Bluetooth: Completes the I-frame tx_seq check logic on RECV
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blob5381802d60523417b25b5885ee90f097e0a23575
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
65 * Test whether an inode is a fast symlink.
67 static int ext4_inode_is_fast_symlink(struct inode *inode)
69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
70 (inode->i_sb->s_blocksize >> 9) : 0;
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
79 static unsigned long blocks_for_truncate(struct inode *inode)
81 ext4_lblk_t needed;
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
88 * like a regular file for ext4 to try to delete it. Things
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
112 static handle_t *start_transaction(struct inode *inode)
114 handle_t *result;
116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
117 if (!IS_ERR(result))
118 return result;
120 ext4_std_error(inode->i_sb, PTR_ERR(result));
121 return result;
125 * Try to extend this transaction for the purposes of truncation.
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135 return 0;
136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137 return 0;
138 return 1;
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147 int nblocks)
149 int ret;
152 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
158 jbd_debug(2, "restarting handle %p\n", handle);
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
162 ext4_discard_preallocations(inode);
164 return ret;
168 * Called at the last iput() if i_nlink is zero.
170 void ext4_delete_inode(struct inode *inode)
172 handle_t *handle;
173 int err;
175 if (!is_bad_inode(inode))
176 dquot_initialize(inode);
178 if (ext4_should_order_data(inode))
179 ext4_begin_ordered_truncate(inode, 0);
180 truncate_inode_pages(&inode->i_data, 0);
182 if (is_bad_inode(inode))
183 goto no_delete;
185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186 if (IS_ERR(handle)) {
187 ext4_std_error(inode->i_sb, PTR_ERR(handle));
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
191 * cleaned up.
193 ext4_orphan_del(NULL, inode);
194 goto no_delete;
197 if (IS_SYNC(inode))
198 ext4_handle_sync(handle);
199 inode->i_size = 0;
200 err = ext4_mark_inode_dirty(handle, inode);
201 if (err) {
202 ext4_warning(inode->i_sb,
203 "couldn't mark inode dirty (err %d)", err);
204 goto stop_handle;
206 if (inode->i_blocks)
207 ext4_truncate(inode);
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
215 if (!ext4_handle_has_enough_credits(handle, 3)) {
216 err = ext4_journal_extend(handle, 3);
217 if (err > 0)
218 err = ext4_journal_restart(handle, 3);
219 if (err != 0) {
220 ext4_warning(inode->i_sb,
221 "couldn't extend journal (err %d)", err);
222 stop_handle:
223 ext4_journal_stop(handle);
224 goto no_delete;
229 * Kill off the orphan record which ext4_truncate created.
230 * AKPM: I think this can be inside the above `if'.
231 * Note that ext4_orphan_del() has to be able to cope with the
232 * deletion of a non-existent orphan - this is because we don't
233 * know if ext4_truncate() actually created an orphan record.
234 * (Well, we could do this if we need to, but heck - it works)
236 ext4_orphan_del(handle, inode);
237 EXT4_I(inode)->i_dtime = get_seconds();
240 * One subtle ordering requirement: if anything has gone wrong
241 * (transaction abort, IO errors, whatever), then we can still
242 * do these next steps (the fs will already have been marked as
243 * having errors), but we can't free the inode if the mark_dirty
244 * fails.
246 if (ext4_mark_inode_dirty(handle, inode))
247 /* If that failed, just do the required in-core inode clear. */
248 clear_inode(inode);
249 else
250 ext4_free_inode(handle, inode);
251 ext4_journal_stop(handle);
252 return;
253 no_delete:
254 clear_inode(inode); /* We must guarantee clearing of inode... */
257 typedef struct {
258 __le32 *p;
259 __le32 key;
260 struct buffer_head *bh;
261 } Indirect;
263 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
265 p->key = *(p->p = v);
266 p->bh = bh;
270 * ext4_block_to_path - parse the block number into array of offsets
271 * @inode: inode in question (we are only interested in its superblock)
272 * @i_block: block number to be parsed
273 * @offsets: array to store the offsets in
274 * @boundary: set this non-zero if the referred-to block is likely to be
275 * followed (on disk) by an indirect block.
277 * To store the locations of file's data ext4 uses a data structure common
278 * for UNIX filesystems - tree of pointers anchored in the inode, with
279 * data blocks at leaves and indirect blocks in intermediate nodes.
280 * This function translates the block number into path in that tree -
281 * return value is the path length and @offsets[n] is the offset of
282 * pointer to (n+1)th node in the nth one. If @block is out of range
283 * (negative or too large) warning is printed and zero returned.
285 * Note: function doesn't find node addresses, so no IO is needed. All
286 * we need to know is the capacity of indirect blocks (taken from the
287 * inode->i_sb).
291 * Portability note: the last comparison (check that we fit into triple
292 * indirect block) is spelled differently, because otherwise on an
293 * architecture with 32-bit longs and 8Kb pages we might get into trouble
294 * if our filesystem had 8Kb blocks. We might use long long, but that would
295 * kill us on x86. Oh, well, at least the sign propagation does not matter -
296 * i_block would have to be negative in the very beginning, so we would not
297 * get there at all.
300 static int ext4_block_to_path(struct inode *inode,
301 ext4_lblk_t i_block,
302 ext4_lblk_t offsets[4], int *boundary)
304 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306 const long direct_blocks = EXT4_NDIR_BLOCKS,
307 indirect_blocks = ptrs,
308 double_blocks = (1 << (ptrs_bits * 2));
309 int n = 0;
310 int final = 0;
312 if (i_block < direct_blocks) {
313 offsets[n++] = i_block;
314 final = direct_blocks;
315 } else if ((i_block -= direct_blocks) < indirect_blocks) {
316 offsets[n++] = EXT4_IND_BLOCK;
317 offsets[n++] = i_block;
318 final = ptrs;
319 } else if ((i_block -= indirect_blocks) < double_blocks) {
320 offsets[n++] = EXT4_DIND_BLOCK;
321 offsets[n++] = i_block >> ptrs_bits;
322 offsets[n++] = i_block & (ptrs - 1);
323 final = ptrs;
324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325 offsets[n++] = EXT4_TIND_BLOCK;
326 offsets[n++] = i_block >> (ptrs_bits * 2);
327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else {
331 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
332 i_block + direct_blocks +
333 indirect_blocks + double_blocks, inode->i_ino);
335 if (boundary)
336 *boundary = final - 1 - (i_block & (ptrs - 1));
337 return n;
340 static int __ext4_check_blockref(const char *function, struct inode *inode,
341 __le32 *p, unsigned int max)
343 __le32 *bref = p;
344 unsigned int blk;
346 while (bref < p+max) {
347 blk = le32_to_cpu(*bref++);
348 if (blk &&
349 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
350 blk, 1))) {
351 __ext4_error(inode->i_sb, function,
352 "invalid block reference %u "
353 "in inode #%lu", blk, inode->i_ino);
354 return -EIO;
357 return 0;
361 #define ext4_check_indirect_blockref(inode, bh) \
362 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
363 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
365 #define ext4_check_inode_blockref(inode) \
366 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
367 EXT4_NDIR_BLOCKS)
370 * ext4_get_branch - read the chain of indirect blocks leading to data
371 * @inode: inode in question
372 * @depth: depth of the chain (1 - direct pointer, etc.)
373 * @offsets: offsets of pointers in inode/indirect blocks
374 * @chain: place to store the result
375 * @err: here we store the error value
377 * Function fills the array of triples <key, p, bh> and returns %NULL
378 * if everything went OK or the pointer to the last filled triple
379 * (incomplete one) otherwise. Upon the return chain[i].key contains
380 * the number of (i+1)-th block in the chain (as it is stored in memory,
381 * i.e. little-endian 32-bit), chain[i].p contains the address of that
382 * number (it points into struct inode for i==0 and into the bh->b_data
383 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
384 * block for i>0 and NULL for i==0. In other words, it holds the block
385 * numbers of the chain, addresses they were taken from (and where we can
386 * verify that chain did not change) and buffer_heads hosting these
387 * numbers.
389 * Function stops when it stumbles upon zero pointer (absent block)
390 * (pointer to last triple returned, *@err == 0)
391 * or when it gets an IO error reading an indirect block
392 * (ditto, *@err == -EIO)
393 * or when it reads all @depth-1 indirect blocks successfully and finds
394 * the whole chain, all way to the data (returns %NULL, *err == 0).
396 * Need to be called with
397 * down_read(&EXT4_I(inode)->i_data_sem)
399 static Indirect *ext4_get_branch(struct inode *inode, int depth,
400 ext4_lblk_t *offsets,
401 Indirect chain[4], int *err)
403 struct super_block *sb = inode->i_sb;
404 Indirect *p = chain;
405 struct buffer_head *bh;
407 *err = 0;
408 /* i_data is not going away, no lock needed */
409 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
410 if (!p->key)
411 goto no_block;
412 while (--depth) {
413 bh = sb_getblk(sb, le32_to_cpu(p->key));
414 if (unlikely(!bh))
415 goto failure;
417 if (!bh_uptodate_or_lock(bh)) {
418 if (bh_submit_read(bh) < 0) {
419 put_bh(bh);
420 goto failure;
422 /* validate block references */
423 if (ext4_check_indirect_blockref(inode, bh)) {
424 put_bh(bh);
425 goto failure;
429 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
430 /* Reader: end */
431 if (!p->key)
432 goto no_block;
434 return NULL;
436 failure:
437 *err = -EIO;
438 no_block:
439 return p;
443 * ext4_find_near - find a place for allocation with sufficient locality
444 * @inode: owner
445 * @ind: descriptor of indirect block.
447 * This function returns the preferred place for block allocation.
448 * It is used when heuristic for sequential allocation fails.
449 * Rules are:
450 * + if there is a block to the left of our position - allocate near it.
451 * + if pointer will live in indirect block - allocate near that block.
452 * + if pointer will live in inode - allocate in the same
453 * cylinder group.
455 * In the latter case we colour the starting block by the callers PID to
456 * prevent it from clashing with concurrent allocations for a different inode
457 * in the same block group. The PID is used here so that functionally related
458 * files will be close-by on-disk.
460 * Caller must make sure that @ind is valid and will stay that way.
462 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
464 struct ext4_inode_info *ei = EXT4_I(inode);
465 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
466 __le32 *p;
467 ext4_fsblk_t bg_start;
468 ext4_fsblk_t last_block;
469 ext4_grpblk_t colour;
470 ext4_group_t block_group;
471 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
473 /* Try to find previous block */
474 for (p = ind->p - 1; p >= start; p--) {
475 if (*p)
476 return le32_to_cpu(*p);
479 /* No such thing, so let's try location of indirect block */
480 if (ind->bh)
481 return ind->bh->b_blocknr;
484 * It is going to be referred to from the inode itself? OK, just put it
485 * into the same cylinder group then.
487 block_group = ei->i_block_group;
488 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
489 block_group &= ~(flex_size-1);
490 if (S_ISREG(inode->i_mode))
491 block_group++;
493 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
494 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
497 * If we are doing delayed allocation, we don't need take
498 * colour into account.
500 if (test_opt(inode->i_sb, DELALLOC))
501 return bg_start;
503 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
504 colour = (current->pid % 16) *
505 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
506 else
507 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
508 return bg_start + colour;
512 * ext4_find_goal - find a preferred place for allocation.
513 * @inode: owner
514 * @block: block we want
515 * @partial: pointer to the last triple within a chain
517 * Normally this function find the preferred place for block allocation,
518 * returns it.
519 * Because this is only used for non-extent files, we limit the block nr
520 * to 32 bits.
522 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
523 Indirect *partial)
525 ext4_fsblk_t goal;
528 * XXX need to get goal block from mballoc's data structures
531 goal = ext4_find_near(inode, partial);
532 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
533 return goal;
537 * ext4_blks_to_allocate: Look up the block map and count the number
538 * of direct blocks need to be allocated for the given branch.
540 * @branch: chain of indirect blocks
541 * @k: number of blocks need for indirect blocks
542 * @blks: number of data blocks to be mapped.
543 * @blocks_to_boundary: the offset in the indirect block
545 * return the total number of blocks to be allocate, including the
546 * direct and indirect blocks.
548 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
549 int blocks_to_boundary)
551 unsigned int count = 0;
554 * Simple case, [t,d]Indirect block(s) has not allocated yet
555 * then it's clear blocks on that path have not allocated
557 if (k > 0) {
558 /* right now we don't handle cross boundary allocation */
559 if (blks < blocks_to_boundary + 1)
560 count += blks;
561 else
562 count += blocks_to_boundary + 1;
563 return count;
566 count++;
567 while (count < blks && count <= blocks_to_boundary &&
568 le32_to_cpu(*(branch[0].p + count)) == 0) {
569 count++;
571 return count;
575 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
576 * @indirect_blks: the number of blocks need to allocate for indirect
577 * blocks
579 * @new_blocks: on return it will store the new block numbers for
580 * the indirect blocks(if needed) and the first direct block,
581 * @blks: on return it will store the total number of allocated
582 * direct blocks
584 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
585 ext4_lblk_t iblock, ext4_fsblk_t goal,
586 int indirect_blks, int blks,
587 ext4_fsblk_t new_blocks[4], int *err)
589 struct ext4_allocation_request ar;
590 int target, i;
591 unsigned long count = 0, blk_allocated = 0;
592 int index = 0;
593 ext4_fsblk_t current_block = 0;
594 int ret = 0;
597 * Here we try to allocate the requested multiple blocks at once,
598 * on a best-effort basis.
