2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 * --> Develop a low-power-consumption strategy, and implement it.
33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
44 * 80x1-B2 errata PCI#11:
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/platform_device.h>
64 #include <linux/ata_platform.h>
65 #include <linux/mbus.h>
66 #include <linux/bitops.h>
67 #include <linux/gfp.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_cmnd.h>
70 #include <scsi/scsi_device.h>
71 #include <linux/libata.h>
73 #define DRV_NAME "sata_mv"
74 #define DRV_VERSION "1.28"
82 module_param(msi
, int, S_IRUGO
);
83 MODULE_PARM_DESC(msi
, "Enable use of PCI MSI (0=off, 1=on)");
86 static int irq_coalescing_io_count
;
87 module_param(irq_coalescing_io_count
, int, S_IRUGO
);
88 MODULE_PARM_DESC(irq_coalescing_io_count
,
89 "IRQ coalescing I/O count threshold (0..255)");
91 static int irq_coalescing_usecs
;
92 module_param(irq_coalescing_usecs
, int, S_IRUGO
);
93 MODULE_PARM_DESC(irq_coalescing_usecs
,
94 "IRQ coalescing time threshold in usecs");
97 /* BAR's are enumerated in terms of pci_resource_start() terms */
98 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
99 MV_IO_BAR
= 2, /* offset 0x18: IO space */
100 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
102 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
103 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
105 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
106 COAL_CLOCKS_PER_USEC
= 150, /* for calculating COAL_TIMEs */
107 MAX_COAL_TIME_THRESHOLD
= ((1 << 24) - 1), /* internal clocks count */
108 MAX_COAL_IO_COUNT
= 255, /* completed I/O count */
113 * Per-chip ("all ports") interrupt coalescing feature.
114 * This is only for GEN_II / GEN_IIE hardware.
116 * Coalescing defers the interrupt until either the IO_THRESHOLD
117 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
119 COAL_REG_BASE
= 0x18000,
120 IRQ_COAL_CAUSE
= (COAL_REG_BASE
+ 0x08),
121 ALL_PORTS_COAL_IRQ
= (1 << 4), /* all ports irq event */
123 IRQ_COAL_IO_THRESHOLD
= (COAL_REG_BASE
+ 0xcc),
124 IRQ_COAL_TIME_THRESHOLD
= (COAL_REG_BASE
+ 0xd0),
127 * Registers for the (unused here) transaction coalescing feature:
129 TRAN_COAL_CAUSE_LO
= (COAL_REG_BASE
+ 0x88),
130 TRAN_COAL_CAUSE_HI
= (COAL_REG_BASE
+ 0x8c),
132 SATAHC0_REG_BASE
= 0x20000,
134 GPIO_PORT_CTL
= 0x104f0,
137 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
138 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
139 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
140 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
143 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
145 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
146 * CRPB needs alignment on a 256B boundary. Size == 256B
147 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
149 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
150 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
152 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
154 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
155 MV_PORT_HC_SHIFT
= 2,
156 MV_PORTS_PER_HC
= (1 << MV_PORT_HC_SHIFT
), /* 4 */
157 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
158 MV_PORT_MASK
= (MV_PORTS_PER_HC
- 1), /* 3 */
161 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
163 MV_COMMON_FLAGS
= ATA_FLAG_SATA
| ATA_FLAG_PIO_POLLING
,
165 MV_GEN_I_FLAGS
= MV_COMMON_FLAGS
| ATA_FLAG_NO_ATAPI
,
167 MV_GEN_II_FLAGS
= MV_COMMON_FLAGS
| ATA_FLAG_NCQ
|
168 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
,
170 MV_GEN_IIE_FLAGS
= MV_GEN_II_FLAGS
| ATA_FLAG_AN
,
172 CRQB_FLAG_READ
= (1 << 0),
174 CRQB_IOID_SHIFT
= 6, /* CRQB Gen-II/IIE IO Id shift */
175 CRQB_PMP_SHIFT
= 12, /* CRQB Gen-II/IIE PMP shift */
176 CRQB_HOSTQ_SHIFT
= 17, /* CRQB Gen-II/IIE HostQueTag shift */
177 CRQB_CMD_ADDR_SHIFT
= 8,
178 CRQB_CMD_CS
= (0x2 << 11),
179 CRQB_CMD_LAST
= (1 << 15),
181 CRPB_FLAG_STATUS_SHIFT
= 8,
182 CRPB_IOID_SHIFT_6
= 5, /* CRPB Gen-II IO Id shift */
183 CRPB_IOID_SHIFT_7
= 7, /* CRPB Gen-IIE IO Id shift */
185 EPRD_FLAG_END_OF_TBL
= (1 << 31),
187 /* PCI interface registers */
189 MV_PCI_COMMAND
= 0xc00,
190 MV_PCI_COMMAND_MWRCOM
= (1 << 4), /* PCI Master Write Combining */
191 MV_PCI_COMMAND_MRDTRIG
= (1 << 7), /* PCI Master Read Trigger */
193 PCI_MAIN_CMD_STS
= 0xd30,
194 STOP_PCI_MASTER
= (1 << 2),
195 PCI_MASTER_EMPTY
= (1 << 3),
196 GLOB_SFT_RST
= (1 << 4),
199 MV_PCI_MODE_MASK
= 0x30,
201 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
202 MV_PCI_DISC_TIMER
= 0xd04,
203 MV_PCI_MSI_TRIGGER
= 0xc38,
204 MV_PCI_SERR_MASK
= 0xc28,
205 MV_PCI_XBAR_TMOUT
= 0x1d04,
206 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
207 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
208 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
209 MV_PCI_ERR_COMMAND
= 0x1d50,
211 PCI_IRQ_CAUSE
= 0x1d58,
212 PCI_IRQ_MASK
= 0x1d5c,
213 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
215 PCIE_IRQ_CAUSE
= 0x1900,
216 PCIE_IRQ_MASK
= 0x1910,
217 PCIE_UNMASK_ALL_IRQS
= 0x40a, /* assorted bits */
219 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
220 PCI_HC_MAIN_IRQ_CAUSE
= 0x1d60,
221 PCI_HC_MAIN_IRQ_MASK
= 0x1d64,
222 SOC_HC_MAIN_IRQ_CAUSE
= 0x20020,
223 SOC_HC_MAIN_IRQ_MASK
= 0x20024,
224 ERR_IRQ
= (1 << 0), /* shift by (2 * port #) */
225 DONE_IRQ
= (1 << 1), /* shift by (2 * port #) */
226 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
227 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
228 DONE_IRQ_0_3
= 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
229 DONE_IRQ_4_7
= (DONE_IRQ_0_3
<< HC_SHIFT
), /* 4,5,6,7 */
231 TRAN_COAL_LO_DONE
= (1 << 19), /* transaction coalescing */
232 TRAN_COAL_HI_DONE
= (1 << 20), /* transaction coalescing */
233 PORTS_0_3_COAL_DONE
= (1 << 8), /* HC0 IRQ coalescing */
234 PORTS_4_7_COAL_DONE
= (1 << 17), /* HC1 IRQ coalescing */
235 ALL_PORTS_COAL_DONE
= (1 << 21), /* GEN_II(E) IRQ coalescing */
236 GPIO_INT
= (1 << 22),
237 SELF_INT
= (1 << 23),
238 TWSI_INT
= (1 << 24),
239 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
240 HC_MAIN_RSVD_5
= (0x1fff << 19), /* bits 31-19 */
241 HC_MAIN_RSVD_SOC
= (0x3fffffb << 6), /* bits 31-9, 7-6 */
243 /* SATAHC registers */
247 DMA_IRQ
= (1 << 0), /* shift by port # */
248 HC_COAL_IRQ
= (1 << 4), /* IRQ coalescing */
249 DEV_IRQ
= (1 << 8), /* shift by port # */
252 * Per-HC (Host-Controller) interrupt coalescing feature.
253 * This is present on all chip generations.
255 * Coalescing defers the interrupt until either the IO_THRESHOLD
256 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
258 HC_IRQ_COAL_IO_THRESHOLD
= 0x000c,
259 HC_IRQ_COAL_TIME_THRESHOLD
= 0x0010,
262 SOC_LED_CTRL_BLINK
= (1 << 0), /* Active LED blink */
263 SOC_LED_CTRL_ACT_PRESENCE
= (1 << 2), /* Multiplex dev presence */
264 /* with dev activity LED */
266 /* Shadow block registers */
268 SHD_CTL_AST
= 0x20, /* ofs from SHD_BLK */
271 SATA_STATUS
= 0x300, /* ctrl, err regs follow status */
273 FIS_IRQ_CAUSE
= 0x364,
274 FIS_IRQ_CAUSE_AN
= (1 << 9), /* async notification */
276 LTMODE
= 0x30c, /* requires read-after-write */
277 LTMODE_BIT8
= (1 << 8), /* unknown, but necessary */
282 PHY_MODE4
= 0x314, /* requires read-after-write */
283 PHY_MODE4_CFG_MASK
= 0x00000003, /* phy internal config field */
284 PHY_MODE4_CFG_VALUE
= 0x00000001, /* phy internal config field */
285 PHY_MODE4_RSVD_ZEROS
= 0x5de3fffa, /* Gen2e always write zeros */
286 PHY_MODE4_RSVD_ONES
= 0x00000005, /* Gen2e always write ones */
289 SATA_TESTCTL
= 0x348,
291 VENDOR_UNIQUE_FIS
= 0x35c,
294 FISCFG_WAIT_DEV_ERR
= (1 << 8), /* wait for host on DevErr */
295 FISCFG_SINGLE_SYNC
= (1 << 16), /* SYNC on DMA activation */
297 PHY_MODE9_GEN2
= 0x398,
298 PHY_MODE9_GEN1
= 0x39c,
299 PHYCFG_OFS
= 0x3a0, /* only in 65n devices */
306 MV_M2_PREAMP_MASK
= 0x7e0,
310 EDMA_CFG_Q_DEPTH
= 0x1f, /* max device queue depth */
311 EDMA_CFG_NCQ
= (1 << 5), /* for R/W FPDMA queued */
312 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
313 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
314 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
315 EDMA_CFG_EDMA_FBS
= (1 << 16), /* EDMA FIS-Based Switching */
316 EDMA_CFG_FBS
= (1 << 26), /* FIS-Based Switching */
318 EDMA_ERR_IRQ_CAUSE
= 0x8,
319 EDMA_ERR_IRQ_MASK
= 0xc,
320 EDMA_ERR_D_PAR
= (1 << 0), /* UDMA data parity err */
321 EDMA_ERR_PRD_PAR
= (1 << 1), /* UDMA PRD parity err */
322 EDMA_ERR_DEV
= (1 << 2), /* device error */
323 EDMA_ERR_DEV_DCON
= (1 << 3), /* device disconnect */
324 EDMA_ERR_DEV_CON
= (1 << 4), /* device connected */
325 EDMA_ERR_SERR
= (1 << 5), /* SError bits [WBDST] raised */
326 EDMA_ERR_SELF_DIS
= (1 << 7), /* Gen II/IIE self-disable */
327 EDMA_ERR_SELF_DIS_5
= (1 << 8), /* Gen I self-disable */
328 EDMA_ERR_BIST_ASYNC
= (1 << 8), /* BIST FIS or Async Notify */
329 EDMA_ERR_TRANS_IRQ_7
= (1 << 8), /* Gen IIE transprt layer irq */
330 EDMA_ERR_CRQB_PAR
= (1 << 9), /* CRQB parity error */
331 EDMA_ERR_CRPB_PAR
= (1 << 10), /* CRPB parity error */
332 EDMA_ERR_INTRL_PAR
= (1 << 11), /* internal parity error */
333 EDMA_ERR_IORDY
= (1 << 12), /* IORdy timeout */
335 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13), /* link ctrl rx error */
336 EDMA_ERR_LNK_CTRL_RX_0
= (1 << 13), /* transient: CRC err */
337 EDMA_ERR_LNK_CTRL_RX_1
= (1 << 14), /* transient: FIFO err */
338 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15), /* fatal: caught SYNC */
339 EDMA_ERR_LNK_CTRL_RX_3
= (1 << 16), /* transient: FIS rx err */
341 EDMA_ERR_LNK_DATA_RX
= (0xf << 17), /* link data rx error */
343 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21), /* link ctrl tx error */
344 EDMA_ERR_LNK_CTRL_TX_0
= (1 << 21), /* transient: CRC err */
345 EDMA_ERR_LNK_CTRL_TX_1
= (1 << 22), /* transient: FIFO err */
346 EDMA_ERR_LNK_CTRL_TX_2
= (1 << 23), /* transient: caught SYNC */
347 EDMA_ERR_LNK_CTRL_TX_3
= (1 << 24), /* transient: caught DMAT */
348 EDMA_ERR_LNK_CTRL_TX_4
= (1 << 25), /* transient: FIS collision */
350 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26), /* link data tx error */
352 EDMA_ERR_TRANS_PROTO
= (1 << 31), /* transport protocol error */
353 EDMA_ERR_OVERRUN_5
= (1 << 5),
354 EDMA_ERR_UNDERRUN_5
= (1 << 6),
356 EDMA_ERR_IRQ_TRANSIENT
= EDMA_ERR_LNK_CTRL_RX_0
|
357 EDMA_ERR_LNK_CTRL_RX_1
|
358 EDMA_ERR_LNK_CTRL_RX_3
|
359 EDMA_ERR_LNK_CTRL_TX
,
361 EDMA_EH_FREEZE
= EDMA_ERR_D_PAR
|
371 EDMA_ERR_LNK_CTRL_RX_2
|
372 EDMA_ERR_LNK_DATA_RX
|
373 EDMA_ERR_LNK_DATA_TX
|
374 EDMA_ERR_TRANS_PROTO
,
376 EDMA_EH_FREEZE_5
= EDMA_ERR_D_PAR
|
381 EDMA_ERR_UNDERRUN_5
|
382 EDMA_ERR_SELF_DIS_5
|
388 EDMA_REQ_Q_BASE_HI
= 0x10,
389 EDMA_REQ_Q_IN_PTR
= 0x14, /* also contains BASE_LO */
391 EDMA_REQ_Q_OUT_PTR
= 0x18,
392 EDMA_REQ_Q_PTR_SHIFT
= 5,
394 EDMA_RSP_Q_BASE_HI
= 0x1c,
395 EDMA_RSP_Q_IN_PTR
= 0x20,
396 EDMA_RSP_Q_OUT_PTR
= 0x24, /* also contains BASE_LO */
397 EDMA_RSP_Q_PTR_SHIFT
= 3,
399 EDMA_CMD
= 0x28, /* EDMA command register */
400 EDMA_EN
= (1 << 0), /* enable EDMA */
401 EDMA_DS
= (1 << 1), /* disable EDMA; self-negated */
402 EDMA_RESET
= (1 << 2), /* reset eng/trans/link/phy */
404 EDMA_STATUS
= 0x30, /* EDMA engine status */
405 EDMA_STATUS_CACHE_EMPTY
= (1 << 6), /* GenIIe command cache empty */
406 EDMA_STATUS_IDLE
= (1 << 7), /* GenIIe EDMA enabled/idle */
408 EDMA_IORDY_TMOUT
= 0x34,
411 EDMA_HALTCOND
= 0x60, /* GenIIe halt conditions */
412 EDMA_UNKNOWN_RSVD
= 0x6C, /* GenIIe unknown/reserved */
414 BMDMA_CMD
= 0x224, /* bmdma command register */
415 BMDMA_STATUS
= 0x228, /* bmdma status register */
416 BMDMA_PRD_LOW
= 0x22c, /* bmdma PRD addr 31:0 */
417 BMDMA_PRD_HIGH
= 0x230, /* bmdma PRD addr 63:32 */
419 /* Host private flags (hp_flags) */
420 MV_HP_FLAG_MSI
= (1 << 0),
421 MV_HP_ERRATA_50XXB0
= (1 << 1),
422 MV_HP_ERRATA_50XXB2
= (1 << 2),
423 MV_HP_ERRATA_60X1B2
= (1 << 3),
424 MV_HP_ERRATA_60X1C0
= (1 << 4),
425 MV_HP_GEN_I
= (1 << 6), /* Generation I: 50xx */
426 MV_HP_GEN_II
= (1 << 7), /* Generation II: 60xx */
427 MV_HP_GEN_IIE
= (1 << 8), /* Generation IIE: 6042/7042 */
428 MV_HP_PCIE
= (1 << 9), /* PCIe bus/regs: 7042 */
429 MV_HP_CUT_THROUGH
= (1 << 10), /* can use EDMA cut-through */
430 MV_HP_FLAG_SOC
= (1 << 11), /* SystemOnChip, no PCI */
431 MV_HP_QUIRK_LED_BLINK_EN
= (1 << 12), /* is led blinking enabled? */
433 /* Port private flags (pp_flags) */
434 MV_PP_FLAG_EDMA_EN
= (1 << 0), /* is EDMA engine enabled? */
435 MV_PP_FLAG_NCQ_EN
= (1 << 1), /* is EDMA set up for NCQ? */
436 MV_PP_FLAG_FBS_EN
= (1 << 2), /* is EDMA set up for FBS? */
437 MV_PP_FLAG_DELAYED_EH
= (1 << 3), /* delayed dev err handling */
438 MV_PP_FLAG_FAKE_ATA_BUSY
= (1 << 4), /* ignore initial ATA_DRDY */
441 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
442 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
443 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
444 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
445 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
447 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
448 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
451 /* DMA boundary 0xffff is required by the s/g splitting
452 * we need on /length/ in mv_fill-sg().
