thinkpad-acpi: forbid the use of HBRV on Lenovo ThinkPads
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / futex.c
blob02d07e49ed6848df669b2eccac3b97e89215b5c6
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
59 #include <asm/futex.h>
61 #include "rtmutex_common.h"
63 int __read_mostly futex_cmpxchg_enabled;
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
68 * Priority Inheritance state:
70 struct futex_pi_state {
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
75 struct list_head list;
78 * The PI object:
80 struct rt_mutex pi_mutex;
82 struct task_struct *owner;
83 atomic_t refcount;
85 union futex_key key;
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiters, then make the second condition true.
97 struct futex_q {
98 struct plist_node list;
99 wait_queue_head_t waiters;
101 /* Which hash list lock to use: */
102 spinlock_t *lock_ptr;
104 /* Key which the futex is hashed on: */
105 union futex_key key;
107 /* Optional priority inheritance state: */
108 struct futex_pi_state *pi_state;
109 struct task_struct *task;
111 /* Bitset for the optional bitmasked wakeup */
112 u32 bitset;
116 * Split the global futex_lock into every hash list lock.
118 struct futex_hash_bucket {
119 spinlock_t lock;
120 struct plist_head chain;
123 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
126 * Take mm->mmap_sem, when futex is shared
128 static inline void futex_lock_mm(struct rw_semaphore *fshared)
130 if (fshared)
131 down_read(fshared);
135 * Release mm->mmap_sem, when the futex is shared
137 static inline void futex_unlock_mm(struct rw_semaphore *fshared)
139 if (fshared)
140 up_read(fshared);
144 * We hash on the keys returned from get_futex_key (see below).
146 static struct futex_hash_bucket *hash_futex(union futex_key *key)
148 u32 hash = jhash2((u32*)&key->both.word,
149 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
150 key->both.offset);
151 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
155 * Return 1 if two futex_keys are equal, 0 otherwise.
157 static inline int match_futex(union futex_key *key1, union futex_key *key2)
159 return (key1->both.word == key2->both.word
160 && key1->both.ptr == key2->both.ptr
161 && key1->both.offset == key2->both.offset);
165 * get_futex_key - Get parameters which are the keys for a futex.
166 * @uaddr: virtual address of the futex
167 * @shared: NULL for a PROCESS_PRIVATE futex,
168 * &current->mm->mmap_sem for a PROCESS_SHARED futex
169 * @key: address where result is stored.
171 * Returns a negative error code or 0
172 * The key words are stored in *key on success.
174 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
175 * offset_within_page). For private mappings, it's (uaddr, current->mm).
176 * We can usually work out the index without swapping in the page.
178 * fshared is NULL for PROCESS_PRIVATE futexes
179 * For other futexes, it points to &current->mm->mmap_sem and
180 * caller must have taken the reader lock. but NOT any spinlocks.
182 static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
183 union futex_key *key)
185 unsigned long address = (unsigned long)uaddr;
186 struct mm_struct *mm = current->mm;
187 struct vm_area_struct *vma;
188 struct page *page;
189 int err;
192 * The futex address must be "naturally" aligned.
194 key->both.offset = address % PAGE_SIZE;
195 if (unlikely((address % sizeof(u32)) != 0))
196 return -EINVAL;
197 address -= key->both.offset;
200 * PROCESS_PRIVATE futexes are fast.
201 * As the mm cannot disappear under us and the 'key' only needs
202 * virtual address, we dont even have to find the underlying vma.
203 * Note : We do have to check 'uaddr' is a valid user address,
204 * but access_ok() should be faster than find_vma()
206 if (!fshared) {
207 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
208 return -EFAULT;
209 key->private.mm = mm;
210 key->private.address = address;
211 return 0;
214 * The futex is hashed differently depending on whether
215 * it's in a shared or private mapping. So check vma first.
217 vma = find_extend_vma(mm, address);
218 if (unlikely(!vma))
219 return -EFAULT;
222 * Permissions.
224 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
225 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
228 * Private mappings are handled in a simple way.
230 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
231 * it's a read-only handle, it's expected that futexes attach to
232 * the object not the particular process. Therefore we use
233 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
234 * mappings of _writable_ handles.
236 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
237 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
238 key->private.mm = mm;
239 key->private.address = address;
240 return 0;
244 * Linear file mappings are also simple.
246 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
247 key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
248 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
249 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
250 + vma->vm_pgoff);
251 return 0;
255 * We could walk the page table to read the non-linear
256 * pte, and get the page index without fetching the page
257 * from swap. But that's a lot of code to duplicate here
258 * for a rare case, so we simply fetch the page.
260 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
261 if (err >= 0) {
262 key->shared.pgoff =
263 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
264 put_page(page);
265 return 0;
267 return err;
271 * Take a reference to the resource addressed by a key.
272 * Can be called while holding spinlocks.
275 static void get_futex_key_refs(union futex_key *key)
277 if (key->both.ptr == NULL)
278 return;
279 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
280 case FUT_OFF_INODE:
281 atomic_inc(&key->shared.inode->i_count);
282 break;
283 case FUT_OFF_MMSHARED:
284 atomic_inc(&key->private.mm->mm_count);
285 break;
290 * Drop a reference to the resource addressed by a key.
291 * The hash bucket spinlock must not be held.
293 static void drop_futex_key_refs(union futex_key *key)
295 if (!key->both.ptr)
296 return;
297 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
298 case FUT_OFF_INODE:
299 iput(key->shared.inode);
300 break;
301 case FUT_OFF_MMSHARED:
302 mmdrop(key->private.mm);
303 break;
307 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
309 u32 curval;
311 pagefault_disable();
312 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
313 pagefault_enable();
315 return curval;
318 static int get_futex_value_locked(u32 *dest, u32 __user *from)
320 int ret;
322 pagefault_disable();
323 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
324 pagefault_enable();
326 return ret ? -EFAULT : 0;
330 * Fault handling.
