drm/i915/overlay: Explicitly pass regs from map to unmap
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
bloba9649f4b261e6b3c01632939c46a77f19f447de1
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <linux/compaction.h>
53 #include <trace/events/kmem.h>
54 #include <linux/ftrace_event.h>
56 #include <asm/tlbflush.h>
57 #include <asm/div64.h>
58 #include "internal.h"
60 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
61 DEFINE_PER_CPU(int, numa_node);
62 EXPORT_PER_CPU_SYMBOL(numa_node);
63 #endif
65 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
70 * defined in <linux/topology.h>.
72 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
73 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
74 #endif
77 * Array of node states.
79 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
80 [N_POSSIBLE] = NODE_MASK_ALL,
81 [N_ONLINE] = { { [0] = 1UL } },
82 #ifndef CONFIG_NUMA
83 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
84 #ifdef CONFIG_HIGHMEM
85 [N_HIGH_MEMORY] = { { [0] = 1UL } },
86 #endif
87 [N_CPU] = { { [0] = 1UL } },
88 #endif /* NUMA */
90 EXPORT_SYMBOL(node_states);
92 unsigned long totalram_pages __read_mostly;
93 unsigned long totalreserve_pages __read_mostly;
94 int percpu_pagelist_fraction;
95 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
97 #ifdef CONFIG_PM_SLEEP
99 * The following functions are used by the suspend/hibernate code to temporarily
100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
101 * while devices are suspended. To avoid races with the suspend/hibernate code,
102 * they should always be called with pm_mutex held (gfp_allowed_mask also should
103 * only be modified with pm_mutex held, unless the suspend/hibernate code is
104 * guaranteed not to run in parallel with that modification).
106 void set_gfp_allowed_mask(gfp_t mask)
108 WARN_ON(!mutex_is_locked(&pm_mutex));
109 gfp_allowed_mask = mask;
112 gfp_t clear_gfp_allowed_mask(gfp_t mask)
114 gfp_t ret = gfp_allowed_mask;
116 WARN_ON(!mutex_is_locked(&pm_mutex));
117 gfp_allowed_mask &= ~mask;
118 return ret;
120 #endif /* CONFIG_PM_SLEEP */
122 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
123 int pageblock_order __read_mostly;
124 #endif
126 static void __free_pages_ok(struct page *page, unsigned int order);
129 * results with 256, 32 in the lowmem_reserve sysctl:
130 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
131 * 1G machine -> (16M dma, 784M normal, 224M high)
132 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
133 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
134 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
136 * TBD: should special case ZONE_DMA32 machines here - in those we normally
137 * don't need any ZONE_NORMAL reservation
139 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
140 #ifdef CONFIG_ZONE_DMA
141 256,
142 #endif
143 #ifdef CONFIG_ZONE_DMA32
144 256,
145 #endif
146 #ifdef CONFIG_HIGHMEM
148 #endif
152 EXPORT_SYMBOL(totalram_pages);
154 static char * const zone_names[MAX_NR_ZONES] = {
155 #ifdef CONFIG_ZONE_DMA
156 "DMA",
157 #endif
158 #ifdef CONFIG_ZONE_DMA32
159 "DMA32",
160 #endif
161 "Normal",
162 #ifdef CONFIG_HIGHMEM
163 "HighMem",
164 #endif
165 "Movable",
168 int min_free_kbytes = 1024;
170 static unsigned long __meminitdata nr_kernel_pages;
171 static unsigned long __meminitdata nr_all_pages;
172 static unsigned long __meminitdata dma_reserve;
174 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
176 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
177 * ranges of memory (RAM) that may be registered with add_active_range().
178 * Ranges passed to add_active_range() will be merged if possible
179 * so the number of times add_active_range() can be called is
180 * related to the number of nodes and the number of holes
182 #ifdef CONFIG_MAX_ACTIVE_REGIONS
183 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
184 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
185 #else
186 #if MAX_NUMNODES >= 32
187 /* If there can be many nodes, allow up to 50 holes per node */
188 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
189 #else
190 /* By default, allow up to 256 distinct regions */
191 #define MAX_ACTIVE_REGIONS 256
192 #endif
193 #endif
195 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
196 static int __meminitdata nr_nodemap_entries;
197 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
198 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
199 static unsigned long __initdata required_kernelcore;
200 static unsigned long __initdata required_movablecore;
201 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
203 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
204 int movable_zone;
205 EXPORT_SYMBOL(movable_zone);
206 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
208 #if MAX_NUMNODES > 1
209 int nr_node_ids __read_mostly = MAX_NUMNODES;
210 int nr_online_nodes __read_mostly = 1;
211 EXPORT_SYMBOL(nr_node_ids);
212 EXPORT_SYMBOL(nr_online_nodes);
213 #endif
215 int page_group_by_mobility_disabled __read_mostly;
217 static void set_pageblock_migratetype(struct page *page, int migratetype)
220 if (unlikely(page_group_by_mobility_disabled))
221 migratetype = MIGRATE_UNMOVABLE;
223 set_pageblock_flags_group(page, (unsigned long)migratetype,
224 PB_migrate, PB_migrate_end);
227 bool oom_killer_disabled __read_mostly;
229 #ifdef CONFIG_DEBUG_VM
230 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
232 int ret = 0;
233 unsigned seq;
234 unsigned long pfn = page_to_pfn(page);
236 do {
237 seq = zone_span_seqbegin(zone);
238 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
239 ret = 1;
240 else if (pfn < zone->zone_start_pfn)
241 ret = 1;
242 } while (zone_span_seqretry(zone, seq));
244 return ret;
247 static int page_is_consistent(struct zone *zone, struct page *page)
249 if (!pfn_valid_within(page_to_pfn(page)))
250 return 0;
251 if (zone != page_zone(page))
252 return 0;
254 return 1;
257 * Temporary debugging check for pages not lying within a given zone.
259 static int bad_range(struct zone *zone, struct page *page)
261 if (page_outside_zone_boundaries(zone, page))
262 return 1;
263 if (!page_is_consistent(zone, page))
264 return 1;
266 return 0;
268 #else
269 static inline int bad_range(struct zone *zone, struct page *page)
271 return 0;
273 #endif
275 static void bad_page(struct page *page)
277 static unsigned long resume;
278 static unsigned long nr_shown;
279 static unsigned long nr_unshown;
281 /* Don't complain about poisoned pages */
282 if (PageHWPoison(page)) {
283 __ClearPageBuddy(page);
284 return;
288 * Allow a burst of 60 reports, then keep quiet for that minute;
289 * or allow a steady drip of one report per second.
291 if (nr_shown == 60) {
292 if (time_before(jiffies, resume)) {
293 nr_unshown++;
294 goto out;
296 if (nr_unshown) {
297 printk(KERN_ALERT
298 "BUG: Bad page state: %lu messages suppressed\n",
299 nr_unshown);
300 nr_unshown = 0;
302 nr_shown = 0;
304 if (nr_shown++ == 0)
305 resume = jiffies + 60 * HZ;
307 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
308 current->comm, page_to_pfn(page));
309 dump_page(page);
311 dump_stack();
312 out:
313 /* Leave bad fields for debug, except PageBuddy could make trouble */
314 __ClearPageBuddy(page);
315 add_taint(TAINT_BAD_PAGE);
319 * Higher-order pages are called "compound pages". They are structured thusly:
321 * The first PAGE_SIZE page is called the "head page".
323 * The remaining PAGE_SIZE pages are called "tail pages".
325 * All pages have PG_compound set. All pages have their ->private pointing at
326 * the head page (even the head page has this).
328 * The first tail page's ->lru.next holds the address of the compound page's
329 * put_page() function. Its ->lru.prev holds the order of allocation.
330 * This usage means that zero-order pages may not be compound.
333 static void free_compound_page(struct page *page)
335 __free_pages_ok(page, compound_order(page));
338 void prep_compound_page(struct page *page, unsigned long order)
340 int i;
341 int nr_pages = 1 << order;
343 set_compound_page_dtor(page, free_compound_page);
344 set_compound_order(page, order);
345 __SetPageHead(page);
346 for (i = 1; i < nr_pages; i++) {
347 struct page *p = page + i;
349 __SetPageTail(p);
350 p->first_page = page;
354 static int destroy_compound_page(struct page *page, unsigned long order)
356 int i;
357 int nr_pages = 1 << order;
358 int bad = 0;
360 if (unlikely(compound_order(page) != order) ||
361 unlikely(!PageHead(page))) {
362 bad_page(page);
363 bad++;
366 __ClearPageHead(page);
368 for (i = 1; i < nr_pages; i++) {
369 struct page *p = page + i;
371 if (unlikely(!PageTail(p) || (p->first_page != page))) {
372 bad_page(page);
373 bad++;
375 __ClearPageTail(p);
378 return bad;
381 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
383 int i;
386 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
387 * and __GFP_HIGHMEM from hard or soft interrupt context.
389 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
390 for (i = 0; i < (1 << order); i++)
391 clear_highpage(page + i);
394 static inline void set_page_order(struct page *page, int order)
396 set_page_private(page, order);
397 __SetPageBuddy(page);
400 static inline void rmv_page_order(struct page *page)
402 __ClearPageBuddy(page);
403 set_page_private(page, 0);
407 * Locate the struct page for both the matching buddy in our
408 * pair (buddy1) and the combined O(n+1) page they form (page).
410 * 1) Any buddy B1 will have an order O twin B2 which satisfies
411 * the following equation:
412 * B2 = B1 ^ (1 << O)
413 * For example, if the starting buddy (buddy2) is #8 its order
414 * 1 buddy is #10:
415 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
417 * 2) Any buddy B will have an order O+1 parent P which
418 * satisfies the following equation:
419 * P = B & ~(1 << O)
421 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
423 static inline struct page *
424 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
426 unsigned long buddy_idx = page_idx ^ (1 << order);
428 return page + (buddy_idx - page_idx);
431 static inline unsigned long
432 __find_combined_index(unsigned long page_idx, unsigned int order)
434 return (page_idx & ~(1 << order));
438 * This function checks whether a page is free && is the buddy
439 * we can do coalesce a page and its buddy if
440 * (a) the buddy is not in a hole &&
441 * (b) the buddy is in the buddy system &&
442 * (c) a page and its buddy have the same order &&
443 * (d) a page and its buddy are in the same zone.
445 * For recording whether a page is in the buddy system, we use PG_buddy.
446 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
448 * For recording page's order, we use page_private(page).
450 static inline int page_is_buddy(struct page *page, struct page *buddy,
451 int order)
453 if (!pfn_valid_within(page_to_pfn(buddy)))
454 return 0;
456 if (page_zone_id(page) != page_zone_id(buddy))
457 return 0;
459 if (PageBuddy(buddy) && page_order(buddy) == order) {
460 VM_BUG_ON(page_count(buddy) != 0);
461 return 1;
463 return 0;
467 * Freeing function for a buddy system allocator.
469 * The concept of a buddy system is to maintain direct-mapped table
470 * (containing bit values) for memory blocks of various "orders".
471 * The bottom level table contains the map for the smallest allocatable
472 * units of memory (here, pages), and each level above it describes
473 * pairs of units from the levels below, hence, "buddies".
474 * At a high level, all that happens here is marking the table entry
475 * at the bottom level available, and propagating the changes upward
476 * as necessary, plus some accounting needed to play nicely with other
477 * parts of the VM system.
478 * At each level, we keep a list of pages, which are heads of continuous
479 * free pages of length of (1 << order) and marked with PG_buddy. Page's
480 * order is recorded in page_private(page) field.
481 * So when we are allocating or freeing one, we can derive the state of the
482 * other. That is, if we allocate a small block, and both were
483 * free, the remainder of the region must be split into blocks.
484 * If a block is freed, and its buddy is also free, then this
485 * triggers coalescing into a block of larger size.
487 * -- wli
490 static inline void __free_one_page(struct page *page,
491 struct zone *zone, unsigned int order,
492 int migratetype)
494 unsigned long page_idx;
495 unsigned long combined_idx;
496 struct page *buddy;
498 if (unlikely(PageCompound(page)))
499 if (unlikely(destroy_compound_page(page, order)))
500 return;
502 VM_BUG_ON(migratetype == -1);
504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
506 VM_BUG_ON(page_idx & ((1 << order) - 1));
507 VM_BUG_ON(bad_range(zone, page));
509 while (order < MAX_ORDER-1) {
510 buddy = __page_find_buddy(page, page_idx, order);
511 if (!page_is_buddy(page, buddy, order))
512 break;
514 /* Our buddy is free, merge with it and move up one order. */
515 list_del(&buddy->lru);
516 zone->free_area[order].nr_free--;
517 rmv_page_order(buddy);
518 combined_idx = __find_combined_index(page_idx, order);
519 page = page + (combined_idx - page_idx);
520 page_idx = combined_idx;
521 order++;
523 set_page_order(page, order);
526 * If this is not the largest possible page, check if the buddy
527 * of the next-highest order is free. If it is, it's possible
528 * that pages are being freed that will coalesce soon. In case,
529 * that is happening, add the free page to the tail of the list
530 * so it's less likely to be used soon and more likely to be merged
531 * as a higher order page
533 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
534 struct page *higher_page, *higher_buddy;
535 combined_idx = __find_combined_index(page_idx, order);
536 higher_page = page + combined_idx - page_idx;
537 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
538 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
539 list_add_tail(&page->lru,
540 &zone->free_area[order].free_list[migratetype]);
541 goto out;
545 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
546 out:
547 zone->free_area[order].nr_free++;
551 * free_page_mlock() -- clean up attempts to free and mlocked() page.
552 * Page should not be on lru, so no need to fix that up.
553 * free_pages_check() will verify...
555 static inline void free_page_mlock(struct page *page)
557 __dec_zone_page_state(page, NR_MLOCK);
558 __count_vm_event(UNEVICTABLE_MLOCKFREED);
561 static inline int free_pages_check(struct page *page)
563 if (unlikely(page_mapcount(page) |
564 (page->mapping != NULL) |
565 (atomic_read(&page->_count) != 0) |
566 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
567 bad_page(page);
568 return 1;
570 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
571 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
572 return 0;
576 * Frees a number of pages from the PCP lists
577 * Assumes all pages on list are in same zone, and of same order.
578 * count is the number of pages to free.
580 * If the zone was previously in an "all pages pinned" state then look to
581 * see if this freeing clears that state.
583 * And clear the zone's pages_scanned counter, to hold off the "all pages are
584 * pinned" detection logic.
586 static void free_pcppages_bulk(struct zone *zone, int count,
587 struct per_cpu_pages *pcp)
589 int migratetype = 0;
590 int batch_free = 0;
592 spin_lock(&zone->lock);
593 zone->all_unreclaimable = 0;
594 zone->pages_scanned = 0;
596 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
597 while (count) {
598 struct page *page;
599 struct list_head *list;
602 * Remove pages from lists in a round-robin fashion. A
603 * batch_free count is maintained that is incremented when an
604 * empty list is encountered. This is so more pages are freed
605 * off fuller lists instead of spinning excessively around empty
606 * lists
608 do {
609 batch_free++;
610 if (++migratetype == MIGRATE_PCPTYPES)
611 migratetype = 0;
612 list = &pcp->lists[migratetype];
613 } while (list_empty(list));
615 do {
616 page = list_entry(list->prev, struct page, lru);
617 /* must delete as __free_one_page list manipulates */
618 list_del(&page->lru);
619 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
620 __free_one_page(page, zone, 0, page_private(page));
621 trace_mm_page_pcpu_drain(page, 0, page_private(page));
622 } while (--count && --batch_free && !list_empty(list));
624 spin_unlock(&zone->lock);
627 static void free_one_page(struct zone *zone, struct page *page, int order,
628 int migratetype)
630 spin_lock(&zone->lock);
631 zone->all_unreclaimable = 0;
632 zone->pages_scanned = 0;
634 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
635 __free_one_page(page, zone, order, migratetype);
636 spin_unlock(&zone->lock);
639 static bool free_pages_prepare(struct page *page, unsigned int order)
641 int i;
642 int bad = 0;
644 trace_mm_page_free_direct(page, order);
645 kmemcheck_free_shadow(page, order);
647 for (i = 0; i < (1 << order); i++) {
648 struct page *pg = page + i;
650 if (PageAnon(pg))
651 pg->mapping = NULL;
652 bad += free_pages_check(pg);
654 if (bad)
655 return false;
657 if (!PageHighMem(page)) {
658 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
659 debug_check_no_obj_freed(page_address(page),
660 PAGE_SIZE << order);
662 arch_free_page(page, order);
663 kernel_map_pages(page, 1 << order, 0);
665 return true;
668 static void __free_pages_ok(struct page *page, unsigned int order)
670 unsigned long flags;
671 int wasMlocked = __TestClearPageMlocked(page);
673 if (!free_pages_prepare(page, order))
674 return;
676 local_irq_save(flags);
677 if (unlikely(wasMlocked))
678 free_page_mlock(page);
679 __count_vm_events(PGFREE, 1 << order);
680 free_one_page(page_zone(page), page, order,
681 get_pageblock_migratetype(page));
682 local_irq_restore(flags);
686 * permit the bootmem allocator to evade page validation on high-order frees
688 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
690 if (order == 0) {
691 __ClearPageReserved(page);
692 set_page_count(page, 0);
693 set_page_refcounted(page);
694 __free_page(page);
695 } else {
696 int loop;
698 prefetchw(page);
699 for (loop = 0; loop < BITS_PER_LONG; loop++) {
700 struct page *p = &page[loop];
702 if (loop + 1 < BITS_PER_LONG)
703 prefetchw(p + 1);
704 __ClearPageReserved(p);
705 set_page_count(p, 0);
708 set_page_refcounted(page);
709 __free_pages(page, order);
715 * The order of subdivision here is critical for the IO subsystem.
716 * Please do not alter this order without good reasons and regression
717 * testing. Specifically, as large blocks of memory are subdivided,
718 * the order in which smaller blocks are delivered depends on the order
719 * they're subdivided in this function. This is the primary factor
720 * influencing the order in which pages are delivered to the IO
721 * subsystem according to empirical testing, and this is also justified
722 * by considering the behavior of a buddy system containing a single
723 * large block of memory acted on by a series of small allocations.
724 * This behavior is a critical factor in sglist merging's success.