454 MV_DMA_BOUNDARY
= 0xffffU
,
456 /* mask of register bits containing lower 32 bits
457 * of EDMA request queue DMA address
459 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
461 /* ditto, for response queue */
462 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
476 /* Command ReQuest Block: 32B */
492 /* Command ResPonse Block: 8B */
499 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
508 * We keep a local cache of a few frequently accessed port
509 * registers here, to avoid having to read them (very slow)
510 * when switching between EDMA and non-EDMA modes.
512 struct mv_cached_regs
{
519 struct mv_port_priv
{
520 struct mv_crqb
*crqb
;
522 struct mv_crpb
*crpb
;
524 struct mv_sg
*sg_tbl
[MV_MAX_Q_DEPTH
];
525 dma_addr_t sg_tbl_dma
[MV_MAX_Q_DEPTH
];
527 unsigned int req_idx
;
528 unsigned int resp_idx
;
531 struct mv_cached_regs cached
;
532 unsigned int delayed_eh_pmp_map
;
535 struct mv_port_signal
{
540 struct mv_host_priv
{
542 unsigned int board_idx
;
544 struct mv_port_signal signal
[8];
545 const struct mv_hw_ops
*ops
;
548 void __iomem
*main_irq_cause_addr
;
549 void __iomem
*main_irq_mask_addr
;
550 u32 irq_cause_offset
;
554 #if defined(CONFIG_HAVE_CLK)
558 * These consistent DMA memory pools give us guaranteed
559 * alignment for hardware-accessed data structures,
560 * and less memory waste in accomplishing the alignment.
562 struct dma_pool
*crqb_pool
;
563 struct dma_pool
*crpb_pool
;
564 struct dma_pool
*sg_tbl_pool
;
568 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
570 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
571 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
573 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
575 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
576 void (*reset_bus
)(struct ata_host
*host
, void __iomem
*mmio
);
579 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
580 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
581 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
582 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
583 static int mv_port_start(struct ata_port
*ap
);
584 static void mv_port_stop(struct ata_port
*ap
);
585 static int mv_qc_defer(struct ata_queued_cmd
*qc
);
586 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
587 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
);
588 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
);
589 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
590 unsigned long deadline
);
591 static void mv_eh_freeze(struct ata_port
*ap
);
592 static void mv_eh_thaw(struct ata_port
*ap
);
593 static void mv6_dev_config(struct ata_device
*dev
);
595 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
597 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
598 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
600 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
602 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
603 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
605 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
607 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
608 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
610 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
612 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
613 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
615 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
617 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
618 void __iomem
*mmio
, unsigned int n_hc
);
619 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
621 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
622 static void mv_soc_65n_phy_errata(struct mv_host_priv
*hpriv
,
623 void __iomem
*mmio
, unsigned int port
);
624 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
);
625 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
626 unsigned int port_no
);
627 static int mv_stop_edma(struct ata_port
*ap
);
628 static int mv_stop_edma_engine(void __iomem
*port_mmio
);
629 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
, int want_edma
);
631 static void mv_pmp_select(struct ata_port
*ap
, int pmp
);
632 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
633 unsigned long deadline
);
634 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
635 unsigned long deadline
);
636 static void mv_pmp_error_handler(struct ata_port
*ap
);
637 static void mv_process_crpb_entries(struct ata_port
*ap
,
638 struct mv_port_priv
*pp
);
640 static void mv_sff_irq_clear(struct ata_port
*ap
);
641 static int mv_check_atapi_dma(struct ata_queued_cmd
*qc
);
642 static void mv_bmdma_setup(struct ata_queued_cmd
*qc
);
643 static void mv_bmdma_start(struct ata_queued_cmd
*qc
);
644 static void mv_bmdma_stop(struct ata_queued_cmd
*qc
);
645 static u8
mv_bmdma_status(struct ata_port
*ap
);
646 static u8
mv_sff_check_status(struct ata_port
*ap
);
648 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
649 * because we have to allow room for worst case splitting of
650 * PRDs for 64K boundaries in mv_fill_sg().
652 static struct scsi_host_template mv5_sht
= {
653 ATA_BASE_SHT(DRV_NAME
),
654 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
655 .dma_boundary
= MV_DMA_BOUNDARY
,
658 static struct scsi_host_template mv6_sht
= {
659 ATA_NCQ_SHT(DRV_NAME
),
660 .can_queue
= MV_MAX_Q_DEPTH
- 1,
661 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
662 .dma_boundary
= MV_DMA_BOUNDARY
,
665 static struct ata_port_operations mv5_ops
= {
666 .inherits
= &ata_sff_port_ops
,
668 .lost_interrupt
= ATA_OP_NULL
,
670 .qc_defer
= mv_qc_defer
,
671 .qc_prep
= mv_qc_prep
,
672 .qc_issue
= mv_qc_issue
,
674 .freeze
= mv_eh_freeze
,
676 .hardreset
= mv_hardreset
,
678 .scr_read
= mv5_scr_read
,
679 .scr_write
= mv5_scr_write
,
681 .port_start
= mv_port_start
,
682 .port_stop
= mv_port_stop
,
685 static struct ata_port_operations mv6_ops
= {
686 .inherits
= &ata_bmdma_port_ops
,
688 .lost_interrupt
= ATA_OP_NULL
,
690 .qc_defer
= mv_qc_defer
,
691 .qc_prep
= mv_qc_prep
,
692 .qc_issue
= mv_qc_issue
,
694 .dev_config
= mv6_dev_config
,
696 .freeze
= mv_eh_freeze
,
698 .hardreset
= mv_hardreset
,
699 .softreset
= mv_softreset
,
700 .pmp_hardreset
= mv_pmp_hardreset
,
701 .pmp_softreset
= mv_softreset
,
702 .error_handler
= mv_pmp_error_handler
,
704 .scr_read
= mv_scr_read
,
705 .scr_write
= mv_scr_write
,
707 .sff_check_status
= mv_sff_check_status
,
708 .sff_irq_clear
= mv_sff_irq_clear
,
709 .check_atapi_dma
= mv_check_atapi_dma
,
710 .bmdma_setup
= mv_bmdma_setup
,
711 .bmdma_start
= mv_bmdma_start
,
712 .bmdma_stop
= mv_bmdma_stop
,
713 .bmdma_status
= mv_bmdma_status
,
715 .port_start
= mv_port_start
,
716 .port_stop
= mv_port_stop
,
719 static struct ata_port_operations mv_iie_ops
= {
720 .inherits
= &mv6_ops
,
721 .dev_config
= ATA_OP_NULL
,
722 .qc_prep
= mv_qc_prep_iie
,
725 static const struct ata_port_info mv_port_info
[] = {
727 .flags
= MV_GEN_I_FLAGS
,
728 .pio_mask
= ATA_PIO4
,
729 .udma_mask
= ATA_UDMA6
,
730 .port_ops
= &mv5_ops
,
733 .flags
= MV_GEN_I_FLAGS
| MV_FLAG_DUAL_HC
,
734 .pio_mask
= ATA_PIO4
,
735 .udma_mask
= ATA_UDMA6
,
736 .port_ops
= &mv5_ops
,
739 .flags
= MV_GEN_I_FLAGS
| MV_FLAG_DUAL_HC
,
740 .pio_mask
= ATA_PIO4
,
741 .udma_mask
= ATA_UDMA6
,
742 .port_ops
= &mv5_ops
,
745 .flags
= MV_GEN_II_FLAGS
,
746 .pio_mask
= ATA_PIO4
,
747 .udma_mask
= ATA_UDMA6
,
748 .port_ops
= &mv6_ops
,
751 .flags
= MV_GEN_II_FLAGS
| MV_FLAG_DUAL_HC
,
752 .pio_mask
= ATA_PIO4
,
753 .udma_mask
= ATA_UDMA6
,
754 .port_ops
= &mv6_ops
,
757 .flags
= MV_GEN_IIE_FLAGS
,
758 .pio_mask
= ATA_PIO4
,
759 .udma_mask
= ATA_UDMA6
,
760 .port_ops
= &mv_iie_ops
,
763 .flags
= MV_GEN_IIE_FLAGS
,
764 .pio_mask
= ATA_PIO4
,
765 .udma_mask
= ATA_UDMA6
,
766 .port_ops
= &mv_iie_ops
,
769 .flags
= MV_GEN_IIE_FLAGS
,
770 .pio_mask
= ATA_PIO4
,
771 .udma_mask
= ATA_UDMA6
,
772 .port_ops
= &mv_iie_ops
,
776 static const struct pci_device_id mv_pci_tbl
[] = {
777 { PCI_VDEVICE(MARVELL
, 0x5040), chip_504x
},
778 { PCI_VDEVICE(MARVELL
, 0x5041), chip_504x
},
779 { PCI_VDEVICE(MARVELL
, 0x5080), chip_5080
},
780 { PCI_VDEVICE(MARVELL
, 0x5081), chip_508x
},
781 /* RocketRAID 1720/174x have different identifiers */
782 { PCI_VDEVICE(TTI
, 0x1720), chip_6042
},
783 { PCI_VDEVICE(TTI
, 0x1740), chip_6042
},
784 { PCI_VDEVICE(TTI
, 0x1742), chip_6042
},
786 { PCI_VDEVICE(MARVELL
, 0x6040), chip_604x
},
787 { PCI_VDEVICE(MARVELL
, 0x6041), chip_604x
},
788 { PCI_VDEVICE(MARVELL
, 0x6042), chip_6042
},
789 { PCI_VDEVICE(MARVELL
, 0x6080), chip_608x
},
790 { PCI_VDEVICE(MARVELL
, 0x6081), chip_608x
},
792 { PCI_VDEVICE(ADAPTEC2
, 0x0241), chip_604x
},
795 { PCI_VDEVICE(ADAPTEC2
, 0x0243), chip_7042
},
797 /* Marvell 7042 support */
798 { PCI_VDEVICE(MARVELL
, 0x7042), chip_7042
},
800 /* Highpoint RocketRAID PCIe series */
801 { PCI_VDEVICE(TTI
, 0x2300), chip_7042
},
802 { PCI_VDEVICE(TTI
, 0x2310), chip_7042
},
804 { } /* terminate list */
807 static const struct mv_hw_ops mv5xxx_ops
= {
808 .phy_errata
= mv5_phy_errata
,
809 .enable_leds
= mv5_enable_leds
,
810 .read_preamp
= mv5_read_preamp
,
811 .reset_hc
= mv5_reset_hc
,
812 .reset_flash
= mv5_reset_flash
,
813 .reset_bus
= mv5_reset_bus
,
816 static const struct mv_hw_ops mv6xxx_ops
= {
817 .phy_errata
= mv6_phy_errata
,
818 .enable_leds
= mv6_enable_leds
,
819 .read_preamp
= mv6_read_preamp
,
820 .reset_hc
= mv6_reset_hc
,
821 .reset_flash
= mv6_reset_flash
,
822 .reset_bus
= mv_reset_pci_bus
,
825 static const struct mv_hw_ops mv_soc_ops
= {
826 .phy_errata
= mv6_phy_errata
,
827 .enable_leds
= mv_soc_enable_leds
,
828 .read_preamp
= mv_soc_read_preamp
,
829 .reset_hc
= mv_soc_reset_hc
,
830 .reset_flash
= mv_soc_reset_flash
,
831 .reset_bus
= mv_soc_reset_bus
,
834 static const struct mv_hw_ops mv_soc_65n_ops
= {
835 .phy_errata
= mv_soc_65n_phy_errata
,
836 .enable_leds
= mv_soc_enable_leds
,
837 .reset_hc
= mv_soc_reset_hc
,
838 .reset_flash
= mv_soc_reset_flash
,
839 .reset_bus
= mv_soc_reset_bus
,
846 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
849 (void) readl(addr
); /* flush to avoid PCI posted write */
852 static inline unsigned int mv_hc_from_port(unsigned int port
)
854 return port
>> MV_PORT_HC_SHIFT
;
857 static inline unsigned int mv_hardport_from_port(unsigned int port
)
859 return port
& MV_PORT_MASK
;
863 * Consolidate some rather tricky bit shift calculations.
864 * This is hot-path stuff, so not a function.
865 * Simple code, with two return values, so macro rather than inline.
867 * port is the sole input, in range 0..7.
868 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
869 * hardport is the other output, in range 0..3.
871 * Note that port and hardport may be the same variable in some cases.
873 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
875 shift = mv_hc_from_port(port) * HC_SHIFT; \
876 hardport = mv_hardport_from_port(port); \
877 shift += hardport * 2; \
880 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
882 return (base
+ SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
885 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
888 return mv_hc_base(base
, mv_hc_from_port(port
));
891 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
893 return mv_hc_base_from_port(base
, port
) +
894 MV_SATAHC_ARBTR_REG_SZ
+
895 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
898 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
900 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
901 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
903 return hc_mmio
+ ofs
;
906 static inline void __iomem
*mv_host_base(struct ata_host
*host
)
908 struct mv_host_priv
*hpriv
= host
->private_data
;
912 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
914 return mv_port_base(mv_host_base(ap
->host
), ap
->port_no
);
917 static inline int mv_get_hc_count(unsigned long port_flags
)
919 return ((port_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
923 * mv_save_cached_regs - (re-)initialize cached port registers
924 * @ap: the port whose registers we are caching
926 * Initialize the local cache of port registers,
927 * so that reading them over and over again can
928 * be avoided on the hotter paths of this driver.
929 * This saves a few microseconds each time we switch
930 * to/from EDMA mode to perform (eg.) a drive cache flush.
932 static void mv_save_cached_regs(struct ata_port
*ap
)
934 void __iomem
*port_mmio
= mv_ap_base(ap
);
935 struct mv_port_priv
*pp
= ap
->private_data
;
937 pp
->cached
.fiscfg
= readl(port_mmio
+ FISCFG
);
938 pp
->cached
.ltmode
= readl(port_mmio
+ LTMODE
);
939 pp
->cached
.haltcond
= readl(port_mmio
+ EDMA_HALTCOND
);
940 pp
->cached
.unknown_rsvd
= readl(port_mmio
+ EDMA_UNKNOWN_RSVD
);
944 * mv_write_cached_reg - write to a cached port register
945 * @addr: hardware address of the register
946 * @old: pointer to cached value of the register
947 * @new: new value for the register
949 * Write a new value to a cached register,
950 * but only if the value is different from before.
952 static inline void mv_write_cached_reg(void __iomem
*addr
, u32
*old
, u32
new)
958 * Workaround for 88SX60x1-B2 FEr SATA#13:
959 * Read-after-write is needed to prevent generating 64-bit
960 * write cycles on the PCI bus for SATA interface registers
961 * at offsets ending in 0x4 or 0xc.
963 * Looks like a lot of fuss, but it avoids an unnecessary
964 * +1 usec read-after-write delay for unaffected registers.
966 laddr
= (long)addr
& 0xffff;
967 if (laddr
>= 0x300 && laddr
<= 0x33c) {
969 if (laddr
== 0x4 || laddr
== 0xc) {
970 writelfl(new, addr
); /* read after write */
974 writel(new, addr
); /* unaffected by the errata */
978 static void mv_set_edma_ptrs(void __iomem
*port_mmio
,
979 struct mv_host_priv
*hpriv
,
980 struct mv_port_priv
*pp
)
985 * initialize request queue
987 pp
->req_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
988 index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
990 WARN_ON(pp
->crqb_dma
& 0x3ff);
991 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI
);
992 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | index
,
993 port_mmio
+ EDMA_REQ_Q_IN_PTR
);
994 writelfl(index
, port_mmio
+ EDMA_REQ_Q_OUT_PTR
);
997 * initialize response queue
999 pp
->resp_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
1000 index
= pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
;
1002 WARN_ON(pp
->crpb_dma
& 0xff);
1003 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI
);
1004 writelfl(index
, port_mmio
+ EDMA_RSP_Q_IN_PTR
);
1005 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) | index
,
1006 port_mmio
+ EDMA_RSP_Q_OUT_PTR
);
1009 static void mv_write_main_irq_mask(u32 mask
, struct mv_host_priv
*hpriv
)
1012 * When writing to the main_irq_mask in hardware,
1013 * we must ensure exclusivity between the interrupt coalescing bits
1014 * and the corresponding individual port DONE_IRQ bits.