331 * if fshared is non NULL, current->mm->mmap_sem is already held
333 static int futex_handle_fault(unsigned long address,
334 struct rw_semaphore *fshared, int attempt)
336 struct vm_area_struct * vma;
337 struct mm_struct *mm = current->mm;
338 int ret = -EFAULT;
340 if (attempt > 2)
341 return ret;
343 if (!fshared)
344 down_read(&mm->mmap_sem);
345 vma = find_vma(mm, address);
346 if (vma && address >= vma->vm_start &&
347 (vma->vm_flags & VM_WRITE)) {
348 int fault;
349 fault = handle_mm_fault(mm, vma, address, 1);
350 if (unlikely((fault & VM_FAULT_ERROR))) {
351 #if 0
352 /* XXX: let's do this when we verify it is OK */
353 if (ret & VM_FAULT_OOM)
354 ret = -ENOMEM;
355 #endif
356 } else {
357 ret = 0;
358 if (fault & VM_FAULT_MAJOR)
359 current->maj_flt++;
360 else
361 current->min_flt++;
364 if (!fshared)
365 up_read(&mm->mmap_sem);
366 return ret;
370 * PI code:
372 static int refill_pi_state_cache(void)
374 struct futex_pi_state *pi_state;
376 if (likely(current->pi_state_cache))
377 return 0;
379 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
381 if (!pi_state)
382 return -ENOMEM;
384 INIT_LIST_HEAD(&pi_state->list);
385 /* pi_mutex gets initialized later */
386 pi_state->owner = NULL;
387 atomic_set(&pi_state->refcount, 1);
389 current->pi_state_cache = pi_state;
391 return 0;
394 static struct futex_pi_state * alloc_pi_state(void)
396 struct futex_pi_state *pi_state = current->pi_state_cache;
398 WARN_ON(!pi_state);
399 current->pi_state_cache = NULL;
401 return pi_state;
404 static void free_pi_state(struct futex_pi_state *pi_state)
406 if (!atomic_dec_and_test(&pi_state->refcount))
407 return;
410 * If pi_state->owner is NULL, the owner is most probably dying
411 * and has cleaned up the pi_state already
413 if (pi_state->owner) {
414 spin_lock_irq(&pi_state->owner->pi_lock);
415 list_del_init(&pi_state->list);
416 spin_unlock_irq(&pi_state->owner->pi_lock);
418 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
421 if (current->pi_state_cache)
422 kfree(pi_state);
423 else {
425 * pi_state->list is already empty.
426 * clear pi_state->owner.
427 * refcount is at 0 - put it back to 1.
429 pi_state->owner = NULL;
430 atomic_set(&pi_state->refcount, 1);
431 current->pi_state_cache = pi_state;
436 * Look up the task based on what TID userspace gave us.
437 * We dont trust it.
439 static struct task_struct * futex_find_get_task(pid_t pid)
441 struct task_struct *p;
443 rcu_read_lock();
444 p = find_task_by_vpid(pid);
445 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
446 p = ERR_PTR(-ESRCH);
447 else
448 get_task_struct(p);
450 rcu_read_unlock();
452 return p;
456 * This task is holding PI mutexes at exit time => bad.
457 * Kernel cleans up PI-state, but userspace is likely hosed.
458 * (Robust-futex cleanup is separate and might save the day for userspace.)
460 void exit_pi_state_list(struct task_struct *curr)
462 struct list_head *next, *head = &curr->pi_state_list;
463 struct futex_pi_state *pi_state;
464 struct futex_hash_bucket *hb;
465 union futex_key key;
467 if (!futex_cmpxchg_enabled)
468 return;
470 * We are a ZOMBIE and nobody can enqueue itself on
471 * pi_state_list anymore, but we have to be careful
472 * versus waiters unqueueing themselves:
474 spin_lock_irq(&curr->pi_lock);
475 while (!list_empty(head)) {
477 next = head->next;
478 pi_state = list_entry(next, struct futex_pi_state, list);
479 key = pi_state->key;
480 hb = hash_futex(&key);
481 spin_unlock_irq(&curr->pi_lock);
483 spin_lock(&hb->lock);
485 spin_lock_irq(&curr->pi_lock);
487 * We dropped the pi-lock, so re-check whether this
488 * task still owns the PI-state:
490 if (head->next != next) {
491 spin_unlock(&hb->lock);
492 continue;
495 WARN_ON(pi_state->owner != curr);
496 WARN_ON(list_empty(&pi_state->list));
497 list_del_init(&pi_state->list);
498 pi_state->owner = NULL;
499 spin_unlock_irq(&curr->pi_lock);
501 rt_mutex_unlock(&pi_state->pi_mutex);
503 spin_unlock(&hb->lock);
505 spin_lock_irq(&curr->pi_lock);
507 spin_unlock_irq(&curr->pi_lock);
510 static int
511 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
512 union futex_key *key, struct futex_pi_state **ps)
514 struct futex_pi_state *pi_state = NULL;
515 struct futex_q *this, *next;
516 struct plist_head *head;
517 struct task_struct *p;
518 pid_t pid = uval & FUTEX_TID_MASK;
520 head = &hb->chain;
522 plist_for_each_entry_safe(this, next, head, list) {
523 if (match_futex(&this->key, key)) {
525 * Another waiter already exists - bump up
526 * the refcount and return its pi_state:
528 pi_state = this->pi_state;
530 * Userspace might have messed up non PI and PI futexes
532 if (unlikely(!pi_state))
533 return -EINVAL;
535 WARN_ON(!atomic_read(&pi_state->refcount));
538 * When pi_state->owner is NULL then the owner died
539 * and another waiter is on the fly. pi_state->owner
540 * is fixed up by the task which acquires
541 * pi_state->rt_mutex.
543 * We do not check for pid == 0 which can happen when
544 * the owner died and robust_list_exit() cleared the
545 * TID.
547 if (pid && pi_state->owner) {
549 * Bail out if user space manipulated the
550 * futex value.
552 if (pid != task_pid_vnr(pi_state->owner))
553 return -EINVAL;
556 atomic_inc(&pi_state->refcount);
557 *ps = pi_state;
559 return 0;
564 * We are the first waiter - try to look up the real owner and attach
565 * the new pi_state to it, but bail out when TID = 0
567 if (!pid)
568 return -ESRCH;
569 p = futex_find_get_task(pid);
570 if (IS_ERR(p))
571 return PTR_ERR(p);
574 * We need to look at the task state flags to figure out,
575 * whether the task is exiting. To protect against the do_exit
576 * change of the task flags, we do this protected by
577 * p->pi_lock:
579 spin_lock_irq(&p->pi_lock);
580 if (unlikely(p->flags & PF_EXITING)) {
582 * The task is on the way out. When PF_EXITPIDONE is
583 * set, we know that the task has finished the
584 * cleanup:
586 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
588 spin_unlock_irq(&p->pi_lock);
589 put_task_struct(p);
590 return ret;
593 pi_state = alloc_pi_state();
596 * Initialize the pi_mutex in locked state and make 'p'
597 * the owner of it:
599 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
601 /* Store the key for possible exit cleanups: */
602 pi_state->key = *key;
604 WARN_ON(!list_empty(&pi_state->list));
605 list_add(&pi_state->list, &p->pi_state_list);
606 pi_state->owner = p;
607 spin_unlock_irq(&p->pi_lock);
609 put_task_struct(p);
611 *ps = pi_state;
613 return 0;
617 * The hash bucket lock must be held when this is called.