726 * -- wli
728 static inline void expand(struct zone *zone, struct page *page,
729 int low, int high, struct free_area *area,
730 int migratetype)
732 unsigned long size = 1 << high;
734 while (high > low) {
735 area--;
736 high--;
737 size >>= 1;
738 VM_BUG_ON(bad_range(zone, &page[size]));
739 list_add(&page[size].lru, &area->free_list[migratetype]);
740 area->nr_free++;
741 set_page_order(&page[size], high);
746 * This page is about to be returned from the page allocator
748 static inline int check_new_page(struct page *page)
750 if (unlikely(page_mapcount(page) |
751 (page->mapping != NULL) |
752 (atomic_read(&page->_count) != 0) |
753 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
754 bad_page(page);
755 return 1;
757 return 0;
760 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
762 int i;
764 for (i = 0; i < (1 << order); i++) {
765 struct page *p = page + i;
766 if (unlikely(check_new_page(p)))
767 return 1;
770 set_page_private(page, 0);
771 set_page_refcounted(page);
773 arch_alloc_page(page, order);
774 kernel_map_pages(page, 1 << order, 1);
776 if (gfp_flags & __GFP_ZERO)
777 prep_zero_page(page, order, gfp_flags);
779 if (order && (gfp_flags & __GFP_COMP))
780 prep_compound_page(page, order);
782 return 0;
786 * Go through the free lists for the given migratetype and remove
787 * the smallest available page from the freelists
789 static inline
790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
791 int migratetype)
793 unsigned int current_order;
794 struct free_area * area;
795 struct page *page;
797 /* Find a page of the appropriate size in the preferred list */
798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
799 area = &(zone->free_area[current_order]);
800 if (list_empty(&area->free_list[migratetype]))
801 continue;
803 page = list_entry(area->free_list[migratetype].next,
804 struct page, lru);
805 list_del(&page->lru);
806 rmv_page_order(page);
807 area->nr_free--;
808 expand(zone, page, order, current_order, area, migratetype);
809 return page;
812 return NULL;
817 * This array describes the order lists are fallen back to when
818 * the free lists for the desirable migrate type are depleted
820 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
824 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
828 * Move the free pages in a range to the free lists of the requested type.
829 * Note that start_page and end_pages are not aligned on a pageblock
830 * boundary. If alignment is required, use move_freepages_block()
832 static int move_freepages(struct zone *zone,
833 struct page *start_page, struct page *end_page,
834 int migratetype)
836 struct page *page;
837 unsigned long order;
838 int pages_moved = 0;
840 #ifndef CONFIG_HOLES_IN_ZONE
842 * page_zone is not safe to call in this context when
843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 * anyway as we check zone boundaries in move_freepages_block().
845 * Remove at a later date when no bug reports exist related to
846 * grouping pages by mobility
848 BUG_ON(page_zone(start_page) != page_zone(end_page));
849 #endif
851 for (page = start_page; page <= end_page;) {
852 /* Make sure we are not inadvertently changing nodes */
853 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
855 if (!pfn_valid_within(page_to_pfn(page))) {
856 page++;
857 continue;
860 if (!PageBuddy(page)) {
861 page++;
862 continue;
865 order = page_order(page);
866 list_del(&page->lru);
867 list_add(&page->lru,
868 &zone->free_area[order].free_list[migratetype]);
869 page += 1 << order;
870 pages_moved += 1 << order;
873 return pages_moved;
876 static int move_freepages_block(struct zone *zone, struct page *page,
877 int migratetype)
879 unsigned long start_pfn, end_pfn;
880 struct page *start_page, *end_page;
882 start_pfn = page_to_pfn(page);
883 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
884 start_page = pfn_to_page(start_pfn);
885 end_page = start_page + pageblock_nr_pages - 1;
886 end_pfn = start_pfn + pageblock_nr_pages - 1;
888 /* Do not cross zone boundaries */
889 if (start_pfn < zone->zone_start_pfn)
890 start_page = page;
891 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
892 return 0;
894 return move_freepages(zone, start_page, end_page, migratetype);
897 static void change_pageblock_range(struct page *pageblock_page,
898 int start_order, int migratetype)
900 int nr_pageblocks = 1 << (start_order - pageblock_order);
902 while (nr_pageblocks--) {
903 set_pageblock_migratetype(pageblock_page, migratetype);
904 pageblock_page += pageblock_nr_pages;
908 /* Remove an element from the buddy allocator from the fallback list */
909 static inline struct page *
910 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
912 struct free_area * area;
913 int current_order;
914 struct page *page;
915 int migratetype, i;
917 /* Find the largest possible block of pages in the other list */
918 for (current_order = MAX_ORDER-1; current_order >= order;
919 --current_order) {
920 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
921 migratetype = fallbacks[start_migratetype][i];
923 /* MIGRATE_RESERVE handled later if necessary */
924 if (migratetype == MIGRATE_RESERVE)
925 continue;
927 area = &(zone->free_area[current_order]);
928 if (list_empty(&area->free_list[migratetype]))
929 continue;
931 page = list_entry(area->free_list[migratetype].next,
932 struct page, lru);
933 area->nr_free--;
936 * If breaking a large block of pages, move all free
937 * pages to the preferred allocation list. If falling
938 * back for a reclaimable kernel allocation, be more
939 * agressive about taking ownership of free pages
941 if (unlikely(current_order >= (pageblock_order >> 1)) ||
942 start_migratetype == MIGRATE_RECLAIMABLE ||
943 page_group_by_mobility_disabled) {
944 unsigned long pages;
945 pages = move_freepages_block(zone, page,
946 start_migratetype);
948 /* Claim the whole block if over half of it is free */
949 if (pages >= (1 << (pageblock_order-1)) ||
950 page_group_by_mobility_disabled)
951 set_pageblock_migratetype(page,
952 start_migratetype);
954 migratetype = start_migratetype;
957 /* Remove the page from the freelists */
958 list_del(&page->lru);
959 rmv_page_order(page);
961 /* Take ownership for orders >= pageblock_order */
962 if (current_order >= pageblock_order)
963 change_pageblock_range(page, current_order,
964 start_migratetype);
966 expand(zone, page, order, current_order, area, migratetype);
968 trace_mm_page_alloc_extfrag(page, order, current_order,
969 start_migratetype, migratetype);
971 return page;
975 return NULL;
979 * Do the hard work of removing an element from the buddy allocator.
980 * Call me with the zone->lock already held.
982 static struct page *__rmqueue(struct zone *zone, unsigned int order,
983 int migratetype)
985 struct page *page;
987 retry_reserve:
988 page = __rmqueue_smallest(zone, order, migratetype);
990 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
991 page = __rmqueue_fallback(zone, order, migratetype);
994 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 * is used because __rmqueue_smallest is an inline function
996 * and we want just one call site
998 if (!page) {
999 migratetype = MIGRATE_RESERVE;
1000 goto retry_reserve;
1004 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1005 return page;
1009 * Obtain a specified number of elements from the buddy allocator, all under
1010 * a single hold of the lock, for efficiency. Add them to the supplied list.
1011 * Returns the number of new pages which were placed at *list.
1013 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1014 unsigned long count, struct list_head *list,
1015 int migratetype, int cold)
1017 int i;
1019 spin_lock(&zone->lock);
1020 for (i = 0; i < count; ++i) {
1021 struct page *page = __rmqueue(zone, order, migratetype);
1022 if (unlikely(page == NULL))
1023 break;
1026 * Split buddy pages returned by expand() are received here
1027 * in physical page order. The page is added to the callers and
1028 * list and the list head then moves forward. From the callers
1029 * perspective, the linked list is ordered by page number in
1030 * some conditions. This is useful for IO devices that can
1031 * merge IO requests if the physical pages are ordered
1032 * properly.
1034 if (likely(cold == 0))
1035 list_add(&page->lru, list);
1036 else
1037 list_add_tail(&page->lru, list);
1038 set_page_private(page, migratetype);
1039 list = &page->lru;
1041 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1042 spin_unlock(&zone->lock);
1043 return i;
1046 #ifdef CONFIG_NUMA
1048 * Called from the vmstat counter updater to drain pagesets of this
1049 * currently executing processor on remote nodes after they have
1050 * expired.
1052 * Note that this function must be called with the thread pinned to
1053 * a single processor.
1055 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1057 unsigned long flags;
1058 int to_drain;
1060 local_irq_save(flags);
1061 if (pcp->count >= pcp->batch)
1062 to_drain = pcp->batch;
1063 else
1064 to_drain = pcp->count;
1065 free_pcppages_bulk(zone, to_drain, pcp);
1066 pcp->count -= to_drain;
1067 local_irq_restore(flags);
1069 #endif
1072 * Drain pages of the indicated processor.
1074 * The processor must either be the current processor and the
1075 * thread pinned to the current processor or a processor that
1076 * is not online.
1078 static void drain_pages(unsigned int cpu)
1080 unsigned long flags;
1081 struct zone *zone;
1083 for_each_populated_zone(zone) {
1084 struct per_cpu_pageset *pset;
1085 struct per_cpu_pages *pcp;
1087 local_irq_save(flags);
1088 pset = per_cpu_ptr(zone->pageset, cpu);
1090 pcp = &pset->pcp;
1091 free_pcppages_bulk(zone, pcp->count, pcp);
1092 pcp->count = 0;
1093 local_irq_restore(flags);
1098 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1100 void drain_local_pages(void *arg)
1102 drain_pages(smp_processor_id());
1106 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1108 void drain_all_pages(void)
1110 on_each_cpu(drain_local_pages, NULL, 1);
1113 #ifdef CONFIG_HIBERNATION
1115 void mark_free_pages(struct zone *zone)
1117 unsigned long pfn, max_zone_pfn;
1118 unsigned long flags;
1119 int order, t;
1120 struct list_head *curr;
1122 if (!zone->spanned_pages)
1123 return;
1125 spin_lock_irqsave(&zone->lock, flags);
1127 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1128 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1129 if (pfn_valid(pfn)) {
1130 struct page *page = pfn_to_page(pfn);
1132 if (!swsusp_page_is_forbidden(page))
1133 swsusp_unset_page_free(page);
1136 for_each_migratetype_order(order, t) {
1137 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1138 unsigned long i;
1140 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1141 for (i = 0; i < (1UL << order); i++)
1142 swsusp_set_page_free(pfn_to_page(pfn + i));
1145 spin_unlock_irqrestore(&zone->lock, flags);
1147 #endif /* CONFIG_PM */
1150 * Free a 0-order page
1151 * cold == 1 ? free a cold page : free a hot page
1153 void free_hot_cold_page(struct page *page, int cold)
1155 struct zone *zone = page_zone(page);
1156 struct per_cpu_pages *pcp;
1157 unsigned long flags;
1158 int migratetype;
1159 int wasMlocked = __TestClearPageMlocked(page);
1161 if (!free_pages_prepare(page, 0))
1162 return;
1164 migratetype = get_pageblock_migratetype(page);
1165 set_page_private(page, migratetype);
1166 local_irq_save(flags);
1167 if (unlikely(wasMlocked))
1168 free_page_mlock(page);
1169 __count_vm_event(PGFREE);
1172 * We only track unmovable, reclaimable and movable on pcp lists.
1173 * Free ISOLATE pages back to the allocator because they are being
1174 * offlined but treat RESERVE as movable pages so we can get those
1175 * areas back if necessary. Otherwise, we may have to free
1176 * excessively into the page allocator
1178 if (migratetype >= MIGRATE_PCPTYPES) {
1179 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1180 free_one_page(zone, page, 0, migratetype);
1181 goto out;
1183 migratetype = MIGRATE_MOVABLE;
1186 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1187 if (cold)
1188 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1189 else
1190 list_add(&page->lru, &pcp->lists[migratetype]);
1191 pcp->count++;
1192 if (pcp->count >= pcp->high) {
1193 free_pcppages_bulk(zone, pcp->batch, pcp);
1194 pcp->count -= pcp->batch;
1197 out:
1198 local_irq_restore(flags);
1202 * split_page takes a non-compound higher-order page, and splits it into
1203 * n (1<<order) sub-pages: page[0..n]
1204 * Each sub-page must be freed individually.
1206 * Note: this is probably too low level an operation for use in drivers.
1207 * Please consult with lkml before using this in your driver.
1209 void split_page(struct page *page, unsigned int order)
1211 int i;
1213 VM_BUG_ON(PageCompound(page));
1214 VM_BUG_ON(!page_count(page));
1216 #ifdef CONFIG_KMEMCHECK
1218 * Split shadow pages too, because free(page[0]) would
1219 * otherwise free the whole shadow.
1221 if (kmemcheck_page_is_tracked(page))
1222 split_page(virt_to_page(page[0].shadow), order);
1223 #endif
1225 for (i = 1; i < (1 << order); i++)
1226 set_page_refcounted(page + i);
1230 * Similar to split_page except the page is already free. As this is only
1231 * being used for migration, the migratetype of the block also changes.
1232 * As this is called with interrupts disabled, the caller is responsible
1233 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1234 * are enabled.
1236 * Note: this is probably too low level an operation for use in drivers.
1237 * Please consult with lkml before using this in your driver.
1239 int split_free_page(struct page *page)
1241 unsigned int order;
1242 unsigned long watermark;
1243 struct zone *zone;
1245 BUG_ON(!PageBuddy(page));
1247 zone = page_zone(page);
1248 order = page_order(page);
1250 /* Obey watermarks as if the page was being allocated */
1251 watermark = low_wmark_pages(zone) + (1 << order);
1252 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1253 return 0;
1255 /* Remove page from free list */
1256 list_del(&page->lru);
1257 zone->free_area[order].nr_free--;
1258 rmv_page_order(page);
1259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1261 /* Split into individual pages */
1262 set_page_refcounted(page);
1263 split_page(page, order);
1265 if (order >= pageblock_order - 1) {
1266 struct page *endpage = page + (1 << order) - 1;
1267 for (; page < endpage; page += pageblock_nr_pages)
1268 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1271 return 1 << order;
1275 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1276 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1277 * or two.
1279 static inline
1280 struct page *buffered_rmqueue(struct zone *preferred_zone,
1281 struct zone *zone, int order, gfp_t gfp_flags,
1282 int migratetype)
1284 unsigned long flags;
1285 struct page *page;
1286 int cold = !!(gfp_flags & __GFP_COLD);
1288 again:
1289 if (likely(order == 0)) {
1290 struct per_cpu_pages *pcp;
1291 struct list_head *list;
1293 local_irq_save(flags);
1294 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1295 list = &pcp->lists[migratetype];
1296 if (list_empty(list)) {
1297 pcp->count += rmqueue_bulk(zone, 0,
1298 pcp->batch, list,
1299 migratetype, cold);
1300 if (unlikely(list_empty(list)))
1301 goto failed;
1304 if (cold)
1305 page = list_entry(list->prev, struct page, lru);
1306 else
1307 page = list_entry(list->next, struct page, lru);
1309 list_del(&page->lru);
1310 pcp->count--;
1311 } else {
1312 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1314 * __GFP_NOFAIL is not to be used in new code.
1316 * All __GFP_NOFAIL callers should be fixed so that they
1317 * properly detect and handle allocation failures.
1319 * We most definitely don't want callers attempting to
1320 * allocate greater than order-1 page units with
1321 * __GFP_NOFAIL.
1323 WARN_ON_ONCE(order > 1);
1325 spin_lock_irqsave(&zone->lock, flags);
1326 page = __rmqueue(zone, order, migratetype);
1327 spin_unlock(&zone->lock);
1328 if (!page)
1329 goto failed;
1330 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1333 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1334 zone_statistics(preferred_zone, zone);
1335 local_irq_restore(flags);
1337 VM_BUG_ON(bad_range(zone, page));
1338 if (prep_new_page(page, order, gfp_flags))
1339 goto again;
1340 return page;
1342 failed:
1343 local_irq_restore(flags);
1344 return NULL;
1347 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1348 #define ALLOC_WMARK_MIN WMARK_MIN
1349 #define ALLOC_WMARK_LOW WMARK_LOW
1350 #define ALLOC_WMARK_HIGH WMARK_HIGH
1351 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1353 /* Mask to get the watermark bits */
1354 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1356 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1357 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1358 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1360 #ifdef CONFIG_FAIL_PAGE_ALLOC
1362 static struct fail_page_alloc_attr {
1363 struct fault_attr attr;
1365 u32 ignore_gfp_highmem;
1366 u32 ignore_gfp_wait;
1367 u32 min_order;
1369 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1371 struct dentry *ignore_gfp_highmem_file;
1372 struct dentry *ignore_gfp_wait_file;
1373 struct dentry *min_order_file;
1375 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1377 } fail_page_alloc = {
1378 .attr = FAULT_ATTR_INITIALIZER,
1379 .ignore_gfp_wait = 1,
1380 .ignore_gfp_highmem = 1,
1381 .min_order = 1,
1384 static int __init setup_fail_page_alloc(char *str)
1386 return setup_fault_attr(&fail_page_alloc.attr, str);
1388 __setup("fail_page_alloc=", setup_fail_page_alloc);
1390 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1392 if (order < fail_page_alloc.min_order)
1393 return 0;
1394 if (gfp_mask & __GFP_NOFAIL)
1395 return 0;
1396 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1397 return 0;
1398 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1399 return 0;
1401 return should_fail(&fail_page_alloc.attr, 1 << order);
1404 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1406 static int __init fail_page_alloc_debugfs(void)
1408 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1409 struct dentry *dir;
1410 int err;
1412 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1413 "fail_page_alloc");
1414 if (err)
1415 return err;
1416 dir = fail_page_alloc.attr.dentries.dir;
1418 fail_page_alloc.ignore_gfp_wait_file =
1419 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1420 &fail_page_alloc.ignore_gfp_wait);
1422 fail_page_alloc.ignore_gfp_highmem_file =
1423 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1424 &fail_page_alloc.ignore_gfp_highmem);
1425 fail_page_alloc.min_order_file =
1426 debugfs_create_u32("min-order", mode, dir,
1427 &fail_page_alloc.min_order);
1429 if (!fail_page_alloc.ignore_gfp_wait_file ||
1430 !fail_page_alloc.ignore_gfp_highmem_file ||
1431 !fail_page_alloc.min_order_file) {
1432 err = -ENOMEM;
1433 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1434 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1435 debugfs_remove(fail_page_alloc.min_order_file);
1436 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1439 return err;
1442 late_initcall(fail_page_alloc_debugfs);
1444 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1446 #else /* CONFIG_FAIL_PAGE_ALLOC */
1448 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1450 return 0;
1453 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1456 * Return 1 if free pages are above 'mark'. This takes into account the order
1457 * of the allocation.
1459 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1460 int classzone_idx, int alloc_flags)
1462 /* free_pages my go negative - that's OK */
1463 long min = mark;
1464 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1465 int o;
1467 if (alloc_flags & ALLOC_HIGH)
1468 min -= min / 2;
1469 if (alloc_flags & ALLOC_HARDER)
1470 min -= min / 4;
1472 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1473 return 0;
1474 for (o = 0; o < order; o++) {
1475 /* At the next order, this order's pages become unavailable */
1476 free_pages -= z->free_area[o].nr_free << o;
1478 /* Require fewer higher order pages to be free */
1479 min >>= 1;
1481 if (free_pages <= min)
1482 return 0;
1484 return 1;
1487 #ifdef CONFIG_NUMA
1489 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1490 * skip over zones that are not allowed by the cpuset, or that have
1491 * been recently (in last second) found to be nearly full. See further
1492 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1493 * that have to skip over a lot of full or unallowed zones.