1016 * Note that this register is really an "IRQ enable" register,
1017 * not an "IRQ mask" register as Marvell's naming might suggest.
1019 if (mask
& (ALL_PORTS_COAL_DONE
| PORTS_0_3_COAL_DONE
))
1020 mask
&= ~DONE_IRQ_0_3
;
1021 if (mask
& (ALL_PORTS_COAL_DONE
| PORTS_4_7_COAL_DONE
))
1022 mask
&= ~DONE_IRQ_4_7
;
1023 writelfl(mask
, hpriv
->main_irq_mask_addr
);
1026 static void mv_set_main_irq_mask(struct ata_host
*host
,
1027 u32 disable_bits
, u32 enable_bits
)
1029 struct mv_host_priv
*hpriv
= host
->private_data
;
1030 u32 old_mask
, new_mask
;
1032 old_mask
= hpriv
->main_irq_mask
;
1033 new_mask
= (old_mask
& ~disable_bits
) | enable_bits
;
1034 if (new_mask
!= old_mask
) {
1035 hpriv
->main_irq_mask
= new_mask
;
1036 mv_write_main_irq_mask(new_mask
, hpriv
);
1040 static void mv_enable_port_irqs(struct ata_port
*ap
,
1041 unsigned int port_bits
)
1043 unsigned int shift
, hardport
, port
= ap
->port_no
;
1044 u32 disable_bits
, enable_bits
;
1046 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
1048 disable_bits
= (DONE_IRQ
| ERR_IRQ
) << shift
;
1049 enable_bits
= port_bits
<< shift
;
1050 mv_set_main_irq_mask(ap
->host
, disable_bits
, enable_bits
);
1053 static void mv_clear_and_enable_port_irqs(struct ata_port
*ap
,
1054 void __iomem
*port_mmio
,
1055 unsigned int port_irqs
)
1057 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1058 int hardport
= mv_hardport_from_port(ap
->port_no
);
1059 void __iomem
*hc_mmio
= mv_hc_base_from_port(
1060 mv_host_base(ap
->host
), ap
->port_no
);
1063 /* clear EDMA event indicators, if any */
1064 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
1066 /* clear pending irq events */
1067 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
1068 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE
);
1070 /* clear FIS IRQ Cause */
1071 if (IS_GEN_IIE(hpriv
))
1072 writelfl(0, port_mmio
+ FIS_IRQ_CAUSE
);
1074 mv_enable_port_irqs(ap
, port_irqs
);
1077 static void mv_set_irq_coalescing(struct ata_host
*host
,
1078 unsigned int count
, unsigned int usecs
)
1080 struct mv_host_priv
*hpriv
= host
->private_data
;
1081 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
1082 u32 coal_enable
= 0;
1083 unsigned long flags
;
1084 unsigned int clks
, is_dual_hc
= hpriv
->n_ports
> MV_PORTS_PER_HC
;
1085 const u32 coal_disable
= PORTS_0_3_COAL_DONE
| PORTS_4_7_COAL_DONE
|
1086 ALL_PORTS_COAL_DONE
;
1088 /* Disable IRQ coalescing if either threshold is zero */
1089 if (!usecs
|| !count
) {
1092 /* Respect maximum limits of the hardware */
1093 clks
= usecs
* COAL_CLOCKS_PER_USEC
;
1094 if (clks
> MAX_COAL_TIME_THRESHOLD
)
1095 clks
= MAX_COAL_TIME_THRESHOLD
;
1096 if (count
> MAX_COAL_IO_COUNT
)
1097 count
= MAX_COAL_IO_COUNT
;
1100 spin_lock_irqsave(&host
->lock
, flags
);
1101 mv_set_main_irq_mask(host
, coal_disable
, 0);
1103 if (is_dual_hc
&& !IS_GEN_I(hpriv
)) {
1105 * GEN_II/GEN_IIE with dual host controllers:
1106 * one set of global thresholds for the entire chip.
1108 writel(clks
, mmio
+ IRQ_COAL_TIME_THRESHOLD
);
1109 writel(count
, mmio
+ IRQ_COAL_IO_THRESHOLD
);
1110 /* clear leftover coal IRQ bit */
1111 writel(~ALL_PORTS_COAL_IRQ
, mmio
+ IRQ_COAL_CAUSE
);
1113 coal_enable
= ALL_PORTS_COAL_DONE
;
1114 clks
= count
= 0; /* force clearing of regular regs below */
1118 * All chips: independent thresholds for each HC on the chip.
1120 hc_mmio
= mv_hc_base_from_port(mmio
, 0);
1121 writel(clks
, hc_mmio
+ HC_IRQ_COAL_TIME_THRESHOLD
);
1122 writel(count
, hc_mmio
+ HC_IRQ_COAL_IO_THRESHOLD
);
1123 writel(~HC_COAL_IRQ
, hc_mmio
+ HC_IRQ_CAUSE
);
1125 coal_enable
|= PORTS_0_3_COAL_DONE
;
1127 hc_mmio
= mv_hc_base_from_port(mmio
, MV_PORTS_PER_HC
);
1128 writel(clks
, hc_mmio
+ HC_IRQ_COAL_TIME_THRESHOLD
);
1129 writel(count
, hc_mmio
+ HC_IRQ_COAL_IO_THRESHOLD
);
1130 writel(~HC_COAL_IRQ
, hc_mmio
+ HC_IRQ_CAUSE
);
1132 coal_enable
|= PORTS_4_7_COAL_DONE
;
1135 mv_set_main_irq_mask(host
, 0, coal_enable
);
1136 spin_unlock_irqrestore(&host
->lock
, flags
);
1140 * mv_start_edma - Enable eDMA engine
1141 * @base: port base address
1142 * @pp: port private data
1144 * Verify the local cache of the eDMA state is accurate with a
1148 * Inherited from caller.
1150 static void mv_start_edma(struct ata_port
*ap
, void __iomem
*port_mmio
,
1151 struct mv_port_priv
*pp
, u8 protocol
)
1153 int want_ncq
= (protocol
== ATA_PROT_NCQ
);
1155 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
1156 int using_ncq
= ((pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) != 0);
1157 if (want_ncq
!= using_ncq
)
1160 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
)) {
1161 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1163 mv_edma_cfg(ap
, want_ncq
, 1);
1165 mv_set_edma_ptrs(port_mmio
, hpriv
, pp
);
1166 mv_clear_and_enable_port_irqs(ap
, port_mmio
, DONE_IRQ
|ERR_IRQ
);
1168 writelfl(EDMA_EN
, port_mmio
+ EDMA_CMD
);
1169 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
1173 static void mv_wait_for_edma_empty_idle(struct ata_port
*ap
)
1175 void __iomem
*port_mmio
= mv_ap_base(ap
);
1176 const u32 empty_idle
= (EDMA_STATUS_CACHE_EMPTY
| EDMA_STATUS_IDLE
);
1177 const int per_loop
= 5, timeout
= (15 * 1000 / per_loop
);
1181 * Wait for the EDMA engine to finish transactions in progress.
1182 * No idea what a good "timeout" value might be, but measurements
1183 * indicate that it often requires hundreds of microseconds
1184 * with two drives in-use. So we use the 15msec value above
1185 * as a rough guess at what even more drives might require.
1187 for (i
= 0; i
< timeout
; ++i
) {
1188 u32 edma_stat
= readl(port_mmio
+ EDMA_STATUS
);
1189 if ((edma_stat
& empty_idle
) == empty_idle
)
1193 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1197 * mv_stop_edma_engine - Disable eDMA engine
1198 * @port_mmio: io base address
1201 * Inherited from caller.
1203 static int mv_stop_edma_engine(void __iomem
*port_mmio
)
1207 /* Disable eDMA. The disable bit auto clears. */
1208 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD
);
1210 /* Wait for the chip to confirm eDMA is off. */
1211 for (i
= 10000; i
> 0; i
--) {
1212 u32 reg
= readl(port_mmio
+ EDMA_CMD
);
1213 if (!(reg
& EDMA_EN
))
1220 static int mv_stop_edma(struct ata_port
*ap
)
1222 void __iomem
*port_mmio
= mv_ap_base(ap
);
1223 struct mv_port_priv
*pp
= ap
->private_data
;
1226 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
1228 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1229 mv_wait_for_edma_empty_idle(ap
);
1230 if (mv_stop_edma_engine(port_mmio
)) {
1231 ata_port_err(ap
, "Unable to stop eDMA\n");
1234 mv_edma_cfg(ap
, 0, 0);
1239 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
1242 for (b
= 0; b
< bytes
; ) {
1243 DPRINTK("%p: ", start
+ b
);
1244 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
1245 printk("%08x ", readl(start
+ b
));
1253 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
1258 for (b
= 0; b
< bytes
; ) {
1259 DPRINTK("%02x: ", b
);
1260 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
1261 (void) pci_read_config_dword(pdev
, b
, &dw
);
1262 printk("%08x ", dw
);
1269 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
1270 struct pci_dev
*pdev
)
1273 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
1274 port
>> MV_PORT_HC_SHIFT
);
1275 void __iomem
*port_base
;
1276 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
1279 start_hc
= start_port
= 0;
1280 num_ports
= 8; /* shld be benign for 4 port devs */
1283 start_hc
= port
>> MV_PORT_HC_SHIFT
;
1285 num_ports
= num_hcs
= 1;
1287 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
1288 num_ports
> 1 ? num_ports
- 1 : start_port
);
1291 DPRINTK("PCI config space regs:\n");
1292 mv_dump_pci_cfg(pdev
, 0x68);
1294 DPRINTK("PCI regs:\n");
1295 mv_dump_mem(mmio_base
+0xc00, 0x3c);
1296 mv_dump_mem(mmio_base
+0xd00, 0x34);
1297 mv_dump_mem(mmio_base
+0xf00, 0x4);
1298 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
1299 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
1300 hc_base
= mv_hc_base(mmio_base
, hc
);
1301 DPRINTK("HC regs (HC %i):\n", hc
);
1302 mv_dump_mem(hc_base
, 0x1c);
1304 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
1305 port_base
= mv_port_base(mmio_base
, p
);
1306 DPRINTK("EDMA regs (port %i):\n", p
);
1307 mv_dump_mem(port_base
, 0x54);
1308 DPRINTK("SATA regs (port %i):\n", p
);
1309 mv_dump_mem(port_base
+0x300, 0x60);
1314 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
1318 switch (sc_reg_in
) {
1322 ofs
= SATA_STATUS
+ (sc_reg_in
* sizeof(u32
));
1325 ofs
= SATA_ACTIVE
; /* active is not with the others */
1334 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
1336 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1338 if (ofs
!= 0xffffffffU
) {
1339 *val
= readl(mv_ap_base(link
->ap
) + ofs
);
1345 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
1347 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1349 if (ofs
!= 0xffffffffU
) {
1350 void __iomem
*addr
= mv_ap_base(link
->ap
) + ofs
;
1351 if (sc_reg_in
== SCR_CONTROL
) {
1353 * Workaround for 88SX60x1 FEr SATA#26:
1355 * COMRESETs have to take care not to accidentally
1356 * put the drive to sleep when writing SCR_CONTROL.
1357 * Setting bits 12..15 prevents this problem.
1359 * So if we see an outbound COMMRESET, set those bits.
1360 * Ditto for the followup write that clears the reset.
1362 * The proprietary driver does this for
1363 * all chip versions, and so do we.
1365 if ((val
& 0xf) == 1 || (readl(addr
) & 0xf) == 1)
1368 writelfl(val
, addr
);
1374 static void mv6_dev_config(struct ata_device
*adev
)
1377 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1379 * Gen-II does not support NCQ over a port multiplier
1380 * (no FIS-based switching).
1382 if (adev
->flags
& ATA_DFLAG_NCQ
) {
1383 if (sata_pmp_attached(adev
->link
->ap
)) {
1384 adev
->flags
&= ~ATA_DFLAG_NCQ
;
1386 "NCQ disabled for command-based switching\n");
1391 static int mv_qc_defer(struct ata_queued_cmd
*qc
)
1393 struct ata_link
*link
= qc
->dev
->link
;
1394 struct ata_port
*ap
= link
->ap
;
1395 struct mv_port_priv
*pp
= ap
->private_data
;
1398 * Don't allow new commands if we're in a delayed EH state
1399 * for NCQ and/or FIS-based switching.
1401 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
1402 return ATA_DEFER_PORT
;
1404 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1405 * can run concurrently.
1406 * set excl_link when we want to send a PIO command in DMA mode
1407 * or a non-NCQ command in NCQ mode.
1408 * When we receive a command from that link, and there are no
1409 * outstanding commands, mark a flag to clear excl_link and let
1410 * the command go through.
1412 if (unlikely(ap
->excl_link
)) {
1413 if (link
== ap
->excl_link
) {
1414 if (ap
->nr_active_links
)
1415 return ATA_DEFER_PORT
;
1416 qc
->flags
|= ATA_QCFLAG_CLEAR_EXCL
;
1419 return ATA_DEFER_PORT
;
1423 * If the port is completely idle, then allow the new qc.
1425 if (ap
->nr_active_links
== 0)
1429 * The port is operating in host queuing mode (EDMA) with NCQ
1430 * enabled, allow multiple NCQ commands. EDMA also allows
1431 * queueing multiple DMA commands but libata core currently
1434 if ((pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) &&
1435 (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)) {
1436 if (ata_is_ncq(qc
->tf
.protocol
))
1439 ap
->excl_link
= link
;
1440 return ATA_DEFER_PORT
;
1444 return ATA_DEFER_PORT
;
1447 static void mv_config_fbs(struct ata_port
*ap
, int want_ncq
, int want_fbs
)
1449 struct mv_port_priv
*pp
= ap
->private_data
;
1450 void __iomem
*port_mmio
;
1452 u32 fiscfg
, *old_fiscfg
= &pp
->cached
.fiscfg
;
1453 u32 ltmode
, *old_ltmode
= &pp
->cached
.ltmode
;
1454 u32 haltcond
, *old_haltcond
= &pp
->cached
.haltcond
;
1456 ltmode
= *old_ltmode
& ~LTMODE_BIT8
;
1457 haltcond
= *old_haltcond
| EDMA_ERR_DEV
;
1460 fiscfg
= *old_fiscfg
| FISCFG_SINGLE_SYNC
;
1461 ltmode
= *old_ltmode
| LTMODE_BIT8
;
1463 haltcond
&= ~EDMA_ERR_DEV
;
1465 fiscfg
|= FISCFG_WAIT_DEV_ERR
;
1467 fiscfg
= *old_fiscfg
& ~(FISCFG_SINGLE_SYNC
| FISCFG_WAIT_DEV_ERR
);
1470 port_mmio
= mv_ap_base(ap
);
1471 mv_write_cached_reg(port_mmio
+ FISCFG
, old_fiscfg
, fiscfg
);
1472 mv_write_cached_reg(port_mmio
+ LTMODE
, old_ltmode
, ltmode
);
1473 mv_write_cached_reg(port_mmio
+ EDMA_HALTCOND
, old_haltcond
, haltcond
);
1476 static void mv_60x1_errata_sata25(struct ata_port
*ap
, int want_ncq
)
1478 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1481 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1482 old
= readl(hpriv
->base
+ GPIO_PORT_CTL
);
1484 new = old
| (1 << 22);
1486 new = old
& ~(1 << 22);
1488 writel(new, hpriv
->base
+ GPIO_PORT_CTL
);
1492 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1493 * @ap: Port being initialized
1495 * There are two DMA modes on these chips: basic DMA, and EDMA.
1497 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1498 * of basic DMA on the GEN_IIE versions of the chips.
1500 * This bit survives EDMA resets, and must be set for basic DMA
1501 * to function, and should be cleared when EDMA is active.
1503 static void mv_bmdma_enable_iie(struct ata_port
*ap
, int enable_bmdma
)
1505 struct mv_port_priv
*pp
= ap
->private_data
;
1506 u32
new, *old
= &pp
->cached
.unknown_rsvd
;
1512 mv_write_cached_reg(mv_ap_base(ap
) + EDMA_UNKNOWN_RSVD
, old
, new);
1516 * SOC chips have an issue whereby the HDD LEDs don't always blink
1517 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1518 * of the SOC takes care of it, generating a steady blink rate when
1519 * any drive on the chip is active.
1521 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1522 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1524 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1525 * LED operation works then, and provides better (more accurate) feedback.
1527 * Note that this code assumes that an SOC never has more than one HC onboard.