599 * To build a branch, we should allocate blocks for
600 * the indirect blocks(if not allocated yet), and at least
601 * the first direct block of this branch. That's the
602 * minimum number of blocks need to allocate(required)
604 /* first we try to allocate the indirect blocks */
605 target = indirect_blks;
606 while (target > 0) {
607 count = target;
608 /* allocating blocks for indirect blocks and direct blocks */
609 current_block = ext4_new_meta_blocks(handle, inode,
610 goal, &count, err);
611 if (*err)
612 goto failed_out;
614 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
615 EXT4_ERROR_INODE(inode,
616 "current_block %llu + count %lu > %d!",
617 current_block, count,
618 EXT4_MAX_BLOCK_FILE_PHYS);
619 *err = -EIO;
620 goto failed_out;
623 target -= count;
624 /* allocate blocks for indirect blocks */
625 while (index < indirect_blks && count) {
626 new_blocks[index++] = current_block++;
627 count--;
629 if (count > 0) {
631 * save the new block number
632 * for the first direct block
634 new_blocks[index] = current_block;
635 printk(KERN_INFO "%s returned more blocks than "
636 "requested\n", __func__);
637 WARN_ON(1);
638 break;
642 target = blks - count ;
643 blk_allocated = count;
644 if (!target)
645 goto allocated;
646 /* Now allocate data blocks */
647 memset(&ar, 0, sizeof(ar));
648 ar.inode = inode;
649 ar.goal = goal;
650 ar.len = target;
651 ar.logical = iblock;
652 if (S_ISREG(inode->i_mode))
653 /* enable in-core preallocation only for regular files */
654 ar.flags = EXT4_MB_HINT_DATA;
656 current_block = ext4_mb_new_blocks(handle, &ar, err);
657 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
658 EXT4_ERROR_INODE(inode,
659 "current_block %llu + ar.len %d > %d!",
660 current_block, ar.len,
661 EXT4_MAX_BLOCK_FILE_PHYS);
662 *err = -EIO;
663 goto failed_out;
666 if (*err && (target == blks)) {
668 * if the allocation failed and we didn't allocate
669 * any blocks before
671 goto failed_out;
673 if (!*err) {
674 if (target == blks) {
676 * save the new block number
677 * for the first direct block
679 new_blocks[index] = current_block;
681 blk_allocated += ar.len;
683 allocated:
684 /* total number of blocks allocated for direct blocks */
685 ret = blk_allocated;
686 *err = 0;
687 return ret;
688 failed_out:
689 for (i = 0; i < index; i++)
690 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
691 return ret;
695 * ext4_alloc_branch - allocate and set up a chain of blocks.
696 * @inode: owner
697 * @indirect_blks: number of allocated indirect blocks
698 * @blks: number of allocated direct blocks
699 * @offsets: offsets (in the blocks) to store the pointers to next.
700 * @branch: place to store the chain in.
702 * This function allocates blocks, zeroes out all but the last one,
703 * links them into chain and (if we are synchronous) writes them to disk.
704 * In other words, it prepares a branch that can be spliced onto the
705 * inode. It stores the information about that chain in the branch[], in
706 * the same format as ext4_get_branch() would do. We are calling it after
707 * we had read the existing part of chain and partial points to the last
708 * triple of that (one with zero ->key). Upon the exit we have the same
709 * picture as after the successful ext4_get_block(), except that in one
710 * place chain is disconnected - *branch->p is still zero (we did not
711 * set the last link), but branch->key contains the number that should
712 * be placed into *branch->p to fill that gap.
714 * If allocation fails we free all blocks we've allocated (and forget
715 * their buffer_heads) and return the error value the from failed
716 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
717 * as described above and return 0.
719 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
720 ext4_lblk_t iblock, int indirect_blks,
721 int *blks, ext4_fsblk_t goal,
722 ext4_lblk_t *offsets, Indirect *branch)
724 int blocksize = inode->i_sb->s_blocksize;
725 int i, n = 0;
726 int err = 0;
727 struct buffer_head *bh;
728 int num;
729 ext4_fsblk_t new_blocks[4];
730 ext4_fsblk_t current_block;
732 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
733 *blks, new_blocks, &err);
734 if (err)
735 return err;
737 branch[0].key = cpu_to_le32(new_blocks[0]);
739 * metadata blocks and data blocks are allocated.
741 for (n = 1; n <= indirect_blks; n++) {
743 * Get buffer_head for parent block, zero it out
744 * and set the pointer to new one, then send
745 * parent to disk.
747 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
748 branch[n].bh = bh;
749 lock_buffer(bh);
750 BUFFER_TRACE(bh, "call get_create_access");
751 err = ext4_journal_get_create_access(handle, bh);
752 if (err) {
753 /* Don't brelse(bh) here; it's done in
754 * ext4_journal_forget() below */
755 unlock_buffer(bh);
756 goto failed;
759 memset(bh->b_data, 0, blocksize);
760 branch[n].p = (__le32 *) bh->b_data + offsets[n];
761 branch[n].key = cpu_to_le32(new_blocks[n]);
762 *branch[n].p = branch[n].key;
763 if (n == indirect_blks) {
764 current_block = new_blocks[n];
766 * End of chain, update the last new metablock of
767 * the chain to point to the new allocated
768 * data blocks numbers
770 for (i = 1; i < num; i++)
771 *(branch[n].p + i) = cpu_to_le32(++current_block);
773 BUFFER_TRACE(bh, "marking uptodate");
774 set_buffer_uptodate(bh);
775 unlock_buffer(bh);
777 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
778 err = ext4_handle_dirty_metadata(handle, inode, bh);
779 if (err)
780 goto failed;
782 *blks = num;
783 return err;
784 failed:
785 /* Allocation failed, free what we already allocated */
786 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
787 for (i = 1; i <= n ; i++) {
789 * branch[i].bh is newly allocated, so there is no
790 * need to revoke the block, which is why we don't
791 * need to set EXT4_FREE_BLOCKS_METADATA.
793 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
794 EXT4_FREE_BLOCKS_FORGET);
796 for (i = n+1; i < indirect_blks; i++)
797 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
799 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
801 return err;
805 * ext4_splice_branch - splice the allocated branch onto inode.
806 * @inode: owner
807 * @block: (logical) number of block we are adding
808 * @chain: chain of indirect blocks (with a missing link - see
809 * ext4_alloc_branch)
810 * @where: location of missing link
811 * @num: number of indirect blocks we are adding
812 * @blks: number of direct blocks we are adding
814 * This function fills the missing link and does all housekeeping needed in
815 * inode (->i_blocks, etc.). In case of success we end up with the full
816 * chain to new block and return 0.
818 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
819 ext4_lblk_t block, Indirect *where, int num,
820 int blks)
822 int i;
823 int err = 0;
824 ext4_fsblk_t current_block;
827 * If we're splicing into a [td]indirect block (as opposed to the
828 * inode) then we need to get write access to the [td]indirect block
829 * before the splice.
831 if (where->bh) {
832 BUFFER_TRACE(where->bh, "get_write_access");
833 err = ext4_journal_get_write_access(handle, where->bh);
834 if (err)
835 goto err_out;
837 /* That's it */
839 *where->p = where->key;
842 * Update the host buffer_head or inode to point to more just allocated
843 * direct blocks blocks
845 if (num == 0 && blks > 1) {
846 current_block = le32_to_cpu(where->key) + 1;
847 for (i = 1; i < blks; i++)
848 *(where->p + i) = cpu_to_le32(current_block++);
851 /* We are done with atomic stuff, now do the rest of housekeeping */
852 /* had we spliced it onto indirect block? */
853 if (where->bh) {
855 * If we spliced it onto an indirect block, we haven't
856 * altered the inode. Note however that if it is being spliced
857 * onto an indirect block at the very end of the file (the
858 * file is growing) then we *will* alter the inode to reflect
859 * the new i_size. But that is not done here - it is done in
860 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
862 jbd_debug(5, "splicing indirect only\n");
863 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
864 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
865 if (err)
866 goto err_out;
867 } else {
869 * OK, we spliced it into the inode itself on a direct block.
871 ext4_mark_inode_dirty(handle, inode);
872 jbd_debug(5, "splicing direct\n");
874 return err;
876 err_out:
877 for (i = 1; i <= num; i++) {
879 * branch[i].bh is newly allocated, so there is no
880 * need to revoke the block, which is why we don't
881 * need to set EXT4_FREE_BLOCKS_METADATA.
883 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
884 EXT4_FREE_BLOCKS_FORGET);
886 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
887 blks, 0);
889 return err;
893 * The ext4_ind_get_blocks() function handles non-extents inodes
894 * (i.e., using the traditional indirect/double-indirect i_blocks
895 * scheme) for ext4_get_blocks().
897 * Allocation strategy is simple: if we have to allocate something, we will
898 * have to go the whole way to leaf. So let's do it before attaching anything
899 * to tree, set linkage between the newborn blocks, write them if sync is
900 * required, recheck the path, free and repeat if check fails, otherwise
901 * set the last missing link (that will protect us from any truncate-generated
902 * removals - all blocks on the path are immune now) and possibly force the
903 * write on the parent block.
904 * That has a nice additional property: no special recovery from the failed
905 * allocations is needed - we simply release blocks and do not touch anything
906 * reachable from inode.
908 * `handle' can be NULL if create == 0.
910 * return > 0, # of blocks mapped or allocated.
911 * return = 0, if plain lookup failed.
912 * return < 0, error case.
914 * The ext4_ind_get_blocks() function should be called with
915 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
916 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
917 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
918 * blocks.
920 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
921 ext4_lblk_t iblock, unsigned int maxblocks,
922 struct buffer_head *bh_result,
923 int flags)
925 int err = -EIO;
926 ext4_lblk_t offsets[4];
927 Indirect chain[4];
928 Indirect *partial;
929 ext4_fsblk_t goal;
930 int indirect_blks;
931 int blocks_to_boundary = 0;
932 int depth;
933 int count = 0;
934 ext4_fsblk_t first_block = 0;
936 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
938 depth = ext4_block_to_path(inode, iblock, offsets,
939 &blocks_to_boundary);
941 if (depth == 0)
942 goto out;
944 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
946 /* Simplest case - block found, no allocation needed */
947 if (!partial) {
948 first_block = le32_to_cpu(chain[depth - 1].key);
949 clear_buffer_new(bh_result);
950 count++;
951 /*map more blocks*/
952 while (count < maxblocks && count <= blocks_to_boundary) {
953 ext4_fsblk_t blk;
955 blk = le32_to_cpu(*(chain[depth-1].p + count));
957 if (blk == first_block + count)
958 count++;
959 else
960 break;
962 goto got_it;
965 /* Next simple case - plain lookup or failed read of indirect block */
966 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
967 goto cleanup;
970 * Okay, we need to do block allocation.
972 goal = ext4_find_goal(inode, iblock, partial);
974 /* the number of blocks need to allocate for [d,t]indirect blocks */
975 indirect_blks = (chain + depth) - partial - 1;
978 * Next look up the indirect map to count the totoal number of
979 * direct blocks to allocate for this branch.