1495 * If the zonelist cache is present in the passed in zonelist, then
1496 * returns a pointer to the allowed node mask (either the current
1497 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1499 * If the zonelist cache is not available for this zonelist, does
1500 * nothing and returns NULL.
1502 * If the fullzones BITMAP in the zonelist cache is stale (more than
1503 * a second since last zap'd) then we zap it out (clear its bits.)
1505 * We hold off even calling zlc_setup, until after we've checked the
1506 * first zone in the zonelist, on the theory that most allocations will
1507 * be satisfied from that first zone, so best to examine that zone as
1508 * quickly as we can.
1510 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1512 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1513 nodemask_t *allowednodes; /* zonelist_cache approximation */
1515 zlc = zonelist->zlcache_ptr;
1516 if (!zlc)
1517 return NULL;
1519 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1520 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1521 zlc->last_full_zap = jiffies;
1524 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1525 &cpuset_current_mems_allowed :
1526 &node_states[N_HIGH_MEMORY];
1527 return allowednodes;
1531 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1532 * if it is worth looking at further for free memory:
1533 * 1) Check that the zone isn't thought to be full (doesn't have its
1534 * bit set in the zonelist_cache fullzones BITMAP).
1535 * 2) Check that the zones node (obtained from the zonelist_cache
1536 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1537 * Return true (non-zero) if zone is worth looking at further, or
1538 * else return false (zero) if it is not.
1540 * This check -ignores- the distinction between various watermarks,
1541 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1542 * found to be full for any variation of these watermarks, it will
1543 * be considered full for up to one second by all requests, unless
1544 * we are so low on memory on all allowed nodes that we are forced
1545 * into the second scan of the zonelist.
1547 * In the second scan we ignore this zonelist cache and exactly
1548 * apply the watermarks to all zones, even it is slower to do so.
1549 * We are low on memory in the second scan, and should leave no stone
1550 * unturned looking for a free page.
1552 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1553 nodemask_t *allowednodes)
1555 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1556 int i; /* index of *z in zonelist zones */
1557 int n; /* node that zone *z is on */
1559 zlc = zonelist->zlcache_ptr;
1560 if (!zlc)
1561 return 1;
1563 i = z - zonelist->_zonerefs;
1564 n = zlc->z_to_n[i];
1566 /* This zone is worth trying if it is allowed but not full */
1567 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1571 * Given 'z' scanning a zonelist, set the corresponding bit in
1572 * zlc->fullzones, so that subsequent attempts to allocate a page
1573 * from that zone don't waste time re-examining it.
1575 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1577 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1578 int i; /* index of *z in zonelist zones */
1580 zlc = zonelist->zlcache_ptr;
1581 if (!zlc)
1582 return;
1584 i = z - zonelist->_zonerefs;
1586 set_bit(i, zlc->fullzones);
1589 #else /* CONFIG_NUMA */
1591 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1593 return NULL;
1596 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1597 nodemask_t *allowednodes)
1599 return 1;
1602 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1605 #endif /* CONFIG_NUMA */
1608 * get_page_from_freelist goes through the zonelist trying to allocate
1609 * a page.
1611 static struct page *
1612 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1613 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1614 struct zone *preferred_zone, int migratetype)
1616 struct zoneref *z;
1617 struct page *page = NULL;
1618 int classzone_idx;
1619 struct zone *zone;
1620 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1621 int zlc_active = 0; /* set if using zonelist_cache */
1622 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1624 classzone_idx = zone_idx(preferred_zone);
1625 zonelist_scan:
1627 * Scan zonelist, looking for a zone with enough free.
1628 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1630 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1631 high_zoneidx, nodemask) {
1632 if (NUMA_BUILD && zlc_active &&
1633 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1634 continue;
1635 if ((alloc_flags & ALLOC_CPUSET) &&
1636 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1637 goto try_next_zone;
1639 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1640 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1641 unsigned long mark;
1642 int ret;
1644 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1645 if (zone_watermark_ok(zone, order, mark,
1646 classzone_idx, alloc_flags))
1647 goto try_this_zone;
1649 if (zone_reclaim_mode == 0)
1650 goto this_zone_full;
1652 ret = zone_reclaim(zone, gfp_mask, order);
1653 switch (ret) {
1654 case ZONE_RECLAIM_NOSCAN:
1655 /* did not scan */
1656 goto try_next_zone;
1657 case ZONE_RECLAIM_FULL:
1658 /* scanned but unreclaimable */
1659 goto this_zone_full;
1660 default:
1661 /* did we reclaim enough */
1662 if (!zone_watermark_ok(zone, order, mark,
1663 classzone_idx, alloc_flags))
1664 goto this_zone_full;
1668 try_this_zone:
1669 page = buffered_rmqueue(preferred_zone, zone, order,
1670 gfp_mask, migratetype);
1671 if (page)
1672 break;
1673 this_zone_full:
1674 if (NUMA_BUILD)
1675 zlc_mark_zone_full(zonelist, z);
1676 try_next_zone:
1677 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1679 * we do zlc_setup after the first zone is tried but only
1680 * if there are multiple nodes make it worthwhile
1682 allowednodes = zlc_setup(zonelist, alloc_flags);
1683 zlc_active = 1;
1684 did_zlc_setup = 1;
1688 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1689 /* Disable zlc cache for second zonelist scan */
1690 zlc_active = 0;
1691 goto zonelist_scan;
1693 return page;
1696 static inline int
1697 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1698 unsigned long pages_reclaimed)
1700 /* Do not loop if specifically requested */
1701 if (gfp_mask & __GFP_NORETRY)
1702 return 0;
1705 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1706 * means __GFP_NOFAIL, but that may not be true in other
1707 * implementations.
1709 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1710 return 1;
1713 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1714 * specified, then we retry until we no longer reclaim any pages
1715 * (above), or we've reclaimed an order of pages at least as
1716 * large as the allocation's order. In both cases, if the
1717 * allocation still fails, we stop retrying.
1719 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1720 return 1;
1723 * Don't let big-order allocations loop unless the caller
1724 * explicitly requests that.
1726 if (gfp_mask & __GFP_NOFAIL)
1727 return 1;
1729 return 0;
1732 static inline struct page *
1733 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1734 struct zonelist *zonelist, enum zone_type high_zoneidx,
1735 nodemask_t *nodemask, struct zone *preferred_zone,
1736 int migratetype)
1738 struct page *page;
1740 /* Acquire the OOM killer lock for the zones in zonelist */
1741 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1742 schedule_timeout_uninterruptible(1);
1743 return NULL;
1747 * Go through the zonelist yet one more time, keep very high watermark
1748 * here, this is only to catch a parallel oom killing, we must fail if
1749 * we're still under heavy pressure.
1751 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1752 order, zonelist, high_zoneidx,
1753 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1754 preferred_zone, migratetype);
1755 if (page)
1756 goto out;
1758 if (!(gfp_mask & __GFP_NOFAIL)) {
1759 /* The OOM killer will not help higher order allocs */
1760 if (order > PAGE_ALLOC_COSTLY_ORDER)
1761 goto out;
1762 /* The OOM killer does not needlessly kill tasks for lowmem */
1763 if (high_zoneidx < ZONE_NORMAL)
1764 goto out;
1766 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1767 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1768 * The caller should handle page allocation failure by itself if
1769 * it specifies __GFP_THISNODE.
1770 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1772 if (gfp_mask & __GFP_THISNODE)
1773 goto out;
1775 /* Exhausted what can be done so it's blamo time */
1776 out_of_memory(zonelist, gfp_mask, order, nodemask);
1778 out:
1779 clear_zonelist_oom(zonelist, gfp_mask);
1780 return page;
1783 #ifdef CONFIG_COMPACTION
1784 /* Try memory compaction for high-order allocations before reclaim */
1785 static struct page *
1786 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1787 struct zonelist *zonelist, enum zone_type high_zoneidx,
1788 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1789 int migratetype, unsigned long *did_some_progress)
1791 struct page *page;
1793 if (!order || compaction_deferred(preferred_zone))
1794 return NULL;
1796 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1797 nodemask);
1798 if (*did_some_progress != COMPACT_SKIPPED) {
1800 /* Page migration frees to the PCP lists but we want merging */
1801 drain_pages(get_cpu());
1802 put_cpu();
1804 page = get_page_from_freelist(gfp_mask, nodemask,
1805 order, zonelist, high_zoneidx,
1806 alloc_flags, preferred_zone,
1807 migratetype);
1808 if (page) {
1809 preferred_zone->compact_considered = 0;
1810 preferred_zone->compact_defer_shift = 0;
1811 count_vm_event(COMPACTSUCCESS);
1812 return page;
1816 * It's bad if compaction run occurs and fails.
1817 * The most likely reason is that pages exist,
1818 * but not enough to satisfy watermarks.
1820 count_vm_event(COMPACTFAIL);
1821 defer_compaction(preferred_zone);
1823 cond_resched();
1826 return NULL;
1828 #else
1829 static inline struct page *
1830 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1831 struct zonelist *zonelist, enum zone_type high_zoneidx,
1832 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1833 int migratetype, unsigned long *did_some_progress)
1835 return NULL;
1837 #endif /* CONFIG_COMPACTION */
1839 /* The really slow allocator path where we enter direct reclaim */
1840 static inline struct page *
1841 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1842 struct zonelist *zonelist, enum zone_type high_zoneidx,
1843 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1844 int migratetype, unsigned long *did_some_progress)
1846 struct page *page = NULL;
1847 struct reclaim_state reclaim_state;
1848 struct task_struct *p = current;
1850 cond_resched();
1852 /* We now go into synchronous reclaim */
1853 cpuset_memory_pressure_bump();
1854 p->flags |= PF_MEMALLOC;
1855 lockdep_set_current_reclaim_state(gfp_mask);
1856 reclaim_state.reclaimed_slab = 0;
1857 p->reclaim_state = &reclaim_state;
1859 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1861 p->reclaim_state = NULL;
1862 lockdep_clear_current_reclaim_state();
1863 p->flags &= ~PF_MEMALLOC;
1865 cond_resched();
1867 if (order != 0)
1868 drain_all_pages();
1870 if (likely(*did_some_progress))
1871 page = get_page_from_freelist(gfp_mask, nodemask, order,
1872 zonelist, high_zoneidx,
1873 alloc_flags, preferred_zone,
1874 migratetype);
1875 return page;
1879 * This is called in the allocator slow-path if the allocation request is of
1880 * sufficient urgency to ignore watermarks and take other desperate measures
1882 static inline struct page *
1883 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1884 struct zonelist *zonelist, enum zone_type high_zoneidx,
1885 nodemask_t *nodemask, struct zone *preferred_zone,
1886 int migratetype)
1888 struct page *page;
1890 do {
1891 page = get_page_from_freelist(gfp_mask, nodemask, order,
1892 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1893 preferred_zone, migratetype);
1895 if (!page && gfp_mask & __GFP_NOFAIL)
1896 congestion_wait(BLK_RW_ASYNC, HZ/50);
1897 } while (!page && (gfp_mask & __GFP_NOFAIL));
1899 return page;
1902 static inline
1903 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1904 enum zone_type high_zoneidx)
1906 struct zoneref *z;
1907 struct zone *zone;
1909 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1910 wakeup_kswapd(zone, order);
1913 static inline int
1914 gfp_to_alloc_flags(gfp_t gfp_mask)
1916 struct task_struct *p = current;
1917 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1918 const gfp_t wait = gfp_mask & __GFP_WAIT;
1920 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1921 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1924 * The caller may dip into page reserves a bit more if the caller
1925 * cannot run direct reclaim, or if the caller has realtime scheduling
1926 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1927 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1929 alloc_flags |= (gfp_mask & __GFP_HIGH);
1931 if (!wait) {
1932 alloc_flags |= ALLOC_HARDER;
1934 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1935 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1937 alloc_flags &= ~ALLOC_CPUSET;
1938 } else if (unlikely(rt_task(p)) && !in_interrupt())
1939 alloc_flags |= ALLOC_HARDER;
1941 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1942 if (!in_interrupt() &&
1943 ((p->flags & PF_MEMALLOC) ||
1944 unlikely(test_thread_flag(TIF_MEMDIE))))
1945 alloc_flags |= ALLOC_NO_WATERMARKS;
1948 return alloc_flags;
1951 static inline struct page *
1952 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1953 struct zonelist *zonelist, enum zone_type high_zoneidx,
1954 nodemask_t *nodemask, struct zone *preferred_zone,
1955 int migratetype)
1957 const gfp_t wait = gfp_mask & __GFP_WAIT;
1958 struct page *page = NULL;
1959 int alloc_flags;
1960 unsigned long pages_reclaimed = 0;
1961 unsigned long did_some_progress;
1962 struct task_struct *p = current;
1965 * In the slowpath, we sanity check order to avoid ever trying to
1966 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1967 * be using allocators in order of preference for an area that is
1968 * too large.
1970 if (order >= MAX_ORDER) {
1971 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1972 return NULL;
1976 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1977 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1978 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1979 * using a larger set of nodes after it has established that the
1980 * allowed per node queues are empty and that nodes are
1981 * over allocated.
1983 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1984 goto nopage;
1986 restart:
1987 wake_all_kswapd(order, zonelist, high_zoneidx);
1990 * OK, we're below the kswapd watermark and have kicked background
1991 * reclaim. Now things get more complex, so set up alloc_flags according
1992 * to how we want to proceed.
1994 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1996 /* This is the last chance, in general, before the goto nopage. */
1997 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1998 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1999 preferred_zone, migratetype);
2000 if (page)
2001 goto got_pg;
2003 rebalance:
2004 /* Allocate without watermarks if the context allows */
2005 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2006 page = __alloc_pages_high_priority(gfp_mask, order,
2007 zonelist, high_zoneidx, nodemask,
2008 preferred_zone, migratetype);
2009 if (page)
2010 goto got_pg;
2013 /* Atomic allocations - we can't balance anything */
2014 if (!wait)
2015 goto nopage;
2017 /* Avoid recursion of direct reclaim */
2018 if (p->flags & PF_MEMALLOC)
2019 goto nopage;
2021 /* Avoid allocations with no watermarks from looping endlessly */
2022 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2023 goto nopage;
2025 /* Try direct compaction */
2026 page = __alloc_pages_direct_compact(gfp_mask, order,
2027 zonelist, high_zoneidx,
2028 nodemask,
2029 alloc_flags, preferred_zone,
2030 migratetype, &did_some_progress);
2031 if (page)
2032 goto got_pg;
2034 /* Try direct reclaim and then allocating */
2035 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2036 zonelist, high_zoneidx,
2037 nodemask,
2038 alloc_flags, preferred_zone,
2039 migratetype, &did_some_progress);
2040 if (page)
2041 goto got_pg;
2044 * If we failed to make any progress reclaiming, then we are
2045 * running out of options and have to consider going OOM
2047 if (!did_some_progress) {
2048 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2049 if (oom_killer_disabled)
2050 goto nopage;
2051 page = __alloc_pages_may_oom(gfp_mask, order,
2052 zonelist, high_zoneidx,
2053 nodemask, preferred_zone,
2054 migratetype);
2055 if (page)
2056 goto got_pg;
2058 if (!(gfp_mask & __GFP_NOFAIL)) {
2060 * The oom killer is not called for high-order
2061 * allocations that may fail, so if no progress
2062 * is being made, there are no other options and
2063 * retrying is unlikely to help.
2065 if (order > PAGE_ALLOC_COSTLY_ORDER)
2066 goto nopage;
2068 * The oom killer is not called for lowmem
2069 * allocations to prevent needlessly killing
2070 * innocent tasks.
2072 if (high_zoneidx < ZONE_NORMAL)
2073 goto nopage;
2076 goto restart;
2080 /* Check if we should retry the allocation */
2081 pages_reclaimed += did_some_progress;
2082 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2083 /* Wait for some write requests to complete then retry */
2084 congestion_wait(BLK_RW_ASYNC, HZ/50);
2085 goto rebalance;
2088 nopage:
2089 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2090 printk(KERN_WARNING "%s: page allocation failure."
2091 " order:%d, mode:0x%x\n",
2092 p->comm, order, gfp_mask);
2093 dump_stack();
2094 show_mem();
2096 return page;
2097 got_pg:
2098 if (kmemcheck_enabled)
2099 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2100 return page;
2105 * This is the 'heart' of the zoned buddy allocator.
2107 struct page *
2108 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2109 struct zonelist *zonelist, nodemask_t *nodemask)
2111 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2112 struct zone *preferred_zone;
2113 struct page *page;
2114 int migratetype = allocflags_to_migratetype(gfp_mask);
2116 gfp_mask &= gfp_allowed_mask;
2118 lockdep_trace_alloc(gfp_mask);
2120 might_sleep_if(gfp_mask & __GFP_WAIT);
2122 if (should_fail_alloc_page(gfp_mask, order))
2123 return NULL;
2126 * Check the zones suitable for the gfp_mask contain at least one
2127 * valid zone. It's possible to have an empty zonelist as a result
2128 * of GFP_THISNODE and a memoryless node
2130 if (unlikely(!zonelist->_zonerefs->zone))
2131 return NULL;
2133 get_mems_allowed();
2134 /* The preferred zone is used for statistics later */
2135 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2136 if (!preferred_zone) {
2137 put_mems_allowed();
2138 return NULL;
2141 /* First allocation attempt */
2142 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2143 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2144 preferred_zone, migratetype);
2145 if (unlikely(!page))
2146 page = __alloc_pages_slowpath(gfp_mask, order,
2147 zonelist, high_zoneidx, nodemask,
2148 preferred_zone, migratetype);
2149 put_mems_allowed();
2151 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2152 return page;
2154 EXPORT_SYMBOL(__alloc_pages_nodemask);
2157 * Common helper functions.
2159 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2161 struct page *page;
2164 * __get_free_pages() returns a 32-bit address, which cannot represent
2165 * a highmem page
2167 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2169 page = alloc_pages(gfp_mask, order);
2170 if (!page)
2171 return 0;
2172 return (unsigned long) page_address(page);
2174 EXPORT_SYMBOL(__get_free_pages);
2176 unsigned long get_zeroed_page(gfp_t gfp_mask)
2178 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2180 EXPORT_SYMBOL(get_zeroed_page);
2182 void __pagevec_free(struct pagevec *pvec)
2184 int i = pagevec_count(pvec);
2186 while (--i >= 0) {
2187 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2188 free_hot_cold_page(pvec->pages[i], pvec->cold);
2192 void __free_pages(struct page *page, unsigned int order)
2194 if (put_page_testzero(page)) {
2195 if (order == 0)
2196 free_hot_cold_page(page, 0);
2197 else
2198 __free_pages_ok(page, order);
2202 EXPORT_SYMBOL(__free_pages);
2204 void free_pages(unsigned long addr, unsigned int order)
2206 if (addr != 0) {
2207 VM_BUG_ON(!virt_addr_valid((void *)addr));
2208 __free_pages(virt_to_page((void *)addr), order);
2212 EXPORT_SYMBOL(free_pages);
2215 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2216 * @size: the number of bytes to allocate
2217 * @gfp_mask: GFP flags for the allocation
2219 * This function is similar to alloc_pages(), except that it allocates the
2220 * minimum number of pages to satisfy the request. alloc_pages() can only
2221 * allocate memory in power-of-two pages.