618 * Afterwards, the futex_q must not be accessed.
620 static void wake_futex(struct futex_q *q)
622 plist_del(&q->list, &q->list.plist);
624 * The lock in wake_up_all() is a crucial memory barrier after the
625 * plist_del() and also before assigning to q->lock_ptr.
627 wake_up_all(&q->waiters);
629 * The waiting task can free the futex_q as soon as this is written,
630 * without taking any locks. This must come last.
632 * A memory barrier is required here to prevent the following store
633 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
634 * at the end of wake_up_all() does not prevent this store from
635 * moving.
637 smp_wmb();
638 q->lock_ptr = NULL;
641 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
643 struct task_struct *new_owner;
644 struct futex_pi_state *pi_state = this->pi_state;
645 u32 curval, newval;
647 if (!pi_state)
648 return -EINVAL;
651 * If current does not own the pi_state then the futex is
652 * inconsistent and user space fiddled with the futex value.
654 if (pi_state->owner != current)
655 return -EINVAL;
657 spin_lock(&pi_state->pi_mutex.wait_lock);
658 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
661 * This happens when we have stolen the lock and the original
662 * pending owner did not enqueue itself back on the rt_mutex.
663 * Thats not a tragedy. We know that way, that a lock waiter
664 * is on the fly. We make the futex_q waiter the pending owner.
666 if (!new_owner)
667 new_owner = this->task;
670 * We pass it to the next owner. (The WAITERS bit is always
671 * kept enabled while there is PI state around. We must also
672 * preserve the owner died bit.)
674 if (!(uval & FUTEX_OWNER_DIED)) {
675 int ret = 0;
677 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
679 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
681 if (curval == -EFAULT)
682 ret = -EFAULT;
683 else if (curval != uval)
684 ret = -EINVAL;
685 if (ret) {
686 spin_unlock(&pi_state->pi_mutex.wait_lock);
687 return ret;
691 spin_lock_irq(&pi_state->owner->pi_lock);
692 WARN_ON(list_empty(&pi_state->list));
693 list_del_init(&pi_state->list);
694 spin_unlock_irq(&pi_state->owner->pi_lock);
696 spin_lock_irq(&new_owner->pi_lock);
697 WARN_ON(!list_empty(&pi_state->list));
698 list_add(&pi_state->list, &new_owner->pi_state_list);
699 pi_state->owner = new_owner;
700 spin_unlock_irq(&new_owner->pi_lock);
702 spin_unlock(&pi_state->pi_mutex.wait_lock);
703 rt_mutex_unlock(&pi_state->pi_mutex);
705 return 0;
708 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
710 u32 oldval;
713 * There is no waiter, so we unlock the futex. The owner died
714 * bit has not to be preserved here. We are the owner:
716 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
718 if (oldval == -EFAULT)
719 return oldval;
720 if (oldval != uval)
721 return -EAGAIN;
723 return 0;
727 * Express the locking dependencies for lockdep:
729 static inline void
730 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
732 if (hb1 <= hb2) {
733 spin_lock(&hb1->lock);
734 if (hb1 < hb2)
735 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
736 } else { /* hb1 > hb2 */
737 spin_lock(&hb2->lock);
738 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
743 * Wake up all waiters hashed on the physical page that is mapped
744 * to this virtual address:
746 static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
747 int nr_wake, u32 bitset)
749 struct futex_hash_bucket *hb;
750 struct futex_q *this, *next;
751 struct plist_head *head;
752 union futex_key key;
753 int ret;
755 if (!bitset)
756 return -EINVAL;
758 futex_lock_mm(fshared);
760 ret = get_futex_key(uaddr, fshared, &key);
761 if (unlikely(ret != 0))
762 goto out;
764 hb = hash_futex(&key);
765 spin_lock(&hb->lock);
766 head = &hb->chain;
768 plist_for_each_entry_safe(this, next, head, list) {
769 if (match_futex (&this->key, &key)) {
770 if (this->pi_state) {
771 ret = -EINVAL;
772 break;
775 /* Check if one of the bits is set in both bitsets */
776 if (!(this->bitset & bitset))
777 continue;
779 wake_futex(this);
780 if (++ret >= nr_wake)
781 break;
785 spin_unlock(&hb->lock);
786 out:
787 futex_unlock_mm(fshared);
788 return ret;
792 * Wake up all waiters hashed on the physical page that is mapped
793 * to this virtual address:
795 static int
796 futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
797 u32 __user *uaddr2,
798 int nr_wake, int nr_wake2, int op)
800 union futex_key key1, key2;
801 struct futex_hash_bucket *hb1, *hb2;
802 struct plist_head *head;
803 struct futex_q *this, *next;
804 int ret, op_ret, attempt = 0;
806 retryfull:
807 futex_lock_mm(fshared);
809 ret = get_futex_key(uaddr1, fshared, &key1);
810 if (unlikely(ret != 0))
811 goto out;
812 ret = get_futex_key(uaddr2, fshared, &key2);
813 if (unlikely(ret != 0))
814 goto out;
816 hb1 = hash_futex(&key1);
817 hb2 = hash_futex(&key2);
819 retry:
820 double_lock_hb(hb1, hb2);
822 op_ret = futex_atomic_op_inuser(op, uaddr2);
823 if (unlikely(op_ret < 0)) {
824 u32 dummy;
826 spin_unlock(&hb1->lock);
827 if (hb1 != hb2)
828 spin_unlock(&hb2->lock);
830 #ifndef CONFIG_MMU
832 * we don't get EFAULT from MMU faults if we don't have an MMU,
833 * but we might get them from range checking
835 ret = op_ret;
836 goto out;
837 #endif
839 if (unlikely(op_ret != -EFAULT)) {
840 ret = op_ret;
841 goto out;
845 * futex_atomic_op_inuser needs to both read and write
846 * *(int __user *)uaddr2, but we can't modify it
847 * non-atomically. Therefore, if get_user below is not
848 * enough, we need to handle the fault ourselves, while
849 * still holding the mmap_sem.
851 if (attempt++) {
852 ret = futex_handle_fault((unsigned long)uaddr2,
853 fshared, attempt);
854 if (ret)
855 goto out;
856 goto retry;
860 * If we would have faulted, release mmap_sem,
861 * fault it in and start all over again.
