b43: Add simple firmware watchdog
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmstat.c
blobdb9eabb2c5b3a992a04ac2396bf791b72bbdcf94
1 /*
2 * linux/mm/vmstat.c
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/sched.h>
18 #ifdef CONFIG_VM_EVENT_COUNTERS
19 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
20 EXPORT_PER_CPU_SYMBOL(vm_event_states);
22 static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
24 int cpu;
25 int i;
27 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
29 for_each_cpu_mask(cpu, *cpumask) {
30 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
32 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
33 ret[i] += this->event[i];
38 * Accumulate the vm event counters across all CPUs.
39 * The result is unavoidably approximate - it can change
40 * during and after execution of this function.
42 void all_vm_events(unsigned long *ret)
44 get_online_cpus();
45 sum_vm_events(ret, &cpu_online_map);
46 put_online_cpus();
48 EXPORT_SYMBOL_GPL(all_vm_events);
50 #ifdef CONFIG_HOTPLUG
52 * Fold the foreign cpu events into our own.
54 * This is adding to the events on one processor
55 * but keeps the global counts constant.
57 void vm_events_fold_cpu(int cpu)
59 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
60 int i;
62 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
63 count_vm_events(i, fold_state->event[i]);
64 fold_state->event[i] = 0;
67 #endif /* CONFIG_HOTPLUG */
69 #endif /* CONFIG_VM_EVENT_COUNTERS */
72 * Manage combined zone based / global counters
74 * vm_stat contains the global counters
76 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
77 EXPORT_SYMBOL(vm_stat);
79 #ifdef CONFIG_SMP
81 static int calculate_threshold(struct zone *zone)
83 int threshold;
84 int mem; /* memory in 128 MB units */
87 * The threshold scales with the number of processors and the amount
88 * of memory per zone. More memory means that we can defer updates for
89 * longer, more processors could lead to more contention.
90 * fls() is used to have a cheap way of logarithmic scaling.
92 * Some sample thresholds:
94 * Threshold Processors (fls) Zonesize fls(mem+1)
95 * ------------------------------------------------------------------
96 * 8 1 1 0.9-1 GB 4
97 * 16 2 2 0.9-1 GB 4
98 * 20 2 2 1-2 GB 5
99 * 24 2 2 2-4 GB 6
100 * 28 2 2 4-8 GB 7
101 * 32 2 2 8-16 GB 8
102 * 4 2 2 <128M 1
103 * 30 4 3 2-4 GB 5
104 * 48 4 3 8-16 GB 8
105 * 32 8 4 1-2 GB 4
106 * 32 8 4 0.9-1GB 4
107 * 10 16 5 <128M 1
108 * 40 16 5 900M 4
109 * 70 64 7 2-4 GB 5
110 * 84 64 7 4-8 GB 6
111 * 108 512 9 4-8 GB 6
112 * 125 1024 10 8-16 GB 8
113 * 125 1024 10 16-32 GB 9
116 mem = zone->present_pages >> (27 - PAGE_SHIFT);
118 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
121 * Maximum threshold is 125
123 threshold = min(125, threshold);
125 return threshold;
129 * Refresh the thresholds for each zone.
131 static void refresh_zone_stat_thresholds(void)
133 struct zone *zone;
134 int cpu;
135 int threshold;
137 for_each_zone(zone) {
139 if (!zone->present_pages)
140 continue;
142 threshold = calculate_threshold(zone);
144 for_each_online_cpu(cpu)
145 zone_pcp(zone, cpu)->stat_threshold = threshold;
150 * For use when we know that interrupts are disabled.
152 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
153 int delta)
155 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
156 s8 *p = pcp->vm_stat_diff + item;
157 long x;
159 x = delta + *p;
161 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
162 zone_page_state_add(x, zone, item);
163 x = 0;
165 *p = x;
167 EXPORT_SYMBOL(__mod_zone_page_state);
170 * For an unknown interrupt state
172 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
173 int delta)
175 unsigned long flags;
177 local_irq_save(flags);
178 __mod_zone_page_state(zone, item, delta);
179 local_irq_restore(flags);
181 EXPORT_SYMBOL(mod_zone_page_state);
184 * Optimized increment and decrement functions.
186 * These are only for a single page and therefore can take a struct page *
187 * argument instead of struct zone *. This allows the inclusion of the code
188 * generated for page_zone(page) into the optimized functions.