981 count = ext4_blks_to_allocate(partial, indirect_blks,
982 maxblocks, blocks_to_boundary);
984 * Block out ext4_truncate while we alter the tree
986 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987 &count, goal,
988 offsets + (partial - chain), partial);
991 * The ext4_splice_branch call will free and forget any buffers
992 * on the new chain if there is a failure, but that risks using
993 * up transaction credits, especially for bitmaps where the
994 * credits cannot be returned. Can we handle this somehow? We
995 * may need to return -EAGAIN upwards in the worst case. --sct
997 if (!err)
998 err = ext4_splice_branch(handle, inode, iblock,
999 partial, indirect_blks, count);
1000 if (err)
1001 goto cleanup;
1003 set_buffer_new(bh_result);
1005 ext4_update_inode_fsync_trans(handle, inode, 1);
1006 got_it:
1007 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1008 if (count > blocks_to_boundary)
1009 set_buffer_boundary(bh_result);
1010 err = count;
1011 /* Clean up and exit */
1012 partial = chain + depth - 1; /* the whole chain */
1013 cleanup:
1014 while (partial > chain) {
1015 BUFFER_TRACE(partial->bh, "call brelse");
1016 brelse(partial->bh);
1017 partial--;
1019 BUFFER_TRACE(bh_result, "returned");
1020 out:
1021 return err;
1024 #ifdef CONFIG_QUOTA
1025 qsize_t *ext4_get_reserved_space(struct inode *inode)
1027 return &EXT4_I(inode)->i_reserved_quota;
1029 #endif
1032 * Calculate the number of metadata blocks need to reserve
1033 * to allocate a new block at @lblocks for non extent file based file
1035 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1036 sector_t lblock)
1038 struct ext4_inode_info *ei = EXT4_I(inode);
1039 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1040 int blk_bits;
1042 if (lblock < EXT4_NDIR_BLOCKS)
1043 return 0;
1045 lblock -= EXT4_NDIR_BLOCKS;
1047 if (ei->i_da_metadata_calc_len &&
1048 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1049 ei->i_da_metadata_calc_len++;
1050 return 0;
1052 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1053 ei->i_da_metadata_calc_len = 1;
1054 blk_bits = order_base_2(lblock);
1055 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1059 * Calculate the number of metadata blocks need to reserve
1060 * to allocate a block located at @lblock
1062 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1064 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1065 return ext4_ext_calc_metadata_amount(inode, lblock);
1067 return ext4_indirect_calc_metadata_amount(inode, lblock);
1071 * Called with i_data_sem down, which is important since we can call
1072 * ext4_discard_preallocations() from here.
1074 void ext4_da_update_reserve_space(struct inode *inode,
1075 int used, int quota_claim)
1077 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1078 struct ext4_inode_info *ei = EXT4_I(inode);
1079 int mdb_free = 0, allocated_meta_blocks = 0;
1081 spin_lock(&ei->i_block_reservation_lock);
1082 trace_ext4_da_update_reserve_space(inode, used);
1083 if (unlikely(used > ei->i_reserved_data_blocks)) {
1084 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1085 "with only %d reserved data blocks\n",
1086 __func__, inode->i_ino, used,
1087 ei->i_reserved_data_blocks);
1088 WARN_ON(1);
1089 used = ei->i_reserved_data_blocks;
1092 /* Update per-inode reservations */
1093 ei->i_reserved_data_blocks -= used;
1094 used += ei->i_allocated_meta_blocks;
1095 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1096 allocated_meta_blocks = ei->i_allocated_meta_blocks;
1097 ei->i_allocated_meta_blocks = 0;
1098 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1100 if (ei->i_reserved_data_blocks == 0) {
1102 * We can release all of the reserved metadata blocks
1103 * only when we have written all of the delayed
1104 * allocation blocks.
1106 mdb_free = ei->i_reserved_meta_blocks;
1107 ei->i_reserved_meta_blocks = 0;
1108 ei->i_da_metadata_calc_len = 0;
1109 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1111 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1113 /* Update quota subsystem */
1114 if (quota_claim) {
1115 dquot_claim_block(inode, used);
1116 if (mdb_free)
1117 dquot_release_reservation_block(inode, mdb_free);
1118 } else {
1120 * We did fallocate with an offset that is already delayed
1121 * allocated. So on delayed allocated writeback we should
1122 * not update the quota for allocated blocks. But then
1123 * converting an fallocate region to initialized region would
1124 * have caused a metadata allocation. So claim quota for
1125 * that
1127 if (allocated_meta_blocks)
1128 dquot_claim_block(inode, allocated_meta_blocks);
1129 dquot_release_reservation_block(inode, mdb_free + used);
1133 * If we have done all the pending block allocations and if
1134 * there aren't any writers on the inode, we can discard the
1135 * inode's preallocations.
1137 if ((ei->i_reserved_data_blocks == 0) &&
1138 (atomic_read(&inode->i_writecount) == 0))
1139 ext4_discard_preallocations(inode);
1142 static int check_block_validity(struct inode *inode, const char *msg,
1143 sector_t logical, sector_t phys, int len)
1145 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1146 __ext4_error(inode->i_sb, msg,
1147 "inode #%lu logical block %llu mapped to %llu "
1148 "(size %d)", inode->i_ino,
1149 (unsigned long long) logical,
1150 (unsigned long long) phys, len);
1151 return -EIO;
1153 return 0;
1157 * Return the number of contiguous dirty pages in a given inode
1158 * starting at page frame idx.
1160 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1161 unsigned int max_pages)
1163 struct address_space *mapping = inode->i_mapping;
1164 pgoff_t index;
1165 struct pagevec pvec;
1166 pgoff_t num = 0;
1167 int i, nr_pages, done = 0;
1169 if (max_pages == 0)
1170 return 0;
1171 pagevec_init(&pvec, 0);
1172 while (!done) {
1173 index = idx;
1174 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1175 PAGECACHE_TAG_DIRTY,
1176 (pgoff_t)PAGEVEC_SIZE);
1177 if (nr_pages == 0)
1178 break;
1179 for (i = 0; i < nr_pages; i++) {
1180 struct page *page = pvec.pages[i];
1181 struct buffer_head *bh, *head;
1183 lock_page(page);
1184 if (unlikely(page->mapping != mapping) ||
1185 !PageDirty(page) ||
1186 PageWriteback(page) ||
1187 page->index != idx) {
1188 done = 1;
1189 unlock_page(page);
1190 break;
1192 if (page_has_buffers(page)) {
1193 bh = head = page_buffers(page);
1194 do {
1195 if (!buffer_delay(bh) &&
1196 !buffer_unwritten(bh))
1197 done = 1;
1198 bh = bh->b_this_page;
1199 } while (!done && (bh != head));
1201 unlock_page(page);
1202 if (done)
1203 break;
1204 idx++;
1205 num++;
1206 if (num >= max_pages)
1207 break;
1209 pagevec_release(&pvec);
1211 return num;
1215 * The ext4_get_blocks() function tries to look up the requested blocks,
1216 * and returns if the blocks are already mapped.
1218 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1219 * and store the allocated blocks in the result buffer head and mark it
1220 * mapped.
1222 * If file type is extents based, it will call ext4_ext_get_blocks(),
1223 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1224 * based files
1226 * On success, it returns the number of blocks being mapped or allocate.
1227 * if create==0 and the blocks are pre-allocated and uninitialized block,
1228 * the result buffer head is unmapped. If the create ==1, it will make sure
1229 * the buffer head is mapped.
1231 * It returns 0 if plain look up failed (blocks have not been allocated), in
1232 * that casem, buffer head is unmapped
1234 * It returns the error in case of allocation failure.
1236 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1237 unsigned int max_blocks, struct buffer_head *bh,
1238 int flags)
1240 int retval;
1242 clear_buffer_mapped(bh);
1243 clear_buffer_unwritten(bh);
1245 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1246 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1247 (unsigned long)block);
1249 * Try to see if we can get the block without requesting a new
1250 * file system block.
1252 down_read((&EXT4_I(inode)->i_data_sem));
1253 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1254 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1255 bh, 0);
1256 } else {
1257 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1258 bh, 0);
1260 up_read((&EXT4_I(inode)->i_data_sem));
1262 if (retval > 0 && buffer_mapped(bh)) {
1263 int ret = check_block_validity(inode, "file system corruption",
1264 block, bh->b_blocknr, retval);
1265 if (ret != 0)
1266 return ret;
1269 /* If it is only a block(s) look up */
1270 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1271 return retval;
1274 * Returns if the blocks have already allocated
1276 * Note that if blocks have been preallocated
1277 * ext4_ext_get_block() returns th create = 0
1278 * with buffer head unmapped.
1280 if (retval > 0 && buffer_mapped(bh))
1281 return retval;
1284 * When we call get_blocks without the create flag, the
1285 * BH_Unwritten flag could have gotten set if the blocks
1286 * requested were part of a uninitialized extent. We need to
1287 * clear this flag now that we are committed to convert all or
1288 * part of the uninitialized extent to be an initialized
1289 * extent. This is because we need to avoid the combination
1290 * of BH_Unwritten and BH_Mapped flags being simultaneously
1291 * set on the buffer_head.
1293 clear_buffer_unwritten(bh);
1296 * New blocks allocate and/or writing to uninitialized extent
1297 * will possibly result in updating i_data, so we take
1298 * the write lock of i_data_sem, and call get_blocks()
1299 * with create == 1 flag.
1301 down_write((&EXT4_I(inode)->i_data_sem));
1304 * if the caller is from delayed allocation writeout path
1305 * we have already reserved fs blocks for allocation
1306 * let the underlying get_block() function know to
1307 * avoid double accounting
1309 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1310 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1312 * We need to check for EXT4 here because migrate
1313 * could have changed the inode type in between
1315 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1316 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1317 bh, flags);
1318 } else {
1319 retval = ext4_ind_get_blocks(handle, inode, block,
1320 max_blocks, bh, flags);
1322 if (retval > 0 && buffer_new(bh)) {
1324 * We allocated new blocks which will result in
1325 * i_data's format changing. Force the migrate
1326 * to fail by clearing migrate flags
1328 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1332 * Update reserved blocks/metadata blocks after successful
1333 * block allocation which had been deferred till now. We don't
1334 * support fallocate for non extent files. So we can update
1335 * reserve space here.
1337 if ((retval > 0) &&
1338 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1339 ext4_da_update_reserve_space(inode, retval, 1);
1341 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1342 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1344 up_write((&EXT4_I(inode)->i_data_sem));
1345 if (retval > 0 && buffer_mapped(bh)) {
1346 int ret = check_block_validity(inode, "file system "
1347 "corruption after allocation",
1348 block, bh->b_blocknr, retval);
1349 if (ret != 0)
1350 return ret;
1352 return retval;
1355 /* Maximum number of blocks we map for direct IO at once. */
1356 #define DIO_MAX_BLOCKS 4096
1358 int ext4_get_block(struct inode *inode, sector_t iblock,
1359 struct buffer_head *bh_result, int create)
1361 handle_t *handle = ext4_journal_current_handle();
1362 int ret = 0, started = 0;
1363 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1364 int dio_credits;
1366 if (create && !handle) {
1367 /* Direct IO write... */
1368 if (max_blocks > DIO_MAX_BLOCKS)
1369 max_blocks = DIO_MAX_BLOCKS;
1370 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1371 handle = ext4_journal_start(inode, dio_credits);
1372 if (IS_ERR(handle)) {
1373 ret = PTR_ERR(handle);
1374 goto out;
1376 started = 1;
1379 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1380 create ? EXT4_GET_BLOCKS_CREATE : 0);
1381 if (ret > 0) {
1382 bh_result->b_size = (ret << inode->i_blkbits);
1383 ret = 0;
1385 if (started)
1386 ext4_journal_stop(handle);
1387 out:
1388 return ret;
1392 * `handle' can be NULL if create is zero
1394 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1395 ext4_lblk_t block, int create, int *errp)
1397 struct buffer_head dummy;
1398 int fatal = 0, err;
1399 int flags = 0;
1401 J_ASSERT(handle != NULL || create == 0);
1403 dummy.b_state = 0;
1404 dummy.b_blocknr = -1000;
1405 buffer_trace_init(&dummy.b_history);
1406 if (create)
1407 flags |= EXT4_GET_BLOCKS_CREATE;
1408 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1410 * ext4_get_blocks() returns number of blocks mapped. 0 in
1411 * case of a HOLE.
1413 if (err > 0) {
1414 if (err > 1)
1415 WARN_ON(1);
1416 err = 0;
1418 *errp = err;
1419 if (!err && buffer_mapped(&dummy)) {
1420 struct buffer_head *bh;
1421 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1422 if (!bh) {
1423 *errp = -EIO;
1424 goto err;
1426 if (buffer_new(&dummy)) {
1427 J_ASSERT(create != 0);
1428 J_ASSERT(handle != NULL);
1431 * Now that we do not always journal data, we should
1432 * keep in mind whether this should always journal the
1433 * new buffer as metadata. For now, regular file
1434 * writes use ext4_get_block instead, so it's not a
1435 * problem.