863 futex_unlock_mm(fshared);
865 ret = get_user(dummy, uaddr2);
866 if (ret)
867 return ret;
869 goto retryfull;
872 head = &hb1->chain;
874 plist_for_each_entry_safe(this, next, head, list) {
875 if (match_futex (&this->key, &key1)) {
876 wake_futex(this);
877 if (++ret >= nr_wake)
878 break;
882 if (op_ret > 0) {
883 head = &hb2->chain;
885 op_ret = 0;
886 plist_for_each_entry_safe(this, next, head, list) {
887 if (match_futex (&this->key, &key2)) {
888 wake_futex(this);
889 if (++op_ret >= nr_wake2)
890 break;
893 ret += op_ret;
896 spin_unlock(&hb1->lock);
897 if (hb1 != hb2)
898 spin_unlock(&hb2->lock);
899 out:
900 futex_unlock_mm(fshared);
902 return ret;
906 * Requeue all waiters hashed on one physical page to another
907 * physical page.
909 static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
910 u32 __user *uaddr2,
911 int nr_wake, int nr_requeue, u32 *cmpval)
913 union futex_key key1, key2;
914 struct futex_hash_bucket *hb1, *hb2;
915 struct plist_head *head1;
916 struct futex_q *this, *next;
917 int ret, drop_count = 0;
919 retry:
920 futex_lock_mm(fshared);
922 ret = get_futex_key(uaddr1, fshared, &key1);
923 if (unlikely(ret != 0))
924 goto out;
925 ret = get_futex_key(uaddr2, fshared, &key2);
926 if (unlikely(ret != 0))
927 goto out;
929 hb1 = hash_futex(&key1);
930 hb2 = hash_futex(&key2);
932 double_lock_hb(hb1, hb2);
934 if (likely(cmpval != NULL)) {
935 u32 curval;
937 ret = get_futex_value_locked(&curval, uaddr1);
939 if (unlikely(ret)) {
940 spin_unlock(&hb1->lock);
941 if (hb1 != hb2)
942 spin_unlock(&hb2->lock);
945 * If we would have faulted, release mmap_sem, fault
946 * it in and start all over again.
948 futex_unlock_mm(fshared);
950 ret = get_user(curval, uaddr1);
952 if (!ret)
953 goto retry;
955 return ret;
957 if (curval != *cmpval) {
958 ret = -EAGAIN;
959 goto out_unlock;
963 head1 = &hb1->chain;
964 plist_for_each_entry_safe(this, next, head1, list) {
965 if (!match_futex (&this->key, &key1))
966 continue;
967 if (++ret <= nr_wake) {
968 wake_futex(this);
969 } else {
971 * If key1 and key2 hash to the same bucket, no need to
972 * requeue.
974 if (likely(head1 != &hb2->chain)) {
975 plist_del(&this->list, &hb1->chain);
976 plist_add(&this->list, &hb2->chain);
977 this->lock_ptr = &hb2->lock;
978 #ifdef CONFIG_DEBUG_PI_LIST
979 this->list.plist.lock = &hb2->lock;
980 #endif
982 this->key = key2;
983 get_futex_key_refs(&key2);
984 drop_count++;
986 if (ret - nr_wake >= nr_requeue)
987 break;
991 out_unlock:
992 spin_unlock(&hb1->lock);
993 if (hb1 != hb2)
994 spin_unlock(&hb2->lock);
996 /* drop_futex_key_refs() must be called outside the spinlocks. */
997 while (--drop_count >= 0)
998 drop_futex_key_refs(&key1);
1000 out:
1001 futex_unlock_mm(fshared);
1002 return ret;
1005 /* The key must be already stored in q->key. */
1006 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1008 struct futex_hash_bucket *hb;
1010 init_waitqueue_head(&q->waiters);
1012 get_futex_key_refs(&q->key);
1013 hb = hash_futex(&q->key);
1014 q->lock_ptr = &hb->lock;
1016 spin_lock(&hb->lock);
1017 return hb;
1020 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1022 int prio;
1025 * The priority used to register this element is
1026 * - either the real thread-priority for the real-time threads
1027 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1028 * - or MAX_RT_PRIO for non-RT threads.
1029 * Thus, all RT-threads are woken first in priority order, and
1030 * the others are woken last, in FIFO order.
1032 prio = min(current->normal_prio, MAX_RT_PRIO);
1034 plist_node_init(&q->list, prio);
1035 #ifdef CONFIG_DEBUG_PI_LIST
1036 q->list.plist.lock = &hb->lock;
1037 #endif
1038 plist_add(&q->list, &hb->chain);
1039 q->task = current;
1040 spin_unlock(&hb->lock);
1043 static inline void
1044 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1046 spin_unlock(&hb->lock);
1047 drop_futex_key_refs(&q->key);
1051 * queue_me and unqueue_me must be called as a pair, each
1052 * exactly once. They are called with the hashed spinlock held.
1055 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1056 static int unqueue_me(struct futex_q *q)
1058 spinlock_t *lock_ptr;
1059 int ret = 0;
1061 /* In the common case we don't take the spinlock, which is nice. */
1062 retry:
1063 lock_ptr = q->lock_ptr;
1064 barrier();
1065 if (lock_ptr != NULL) {
1066 spin_lock(lock_ptr);
1068 * q->lock_ptr can change between reading it and
1069 * spin_lock(), causing us to take the wrong lock. This
1070 * corrects the race condition.
1072 * Reasoning goes like this: if we have the wrong lock,
1073 * q->lock_ptr must have changed (maybe several times)
1074 * between reading it and the spin_lock(). It can
1075 * change again after the spin_lock() but only if it was
1076 * already changed before the spin_lock(). It cannot,
1077 * however, change back to the original value. Therefore
1078 * we can detect whether we acquired the correct lock.
1080 if (unlikely(lock_ptr != q->lock_ptr)) {
1081 spin_unlock(lock_ptr);
1082 goto retry;
1084 WARN_ON(plist_node_empty(&q->list));
1085 plist_del(&q->list, &q->list.plist);
1087 BUG_ON(q->pi_state);
1089 spin_unlock(lock_ptr);
1090 ret = 1;
1093 drop_futex_key_refs(&q->key);
1094 return ret;
1098 * PI futexes can not be requeued and must remove themself from the
1099 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1100 * and dropped here.
1102 static void unqueue_me_pi(struct futex_q *q)
1104 WARN_ON(plist_node_empty(&q->list));
1105 plist_del(&q->list, &q->list.plist);
1107 BUG_ON(!q->pi_state);
1108 free_pi_state(q->pi_state);
1109 q->pi_state = NULL;
1111 spin_unlock(q->lock_ptr);
1113 drop_futex_key_refs(&q->key);
1117 * Fixup the pi_state owner with the new owner.
1119 * Must be called with hash bucket lock held and mm->sem held for non
1120 * private futexes.