190 * No overflow check is necessary and therefore the differential can be
191 * incremented or decremented in place which may allow the compilers to
192 * generate better code.
193 * The increment or decrement is known and therefore one boundary check can
194 * be omitted.
196 * NOTE: These functions are very performance sensitive. Change only
197 * with care.
199 * Some processors have inc/dec instructions that are atomic vs an interrupt.
200 * However, the code must first determine the differential location in a zone
201 * based on the processor number and then inc/dec the counter. There is no
202 * guarantee without disabling preemption that the processor will not change
203 * in between and therefore the atomicity vs. interrupt cannot be exploited
204 * in a useful way here.
206 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
208 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
209 s8 *p = pcp->vm_stat_diff + item;
211 (*p)++;
213 if (unlikely(*p > pcp->stat_threshold)) {
214 int overstep = pcp->stat_threshold / 2;
216 zone_page_state_add(*p + overstep, zone, item);
217 *p = -overstep;
221 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
223 __inc_zone_state(page_zone(page), item);
225 EXPORT_SYMBOL(__inc_zone_page_state);
227 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
229 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
230 s8 *p = pcp->vm_stat_diff + item;
232 (*p)--;
234 if (unlikely(*p < - pcp->stat_threshold)) {
235 int overstep = pcp->stat_threshold / 2;
237 zone_page_state_add(*p - overstep, zone, item);
238 *p = overstep;
242 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
244 __dec_zone_state(page_zone(page), item);
246 EXPORT_SYMBOL(__dec_zone_page_state);
248 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
250 unsigned long flags;
252 local_irq_save(flags);
253 __inc_zone_state(zone, item);
254 local_irq_restore(flags);
257 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
259 unsigned long flags;
260 struct zone *zone;
262 zone = page_zone(page);
263 local_irq_save(flags);
264 __inc_zone_state(zone, item);
265 local_irq_restore(flags);
267 EXPORT_SYMBOL(inc_zone_page_state);
269 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
271 unsigned long flags;
273 local_irq_save(flags);
274 __dec_zone_page_state(page, item);
275 local_irq_restore(flags);
277 EXPORT_SYMBOL(dec_zone_page_state);
280 * Update the zone counters for one cpu.
282 * The cpu specified must be either the current cpu or a processor that
283 * is not online. If it is the current cpu then the execution thread must
284 * be pinned to the current cpu.
286 * Note that refresh_cpu_vm_stats strives to only access
287 * node local memory. The per cpu pagesets on remote zones are placed
288 * in the memory local to the processor using that pageset. So the
289 * loop over all zones will access a series of cachelines local to
290 * the processor.
292 * The call to zone_page_state_add updates the cachelines with the
293 * statistics in the remote zone struct as well as the global cachelines
294 * with the global counters. These could cause remote node cache line
295 * bouncing and will have to be only done when necessary.
297 void refresh_cpu_vm_stats(int cpu)
299 struct zone *zone;
300 int i;
301 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
303 for_each_zone(zone) {
304 struct per_cpu_pageset *p;
306 if (!populated_zone(zone))
307 continue;
309 p = zone_pcp(zone, cpu);
311 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
312 if (p->vm_stat_diff[i]) {
313 unsigned long flags;
314 int v;
316 local_irq_save(flags);
317 v = p->vm_stat_diff[i];
318 p->vm_stat_diff[i] = 0;
319 local_irq_restore(flags);
320 atomic_long_add(v, &zone->vm_stat[i]);
321 global_diff[i] += v;
322 #ifdef CONFIG_NUMA
323 /* 3 seconds idle till flush */
324 p->expire = 3;
325 #endif
327 cond_resched();
328 #ifdef CONFIG_NUMA
330 * Deal with draining the remote pageset of this
331 * processor
333 * Check if there are pages remaining in this pageset
334 * if not then there is nothing to expire.
336 if (!p->expire || !p->pcp.count)
337 continue;
340 * We never drain zones local to this processor.
342 if (zone_to_nid(zone) == numa_node_id()) {
343 p->expire = 0;
344 continue;
347 p->expire--;
348 if (p->expire)
349 continue;
351 if (p->pcp.count)
352 drain_zone_pages(zone, &p->pcp);
353 #endif
356 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
357 if (global_diff[i])
358 atomic_long_add(global_diff[i], &vm_stat[i]);
361 #endif
363 #ifdef CONFIG_NUMA
365 * zonelist = the list of zones passed to the allocator
366 * z = the zone from which the allocation occurred.