1437 lock_buffer(bh);
1438 BUFFER_TRACE(bh, "call get_create_access");
1439 fatal = ext4_journal_get_create_access(handle, bh);
1440 if (!fatal && !buffer_uptodate(bh)) {
1441 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1442 set_buffer_uptodate(bh);
1444 unlock_buffer(bh);
1445 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1446 err = ext4_handle_dirty_metadata(handle, inode, bh);
1447 if (!fatal)
1448 fatal = err;
1449 } else {
1450 BUFFER_TRACE(bh, "not a new buffer");
1452 if (fatal) {
1453 *errp = fatal;
1454 brelse(bh);
1455 bh = NULL;
1457 return bh;
1459 err:
1460 return NULL;
1463 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1464 ext4_lblk_t block, int create, int *err)
1466 struct buffer_head *bh;
1468 bh = ext4_getblk(handle, inode, block, create, err);
1469 if (!bh)
1470 return bh;
1471 if (buffer_uptodate(bh))
1472 return bh;
1473 ll_rw_block(READ_META, 1, &bh);
1474 wait_on_buffer(bh);
1475 if (buffer_uptodate(bh))
1476 return bh;
1477 put_bh(bh);
1478 *err = -EIO;
1479 return NULL;
1482 static int walk_page_buffers(handle_t *handle,
1483 struct buffer_head *head,
1484 unsigned from,
1485 unsigned to,
1486 int *partial,
1487 int (*fn)(handle_t *handle,
1488 struct buffer_head *bh))
1490 struct buffer_head *bh;
1491 unsigned block_start, block_end;
1492 unsigned blocksize = head->b_size;
1493 int err, ret = 0;
1494 struct buffer_head *next;
1496 for (bh = head, block_start = 0;
1497 ret == 0 && (bh != head || !block_start);
1498 block_start = block_end, bh = next) {
1499 next = bh->b_this_page;
1500 block_end = block_start + blocksize;
1501 if (block_end <= from || block_start >= to) {
1502 if (partial && !buffer_uptodate(bh))
1503 *partial = 1;
1504 continue;
1506 err = (*fn)(handle, bh);
1507 if (!ret)
1508 ret = err;
1510 return ret;
1514 * To preserve ordering, it is essential that the hole instantiation and
1515 * the data write be encapsulated in a single transaction. We cannot
1516 * close off a transaction and start a new one between the ext4_get_block()
1517 * and the commit_write(). So doing the jbd2_journal_start at the start of
1518 * prepare_write() is the right place.
1520 * Also, this function can nest inside ext4_writepage() ->
1521 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1522 * has generated enough buffer credits to do the whole page. So we won't
1523 * block on the journal in that case, which is good, because the caller may
1524 * be PF_MEMALLOC.
1526 * By accident, ext4 can be reentered when a transaction is open via
1527 * quota file writes. If we were to commit the transaction while thus
1528 * reentered, there can be a deadlock - we would be holding a quota
1529 * lock, and the commit would never complete if another thread had a
1530 * transaction open and was blocking on the quota lock - a ranking
1531 * violation.
1533 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1534 * will _not_ run commit under these circumstances because handle->h_ref
1535 * is elevated. We'll still have enough credits for the tiny quotafile
1536 * write.
1538 static int do_journal_get_write_access(handle_t *handle,
1539 struct buffer_head *bh)
1541 if (!buffer_mapped(bh) || buffer_freed(bh))
1542 return 0;
1543 return ext4_journal_get_write_access(handle, bh);
1547 * Truncate blocks that were not used by write. We have to truncate the
1548 * pagecache as well so that corresponding buffers get properly unmapped.
1550 static void ext4_truncate_failed_write(struct inode *inode)
1552 truncate_inode_pages(inode->i_mapping, inode->i_size);
1553 ext4_truncate(inode);
1556 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1557 struct buffer_head *bh_result, int create);
1558 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1559 loff_t pos, unsigned len, unsigned flags,
1560 struct page **pagep, void **fsdata)
1562 struct inode *inode = mapping->host;
1563 int ret, needed_blocks;
1564 handle_t *handle;
1565 int retries = 0;
1566 struct page *page;
1567 pgoff_t index;
1568 unsigned from, to;
1570 trace_ext4_write_begin(inode, pos, len, flags);
1572 * Reserve one block more for addition to orphan list in case
1573 * we allocate blocks but write fails for some reason
1575 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1576 index = pos >> PAGE_CACHE_SHIFT;
1577 from = pos & (PAGE_CACHE_SIZE - 1);
1578 to = from + len;
1580 retry:
1581 handle = ext4_journal_start(inode, needed_blocks);
1582 if (IS_ERR(handle)) {
1583 ret = PTR_ERR(handle);
1584 goto out;
1587 /* We cannot recurse into the filesystem as the transaction is already
1588 * started */
1589 flags |= AOP_FLAG_NOFS;
1591 page = grab_cache_page_write_begin(mapping, index, flags);
1592 if (!page) {
1593 ext4_journal_stop(handle);
1594 ret = -ENOMEM;
1595 goto out;
1597 *pagep = page;
1599 if (ext4_should_dioread_nolock(inode))
1600 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1601 fsdata, ext4_get_block_write);
1602 else
1603 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1604 fsdata, ext4_get_block);
1606 if (!ret && ext4_should_journal_data(inode)) {
1607 ret = walk_page_buffers(handle, page_buffers(page),
1608 from, to, NULL, do_journal_get_write_access);
1611 if (ret) {
1612 unlock_page(page);
1613 page_cache_release(page);
1615 * block_write_begin may have instantiated a few blocks
1616 * outside i_size. Trim these off again. Don't need
1617 * i_size_read because we hold i_mutex.
1619 * Add inode to orphan list in case we crash before
1620 * truncate finishes
1622 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1623 ext4_orphan_add(handle, inode);
1625 ext4_journal_stop(handle);
1626 if (pos + len > inode->i_size) {
1627 ext4_truncate_failed_write(inode);
1629 * If truncate failed early the inode might
1630 * still be on the orphan list; we need to
1631 * make sure the inode is removed from the
1632 * orphan list in that case.
1634 if (inode->i_nlink)
1635 ext4_orphan_del(NULL, inode);
1639 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1640 goto retry;
1641 out:
1642 return ret;
1645 /* For write_end() in data=journal mode */
1646 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1648 if (!buffer_mapped(bh) || buffer_freed(bh))
1649 return 0;
1650 set_buffer_uptodate(bh);
1651 return ext4_handle_dirty_metadata(handle, NULL, bh);
1654 static int ext4_generic_write_end(struct file *file,
1655 struct address_space *mapping,
1656 loff_t pos, unsigned len, unsigned copied,
1657 struct page *page, void *fsdata)
1659 int i_size_changed = 0;
1660 struct inode *inode = mapping->host;
1661 handle_t *handle = ext4_journal_current_handle();
1663 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1666 * No need to use i_size_read() here, the i_size
1667 * cannot change under us because we hold i_mutex.
1669 * But it's important to update i_size while still holding page lock:
1670 * page writeout could otherwise come in and zero beyond i_size.
1672 if (pos + copied > inode->i_size) {
1673 i_size_write(inode, pos + copied);
1674 i_size_changed = 1;
1677 if (pos + copied > EXT4_I(inode)->i_disksize) {
1678 /* We need to mark inode dirty even if
1679 * new_i_size is less that inode->i_size
1680 * bu greater than i_disksize.(hint delalloc)
1682 ext4_update_i_disksize(inode, (pos + copied));
1683 i_size_changed = 1;
1685 unlock_page(page);
1686 page_cache_release(page);
1689 * Don't mark the inode dirty under page lock. First, it unnecessarily
1690 * makes the holding time of page lock longer. Second, it forces lock
1691 * ordering of page lock and transaction start for journaling
1692 * filesystems.
1694 if (i_size_changed)
1695 ext4_mark_inode_dirty(handle, inode);
1697 return copied;
1701 * We need to pick up the new inode size which generic_commit_write gave us
1702 * `file' can be NULL - eg, when called from page_symlink().
1704 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1705 * buffers are managed internally.
1707 static int ext4_ordered_write_end(struct file *file,
1708 struct address_space *mapping,
1709 loff_t pos, unsigned len, unsigned copied,
1710 struct page *page, void *fsdata)
1712 handle_t *handle = ext4_journal_current_handle();
1713 struct inode *inode = mapping->host;
1714 int ret = 0, ret2;
1716 trace_ext4_ordered_write_end(inode, pos, len, copied);
1717 ret = ext4_jbd2_file_inode(handle, inode);
1719 if (ret == 0) {
1720 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1721 page, fsdata);
1722 copied = ret2;
1723 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1724 /* if we have allocated more blocks and copied
1725 * less. We will have blocks allocated outside
1726 * inode->i_size. So truncate them
1728 ext4_orphan_add(handle, inode);
1729 if (ret2 < 0)
1730 ret = ret2;
1732 ret2 = ext4_journal_stop(handle);
1733 if (!ret)
1734 ret = ret2;
1736 if (pos + len > inode->i_size) {
1737 ext4_truncate_failed_write(inode);
1739 * If truncate failed early the inode might still be
1740 * on the orphan list; we need to make sure the inode
1741 * is removed from the orphan list in that case.
1743 if (inode->i_nlink)
1744 ext4_orphan_del(NULL, inode);
1748 return ret ? ret : copied;
1751 static int ext4_writeback_write_end(struct file *file,
1752 struct address_space *mapping,
1753 loff_t pos, unsigned len, unsigned copied,
1754 struct page *page, void *fsdata)
1756 handle_t *handle = ext4_journal_current_handle();
1757 struct inode *inode = mapping->host;
1758 int ret = 0, ret2;
1760 trace_ext4_writeback_write_end(inode, pos, len, copied);
1761 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1762 page, fsdata);
1763 copied = ret2;
1764 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765 /* if we have allocated more blocks and copied
1766 * less. We will have blocks allocated outside
1767 * inode->i_size. So truncate them
1769 ext4_orphan_add(handle, inode);
1771 if (ret2 < 0)
1772 ret = ret2;
1774 ret2 = ext4_journal_stop(handle);
1775 if (!ret)
1776 ret = ret2;
1778 if (pos + len > inode->i_size) {
1779 ext4_truncate_failed_write(inode);
1781 * If truncate failed early the inode might still be
1782 * on the orphan list; we need to make sure the inode
1783 * is removed from the orphan list in that case.
1785 if (inode->i_nlink)
1786 ext4_orphan_del(NULL, inode);
1789 return ret ? ret : copied;
1792 static int ext4_journalled_write_end(struct file *file,
1793 struct address_space *mapping,
1794 loff_t pos, unsigned len, unsigned copied,
1795 struct page *page, void *fsdata)
1797 handle_t *handle = ext4_journal_current_handle();
1798 struct inode *inode = mapping->host;
1799 int ret = 0, ret2;
1800 int partial = 0;
1801 unsigned from, to;
1802 loff_t new_i_size;
1804 trace_ext4_journalled_write_end(inode, pos, len, copied);
1805 from = pos & (PAGE_CACHE_SIZE - 1);
1806 to = from + len;
1808 if (copied < len) {
1809 if (!PageUptodate(page))
1810 copied = 0;
1811 page_zero_new_buffers(page, from+copied, to);
1814 ret = walk_page_buffers(handle, page_buffers(page), from,
1815 to, &partial, write_end_fn);
1816 if (!partial)
1817 SetPageUptodate(page);
1818 new_i_size = pos + copied;
1819 if (new_i_size > inode->i_size)
1820 i_size_write(inode, pos+copied);
1821 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1822 if (new_i_size > EXT4_I(inode)->i_disksize) {
1823 ext4_update_i_disksize(inode, new_i_size);
1824 ret2 = ext4_mark_inode_dirty(handle, inode);
1825 if (!ret)
1826 ret = ret2;
1829 unlock_page(page);
1830 page_cache_release(page);
1831 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1832 /* if we have allocated more blocks and copied
1833 * less. We will have blocks allocated outside
1834 * inode->i_size. So truncate them
1836 ext4_orphan_add(handle, inode);
1838 ret2 = ext4_journal_stop(handle);
1839 if (!ret)
1840 ret = ret2;
1841 if (pos + len > inode->i_size) {
1842 ext4_truncate_failed_write(inode);
1844 * If truncate failed early the inode might still be
1845 * on the orphan list; we need to make sure the inode
1846 * is removed from the orphan list in that case.
1848 if (inode->i_nlink)
1849 ext4_orphan_del(NULL, inode);
1852 return ret ? ret : copied;
1856 * Reserve a single block located at lblock
1858 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1860 int retries = 0;
1861 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1862 struct ext4_inode_info *ei = EXT4_I(inode);
1863 unsigned long md_needed, md_reserved;
1864 int ret;
1867 * recalculate the amount of metadata blocks to reserve
1868 * in order to allocate nrblocks
1869 * worse case is one extent per block
1871 repeat:
1872 spin_lock(&ei->i_block_reservation_lock);
1873 md_reserved = ei->i_reserved_meta_blocks;
1874 md_needed = ext4_calc_metadata_amount(inode, lblock);
1875 trace_ext4_da_reserve_space(inode, md_needed);
1876 spin_unlock(&ei->i_block_reservation_lock);
1879 * Make quota reservation here to prevent quota overflow
1880 * later. Real quota accounting is done at pages writeout
1881 * time.
1883 ret = dquot_reserve_block(inode, md_needed + 1);
1884 if (ret)
1885 return ret;
1887 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1888 dquot_release_reservation_block(inode, md_needed + 1);
1889 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1890 yield();
1891 goto repeat;
1893 return -ENOSPC;
1895 spin_lock(&ei->i_block_reservation_lock);
1896 ei->i_reserved_data_blocks++;
1897 ei->i_reserved_meta_blocks += md_needed;
1898 spin_unlock(&ei->i_block_reservation_lock);
1900 return 0; /* success */
1903 static void ext4_da_release_space(struct inode *inode, int to_free)
1905 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1906 struct ext4_inode_info *ei = EXT4_I(inode);
1908 if (!to_free)
1909 return; /* Nothing to release, exit */
1911 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1913 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1915 * if there aren't enough reserved blocks, then the
1916 * counter is messed up somewhere. Since this
1917 * function is called from invalidate page, it's
1918 * harmless to return without any action.