1122 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1123 struct task_struct *newowner,
1124 struct rw_semaphore *fshared)
1126 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1127 struct futex_pi_state *pi_state = q->pi_state;
1128 struct task_struct *oldowner = pi_state->owner;
1129 u32 uval, curval, newval;
1130 int ret, attempt = 0;
1132 /* Owner died? */
1133 if (!pi_state->owner)
1134 newtid |= FUTEX_OWNER_DIED;
1137 * We are here either because we stole the rtmutex from the
1138 * pending owner or we are the pending owner which failed to
1139 * get the rtmutex. We have to replace the pending owner TID
1140 * in the user space variable. This must be atomic as we have
1141 * to preserve the owner died bit here.
1143 * Note: We write the user space value _before_ changing the
1144 * pi_state because we can fault here. Imagine swapped out
1145 * pages or a fork, which was running right before we acquired
1146 * mmap_sem, that marked all the anonymous memory readonly for
1147 * cow.
1149 * Modifying pi_state _before_ the user space value would
1150 * leave the pi_state in an inconsistent state when we fault
1151 * here, because we need to drop the hash bucket lock to
1152 * handle the fault. This might be observed in the PID check
1153 * in lookup_pi_state.
1155 retry:
1156 if (get_futex_value_locked(&uval, uaddr))
1157 goto handle_fault;
1159 while (1) {
1160 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1162 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1164 if (curval == -EFAULT)
1165 goto handle_fault;
1166 if (curval == uval)
1167 break;
1168 uval = curval;
1172 * We fixed up user space. Now we need to fix the pi_state
1173 * itself.
1175 if (pi_state->owner != NULL) {
1176 spin_lock_irq(&pi_state->owner->pi_lock);
1177 WARN_ON(list_empty(&pi_state->list));
1178 list_del_init(&pi_state->list);
1179 spin_unlock_irq(&pi_state->owner->pi_lock);
1182 pi_state->owner = newowner;
1184 spin_lock_irq(&newowner->pi_lock);
1185 WARN_ON(!list_empty(&pi_state->list));
1186 list_add(&pi_state->list, &newowner->pi_state_list);
1187 spin_unlock_irq(&newowner->pi_lock);
1188 return 0;
1191 * To handle the page fault we need to drop the hash bucket
1192 * lock here. That gives the other task (either the pending
1193 * owner itself or the task which stole the rtmutex) the
1194 * chance to try the fixup of the pi_state. So once we are
1195 * back from handling the fault we need to check the pi_state
1196 * after reacquiring the hash bucket lock and before trying to
1197 * do another fixup. When the fixup has been done already we
1198 * simply return.
1200 handle_fault:
1201 spin_unlock(q->lock_ptr);
1203 ret = futex_handle_fault((unsigned long)uaddr, fshared, attempt++);
1205 spin_lock(q->lock_ptr);
1208 * Check if someone else fixed it for us:
1210 if (pi_state->owner != oldowner)
1211 return 0;
1213 if (ret)
1214 return ret;
1216 goto retry;
1220 * In case we must use restart_block to restart a futex_wait,
1221 * we encode in the 'flags' shared capability
1223 #define FLAGS_SHARED 1
1225 static long futex_wait_restart(struct restart_block *restart);
1227 static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1228 u32 val, ktime_t *abs_time, u32 bitset)
1230 struct task_struct *curr = current;
1231 DECLARE_WAITQUEUE(wait, curr);
1232 struct futex_hash_bucket *hb;
1233 struct futex_q q;
1234 u32 uval;
1235 int ret;
1236 struct hrtimer_sleeper t;
1237 int rem = 0;
1239 if (!bitset)
1240 return -EINVAL;
1242 q.pi_state = NULL;
1243 q.bitset = bitset;
1244 retry:
1245 futex_lock_mm(fshared);
1247 ret = get_futex_key(uaddr, fshared, &q.key);
1248 if (unlikely(ret != 0))
1249 goto out_release_sem;
1251 hb = queue_lock(&q);
1254 * Access the page AFTER the futex is queued.
1255 * Order is important:
1257 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1258 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1260 * The basic logical guarantee of a futex is that it blocks ONLY
1261 * if cond(var) is known to be true at the time of blocking, for
1262 * any cond. If we queued after testing *uaddr, that would open
1263 * a race condition where we could block indefinitely with
1264 * cond(var) false, which would violate the guarantee.
1266 * A consequence is that futex_wait() can return zero and absorb
1267 * a wakeup when *uaddr != val on entry to the syscall. This is
1268 * rare, but normal.
1270 * for shared futexes, we hold the mmap semaphore, so the mapping
1271 * cannot have changed since we looked it up in get_futex_key.
1273 ret = get_futex_value_locked(&uval, uaddr);
1275 if (unlikely(ret)) {
1276 queue_unlock(&q, hb);
1279 * If we would have faulted, release mmap_sem, fault it in and
1280 * start all over again.
1282 futex_unlock_mm(fshared);
1284 ret = get_user(uval, uaddr);
1286 if (!ret)
1287 goto retry;
1288 return ret;
1290 ret = -EWOULDBLOCK;
1291 if (uval != val)
1292 goto out_unlock_release_sem;
1294 /* Only actually queue if *uaddr contained val. */
1295 queue_me(&q, hb);
1298 * Now the futex is queued and we have checked the data, we
1299 * don't want to hold mmap_sem while we sleep.
1301 futex_unlock_mm(fshared);
1304 * There might have been scheduling since the queue_me(), as we
1305 * cannot hold a spinlock across the get_user() in case it
1306 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1307 * queueing ourselves into the futex hash. This code thus has to
1308 * rely on the futex_wake() code removing us from hash when it
1309 * wakes us up.
1312 /* add_wait_queue is the barrier after __set_current_state. */
1313 __set_current_state(TASK_INTERRUPTIBLE);
1314 add_wait_queue(&q.waiters, &wait);
1316 * !plist_node_empty() is safe here without any lock.
1317 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1319 if (likely(!plist_node_empty(&q.list))) {
1320 if (!abs_time)
1321 schedule();
1322 else {
1323 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
1324 HRTIMER_MODE_ABS);
1325 hrtimer_init_sleeper(&t, current);
1326 t.timer.expires = *abs_time;
1328 hrtimer_start(&t.timer, t.timer.expires,
1329 HRTIMER_MODE_ABS);
1330 if (!hrtimer_active(&t.timer))
1331 t.task = NULL;
1334 * the timer could have already expired, in which
1335 * case current would be flagged for rescheduling.
1336 * Don't bother calling schedule.
1338 if (likely(t.task))
1339 schedule();
1341 hrtimer_cancel(&t.timer);
1343 /* Flag if a timeout occured */
1344 rem = (t.task == NULL);
1346 destroy_hrtimer_on_stack(&t.timer);
1349 __set_current_state(TASK_RUNNING);
1352 * NOTE: we don't remove ourselves from the waitqueue because
1353 * we are the only user of it.