2223 * This function is also limited by MAX_ORDER.
2225 * Memory allocated by this function must be released by free_pages_exact().
2227 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2229 unsigned int order = get_order(size);
2230 unsigned long addr;
2232 addr = __get_free_pages(gfp_mask, order);
2233 if (addr) {
2234 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2235 unsigned long used = addr + PAGE_ALIGN(size);
2237 split_page(virt_to_page((void *)addr), order);
2238 while (used < alloc_end) {
2239 free_page(used);
2240 used += PAGE_SIZE;
2244 return (void *)addr;
2246 EXPORT_SYMBOL(alloc_pages_exact);
2249 * free_pages_exact - release memory allocated via alloc_pages_exact()
2250 * @virt: the value returned by alloc_pages_exact.
2251 * @size: size of allocation, same value as passed to alloc_pages_exact().
2253 * Release the memory allocated by a previous call to alloc_pages_exact.
2255 void free_pages_exact(void *virt, size_t size)
2257 unsigned long addr = (unsigned long)virt;
2258 unsigned long end = addr + PAGE_ALIGN(size);
2260 while (addr < end) {
2261 free_page(addr);
2262 addr += PAGE_SIZE;
2265 EXPORT_SYMBOL(free_pages_exact);
2267 static unsigned int nr_free_zone_pages(int offset)
2269 struct zoneref *z;
2270 struct zone *zone;
2272 /* Just pick one node, since fallback list is circular */
2273 unsigned int sum = 0;
2275 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2277 for_each_zone_zonelist(zone, z, zonelist, offset) {
2278 unsigned long size = zone->present_pages;
2279 unsigned long high = high_wmark_pages(zone);
2280 if (size > high)
2281 sum += size - high;
2284 return sum;
2288 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2290 unsigned int nr_free_buffer_pages(void)
2292 return nr_free_zone_pages(gfp_zone(GFP_USER));
2294 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2297 * Amount of free RAM allocatable within all zones
2299 unsigned int nr_free_pagecache_pages(void)
2301 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2304 static inline void show_node(struct zone *zone)
2306 if (NUMA_BUILD)
2307 printk("Node %d ", zone_to_nid(zone));
2310 void si_meminfo(struct sysinfo *val)
2312 val->totalram = totalram_pages;
2313 val->sharedram = 0;
2314 val->freeram = global_page_state(NR_FREE_PAGES);
2315 val->bufferram = nr_blockdev_pages();
2316 val->totalhigh = totalhigh_pages;
2317 val->freehigh = nr_free_highpages();
2318 val->mem_unit = PAGE_SIZE;
2321 EXPORT_SYMBOL(si_meminfo);
2323 #ifdef CONFIG_NUMA
2324 void si_meminfo_node(struct sysinfo *val, int nid)
2326 pg_data_t *pgdat = NODE_DATA(nid);
2328 val->totalram = pgdat->node_present_pages;
2329 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2330 #ifdef CONFIG_HIGHMEM
2331 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2332 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2333 NR_FREE_PAGES);
2334 #else
2335 val->totalhigh = 0;
2336 val->freehigh = 0;
2337 #endif
2338 val->mem_unit = PAGE_SIZE;
2340 #endif
2342 #define K(x) ((x) << (PAGE_SHIFT-10))
2345 * Show free area list (used inside shift_scroll-lock stuff)
2346 * We also calculate the percentage fragmentation. We do this by counting the
2347 * memory on each free list with the exception of the first item on the list.
2349 void show_free_areas(void)
2351 int cpu;
2352 struct zone *zone;
2354 for_each_populated_zone(zone) {
2355 show_node(zone);
2356 printk("%s per-cpu:\n", zone->name);
2358 for_each_online_cpu(cpu) {
2359 struct per_cpu_pageset *pageset;
2361 pageset = per_cpu_ptr(zone->pageset, cpu);
2363 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2364 cpu, pageset->pcp.high,
2365 pageset->pcp.batch, pageset->pcp.count);
2369 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2370 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2371 " unevictable:%lu"
2372 " dirty:%lu writeback:%lu unstable:%lu\n"
2373 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2374 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2375 global_page_state(NR_ACTIVE_ANON),
2376 global_page_state(NR_INACTIVE_ANON),
2377 global_page_state(NR_ISOLATED_ANON),
2378 global_page_state(NR_ACTIVE_FILE),
2379 global_page_state(NR_INACTIVE_FILE),
2380 global_page_state(NR_ISOLATED_FILE),
2381 global_page_state(NR_UNEVICTABLE),
2382 global_page_state(NR_FILE_DIRTY),
2383 global_page_state(NR_WRITEBACK),
2384 global_page_state(NR_UNSTABLE_NFS),
2385 global_page_state(NR_FREE_PAGES),
2386 global_page_state(NR_SLAB_RECLAIMABLE),
2387 global_page_state(NR_SLAB_UNRECLAIMABLE),
2388 global_page_state(NR_FILE_MAPPED),
2389 global_page_state(NR_SHMEM),
2390 global_page_state(NR_PAGETABLE),
2391 global_page_state(NR_BOUNCE));
2393 for_each_populated_zone(zone) {
2394 int i;
2396 show_node(zone);
2397 printk("%s"
2398 " free:%lukB"
2399 " min:%lukB"
2400 " low:%lukB"
2401 " high:%lukB"
2402 " active_anon:%lukB"
2403 " inactive_anon:%lukB"
2404 " active_file:%lukB"
2405 " inactive_file:%lukB"
2406 " unevictable:%lukB"
2407 " isolated(anon):%lukB"
2408 " isolated(file):%lukB"
2409 " present:%lukB"
2410 " mlocked:%lukB"
2411 " dirty:%lukB"
2412 " writeback:%lukB"
2413 " mapped:%lukB"
2414 " shmem:%lukB"
2415 " slab_reclaimable:%lukB"
2416 " slab_unreclaimable:%lukB"
2417 " kernel_stack:%lukB"
2418 " pagetables:%lukB"
2419 " unstable:%lukB"
2420 " bounce:%lukB"
2421 " writeback_tmp:%lukB"
2422 " pages_scanned:%lu"
2423 " all_unreclaimable? %s"
2424 "\n",
2425 zone->name,
2426 K(zone_page_state(zone, NR_FREE_PAGES)),
2427 K(min_wmark_pages(zone)),
2428 K(low_wmark_pages(zone)),
2429 K(high_wmark_pages(zone)),
2430 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2431 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2432 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2433 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2434 K(zone_page_state(zone, NR_UNEVICTABLE)),
2435 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2436 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2437 K(zone->present_pages),
2438 K(zone_page_state(zone, NR_MLOCK)),
2439 K(zone_page_state(zone, NR_FILE_DIRTY)),
2440 K(zone_page_state(zone, NR_WRITEBACK)),
2441 K(zone_page_state(zone, NR_FILE_MAPPED)),
2442 K(zone_page_state(zone, NR_SHMEM)),
2443 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2444 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2445 zone_page_state(zone, NR_KERNEL_STACK) *
2446 THREAD_SIZE / 1024,
2447 K(zone_page_state(zone, NR_PAGETABLE)),
2448 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2449 K(zone_page_state(zone, NR_BOUNCE)),
2450 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2451 zone->pages_scanned,
2452 (zone->all_unreclaimable ? "yes" : "no")
2454 printk("lowmem_reserve[]:");
2455 for (i = 0; i < MAX_NR_ZONES; i++)
2456 printk(" %lu", zone->lowmem_reserve[i]);
2457 printk("\n");
2460 for_each_populated_zone(zone) {
2461 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2463 show_node(zone);
2464 printk("%s: ", zone->name);
2466 spin_lock_irqsave(&zone->lock, flags);
2467 for (order = 0; order < MAX_ORDER; order++) {
2468 nr[order] = zone->free_area[order].nr_free;
2469 total += nr[order] << order;
2471 spin_unlock_irqrestore(&zone->lock, flags);
2472 for (order = 0; order < MAX_ORDER; order++)
2473 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2474 printk("= %lukB\n", K(total));
2477 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2479 show_swap_cache_info();
2482 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2484 zoneref->zone = zone;
2485 zoneref->zone_idx = zone_idx(zone);
2489 * Builds allocation fallback zone lists.
2491 * Add all populated zones of a node to the zonelist.
2493 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2494 int nr_zones, enum zone_type zone_type)
2496 struct zone *zone;
2498 BUG_ON(zone_type >= MAX_NR_ZONES);
2499 zone_type++;
2501 do {
2502 zone_type--;
2503 zone = pgdat->node_zones + zone_type;
2504 if (populated_zone(zone)) {
2505 zoneref_set_zone(zone,
2506 &zonelist->_zonerefs[nr_zones++]);
2507 check_highest_zone(zone_type);
2510 } while (zone_type);
2511 return nr_zones;
2516 * zonelist_order:
2517 * 0 = automatic detection of better ordering.
2518 * 1 = order by ([node] distance, -zonetype)
2519 * 2 = order by (-zonetype, [node] distance)
2521 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2522 * the same zonelist. So only NUMA can configure this param.
2524 #define ZONELIST_ORDER_DEFAULT 0
2525 #define ZONELIST_ORDER_NODE 1
2526 #define ZONELIST_ORDER_ZONE 2
2528 /* zonelist order in the kernel.
2529 * set_zonelist_order() will set this to NODE or ZONE.
2531 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2532 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2535 #ifdef CONFIG_NUMA
2536 /* The value user specified ....changed by config */
2537 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2538 /* string for sysctl */
2539 #define NUMA_ZONELIST_ORDER_LEN 16
2540 char numa_zonelist_order[16] = "default";
2543 * interface for configure zonelist ordering.
2544 * command line option "numa_zonelist_order"
2545 * = "[dD]efault - default, automatic configuration.
2546 * = "[nN]ode - order by node locality, then by zone within node
2547 * = "[zZ]one - order by zone, then by locality within zone
2550 static int __parse_numa_zonelist_order(char *s)
2552 if (*s == 'd' || *s == 'D') {
2553 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2554 } else if (*s == 'n' || *s == 'N') {
2555 user_zonelist_order = ZONELIST_ORDER_NODE;
2556 } else if (*s == 'z' || *s == 'Z') {
2557 user_zonelist_order = ZONELIST_ORDER_ZONE;
2558 } else {
2559 printk(KERN_WARNING
2560 "Ignoring invalid numa_zonelist_order value: "
2561 "%s\n", s);
2562 return -EINVAL;
2564 return 0;
2567 static __init int setup_numa_zonelist_order(char *s)
2569 if (s)
2570 return __parse_numa_zonelist_order(s);
2571 return 0;
2573 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2576 * sysctl handler for numa_zonelist_order
2578 int numa_zonelist_order_handler(ctl_table *table, int write,
2579 void __user *buffer, size_t *length,
2580 loff_t *ppos)
2582 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2583 int ret;
2584 static DEFINE_MUTEX(zl_order_mutex);
2586 mutex_lock(&zl_order_mutex);
2587 if (write)
2588 strcpy(saved_string, (char*)table->data);
2589 ret = proc_dostring(table, write, buffer, length, ppos);
2590 if (ret)
2591 goto out;
2592 if (write) {
2593 int oldval = user_zonelist_order;
2594 if (__parse_numa_zonelist_order((char*)table->data)) {
2596 * bogus value. restore saved string
2598 strncpy((char*)table->data, saved_string,
2599 NUMA_ZONELIST_ORDER_LEN);
2600 user_zonelist_order = oldval;
2601 } else if (oldval != user_zonelist_order) {
2602 mutex_lock(&zonelists_mutex);
2603 build_all_zonelists(NULL);
2604 mutex_unlock(&zonelists_mutex);
2607 out:
2608 mutex_unlock(&zl_order_mutex);
2609 return ret;
2613 #define MAX_NODE_LOAD (nr_online_nodes)
2614 static int node_load[MAX_NUMNODES];
2617 * find_next_best_node - find the next node that should appear in a given node's fallback list
2618 * @node: node whose fallback list we're appending
2619 * @used_node_mask: nodemask_t of already used nodes
2621 * We use a number of factors to determine which is the next node that should
2622 * appear on a given node's fallback list. The node should not have appeared
2623 * already in @node's fallback list, and it should be the next closest node
2624 * according to the distance array (which contains arbitrary distance values
2625 * from each node to each node in the system), and should also prefer nodes
2626 * with no CPUs, since presumably they'll have very little allocation pressure
2627 * on them otherwise.
2628 * It returns -1 if no node is found.
2630 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2632 int n, val;
2633 int min_val = INT_MAX;
2634 int best_node = -1;
2635 const struct cpumask *tmp = cpumask_of_node(0);
2637 /* Use the local node if we haven't already */
2638 if (!node_isset(node, *used_node_mask)) {
2639 node_set(node, *used_node_mask);
2640 return node;
2643 for_each_node_state(n, N_HIGH_MEMORY) {
2645 /* Don't want a node to appear more than once */
2646 if (node_isset(n, *used_node_mask))
2647 continue;
2649 /* Use the distance array to find the distance */
2650 val = node_distance(node, n);
2652 /* Penalize nodes under us ("prefer the next node") */
2653 val += (n < node);
2655 /* Give preference to headless and unused nodes */
2656 tmp = cpumask_of_node(n);
2657 if (!cpumask_empty(tmp))
2658 val += PENALTY_FOR_NODE_WITH_CPUS;
2660 /* Slight preference for less loaded node */
2661 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2662 val += node_load[n];
2664 if (val < min_val) {
2665 min_val = val;
2666 best_node = n;
2670 if (best_node >= 0)
2671 node_set(best_node, *used_node_mask);
2673 return best_node;
2678 * Build zonelists ordered by node and zones within node.
2679 * This results in maximum locality--normal zone overflows into local
2680 * DMA zone, if any--but risks exhausting DMA zone.
2682 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2684 int j;
2685 struct zonelist *zonelist;
2687 zonelist = &pgdat->node_zonelists[0];
2688 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2690 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2691 MAX_NR_ZONES - 1);
2692 zonelist->_zonerefs[j].zone = NULL;
2693 zonelist->_zonerefs[j].zone_idx = 0;
2697 * Build gfp_thisnode zonelists
2699 static void build_thisnode_zonelists(pg_data_t *pgdat)
2701 int j;
2702 struct zonelist *zonelist;
2704 zonelist = &pgdat->node_zonelists[1];
2705 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2706 zonelist->_zonerefs[j].zone = NULL;
2707 zonelist->_zonerefs[j].zone_idx = 0;
2711 * Build zonelists ordered by zone and nodes within zones.
2712 * This results in conserving DMA zone[s] until all Normal memory is
2713 * exhausted, but results in overflowing to remote node while memory
2714 * may still exist in local DMA zone.
2716 static int node_order[MAX_NUMNODES];
2718 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2720 int pos, j, node;
2721 int zone_type; /* needs to be signed */
2722 struct zone *z;
2723 struct zonelist *zonelist;
2725 zonelist = &pgdat->node_zonelists[0];
2726 pos = 0;
2727 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2728 for (j = 0; j < nr_nodes; j++) {
2729 node = node_order[j];
2730 z = &NODE_DATA(node)->node_zones[zone_type];
2731 if (populated_zone(z)) {
2732 zoneref_set_zone(z,
2733 &zonelist->_zonerefs[pos++]);
2734 check_highest_zone(zone_type);
2738 zonelist->_zonerefs[pos].zone = NULL;
2739 zonelist->_zonerefs[pos].zone_idx = 0;
2742 static int default_zonelist_order(void)
2744 int nid, zone_type;
2745 unsigned long low_kmem_size,total_size;
2746 struct zone *z;
2747 int average_size;
2749 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2750 * If they are really small and used heavily, the system can fall
2751 * into OOM very easily.
2752 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2754 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2755 low_kmem_size = 0;
2756 total_size = 0;
2757 for_each_online_node(nid) {
2758 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2759 z = &NODE_DATA(nid)->node_zones[zone_type];
2760 if (populated_zone(z)) {
2761 if (zone_type < ZONE_NORMAL)
2762 low_kmem_size += z->present_pages;
2763 total_size += z->present_pages;
2764 } else if (zone_type == ZONE_NORMAL) {
2766 * If any node has only lowmem, then node order
2767 * is preferred to allow kernel allocations
2768 * locally; otherwise, they can easily infringe
2769 * on other nodes when there is an abundance of
2770 * lowmem available to allocate from.
2772 return ZONELIST_ORDER_NODE;
2776 if (!low_kmem_size || /* there are no DMA area. */
2777 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2778 return ZONELIST_ORDER_NODE;
2780 * look into each node's config.
2781 * If there is a node whose DMA/DMA32 memory is very big area on
2782 * local memory, NODE_ORDER may be suitable.
2784 average_size = total_size /
2785 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2786 for_each_online_node(nid) {
2787 low_kmem_size = 0;
2788 total_size = 0;
2789 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2790 z = &NODE_DATA(nid)->node_zones[zone_type];
2791 if (populated_zone(z)) {
2792 if (zone_type < ZONE_NORMAL)
2793 low_kmem_size += z->present_pages;
2794 total_size += z->present_pages;
2797 if (low_kmem_size &&
2798 total_size > average_size && /* ignore small node */
2799 low_kmem_size > total_size * 70/100)
2800 return ZONELIST_ORDER_NODE;
2802 return ZONELIST_ORDER_ZONE;
2805 static void set_zonelist_order(void)
2807 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2808 current_zonelist_order = default_zonelist_order();
2809 else
2810 current_zonelist_order = user_zonelist_order;
2813 static void build_zonelists(pg_data_t *pgdat)
2815 int j, node, load;
2816 enum zone_type i;
2817 nodemask_t used_mask;
2818 int local_node, prev_node;
2819 struct zonelist *zonelist;
2820 int order = current_zonelist_order;
2822 /* initialize zonelists */
2823 for (i = 0; i < MAX_ZONELISTS; i++) {
2824 zonelist = pgdat->node_zonelists + i;
2825 zonelist->_zonerefs[0].zone = NULL;
2826 zonelist->_zonerefs[0].zone_idx = 0;
2829 /* NUMA-aware ordering of nodes */
2830 local_node = pgdat->node_id;
2831 load = nr_online_nodes;
2832 prev_node = local_node;
2833 nodes_clear(used_mask);
2835 memset(node_order, 0, sizeof(node_order));
2836 j = 0;
2838 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2839 int distance = node_distance(local_node, node);
2842 * If another node is sufficiently far away then it is better
2843 * to reclaim pages in a zone before going off node.
2845 if (distance > RECLAIM_DISTANCE)
2846 zone_reclaim_mode = 1;
2849 * We don't want to pressure a particular node.