1529 static void mv_soc_led_blink_enable(struct ata_port
*ap
)
1531 struct ata_host
*host
= ap
->host
;
1532 struct mv_host_priv
*hpriv
= host
->private_data
;
1533 void __iomem
*hc_mmio
;
1536 if (hpriv
->hp_flags
& MV_HP_QUIRK_LED_BLINK_EN
)
1538 hpriv
->hp_flags
|= MV_HP_QUIRK_LED_BLINK_EN
;
1539 hc_mmio
= mv_hc_base_from_port(mv_host_base(host
), ap
->port_no
);
1540 led_ctrl
= readl(hc_mmio
+ SOC_LED_CTRL
);
1541 writel(led_ctrl
| SOC_LED_CTRL_BLINK
, hc_mmio
+ SOC_LED_CTRL
);
1544 static void mv_soc_led_blink_disable(struct ata_port
*ap
)
1546 struct ata_host
*host
= ap
->host
;
1547 struct mv_host_priv
*hpriv
= host
->private_data
;
1548 void __iomem
*hc_mmio
;
1552 if (!(hpriv
->hp_flags
& MV_HP_QUIRK_LED_BLINK_EN
))
1555 /* disable led-blink only if no ports are using NCQ */
1556 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
1557 struct ata_port
*this_ap
= host
->ports
[port
];
1558 struct mv_port_priv
*pp
= this_ap
->private_data
;
1560 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
1564 hpriv
->hp_flags
&= ~MV_HP_QUIRK_LED_BLINK_EN
;
1565 hc_mmio
= mv_hc_base_from_port(mv_host_base(host
), ap
->port_no
);
1566 led_ctrl
= readl(hc_mmio
+ SOC_LED_CTRL
);
1567 writel(led_ctrl
& ~SOC_LED_CTRL_BLINK
, hc_mmio
+ SOC_LED_CTRL
);
1570 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
, int want_edma
)
1573 struct mv_port_priv
*pp
= ap
->private_data
;
1574 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1575 void __iomem
*port_mmio
= mv_ap_base(ap
);
1577 /* set up non-NCQ EDMA configuration */
1578 cfg
= EDMA_CFG_Q_DEPTH
; /* always 0x1f for *all* chips */
1580 ~(MV_PP_FLAG_FBS_EN
| MV_PP_FLAG_NCQ_EN
| MV_PP_FLAG_FAKE_ATA_BUSY
);
1582 if (IS_GEN_I(hpriv
))
1583 cfg
|= (1 << 8); /* enab config burst size mask */
1585 else if (IS_GEN_II(hpriv
)) {
1586 cfg
|= EDMA_CFG_RD_BRST_EXT
| EDMA_CFG_WR_BUFF_LEN
;
1587 mv_60x1_errata_sata25(ap
, want_ncq
);
1589 } else if (IS_GEN_IIE(hpriv
)) {
1590 int want_fbs
= sata_pmp_attached(ap
);
1592 * Possible future enhancement:
1594 * The chip can use FBS with non-NCQ, if we allow it,
1595 * But first we need to have the error handling in place
1596 * for this mode (datasheet section 7.3.15.4.2.3).
1597 * So disallow non-NCQ FBS for now.
1599 want_fbs
&= want_ncq
;
1601 mv_config_fbs(ap
, want_ncq
, want_fbs
);
1604 pp
->pp_flags
|= MV_PP_FLAG_FBS_EN
;
1605 cfg
|= EDMA_CFG_EDMA_FBS
; /* FIS-based switching */
1608 cfg
|= (1 << 23); /* do not mask PM field in rx'd FIS */
1610 cfg
|= (1 << 22); /* enab 4-entry host queue cache */
1612 cfg
|= (1 << 18); /* enab early completion */
1614 if (hpriv
->hp_flags
& MV_HP_CUT_THROUGH
)
1615 cfg
|= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1616 mv_bmdma_enable_iie(ap
, !want_edma
);
1618 if (IS_SOC(hpriv
)) {
1620 mv_soc_led_blink_enable(ap
);
1622 mv_soc_led_blink_disable(ap
);
1627 cfg
|= EDMA_CFG_NCQ
;
1628 pp
->pp_flags
|= MV_PP_FLAG_NCQ_EN
;
1631 writelfl(cfg
, port_mmio
+ EDMA_CFG
);
1634 static void mv_port_free_dma_mem(struct ata_port
*ap
)
1636 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1637 struct mv_port_priv
*pp
= ap
->private_data
;
1641 dma_pool_free(hpriv
->crqb_pool
, pp
->crqb
, pp
->crqb_dma
);
1645 dma_pool_free(hpriv
->crpb_pool
, pp
->crpb
, pp
->crpb_dma
);
1649 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1650 * For later hardware, we have one unique sg_tbl per NCQ tag.
1652 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1653 if (pp
->sg_tbl
[tag
]) {
1654 if (tag
== 0 || !IS_GEN_I(hpriv
))
1655 dma_pool_free(hpriv
->sg_tbl_pool
,
1657 pp
->sg_tbl_dma
[tag
]);
1658 pp
->sg_tbl
[tag
] = NULL
;
1664 * mv_port_start - Port specific init/start routine.
1665 * @ap: ATA channel to manipulate
1667 * Allocate and point to DMA memory, init port private memory,
1671 * Inherited from caller.
1673 static int mv_port_start(struct ata_port
*ap
)
1675 struct device
*dev
= ap
->host
->dev
;
1676 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1677 struct mv_port_priv
*pp
;
1678 unsigned long flags
;
1681 pp
= devm_kzalloc(dev
, sizeof(*pp
), GFP_KERNEL
);
1684 ap
->private_data
= pp
;
1686 pp
->crqb
= dma_pool_alloc(hpriv
->crqb_pool
, GFP_KERNEL
, &pp
->crqb_dma
);
1689 memset(pp
->crqb
, 0, MV_CRQB_Q_SZ
);
1691 pp
->crpb
= dma_pool_alloc(hpriv
->crpb_pool
, GFP_KERNEL
, &pp
->crpb_dma
);
1693 goto out_port_free_dma_mem
;
1694 memset(pp
->crpb
, 0, MV_CRPB_Q_SZ
);
1696 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1697 if (hpriv
->hp_flags
& MV_HP_ERRATA_60X1C0
)
1698 ap
->flags
|= ATA_FLAG_AN
;
1700 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1701 * For later hardware, we need one unique sg_tbl per NCQ tag.
1703 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1704 if (tag
== 0 || !IS_GEN_I(hpriv
)) {
1705 pp
->sg_tbl
[tag
] = dma_pool_alloc(hpriv
->sg_tbl_pool
,
1706 GFP_KERNEL
, &pp
->sg_tbl_dma
[tag
]);
1707 if (!pp
->sg_tbl
[tag
])
1708 goto out_port_free_dma_mem
;
1710 pp
->sg_tbl
[tag
] = pp
->sg_tbl
[0];
1711 pp
->sg_tbl_dma
[tag
] = pp
->sg_tbl_dma
[0];
1715 spin_lock_irqsave(ap
->lock
, flags
);
1716 mv_save_cached_regs(ap
);
1717 mv_edma_cfg(ap
, 0, 0);
1718 spin_unlock_irqrestore(ap
->lock
, flags
);
1722 out_port_free_dma_mem
:
1723 mv_port_free_dma_mem(ap
);
1728 * mv_port_stop - Port specific cleanup/stop routine.
1729 * @ap: ATA channel to manipulate
1731 * Stop DMA, cleanup port memory.
1734 * This routine uses the host lock to protect the DMA stop.
1736 static void mv_port_stop(struct ata_port
*ap
)
1738 unsigned long flags
;
1740 spin_lock_irqsave(ap
->lock
, flags
);
1742 mv_enable_port_irqs(ap
, 0);
1743 spin_unlock_irqrestore(ap
->lock
, flags
);
1744 mv_port_free_dma_mem(ap
);
1748 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1749 * @qc: queued command whose SG list to source from
1751 * Populate the SG list and mark the last entry.
1754 * Inherited from caller.
1756 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
1758 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1759 struct scatterlist
*sg
;
1760 struct mv_sg
*mv_sg
, *last_sg
= NULL
;
1763 mv_sg
= pp
->sg_tbl
[qc
->tag
];
1764 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
1765 dma_addr_t addr
= sg_dma_address(sg
);
1766 u32 sg_len
= sg_dma_len(sg
);
1769 u32 offset
= addr
& 0xffff;
1772 if (offset
+ len
> 0x10000)
1773 len
= 0x10000 - offset
;
1775 mv_sg
->addr
= cpu_to_le32(addr
& 0xffffffff);
1776 mv_sg
->addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
1777 mv_sg
->flags_size
= cpu_to_le32(len
& 0xffff);
1778 mv_sg
->reserved
= 0;
1788 if (likely(last_sg
))
1789 last_sg
->flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
1790 mb(); /* ensure data structure is visible to the chipset */
1793 static void mv_crqb_pack_cmd(__le16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
1795 u16 tmp
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
1796 (last
? CRQB_CMD_LAST
: 0);
1797 *cmdw
= cpu_to_le16(tmp
);
1801 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1802 * @ap: Port associated with this ATA transaction.
1804 * We need this only for ATAPI bmdma transactions,
1805 * as otherwise we experience spurious interrupts
1806 * after libata-sff handles the bmdma interrupts.
1808 static void mv_sff_irq_clear(struct ata_port
*ap
)
1810 mv_clear_and_enable_port_irqs(ap
, mv_ap_base(ap
), ERR_IRQ
);
1814 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1815 * @qc: queued command to check for chipset/DMA compatibility.
1817 * The bmdma engines cannot handle speculative data sizes
1818 * (bytecount under/over flow). So only allow DMA for
1819 * data transfer commands with known data sizes.
1822 * Inherited from caller.
1824 static int mv_check_atapi_dma(struct ata_queued_cmd
*qc
)
1826 struct scsi_cmnd
*scmd
= qc
->scsicmd
;
1829 switch (scmd
->cmnd
[0]) {
1837 case GPCMD_SEND_DVD_STRUCTURE
:
1838 case GPCMD_SEND_CUE_SHEET
:
1839 return 0; /* DMA is safe */
1842 return -EOPNOTSUPP
; /* use PIO instead */
1846 * mv_bmdma_setup - Set up BMDMA transaction
1847 * @qc: queued command to prepare DMA for.
1850 * Inherited from caller.
1852 static void mv_bmdma_setup(struct ata_queued_cmd
*qc
)
1854 struct ata_port
*ap
= qc
->ap
;
1855 void __iomem
*port_mmio
= mv_ap_base(ap
);
1856 struct mv_port_priv
*pp
= ap
->private_data
;
1860 /* clear all DMA cmd bits */
1861 writel(0, port_mmio
+ BMDMA_CMD
);
1863 /* load PRD table addr. */
1864 writel((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16,
1865 port_mmio
+ BMDMA_PRD_HIGH
);
1866 writelfl(pp
->sg_tbl_dma
[qc
->tag
],
1867 port_mmio
+ BMDMA_PRD_LOW
);
1869 /* issue r/w command */
1870 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
1874 * mv_bmdma_start - Start a BMDMA transaction
1875 * @qc: queued command to start DMA on.
1878 * Inherited from caller.
1880 static void mv_bmdma_start(struct ata_queued_cmd
*qc
)
1882 struct ata_port
*ap
= qc
->ap
;
1883 void __iomem
*port_mmio
= mv_ap_base(ap
);
1884 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
1885 u32 cmd
= (rw
? 0 : ATA_DMA_WR
) | ATA_DMA_START
;
1887 /* start host DMA transaction */
1888 writelfl(cmd
, port_mmio
+ BMDMA_CMD
);
1892 * mv_bmdma_stop - Stop BMDMA transfer
1893 * @qc: queued command to stop DMA on.
1895 * Clears the ATA_DMA_START flag in the bmdma control register
1898 * Inherited from caller.
1900 static void mv_bmdma_stop_ap(struct ata_port
*ap
)
1902 void __iomem
*port_mmio
= mv_ap_base(ap
);
1905 /* clear start/stop bit */
1906 cmd
= readl(port_mmio
+ BMDMA_CMD
);
1907 if (cmd
& ATA_DMA_START
) {
1908 cmd
&= ~ATA_DMA_START
;
1909 writelfl(cmd
, port_mmio
+ BMDMA_CMD
);
1911 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1912 ata_sff_dma_pause(ap
);
1916 static void mv_bmdma_stop(struct ata_queued_cmd
*qc
)
1918 mv_bmdma_stop_ap(qc
->ap
);
1922 * mv_bmdma_status - Read BMDMA status
1923 * @ap: port for which to retrieve DMA status.
1925 * Read and return equivalent of the sff BMDMA status register.
1928 * Inherited from caller.
1930 static u8
mv_bmdma_status(struct ata_port
*ap
)
1932 void __iomem
*port_mmio
= mv_ap_base(ap
);
1936 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1937 * and the ATA_DMA_INTR bit doesn't exist.
1939 reg
= readl(port_mmio
+ BMDMA_STATUS
);
1940 if (reg
& ATA_DMA_ACTIVE
)
1941 status
= ATA_DMA_ACTIVE
;
1942 else if (reg
& ATA_DMA_ERR
)
1943 status
= (reg
& ATA_DMA_ERR
) | ATA_DMA_INTR
;
1946 * Just because DMA_ACTIVE is 0 (DMA completed),
1947 * this does _not_ mean the device is "done".
1948 * So we should not yet be signalling ATA_DMA_INTR
1949 * in some cases. Eg. DSM/TRIM, and perhaps others.
1951 mv_bmdma_stop_ap(ap
);
1952 if (ioread8(ap
->ioaddr
.altstatus_addr
) & ATA_BUSY
)
1955 status
= ATA_DMA_INTR
;
1960 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd
*qc
)
1962 struct ata_taskfile
*tf
= &qc
->tf
;
1964 * Workaround for 88SX60x1 FEr SATA#24.
1966 * Chip may corrupt WRITEs if multi_count >= 4kB.
1967 * Note that READs are unaffected.
1969 * It's not clear if this errata really means "4K bytes",
1970 * or if it always happens for multi_count > 7
1971 * regardless of device sector_size.
1973 * So, for safety, any write with multi_count > 7
1974 * gets converted here into a regular PIO write instead:
1976 if ((tf
->flags
& ATA_TFLAG_WRITE
) && is_multi_taskfile(tf
)) {
1977 if (qc
->dev
->multi_count
> 7) {
1978 switch (tf
->command
) {
1979 case ATA_CMD_WRITE_MULTI
:
1980 tf
->command
= ATA_CMD_PIO_WRITE
;
1982 case ATA_CMD_WRITE_MULTI_FUA_EXT
:
1983 tf
->flags
&= ~ATA_TFLAG_FUA
; /* ugh */
1985 case ATA_CMD_WRITE_MULTI_EXT
:
1986 tf
->command
= ATA_CMD_PIO_WRITE_EXT
;
1994 * mv_qc_prep - Host specific command preparation.
1995 * @qc: queued command to prepare
1997 * This routine simply redirects to the general purpose routine
1998 * if command is not DMA. Else, it handles prep of the CRQB
1999 * (command request block), does some sanity checking, and calls
2000 * the SG load routine.
2003 * Inherited from caller.
2005 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
2007 struct ata_port
*ap
= qc
->ap
;
2008 struct mv_port_priv
*pp
= ap
->private_data
;
2010 struct ata_taskfile
*tf
= &qc
->tf
;
2014 switch (tf
->protocol
) {
2016 if (tf
->command
== ATA_CMD_DSM
)
2020 break; /* continue below */
2022 mv_rw_multi_errata_sata24(qc
);
2028 /* Fill in command request block
2030 if (!(tf
->flags
& ATA_TFLAG_WRITE
))
2031 flags
|= CRQB_FLAG_READ
;
2032 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
2033 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
2034 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
2036 /* get current queue index from software */
2037 in_index
= pp
->req_idx
;
2039 pp
->crqb
[in_index
].sg_addr
=
2040 cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
2041 pp
->crqb
[in_index
].sg_addr_hi
=
2042 cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
2043 pp
->crqb
[in_index
].ctrl_flags
= cpu_to_le16(flags
);
2045 cw
= &pp
->crqb
[in_index
].ata_cmd
[0];
2047 /* Sadly, the CRQB cannot accommodate all registers--there are
2048 * only 11 bytes...so we must pick and choose required
2049 * registers based on the command. So, we drop feature and
2050 * hob_feature for [RW] DMA commands, but they are needed for
2051 * NCQ. NCQ will drop hob_nsect, which is not needed there
2052 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2054 switch (tf
->command
) {
2056 case ATA_CMD_READ_EXT
:
2058 case ATA_CMD_WRITE_EXT
:
2059 case ATA_CMD_WRITE_FUA_EXT
:
2060 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
2062 case ATA_CMD_FPDMA_READ
:
2063 case ATA_CMD_FPDMA_WRITE
:
2064 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
2065 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
2068 /* The only other commands EDMA supports in non-queued and
2069 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2070 * of which are defined/used by Linux. If we get here, this
2071 * driver needs work.
2073 * FIXME: modify libata to give qc_prep a return value and
2074 * return error here.