1356 /* If we were woken (and unqueued), we succeeded, whatever. */
1357 if (!unqueue_me(&q))
1358 return 0;
1359 if (rem)
1360 return -ETIMEDOUT;
1363 * We expect signal_pending(current), but another thread may
1364 * have handled it for us already.
1366 if (!abs_time)
1367 return -ERESTARTSYS;
1368 else {
1369 struct restart_block *restart;
1370 restart = &current_thread_info()->restart_block;
1371 restart->fn = futex_wait_restart;
1372 restart->futex.uaddr = (u32 *)uaddr;
1373 restart->futex.val = val;
1374 restart->futex.time = abs_time->tv64;
1375 restart->futex.bitset = bitset;
1376 restart->futex.flags = 0;
1378 if (fshared)
1379 restart->futex.flags |= FLAGS_SHARED;
1380 return -ERESTART_RESTARTBLOCK;
1383 out_unlock_release_sem:
1384 queue_unlock(&q, hb);
1386 out_release_sem:
1387 futex_unlock_mm(fshared);
1388 return ret;
1392 static long futex_wait_restart(struct restart_block *restart)
1394 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1395 struct rw_semaphore *fshared = NULL;
1396 ktime_t t;
1398 t.tv64 = restart->futex.time;
1399 restart->fn = do_no_restart_syscall;
1400 if (restart->futex.flags & FLAGS_SHARED)
1401 fshared = &current->mm->mmap_sem;
1402 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1403 restart->futex.bitset);
1408 * Userspace tried a 0 -> TID atomic transition of the futex value
1409 * and failed. The kernel side here does the whole locking operation:
1410 * if there are waiters then it will block, it does PI, etc. (Due to
1411 * races the kernel might see a 0 value of the futex too.)
1413 static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1414 int detect, ktime_t *time, int trylock)
1416 struct hrtimer_sleeper timeout, *to = NULL;
1417 struct task_struct *curr = current;
1418 struct futex_hash_bucket *hb;
1419 u32 uval, newval, curval;
1420 struct futex_q q;
1421 int ret, lock_taken, ownerdied = 0, attempt = 0;
1423 if (refill_pi_state_cache())
1424 return -ENOMEM;
1426 if (time) {
1427 to = &timeout;
1428 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1429 HRTIMER_MODE_ABS);
1430 hrtimer_init_sleeper(to, current);
1431 to->timer.expires = *time;
1434 q.pi_state = NULL;
1435 retry:
1436 futex_lock_mm(fshared);
1438 ret = get_futex_key(uaddr, fshared, &q.key);
1439 if (unlikely(ret != 0))
1440 goto out_release_sem;
1442 retry_unlocked:
1443 hb = queue_lock(&q);
1445 retry_locked:
1446 ret = lock_taken = 0;
1449 * To avoid races, we attempt to take the lock here again
1450 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1451 * the locks. It will most likely not succeed.
1453 newval = task_pid_vnr(current);
1455 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1457 if (unlikely(curval == -EFAULT))
1458 goto uaddr_faulted;
1461 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1462 * situation and we return success to user space.
1464 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1465 ret = -EDEADLK;
1466 goto out_unlock_release_sem;
1470 * Surprise - we got the lock. Just return to userspace:
1472 if (unlikely(!curval))
1473 goto out_unlock_release_sem;
1475 uval = curval;
1478 * Set the WAITERS flag, so the owner will know it has someone
1479 * to wake at next unlock
1481 newval = curval | FUTEX_WAITERS;
1484 * There are two cases, where a futex might have no owner (the
1485 * owner TID is 0): OWNER_DIED. We take over the futex in this
1486 * case. We also do an unconditional take over, when the owner
1487 * of the futex died.
1489 * This is safe as we are protected by the hash bucket lock !
1491 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1492 /* Keep the OWNER_DIED bit */
1493 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1494 ownerdied = 0;
1495 lock_taken = 1;
1498 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1500 if (unlikely(curval == -EFAULT))
1501 goto uaddr_faulted;
1502 if (unlikely(curval != uval))
1503 goto retry_locked;
1506 * We took the lock due to owner died take over.
1508 if (unlikely(lock_taken))
1509 goto out_unlock_release_sem;
1512 * We dont have the lock. Look up the PI state (or create it if
1513 * we are the first waiter):
1515 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1517 if (unlikely(ret)) {
1518 switch (ret) {
1520 case -EAGAIN:
1522 * Task is exiting and we just wait for the
1523 * exit to complete.
1525 queue_unlock(&q, hb);
1526 futex_unlock_mm(fshared);
1527 cond_resched();
1528 goto retry;
1530 case -ESRCH:
1532 * No owner found for this futex. Check if the
1533 * OWNER_DIED bit is set to figure out whether
1534 * this is a robust futex or not.
1536 if (get_futex_value_locked(&curval, uaddr))
1537 goto uaddr_faulted;
1540 * We simply start over in case of a robust
1541 * futex. The code above will take the futex
1542 * and return happy.
1544 if (curval & FUTEX_OWNER_DIED) {
1545 ownerdied = 1;
1546 goto retry_locked;
1548 default:
1549 goto out_unlock_release_sem;
1554 * Only actually queue now that the atomic ops are done:
1556 queue_me(&q, hb);
1559 * Now the futex is queued and we have checked the data, we
1560 * don't want to hold mmap_sem while we sleep.
1562 futex_unlock_mm(fshared);
1564 WARN_ON(!q.pi_state);
1566 * Block on the PI mutex:
1568 if (!trylock)
1569 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1570 else {
1571 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1572 /* Fixup the trylock return value: */
1573 ret = ret ? 0 : -EWOULDBLOCK;
1576 futex_lock_mm(fshared);
1577 spin_lock(q.lock_ptr);
1579 if (!ret) {
1581 * Got the lock. We might not be the anticipated owner
1582 * if we did a lock-steal - fix up the PI-state in
1583 * that case:
1585 if (q.pi_state->owner != curr)
1586 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1587 } else {
1589 * Catch the rare case, where the lock was released
1590 * when we were on the way back before we locked the
1591 * hash bucket.
1593 if (q.pi_state->owner == curr) {
1595 * Try to get the rt_mutex now. This might
1596 * fail as some other task acquired the
1597 * rt_mutex after we removed ourself from the
1598 * rt_mutex waiters list.
1600 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1601 ret = 0;
1602 else {
1604 * pi_state is incorrect, some other
1605 * task did a lock steal and we
1606 * returned due to timeout or signal
1607 * without taking the rt_mutex. Too
1608 * late. We can access the
1609 * rt_mutex_owner without locking, as
1610 * the other task is now blocked on
1611 * the hash bucket lock. Fix the state
1612 * up.
