rq
->clock_task
;
1721 /* The running task is never eligible for pushing */
1722 dequeue_pushable_task(rq
, p
);
1725 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
1728 * Time slice is 0 for SCHED_FIFO tasks
1730 if (task
->policy
== SCHED_RR
)
1731 return DEF_TIMESLICE
;
1736 static const struct sched_class rt_sched_class
= {
1737 .next
= &fair_sched_class
,
1738 .enqueue_task
= enqueue_task_rt
,
1739 .dequeue_task
= dequeue_task_rt
,
1740 .yield_task
= yield_task_rt
,
1742 .check_preempt_curr
= check_preempt_curr_rt
,
1744 .pick_next_task
= pick_next_task_rt
,
1745 .put_prev_task
= put_prev_task_rt
,
1748 .select_task_rq
= select_task_rq_rt
,
1750 .set_cpus_allowed
= set_cpus_allowed_rt
,
1751 .rq_online
= rq_online_rt
,
1752 .rq_offline
= rq_offline_rt
,
1753 .pre_schedule
= pre_schedule_rt
,
1754 .post_schedule
= post_schedule_rt
,
1755 .task_woken
= task_woken_rt
,
1756 .switched_from
= switched_from_rt
,
1759 .set_curr_task
= set_curr_task_rt
,
1760 .task_tick
= task_tick_rt
,
1762 .get_rr_interval
= get_rr_interval_rt
,
1764 .prio_changed
= prio_changed_rt
,
1765 .switched_to
= switched_to_rt
,
1768 #ifdef CONFIG_SCHED_DEBUG
1769 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
1771 static void print_rt_stats(struct seq_file
*m
, int cpu
)
1773 struct rt_rq
*rt_rq
;
1776 for_each_leaf_rt_rq(rt_rq
, cpu_rq(cpu
))
1777 print_rt_rq(m
, cpu
, rt_rq
);
1780 #endif /* CONFIG_SCHED_DEBUG */