1920 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1921 "ino %lu, to_free %d with only %d reserved "
1922 "data blocks\n", inode->i_ino, to_free,
1923 ei->i_reserved_data_blocks);
1924 WARN_ON(1);
1925 to_free = ei->i_reserved_data_blocks;
1927 ei->i_reserved_data_blocks -= to_free;
1929 if (ei->i_reserved_data_blocks == 0) {
1931 * We can release all of the reserved metadata blocks
1932 * only when we have written all of the delayed
1933 * allocation blocks.
1935 to_free += ei->i_reserved_meta_blocks;
1936 ei->i_reserved_meta_blocks = 0;
1937 ei->i_da_metadata_calc_len = 0;
1940 /* update fs dirty blocks counter */
1941 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1943 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1945 dquot_release_reservation_block(inode, to_free);
1948 static void ext4_da_page_release_reservation(struct page *page,
1949 unsigned long offset)
1951 int to_release = 0;
1952 struct buffer_head *head, *bh;
1953 unsigned int curr_off = 0;
1955 head = page_buffers(page);
1956 bh = head;
1957 do {
1958 unsigned int next_off = curr_off + bh->b_size;
1960 if ((offset <= curr_off) && (buffer_delay(bh))) {
1961 to_release++;
1962 clear_buffer_delay(bh);
1964 curr_off = next_off;
1965 } while ((bh = bh->b_this_page) != head);
1966 ext4_da_release_space(page->mapping->host, to_release);
1970 * Delayed allocation stuff
1974 * mpage_da_submit_io - walks through extent of pages and try to write
1975 * them with writepage() call back
1977 * @mpd->inode: inode
1978 * @mpd->first_page: first page of the extent
1979 * @mpd->next_page: page after the last page of the extent
1981 * By the time mpage_da_submit_io() is called we expect all blocks
1982 * to be allocated. this may be wrong if allocation failed.
1984 * As pages are already locked by write_cache_pages(), we can't use it
1986 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1988 long pages_skipped;
1989 struct pagevec pvec;
1990 unsigned long index, end;
1991 int ret = 0, err, nr_pages, i;
1992 struct inode *inode = mpd->inode;
1993 struct address_space *mapping = inode->i_mapping;
1995 BUG_ON(mpd->next_page <= mpd->first_page);
1997 * We need to start from the first_page to the next_page - 1
1998 * to make sure we also write the mapped dirty buffer_heads.
1999 * If we look at mpd->b_blocknr we would only be looking
2000 * at the currently mapped buffer_heads.
2002 index = mpd->first_page;
2003 end = mpd->next_page - 1;
2005 pagevec_init(&pvec, 0);
2006 while (index <= end) {
2007 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2008 if (nr_pages == 0)
2009 break;
2010 for (i = 0; i < nr_pages; i++) {
2011 struct page *page = pvec.pages[i];
2013 index = page->index;
2014 if (index > end)
2015 break;
2016 index++;
2018 BUG_ON(!PageLocked(page));
2019 BUG_ON(PageWriteback(page));
2021 pages_skipped = mpd->wbc->pages_skipped;
2022 err = mapping->a_ops->writepage(page, mpd->wbc);
2023 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2025 * have successfully written the page
2026 * without skipping the same
2028 mpd->pages_written++;
2030 * In error case, we have to continue because
2031 * remaining pages are still locked
2032 * XXX: unlock and re-dirty them?
2034 if (ret == 0)
2035 ret = err;
2037 pagevec_release(&pvec);
2039 return ret;
2043 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2045 * @mpd->inode - inode to walk through
2046 * @exbh->b_blocknr - first block on a disk
2047 * @exbh->b_size - amount of space in bytes
2048 * @logical - first logical block to start assignment with
2050 * the function goes through all passed space and put actual disk
2051 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2053 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2054 struct buffer_head *exbh)
2056 struct inode *inode = mpd->inode;
2057 struct address_space *mapping = inode->i_mapping;
2058 int blocks = exbh->b_size >> inode->i_blkbits;
2059 sector_t pblock = exbh->b_blocknr, cur_logical;
2060 struct buffer_head *head, *bh;
2061 pgoff_t index, end;
2062 struct pagevec pvec;
2063 int nr_pages, i;
2065 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2066 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2067 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2069 pagevec_init(&pvec, 0);
2071 while (index <= end) {
2072 /* XXX: optimize tail */
2073 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2074 if (nr_pages == 0)
2075 break;
2076 for (i = 0; i < nr_pages; i++) {
2077 struct page *page = pvec.pages[i];
2079 index = page->index;
2080 if (index > end)
2081 break;
2082 index++;
2084 BUG_ON(!PageLocked(page));
2085 BUG_ON(PageWriteback(page));
2086 BUG_ON(!page_has_buffers(page));
2088 bh = page_buffers(page);
2089 head = bh;
2091 /* skip blocks out of the range */
2092 do {
2093 if (cur_logical >= logical)
2094 break;
2095 cur_logical++;
2096 } while ((bh = bh->b_this_page) != head);
2098 do {
2099 if (cur_logical >= logical + blocks)
2100 break;
2102 if (buffer_delay(bh) ||
2103 buffer_unwritten(bh)) {
2105 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2107 if (buffer_delay(bh)) {
2108 clear_buffer_delay(bh);
2109 bh->b_blocknr = pblock;
2110 } else {
2112 * unwritten already should have
2113 * blocknr assigned. Verify that
2115 clear_buffer_unwritten(bh);
2116 BUG_ON(bh->b_blocknr != pblock);
2119 } else if (buffer_mapped(bh))
2120 BUG_ON(bh->b_blocknr != pblock);
2122 if (buffer_uninit(exbh))
2123 set_buffer_uninit(bh);
2124 cur_logical++;
2125 pblock++;
2126 } while ((bh = bh->b_this_page) != head);
2128 pagevec_release(&pvec);
2134 * __unmap_underlying_blocks - just a helper function to unmap
2135 * set of blocks described by @bh
2137 static inline void __unmap_underlying_blocks(struct inode *inode,
2138 struct buffer_head *bh)
2140 struct block_device *bdev = inode->i_sb->s_bdev;
2141 int blocks, i;
2143 blocks = bh->b_size >> inode->i_blkbits;
2144 for (i = 0; i < blocks; i++)
2145 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2148 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2149 sector_t logical, long blk_cnt)
2151 int nr_pages, i;
2152 pgoff_t index, end;
2153 struct pagevec pvec;
2154 struct inode *inode = mpd->inode;
2155 struct address_space *mapping = inode->i_mapping;
2157 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2158 end = (logical + blk_cnt - 1) >>
2159 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2160 while (index <= end) {
2161 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2162 if (nr_pages == 0)
2163 break;
2164 for (i = 0; i < nr_pages; i++) {
2165 struct page *page = pvec.pages[i];
2166 if (page->index > end)
2167 break;
2168 BUG_ON(!PageLocked(page));
2169 BUG_ON(PageWriteback(page));
2170 block_invalidatepage(page, 0);
2171 ClearPageUptodate(page);
2172 unlock_page(page);
2174 index = pvec.pages[nr_pages - 1]->index + 1;
2175 pagevec_release(&pvec);
2177 return;
2180 static void ext4_print_free_blocks(struct inode *inode)
2182 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2183 printk(KERN_CRIT "Total free blocks count %lld\n",
2184 ext4_count_free_blocks(inode->i_sb));
2185 printk(KERN_CRIT "Free/Dirty block details\n");
2186 printk(KERN_CRIT "free_blocks=%lld\n",
2187 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2188 printk(KERN_CRIT "dirty_blocks=%lld\n",
2189 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2190 printk(KERN_CRIT "Block reservation details\n");
2191 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2192 EXT4_I(inode)->i_reserved_data_blocks);
2193 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2194 EXT4_I(inode)->i_reserved_meta_blocks);
2195 return;
2199 * mpage_da_map_blocks - go through given space
2201 * @mpd - bh describing space
2203 * The function skips space we know is already mapped to disk blocks.
2206 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2208 int err, blks, get_blocks_flags;
2209 struct buffer_head new;
2210 sector_t next = mpd->b_blocknr;
2211 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2212 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2213 handle_t *handle = NULL;
2216 * We consider only non-mapped and non-allocated blocks
2218 if ((mpd->b_state & (1 << BH_Mapped)) &&
2219 !(mpd->b_state & (1 << BH_Delay)) &&
2220 !(mpd->b_state & (1 << BH_Unwritten)))
2221 return 0;
2224 * If we didn't accumulate anything to write simply return
2226 if (!mpd->b_size)
2227 return 0;
2229 handle = ext4_journal_current_handle();
2230 BUG_ON(!handle);
2233 * Call ext4_get_blocks() to allocate any delayed allocation
2234 * blocks, or to convert an uninitialized extent to be
2235 * initialized (in the case where we have written into
2236 * one or more preallocated blocks).
2238 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2239 * indicate that we are on the delayed allocation path. This
2240 * affects functions in many different parts of the allocation
2241 * call path. This flag exists primarily because we don't
2242 * want to change *many* call functions, so ext4_get_blocks()
2243 * will set the magic i_delalloc_reserved_flag once the
2244 * inode's allocation semaphore is taken.
2246 * If the blocks in questions were delalloc blocks, set
2247 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2248 * variables are updated after the blocks have been allocated.
2250 new.b_state = 0;
2251 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2252 if (ext4_should_dioread_nolock(mpd->inode))
2253 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2254 if (mpd->b_state & (1 << BH_Delay))
2255 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2257 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2258 &new, get_blocks_flags);
2259 if (blks < 0) {
2260 err = blks;
2262 * If get block returns with error we simply
2263 * return. Later writepage will redirty the page and
2264 * writepages will find the dirty page again
2266 if (err == -EAGAIN)
2267 return 0;
2269 if (err == -ENOSPC &&
2270 ext4_count_free_blocks(mpd->inode->i_sb)) {
2271 mpd->retval = err;
2272 return 0;
2276 * get block failure will cause us to loop in
2277 * writepages, because a_ops->writepage won't be able
2278 * to make progress. The page will be redirtied by
2279 * writepage and writepages will again try to write
2280 * the same.
2282 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2283 "delayed block allocation failed for inode %lu at "
2284 "logical offset %llu with max blocks %zd with "
2285 "error %d\n", mpd->inode->i_ino,
2286 (unsigned long long) next,
2287 mpd->b_size >> mpd->inode->i_blkbits, err);
2288 printk(KERN_CRIT "This should not happen!! "
2289 "Data will be lost\n");
2290 if (err == -ENOSPC) {
2291 ext4_print_free_blocks(mpd->inode);
2293 /* invalidate all the pages */
2294 ext4_da_block_invalidatepages(mpd, next,
2295 mpd->b_size >> mpd->inode->i_blkbits);
2296 return err;
2298 BUG_ON(blks == 0);
2300 new.b_size = (blks << mpd->inode->i_blkbits);
2302 if (buffer_new(&new))
2303 __unmap_underlying_blocks(mpd->inode, &new);
2306 * If blocks are delayed marked, we need to
2307 * put actual blocknr and drop delayed bit
2309 if ((mpd->b_state & (1 << BH_Delay)) ||
2310 (mpd->b_state & (1 << BH_Unwritten)))
2311 mpage_put_bnr_to_bhs(mpd, next, &new);
2313 if (ext4_should_order_data(mpd->inode)) {
2314 err = ext4_jbd2_file_inode(handle, mpd->inode);
2315 if (err)
2316 return err;
2320 * Update on-disk size along with block allocation.
2322 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2323 if (disksize > i_size_read(mpd->inode))
2324 disksize = i_size_read(mpd->inode);
2325 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2326 ext4_update_i_disksize(mpd->inode, disksize);
2327 return ext4_mark_inode_dirty(handle, mpd->inode);
2330 return 0;
2333 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2334 (1 << BH_Delay) | (1 << BH_Unwritten))
2337 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2339 * @mpd->lbh - extent of blocks
2340 * @logical - logical number of the block in the file
2341 * @bh - bh of the block (used to access block's state)
2343 * the function is used to collect contig. blocks in same state
2345 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2346 sector_t logical, size_t b_size,
2347 unsigned long b_state)
2349 sector_t next;
2350 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2352 /* check if thereserved journal credits might overflow */
2353 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2354 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2356 * With non-extent format we are limited by the journal
2357 * credit available. Total credit needed to insert
2358 * nrblocks contiguous blocks is dependent on the
2359 * nrblocks. So limit nrblocks.