368 * Must be called with interrupts disabled.
370 void zone_statistics(struct zone *preferred_zone, struct zone *z)
372 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
373 __inc_zone_state(z, NUMA_HIT);
374 } else {
375 __inc_zone_state(z, NUMA_MISS);
376 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
378 if (z->node == numa_node_id())
379 __inc_zone_state(z, NUMA_LOCAL);
380 else
381 __inc_zone_state(z, NUMA_OTHER);
383 #endif
385 #ifdef CONFIG_PROC_FS
387 #include <linux/seq_file.h>
389 static char * const migratetype_names[MIGRATE_TYPES] = {
390 "Unmovable",
391 "Reclaimable",
392 "Movable",
393 "Reserve",
394 "Isolate",
397 static void *frag_start(struct seq_file *m, loff_t *pos)
399 pg_data_t *pgdat;
400 loff_t node = *pos;
401 for (pgdat = first_online_pgdat();
402 pgdat && node;
403 pgdat = next_online_pgdat(pgdat))
404 --node;
406 return pgdat;
409 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
411 pg_data_t *pgdat = (pg_data_t *)arg;
413 (*pos)++;
414 return next_online_pgdat(pgdat);
417 static void frag_stop(struct seq_file *m, void *arg)
421 /* Walk all the zones in a node and print using a callback */
422 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
423 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
425 struct zone *zone;
426 struct zone *node_zones = pgdat->node_zones;
427 unsigned long flags;
429 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
430 if (!populated_zone(zone))
431 continue;
433 spin_lock_irqsave(&zone->lock, flags);
434 print(m, pgdat, zone);
435 spin_unlock_irqrestore(&zone->lock, flags);
439 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
440 struct zone *zone)
442 int order;
444 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
445 for (order = 0; order < MAX_ORDER; ++order)
446 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
447 seq_putc(m, '\n');
451 * This walks the free areas for each zone.
453 static int frag_show(struct seq_file *m, void *arg)
455 pg_data_t *pgdat = (pg_data_t *)arg;
456 walk_zones_in_node(m, pgdat, frag_show_print);
457 return 0;
460 static void pagetypeinfo_showfree_print(struct seq_file *m,
461 pg_data_t *pgdat, struct zone *zone)
463 int order, mtype;
465 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
466 seq_printf(m, "Node %4d, zone %8s, type %12s ",
467 pgdat->node_id,
468 zone->name,
469 migratetype_names[mtype]);
470 for (order = 0; order < MAX_ORDER; ++order) {
471 unsigned long freecount = 0;
472 struct free_area *area;
473 struct list_head *curr;
475 area = &(zone->free_area[order]);
477 list_for_each(curr, &area->free_list[mtype])
478 freecount++;
479 seq_printf(m, "%6lu ", freecount);
481 seq_putc(m, '\n');
485 /* Print out the free pages at each order for each migatetype */
486 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
488 int order;
489 pg_data_t *pgdat = (pg_data_t *)arg;
491 /* Print header */
492 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
493 for (order = 0; order < MAX_ORDER; ++order)
494 seq_printf(m, "%6d ", order);
495 seq_putc(m, '\n');
497 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
499 return 0;
502 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
503 pg_data_t *pgdat, struct zone *zone)
505 int mtype;
506 unsigned long pfn;
507 unsigned long start_pfn = zone->zone_start_pfn;
508 unsigned long end_pfn = start_pfn + zone->spanned_pages;
509 unsigned long count[MIGRATE_TYPES] = { 0, };
511 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
512 struct page *page;
514 if (!pfn_valid(pfn))
515 continue;
517 page = pfn_to_page(pfn);
518 mtype = get_pageblock_migratetype(page);
520 count[mtype]++;
523 /* Print counts */
524 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
525 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
526 seq_printf(m, "%12lu ", count[mtype]);
527 seq_putc(m, '\n');
530 /* Print out the free pages at each order for each migratetype */
531 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
533 int mtype;
534 pg_data_t *pgdat = (pg_data_t *)arg;
536 seq_printf(m, "\n%-23s", "Number of blocks type ");
537 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
538 seq_printf(m, "%12s ", migratetype_names[mtype]);
539 seq_putc(m, '\n');
540 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
542 return 0;
546 * This prints out statistics in relation to grouping pages by mobility.
547 * It is expensive to collect so do not constantly read the file.