2850 * So adding penalty to the first node in same
2851 * distance group to make it round-robin.
2853 if (distance != node_distance(local_node, prev_node))
2854 node_load[node] = load;
2856 prev_node = node;
2857 load--;
2858 if (order == ZONELIST_ORDER_NODE)
2859 build_zonelists_in_node_order(pgdat, node);
2860 else
2861 node_order[j++] = node; /* remember order */
2864 if (order == ZONELIST_ORDER_ZONE) {
2865 /* calculate node order -- i.e., DMA last! */
2866 build_zonelists_in_zone_order(pgdat, j);
2869 build_thisnode_zonelists(pgdat);
2872 /* Construct the zonelist performance cache - see further mmzone.h */
2873 static void build_zonelist_cache(pg_data_t *pgdat)
2875 struct zonelist *zonelist;
2876 struct zonelist_cache *zlc;
2877 struct zoneref *z;
2879 zonelist = &pgdat->node_zonelists[0];
2880 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2881 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2882 for (z = zonelist->_zonerefs; z->zone; z++)
2883 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2886 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2888 * Return node id of node used for "local" allocations.
2889 * I.e., first node id of first zone in arg node's generic zonelist.
2890 * Used for initializing percpu 'numa_mem', which is used primarily
2891 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2893 int local_memory_node(int node)
2895 struct zone *zone;
2897 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2898 gfp_zone(GFP_KERNEL),
2899 NULL,
2900 &zone);
2901 return zone->node;
2903 #endif
2905 #else /* CONFIG_NUMA */
2907 static void set_zonelist_order(void)
2909 current_zonelist_order = ZONELIST_ORDER_ZONE;
2912 static void build_zonelists(pg_data_t *pgdat)
2914 int node, local_node;
2915 enum zone_type j;
2916 struct zonelist *zonelist;
2918 local_node = pgdat->node_id;
2920 zonelist = &pgdat->node_zonelists[0];
2921 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2924 * Now we build the zonelist so that it contains the zones
2925 * of all the other nodes.
2926 * We don't want to pressure a particular node, so when
2927 * building the zones for node N, we make sure that the
2928 * zones coming right after the local ones are those from
2929 * node N+1 (modulo N)
2931 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2932 if (!node_online(node))
2933 continue;
2934 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2935 MAX_NR_ZONES - 1);
2937 for (node = 0; node < local_node; node++) {
2938 if (!node_online(node))
2939 continue;
2940 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2941 MAX_NR_ZONES - 1);
2944 zonelist->_zonerefs[j].zone = NULL;
2945 zonelist->_zonerefs[j].zone_idx = 0;
2948 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2949 static void build_zonelist_cache(pg_data_t *pgdat)
2951 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2954 #endif /* CONFIG_NUMA */
2957 * Boot pageset table. One per cpu which is going to be used for all
2958 * zones and all nodes. The parameters will be set in such a way
2959 * that an item put on a list will immediately be handed over to
2960 * the buddy list. This is safe since pageset manipulation is done
2961 * with interrupts disabled.
2963 * The boot_pagesets must be kept even after bootup is complete for
2964 * unused processors and/or zones. They do play a role for bootstrapping
2965 * hotplugged processors.
2967 * zoneinfo_show() and maybe other functions do
2968 * not check if the processor is online before following the pageset pointer.
2969 * Other parts of the kernel may not check if the zone is available.
2971 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2972 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2973 static void setup_zone_pageset(struct zone *zone);
2976 * Global mutex to protect against size modification of zonelists
2977 * as well as to serialize pageset setup for the new populated zone.
2979 DEFINE_MUTEX(zonelists_mutex);
2981 /* return values int ....just for stop_machine() */
2982 static __init_refok int __build_all_zonelists(void *data)
2984 int nid;
2985 int cpu;
2987 #ifdef CONFIG_NUMA
2988 memset(node_load, 0, sizeof(node_load));
2989 #endif
2990 for_each_online_node(nid) {
2991 pg_data_t *pgdat = NODE_DATA(nid);
2993 build_zonelists(pgdat);
2994 build_zonelist_cache(pgdat);
2997 #ifdef CONFIG_MEMORY_HOTPLUG
2998 /* Setup real pagesets for the new zone */
2999 if (data) {
3000 struct zone *zone = data;
3001 setup_zone_pageset(zone);
3003 #endif
3006 * Initialize the boot_pagesets that are going to be used
3007 * for bootstrapping processors. The real pagesets for
3008 * each zone will be allocated later when the per cpu
3009 * allocator is available.
3011 * boot_pagesets are used also for bootstrapping offline
3012 * cpus if the system is already booted because the pagesets
3013 * are needed to initialize allocators on a specific cpu too.
3014 * F.e. the percpu allocator needs the page allocator which
3015 * needs the percpu allocator in order to allocate its pagesets
3016 * (a chicken-egg dilemma).
3018 for_each_possible_cpu(cpu) {
3019 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3021 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3023 * We now know the "local memory node" for each node--
3024 * i.e., the node of the first zone in the generic zonelist.
3025 * Set up numa_mem percpu variable for on-line cpus. During
3026 * boot, only the boot cpu should be on-line; we'll init the
3027 * secondary cpus' numa_mem as they come on-line. During
3028 * node/memory hotplug, we'll fixup all on-line cpus.
3030 if (cpu_online(cpu))
3031 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3032 #endif
3035 return 0;
3039 * Called with zonelists_mutex held always
3040 * unless system_state == SYSTEM_BOOTING.
3042 void build_all_zonelists(void *data)
3044 set_zonelist_order();
3046 if (system_state == SYSTEM_BOOTING) {
3047 __build_all_zonelists(NULL);
3048 mminit_verify_zonelist();
3049 cpuset_init_current_mems_allowed();
3050 } else {
3051 /* we have to stop all cpus to guarantee there is no user
3052 of zonelist */
3053 stop_machine(__build_all_zonelists, data, NULL);
3054 /* cpuset refresh routine should be here */
3056 vm_total_pages = nr_free_pagecache_pages();
3058 * Disable grouping by mobility if the number of pages in the
3059 * system is too low to allow the mechanism to work. It would be
3060 * more accurate, but expensive to check per-zone. This check is
3061 * made on memory-hotadd so a system can start with mobility
3062 * disabled and enable it later
3064 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3065 page_group_by_mobility_disabled = 1;
3066 else
3067 page_group_by_mobility_disabled = 0;
3069 printk("Built %i zonelists in %s order, mobility grouping %s. "
3070 "Total pages: %ld\n",
3071 nr_online_nodes,
3072 zonelist_order_name[current_zonelist_order],
3073 page_group_by_mobility_disabled ? "off" : "on",
3074 vm_total_pages);
3075 #ifdef CONFIG_NUMA
3076 printk("Policy zone: %s\n", zone_names[policy_zone]);
3077 #endif
3081 * Helper functions to size the waitqueue hash table.
3082 * Essentially these want to choose hash table sizes sufficiently
3083 * large so that collisions trying to wait on pages are rare.
3084 * But in fact, the number of active page waitqueues on typical
3085 * systems is ridiculously low, less than 200. So this is even
3086 * conservative, even though it seems large.
3088 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3089 * waitqueues, i.e. the size of the waitq table given the number of pages.
3091 #define PAGES_PER_WAITQUEUE 256
3093 #ifndef CONFIG_MEMORY_HOTPLUG
3094 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3096 unsigned long size = 1;
3098 pages /= PAGES_PER_WAITQUEUE;
3100 while (size < pages)
3101 size <<= 1;
3104 * Once we have dozens or even hundreds of threads sleeping
3105 * on IO we've got bigger problems than wait queue collision.
3106 * Limit the size of the wait table to a reasonable size.
3108 size = min(size, 4096UL);
3110 return max(size, 4UL);
3112 #else
3114 * A zone's size might be changed by hot-add, so it is not possible to determine
3115 * a suitable size for its wait_table. So we use the maximum size now.
3117 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3119 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3120 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3121 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3123 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3124 * or more by the traditional way. (See above). It equals:
3126 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3127 * ia64(16K page size) : = ( 8G + 4M)byte.
3128 * powerpc (64K page size) : = (32G +16M)byte.
3130 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3132 return 4096UL;
3134 #endif
3137 * This is an integer logarithm so that shifts can be used later
3138 * to extract the more random high bits from the multiplicative
3139 * hash function before the remainder is taken.
3141 static inline unsigned long wait_table_bits(unsigned long size)
3143 return ffz(~size);
3146 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3149 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3150 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3151 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3152 * higher will lead to a bigger reserve which will get freed as contiguous
3153 * blocks as reclaim kicks in
3155 static void setup_zone_migrate_reserve(struct zone *zone)
3157 unsigned long start_pfn, pfn, end_pfn;
3158 struct page *page;
3159 unsigned long block_migratetype;
3160 int reserve;
3162 /* Get the start pfn, end pfn and the number of blocks to reserve */
3163 start_pfn = zone->zone_start_pfn;
3164 end_pfn = start_pfn + zone->spanned_pages;
3165 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3166 pageblock_order;
3169 * Reserve blocks are generally in place to help high-order atomic
3170 * allocations that are short-lived. A min_free_kbytes value that
3171 * would result in more than 2 reserve blocks for atomic allocations
3172 * is assumed to be in place to help anti-fragmentation for the
3173 * future allocation of hugepages at runtime.
3175 reserve = min(2, reserve);
3177 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3178 if (!pfn_valid(pfn))
3179 continue;
3180 page = pfn_to_page(pfn);
3182 /* Watch out for overlapping nodes */
3183 if (page_to_nid(page) != zone_to_nid(zone))
3184 continue;
3186 /* Blocks with reserved pages will never free, skip them. */
3187 if (PageReserved(page))
3188 continue;
3190 block_migratetype = get_pageblock_migratetype(page);
3192 /* If this block is reserved, account for it */
3193 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3194 reserve--;
3195 continue;
3198 /* Suitable for reserving if this block is movable */
3199 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3200 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3201 move_freepages_block(zone, page, MIGRATE_RESERVE);
3202 reserve--;
3203 continue;
3207 * If the reserve is met and this is a previous reserved block,
3208 * take it back
3210 if (block_migratetype == MIGRATE_RESERVE) {
3211 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3212 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3218 * Initially all pages are reserved - free ones are freed
3219 * up by free_all_bootmem() once the early boot process is
3220 * done. Non-atomic initialization, single-pass.
3222 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3223 unsigned long start_pfn, enum memmap_context context)
3225 struct page *page;
3226 unsigned long end_pfn = start_pfn + size;
3227 unsigned long pfn;
3228 struct zone *z;
3230 if (highest_memmap_pfn < end_pfn - 1)
3231 highest_memmap_pfn = end_pfn - 1;
3233 z = &NODE_DATA(nid)->node_zones[zone];
3234 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3236 * There can be holes in boot-time mem_map[]s
3237 * handed to this function. They do not
3238 * exist on hotplugged memory.
3240 if (context == MEMMAP_EARLY) {
3241 if (!early_pfn_valid(pfn))
3242 continue;
3243 if (!early_pfn_in_nid(pfn, nid))
3244 continue;
3246 page = pfn_to_page(pfn);
3247 set_page_links(page, zone, nid, pfn);
3248 mminit_verify_page_links(page, zone, nid, pfn);
3249 init_page_count(page);
3250 reset_page_mapcount(page);
3251 SetPageReserved(page);
3253 * Mark the block movable so that blocks are reserved for
3254 * movable at startup. This will force kernel allocations
3255 * to reserve their blocks rather than leaking throughout
3256 * the address space during boot when many long-lived
3257 * kernel allocations are made. Later some blocks near
3258 * the start are marked MIGRATE_RESERVE by
3259 * setup_zone_migrate_reserve()
3261 * bitmap is created for zone's valid pfn range. but memmap
3262 * can be created for invalid pages (for alignment)
3263 * check here not to call set_pageblock_migratetype() against
3264 * pfn out of zone.
3266 if ((z->zone_start_pfn <= pfn)
3267 && (pfn < z->zone_start_pfn + z->spanned_pages)
3268 && !(pfn & (pageblock_nr_pages - 1)))
3269 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3271 INIT_LIST_HEAD(&page->lru);
3272 #ifdef WANT_PAGE_VIRTUAL
3273 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3274 if (!is_highmem_idx(zone))
3275 set_page_address(page, __va(pfn << PAGE_SHIFT));
3276 #endif
3280 static void __meminit zone_init_free_lists(struct zone *zone)
3282 int order, t;
3283 for_each_migratetype_order(order, t) {
3284 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3285 zone->free_area[order].nr_free = 0;
3289 #ifndef __HAVE_ARCH_MEMMAP_INIT
3290 #define memmap_init(size, nid, zone, start_pfn) \
3291 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3292 #endif
3294 static int zone_batchsize(struct zone *zone)
3296 #ifdef CONFIG_MMU
3297 int batch;
3300 * The per-cpu-pages pools are set to around 1000th of the
3301 * size of the zone. But no more than 1/2 of a meg.
3303 * OK, so we don't know how big the cache is. So guess.
3305 batch = zone->present_pages / 1024;
3306 if (batch * PAGE_SIZE > 512 * 1024)
3307 batch = (512 * 1024) / PAGE_SIZE;
3308 batch /= 4; /* We effectively *= 4 below */
3309 if (batch < 1)
3310 batch = 1;
3313 * Clamp the batch to a 2^n - 1 value. Having a power
3314 * of 2 value was found to be more likely to have
3315 * suboptimal cache aliasing properties in some cases.
3317 * For example if 2 tasks are alternately allocating
3318 * batches of pages, one task can end up with a lot
3319 * of pages of one half of the possible page colors
3320 * and the other with pages of the other colors.
3322 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3324 return batch;
3326 #else
3327 /* The deferral and batching of frees should be suppressed under NOMMU
3328 * conditions.
3330 * The problem is that NOMMU needs to be able to allocate large chunks
3331 * of contiguous memory as there's no hardware page translation to
3332 * assemble apparent contiguous memory from discontiguous pages.
3334 * Queueing large contiguous runs of pages for batching, however,
3335 * causes the pages to actually be freed in smaller chunks. As there
3336 * can be a significant delay between the individual batches being
3337 * recycled, this leads to the once large chunks of space being
3338 * fragmented and becoming unavailable for high-order allocations.
3340 return 0;
3341 #endif
3344 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3346 struct per_cpu_pages *pcp;
3347 int migratetype;
3349 memset(p, 0, sizeof(*p));
3351 pcp = &p->pcp;
3352 pcp->count = 0;
3353 pcp->high = 6 * batch;
3354 pcp->batch = max(1UL, 1 * batch);
3355 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3356 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3360 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3361 * to the value high for the pageset p.
3364 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3365 unsigned long high)
3367 struct per_cpu_pages *pcp;
3369 pcp = &p->pcp;
3370 pcp->high = high;
3371 pcp->batch = max(1UL, high/4);
3372 if ((high/4) > (PAGE_SHIFT * 8))
3373 pcp->batch = PAGE_SHIFT * 8;
3376 static __meminit void setup_zone_pageset(struct zone *zone)
3378 int cpu;
3380 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3382 for_each_possible_cpu(cpu) {
3383 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3385 setup_pageset(pcp, zone_batchsize(zone));
3387 if (percpu_pagelist_fraction)
3388 setup_pagelist_highmark(pcp,
3389 (zone->present_pages /
3390 percpu_pagelist_fraction));
3395 * Allocate per cpu pagesets and initialize them.
3396 * Before this call only boot pagesets were available.
3398 void __init setup_per_cpu_pageset(void)
3400 struct zone *zone;
3402 for_each_populated_zone(zone)
3403 setup_zone_pageset(zone);
3406 static noinline __init_refok
3407 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3409 int i;
3410 struct pglist_data *pgdat = zone->zone_pgdat;
3411 size_t alloc_size;
3414 * The per-page waitqueue mechanism uses hashed waitqueues
3415 * per zone.
3417 zone->wait_table_hash_nr_entries =
3418 wait_table_hash_nr_entries(zone_size_pages);
3419 zone->wait_table_bits =
3420 wait_table_bits(zone->wait_table_hash_nr_entries);
3421 alloc_size = zone->wait_table_hash_nr_entries
3422 * sizeof(wait_queue_head_t);
3424 if (!slab_is_available()) {
3425 zone->wait_table = (wait_queue_head_t *)
3426 alloc_bootmem_node(pgdat, alloc_size);
3427 } else {
3429 * This case means that a zone whose size was 0 gets new memory
3430 * via memory hot-add.
3431 * But it may be the case that a new node was hot-added. In
3432 * this case vmalloc() will not be able to use this new node's
3433 * memory - this wait_table must be initialized to use this new
3434 * node itself as well.
3435 * To use this new node's memory, further consideration will be
3436 * necessary.
3438 zone->wait_table = vmalloc(alloc_size);
3440 if (!zone->wait_table)
3441 return -ENOMEM;
3443 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3444 init_waitqueue_head(zone->wait_table + i);
3446 return 0;
3449 static int __zone_pcp_update(void *data)
3451 struct zone *zone = data;
3452 int cpu;
3453 unsigned long batch = zone_batchsize(zone), flags;
3455 for_each_possible_cpu(cpu) {
3456 struct per_cpu_pageset *pset;
3457 struct per_cpu_pages *pcp;
3459 pset = per_cpu_ptr(zone->pageset, cpu);
3460 pcp = &pset->pcp;
3462 local_irq_save(flags);
3463 free_pcppages_bulk(zone, pcp->count, pcp);
3464 setup_pageset(pset, batch);
3465 local_irq_restore(flags);
3467 return 0;
3470 void zone_pcp_update(struct zone *zone)
3472 stop_machine(__zone_pcp_update, zone, NULL);
3475 static __meminit void zone_pcp_init(struct zone *zone)
3478 * per cpu subsystem is not up at this point. The following code
3479 * relies on the ability of the linker to provide the
3480 * offset of a (static) per cpu variable into the per cpu area.