2361 goto flush_it;
2362 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2363 EXT4_MAX_TRANS_DATA) {
2365 * Adding the new buffer_head would make it cross the
2366 * allowed limit for which we have journal credit
2367 * reserved. So limit the new bh->b_size
2369 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2370 mpd->inode->i_blkbits;
2371 /* we will do mpage_da_submit_io in the next loop */
2375 * First block in the extent
2377 if (mpd->b_size == 0) {
2378 mpd->b_blocknr = logical;
2379 mpd->b_size = b_size;
2380 mpd->b_state = b_state & BH_FLAGS;
2381 return;
2384 next = mpd->b_blocknr + nrblocks;
2386 * Can we merge the block to our big extent?
2388 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2389 mpd->b_size += b_size;
2390 return;
2393 flush_it:
2395 * We couldn't merge the block to our extent, so we
2396 * need to flush current extent and start new one
2398 if (mpage_da_map_blocks(mpd) == 0)
2399 mpage_da_submit_io(mpd);
2400 mpd->io_done = 1;
2401 return;
2404 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2406 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2410 * __mpage_da_writepage - finds extent of pages and blocks
2412 * @page: page to consider
2413 * @wbc: not used, we just follow rules
2414 * @data: context
2416 * The function finds extents of pages and scan them for all blocks.
2418 static int __mpage_da_writepage(struct page *page,
2419 struct writeback_control *wbc, void *data)
2421 struct mpage_da_data *mpd = data;
2422 struct inode *inode = mpd->inode;
2423 struct buffer_head *bh, *head;
2424 sector_t logical;
2426 if (mpd->io_done) {
2428 * Rest of the page in the page_vec
2429 * redirty then and skip then. We will
2430 * try to write them again after
2431 * starting a new transaction
2433 redirty_page_for_writepage(wbc, page);
2434 unlock_page(page);
2435 return MPAGE_DA_EXTENT_TAIL;
2438 * Can we merge this page to current extent?
2440 if (mpd->next_page != page->index) {
2442 * Nope, we can't. So, we map non-allocated blocks
2443 * and start IO on them using writepage()
2445 if (mpd->next_page != mpd->first_page) {
2446 if (mpage_da_map_blocks(mpd) == 0)
2447 mpage_da_submit_io(mpd);
2449 * skip rest of the page in the page_vec
2451 mpd->io_done = 1;
2452 redirty_page_for_writepage(wbc, page);
2453 unlock_page(page);
2454 return MPAGE_DA_EXTENT_TAIL;
2458 * Start next extent of pages ...
2460 mpd->first_page = page->index;
2463 * ... and blocks
2465 mpd->b_size = 0;
2466 mpd->b_state = 0;
2467 mpd->b_blocknr = 0;
2470 mpd->next_page = page->index + 1;
2471 logical = (sector_t) page->index <<
2472 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2474 if (!page_has_buffers(page)) {
2475 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2476 (1 << BH_Dirty) | (1 << BH_Uptodate));
2477 if (mpd->io_done)
2478 return MPAGE_DA_EXTENT_TAIL;
2479 } else {
2481 * Page with regular buffer heads, just add all dirty ones
2483 head = page_buffers(page);
2484 bh = head;
2485 do {
2486 BUG_ON(buffer_locked(bh));
2488 * We need to try to allocate
2489 * unmapped blocks in the same page.
2490 * Otherwise we won't make progress
2491 * with the page in ext4_writepage
2493 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2494 mpage_add_bh_to_extent(mpd, logical,
2495 bh->b_size,
2496 bh->b_state);
2497 if (mpd->io_done)
2498 return MPAGE_DA_EXTENT_TAIL;
2499 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2501 * mapped dirty buffer. We need to update
2502 * the b_state because we look at
2503 * b_state in mpage_da_map_blocks. We don't
2504 * update b_size because if we find an
2505 * unmapped buffer_head later we need to
2506 * use the b_state flag of that buffer_head.
2508 if (mpd->b_size == 0)
2509 mpd->b_state = bh->b_state & BH_FLAGS;
2511 logical++;
2512 } while ((bh = bh->b_this_page) != head);
2515 return 0;
2519 * This is a special get_blocks_t callback which is used by
2520 * ext4_da_write_begin(). It will either return mapped block or
2521 * reserve space for a single block.
2523 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2524 * We also have b_blocknr = -1 and b_bdev initialized properly
2526 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2527 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2528 * initialized properly.
2530 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2531 struct buffer_head *bh_result, int create)
2533 int ret = 0;
2534 sector_t invalid_block = ~((sector_t) 0xffff);
2536 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2537 invalid_block = ~0;
2539 BUG_ON(create == 0);
2540 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2543 * first, we need to know whether the block is allocated already
2544 * preallocated blocks are unmapped but should treated
2545 * the same as allocated blocks.
2547 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2548 if ((ret == 0) && !buffer_delay(bh_result)) {
2549 /* the block isn't (pre)allocated yet, let's reserve space */
2551 * XXX: __block_prepare_write() unmaps passed block,
2552 * is it OK?
2554 ret = ext4_da_reserve_space(inode, iblock);
2555 if (ret)
2556 /* not enough space to reserve */
2557 return ret;
2559 map_bh(bh_result, inode->i_sb, invalid_block);
2560 set_buffer_new(bh_result);
2561 set_buffer_delay(bh_result);
2562 } else if (ret > 0) {
2563 bh_result->b_size = (ret << inode->i_blkbits);
2564 if (buffer_unwritten(bh_result)) {
2565 /* A delayed write to unwritten bh should
2566 * be marked new and mapped. Mapped ensures
2567 * that we don't do get_block multiple times
2568 * when we write to the same offset and new
2569 * ensures that we do proper zero out for
2570 * partial write.
2572 set_buffer_new(bh_result);
2573 set_buffer_mapped(bh_result);
2575 ret = 0;
2578 return ret;
2582 * This function is used as a standard get_block_t calback function
2583 * when there is no desire to allocate any blocks. It is used as a
2584 * callback function for block_prepare_write(), nobh_writepage(), and
2585 * block_write_full_page(). These functions should only try to map a
2586 * single block at a time.
2588 * Since this function doesn't do block allocations even if the caller
2589 * requests it by passing in create=1, it is critically important that
2590 * any caller checks to make sure that any buffer heads are returned
2591 * by this function are either all already mapped or marked for
2592 * delayed allocation before calling nobh_writepage() or
2593 * block_write_full_page(). Otherwise, b_blocknr could be left
2594 * unitialized, and the page write functions will be taken by
2595 * surprise.
2597 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2598 struct buffer_head *bh_result, int create)
2600 int ret = 0;
2601 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2603 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2606 * we don't want to do block allocation in writepage
2607 * so call get_block_wrap with create = 0
2609 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2610 if (ret > 0) {
2611 bh_result->b_size = (ret << inode->i_blkbits);
2612 ret = 0;
2614 return ret;
2617 static int bget_one(handle_t *handle, struct buffer_head *bh)
2619 get_bh(bh);
2620 return 0;
2623 static int bput_one(handle_t *handle, struct buffer_head *bh)
2625 put_bh(bh);
2626 return 0;
2629 static int __ext4_journalled_writepage(struct page *page,
2630 unsigned int len)
2632 struct address_space *mapping = page->mapping;
2633 struct inode *inode = mapping->host;
2634 struct buffer_head *page_bufs;
2635 handle_t *handle = NULL;
2636 int ret = 0;
2637 int err;
2639 page_bufs = page_buffers(page);
2640 BUG_ON(!page_bufs);
2641 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2642 /* As soon as we unlock the page, it can go away, but we have
2643 * references to buffers so we are safe */
2644 unlock_page(page);
2646 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2647 if (IS_ERR(handle)) {
2648 ret = PTR_ERR(handle);
2649 goto out;
2652 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2653 do_journal_get_write_access);
2655 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2656 write_end_fn);
2657 if (ret == 0)
2658 ret = err;
2659 err = ext4_journal_stop(handle);
2660 if (!ret)
2661 ret = err;
2663 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2664 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2665 out:
2666 return ret;
2669 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2670 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2673 * Note that we don't need to start a transaction unless we're journaling data
2674 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2675 * need to file the inode to the transaction's list in ordered mode because if
2676 * we are writing back data added by write(), the inode is already there and if
2677 * we are writing back data modified via mmap(), noone guarantees in which
2678 * transaction the data will hit the disk. In case we are journaling data, we
2679 * cannot start transaction directly because transaction start ranks above page
2680 * lock so we have to do some magic.
2682 * This function can get called via...
2683 * - ext4_da_writepages after taking page lock (have journal handle)
2684 * - journal_submit_inode_data_buffers (no journal handle)
2685 * - shrink_page_list via pdflush (no journal handle)
2686 * - grab_page_cache when doing write_begin (have journal handle)
2688 * We don't do any block allocation in this function. If we have page with
2689 * multiple blocks we need to write those buffer_heads that are mapped. This
2690 * is important for mmaped based write. So if we do with blocksize 1K
2691 * truncate(f, 1024);
2692 * a = mmap(f, 0, 4096);
2693 * a[0] = 'a';
2694 * truncate(f, 4096);
2695 * we have in the page first buffer_head mapped via page_mkwrite call back
2696 * but other bufer_heads would be unmapped but dirty(dirty done via the
2697 * do_wp_page). So writepage should write the first block. If we modify
2698 * the mmap area beyond 1024 we will again get a page_fault and the
2699 * page_mkwrite callback will do the block allocation and mark the
2700 * buffer_heads mapped.
2702 * We redirty the page if we have any buffer_heads that is either delay or
2703 * unwritten in the page.
2705 * We can get recursively called as show below.
2707 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2708 * ext4_writepage()
2710 * But since we don't do any block allocation we should not deadlock.
2711 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2713 static int ext4_writepage(struct page *page,
2714 struct writeback_control *wbc)
2716 int ret = 0;
2717 loff_t size;
2718 unsigned int len;
2719 struct buffer_head *page_bufs = NULL;
2720 struct inode *inode = page->mapping->host;
2722 trace_ext4_writepage(inode, page);
2723 size = i_size_read(inode);
2724 if (page->index == size >> PAGE_CACHE_SHIFT)
2725 len = size & ~PAGE_CACHE_MASK;
2726 else
2727 len = PAGE_CACHE_SIZE;
2729 if (page_has_buffers(page)) {
2730 page_bufs = page_buffers(page);
2731 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2732 ext4_bh_delay_or_unwritten)) {
2734 * We don't want to do block allocation
2735 * So redirty the page and return
2736 * We may reach here when we do a journal commit
2737 * via journal_submit_inode_data_buffers.
2738 * If we don't have mapping block we just ignore
2739 * them. We can also reach here via shrink_page_list
2741 redirty_page_for_writepage(wbc, page);
2742 unlock_page(page);
2743 return 0;
2745 } else {
2747 * The test for page_has_buffers() is subtle:
2748 * We know the page is dirty but it lost buffers. That means
2749 * that at some moment in time after write_begin()/write_end()
2750 * has been called all buffers have been clean and thus they
2751 * must have been written at least once. So they are all
2752 * mapped and we can happily proceed with mapping them
2753 * and writing the page.
2755 * Try to initialize the buffer_heads and check whether
2756 * all are mapped and non delay. We don't want to
2757 * do block allocation here.
2759 ret = block_prepare_write(page, 0, len,
2760 noalloc_get_block_write);
2761 if (!ret) {
2762 page_bufs = page_buffers(page);
2763 /* check whether all are mapped and non delay */
2764 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2765 ext4_bh_delay_or_unwritten)) {
2766 redirty_page_for_writepage(wbc, page);
2767 unlock_page(page);
2768 return 0;
2770 } else {
2772 * We can't do block allocation here
2773 * so just redity the page and unlock
2774 * and return
2776 redirty_page_for_writepage(wbc, page);
2777 unlock_page(page);
2778 return 0;
2780 /* now mark the buffer_heads as dirty and uptodate */
2781 block_commit_write(page, 0, len);
2784 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2786 * It's mmapped pagecache. Add buffers and journal it. There
2787 * doesn't seem much point in redirtying the page here.
2789 ClearPageChecked(page);
2790 return __ext4_journalled_writepage(page, len);
2793 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2794 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2795 else if (page_bufs && buffer_uninit(page_bufs)) {
2796 ext4_set_bh_endio(page_bufs, inode);
2797 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2798 wbc, ext4_end_io_buffer_write);
2799 } else
2800 ret = block_write_full_page(page, noalloc_get_block_write,
2801 wbc);
2803 return ret;
2807 * This is called via ext4_da_writepages() to
2808 * calulate the total number of credits to reserve to fit
2809 * a single extent allocation into a single transaction,
2810 * ext4_da_writpeages() will loop calling this before
2811 * the block allocation.