549 static int pagetypeinfo_show(struct seq_file *m, void *arg)
551 pg_data_t *pgdat = (pg_data_t *)arg;
553 /* check memoryless node */
554 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
555 return 0;
557 seq_printf(m, "Page block order: %d\n", pageblock_order);
558 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
559 seq_putc(m, '\n');
560 pagetypeinfo_showfree(m, pgdat);
561 pagetypeinfo_showblockcount(m, pgdat);
563 return 0;
566 const struct seq_operations fragmentation_op = {
567 .start = frag_start,
568 .next = frag_next,
569 .stop = frag_stop,
570 .show = frag_show,
573 const struct seq_operations pagetypeinfo_op = {
574 .start = frag_start,
575 .next = frag_next,
576 .stop = frag_stop,
577 .show = pagetypeinfo_show,
580 #ifdef CONFIG_ZONE_DMA
581 #define TEXT_FOR_DMA(xx) xx "_dma",
582 #else
583 #define TEXT_FOR_DMA(xx)
584 #endif
586 #ifdef CONFIG_ZONE_DMA32
587 #define TEXT_FOR_DMA32(xx) xx "_dma32",
588 #else
589 #define TEXT_FOR_DMA32(xx)
590 #endif
592 #ifdef CONFIG_HIGHMEM
593 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
594 #else
595 #define TEXT_FOR_HIGHMEM(xx)
596 #endif
598 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
599 TEXT_FOR_HIGHMEM(xx) xx "_movable",
601 static const char * const vmstat_text[] = {
602 /* Zoned VM counters */
603 "nr_free_pages",
604 "nr_inactive",
605 "nr_active",
606 "nr_anon_pages",
607 "nr_mapped",
608 "nr_file_pages",
609 "nr_dirty",
610 "nr_writeback",
611 "nr_slab_reclaimable",
612 "nr_slab_unreclaimable",
613 "nr_page_table_pages",
614 "nr_unstable",
615 "nr_bounce",
616 "nr_vmscan_write",
617 "nr_writeback_temp",
619 #ifdef CONFIG_NUMA
620 "numa_hit",
621 "numa_miss",
622 "numa_foreign",
623 "numa_interleave",
624 "numa_local",
625 "numa_other",
626 #endif
628 #ifdef CONFIG_VM_EVENT_COUNTERS
629 "pgpgin",
630 "pgpgout",
631 "pswpin",
632 "pswpout",
634 TEXTS_FOR_ZONES("pgalloc")
636 "pgfree",
637 "pgactivate",
638 "pgdeactivate",
640 "pgfault",
641 "pgmajfault",
643 TEXTS_FOR_ZONES("pgrefill")
644 TEXTS_FOR_ZONES("pgsteal")
645 TEXTS_FOR_ZONES("pgscan_kswapd")
646 TEXTS_FOR_ZONES("pgscan_direct")
648 "pginodesteal",
649 "slabs_scanned",
650 "kswapd_steal",
651 "kswapd_inodesteal",
652 "pageoutrun",
653 "allocstall",
655 "pgrotated",
656 #ifdef CONFIG_HUGETLB_PAGE
657 "htlb_buddy_alloc_success",
658 "htlb_buddy_alloc_fail",
659 #endif
660 #endif
663 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
664 struct zone *zone)
666 int i;
667 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
668 seq_printf(m,
669 "\n pages free %lu"
670 "\n min %lu"
671 "\n low %lu"
672 "\n high %lu"
673 "\n scanned %lu (a: %lu i: %lu)"
674 "\n spanned %lu"
675 "\n present %lu",
676 zone_page_state(zone, NR_FREE_PAGES),
677 zone->pages_min,
678 zone->pages_low,
679 zone->pages_high,
680 zone->pages_scanned,
681 zone->nr_scan_active, zone->nr_scan_inactive,
682 zone->spanned_pages,
683 zone->present_pages);
685 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
686 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
687 zone_page_state(zone, i));
689 seq_printf(m,
690 "\n protection: (%lu",
691 zone->lowmem_reserve[0]);
692 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
693 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
694 seq_printf(m,
696 "\n pagesets");
697 for_each_online_cpu(i) {
698 struct per_cpu_pageset *pageset;
700 pageset = zone_pcp(zone, i);
701 seq_printf(m,
702 "\n cpu: %i"
703 "\n count: %i"
704 "\n high: %i"
705 "\n batch: %i",
707 pageset->pcp.count,
708 pageset->pcp.high,
709 pageset->pcp.batch);
710 #ifdef CONFIG_SMP
711 seq_printf(m, "\n vm stats threshold: %d",
712 pageset->stat_threshold);
713 #endif
715 seq_printf(m,
716 "\n all_unreclaimable: %u"
717 "\n prev_priority: %i"
718 "\n start_pfn: %lu",
719 zone_is_all_unreclaimable(zone),
720 zone->prev_priority,
721 zone->zone_start_pfn);
722 seq_putc(m, '\n');
726 * Output information about zones in @pgdat.