2076 BUG_ON(tf
->command
);
2079 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
2080 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
2081 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
2082 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
2083 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
2084 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
2085 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
2086 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
2087 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
2089 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2095 * mv_qc_prep_iie - Host specific command preparation.
2096 * @qc: queued command to prepare
2098 * This routine simply redirects to the general purpose routine
2099 * if command is not DMA. Else, it handles prep of the CRQB
2100 * (command request block), does some sanity checking, and calls
2101 * the SG load routine.
2104 * Inherited from caller.
2106 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
)
2108 struct ata_port
*ap
= qc
->ap
;
2109 struct mv_port_priv
*pp
= ap
->private_data
;
2110 struct mv_crqb_iie
*crqb
;
2111 struct ata_taskfile
*tf
= &qc
->tf
;
2115 if ((tf
->protocol
!= ATA_PROT_DMA
) &&
2116 (tf
->protocol
!= ATA_PROT_NCQ
))
2118 if (tf
->command
== ATA_CMD_DSM
)
2119 return; /* use bmdma for this */
2121 /* Fill in Gen IIE command request block */
2122 if (!(tf
->flags
& ATA_TFLAG_WRITE
))
2123 flags
|= CRQB_FLAG_READ
;
2125 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
2126 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
2127 flags
|= qc
->tag
<< CRQB_HOSTQ_SHIFT
;
2128 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
2130 /* get current queue index from software */
2131 in_index
= pp
->req_idx
;
2133 crqb
= (struct mv_crqb_iie
*) &pp
->crqb
[in_index
];
2134 crqb
->addr
= cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
2135 crqb
->addr_hi
= cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
2136 crqb
->flags
= cpu_to_le32(flags
);
2138 crqb
->ata_cmd
[0] = cpu_to_le32(
2139 (tf
->command
<< 16) |
2142 crqb
->ata_cmd
[1] = cpu_to_le32(
2148 crqb
->ata_cmd
[2] = cpu_to_le32(
2149 (tf
->hob_lbal
<< 0) |
2150 (tf
->hob_lbam
<< 8) |
2151 (tf
->hob_lbah
<< 16) |
2152 (tf
->hob_feature
<< 24)
2154 crqb
->ata_cmd
[3] = cpu_to_le32(
2156 (tf
->hob_nsect
<< 8)
2159 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2165 * mv_sff_check_status - fetch device status, if valid
2166 * @ap: ATA port to fetch status from
2168 * When using command issue via mv_qc_issue_fis(),
2169 * the initial ATA_BUSY state does not show up in the
2170 * ATA status (shadow) register. This can confuse libata!
2172 * So we have a hook here to fake ATA_BUSY for that situation,
2173 * until the first time a BUSY, DRQ, or ERR bit is seen.
2175 * The rest of the time, it simply returns the ATA status register.
2177 static u8
mv_sff_check_status(struct ata_port
*ap
)
2179 u8 stat
= ioread8(ap
->ioaddr
.status_addr
);
2180 struct mv_port_priv
*pp
= ap
->private_data
;
2182 if (pp
->pp_flags
& MV_PP_FLAG_FAKE_ATA_BUSY
) {
2183 if (stat
& (ATA_BUSY
| ATA_DRQ
| ATA_ERR
))
2184 pp
->pp_flags
&= ~MV_PP_FLAG_FAKE_ATA_BUSY
;
2192 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2193 * @fis: fis to be sent
2194 * @nwords: number of 32-bit words in the fis
2196 static unsigned int mv_send_fis(struct ata_port
*ap
, u32
*fis
, int nwords
)
2198 void __iomem
*port_mmio
= mv_ap_base(ap
);
2199 u32 ifctl
, old_ifctl
, ifstat
;
2200 int i
, timeout
= 200, final_word
= nwords
- 1;
2202 /* Initiate FIS transmission mode */
2203 old_ifctl
= readl(port_mmio
+ SATA_IFCTL
);
2204 ifctl
= 0x100 | (old_ifctl
& 0xf);
2205 writelfl(ifctl
, port_mmio
+ SATA_IFCTL
);
2207 /* Send all words of the FIS except for the final word */
2208 for (i
= 0; i
< final_word
; ++i
)
2209 writel(fis
[i
], port_mmio
+ VENDOR_UNIQUE_FIS
);
2211 /* Flag end-of-transmission, and then send the final word */
2212 writelfl(ifctl
| 0x200, port_mmio
+ SATA_IFCTL
);
2213 writelfl(fis
[final_word
], port_mmio
+ VENDOR_UNIQUE_FIS
);
2216 * Wait for FIS transmission to complete.
2217 * This typically takes just a single iteration.
2220 ifstat
= readl(port_mmio
+ SATA_IFSTAT
);
2221 } while (!(ifstat
& 0x1000) && --timeout
);
2223 /* Restore original port configuration */
2224 writelfl(old_ifctl
, port_mmio
+ SATA_IFCTL
);
2226 /* See if it worked */
2227 if ((ifstat
& 0x3000) != 0x1000) {
2228 ata_port_warn(ap
, "%s transmission error, ifstat=%08x\n",
2230 return AC_ERR_OTHER
;
2236 * mv_qc_issue_fis - Issue a command directly as a FIS
2237 * @qc: queued command to start
2239 * Note that the ATA shadow registers are not updated
2240 * after command issue, so the device will appear "READY"
2241 * if polled, even while it is BUSY processing the command.
2243 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2245 * Note: we don't get updated shadow regs on *completion*
2246 * of non-data commands. So avoid sending them via this function,
2247 * as they will appear to have completed immediately.
2249 * GEN_IIE has special registers that we could get the result tf from,
2250 * but earlier chipsets do not. For now, we ignore those registers.
2252 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd
*qc
)
2254 struct ata_port
*ap
= qc
->ap
;
2255 struct mv_port_priv
*pp
= ap
->private_data
;
2256 struct ata_link
*link
= qc
->dev
->link
;
2260 ata_tf_to_fis(&qc
->tf
, link
->pmp
, 1, (void *)fis
);
2261 err
= mv_send_fis(ap
, fis
, ARRAY_SIZE(fis
));
2265 switch (qc
->tf
.protocol
) {
2266 case ATAPI_PROT_PIO
:
2267 pp
->pp_flags
|= MV_PP_FLAG_FAKE_ATA_BUSY
;
2269 case ATAPI_PROT_NODATA
:
2270 ap
->hsm_task_state
= HSM_ST_FIRST
;
2273 pp
->pp_flags
|= MV_PP_FLAG_FAKE_ATA_BUSY
;
2274 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
2275 ap
->hsm_task_state
= HSM_ST_FIRST
;
2277 ap
->hsm_task_state
= HSM_ST
;
2280 ap
->hsm_task_state
= HSM_ST_LAST
;
2284 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2285 ata_sff_queue_pio_task(link
, 0);
2290 * mv_qc_issue - Initiate a command to the host
2291 * @qc: queued command to start
2293 * This routine simply redirects to the general purpose routine
2294 * if command is not DMA. Else, it sanity checks our local
2295 * caches of the request producer/consumer indices then enables
2296 * DMA and bumps the request producer index.
2299 * Inherited from caller.
2301 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
)
2303 static int limit_warnings
= 10;
2304 struct ata_port
*ap
= qc
->ap
;
2305 void __iomem
*port_mmio
= mv_ap_base(ap
);
2306 struct mv_port_priv
*pp
= ap
->private_data
;
2308 unsigned int port_irqs
;
2310 pp
->pp_flags
&= ~MV_PP_FLAG_FAKE_ATA_BUSY
; /* paranoia */
2312 switch (qc
->tf
.protocol
) {
2314 if (qc
->tf
.command
== ATA_CMD_DSM
) {
2315 if (!ap
->ops
->bmdma_setup
) /* no bmdma on GEN_I */
2316 return AC_ERR_OTHER
;
2317 break; /* use bmdma for this */
2321 mv_start_edma(ap
, port_mmio
, pp
, qc
->tf
.protocol
);
2322 pp
->req_idx
= (pp
->req_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2323 in_index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
2325 /* Write the request in pointer to kick the EDMA to life */
2326 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | in_index
,
2327 port_mmio
+ EDMA_REQ_Q_IN_PTR
);
2332 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2334 * Someday, we might implement special polling workarounds
2335 * for these, but it all seems rather unnecessary since we
2336 * normally use only DMA for commands which transfer more
2337 * than a single block of data.
2339 * Much of the time, this could just work regardless.
2340 * So for now, just log the incident, and allow the attempt.
2342 if (limit_warnings
> 0 && (qc
->nbytes
/ qc
->sect_size
) > 1) {
2344 ata_link_warn(qc
->dev
->link
, DRV_NAME
2345 ": attempting PIO w/multiple DRQ: "
2346 "this may fail due to h/w errata\n");
2349 case ATA_PROT_NODATA
:
2350 case ATAPI_PROT_PIO
:
2351 case ATAPI_PROT_NODATA
:
2352 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
2353 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
2357 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2358 port_irqs
= ERR_IRQ
; /* mask device interrupt when polling */
2360 port_irqs
= ERR_IRQ
| DONE_IRQ
; /* unmask all interrupts */
2363 * We're about to send a non-EDMA capable command to the
2364 * port. Turn off EDMA so there won't be problems accessing
2365 * shadow block, etc registers.
2368 mv_clear_and_enable_port_irqs(ap
, mv_ap_base(ap
), port_irqs
);
2369 mv_pmp_select(ap
, qc
->dev
->link
->pmp
);
2371 if (qc
->tf
.command
== ATA_CMD_READ_LOG_EXT
) {
2372 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2374 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2376 * After any NCQ error, the READ_LOG_EXT command
2377 * from libata-eh *must* use mv_qc_issue_fis().
2378 * Otherwise it might fail, due to chip errata.
2380 * Rather than special-case it, we'll just *always*
2381 * use this method here for READ_LOG_EXT, making for
2384 if (IS_GEN_II(hpriv
))
2385 return mv_qc_issue_fis(qc
);
2387 return ata_bmdma_qc_issue(qc
);
2390 static struct ata_queued_cmd
*mv_get_active_qc(struct ata_port
*ap
)
2392 struct mv_port_priv
*pp
= ap
->private_data
;
2393 struct ata_queued_cmd
*qc
;
2395 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
2397 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2398 if (qc
&& !(qc
->tf
.flags
& ATA_TFLAG_POLLING
))
2403 static void mv_pmp_error_handler(struct ata_port
*ap
)
2405 unsigned int pmp
, pmp_map
;
2406 struct mv_port_priv
*pp
= ap
->private_data
;
2408 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
) {
2410 * Perform NCQ error analysis on failed PMPs
2411 * before we freeze the port entirely.
2413 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2415 pmp_map
= pp
->delayed_eh_pmp_map
;
2416 pp
->pp_flags
&= ~MV_PP_FLAG_DELAYED_EH
;
2417 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
2418 unsigned int this_pmp
= (1 << pmp
);
2419 if (pmp_map
& this_pmp
) {
2420 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
2421 pmp_map
&= ~this_pmp
;
2422 ata_eh_analyze_ncq_error(link
);
2425 ata_port_freeze(ap
);
2427 sata_pmp_error_handler(ap
);
2430 static unsigned int mv_get_err_pmp_map(struct ata_port
*ap
)
2432 void __iomem
*port_mmio
= mv_ap_base(ap
);
2434 return readl(port_mmio
+ SATA_TESTCTL
) >> 16;
2437 static void mv_pmp_eh_prep(struct ata_port
*ap
, unsigned int pmp_map
)
2439 struct ata_eh_info
*ehi
;
2443 * Initialize EH info for PMPs which saw device errors
2445 ehi
= &ap
->link
.eh_info
;
2446 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
2447 unsigned int this_pmp
= (1 << pmp
);
2448 if (pmp_map
& this_pmp
) {
2449 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
2451 pmp_map
&= ~this_pmp
;
2452 ehi
= &link
->eh_info
;
2453 ata_ehi_clear_desc(ehi
);
2454 ata_ehi_push_desc(ehi
, "dev err");
2455 ehi
->err_mask
|= AC_ERR_DEV
;
2456 ehi
->action
|= ATA_EH_RESET
;
2457 ata_link_abort(link
);
2462 static int mv_req_q_empty(struct ata_port
*ap
)
2464 void __iomem
*port_mmio
= mv_ap_base(ap
);
2465 u32 in_ptr
, out_ptr
;
2467 in_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_IN_PTR
)
2468 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2469 out_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_OUT_PTR
)
2470 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2471 return (in_ptr
== out_ptr
); /* 1 == queue_is_empty */
2474 static int mv_handle_fbs_ncq_dev_err(struct ata_port
*ap
)
2476 struct mv_port_priv
*pp
= ap
->private_data
;
2478 unsigned int old_map
, new_map
;
2481 * Device error during FBS+NCQ operation:
2483 * Set a port flag to prevent further I/O being enqueued.
2484 * Leave the EDMA running to drain outstanding commands from this port.
2485 * Perform the post-mortem/EH only when all responses are complete.
2486 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2488 if (!(pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)) {
2489 pp
->pp_flags
|= MV_PP_FLAG_DELAYED_EH
;
2490 pp
->delayed_eh_pmp_map
= 0;
2492 old_map
= pp
->delayed_eh_pmp_map
;
2493 new_map
= old_map
| mv_get_err_pmp_map(ap
);
2495 if (old_map
!= new_map
) {
2496 pp
->delayed_eh_pmp_map
= new_map
;
2497 mv_pmp_eh_prep(ap
, new_map
& ~old_map
);
2499 failed_links
= hweight16(new_map
);
2502 "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2503 __func__
, pp
->delayed_eh_pmp_map
,
2504 ap
->qc_active
, failed_links
,
2505 ap
->nr_active_links
);
2507 if (ap
->nr_active_links
<= failed_links
&& mv_req_q_empty(ap
)) {
2508 mv_process_crpb_entries(ap
, pp
);
2511 ata_port_info(ap
, "%s: done\n", __func__
);
2512 return 1; /* handled */
2514 ata_port_info(ap
, "%s: waiting\n", __func__
);
2515 return 1; /* handled */
2518 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port
*ap
)
2521 * Possible future enhancement:
2523 * FBS+non-NCQ operation is not yet implemented.
2524 * See related notes in mv_edma_cfg().
2526 * Device error during FBS+non-NCQ operation:
2528 * We need to snapshot the shadow registers for each failed command.
2529 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2531 return 0; /* not handled */
2534 static int mv_handle_dev_err(struct ata_port
*ap
, u32 edma_err_cause
)
2536 struct mv_port_priv
*pp
= ap
->private_data
;
2538 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
2539 return 0; /* EDMA was not active: not handled */
2540 if (!(pp
->pp_flags
& MV_PP_FLAG_FBS_EN
))
2541 return 0; /* FBS was not active: not handled */
2543 if (!(edma_err_cause
& EDMA_ERR_DEV
))
2544 return 0; /* non DEV error: not handled */
2545 edma_err_cause
&= ~EDMA_ERR_IRQ_TRANSIENT
;
2546 if (edma_err_cause
& ~(EDMA_ERR_DEV
| EDMA_ERR_SELF_DIS
))
2547 return 0; /* other problems: not handled */
2549 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) {
2551 * EDMA should NOT have self-disabled for this case.
2552 * If it did, then something is wrong elsewhere,
2553 * and we cannot handle it here.
2555 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
2556 ata_port_warn(ap
, "%s: err_cause=0x%x pp_flags=0x%x\n",
2557 __func__
, edma_err_cause
, pp
->pp_flags
);
2558 return 0; /* not handled */
2560 return mv_handle_fbs_ncq_dev_err(ap
);
2563 * EDMA should have self-disabled for this case.
2564 * If it did not, then something is wrong elsewhere,
2565 * and we cannot handle it here.
2567 if (!(edma_err_cause
& EDMA_ERR_SELF_DIS
)) {
2568 ata_port_warn(ap
, "%s: err_cause=0x%x pp_flags=0x%x\n",
2569 __func__
, edma_err_cause
, pp
->pp_flags
);
2570 return 0; /* not handled */
2572 return mv_handle_fbs_non_ncq_dev_err(ap
);
2574 return 0; /* not handled */
2577 static void mv_unexpected_intr(struct ata_port
*ap
, int edma_was_enabled
)
2579 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2580 char *when
= "idle";
2582 ata_ehi_clear_desc(ehi
);
2583 if (edma_was_enabled
) {
2584 when
= "EDMA enabled";
2586 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2587 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
2590 ata_ehi_push_desc(ehi
, "unexpected device interrupt while %s", when
);
2591 ehi
->err_mask
|= AC_ERR_OTHER
;
2592 ehi
->action
|= ATA_EH_RESET
;
2593 ata_port_freeze(ap
);
2597 * mv_err_intr - Handle error interrupts on the port
2598 * @ap: ATA channel to manipulate
2600 * Most cases require a full reset of the chip's state machine,
2601 * which also performs a COMRESET.