2814 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2816 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2819 * With non-extent format the journal credit needed to
2820 * insert nrblocks contiguous block is dependent on
2821 * number of contiguous block. So we will limit
2822 * number of contiguous block to a sane value
2824 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2825 (max_blocks > EXT4_MAX_TRANS_DATA))
2826 max_blocks = EXT4_MAX_TRANS_DATA;
2828 return ext4_chunk_trans_blocks(inode, max_blocks);
2831 static int ext4_da_writepages(struct address_space *mapping,
2832 struct writeback_control *wbc)
2834 pgoff_t index;
2835 int range_whole = 0;
2836 handle_t *handle = NULL;
2837 struct mpage_da_data mpd;
2838 struct inode *inode = mapping->host;
2839 int no_nrwrite_index_update;
2840 int pages_written = 0;
2841 long pages_skipped;
2842 unsigned int max_pages;
2843 int range_cyclic, cycled = 1, io_done = 0;
2844 int needed_blocks, ret = 0;
2845 long desired_nr_to_write, nr_to_writebump = 0;
2846 loff_t range_start = wbc->range_start;
2847 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2849 trace_ext4_da_writepages(inode, wbc);
2852 * No pages to write? This is mainly a kludge to avoid starting
2853 * a transaction for special inodes like journal inode on last iput()
2854 * because that could violate lock ordering on umount
2856 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2857 return 0;
2860 * If the filesystem has aborted, it is read-only, so return
2861 * right away instead of dumping stack traces later on that
2862 * will obscure the real source of the problem. We test
2863 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2864 * the latter could be true if the filesystem is mounted
2865 * read-only, and in that case, ext4_da_writepages should
2866 * *never* be called, so if that ever happens, we would want
2867 * the stack trace.
2869 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2870 return -EROFS;
2872 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2873 range_whole = 1;
2875 range_cyclic = wbc->range_cyclic;
2876 if (wbc->range_cyclic) {
2877 index = mapping->writeback_index;
2878 if (index)
2879 cycled = 0;
2880 wbc->range_start = index << PAGE_CACHE_SHIFT;
2881 wbc->range_end = LLONG_MAX;
2882 wbc->range_cyclic = 0;
2883 } else
2884 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2887 * This works around two forms of stupidity. The first is in
2888 * the writeback code, which caps the maximum number of pages
2889 * written to be 1024 pages. This is wrong on multiple
2890 * levels; different architectues have a different page size,
2891 * which changes the maximum amount of data which gets
2892 * written. Secondly, 4 megabytes is way too small. XFS
2893 * forces this value to be 16 megabytes by multiplying
2894 * nr_to_write parameter by four, and then relies on its
2895 * allocator to allocate larger extents to make them
2896 * contiguous. Unfortunately this brings us to the second
2897 * stupidity, which is that ext4's mballoc code only allocates
2898 * at most 2048 blocks. So we force contiguous writes up to
2899 * the number of dirty blocks in the inode, or
2900 * sbi->max_writeback_mb_bump whichever is smaller.
2902 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2903 if (!range_cyclic && range_whole)
2904 desired_nr_to_write = wbc->nr_to_write * 8;
2905 else
2906 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2907 max_pages);
2908 if (desired_nr_to_write > max_pages)
2909 desired_nr_to_write = max_pages;
2911 if (wbc->nr_to_write < desired_nr_to_write) {
2912 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2913 wbc->nr_to_write = desired_nr_to_write;
2916 mpd.wbc = wbc;
2917 mpd.inode = mapping->host;
2920 * we don't want write_cache_pages to update
2921 * nr_to_write and writeback_index
2923 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2924 wbc->no_nrwrite_index_update = 1;
2925 pages_skipped = wbc->pages_skipped;
2927 retry:
2928 while (!ret && wbc->nr_to_write > 0) {
2931 * we insert one extent at a time. So we need
2932 * credit needed for single extent allocation.
2933 * journalled mode is currently not supported
2934 * by delalloc
2936 BUG_ON(ext4_should_journal_data(inode));
2937 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2939 /* start a new transaction*/
2940 handle = ext4_journal_start(inode, needed_blocks);
2941 if (IS_ERR(handle)) {
2942 ret = PTR_ERR(handle);
2943 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2944 "%ld pages, ino %lu; err %d\n", __func__,
2945 wbc->nr_to_write, inode->i_ino, ret);
2946 goto out_writepages;
2950 * Now call __mpage_da_writepage to find the next
2951 * contiguous region of logical blocks that need
2952 * blocks to be allocated by ext4. We don't actually
2953 * submit the blocks for I/O here, even though
2954 * write_cache_pages thinks it will, and will set the
2955 * pages as clean for write before calling
2956 * __mpage_da_writepage().
2958 mpd.b_size = 0;
2959 mpd.b_state = 0;
2960 mpd.b_blocknr = 0;
2961 mpd.first_page = 0;
2962 mpd.next_page = 0;
2963 mpd.io_done = 0;
2964 mpd.pages_written = 0;
2965 mpd.retval = 0;
2966 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2967 &mpd);
2969 * If we have a contiguous extent of pages and we
2970 * haven't done the I/O yet, map the blocks and submit
2971 * them for I/O.
2973 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2974 if (mpage_da_map_blocks(&mpd) == 0)
2975 mpage_da_submit_io(&mpd);
2976 mpd.io_done = 1;
2977 ret = MPAGE_DA_EXTENT_TAIL;
2979 trace_ext4_da_write_pages(inode, &mpd);
2980 wbc->nr_to_write -= mpd.pages_written;
2982 ext4_journal_stop(handle);
2984 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2985 /* commit the transaction which would
2986 * free blocks released in the transaction
2987 * and try again
2989 jbd2_journal_force_commit_nested(sbi->s_journal);
2990 wbc->pages_skipped = pages_skipped;
2991 ret = 0;
2992 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2994 * got one extent now try with
2995 * rest of the pages
2997 pages_written += mpd.pages_written;
2998 wbc->pages_skipped = pages_skipped;
2999 ret = 0;
3000 io_done = 1;
3001 } else if (wbc->nr_to_write)
3003 * There is no more writeout needed
3004 * or we requested for a noblocking writeout
3005 * and we found the device congested
3007 break;
3009 if (!io_done && !cycled) {
3010 cycled = 1;
3011 index = 0;
3012 wbc->range_start = index << PAGE_CACHE_SHIFT;
3013 wbc->range_end = mapping->writeback_index - 1;
3014 goto retry;
3016 if (pages_skipped != wbc->pages_skipped)
3017 ext4_msg(inode->i_sb, KERN_CRIT,
3018 "This should not happen leaving %s "
3019 "with nr_to_write = %ld ret = %d\n",
3020 __func__, wbc->nr_to_write, ret);
3022 /* Update index */
3023 index += pages_written;
3024 wbc->range_cyclic = range_cyclic;
3025 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3027 * set the writeback_index so that range_cyclic
3028 * mode will write it back later
3030 mapping->writeback_index = index;
3032 out_writepages:
3033 if (!no_nrwrite_index_update)
3034 wbc->no_nrwrite_index_update = 0;
3035 wbc->nr_to_write -= nr_to_writebump;
3036 wbc->range_start = range_start;
3037 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3038 return ret;
3041 #define FALL_BACK_TO_NONDELALLOC 1
3042 static int ext4_nonda_switch(struct super_block *sb)
3044 s64 free_blocks, dirty_blocks;
3045 struct ext4_sb_info *sbi = EXT4_SB(sb);
3048 * switch to non delalloc mode if we are running low
3049 * on free block. The free block accounting via percpu
3050 * counters can get slightly wrong with percpu_counter_batch getting
3051 * accumulated on each CPU without updating global counters
3052 * Delalloc need an accurate free block accounting. So switch
3053 * to non delalloc when we are near to error range.
3055 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3056 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3057 if (2 * free_blocks < 3 * dirty_blocks ||
3058 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3060 * free block count is less than 150% of dirty blocks
3061 * or free blocks is less than watermark
3063 return 1;
3066 * Even if we don't switch but are nearing capacity,
3067 * start pushing delalloc when 1/2 of free blocks are dirty.
3069 if (free_blocks < 2 * dirty_blocks)
3070 writeback_inodes_sb_if_idle(sb);
3072 return 0;
3075 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3076 loff_t pos, unsigned len, unsigned flags,
3077 struct page **pagep, void **fsdata)
3079 int ret, retries = 0, quota_retries = 0;
3080 struct page *page;
3081 pgoff_t index;
3082 unsigned from, to;
3083 struct inode *inode = mapping->host;
3084 handle_t *handle;
3086 index = pos >> PAGE_CACHE_SHIFT;
3087 from = pos & (PAGE_CACHE_SIZE - 1);
3088 to = from + len;
3090 if (ext4_nonda_switch(inode->i_sb)) {
3091 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3092 return ext4_write_begin(file, mapping, pos,
3093 len, flags, pagep, fsdata);
3095 *fsdata = (void *)0;
3096 trace_ext4_da_write_begin(inode, pos, len, flags);
3097 retry:
3099 * With delayed allocation, we don't log the i_disksize update
3100 * if there is delayed block allocation. But we still need
3101 * to journalling the i_disksize update if writes to the end
3102 * of file which has an already mapped buffer.
3104 handle = ext4_journal_start(inode, 1);
3105 if (IS_ERR(handle)) {
3106 ret = PTR_ERR(handle);
3107 goto out;
3109 /* We cannot recurse into the filesystem as the transaction is already
3110 * started */
3111 flags |= AOP_FLAG_NOFS;
3113 page = grab_cache_page_write_begin(mapping, index, flags);
3114 if (!page) {
3115 ext4_journal_stop(handle);
3116 ret = -ENOMEM;
3117 goto out;
3119 *pagep = page;
3121 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3122 ext4_da_get_block_prep);
3123 if (ret < 0) {
3124 unlock_page(page);
3125 ext4_journal_stop(handle);
3126 page_cache_release(page);
3128 * block_write_begin may have instantiated a few blocks
3129 * outside i_size. Trim these off again. Don't need
3130 * i_size_read because we hold i_mutex.
3132 if (pos + len > inode->i_size)
3133 ext4_truncate_failed_write(inode);
3136 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3137 goto retry;
3139 if ((ret == -EDQUOT) &&
3140 EXT4_I(inode)->i_reserved_meta_blocks &&
3141 (quota_retries++ < 3)) {
3143 * Since we often over-estimate the number of meta
3144 * data blocks required, we may sometimes get a
3145 * spurios out of quota error even though there would
3146 * be enough space once we write the data blocks and
3147 * find out how many meta data blocks were _really_
3148 * required. So try forcing the inode write to see if
3149 * that helps.
3151 write_inode_now(inode, (quota_retries == 3));
3152 goto retry;
3154 out:
3155 return ret;
3159 * Check if we should update i_disksize
3160 * when write to the end of file but not require block allocation
3162 static int ext4_da_should_update_i_disksize(struct page *page,
3163 unsigned long offset)
3165 struct buffer_head *bh;
3166 struct inode *inode = page->mapping->host;
3167 unsigned int idx;
3168 int i;
3170 bh = page_buffers(page);
3171 idx = offset >> inode->i_blkbits;
3173 for (i = 0; i < idx; i++)
3174 bh = bh->b_this_page;
3176 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3177 return 0;
3178 return 1;
3181 static int ext4_da_write_end(struct file *file,
3182 struct address_space *mapping,
3183 loff_t pos, unsigned len, unsigned copied,
3184 struct page *page, void *fsdata)
3186 struct inode *inode = mapping->host;
3187 int ret = 0, ret2;
3188 handle_t *handle = ext4_journal_current_handle();
3189 loff_t new_i_size;
3190 unsigned long start, end;
3191 int write_mode = (int)(unsigned long)fsdata;
3193 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3194 if (ext4_should_order_data(inode)) {
3195 return ext4_ordered_write_end(file, mapping, pos,
3196 len, copied, page, fsdata);
3197 } else if (ext4_should_writeback_data(inode)) {
3198 return ext4_writeback_write_end(file, mapping, pos,
3199 len, copied, page, fsdata);
3200 } else {
3201 BUG();
3205 trace_ext4_da_write_end(inode, pos, len, copied);
3206 start = pos & (PAGE_CACHE_SIZE - 1);
3207 end = start + copied - 1;
3210 * generic_write_end() will run mark_inode_dirty() if i_size
3211 * changes. So let's piggyback the i_disksize mark_inode_dirty
3212 * into that.