3482 zone->pageset = &boot_pageset;
3484 if (zone->present_pages)
3485 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3486 zone->name, zone->present_pages,
3487 zone_batchsize(zone));
3490 __meminit int init_currently_empty_zone(struct zone *zone,
3491 unsigned long zone_start_pfn,
3492 unsigned long size,
3493 enum memmap_context context)
3495 struct pglist_data *pgdat = zone->zone_pgdat;
3496 int ret;
3497 ret = zone_wait_table_init(zone, size);
3498 if (ret)
3499 return ret;
3500 pgdat->nr_zones = zone_idx(zone) + 1;
3502 zone->zone_start_pfn = zone_start_pfn;
3504 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3505 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3506 pgdat->node_id,
3507 (unsigned long)zone_idx(zone),
3508 zone_start_pfn, (zone_start_pfn + size));
3510 zone_init_free_lists(zone);
3512 return 0;
3515 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3517 * Basic iterator support. Return the first range of PFNs for a node
3518 * Note: nid == MAX_NUMNODES returns first region regardless of node
3520 static int __meminit first_active_region_index_in_nid(int nid)
3522 int i;
3524 for (i = 0; i < nr_nodemap_entries; i++)
3525 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3526 return i;
3528 return -1;
3532 * Basic iterator support. Return the next active range of PFNs for a node
3533 * Note: nid == MAX_NUMNODES returns next region regardless of node
3535 static int __meminit next_active_region_index_in_nid(int index, int nid)
3537 for (index = index + 1; index < nr_nodemap_entries; index++)
3538 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3539 return index;
3541 return -1;
3544 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3546 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3547 * Architectures may implement their own version but if add_active_range()
3548 * was used and there are no special requirements, this is a convenient
3549 * alternative
3551 int __meminit __early_pfn_to_nid(unsigned long pfn)
3553 int i;
3555 for (i = 0; i < nr_nodemap_entries; i++) {
3556 unsigned long start_pfn = early_node_map[i].start_pfn;
3557 unsigned long end_pfn = early_node_map[i].end_pfn;
3559 if (start_pfn <= pfn && pfn < end_pfn)
3560 return early_node_map[i].nid;
3562 /* This is a memory hole */
3563 return -1;
3565 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3567 int __meminit early_pfn_to_nid(unsigned long pfn)
3569 int nid;
3571 nid = __early_pfn_to_nid(pfn);
3572 if (nid >= 0)
3573 return nid;
3574 /* just returns 0 */
3575 return 0;
3578 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3579 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3581 int nid;
3583 nid = __early_pfn_to_nid(pfn);
3584 if (nid >= 0 && nid != node)
3585 return false;
3586 return true;
3588 #endif
3590 /* Basic iterator support to walk early_node_map[] */
3591 #define for_each_active_range_index_in_nid(i, nid) \
3592 for (i = first_active_region_index_in_nid(nid); i != -1; \
3593 i = next_active_region_index_in_nid(i, nid))
3596 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3597 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3598 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3600 * If an architecture guarantees that all ranges registered with
3601 * add_active_ranges() contain no holes and may be freed, this
3602 * this function may be used instead of calling free_bootmem() manually.
3604 void __init free_bootmem_with_active_regions(int nid,
3605 unsigned long max_low_pfn)
3607 int i;
3609 for_each_active_range_index_in_nid(i, nid) {
3610 unsigned long size_pages = 0;
3611 unsigned long end_pfn = early_node_map[i].end_pfn;
3613 if (early_node_map[i].start_pfn >= max_low_pfn)
3614 continue;
3616 if (end_pfn > max_low_pfn)
3617 end_pfn = max_low_pfn;
3619 size_pages = end_pfn - early_node_map[i].start_pfn;
3620 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3621 PFN_PHYS(early_node_map[i].start_pfn),
3622 size_pages << PAGE_SHIFT);
3626 int __init add_from_early_node_map(struct range *range, int az,
3627 int nr_range, int nid)
3629 int i;
3630 u64 start, end;
3632 /* need to go over early_node_map to find out good range for node */
3633 for_each_active_range_index_in_nid(i, nid) {
3634 start = early_node_map[i].start_pfn;
3635 end = early_node_map[i].end_pfn;
3636 nr_range = add_range(range, az, nr_range, start, end);
3638 return nr_range;
3641 #ifdef CONFIG_NO_BOOTMEM
3642 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3643 u64 goal, u64 limit)
3645 int i;
3646 void *ptr;
3648 if (limit > get_max_mapped())
3649 limit = get_max_mapped();
3651 /* need to go over early_node_map to find out good range for node */
3652 for_each_active_range_index_in_nid(i, nid) {
3653 u64 addr;
3654 u64 ei_start, ei_last;
3656 ei_last = early_node_map[i].end_pfn;
3657 ei_last <<= PAGE_SHIFT;
3658 ei_start = early_node_map[i].start_pfn;
3659 ei_start <<= PAGE_SHIFT;
3660 addr = find_early_area(ei_start, ei_last,
3661 goal, limit, size, align);
3663 if (addr == -1ULL)
3664 continue;
3666 #if 0
3667 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3668 nid,
3669 ei_start, ei_last, goal, limit, size,
3670 align, addr);
3671 #endif
3673 ptr = phys_to_virt(addr);
3674 memset(ptr, 0, size);
3675 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3677 * The min_count is set to 0 so that bootmem allocated blocks
3678 * are never reported as leaks.
3680 kmemleak_alloc(ptr, size, 0, 0);
3681 return ptr;
3684 return NULL;
3686 #endif
3689 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3691 int i;
3692 int ret;
3694 for_each_active_range_index_in_nid(i, nid) {
3695 ret = work_fn(early_node_map[i].start_pfn,
3696 early_node_map[i].end_pfn, data);
3697 if (ret)
3698 break;
3702 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3703 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3705 * If an architecture guarantees that all ranges registered with
3706 * add_active_ranges() contain no holes and may be freed, this
3707 * function may be used instead of calling memory_present() manually.
3709 void __init sparse_memory_present_with_active_regions(int nid)
3711 int i;
3713 for_each_active_range_index_in_nid(i, nid)
3714 memory_present(early_node_map[i].nid,
3715 early_node_map[i].start_pfn,
3716 early_node_map[i].end_pfn);
3720 * get_pfn_range_for_nid - Return the start and end page frames for a node
3721 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3722 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3723 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3725 * It returns the start and end page frame of a node based on information
3726 * provided by an arch calling add_active_range(). If called for a node
3727 * with no available memory, a warning is printed and the start and end
3728 * PFNs will be 0.
3730 void __meminit get_pfn_range_for_nid(unsigned int nid,
3731 unsigned long *start_pfn, unsigned long *end_pfn)
3733 int i;
3734 *start_pfn = -1UL;
3735 *end_pfn = 0;
3737 for_each_active_range_index_in_nid(i, nid) {
3738 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3739 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3742 if (*start_pfn == -1UL)
3743 *start_pfn = 0;
3747 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3748 * assumption is made that zones within a node are ordered in monotonic
3749 * increasing memory addresses so that the "highest" populated zone is used
3751 static void __init find_usable_zone_for_movable(void)
3753 int zone_index;
3754 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3755 if (zone_index == ZONE_MOVABLE)
3756 continue;
3758 if (arch_zone_highest_possible_pfn[zone_index] >
3759 arch_zone_lowest_possible_pfn[zone_index])
3760 break;
3763 VM_BUG_ON(zone_index == -1);
3764 movable_zone = zone_index;
3768 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3769 * because it is sized independant of architecture. Unlike the other zones,
3770 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3771 * in each node depending on the size of each node and how evenly kernelcore
3772 * is distributed. This helper function adjusts the zone ranges
3773 * provided by the architecture for a given node by using the end of the
3774 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3775 * zones within a node are in order of monotonic increases memory addresses
3777 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3778 unsigned long zone_type,
3779 unsigned long node_start_pfn,
3780 unsigned long node_end_pfn,
3781 unsigned long *zone_start_pfn,
3782 unsigned long *zone_end_pfn)
3784 /* Only adjust if ZONE_MOVABLE is on this node */
3785 if (zone_movable_pfn[nid]) {
3786 /* Size ZONE_MOVABLE */
3787 if (zone_type == ZONE_MOVABLE) {
3788 *zone_start_pfn = zone_movable_pfn[nid];
3789 *zone_end_pfn = min(node_end_pfn,
3790 arch_zone_highest_possible_pfn[movable_zone]);
3792 /* Adjust for ZONE_MOVABLE starting within this range */
3793 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3794 *zone_end_pfn > zone_movable_pfn[nid]) {
3795 *zone_end_pfn = zone_movable_pfn[nid];
3797 /* Check if this whole range is within ZONE_MOVABLE */
3798 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3799 *zone_start_pfn = *zone_end_pfn;
3804 * Return the number of pages a zone spans in a node, including holes
3805 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3807 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3808 unsigned long zone_type,
3809 unsigned long *ignored)
3811 unsigned long node_start_pfn, node_end_pfn;
3812 unsigned long zone_start_pfn, zone_end_pfn;
3814 /* Get the start and end of the node and zone */
3815 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3816 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3817 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3818 adjust_zone_range_for_zone_movable(nid, zone_type,
3819 node_start_pfn, node_end_pfn,
3820 &zone_start_pfn, &zone_end_pfn);
3822 /* Check that this node has pages within the zone's required range */
3823 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3824 return 0;
3826 /* Move the zone boundaries inside the node if necessary */
3827 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3828 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3830 /* Return the spanned pages */
3831 return zone_end_pfn - zone_start_pfn;
3835 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3836 * then all holes in the requested range will be accounted for.
3838 unsigned long __meminit __absent_pages_in_range(int nid,
3839 unsigned long range_start_pfn,
3840 unsigned long range_end_pfn)
3842 int i = 0;
3843 unsigned long prev_end_pfn = 0, hole_pages = 0;
3844 unsigned long start_pfn;
3846 /* Find the end_pfn of the first active range of pfns in the node */
3847 i = first_active_region_index_in_nid(nid);
3848 if (i == -1)
3849 return 0;
3851 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3853 /* Account for ranges before physical memory on this node */
3854 if (early_node_map[i].start_pfn > range_start_pfn)
3855 hole_pages = prev_end_pfn - range_start_pfn;
3857 /* Find all holes for the zone within the node */
3858 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3860 /* No need to continue if prev_end_pfn is outside the zone */
3861 if (prev_end_pfn >= range_end_pfn)
3862 break;
3864 /* Make sure the end of the zone is not within the hole */
3865 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3866 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3868 /* Update the hole size cound and move on */
3869 if (start_pfn > range_start_pfn) {
3870 BUG_ON(prev_end_pfn > start_pfn);
3871 hole_pages += start_pfn - prev_end_pfn;
3873 prev_end_pfn = early_node_map[i].end_pfn;
3876 /* Account for ranges past physical memory on this node */
3877 if (range_end_pfn > prev_end_pfn)
3878 hole_pages += range_end_pfn -
3879 max(range_start_pfn, prev_end_pfn);
3881 return hole_pages;
3885 * absent_pages_in_range - Return number of page frames in holes within a range
3886 * @start_pfn: The start PFN to start searching for holes
3887 * @end_pfn: The end PFN to stop searching for holes
3889 * It returns the number of pages frames in memory holes within a range.
3891 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3892 unsigned long end_pfn)
3894 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3897 /* Return the number of page frames in holes in a zone on a node */
3898 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3899 unsigned long zone_type,
3900 unsigned long *ignored)
3902 unsigned long node_start_pfn, node_end_pfn;
3903 unsigned long zone_start_pfn, zone_end_pfn;
3905 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3906 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3907 node_start_pfn);
3908 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3909 node_end_pfn);
3911 adjust_zone_range_for_zone_movable(nid, zone_type,
3912 node_start_pfn, node_end_pfn,
3913 &zone_start_pfn, &zone_end_pfn);
3914 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3917 #else
3918 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3919 unsigned long zone_type,
3920 unsigned long *zones_size)
3922 return zones_size[zone_type];
3925 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3926 unsigned long zone_type,
3927 unsigned long *zholes_size)
3929 if (!zholes_size)
3930 return 0;
3932 return zholes_size[zone_type];
3935 #endif
3937 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3938 unsigned long *zones_size, unsigned long *zholes_size)
3940 unsigned long realtotalpages, totalpages = 0;
3941 enum zone_type i;
3943 for (i = 0; i < MAX_NR_ZONES; i++)
3944 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3945 zones_size);
3946 pgdat->node_spanned_pages = totalpages;
3948 realtotalpages = totalpages;
3949 for (i = 0; i < MAX_NR_ZONES; i++)
3950 realtotalpages -=
3951 zone_absent_pages_in_node(pgdat->node_id, i,
3952 zholes_size);
3953 pgdat->node_present_pages = realtotalpages;
3954 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3955 realtotalpages);
3958 #ifndef CONFIG_SPARSEMEM
3960 * Calculate the size of the zone->blockflags rounded to an unsigned long
3961 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3962 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3963 * round what is now in bits to nearest long in bits, then return it in
3964 * bytes.
3966 static unsigned long __init usemap_size(unsigned long zonesize)
3968 unsigned long usemapsize;
3970 usemapsize = roundup(zonesize, pageblock_nr_pages);
3971 usemapsize = usemapsize >> pageblock_order;
3972 usemapsize *= NR_PAGEBLOCK_BITS;
3973 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3975 return usemapsize / 8;
3978 static void __init setup_usemap(struct pglist_data *pgdat,
3979 struct zone *zone, unsigned long zonesize)
3981 unsigned long usemapsize = usemap_size(zonesize);
3982 zone->pageblock_flags = NULL;
3983 if (usemapsize)
3984 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3986 #else
3987 static void inline setup_usemap(struct pglist_data *pgdat,
3988 struct zone *zone, unsigned long zonesize) {}
3989 #endif /* CONFIG_SPARSEMEM */
3991 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3993 /* Return a sensible default order for the pageblock size. */
3994 static inline int pageblock_default_order(void)
3996 if (HPAGE_SHIFT > PAGE_SHIFT)
3997 return HUGETLB_PAGE_ORDER;
3999 return MAX_ORDER-1;
4002 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4003 static inline void __init set_pageblock_order(unsigned int order)
4005 /* Check that pageblock_nr_pages has not already been setup */
4006 if (pageblock_order)
4007 return;
4010 * Assume the largest contiguous order of interest is a huge page.
4011 * This value may be variable depending on boot parameters on IA64
4013 pageblock_order = order;
4015 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4018 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4019 * and pageblock_default_order() are unused as pageblock_order is set
4020 * at compile-time. See include/linux/pageblock-flags.h for the values of
4021 * pageblock_order based on the kernel config
4023 static inline int pageblock_default_order(unsigned int order)
4025 return MAX_ORDER-1;
4027 #define set_pageblock_order(x) do {} while (0)
4029 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4032 * Set up the zone data structures:
4033 * - mark all pages reserved
4034 * - mark all memory queues empty
4035 * - clear the memory bitmaps
4037 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4038 unsigned long *zones_size, unsigned long *zholes_size)
4040 enum zone_type j;
4041 int nid = pgdat->node_id;
4042 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4043 int ret;
4045 pgdat_resize_init(pgdat);
4046 pgdat->nr_zones = 0;
4047 init_waitqueue_head(&pgdat->kswapd_wait);
4048 pgdat->kswapd_max_order = 0;
4049 pgdat_page_cgroup_init(pgdat);
4051 for (j = 0; j < MAX_NR_ZONES; j++) {
4052 struct zone *zone = pgdat->node_zones + j;
4053 unsigned long size, realsize, memmap_pages;
4054 enum lru_list l;
4056 size = zone_spanned_pages_in_node(nid, j, zones_size);
4057 realsize = size - zone_absent_pages_in_node(nid, j,
4058 zholes_size);
4061 * Adjust realsize so that it accounts for how much memory
4062 * is used by this zone for memmap. This affects the watermark
4063 * and per-cpu initialisations
4065 memmap_pages =
4066 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4067 if (realsize >= memmap_pages) {
4068 realsize -= memmap_pages;
4069 if (memmap_pages)
4070 printk(KERN_DEBUG
4071 " %s zone: %lu pages used for memmap\n",
4072 zone_names[j], memmap_pages);
4073 } else
4074 printk(KERN_WARNING
4075 " %s zone: %lu pages exceeds realsize %lu\n",
4076 zone_names[j], memmap_pages, realsize);
4078 /* Account for reserved pages */
4079 if (j == 0 && realsize > dma_reserve) {
4080 realsize -= dma_reserve;
4081 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4082 zone_names[0], dma_reserve);
4085 if (!is_highmem_idx(j))
4086 nr_kernel_pages += realsize;
4087 nr_all_pages += realsize;
4089 zone->spanned_pages = size;
4090 zone->present_pages = realsize;
4091 #ifdef CONFIG_NUMA
4092 zone->node = nid;
4093 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4094 / 100;
4095 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4096 #endif
4097 zone->name = zone_names[j];
4098 spin_lock_init(&zone->lock);
4099 spin_lock_init(&zone->lru_lock);
4100 zone_seqlock_init(zone);
4101 zone->zone_pgdat = pgdat;
4103 zone_pcp_init(zone);
4104 for_each_lru(l) {
4105 INIT_LIST_HEAD(&zone->lru[l].list);
4106 zone->reclaim_stat.nr_saved_scan[l] = 0;
4108 zone->reclaim_stat.recent_rotated[0] = 0;
4109 zone->reclaim_stat.recent_rotated[1] = 0;
4110 zone->reclaim_stat.recent_scanned[0] = 0;
4111 zone->reclaim_stat.recent_scanned[1] = 0;
4112 zap_zone_vm_stats(zone);
4113 zone->flags = 0;
4114 if (!size)
4115 continue;
4117 set_pageblock_order(pageblock_default_order());
4118 setup_usemap(pgdat, zone, size);
4119 ret = init_currently_empty_zone(zone, zone_start_pfn,
4120 size, MEMMAP_EARLY);
4121 BUG_ON(ret);
4122 memmap_init(size, nid, j, zone_start_pfn);
4123 zone_start_pfn += size;
4127 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4129 /* Skip empty nodes */
4130 if (!pgdat->node_spanned_pages)
4131 return;
4133 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4134 /* ia64 gets its own node_mem_map, before this, without bootmem */
4135 if (!pgdat->node_mem_map) {
4136 unsigned long size, start, end;
4137 struct page *map;
4140 * The zone's endpoints aren't required to be MAX_ORDER
4141 * aligned but the node_mem_map endpoints must be in order
4142 * for the buddy allocator to function correctly.
4144 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4145 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4146 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4147 size = (end - start) * sizeof(struct page);
4148 map = alloc_remap(pgdat->node_id, size);
4149 if (!map)
4150 map = alloc_bootmem_node(pgdat, size);
4151 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4153 #ifndef CONFIG_NEED_MULTIPLE_NODES
4155 * With no DISCONTIG, the global mem_map is just set as node 0's
4157 if (pgdat == NODE_DATA(0)) {
4158 mem_map = NODE_DATA(0)->node_mem_map;
4159 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4160 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4161 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4164 #endif
4165 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4168 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4169 unsigned long node_start_pfn, unsigned long *zholes_size)
4171 pg_data_t *pgdat = NODE_DATA(nid);
4173 pgdat->node_id = nid;
4174 pgdat->node_start_pfn = node_start_pfn;
4175 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4177 alloc_node_mem_map(pgdat);
4178 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4179 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4180 nid, (unsigned long)pgdat,
4181 (unsigned long)pgdat->node_mem_map);
4182 #endif
4184 free_area_init_core(pgdat, zones_size, zholes_size);
4187 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4189 #if MAX_NUMNODES > 1
4191 * Figure out the number of possible node ids.