728 static int zoneinfo_show(struct seq_file *m, void *arg)
730 pg_data_t *pgdat = (pg_data_t *)arg;
731 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
732 return 0;
735 const struct seq_operations zoneinfo_op = {
736 .start = frag_start, /* iterate over all zones. The same as in
737 * fragmentation. */
738 .next = frag_next,
739 .stop = frag_stop,
740 .show = zoneinfo_show,
743 static void *vmstat_start(struct seq_file *m, loff_t *pos)
745 unsigned long *v;
746 #ifdef CONFIG_VM_EVENT_COUNTERS
747 unsigned long *e;
748 #endif
749 int i;
751 if (*pos >= ARRAY_SIZE(vmstat_text))
752 return NULL;
754 #ifdef CONFIG_VM_EVENT_COUNTERS
755 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
756 + sizeof(struct vm_event_state), GFP_KERNEL);
757 #else
758 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
759 GFP_KERNEL);
760 #endif
761 m->private = v;
762 if (!v)
763 return ERR_PTR(-ENOMEM);
764 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
765 v[i] = global_page_state(i);
766 #ifdef CONFIG_VM_EVENT_COUNTERS
767 e = v + NR_VM_ZONE_STAT_ITEMS;
768 all_vm_events(e);
769 e[PGPGIN] /= 2; /* sectors -> kbytes */
770 e[PGPGOUT] /= 2;
771 #endif
772 return v + *pos;
775 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
777 (*pos)++;
778 if (*pos >= ARRAY_SIZE(vmstat_text))
779 return NULL;
780 return (unsigned long *)m->private + *pos;
783 static int vmstat_show(struct seq_file *m, void *arg)
785 unsigned long *l = arg;
786 unsigned long off = l - (unsigned long *)m->private;
788 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
789 return 0;
792 static void vmstat_stop(struct seq_file *m, void *arg)
794 kfree(m->private);
795 m->private = NULL;
798 const struct seq_operations vmstat_op = {
799 .start = vmstat_start,
800 .next = vmstat_next,
801 .stop = vmstat_stop,
802 .show = vmstat_show,
805 #endif /* CONFIG_PROC_FS */
807 #ifdef CONFIG_SMP
808 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
809 int sysctl_stat_interval __read_mostly = HZ;
811 static void vmstat_update(struct work_struct *w)
813 refresh_cpu_vm_stats(smp_processor_id());
814 schedule_delayed_work(&__get_cpu_var(vmstat_work),
815 sysctl_stat_interval);
818 static void __cpuinit start_cpu_timer(int cpu)
820 struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
822 INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
823 schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
827 * Use the cpu notifier to insure that the thresholds are recalculated
828 * when necessary.
830 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
831 unsigned long action,
832 void *hcpu)
834 long cpu = (long)hcpu;
836 switch (action) {
837 case CPU_ONLINE:
838 case CPU_ONLINE_FROZEN:
839 start_cpu_timer(cpu);
840 break;
841 case CPU_DOWN_PREPARE:
842 case CPU_DOWN_PREPARE_FROZEN:
843 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
844 per_cpu(vmstat_work, cpu).work.func = NULL;
845 break;
846 case CPU_DOWN_FAILED:
847 case CPU_DOWN_FAILED_FROZEN:
848 start_cpu_timer(cpu);
849 break;
850 case CPU_DEAD:
851 case CPU_DEAD_FROZEN:
852 refresh_zone_stat_thresholds();
853 break;
854 default:
855 break;
857 return NOTIFY_OK;
860 static struct notifier_block __cpuinitdata vmstat_notifier =
861 { &vmstat_cpuup_callback, NULL, 0 };
863 static int __init setup_vmstat(void)
865 int cpu;
867 refresh_zone_stat_thresholds();
868 register_cpu_notifier(&vmstat_notifier);
870 for_each_online_cpu(cpu)
871 start_cpu_timer(cpu);
872 return 0;
874 module_init(setup_vmstat)
875 #endif