2602 * Also, if the port disabled DMA, update our cached copy to match.
2605 * Inherited from caller.
2607 static void mv_err_intr(struct ata_port
*ap
)
2609 void __iomem
*port_mmio
= mv_ap_base(ap
);
2610 u32 edma_err_cause
, eh_freeze_mask
, serr
= 0;
2612 struct mv_port_priv
*pp
= ap
->private_data
;
2613 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2614 unsigned int action
= 0, err_mask
= 0;
2615 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2616 struct ata_queued_cmd
*qc
;
2620 * Read and clear the SError and err_cause bits.
2621 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2622 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2624 sata_scr_read(&ap
->link
, SCR_ERROR
, &serr
);
2625 sata_scr_write_flush(&ap
->link
, SCR_ERROR
, serr
);
2627 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
2628 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
2629 fis_cause
= readl(port_mmio
+ FIS_IRQ_CAUSE
);
2630 writelfl(~fis_cause
, port_mmio
+ FIS_IRQ_CAUSE
);
2632 writelfl(~edma_err_cause
, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
2634 if (edma_err_cause
& EDMA_ERR_DEV
) {
2636 * Device errors during FIS-based switching operation
2637 * require special handling.
2639 if (mv_handle_dev_err(ap
, edma_err_cause
))
2643 qc
= mv_get_active_qc(ap
);
2644 ata_ehi_clear_desc(ehi
);
2645 ata_ehi_push_desc(ehi
, "edma_err_cause=%08x pp_flags=%08x",
2646 edma_err_cause
, pp
->pp_flags
);
2648 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
2649 ata_ehi_push_desc(ehi
, "fis_cause=%08x", fis_cause
);
2650 if (fis_cause
& FIS_IRQ_CAUSE_AN
) {
2651 u32 ec
= edma_err_cause
&
2652 ~(EDMA_ERR_TRANS_IRQ_7
| EDMA_ERR_IRQ_TRANSIENT
);
2653 sata_async_notification(ap
);
2655 return; /* Just an AN; no need for the nukes */
2656 ata_ehi_push_desc(ehi
, "SDB notify");
2660 * All generations share these EDMA error cause bits:
2662 if (edma_err_cause
& EDMA_ERR_DEV
) {
2663 err_mask
|= AC_ERR_DEV
;
2664 action
|= ATA_EH_RESET
;
2665 ata_ehi_push_desc(ehi
, "dev error");
2667 if (edma_err_cause
& (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
2668 EDMA_ERR_CRQB_PAR
| EDMA_ERR_CRPB_PAR
|
2669 EDMA_ERR_INTRL_PAR
)) {
2670 err_mask
|= AC_ERR_ATA_BUS
;
2671 action
|= ATA_EH_RESET
;
2672 ata_ehi_push_desc(ehi
, "parity error");
2674 if (edma_err_cause
& (EDMA_ERR_DEV_DCON
| EDMA_ERR_DEV_CON
)) {
2675 ata_ehi_hotplugged(ehi
);
2676 ata_ehi_push_desc(ehi
, edma_err_cause
& EDMA_ERR_DEV_DCON
?
2677 "dev disconnect" : "dev connect");
2678 action
|= ATA_EH_RESET
;
2682 * Gen-I has a different SELF_DIS bit,
2683 * different FREEZE bits, and no SERR bit:
2685 if (IS_GEN_I(hpriv
)) {
2686 eh_freeze_mask
= EDMA_EH_FREEZE_5
;
2687 if (edma_err_cause
& EDMA_ERR_SELF_DIS_5
) {
2688 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2689 ata_ehi_push_desc(ehi
, "EDMA self-disable");
2692 eh_freeze_mask
= EDMA_EH_FREEZE
;
2693 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
2694 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2695 ata_ehi_push_desc(ehi
, "EDMA self-disable");
2697 if (edma_err_cause
& EDMA_ERR_SERR
) {
2698 ata_ehi_push_desc(ehi
, "SError=%08x", serr
);
2699 err_mask
|= AC_ERR_ATA_BUS
;
2700 action
|= ATA_EH_RESET
;
2705 err_mask
= AC_ERR_OTHER
;
2706 action
|= ATA_EH_RESET
;
2709 ehi
->serror
|= serr
;
2710 ehi
->action
|= action
;
2713 qc
->err_mask
|= err_mask
;
2715 ehi
->err_mask
|= err_mask
;
2717 if (err_mask
== AC_ERR_DEV
) {
2719 * Cannot do ata_port_freeze() here,
2720 * because it would kill PIO access,
2721 * which is needed for further diagnosis.
2725 } else if (edma_err_cause
& eh_freeze_mask
) {
2727 * Note to self: ata_port_freeze() calls ata_port_abort()
2729 ata_port_freeze(ap
);
2736 ata_link_abort(qc
->dev
->link
);
2742 static bool mv_process_crpb_response(struct ata_port
*ap
,
2743 struct mv_crpb
*response
, unsigned int tag
, int ncq_enabled
)
2746 u16 edma_status
= le16_to_cpu(response
->flags
);
2749 * edma_status from a response queue entry:
2750 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2751 * MSB is saved ATA status from command completion.
2754 u8 err_cause
= edma_status
& 0xff & ~EDMA_ERR_DEV
;
2757 * Error will be seen/handled by
2758 * mv_err_intr(). So do nothing at all here.
2763 ata_status
= edma_status
>> CRPB_FLAG_STATUS_SHIFT
;
2764 if (!ac_err_mask(ata_status
))
2766 /* else: leave it for mv_err_intr() */
2770 static void mv_process_crpb_entries(struct ata_port
*ap
, struct mv_port_priv
*pp
)
2772 void __iomem
*port_mmio
= mv_ap_base(ap
);
2773 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2775 bool work_done
= false;
2777 int ncq_enabled
= (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
);
2779 /* Get the hardware queue position index */
2780 in_index
= (readl(port_mmio
+ EDMA_RSP_Q_IN_PTR
)
2781 >> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2783 /* Process new responses from since the last time we looked */
2784 while (in_index
!= pp
->resp_idx
) {
2786 struct mv_crpb
*response
= &pp
->crpb
[pp
->resp_idx
];
2788 pp
->resp_idx
= (pp
->resp_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2790 if (IS_GEN_I(hpriv
)) {
2791 /* 50xx: no NCQ, only one command active at a time */
2792 tag
= ap
->link
.active_tag
;
2794 /* Gen II/IIE: get command tag from CRPB entry */
2795 tag
= le16_to_cpu(response
->id
) & 0x1f;
2797 if (mv_process_crpb_response(ap
, response
, tag
, ncq_enabled
))
2798 done_mask
|= 1 << tag
;
2803 ata_qc_complete_multiple(ap
, ap
->qc_active
^ done_mask
);
2805 /* Update the software queue position index in hardware */
2806 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) |
2807 (pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
),
2808 port_mmio
+ EDMA_RSP_Q_OUT_PTR
);
2812 static void mv_port_intr(struct ata_port
*ap
, u32 port_cause
)
2814 struct mv_port_priv
*pp
;
2815 int edma_was_enabled
;
2818 * Grab a snapshot of the EDMA_EN flag setting,
2819 * so that we have a consistent view for this port,
2820 * even if something we call of our routines changes it.
2822 pp
= ap
->private_data
;
2823 edma_was_enabled
= (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
);
2825 * Process completed CRPB response(s) before other events.
2827 if (edma_was_enabled
&& (port_cause
& DONE_IRQ
)) {
2828 mv_process_crpb_entries(ap
, pp
);
2829 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
2830 mv_handle_fbs_ncq_dev_err(ap
);
2833 * Handle chip-reported errors, or continue on to handle PIO.
2835 if (unlikely(port_cause
& ERR_IRQ
)) {
2837 } else if (!edma_was_enabled
) {
2838 struct ata_queued_cmd
*qc
= mv_get_active_qc(ap
);
2840 ata_bmdma_port_intr(ap
, qc
);
2842 mv_unexpected_intr(ap
, edma_was_enabled
);
2847 * mv_host_intr - Handle all interrupts on the given host controller
2848 * @host: host specific structure
2849 * @main_irq_cause: Main interrupt cause register for the chip.
2852 * Inherited from caller.
2854 static int mv_host_intr(struct ata_host
*host
, u32 main_irq_cause
)
2856 struct mv_host_priv
*hpriv
= host
->private_data
;
2857 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
2858 unsigned int handled
= 0, port
;
2860 /* If asserted, clear the "all ports" IRQ coalescing bit */
2861 if (main_irq_cause
& ALL_PORTS_COAL_DONE
)
2862 writel(~ALL_PORTS_COAL_IRQ
, mmio
+ IRQ_COAL_CAUSE
);
2864 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
2865 struct ata_port
*ap
= host
->ports
[port
];
2866 unsigned int p
, shift
, hardport
, port_cause
;
2868 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2870 * Each hc within the host has its own hc_irq_cause register,
2871 * where the interrupting ports bits get ack'd.
2873 if (hardport
== 0) { /* first port on this hc ? */
2874 u32 hc_cause
= (main_irq_cause
>> shift
) & HC0_IRQ_PEND
;
2875 u32 port_mask
, ack_irqs
;
2877 * Skip this entire hc if nothing pending for any ports
2880 port
+= MV_PORTS_PER_HC
- 1;
2884 * We don't need/want to read the hc_irq_cause register,
2885 * because doing so hurts performance, and
2886 * main_irq_cause already gives us everything we need.
2888 * But we do have to *write* to the hc_irq_cause to ack
2889 * the ports that we are handling this time through.
2891 * This requires that we create a bitmap for those
2892 * ports which interrupted us, and use that bitmap
2893 * to ack (only) those ports via hc_irq_cause.
2896 if (hc_cause
& PORTS_0_3_COAL_DONE
)
2897 ack_irqs
= HC_COAL_IRQ
;
2898 for (p
= 0; p
< MV_PORTS_PER_HC
; ++p
) {
2899 if ((port
+ p
) >= hpriv
->n_ports
)
2901 port_mask
= (DONE_IRQ
| ERR_IRQ
) << (p
* 2);
2902 if (hc_cause
& port_mask
)
2903 ack_irqs
|= (DMA_IRQ
| DEV_IRQ
) << p
;
2905 hc_mmio
= mv_hc_base_from_port(mmio
, port
);
2906 writelfl(~ack_irqs
, hc_mmio
+ HC_IRQ_CAUSE
);
2910 * Handle interrupts signalled for this port:
2912 port_cause
= (main_irq_cause
>> shift
) & (DONE_IRQ
| ERR_IRQ
);
2914 mv_port_intr(ap
, port_cause
);
2919 static int mv_pci_error(struct ata_host
*host
, void __iomem
*mmio
)
2921 struct mv_host_priv
*hpriv
= host
->private_data
;
2922 struct ata_port
*ap
;
2923 struct ata_queued_cmd
*qc
;
2924 struct ata_eh_info
*ehi
;
2925 unsigned int i
, err_mask
, printed
= 0;
2928 err_cause
= readl(mmio
+ hpriv
->irq_cause_offset
);
2930 dev_err(host
->dev
, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause
);
2932 DPRINTK("All regs @ PCI error\n");
2933 mv_dump_all_regs(mmio
, -1, to_pci_dev(host
->dev
));
2935 writelfl(0, mmio
+ hpriv
->irq_cause_offset
);
2937 for (i
= 0; i
< host
->n_ports
; i
++) {
2938 ap
= host
->ports
[i
];
2939 if (!ata_link_offline(&ap
->link
)) {
2940 ehi
= &ap
->link
.eh_info
;
2941 ata_ehi_clear_desc(ehi
);
2943 ata_ehi_push_desc(ehi
,
2944 "PCI err cause 0x%08x", err_cause
);
2945 err_mask
= AC_ERR_HOST_BUS
;
2946 ehi
->action
= ATA_EH_RESET
;
2947 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2949 qc
->err_mask
|= err_mask
;
2951 ehi
->err_mask
|= err_mask
;
2953 ata_port_freeze(ap
);
2956 return 1; /* handled */
2960 * mv_interrupt - Main interrupt event handler
2962 * @dev_instance: private data; in this case the host structure
2964 * Read the read only register to determine if any host
2965 * controllers have pending interrupts. If so, call lower level
2966 * routine to handle. Also check for PCI errors which are only
2970 * This routine holds the host lock while processing pending
2973 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
)
2975 struct ata_host
*host
= dev_instance
;
2976 struct mv_host_priv
*hpriv
= host
->private_data
;
2977 unsigned int handled
= 0;
2978 int using_msi
= hpriv
->hp_flags
& MV_HP_FLAG_MSI
;
2979 u32 main_irq_cause
, pending_irqs
;
2981 spin_lock(&host
->lock
);
2983 /* for MSI: block new interrupts while in here */
2985 mv_write_main_irq_mask(0, hpriv
);
2987 main_irq_cause
= readl(hpriv
->main_irq_cause_addr
);
2988 pending_irqs
= main_irq_cause
& hpriv
->main_irq_mask
;
2990 * Deal with cases where we either have nothing pending, or have read
2991 * a bogus register value which can indicate HW removal or PCI fault.
2993 if (pending_irqs
&& main_irq_cause
!= 0xffffffffU
) {
2994 if (unlikely((pending_irqs
& PCI_ERR
) && !IS_SOC(hpriv
)))
2995 handled
= mv_pci_error(host
, hpriv
->base
);
2997 handled
= mv_host_intr(host
, pending_irqs
);
3000 /* for MSI: unmask; interrupt cause bits will retrigger now */
3002 mv_write_main_irq_mask(hpriv
->main_irq_mask
, hpriv
);
3004 spin_unlock(&host
->lock
);
3006 return IRQ_RETVAL(handled
);
3009 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
3013 switch (sc_reg_in
) {
3017 ofs
= sc_reg_in
* sizeof(u32
);
3026 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
3028 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
3029 void __iomem
*mmio
= hpriv
->base
;
3030 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
3031 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
3033 if (ofs
!= 0xffffffffU
) {
3034 *val
= readl(addr
+ ofs
);
3040 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
3042 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
3043 void __iomem
*mmio
= hpriv
->base
;
3044 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
3045 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
3047 if (ofs
!= 0xffffffffU
) {
3048 writelfl(val
, addr
+ ofs
);
3054 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
3056 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3059 early_5080
= (pdev
->device
== 0x5080) && (pdev
->revision
== 0);
3062 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3064 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3067 mv_reset_pci_bus(host
, mmio
);
3070 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3072 writel(0x0fcfffff, mmio
+ FLASH_CTL
);
3075 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3078 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
3081 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
3083 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
3084 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
3087 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3091 writel(0, mmio
+ GPIO_PORT_CTL
);
3093 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3095 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3097 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3100 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3103 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
3104 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3106 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
3109 tmp
= readl(phy_mmio
+ MV5_LTMODE
);
3111 writel(tmp
, phy_mmio
+ MV5_LTMODE
);
3113 tmp
= readl(phy_mmio
+ MV5_PHY_CTL
);
3116 writel(tmp
, phy_mmio
+ MV5_PHY_CTL
);
3119 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
3121 tmp
|= hpriv
->signal
[port
].pre
;
3122 tmp
|= hpriv
->signal
[port
].amps
;
3123 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
3128 #define ZERO(reg) writel(0, port_mmio + (reg))
3129 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3132 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3134 mv_reset_channel(hpriv
, mmio
, port
);
3136 ZERO(0x028); /* command */
3137 writel(0x11f, port_mmio
+ EDMA_CFG
);
3138 ZERO(0x004); /* timer */
3139 ZERO(0x008); /* irq err cause */
3140 ZERO(0x00c); /* irq err mask */
3141 ZERO(0x010); /* rq bah */
3142 ZERO(0x014); /* rq inp */
3143 ZERO(0x018); /* rq outp */
3144 ZERO(0x01c); /* respq bah */
3145 ZERO(0x024); /* respq outp */
3146 ZERO(0x020); /* respq inp */
3147 ZERO(0x02c); /* test control */
3148 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT
);
3152 #define ZERO(reg) writel(0, hc_mmio + (reg))
3153 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3156 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3164 tmp
= readl(hc_mmio
+ 0x20);
3167 writel(tmp
, hc_mmio
+ 0x20);
3171 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3174 unsigned int hc
, port
;
3176 for (hc
= 0; hc
< n_hc
; hc
++) {
3177 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
3178 mv5_reset_hc_port(hpriv
, mmio
,
3179 (hc
* MV_PORTS_PER_HC
) + port
);
3181 mv5_reset_one_hc(hpriv
, mmio
, hc
);
3188 #define ZERO(reg) writel(0, mmio + (reg))
3189 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
)
3191 struct mv_host_priv
*hpriv
= host
->private_data
;
3194 tmp
= readl(mmio
+ MV_PCI_MODE
);
3196 writel(tmp
, mmio
+ MV_PCI_MODE
);
3198 ZERO(MV_PCI_DISC_TIMER
);
3199 ZERO(MV_PCI_MSI_TRIGGER
);
3200 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT
);
3201 ZERO(MV_PCI_SERR_MASK
);
3202 ZERO(hpriv
->irq_cause_offset
);
3203 ZERO(hpriv
->irq_mask_offset
);
3204 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
3205 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
3206 ZERO(MV_PCI_ERR_ATTRIBUTE
);
3207 ZERO(MV_PCI_ERR_COMMAND
);
3211 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3215 mv5_reset_flash(hpriv
, mmio
);
3217 tmp
= readl(mmio
+ GPIO_PORT_CTL
);
3219 tmp
|= (1 << 5) | (1 << 6);
3220 writel(tmp
, mmio
+ GPIO_PORT_CTL
);
3224 * mv6_reset_hc - Perform the 6xxx global soft reset
3225 * @mmio: base address of the HBA
3227 * This routine only applies to 6xxx parts.