4193 static void __init setup_nr_node_ids(void)
4195 unsigned int node;
4196 unsigned int highest = 0;
4198 for_each_node_mask(node, node_possible_map)
4199 highest = node;
4200 nr_node_ids = highest + 1;
4202 #else
4203 static inline void setup_nr_node_ids(void)
4206 #endif
4209 * add_active_range - Register a range of PFNs backed by physical memory
4210 * @nid: The node ID the range resides on
4211 * @start_pfn: The start PFN of the available physical memory
4212 * @end_pfn: The end PFN of the available physical memory
4214 * These ranges are stored in an early_node_map[] and later used by
4215 * free_area_init_nodes() to calculate zone sizes and holes. If the
4216 * range spans a memory hole, it is up to the architecture to ensure
4217 * the memory is not freed by the bootmem allocator. If possible
4218 * the range being registered will be merged with existing ranges.
4220 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4221 unsigned long end_pfn)
4223 int i;
4225 mminit_dprintk(MMINIT_TRACE, "memory_register",
4226 "Entering add_active_range(%d, %#lx, %#lx) "
4227 "%d entries of %d used\n",
4228 nid, start_pfn, end_pfn,
4229 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4231 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4233 /* Merge with existing active regions if possible */
4234 for (i = 0; i < nr_nodemap_entries; i++) {
4235 if (early_node_map[i].nid != nid)
4236 continue;
4238 /* Skip if an existing region covers this new one */
4239 if (start_pfn >= early_node_map[i].start_pfn &&
4240 end_pfn <= early_node_map[i].end_pfn)
4241 return;
4243 /* Merge forward if suitable */
4244 if (start_pfn <= early_node_map[i].end_pfn &&
4245 end_pfn > early_node_map[i].end_pfn) {
4246 early_node_map[i].end_pfn = end_pfn;
4247 return;
4250 /* Merge backward if suitable */
4251 if (start_pfn < early_node_map[i].start_pfn &&
4252 end_pfn >= early_node_map[i].start_pfn) {
4253 early_node_map[i].start_pfn = start_pfn;
4254 return;
4258 /* Check that early_node_map is large enough */
4259 if (i >= MAX_ACTIVE_REGIONS) {
4260 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4261 MAX_ACTIVE_REGIONS);
4262 return;
4265 early_node_map[i].nid = nid;
4266 early_node_map[i].start_pfn = start_pfn;
4267 early_node_map[i].end_pfn = end_pfn;
4268 nr_nodemap_entries = i + 1;
4272 * remove_active_range - Shrink an existing registered range of PFNs
4273 * @nid: The node id the range is on that should be shrunk
4274 * @start_pfn: The new PFN of the range
4275 * @end_pfn: The new PFN of the range
4277 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4278 * The map is kept near the end physical page range that has already been
4279 * registered. This function allows an arch to shrink an existing registered
4280 * range.
4282 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4283 unsigned long end_pfn)
4285 int i, j;
4286 int removed = 0;
4288 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4289 nid, start_pfn, end_pfn);
4291 /* Find the old active region end and shrink */
4292 for_each_active_range_index_in_nid(i, nid) {
4293 if (early_node_map[i].start_pfn >= start_pfn &&
4294 early_node_map[i].end_pfn <= end_pfn) {
4295 /* clear it */
4296 early_node_map[i].start_pfn = 0;
4297 early_node_map[i].end_pfn = 0;
4298 removed = 1;
4299 continue;
4301 if (early_node_map[i].start_pfn < start_pfn &&
4302 early_node_map[i].end_pfn > start_pfn) {
4303 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4304 early_node_map[i].end_pfn = start_pfn;
4305 if (temp_end_pfn > end_pfn)
4306 add_active_range(nid, end_pfn, temp_end_pfn);
4307 continue;
4309 if (early_node_map[i].start_pfn >= start_pfn &&
4310 early_node_map[i].end_pfn > end_pfn &&
4311 early_node_map[i].start_pfn < end_pfn) {
4312 early_node_map[i].start_pfn = end_pfn;
4313 continue;
4317 if (!removed)
4318 return;
4320 /* remove the blank ones */
4321 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4322 if (early_node_map[i].nid != nid)
4323 continue;
4324 if (early_node_map[i].end_pfn)
4325 continue;
4326 /* we found it, get rid of it */
4327 for (j = i; j < nr_nodemap_entries - 1; j++)
4328 memcpy(&early_node_map[j], &early_node_map[j+1],
4329 sizeof(early_node_map[j]));
4330 j = nr_nodemap_entries - 1;
4331 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4332 nr_nodemap_entries--;
4337 * remove_all_active_ranges - Remove all currently registered regions
4339 * During discovery, it may be found that a table like SRAT is invalid
4340 * and an alternative discovery method must be used. This function removes
4341 * all currently registered regions.
4343 void __init remove_all_active_ranges(void)
4345 memset(early_node_map, 0, sizeof(early_node_map));
4346 nr_nodemap_entries = 0;
4349 /* Compare two active node_active_regions */
4350 static int __init cmp_node_active_region(const void *a, const void *b)
4352 struct node_active_region *arange = (struct node_active_region *)a;
4353 struct node_active_region *brange = (struct node_active_region *)b;
4355 /* Done this way to avoid overflows */
4356 if (arange->start_pfn > brange->start_pfn)
4357 return 1;
4358 if (arange->start_pfn < brange->start_pfn)
4359 return -1;
4361 return 0;
4364 /* sort the node_map by start_pfn */
4365 void __init sort_node_map(void)
4367 sort(early_node_map, (size_t)nr_nodemap_entries,
4368 sizeof(struct node_active_region),
4369 cmp_node_active_region, NULL);
4372 /* Find the lowest pfn for a node */
4373 static unsigned long __init find_min_pfn_for_node(int nid)
4375 int i;
4376 unsigned long min_pfn = ULONG_MAX;
4378 /* Assuming a sorted map, the first range found has the starting pfn */
4379 for_each_active_range_index_in_nid(i, nid)
4380 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4382 if (min_pfn == ULONG_MAX) {
4383 printk(KERN_WARNING
4384 "Could not find start_pfn for node %d\n", nid);
4385 return 0;
4388 return min_pfn;
4392 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4394 * It returns the minimum PFN based on information provided via
4395 * add_active_range().
4397 unsigned long __init find_min_pfn_with_active_regions(void)
4399 return find_min_pfn_for_node(MAX_NUMNODES);
4403 * early_calculate_totalpages()
4404 * Sum pages in active regions for movable zone.
4405 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4407 static unsigned long __init early_calculate_totalpages(void)
4409 int i;
4410 unsigned long totalpages = 0;
4412 for (i = 0; i < nr_nodemap_entries; i++) {
4413 unsigned long pages = early_node_map[i].end_pfn -
4414 early_node_map[i].start_pfn;
4415 totalpages += pages;
4416 if (pages)
4417 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4419 return totalpages;
4423 * Find the PFN the Movable zone begins in each node. Kernel memory
4424 * is spread evenly between nodes as long as the nodes have enough
4425 * memory. When they don't, some nodes will have more kernelcore than
4426 * others
4428 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4430 int i, nid;
4431 unsigned long usable_startpfn;
4432 unsigned long kernelcore_node, kernelcore_remaining;
4433 /* save the state before borrow the nodemask */
4434 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4435 unsigned long totalpages = early_calculate_totalpages();
4436 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4439 * If movablecore was specified, calculate what size of
4440 * kernelcore that corresponds so that memory usable for
4441 * any allocation type is evenly spread. If both kernelcore
4442 * and movablecore are specified, then the value of kernelcore
4443 * will be used for required_kernelcore if it's greater than
4444 * what movablecore would have allowed.
4446 if (required_movablecore) {
4447 unsigned long corepages;
4450 * Round-up so that ZONE_MOVABLE is at least as large as what
4451 * was requested by the user
4453 required_movablecore =
4454 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4455 corepages = totalpages - required_movablecore;
4457 required_kernelcore = max(required_kernelcore, corepages);
4460 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4461 if (!required_kernelcore)
4462 goto out;
4464 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4465 find_usable_zone_for_movable();
4466 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4468 restart:
4469 /* Spread kernelcore memory as evenly as possible throughout nodes */
4470 kernelcore_node = required_kernelcore / usable_nodes;
4471 for_each_node_state(nid, N_HIGH_MEMORY) {
4473 * Recalculate kernelcore_node if the division per node
4474 * now exceeds what is necessary to satisfy the requested
4475 * amount of memory for the kernel
4477 if (required_kernelcore < kernelcore_node)
4478 kernelcore_node = required_kernelcore / usable_nodes;
4481 * As the map is walked, we track how much memory is usable
4482 * by the kernel using kernelcore_remaining. When it is
4483 * 0, the rest of the node is usable by ZONE_MOVABLE
4485 kernelcore_remaining = kernelcore_node;
4487 /* Go through each range of PFNs within this node */
4488 for_each_active_range_index_in_nid(i, nid) {
4489 unsigned long start_pfn, end_pfn;
4490 unsigned long size_pages;
4492 start_pfn = max(early_node_map[i].start_pfn,
4493 zone_movable_pfn[nid]);
4494 end_pfn = early_node_map[i].end_pfn;
4495 if (start_pfn >= end_pfn)
4496 continue;
4498 /* Account for what is only usable for kernelcore */
4499 if (start_pfn < usable_startpfn) {
4500 unsigned long kernel_pages;
4501 kernel_pages = min(end_pfn, usable_startpfn)
4502 - start_pfn;
4504 kernelcore_remaining -= min(kernel_pages,
4505 kernelcore_remaining);
4506 required_kernelcore -= min(kernel_pages,
4507 required_kernelcore);
4509 /* Continue if range is now fully accounted */
4510 if (end_pfn <= usable_startpfn) {
4513 * Push zone_movable_pfn to the end so
4514 * that if we have to rebalance
4515 * kernelcore across nodes, we will
4516 * not double account here
4518 zone_movable_pfn[nid] = end_pfn;
4519 continue;
4521 start_pfn = usable_startpfn;
4525 * The usable PFN range for ZONE_MOVABLE is from
4526 * start_pfn->end_pfn. Calculate size_pages as the
4527 * number of pages used as kernelcore
4529 size_pages = end_pfn - start_pfn;
4530 if (size_pages > kernelcore_remaining)
4531 size_pages = kernelcore_remaining;
4532 zone_movable_pfn[nid] = start_pfn + size_pages;
4535 * Some kernelcore has been met, update counts and
4536 * break if the kernelcore for this node has been
4537 * satisified
4539 required_kernelcore -= min(required_kernelcore,
4540 size_pages);
4541 kernelcore_remaining -= size_pages;
4542 if (!kernelcore_remaining)
4543 break;
4548 * If there is still required_kernelcore, we do another pass with one
4549 * less node in the count. This will push zone_movable_pfn[nid] further
4550 * along on the nodes that still have memory until kernelcore is
4551 * satisified
4553 usable_nodes--;
4554 if (usable_nodes && required_kernelcore > usable_nodes)
4555 goto restart;
4557 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4558 for (nid = 0; nid < MAX_NUMNODES; nid++)
4559 zone_movable_pfn[nid] =
4560 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4562 out:
4563 /* restore the node_state */
4564 node_states[N_HIGH_MEMORY] = saved_node_state;
4567 /* Any regular memory on that node ? */
4568 static void check_for_regular_memory(pg_data_t *pgdat)
4570 #ifdef CONFIG_HIGHMEM
4571 enum zone_type zone_type;
4573 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4574 struct zone *zone = &pgdat->node_zones[zone_type];
4575 if (zone->present_pages)
4576 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4578 #endif
4582 * free_area_init_nodes - Initialise all pg_data_t and zone data
4583 * @max_zone_pfn: an array of max PFNs for each zone
4585 * This will call free_area_init_node() for each active node in the system.
4586 * Using the page ranges provided by add_active_range(), the size of each
4587 * zone in each node and their holes is calculated. If the maximum PFN
4588 * between two adjacent zones match, it is assumed that the zone is empty.
4589 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4590 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4591 * starts where the previous one ended. For example, ZONE_DMA32 starts
4592 * at arch_max_dma_pfn.
4594 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4596 unsigned long nid;
4597 int i;
4599 /* Sort early_node_map as initialisation assumes it is sorted */
4600 sort_node_map();
4602 /* Record where the zone boundaries are */
4603 memset(arch_zone_lowest_possible_pfn, 0,
4604 sizeof(arch_zone_lowest_possible_pfn));
4605 memset(arch_zone_highest_possible_pfn, 0,
4606 sizeof(arch_zone_highest_possible_pfn));
4607 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4608 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4609 for (i = 1; i < MAX_NR_ZONES; i++) {
4610 if (i == ZONE_MOVABLE)
4611 continue;
4612 arch_zone_lowest_possible_pfn[i] =
4613 arch_zone_highest_possible_pfn[i-1];
4614 arch_zone_highest_possible_pfn[i] =
4615 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4617 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4618 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4620 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4621 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4622 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4624 /* Print out the zone ranges */
4625 printk("Zone PFN ranges:\n");
4626 for (i = 0; i < MAX_NR_ZONES; i++) {
4627 if (i == ZONE_MOVABLE)
4628 continue;
4629 printk(" %-8s ", zone_names[i]);
4630 if (arch_zone_lowest_possible_pfn[i] ==
4631 arch_zone_highest_possible_pfn[i])
4632 printk("empty\n");
4633 else
4634 printk("%0#10lx -> %0#10lx\n",
4635 arch_zone_lowest_possible_pfn[i],
4636 arch_zone_highest_possible_pfn[i]);
4639 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4640 printk("Movable zone start PFN for each node\n");
4641 for (i = 0; i < MAX_NUMNODES; i++) {
4642 if (zone_movable_pfn[i])
4643 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4646 /* Print out the early_node_map[] */
4647 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4648 for (i = 0; i < nr_nodemap_entries; i++)
4649 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4650 early_node_map[i].start_pfn,
4651 early_node_map[i].end_pfn);
4653 /* Initialise every node */
4654 mminit_verify_pageflags_layout();
4655 setup_nr_node_ids();
4656 for_each_online_node(nid) {
4657 pg_data_t *pgdat = NODE_DATA(nid);
4658 free_area_init_node(nid, NULL,
4659 find_min_pfn_for_node(nid), NULL);
4661 /* Any memory on that node */
4662 if (pgdat->node_present_pages)
4663 node_set_state(nid, N_HIGH_MEMORY);
4664 check_for_regular_memory(pgdat);
4668 static int __init cmdline_parse_core(char *p, unsigned long *core)
4670 unsigned long long coremem;
4671 if (!p)
4672 return -EINVAL;
4674 coremem = memparse(p, &p);
4675 *core = coremem >> PAGE_SHIFT;
4677 /* Paranoid check that UL is enough for the coremem value */
4678 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4680 return 0;
4684 * kernelcore=size sets the amount of memory for use for allocations that
4685 * cannot be reclaimed or migrated.
4687 static int __init cmdline_parse_kernelcore(char *p)
4689 return cmdline_parse_core(p, &required_kernelcore);
4693 * movablecore=size sets the amount of memory for use for allocations that
4694 * can be reclaimed or migrated.
4696 static int __init cmdline_parse_movablecore(char *p)
4698 return cmdline_parse_core(p, &required_movablecore);
4701 early_param("kernelcore", cmdline_parse_kernelcore);
4702 early_param("movablecore", cmdline_parse_movablecore);
4704 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4707 * set_dma_reserve - set the specified number of pages reserved in the first zone
4708 * @new_dma_reserve: The number of pages to mark reserved
4710 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4711 * In the DMA zone, a significant percentage may be consumed by kernel image
4712 * and other unfreeable allocations which can skew the watermarks badly. This
4713 * function may optionally be used to account for unfreeable pages in the
4714 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4715 * smaller per-cpu batchsize.
4717 void __init set_dma_reserve(unsigned long new_dma_reserve)
4719 dma_reserve = new_dma_reserve;
4722 #ifndef CONFIG_NEED_MULTIPLE_NODES
4723 struct pglist_data __refdata contig_page_data = {
4724 #ifndef CONFIG_NO_BOOTMEM
4725 .bdata = &bootmem_node_data[0]
4726 #endif
4728 EXPORT_SYMBOL(contig_page_data);
4729 #endif
4731 void __init free_area_init(unsigned long *zones_size)
4733 free_area_init_node(0, zones_size,
4734 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4737 static int page_alloc_cpu_notify(struct notifier_block *self,
4738 unsigned long action, void *hcpu)
4740 int cpu = (unsigned long)hcpu;
4742 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4743 drain_pages(cpu);
4746 * Spill the event counters of the dead processor
4747 * into the current processors event counters.
4748 * This artificially elevates the count of the current
4749 * processor.
4751 vm_events_fold_cpu(cpu);
4754 * Zero the differential counters of the dead processor
4755 * so that the vm statistics are consistent.
4757 * This is only okay since the processor is dead and cannot
4758 * race with what we are doing.
4760 refresh_cpu_vm_stats(cpu);
4762 return NOTIFY_OK;
4765 void __init page_alloc_init(void)
4767 hotcpu_notifier(page_alloc_cpu_notify, 0);
4771 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4772 * or min_free_kbytes changes.
4774 static void calculate_totalreserve_pages(void)
4776 struct pglist_data *pgdat;
4777 unsigned long reserve_pages = 0;
4778 enum zone_type i, j;
4780 for_each_online_pgdat(pgdat) {
4781 for (i = 0; i < MAX_NR_ZONES; i++) {
4782 struct zone *zone = pgdat->node_zones + i;
4783 unsigned long max = 0;
4785 /* Find valid and maximum lowmem_reserve in the zone */
4786 for (j = i; j < MAX_NR_ZONES; j++) {
4787 if (zone->lowmem_reserve[j] > max)
4788 max = zone->lowmem_reserve[j];
4791 /* we treat the high watermark as reserved pages. */
4792 max += high_wmark_pages(zone);
4794 if (max > zone->present_pages)
4795 max = zone->present_pages;
4796 reserve_pages += max;
4799 totalreserve_pages = reserve_pages;
4803 * setup_per_zone_lowmem_reserve - called whenever
4804 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4805 * has a correct pages reserved value, so an adequate number of
4806 * pages are left in the zone after a successful __alloc_pages().
4808 static void setup_per_zone_lowmem_reserve(void)
4810 struct pglist_data *pgdat;
4811 enum zone_type j, idx;
4813 for_each_online_pgdat(pgdat) {
4814 for (j = 0; j < MAX_NR_ZONES; j++) {
4815 struct zone *zone = pgdat->node_zones + j;
4816 unsigned long present_pages = zone->present_pages;
4818 zone->lowmem_reserve[j] = 0;
4820 idx = j;
4821 while (idx) {
4822 struct zone *lower_zone;
4824 idx--;
4826 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4827 sysctl_lowmem_reserve_ratio[idx] = 1;
4829 lower_zone = pgdat->node_zones + idx;
4830 lower_zone->lowmem_reserve[j] = present_pages /
4831 sysctl_lowmem_reserve_ratio[idx];
4832 present_pages += lower_zone->present_pages;
4837 /* update totalreserve_pages */
4838 calculate_totalreserve_pages();
4842 * setup_per_zone_wmarks - called when min_free_kbytes changes
4843 * or when memory is hot-{added|removed}
4845 * Ensures that the watermark[min,low,high] values for each zone are set
4846 * correctly with respect to min_free_kbytes.