1614 struct task_struct *owner;
1615 int res;
1617 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1618 res = fixup_pi_state_owner(uaddr, &q, owner,
1619 fshared);
1621 /* propagate -EFAULT, if the fixup failed */
1622 if (res)
1623 ret = res;
1625 } else {
1627 * Paranoia check. If we did not take the lock
1628 * in the trylock above, then we should not be
1629 * the owner of the rtmutex, neither the real
1630 * nor the pending one:
1632 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1633 printk(KERN_ERR "futex_lock_pi: ret = %d "
1634 "pi-mutex: %p pi-state %p\n", ret,
1635 q.pi_state->pi_mutex.owner,
1636 q.pi_state->owner);
1640 /* Unqueue and drop the lock */
1641 unqueue_me_pi(&q);
1642 futex_unlock_mm(fshared);
1644 if (to)
1645 destroy_hrtimer_on_stack(&to->timer);
1646 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1648 out_unlock_release_sem:
1649 queue_unlock(&q, hb);
1651 out_release_sem:
1652 futex_unlock_mm(fshared);
1653 if (to)
1654 destroy_hrtimer_on_stack(&to->timer);
1655 return ret;
1657 uaddr_faulted:
1659 * We have to r/w *(int __user *)uaddr, but we can't modify it
1660 * non-atomically. Therefore, if get_user below is not
1661 * enough, we need to handle the fault ourselves, while
1662 * still holding the mmap_sem.
1664 * ... and hb->lock. :-) --ANK
1666 queue_unlock(&q, hb);
1668 if (attempt++) {
1669 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1670 attempt);
1671 if (ret)
1672 goto out_release_sem;
1673 goto retry_unlocked;
1676 futex_unlock_mm(fshared);
1678 ret = get_user(uval, uaddr);
1679 if (!ret && (uval != -EFAULT))
1680 goto retry;
1682 if (to)
1683 destroy_hrtimer_on_stack(&to->timer);
1684 return ret;
1688 * Userspace attempted a TID -> 0 atomic transition, and failed.
1689 * This is the in-kernel slowpath: we look up the PI state (if any),
1690 * and do the rt-mutex unlock.
1692 static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1694 struct futex_hash_bucket *hb;
1695 struct futex_q *this, *next;
1696 u32 uval;
1697 struct plist_head *head;
1698 union futex_key key;
1699 int ret, attempt = 0;
1701 retry:
1702 if (get_user(uval, uaddr))
1703 return -EFAULT;
1705 * We release only a lock we actually own:
1707 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1708 return -EPERM;
1710 * First take all the futex related locks:
1712 futex_lock_mm(fshared);
1714 ret = get_futex_key(uaddr, fshared, &key);
1715 if (unlikely(ret != 0))
1716 goto out;
1718 hb = hash_futex(&key);
1719 retry_unlocked:
1720 spin_lock(&hb->lock);
1723 * To avoid races, try to do the TID -> 0 atomic transition
1724 * again. If it succeeds then we can return without waking
1725 * anyone else up:
1727 if (!(uval & FUTEX_OWNER_DIED))
1728 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1731 if (unlikely(uval == -EFAULT))
1732 goto pi_faulted;
1734 * Rare case: we managed to release the lock atomically,
1735 * no need to wake anyone else up:
1737 if (unlikely(uval == task_pid_vnr(current)))
1738 goto out_unlock;
1741 * Ok, other tasks may need to be woken up - check waiters
1742 * and do the wakeup if necessary:
1744 head = &hb->chain;
1746 plist_for_each_entry_safe(this, next, head, list) {
1747 if (!match_futex (&this->key, &key))
1748 continue;
1749 ret = wake_futex_pi(uaddr, uval, this);
1751 * The atomic access to the futex value
1752 * generated a pagefault, so retry the
1753 * user-access and the wakeup:
1755 if (ret == -EFAULT)
1756 goto pi_faulted;
1757 goto out_unlock;
1760 * No waiters - kernel unlocks the futex:
1762 if (!(uval & FUTEX_OWNER_DIED)) {
1763 ret = unlock_futex_pi(uaddr, uval);
1764 if (ret == -EFAULT)
1765 goto pi_faulted;
1768 out_unlock:
1769 spin_unlock(&hb->lock);
1770 out:
1771 futex_unlock_mm(fshared);
1773 return ret;
1775 pi_faulted:
1777 * We have to r/w *(int __user *)uaddr, but we can't modify it
1778 * non-atomically. Therefore, if get_user below is not
1779 * enough, we need to handle the fault ourselves, while
1780 * still holding the mmap_sem.
1782 * ... and hb->lock. --ANK
1784 spin_unlock(&hb->lock);
1786 if (attempt++) {
1787 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1788 attempt);
1789 if (ret)
1790 goto out;
1791 uval = 0;
1792 goto retry_unlocked;
1795 futex_unlock_mm(fshared);
1797 ret = get_user(uval, uaddr);
1798 if (!ret && (uval != -EFAULT))
1799 goto retry;
1801 return ret;
1805 * Support for robust futexes: the kernel cleans up held futexes at
1806 * thread exit time.
1808 * Implementation: user-space maintains a per-thread list of locks it
1809 * is holding. Upon do_exit(), the kernel carefully walks this list,
1810 * and marks all locks that are owned by this thread with the
1811 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1812 * always manipulated with the lock held, so the list is private and
1813 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1814 * field, to allow the kernel to clean up if the thread dies after
1815 * acquiring the lock, but just before it could have added itself to
1816 * the list. There can only be one such pending lock.
1820 * sys_set_robust_list - set the robust-futex list head of a task
1821 * @head: pointer to the list-head
1822 * @len: length of the list-head, as userspace expects
1824 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
1825 size_t, len)
1827 if (!futex_cmpxchg_enabled)
1828 return -ENOSYS;
1830 * The kernel knows only one size for now:
1832 if (unlikely(len != sizeof(*head)))
1833 return -EINVAL;
1835 current->robust_list = head;
1837 return 0;
1841 * sys_get_robust_list - get the robust-futex list head of a task
1842 * @pid: pid of the process [zero for current task]
1843 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1844 * @len_ptr: pointer to a length field, the kernel fills in the header size
1846 SYSCALL_DEFINE3(get_robust_list, int, pid,
1847 struct robust_list_head __user * __user *, head_ptr,
1848 size_t __user *, len_ptr)
1850 struct robust_list_head __user *head;
1851 unsigned long ret;
1853 if (!futex_cmpxchg_enabled)
1854 return -ENOSYS;
1856 if (!pid)
1857 head = current->robust_list;
1858 else {
1859 struct task_struct *p;
1861 ret = -ESRCH;
1862 rcu_read_lock();
1863 p = find_task_by_vpid(pid);
1864 if (!p)
1865 goto err_unlock;
1866 ret = -EPERM;
1867 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1868 !capable(CAP_SYS_PTRACE))
1869 goto err_unlock;
1870 head = p->robust_list;
1871 rcu_read_unlock();
1874 if (put_user(sizeof(*head), len_ptr))
1875 return -EFAULT;
1876 return put_user(head, head_ptr);
1878 err_unlock:
1879 rcu_read_unlock();
1881 return ret;
1885 * Process a futex-list entry, check whether it's owned by the
1886 * dying task, and do notification if so:
1888 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1890 u32 uval, nval, mval;
1892 retry:
1893 if (get_user(uval, uaddr))
1894 return -1;
1896 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1898 * Ok, this dying thread is truly holding a futex
1899 * of interest. Set the OWNER_DIED bit atomically
1900 * via cmpxchg, and if the value had FUTEX_WAITERS
1901 * set, wake up a waiter (if any). (We have to do a
1902 * futex_wake() even if OWNER_DIED is already set -
1903 * to handle the rare but possible case of recursive
1904 * thread-death.) The rest of the cleanup is done in
1905 * userspace.