3230 * Inherited from caller.
3232 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3235 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS
;
3239 /* Following procedure defined in PCI "main command and status
3243 writel(t
| STOP_PCI_MASTER
, reg
);
3245 for (i
= 0; i
< 1000; i
++) {
3248 if (PCI_MASTER_EMPTY
& t
)
3251 if (!(PCI_MASTER_EMPTY
& t
)) {
3252 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
3260 writel(t
| GLOB_SFT_RST
, reg
);
3263 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
3265 if (!(GLOB_SFT_RST
& t
)) {
3266 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
3271 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3274 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
3277 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
3279 if (GLOB_SFT_RST
& t
) {
3280 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
3287 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3290 void __iomem
*port_mmio
;
3293 tmp
= readl(mmio
+ RESET_CFG
);
3294 if ((tmp
& (1 << 0)) == 0) {
3295 hpriv
->signal
[idx
].amps
= 0x7 << 8;
3296 hpriv
->signal
[idx
].pre
= 0x1 << 5;
3300 port_mmio
= mv_port_base(mmio
, idx
);
3301 tmp
= readl(port_mmio
+ PHY_MODE2
);
3303 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
3304 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
3307 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3309 writel(0x00000060, mmio
+ GPIO_PORT_CTL
);
3312 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3315 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3317 u32 hp_flags
= hpriv
->hp_flags
;
3319 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
3321 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
3324 if (fix_phy_mode2
) {
3325 m2
= readl(port_mmio
+ PHY_MODE2
);
3328 writel(m2
, port_mmio
+ PHY_MODE2
);
3332 m2
= readl(port_mmio
+ PHY_MODE2
);
3333 m2
&= ~((1 << 16) | (1 << 31));
3334 writel(m2
, port_mmio
+ PHY_MODE2
);
3340 * Gen-II/IIe PHY_MODE3 errata RM#2:
3341 * Achieves better receiver noise performance than the h/w default:
3343 m3
= readl(port_mmio
+ PHY_MODE3
);
3344 m3
= (m3
& 0x1f) | (0x5555601 << 5);
3346 /* Guideline 88F5182 (GL# SATA-S11) */
3350 if (fix_phy_mode4
) {
3351 u32 m4
= readl(port_mmio
+ PHY_MODE4
);
3353 * Enforce reserved-bit restrictions on GenIIe devices only.
3354 * For earlier chipsets, force only the internal config field
3355 * (workaround for errata FEr SATA#10 part 1).
3357 if (IS_GEN_IIE(hpriv
))
3358 m4
= (m4
& ~PHY_MODE4_RSVD_ZEROS
) | PHY_MODE4_RSVD_ONES
;
3360 m4
= (m4
& ~PHY_MODE4_CFG_MASK
) | PHY_MODE4_CFG_VALUE
;
3361 writel(m4
, port_mmio
+ PHY_MODE4
);
3364 * Workaround for 60x1-B2 errata SATA#13:
3365 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3366 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3367 * Or ensure we use writelfl() when writing PHY_MODE4.
3369 writel(m3
, port_mmio
+ PHY_MODE3
);
3371 /* Revert values of pre-emphasis and signal amps to the saved ones */
3372 m2
= readl(port_mmio
+ PHY_MODE2
);
3374 m2
&= ~MV_M2_PREAMP_MASK
;
3375 m2
|= hpriv
->signal
[port
].amps
;
3376 m2
|= hpriv
->signal
[port
].pre
;
3379 /* according to mvSata 3.6.1, some IIE values are fixed */
3380 if (IS_GEN_IIE(hpriv
)) {
3385 writel(m2
, port_mmio
+ PHY_MODE2
);
3388 /* TODO: use the generic LED interface to configure the SATA Presence */
3389 /* & Acitivy LEDs on the board */
3390 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
3396 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3399 void __iomem
*port_mmio
;
3402 port_mmio
= mv_port_base(mmio
, idx
);
3403 tmp
= readl(port_mmio
+ PHY_MODE2
);
3405 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
3406 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
3410 #define ZERO(reg) writel(0, port_mmio + (reg))
3411 static void mv_soc_reset_hc_port(struct mv_host_priv
*hpriv
,
3412 void __iomem
*mmio
, unsigned int port
)
3414 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3416 mv_reset_channel(hpriv
, mmio
, port
);
3418 ZERO(0x028); /* command */
3419 writel(0x101f, port_mmio
+ EDMA_CFG
);
3420 ZERO(0x004); /* timer */
3421 ZERO(0x008); /* irq err cause */
3422 ZERO(0x00c); /* irq err mask */
3423 ZERO(0x010); /* rq bah */
3424 ZERO(0x014); /* rq inp */
3425 ZERO(0x018); /* rq outp */
3426 ZERO(0x01c); /* respq bah */
3427 ZERO(0x024); /* respq outp */
3428 ZERO(0x020); /* respq inp */
3429 ZERO(0x02c); /* test control */
3430 writel(0x800, port_mmio
+ EDMA_IORDY_TMOUT
);
3435 #define ZERO(reg) writel(0, hc_mmio + (reg))
3436 static void mv_soc_reset_one_hc(struct mv_host_priv
*hpriv
,
3439 void __iomem
*hc_mmio
= mv_hc_base(mmio
, 0);
3449 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
3450 void __iomem
*mmio
, unsigned int n_hc
)
3454 for (port
= 0; port
< hpriv
->n_ports
; port
++)
3455 mv_soc_reset_hc_port(hpriv
, mmio
, port
);
3457 mv_soc_reset_one_hc(hpriv
, mmio
);
3462 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
3468 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
3473 static void mv_soc_65n_phy_errata(struct mv_host_priv
*hpriv
,
3474 void __iomem
*mmio
, unsigned int port
)
3476 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3479 reg
= readl(port_mmio
+ PHY_MODE3
);
3480 reg
&= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3482 reg
&= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3484 writel(reg
, port_mmio
+ PHY_MODE3
);
3486 reg
= readl(port_mmio
+ PHY_MODE4
);
3487 reg
&= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3489 writel(reg
, port_mmio
+ PHY_MODE4
);
3491 reg
= readl(port_mmio
+ PHY_MODE9_GEN2
);
3492 reg
&= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3494 reg
&= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3495 writel(reg
, port_mmio
+ PHY_MODE9_GEN2
);
3497 reg
= readl(port_mmio
+ PHY_MODE9_GEN1
);
3498 reg
&= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3500 reg
&= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3501 writel(reg
, port_mmio
+ PHY_MODE9_GEN1
);
3505 * soc_is_65 - check if the soc is 65 nano device
3507 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3508 * register, this register should contain non-zero value and it exists only
3509 * in the 65 nano devices, when reading it from older devices we get 0.
3511 static bool soc_is_65n(struct mv_host_priv
*hpriv
)
3513 void __iomem
*port0_mmio
= mv_port_base(hpriv
->base
, 0);
3515 if (readl(port0_mmio
+ PHYCFG_OFS
))
3520 static void mv_setup_ifcfg(void __iomem
*port_mmio
, int want_gen2i
)
3522 u32 ifcfg
= readl(port_mmio
+ SATA_IFCFG
);
3524 ifcfg
= (ifcfg
& 0xf7f) | 0x9b1000; /* from chip spec */
3526 ifcfg
|= (1 << 7); /* enable gen2i speed */
3527 writelfl(ifcfg
, port_mmio
+ SATA_IFCFG
);
3530 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3531 unsigned int port_no
)
3533 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
3536 * The datasheet warns against setting EDMA_RESET when EDMA is active
3537 * (but doesn't say what the problem might be). So we first try
3538 * to disable the EDMA engine before doing the EDMA_RESET operation.
3540 mv_stop_edma_engine(port_mmio
);
3541 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD
);
3543 if (!IS_GEN_I(hpriv
)) {
3544 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3545 mv_setup_ifcfg(port_mmio
, 1);
3548 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3549 * link, and physical layers. It resets all SATA interface registers
3550 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3552 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD
);
3553 udelay(25); /* allow reset propagation */
3554 writelfl(0, port_mmio
+ EDMA_CMD
);
3556 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
3558 if (IS_GEN_I(hpriv
))
3562 static void mv_pmp_select(struct ata_port
*ap
, int pmp
)
3564 if (sata_pmp_supported(ap
)) {
3565 void __iomem
*port_mmio
= mv_ap_base(ap
);
3566 u32 reg
= readl(port_mmio
+ SATA_IFCTL
);
3567 int old
= reg
& 0xf;
3570 reg
= (reg
& ~0xf) | pmp
;
3571 writelfl(reg
, port_mmio
+ SATA_IFCTL
);
3576 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
3577 unsigned long deadline
)
3579 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
3580 return sata_std_hardreset(link
, class, deadline
);
3583 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
3584 unsigned long deadline
)
3586 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
3587 return ata_sff_softreset(link
, class, deadline
);
3590 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
3591 unsigned long deadline
)
3593 struct ata_port
*ap
= link
->ap
;
3594 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
3595 struct mv_port_priv
*pp
= ap
->private_data
;
3596 void __iomem
*mmio
= hpriv
->base
;
3597 int rc
, attempts
= 0, extra
= 0;
3601 mv_reset_channel(hpriv
, mmio
, ap
->port_no
);
3602 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
3604 ~(MV_PP_FLAG_FBS_EN
| MV_PP_FLAG_NCQ_EN
| MV_PP_FLAG_FAKE_ATA_BUSY
);
3606 /* Workaround for errata FEr SATA#10 (part 2) */
3608 const unsigned long *timing
=
3609 sata_ehc_deb_timing(&link
->eh_context
);
3611 rc
= sata_link_hardreset(link
, timing
, deadline
+ extra
,
3613 rc
= online
? -EAGAIN
: rc
;
3616 sata_scr_read(link
, SCR_STATUS
, &sstatus
);
3617 if (!IS_GEN_I(hpriv
) && ++attempts
>= 5 && sstatus
== 0x121) {
3618 /* Force 1.5gb/s link speed and try again */
3619 mv_setup_ifcfg(mv_ap_base(ap
), 0);
3620 if (time_after(jiffies
+ HZ
, deadline
))
3621 extra
= HZ
; /* only extend it once, max */
3623 } while (sstatus
!= 0x0 && sstatus
!= 0x113 && sstatus
!= 0x123);
3624 mv_save_cached_regs(ap
);
3625 mv_edma_cfg(ap
, 0, 0);
3630 static void mv_eh_freeze(struct ata_port
*ap
)
3633 mv_enable_port_irqs(ap
, 0);
3636 static void mv_eh_thaw(struct ata_port
*ap
)
3638 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
3639 unsigned int port
= ap
->port_no
;
3640 unsigned int hardport
= mv_hardport_from_port(port
);
3641 void __iomem
*hc_mmio
= mv_hc_base_from_port(hpriv
->base
, port
);
3642 void __iomem
*port_mmio
= mv_ap_base(ap
);
3645 /* clear EDMA errors on this port */
3646 writel(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
3648 /* clear pending irq events */
3649 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
3650 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE
);
3652 mv_enable_port_irqs(ap
, ERR_IRQ
);
3656 * mv_port_init - Perform some early initialization on a single port.
3657 * @port: libata data structure storing shadow register addresses
3658 * @port_mmio: base address of the port
3660 * Initialize shadow register mmio addresses, clear outstanding
3661 * interrupts on the port, and unmask interrupts for the future
3662 * start of the port.
3665 * Inherited from caller.
3667 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
3669 void __iomem
*serr
, *shd_base
= port_mmio
+ SHD_BLK
;
3671 /* PIO related setup
3673 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
3675 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
3676 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
3677 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
3678 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
3679 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
3680 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
3682 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
3683 /* special case: control/altstatus doesn't have ATA_REG_ address */
3684 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST
;
3686 /* Clear any currently outstanding port interrupt conditions */
3687 serr
= port_mmio
+ mv_scr_offset(SCR_ERROR
);
3688 writelfl(readl(serr
), serr
);
3689 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
3691 /* unmask all non-transient EDMA error interrupts */
3692 writelfl(~EDMA_ERR_IRQ_TRANSIENT
, port_mmio
+ EDMA_ERR_IRQ_MASK
);
3694 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3695 readl(port_mmio
+ EDMA_CFG
),
3696 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE
),
3697 readl(port_mmio
+ EDMA_ERR_IRQ_MASK
));
3700 static unsigned int mv_in_pcix_mode(struct ata_host
*host
)
3702 struct mv_host_priv
*hpriv
= host
->private_data
;
3703 void __iomem
*mmio
= hpriv
->base
;
3706 if (IS_SOC(hpriv
) || !IS_PCIE(hpriv
))
3707 return 0; /* not PCI-X capable */
3708 reg
= readl(mmio
+ MV_PCI_MODE
);
3709 if ((reg
& MV_PCI_MODE_MASK
) == 0)
3710 return 0; /* conventional PCI mode */
3711 return 1; /* chip is in PCI-X mode */
3714 static int mv_pci_cut_through_okay(struct ata_host
*host
)
3716 struct mv_host_priv
*hpriv
= host
->private_data
;
3717 void __iomem
*mmio
= hpriv
->base
;
3720 if (!mv_in_pcix_mode(host
)) {
3721 reg
= readl(mmio
+ MV_PCI_COMMAND
);
3722 if (reg
& MV_PCI_COMMAND_MRDTRIG
)
3723 return 0; /* not okay */
3725 return 1; /* okay */
3728 static void mv_60x1b2_errata_pci7(struct ata_host
*host
)
3730 struct mv_host_priv
*hpriv
= host
->private_data
;
3731 void __iomem
*mmio
= hpriv
->base
;
3733 /* workaround for 60x1-B2 errata PCI#7 */
3734 if (mv_in_pcix_mode(host
)) {
3735 u32 reg
= readl(mmio
+ MV_PCI_COMMAND
);
3736 writelfl(reg
& ~MV_PCI_COMMAND_MWRCOM
, mmio
+ MV_PCI_COMMAND
);
3740 static int mv_chip_id(struct ata_host
*host
, unsigned int board_idx
)
3742 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3743 struct mv_host_priv
*hpriv
= host
->private_data
;
3744 u32 hp_flags
= hpriv
->hp_flags
;
3746 switch (board_idx
) {
3748 hpriv
->ops
= &mv5xxx_ops
;
3749 hp_flags
|= MV_HP_GEN_I
;
3751 switch (pdev
->revision
) {
3753 hp_flags
|= MV_HP_ERRATA_50XXB0
;
3756 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3759 dev_warn(&pdev
->dev
,
3760 "Applying 50XXB2 workarounds to unknown rev\n");
3761 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3768 hpriv
->ops
= &mv5xxx_ops
;
3769 hp_flags
|= MV_HP_GEN_I
;
3771 switch (pdev
->revision
) {
3773 hp_flags
|= MV_HP_ERRATA_50XXB0
;
3776 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3779 dev_warn(&pdev
->dev
,
3780 "Applying B2 workarounds to unknown rev\n");
3781 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3788 hpriv
->ops
= &mv6xxx_ops
;
3789 hp_flags
|= MV_HP_GEN_II
;
3791 switch (pdev
->revision
) {
3793 mv_60x1b2_errata_pci7(host
);
3794 hp_flags
|= MV_HP_ERRATA_60X1B2
;
3797 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3800 dev_warn(&pdev
->dev
,
3801 "Applying B2 workarounds to unknown rev\n");
3802 hp_flags
|= MV_HP_ERRATA_60X1B2
;
3808 hp_flags
|= MV_HP_PCIE
| MV_HP_CUT_THROUGH
;
3809 if (pdev
->vendor
== PCI_VENDOR_ID_TTI
&&
3810 (pdev
->device
== 0x2300 || pdev
->device
== 0x2310))
3813 * Highpoint RocketRAID PCIe 23xx series cards:
3815 * Unconfigured drives are treated as "Legacy"
3816 * by the BIOS, and it overwrites sector 8 with
3817 * a "Lgcy" metadata block prior to Linux boot.