4848 void setup_per_zone_wmarks(void)
4850 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4851 unsigned long lowmem_pages = 0;
4852 struct zone *zone;
4853 unsigned long flags;
4855 /* Calculate total number of !ZONE_HIGHMEM pages */
4856 for_each_zone(zone) {
4857 if (!is_highmem(zone))
4858 lowmem_pages += zone->present_pages;
4861 for_each_zone(zone) {
4862 u64 tmp;
4864 spin_lock_irqsave(&zone->lock, flags);
4865 tmp = (u64)pages_min * zone->present_pages;
4866 do_div(tmp, lowmem_pages);
4867 if (is_highmem(zone)) {
4869 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4870 * need highmem pages, so cap pages_min to a small
4871 * value here.
4873 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4874 * deltas controls asynch page reclaim, and so should
4875 * not be capped for highmem.
4877 int min_pages;
4879 min_pages = zone->present_pages / 1024;
4880 if (min_pages < SWAP_CLUSTER_MAX)
4881 min_pages = SWAP_CLUSTER_MAX;
4882 if (min_pages > 128)
4883 min_pages = 128;
4884 zone->watermark[WMARK_MIN] = min_pages;
4885 } else {
4887 * If it's a lowmem zone, reserve a number of pages
4888 * proportionate to the zone's size.
4890 zone->watermark[WMARK_MIN] = tmp;
4893 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4894 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4895 setup_zone_migrate_reserve(zone);
4896 spin_unlock_irqrestore(&zone->lock, flags);
4899 /* update totalreserve_pages */
4900 calculate_totalreserve_pages();
4904 * The inactive anon list should be small enough that the VM never has to
4905 * do too much work, but large enough that each inactive page has a chance
4906 * to be referenced again before it is swapped out.
4908 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4909 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4910 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4911 * the anonymous pages are kept on the inactive list.
4913 * total target max
4914 * memory ratio inactive anon
4915 * -------------------------------------
4916 * 10MB 1 5MB
4917 * 100MB 1 50MB
4918 * 1GB 3 250MB
4919 * 10GB 10 0.9GB
4920 * 100GB 31 3GB
4921 * 1TB 101 10GB
4922 * 10TB 320 32GB
4924 void calculate_zone_inactive_ratio(struct zone *zone)
4926 unsigned int gb, ratio;
4928 /* Zone size in gigabytes */
4929 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4930 if (gb)
4931 ratio = int_sqrt(10 * gb);
4932 else
4933 ratio = 1;
4935 zone->inactive_ratio = ratio;
4938 static void __init setup_per_zone_inactive_ratio(void)
4940 struct zone *zone;
4942 for_each_zone(zone)
4943 calculate_zone_inactive_ratio(zone);
4947 * Initialise min_free_kbytes.
4949 * For small machines we want it small (128k min). For large machines
4950 * we want it large (64MB max). But it is not linear, because network
4951 * bandwidth does not increase linearly with machine size. We use
4953 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4954 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4956 * which yields
4958 * 16MB: 512k
4959 * 32MB: 724k
4960 * 64MB: 1024k
4961 * 128MB: 1448k
4962 * 256MB: 2048k
4963 * 512MB: 2896k
4964 * 1024MB: 4096k
4965 * 2048MB: 5792k
4966 * 4096MB: 8192k
4967 * 8192MB: 11584k
4968 * 16384MB: 16384k
4970 static int __init init_per_zone_wmark_min(void)
4972 unsigned long lowmem_kbytes;
4974 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4976 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4977 if (min_free_kbytes < 128)
4978 min_free_kbytes = 128;
4979 if (min_free_kbytes > 65536)
4980 min_free_kbytes = 65536;
4981 setup_per_zone_wmarks();
4982 setup_per_zone_lowmem_reserve();
4983 setup_per_zone_inactive_ratio();
4984 return 0;
4986 module_init(init_per_zone_wmark_min)
4989 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4990 * that we can call two helper functions whenever min_free_kbytes
4991 * changes.
4993 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4994 void __user *buffer, size_t *length, loff_t *ppos)
4996 proc_dointvec(table, write, buffer, length, ppos);
4997 if (write)
4998 setup_per_zone_wmarks();
4999 return 0;
5002 #ifdef CONFIG_NUMA
5003 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5004 void __user *buffer, size_t *length, loff_t *ppos)
5006 struct zone *zone;
5007 int rc;
5009 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5010 if (rc)
5011 return rc;
5013 for_each_zone(zone)
5014 zone->min_unmapped_pages = (zone->present_pages *
5015 sysctl_min_unmapped_ratio) / 100;
5016 return 0;
5019 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5020 void __user *buffer, size_t *length, loff_t *ppos)
5022 struct zone *zone;
5023 int rc;
5025 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5026 if (rc)
5027 return rc;
5029 for_each_zone(zone)
5030 zone->min_slab_pages = (zone->present_pages *
5031 sysctl_min_slab_ratio) / 100;
5032 return 0;
5034 #endif
5037 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5038 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5039 * whenever sysctl_lowmem_reserve_ratio changes.
5041 * The reserve ratio obviously has absolutely no relation with the
5042 * minimum watermarks. The lowmem reserve ratio can only make sense
5043 * if in function of the boot time zone sizes.
5045 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5046 void __user *buffer, size_t *length, loff_t *ppos)
5048 proc_dointvec_minmax(table, write, buffer, length, ppos);
5049 setup_per_zone_lowmem_reserve();
5050 return 0;
5054 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5055 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5056 * can have before it gets flushed back to buddy allocator.
5059 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5060 void __user *buffer, size_t *length, loff_t *ppos)
5062 struct zone *zone;
5063 unsigned int cpu;
5064 int ret;
5066 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5067 if (!write || (ret == -EINVAL))
5068 return ret;
5069 for_each_populated_zone(zone) {
5070 for_each_possible_cpu(cpu) {
5071 unsigned long high;
5072 high = zone->present_pages / percpu_pagelist_fraction;
5073 setup_pagelist_highmark(
5074 per_cpu_ptr(zone->pageset, cpu), high);
5077 return 0;
5080 int hashdist = HASHDIST_DEFAULT;
5082 #ifdef CONFIG_NUMA
5083 static int __init set_hashdist(char *str)
5085 if (!str)
5086 return 0;
5087 hashdist = simple_strtoul(str, &str, 0);
5088 return 1;
5090 __setup("hashdist=", set_hashdist);
5091 #endif
5094 * allocate a large system hash table from bootmem
5095 * - it is assumed that the hash table must contain an exact power-of-2
5096 * quantity of entries
5097 * - limit is the number of hash buckets, not the total allocation size
5099 void *__init alloc_large_system_hash(const char *tablename,
5100 unsigned long bucketsize,
5101 unsigned long numentries,
5102 int scale,
5103 int flags,
5104 unsigned int *_hash_shift,
5105 unsigned int *_hash_mask,
5106 unsigned long limit)
5108 unsigned long long max = limit;
5109 unsigned long log2qty, size;
5110 void *table = NULL;
5112 /* allow the kernel cmdline to have a say */
5113 if (!numentries) {
5114 /* round applicable memory size up to nearest megabyte */
5115 numentries = nr_kernel_pages;
5116 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5117 numentries >>= 20 - PAGE_SHIFT;
5118 numentries <<= 20 - PAGE_SHIFT;
5120 /* limit to 1 bucket per 2^scale bytes of low memory */
5121 if (scale > PAGE_SHIFT)
5122 numentries >>= (scale - PAGE_SHIFT);
5123 else
5124 numentries <<= (PAGE_SHIFT - scale);
5126 /* Make sure we've got at least a 0-order allocation.. */
5127 if (unlikely(flags & HASH_SMALL)) {
5128 /* Makes no sense without HASH_EARLY */
5129 WARN_ON(!(flags & HASH_EARLY));
5130 if (!(numentries >> *_hash_shift)) {
5131 numentries = 1UL << *_hash_shift;
5132 BUG_ON(!numentries);
5134 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5135 numentries = PAGE_SIZE / bucketsize;
5137 numentries = roundup_pow_of_two(numentries);
5139 /* limit allocation size to 1/16 total memory by default */
5140 if (max == 0) {
5141 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5142 do_div(max, bucketsize);
5145 if (numentries > max)
5146 numentries = max;
5148 log2qty = ilog2(numentries);
5150 do {
5151 size = bucketsize << log2qty;
5152 if (flags & HASH_EARLY)
5153 table = alloc_bootmem_nopanic(size);
5154 else if (hashdist)
5155 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5156 else {
5158 * If bucketsize is not a power-of-two, we may free
5159 * some pages at the end of hash table which
5160 * alloc_pages_exact() automatically does
5162 if (get_order(size) < MAX_ORDER) {
5163 table = alloc_pages_exact(size, GFP_ATOMIC);
5164 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5167 } while (!table && size > PAGE_SIZE && --log2qty);
5169 if (!table)
5170 panic("Failed to allocate %s hash table\n", tablename);
5172 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
5173 tablename,
5174 (1U << log2qty),
5175 ilog2(size) - PAGE_SHIFT,
5176 size);
5178 if (_hash_shift)
5179 *_hash_shift = log2qty;
5180 if (_hash_mask)
5181 *_hash_mask = (1 << log2qty) - 1;
5183 return table;
5186 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5187 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5188 unsigned long pfn)
5190 #ifdef CONFIG_SPARSEMEM
5191 return __pfn_to_section(pfn)->pageblock_flags;
5192 #else
5193 return zone->pageblock_flags;
5194 #endif /* CONFIG_SPARSEMEM */
5197 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5199 #ifdef CONFIG_SPARSEMEM
5200 pfn &= (PAGES_PER_SECTION-1);
5201 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5202 #else
5203 pfn = pfn - zone->zone_start_pfn;
5204 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5205 #endif /* CONFIG_SPARSEMEM */
5209 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5210 * @page: The page within the block of interest
5211 * @start_bitidx: The first bit of interest to retrieve
5212 * @end_bitidx: The last bit of interest
5213 * returns pageblock_bits flags
5215 unsigned long get_pageblock_flags_group(struct page *page,
5216 int start_bitidx, int end_bitidx)
5218 struct zone *zone;
5219 unsigned long *bitmap;
5220 unsigned long pfn, bitidx;
5221 unsigned long flags = 0;
5222 unsigned long value = 1;
5224 zone = page_zone(page);
5225 pfn = page_to_pfn(page);
5226 bitmap = get_pageblock_bitmap(zone, pfn);
5227 bitidx = pfn_to_bitidx(zone, pfn);
5229 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5230 if (test_bit(bitidx + start_bitidx, bitmap))
5231 flags |= value;
5233 return flags;
5237 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5238 * @page: The page within the block of interest
5239 * @start_bitidx: The first bit of interest
5240 * @end_bitidx: The last bit of interest
5241 * @flags: The flags to set
5243 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5244 int start_bitidx, int end_bitidx)
5246 struct zone *zone;
5247 unsigned long *bitmap;
5248 unsigned long pfn, bitidx;
5249 unsigned long value = 1;
5251 zone = page_zone(page);
5252 pfn = page_to_pfn(page);
5253 bitmap = get_pageblock_bitmap(zone, pfn);
5254 bitidx = pfn_to_bitidx(zone, pfn);
5255 VM_BUG_ON(pfn < zone->zone_start_pfn);
5256 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5258 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5259 if (flags & value)
5260 __set_bit(bitidx + start_bitidx, bitmap);
5261 else
5262 __clear_bit(bitidx + start_bitidx, bitmap);
5266 * This is designed as sub function...plz see page_isolation.c also.
5267 * set/clear page block's type to be ISOLATE.
5268 * page allocater never alloc memory from ISOLATE block.
5271 int set_migratetype_isolate(struct page *page)
5273 struct zone *zone;
5274 struct page *curr_page;
5275 unsigned long flags, pfn, iter;
5276 unsigned long immobile = 0;
5277 struct memory_isolate_notify arg;
5278 int notifier_ret;
5279 int ret = -EBUSY;
5280 int zone_idx;
5282 zone = page_zone(page);
5283 zone_idx = zone_idx(zone);
5285 spin_lock_irqsave(&zone->lock, flags);
5286 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5287 zone_idx == ZONE_MOVABLE) {
5288 ret = 0;
5289 goto out;
5292 pfn = page_to_pfn(page);
5293 arg.start_pfn = pfn;
5294 arg.nr_pages = pageblock_nr_pages;
5295 arg.pages_found = 0;
5298 * It may be possible to isolate a pageblock even if the
5299 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5300 * notifier chain is used by balloon drivers to return the
5301 * number of pages in a range that are held by the balloon
5302 * driver to shrink memory. If all the pages are accounted for
5303 * by balloons, are free, or on the LRU, isolation can continue.
5304 * Later, for example, when memory hotplug notifier runs, these
5305 * pages reported as "can be isolated" should be isolated(freed)
5306 * by the balloon driver through the memory notifier chain.
5308 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5309 notifier_ret = notifier_to_errno(notifier_ret);
5310 if (notifier_ret || !arg.pages_found)
5311 goto out;
5313 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5314 if (!pfn_valid_within(pfn))
5315 continue;
5317 curr_page = pfn_to_page(iter);
5318 if (!page_count(curr_page) || PageLRU(curr_page))
5319 continue;
5321 immobile++;
5324 if (arg.pages_found == immobile)
5325 ret = 0;
5327 out:
5328 if (!ret) {
5329 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5330 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5333 spin_unlock_irqrestore(&zone->lock, flags);
5334 if (!ret)
5335 drain_all_pages();
5336 return ret;
5339 void unset_migratetype_isolate(struct page *page)
5341 struct zone *zone;
5342 unsigned long flags;
5343 zone = page_zone(page);
5344 spin_lock_irqsave(&zone->lock, flags);
5345 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5346 goto out;
5347 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5348 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5349 out:
5350 spin_unlock_irqrestore(&zone->lock, flags);
5353 #ifdef CONFIG_MEMORY_HOTREMOVE
5355 * All pages in the range must be isolated before calling this.
5357 void
5358 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5360 struct page *page;
5361 struct zone *zone;
5362 int order, i;
5363 unsigned long pfn;
5364 unsigned long flags;
5365 /* find the first valid pfn */
5366 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5367 if (pfn_valid(pfn))
5368 break;
5369 if (pfn == end_pfn)
5370 return;
5371 zone = page_zone(pfn_to_page(pfn));
5372 spin_lock_irqsave(&zone->lock, flags);
5373 pfn = start_pfn;
5374 while (pfn < end_pfn) {
5375 if (!pfn_valid(pfn)) {
5376 pfn++;
5377 continue;
5379 page = pfn_to_page(pfn);
5380 BUG_ON(page_count(page));
5381 BUG_ON(!PageBuddy(page));
5382 order = page_order(page);
5383 #ifdef CONFIG_DEBUG_VM
5384 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5385 pfn, 1 << order, end_pfn);
5386 #endif
5387 list_del(&page->lru);
5388 rmv_page_order(page);
5389 zone->free_area[order].nr_free--;
5390 __mod_zone_page_state(zone, NR_FREE_PAGES,
5391 - (1UL << order));
5392 for (i = 0; i < (1 << order); i++)
5393 SetPageReserved((page+i));
5394 pfn += (1 << order);
5396 spin_unlock_irqrestore(&zone->lock, flags);
5398 #endif
5400 #ifdef CONFIG_MEMORY_FAILURE
5401 bool is_free_buddy_page(struct page *page)
5403 struct zone *zone = page_zone(page);
5404 unsigned long pfn = page_to_pfn(page);
5405 unsigned long flags;
5406 int order;
5408 spin_lock_irqsave(&zone->lock, flags);
5409 for (order = 0; order < MAX_ORDER; order++) {
5410 struct page *page_head = page - (pfn & ((1 << order) - 1));
5412 if (PageBuddy(page_head) && page_order(page_head) >= order)
5413 break;
5415 spin_unlock_irqrestore(&zone->lock, flags);
5417 return order < MAX_ORDER;
5419 #endif
5421 static struct trace_print_flags pageflag_names[] = {
5422 {1UL << PG_locked, "locked" },
5423 {1UL << PG_error, "error" },
5424 {1UL << PG_referenced, "referenced" },
5425 {1UL << PG_uptodate, "uptodate" },
5426 {1UL << PG_dirty, "dirty" },
5427 {1UL << PG_lru, "lru" },
5428 {1UL << PG_active, "active" },
5429 {1UL << PG_slab, "slab" },
5430 {1UL << PG_owner_priv_1, "owner_priv_1" },
5431 {1UL << PG_arch_1, "arch_1" },
5432 {1UL << PG_reserved, "reserved" },
5433 {1UL << PG_private, "private" },
5434 {1UL << PG_private_2, "private_2" },
5435 {1UL << PG_writeback, "writeback" },
5436 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5437 {1UL << PG_head, "head" },
5438 {1UL << PG_tail, "tail" },
5439 #else
5440 {1UL << PG_compound, "compound" },
5441 #endif
5442 {1UL << PG_swapcache, "swapcache" },
5443 {1UL << PG_mappedtodisk, "mappedtodisk" },
5444 {1UL << PG_reclaim, "reclaim" },
5445 {1UL << PG_buddy, "buddy" },
5446 {1UL << PG_swapbacked, "swapbacked" },
5447 {1UL << PG_unevictable, "unevictable" },
5448 #ifdef CONFIG_MMU
5449 {1UL << PG_mlocked, "mlocked" },
5450 #endif
5451 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5452 {1UL << PG_uncached, "uncached" },
5453 #endif
5454 #ifdef CONFIG_MEMORY_FAILURE
5455 {1UL << PG_hwpoison, "hwpoison" },
5456 #endif
5457 {-1UL, NULL },
5460 static void dump_page_flags(unsigned long flags)
5462 const char *delim = "";
5463 unsigned long mask;
5464 int i;
5466 printk(KERN_ALERT "page flags: %#lx(", flags);
5468 /* remove zone id */
5469 flags &= (1UL << NR_PAGEFLAGS) - 1;
5471 for (i = 0; pageflag_names[i].name && flags; i++) {
5473 mask = pageflag_names[i].mask;
5474 if ((flags & mask) != mask)
5475 continue;
5477 flags &= ~mask;
5478 printk("%s%s", delim, pageflag_names[i].name);
5479 delim = "|";
5482 /* check for left over flags */
5483 if (flags)
5484 printk("%s%#lx", delim, flags);
5486 printk(")\n");
5489 void dump_page(struct page *page)
5491 printk(KERN_ALERT
5492 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5493 page, page_count(page), page_mapcount(page),
5494 page->mapping, page->index);
5495 dump_page_flags(page->flags);