1907 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1908 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1910 if (nval == -EFAULT)
1911 return -1;
1913 if (nval != uval)
1914 goto retry;
1917 * Wake robust non-PI futexes here. The wakeup of
1918 * PI futexes happens in exit_pi_state():
1920 if (!pi && (uval & FUTEX_WAITERS))
1921 futex_wake(uaddr, &curr->mm->mmap_sem, 1,
1922 FUTEX_BITSET_MATCH_ANY);
1924 return 0;
1928 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1930 static inline int fetch_robust_entry(struct robust_list __user **entry,
1931 struct robust_list __user * __user *head,
1932 int *pi)
1934 unsigned long uentry;
1936 if (get_user(uentry, (unsigned long __user *)head))
1937 return -EFAULT;
1939 *entry = (void __user *)(uentry & ~1UL);
1940 *pi = uentry & 1;
1942 return 0;
1946 * Walk curr->robust_list (very carefully, it's a userspace list!)
1947 * and mark any locks found there dead, and notify any waiters.
1949 * We silently return on any sign of list-walking problem.
1951 void exit_robust_list(struct task_struct *curr)
1953 struct robust_list_head __user *head = curr->robust_list;
1954 struct robust_list __user *entry, *next_entry, *pending;
1955 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1956 unsigned long futex_offset;
1957 int rc;
1959 if (!futex_cmpxchg_enabled)
1960 return;
1963 * Fetch the list head (which was registered earlier, via
1964 * sys_set_robust_list()):
1966 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1967 return;
1969 * Fetch the relative futex offset:
1971 if (get_user(futex_offset, &head->futex_offset))
1972 return;
1974 * Fetch any possibly pending lock-add first, and handle it
1975 * if it exists:
1977 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1978 return;
1980 next_entry = NULL; /* avoid warning with gcc */
1981 while (entry != &head->list) {
1983 * Fetch the next entry in the list before calling
1984 * handle_futex_death:
1986 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1988 * A pending lock might already be on the list, so
1989 * don't process it twice:
1991 if (entry != pending)
1992 if (handle_futex_death((void __user *)entry + futex_offset,
1993 curr, pi))
1994 return;
1995 if (rc)
1996 return;
1997 entry = next_entry;
1998 pi = next_pi;
2000 * Avoid excessively long or circular lists:
2002 if (!--limit)
2003 break;
2005 cond_resched();
2008 if (pending)
2009 handle_futex_death((void __user *)pending + futex_offset,
2010 curr, pip);
2013 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2014 u32 __user *uaddr2, u32 val2, u32 val3)
2016 int ret = -ENOSYS;
2017 int cmd = op & FUTEX_CMD_MASK;
2018 struct rw_semaphore *fshared = NULL;
2020 if (!(op & FUTEX_PRIVATE_FLAG))
2021 fshared = &current->mm->mmap_sem;
2023 switch (cmd) {
2024 case FUTEX_WAIT:
2025 val3 = FUTEX_BITSET_MATCH_ANY;
2026 case FUTEX_WAIT_BITSET:
2027 ret = futex_wait(uaddr, fshared, val, timeout, val3);
2028 break;
2029 case FUTEX_WAKE:
2030 val3 = FUTEX_BITSET_MATCH_ANY;
2031 case FUTEX_WAKE_BITSET:
2032 ret = futex_wake(uaddr, fshared, val, val3);
2033 break;
2034 case FUTEX_REQUEUE:
2035 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
2036 break;
2037 case FUTEX_CMP_REQUEUE:
2038 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
2039 break;
2040 case FUTEX_WAKE_OP:
2041 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2042 break;
2043 case FUTEX_LOCK_PI:
2044 if (futex_cmpxchg_enabled)
2045 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2046 break;
2047 case FUTEX_UNLOCK_PI:
2048 if (futex_cmpxchg_enabled)
2049 ret = futex_unlock_pi(uaddr, fshared);
2050 break;
2051 case FUTEX_TRYLOCK_PI:
2052 if (futex_cmpxchg_enabled)
2053 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2054 break;
2055 default:
2056 ret = -ENOSYS;
2058 return ret;
2062 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2063 struct timespec __user *, utime, u32 __user *, uaddr2,
2064 u32, val3)
2066 struct timespec ts;
2067 ktime_t t, *tp = NULL;
2068 u32 val2 = 0;
2069 int cmd = op & FUTEX_CMD_MASK;
2071 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2072 cmd == FUTEX_WAIT_BITSET)) {
2073 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2074 return -EFAULT;
2075 if (!timespec_valid(&ts))
2076 return -EINVAL;
2078 t = timespec_to_ktime(ts);
2079 if (cmd == FUTEX_WAIT)
2080 t = ktime_add_safe(ktime_get(), t);
2081 tp = &t;
2084 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2085 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2087 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2088 cmd == FUTEX_WAKE_OP)
2089 val2 = (u32) (unsigned long) utime;
2091 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2094 static int __init futex_init(void)
2096 u32 curval;
2097 int i;
2100 * This will fail and we want it. Some arch implementations do
2101 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2102 * functionality. We want to know that before we call in any
2103 * of the complex code paths. Also we want to prevent
2104 * registration of robust lists in that case. NULL is
2105 * guaranteed to fault and we get -EFAULT on functional
2106 * implementation, the non functional ones will return
2107 * -ENOSYS.
2109 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2110 if (curval == -EFAULT)
2111 futex_cmpxchg_enabled = 1;
2113 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2114 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2115 spin_lock_init(&futex_queues[i].lock);
2118 return 0;
2120 __initcall(futex_init);