3819 * Configured drives (RAID or JBOD) leave sector 8
3820 * alone, but instead overwrite a high numbered
3821 * sector for the RAID metadata. This sector can
3822 * be determined exactly, by truncating the physical
3823 * drive capacity to a nice even GB value.
3825 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3827 * Warn the user, lest they think we're just buggy.
3829 printk(KERN_WARNING DRV_NAME
": Highpoint RocketRAID"
3830 " BIOS CORRUPTS DATA on all attached drives,"
3831 " regardless of if/how they are configured."
3833 printk(KERN_WARNING DRV_NAME
": For data safety, do not"
3834 " use sectors 8-9 on \"Legacy\" drives,"
3835 " and avoid the final two gigabytes on"
3836 " all RocketRAID BIOS initialized drives.\n");
3840 hpriv
->ops
= &mv6xxx_ops
;
3841 hp_flags
|= MV_HP_GEN_IIE
;
3842 if (board_idx
== chip_6042
&& mv_pci_cut_through_okay(host
))
3843 hp_flags
|= MV_HP_CUT_THROUGH
;
3845 switch (pdev
->revision
) {
3846 case 0x2: /* Rev.B0: the first/only public release */
3847 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3850 dev_warn(&pdev
->dev
,
3851 "Applying 60X1C0 workarounds to unknown rev\n");
3852 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3857 if (soc_is_65n(hpriv
))
3858 hpriv
->ops
= &mv_soc_65n_ops
;
3860 hpriv
->ops
= &mv_soc_ops
;
3861 hp_flags
|= MV_HP_FLAG_SOC
| MV_HP_GEN_IIE
|
3862 MV_HP_ERRATA_60X1C0
;
3866 dev_err(host
->dev
, "BUG: invalid board index %u\n", board_idx
);
3870 hpriv
->hp_flags
= hp_flags
;
3871 if (hp_flags
& MV_HP_PCIE
) {
3872 hpriv
->irq_cause_offset
= PCIE_IRQ_CAUSE
;
3873 hpriv
->irq_mask_offset
= PCIE_IRQ_MASK
;
3874 hpriv
->unmask_all_irqs
= PCIE_UNMASK_ALL_IRQS
;
3876 hpriv
->irq_cause_offset
= PCI_IRQ_CAUSE
;
3877 hpriv
->irq_mask_offset
= PCI_IRQ_MASK
;
3878 hpriv
->unmask_all_irqs
= PCI_UNMASK_ALL_IRQS
;
3885 * mv_init_host - Perform some early initialization of the host.
3886 * @host: ATA host to initialize
3888 * If possible, do an early global reset of the host. Then do
3889 * our port init and clear/unmask all/relevant host interrupts.
3892 * Inherited from caller.
3894 static int mv_init_host(struct ata_host
*host
)
3896 int rc
= 0, n_hc
, port
, hc
;
3897 struct mv_host_priv
*hpriv
= host
->private_data
;
3898 void __iomem
*mmio
= hpriv
->base
;
3900 rc
= mv_chip_id(host
, hpriv
->board_idx
);
3904 if (IS_SOC(hpriv
)) {
3905 hpriv
->main_irq_cause_addr
= mmio
+ SOC_HC_MAIN_IRQ_CAUSE
;
3906 hpriv
->main_irq_mask_addr
= mmio
+ SOC_HC_MAIN_IRQ_MASK
;
3908 hpriv
->main_irq_cause_addr
= mmio
+ PCI_HC_MAIN_IRQ_CAUSE
;
3909 hpriv
->main_irq_mask_addr
= mmio
+ PCI_HC_MAIN_IRQ_MASK
;
3912 /* initialize shadow irq mask with register's value */
3913 hpriv
->main_irq_mask
= readl(hpriv
->main_irq_mask_addr
);
3915 /* global interrupt mask: 0 == mask everything */
3916 mv_set_main_irq_mask(host
, ~0, 0);
3918 n_hc
= mv_get_hc_count(host
->ports
[0]->flags
);
3920 for (port
= 0; port
< host
->n_ports
; port
++)
3921 if (hpriv
->ops
->read_preamp
)
3922 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
3924 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
3928 hpriv
->ops
->reset_flash(hpriv
, mmio
);
3929 hpriv
->ops
->reset_bus(host
, mmio
);
3930 hpriv
->ops
->enable_leds(hpriv
, mmio
);
3932 for (port
= 0; port
< host
->n_ports
; port
++) {
3933 struct ata_port
*ap
= host
->ports
[port
];
3934 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3936 mv_port_init(&ap
->ioaddr
, port_mmio
);
3939 for (hc
= 0; hc
< n_hc
; hc
++) {
3940 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3942 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3943 "(before clear)=0x%08x\n", hc
,
3944 readl(hc_mmio
+ HC_CFG
),
3945 readl(hc_mmio
+ HC_IRQ_CAUSE
));
3947 /* Clear any currently outstanding hc interrupt conditions */
3948 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE
);
3951 if (!IS_SOC(hpriv
)) {
3952 /* Clear any currently outstanding host interrupt conditions */
3953 writelfl(0, mmio
+ hpriv
->irq_cause_offset
);
3955 /* and unmask interrupt generation for host regs */
3956 writelfl(hpriv
->unmask_all_irqs
, mmio
+ hpriv
->irq_mask_offset
);
3960 * enable only global host interrupts for now.
3961 * The per-port interrupts get done later as ports are set up.
3963 mv_set_main_irq_mask(host
, 0, PCI_ERR
);
3964 mv_set_irq_coalescing(host
, irq_coalescing_io_count
,
3965 irq_coalescing_usecs
);
3970 static int mv_create_dma_pools(struct mv_host_priv
*hpriv
, struct device
*dev
)
3972 hpriv
->crqb_pool
= dmam_pool_create("crqb_q", dev
, MV_CRQB_Q_SZ
,
3974 if (!hpriv
->crqb_pool
)
3977 hpriv
->crpb_pool
= dmam_pool_create("crpb_q", dev
, MV_CRPB_Q_SZ
,
3979 if (!hpriv
->crpb_pool
)
3982 hpriv
->sg_tbl_pool
= dmam_pool_create("sg_tbl", dev
, MV_SG_TBL_SZ
,
3984 if (!hpriv
->sg_tbl_pool
)
3990 static void mv_conf_mbus_windows(struct mv_host_priv
*hpriv
,
3991 struct mbus_dram_target_info
*dram
)
3995 for (i
= 0; i
< 4; i
++) {
3996 writel(0, hpriv
->base
+ WINDOW_CTRL(i
));
3997 writel(0, hpriv
->base
+ WINDOW_BASE(i
));
4000 for (i
= 0; i
< dram
->num_cs
; i
++) {
4001 struct mbus_dram_window
*cs
= dram
->cs
+ i
;
4003 writel(((cs
->size
- 1) & 0xffff0000) |
4004 (cs
->mbus_attr
<< 8) |
4005 (dram
->mbus_dram_target_id
<< 4) | 1,
4006 hpriv
->base
+ WINDOW_CTRL(i
));
4007 writel(cs
->base
, hpriv
->base
+ WINDOW_BASE(i
));
4012 * mv_platform_probe - handle a positive probe of an soc Marvell
4014 * @pdev: platform device found
4017 * Inherited from caller.
4019 static int mv_platform_probe(struct platform_device
*pdev
)
4021 const struct mv_sata_platform_data
*mv_platform_data
;
4022 const struct ata_port_info
*ppi
[] =
4023 { &mv_port_info
[chip_soc
], NULL
};
4024 struct ata_host
*host
;
4025 struct mv_host_priv
*hpriv
;
4026 struct resource
*res
;
4029 ata_print_version_once(&pdev
->dev
, DRV_VERSION
);
4032 * Simple resource validation ..
4034 if (unlikely(pdev
->num_resources
!= 2)) {
4035 dev_err(&pdev
->dev
, "invalid number of resources\n");
4040 * Get the register base first
4042 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
4047 mv_platform_data
= pdev
->dev
.platform_data
;
4048 n_ports
= mv_platform_data
->n_ports
;
4050 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
4051 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
4053 if (!host
|| !hpriv
)
4055 host
->private_data
= hpriv
;
4056 hpriv
->n_ports
= n_ports
;
4057 hpriv
->board_idx
= chip_soc
;
4060 hpriv
->base
= devm_ioremap(&pdev
->dev
, res
->start
,
4061 resource_size(res
));
4062 hpriv
->base
-= SATAHC0_REG_BASE
;
4064 #if defined(CONFIG_HAVE_CLK)
4065 hpriv
->clk
= clk_get(&pdev
->dev
, NULL
);
4066 if (IS_ERR(hpriv
->clk
))
4067 dev_notice(&pdev
->dev
, "cannot get clkdev\n");
4069 clk_enable(hpriv
->clk
);
4073 * (Re-)program MBUS remapping windows if we are asked to.
4075 if (mv_platform_data
->dram
!= NULL
)
4076 mv_conf_mbus_windows(hpriv
, mv_platform_data
->dram
);
4078 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
4082 /* initialize adapter */
4083 rc
= mv_init_host(host
);
4087 dev_info(&pdev
->dev
, "slots %u ports %d\n",
4088 (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
);
4090 rc
= ata_host_activate(host
, platform_get_irq(pdev
, 0), mv_interrupt
,
4091 IRQF_SHARED
, &mv6_sht
);
4096 #if defined(CONFIG_HAVE_CLK)
4097 if (!IS_ERR(hpriv
->clk
)) {
4098 clk_disable(hpriv
->clk
);
4099 clk_put(hpriv
->clk
);
4108 * mv_platform_remove - unplug a platform interface
4109 * @pdev: platform device
4111 * A platform bus SATA device has been unplugged. Perform the needed
4112 * cleanup. Also called on module unload for any active devices.
4114 static int __devexit
mv_platform_remove(struct platform_device
*pdev
)
4116 struct ata_host
*host
= platform_get_drvdata(pdev
);
4117 #if defined(CONFIG_HAVE_CLK)
4118 struct mv_host_priv
*hpriv
= host
->private_data
;
4120 ata_host_detach(host
);
4122 #if defined(CONFIG_HAVE_CLK)
4123 if (!IS_ERR(hpriv
->clk
)) {
4124 clk_disable(hpriv
->clk
);
4125 clk_put(hpriv
->clk
);
4132 static int mv_platform_suspend(struct platform_device
*pdev
, pm_message_t state
)
4134 struct ata_host
*host
= platform_get_drvdata(pdev
);
4136 return ata_host_suspend(host
, state
);
4141 static int mv_platform_resume(struct platform_device
*pdev
)
4143 struct ata_host
*host
= platform_get_drvdata(pdev
);
4147 struct mv_host_priv
*hpriv
= host
->private_data
;
4148 const struct mv_sata_platform_data
*mv_platform_data
= \
4149 pdev
->dev
.platform_data
;
4151 * (Re-)program MBUS remapping windows if we are asked to.
4153 if (mv_platform_data
->dram
!= NULL
)
4154 mv_conf_mbus_windows(hpriv
, mv_platform_data
->dram
);
4156 /* initialize adapter */
4157 ret
= mv_init_host(host
);
4159 printk(KERN_ERR DRV_NAME
": Error during HW init\n");
4162 ata_host_resume(host
);
4168 #define mv_platform_suspend NULL
4169 #define mv_platform_resume NULL
4172 static struct platform_driver mv_platform_driver
= {
4173 .probe
= mv_platform_probe
,
4174 .remove
= __devexit_p(mv_platform_remove
),
4175 .suspend
= mv_platform_suspend
,
4176 .resume
= mv_platform_resume
,
4179 .owner
= THIS_MODULE
,
4185 static int mv_pci_init_one(struct pci_dev
*pdev
,
4186 const struct pci_device_id
*ent
);
4188 static int mv_pci_device_resume(struct pci_dev
*pdev
);
4192 static struct pci_driver mv_pci_driver
= {
4194 .id_table
= mv_pci_tbl
,
4195 .probe
= mv_pci_init_one
,
4196 .remove
= ata_pci_remove_one
,
4198 .suspend
= ata_pci_device_suspend
,
4199 .resume
= mv_pci_device_resume
,
4204 /* move to PCI layer or libata core? */
4205 static int pci_go_64(struct pci_dev
*pdev
)
4209 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
4210 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
4212 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4215 "64-bit DMA enable failed\n");
4220 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4222 dev_err(&pdev
->dev
, "32-bit DMA enable failed\n");
4225 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4228 "32-bit consistent DMA enable failed\n");
4237 * mv_print_info - Dump key info to kernel log for perusal.
4238 * @host: ATA host to print info about
4240 * FIXME: complete this.
4243 * Inherited from caller.
4245 static void mv_print_info(struct ata_host
*host
)
4247 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
4248 struct mv_host_priv
*hpriv
= host
->private_data
;
4250 const char *scc_s
, *gen
;
4252 /* Use this to determine the HW stepping of the chip so we know
4253 * what errata to workaround
4255 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
4258 else if (scc
== 0x01)
4263 if (IS_GEN_I(hpriv
))
4265 else if (IS_GEN_II(hpriv
))
4267 else if (IS_GEN_IIE(hpriv
))
4272 dev_info(&pdev
->dev
, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4273 gen
, (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
,
4274 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
4278 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4279 * @pdev: PCI device found
4280 * @ent: PCI device ID entry for the matched host
4283 * Inherited from caller.
4285 static int mv_pci_init_one(struct pci_dev
*pdev
,
4286 const struct pci_device_id
*ent
)
4288 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
4289 const struct ata_port_info
*ppi
[] = { &mv_port_info
[board_idx
], NULL
};
4290 struct ata_host
*host
;
4291 struct mv_host_priv
*hpriv
;
4292 int n_ports
, port
, rc
;
4294 ata_print_version_once(&pdev
->dev
, DRV_VERSION
);
4297 n_ports
= mv_get_hc_count(ppi
[0]->flags
) * MV_PORTS_PER_HC
;
4299 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
4300 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
4301 if (!host
|| !hpriv
)
4303 host
->private_data
= hpriv
;
4304 hpriv
->n_ports
= n_ports
;
4305 hpriv
->board_idx
= board_idx
;
4307 /* acquire resources */
4308 rc
= pcim_enable_device(pdev
);
4312 rc
= pcim_iomap_regions(pdev
, 1 << MV_PRIMARY_BAR
, DRV_NAME
);
4314 pcim_pin_device(pdev
);
4317 host
->iomap
= pcim_iomap_table(pdev
);
4318 hpriv
->base
= host
->iomap
[MV_PRIMARY_BAR
];
4320 rc
= pci_go_64(pdev
);
4324 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
4328 for (port
= 0; port
< host
->n_ports
; port
++) {
4329 struct ata_port
*ap
= host
->ports
[port
];
4330 void __iomem
*port_mmio
= mv_port_base(hpriv
->base
, port
);
4331 unsigned int offset
= port_mmio
- hpriv
->base
;
4333 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, -1, "mmio");
4334 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, offset
, "port");
4337 /* initialize adapter */
4338 rc
= mv_init_host(host
);
4342 /* Enable message-switched interrupts, if requested */
4343 if (msi
&& pci_enable_msi(pdev
) == 0)
4344 hpriv
->hp_flags
|= MV_HP_FLAG_MSI
;
4346 mv_dump_pci_cfg(pdev
, 0x68);
4347 mv_print_info(host
);
4349 pci_set_master(pdev
);
4350 pci_try_set_mwi(pdev
);
4351 return ata_host_activate(host
, pdev
->irq
, mv_interrupt
, IRQF_SHARED
,
4352 IS_GEN_I(hpriv
) ? &mv5_sht
: &mv6_sht
);
4356 static int mv_pci_device_resume(struct pci_dev
*pdev
)
4358 struct ata_host
*host
= pci_get_drvdata(pdev
);
4361 rc
= ata_pci_device_do_resume(pdev
);
4365 /* initialize adapter */
4366 rc
= mv_init_host(host
);
4370 ata_host_resume(host
);
4377 static int mv_platform_probe(struct platform_device
*pdev
);
4378 static int __devexit
mv_platform_remove(struct platform_device
*pdev
);
4380 static int __init
mv_init(void)
4384 rc
= pci_register_driver(&mv_pci_driver
);
4388 rc
= platform_driver_register(&mv_platform_driver
);
4392 pci_unregister_driver(&mv_pci_driver
);
4397 static void __exit
mv_exit(void)
4400 pci_unregister_driver(&mv_pci_driver
);
4402 platform_driver_unregister(&mv_platform_driver
);
4405 MODULE_AUTHOR("Brett Russ");
4406 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4407 MODULE_LICENSE("GPL");
4408 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
4409 MODULE_VERSION(DRV_VERSION
);
4410 MODULE_ALIAS("platform:" DRV_NAME
);
4412 module_init(mv_init
);
4413 module_exit(mv_exit
);