3215 new_i_size = pos + copied;
3216 if (new_i_size > EXT4_I(inode)->i_disksize) {
3217 if (ext4_da_should_update_i_disksize(page, end)) {
3218 down_write(&EXT4_I(inode)->i_data_sem);
3219 if (new_i_size > EXT4_I(inode)->i_disksize) {
3221 * Updating i_disksize when extending file
3222 * without needing block allocation
3224 if (ext4_should_order_data(inode))
3225 ret = ext4_jbd2_file_inode(handle,
3226 inode);
3228 EXT4_I(inode)->i_disksize = new_i_size;
3230 up_write(&EXT4_I(inode)->i_data_sem);
3231 /* We need to mark inode dirty even if
3232 * new_i_size is less that inode->i_size
3233 * bu greater than i_disksize.(hint delalloc)
3235 ext4_mark_inode_dirty(handle, inode);
3238 ret2 = generic_write_end(file, mapping, pos, len, copied,
3239 page, fsdata);
3240 copied = ret2;
3241 if (ret2 < 0)
3242 ret = ret2;
3243 ret2 = ext4_journal_stop(handle);
3244 if (!ret)
3245 ret = ret2;
3247 return ret ? ret : copied;
3250 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3253 * Drop reserved blocks
3255 BUG_ON(!PageLocked(page));
3256 if (!page_has_buffers(page))
3257 goto out;
3259 ext4_da_page_release_reservation(page, offset);
3261 out:
3262 ext4_invalidatepage(page, offset);
3264 return;
3268 * Force all delayed allocation blocks to be allocated for a given inode.
3270 int ext4_alloc_da_blocks(struct inode *inode)
3272 trace_ext4_alloc_da_blocks(inode);
3274 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3275 !EXT4_I(inode)->i_reserved_meta_blocks)
3276 return 0;
3279 * We do something simple for now. The filemap_flush() will
3280 * also start triggering a write of the data blocks, which is
3281 * not strictly speaking necessary (and for users of
3282 * laptop_mode, not even desirable). However, to do otherwise
3283 * would require replicating code paths in:
3285 * ext4_da_writepages() ->
3286 * write_cache_pages() ---> (via passed in callback function)
3287 * __mpage_da_writepage() -->
3288 * mpage_add_bh_to_extent()
3289 * mpage_da_map_blocks()
3291 * The problem is that write_cache_pages(), located in
3292 * mm/page-writeback.c, marks pages clean in preparation for
3293 * doing I/O, which is not desirable if we're not planning on
3294 * doing I/O at all.
3296 * We could call write_cache_pages(), and then redirty all of
3297 * the pages by calling redirty_page_for_writeback() but that
3298 * would be ugly in the extreme. So instead we would need to
3299 * replicate parts of the code in the above functions,
3300 * simplifying them becuase we wouldn't actually intend to
3301 * write out the pages, but rather only collect contiguous
3302 * logical block extents, call the multi-block allocator, and
3303 * then update the buffer heads with the block allocations.
3305 * For now, though, we'll cheat by calling filemap_flush(),
3306 * which will map the blocks, and start the I/O, but not
3307 * actually wait for the I/O to complete.
3309 return filemap_flush(inode->i_mapping);
3313 * bmap() is special. It gets used by applications such as lilo and by
3314 * the swapper to find the on-disk block of a specific piece of data.
3316 * Naturally, this is dangerous if the block concerned is still in the
3317 * journal. If somebody makes a swapfile on an ext4 data-journaling
3318 * filesystem and enables swap, then they may get a nasty shock when the
3319 * data getting swapped to that swapfile suddenly gets overwritten by
3320 * the original zero's written out previously to the journal and
3321 * awaiting writeback in the kernel's buffer cache.
3323 * So, if we see any bmap calls here on a modified, data-journaled file,
3324 * take extra steps to flush any blocks which might be in the cache.
3326 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3328 struct inode *inode = mapping->host;
3329 journal_t *journal;
3330 int err;
3332 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3333 test_opt(inode->i_sb, DELALLOC)) {
3335 * With delalloc we want to sync the file
3336 * so that we can make sure we allocate
3337 * blocks for file
3339 filemap_write_and_wait(mapping);
3342 if (EXT4_JOURNAL(inode) &&
3343 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3345 * This is a REALLY heavyweight approach, but the use of
3346 * bmap on dirty files is expected to be extremely rare:
3347 * only if we run lilo or swapon on a freshly made file
3348 * do we expect this to happen.
3350 * (bmap requires CAP_SYS_RAWIO so this does not
3351 * represent an unprivileged user DOS attack --- we'd be
3352 * in trouble if mortal users could trigger this path at
3353 * will.)
3355 * NB. EXT4_STATE_JDATA is not set on files other than
3356 * regular files. If somebody wants to bmap a directory
3357 * or symlink and gets confused because the buffer
3358 * hasn't yet been flushed to disk, they deserve
3359 * everything they get.
3362 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3363 journal = EXT4_JOURNAL(inode);
3364 jbd2_journal_lock_updates(journal);
3365 err = jbd2_journal_flush(journal);
3366 jbd2_journal_unlock_updates(journal);
3368 if (err)
3369 return 0;
3372 return generic_block_bmap(mapping, block, ext4_get_block);
3375 static int ext4_readpage(struct file *file, struct page *page)
3377 return mpage_readpage(page, ext4_get_block);
3380 static int
3381 ext4_readpages(struct file *file, struct address_space *mapping,
3382 struct list_head *pages, unsigned nr_pages)
3384 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3387 static void ext4_free_io_end(ext4_io_end_t *io)
3389 BUG_ON(!io);
3390 if (io->page)
3391 put_page(io->page);
3392 iput(io->inode);
3393 kfree(io);
3396 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3398 struct buffer_head *head, *bh;
3399 unsigned int curr_off = 0;
3401 if (!page_has_buffers(page))
3402 return;
3403 head = bh = page_buffers(page);
3404 do {
3405 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3406 && bh->b_private) {
3407 ext4_free_io_end(bh->b_private);
3408 bh->b_private = NULL;
3409 bh->b_end_io = NULL;
3411 curr_off = curr_off + bh->b_size;
3412 bh = bh->b_this_page;
3413 } while (bh != head);
3416 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3418 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3421 * free any io_end structure allocated for buffers to be discarded
3423 if (ext4_should_dioread_nolock(page->mapping->host))
3424 ext4_invalidatepage_free_endio(page, offset);
3426 * If it's a full truncate we just forget about the pending dirtying
3428 if (offset == 0)
3429 ClearPageChecked(page);
3431 if (journal)
3432 jbd2_journal_invalidatepage(journal, page, offset);
3433 else
3434 block_invalidatepage(page, offset);
3437 static int ext4_releasepage(struct page *page, gfp_t wait)
3439 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3441 WARN_ON(PageChecked(page));
3442 if (!page_has_buffers(page))
3443 return 0;
3444 if (journal)
3445 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3446 else
3447 return try_to_free_buffers(page);
3451 * O_DIRECT for ext3 (or indirect map) based files
3453 * If the O_DIRECT write will extend the file then add this inode to the
3454 * orphan list. So recovery will truncate it back to the original size
3455 * if the machine crashes during the write.
3457 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3458 * crashes then stale disk data _may_ be exposed inside the file. But current
3459 * VFS code falls back into buffered path in that case so we are safe.
3461 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3462 const struct iovec *iov, loff_t offset,
3463 unsigned long nr_segs)
3465 struct file *file = iocb->ki_filp;
3466 struct inode *inode = file->f_mapping->host;
3467 struct ext4_inode_info *ei = EXT4_I(inode);
3468 handle_t *handle;
3469 ssize_t ret;
3470 int orphan = 0;
3471 size_t count = iov_length(iov, nr_segs);
3472 int retries = 0;
3474 if (rw == WRITE) {
3475 loff_t final_size = offset + count;
3477 if (final_size > inode->i_size) {
3478 /* Credits for sb + inode write */
3479 handle = ext4_journal_start(inode, 2);
3480 if (IS_ERR(handle)) {
3481 ret = PTR_ERR(handle);
3482 goto out;
3484 ret = ext4_orphan_add(handle, inode);
3485 if (ret) {
3486 ext4_journal_stop(handle);
3487 goto out;
3489 orphan = 1;
3490 ei->i_disksize = inode->i_size;
3491 ext4_journal_stop(handle);
3495 retry:
3496 if (rw == READ && ext4_should_dioread_nolock(inode))
3497 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3498 inode->i_sb->s_bdev, iov,
3499 offset, nr_segs,
3500 ext4_get_block, NULL);
3501 else
3502 ret = blockdev_direct_IO(rw, iocb, inode,
3503 inode->i_sb->s_bdev, iov,
3504 offset, nr_segs,
3505 ext4_get_block, NULL);
3506 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3507 goto retry;
3509 if (orphan) {
3510 int err;
3512 /* Credits for sb + inode write */
3513 handle = ext4_journal_start(inode, 2);
3514 if (IS_ERR(handle)) {
3515 /* This is really bad luck. We've written the data
3516 * but cannot extend i_size. Bail out and pretend
3517 * the write failed... */
3518 ret = PTR_ERR(handle);
3519 if (inode->i_nlink)
3520 ext4_orphan_del(NULL, inode);
3522 goto out;
3524 if (inode->i_nlink)
3525 ext4_orphan_del(handle, inode);
3526 if (ret > 0) {
3527 loff_t end = offset + ret;
3528 if (end > inode->i_size) {
3529 ei->i_disksize = end;
3530 i_size_write(inode, end);
3532 * We're going to return a positive `ret'
3533 * here due to non-zero-length I/O, so there's
3534 * no way of reporting error returns from
3535 * ext4_mark_inode_dirty() to userspace. So
3536 * ignore it.
3538 ext4_mark_inode_dirty(handle, inode);
3541 err = ext4_journal_stop(handle);
3542 if (ret == 0)
3543 ret = err;
3545 out:
3546 return ret;
3549 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3550 struct buffer_head *bh_result, int create)
3552 handle_t *handle = ext4_journal_current_handle();
3553 int ret = 0;
3554 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3555 int dio_credits;
3556 int started = 0;
3558 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3559 inode->i_ino, create);
3561 * ext4_get_block in prepare for a DIO write or buffer write.
3562 * We allocate an uinitialized extent if blocks haven't been allocated.
3563 * The extent will be converted to initialized after IO complete.
3565 create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3567 if (!handle) {
3568 if (max_blocks > DIO_MAX_BLOCKS)
3569 max_blocks = DIO_MAX_BLOCKS;
3570 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3571 handle = ext4_journal_start(inode, dio_credits);
3572 if (IS_ERR(handle)) {
3573 ret = PTR_ERR(handle);
3574 goto out;
3576 started = 1;
3579 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3580 create);
3581 if (ret > 0) {
3582 bh_result->b_size = (ret << inode->i_blkbits);
3583 ret = 0;
3585 if (started)
3586 ext4_journal_stop(handle);
3587 out:
3588 return ret;
3591 static void dump_completed_IO(struct inode * inode)
3593 #ifdef EXT4_DEBUG
3594 struct list_head *cur, *before, *after;
3595 ext4_io_end_t *io, *io0, *io1;
3596 unsigned long flags;
3598 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3599 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3600 return;
3603 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3604 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3605 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3606 cur = &io->list;
3607 before = cur->prev;
3608 io0 = container_of(before, ext4_io_end_t, list);
3609 after = cur->next;
3610 io1 = container_of(after, ext4_io_end_t, list);
3612 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3613 io, inode->i_ino, io0, io1);
3615 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3616 #endif
3620 * check a range of space and convert unwritten extents to written.
3622 static int ext4_end_io_nolock(ext4_io_end_t *io)
3624 struct inode *inode = io->inode;
3625 loff_t offset = io->offset;
3626 ssize_t size = io->size;
3627 int ret = 0;
3629 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3630 "list->prev 0x%p\n",
3631 io, inode->i_ino, io->list.next, io->list.prev);
3633 if (list_empty(&io->list))
3634 return ret;
3636 if (io->flag != EXT4_IO_UNWRITTEN)
3637 return ret;
3639 ret = ext4_convert_unwritten_extents(inode, offset, size);
3640 if (ret < 0) {
3641 printk(KERN_EMERG "%s: failed to convert unwritten"
3642 "extents to written extents, error is %d"
3643 " io is still on inode %lu aio dio list\n",
3644 __func__, ret, inode->i_ino);
3645 return ret;
3648 /* clear the DIO AIO unwritten flag */
3649 io->flag = 0;
3650 return ret;
3654 * work on completed aio dio IO, to convert unwritten extents to extents
3656 static void ext4_end_io_work(struct work_struct *work)
3658 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3659 struct inode *inode = io->inode;
3660 struct ext4_inode_info *ei = EXT4_I(inode);
3661 unsigned long flags;
3662 int ret;
3664 mutex_lock(&inode->i_mutex);
3665 ret = ext4_end_io_nolock(io);
3666 if (ret < 0) {
3667 mutex_unlock(&inode->i_mutex);
3668 return;
3671 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3672 if (!list_empty(&io->list))
3673 list_del_init(&io->list);
3674 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3675 mutex_unlock(&inode->i_mutex);
3676 ext4_free_io_end(io);
3680 * This function is called from ext4_sync_file().
3682 * When IO is completed, the work to convert unwritten extents to
3683 * written is queued on workqueue but may not get immediately
3684 * scheduled. When fsync is called, we need to ensure the
3685 * conversion is complete before fsync returns.
3686 * The inode keeps track of a list of pending/completed IO that
3687 * might needs to do the conversion. This function walks through
3688 * the list and convert the related unwritten extents for completed IO
3689 * to written.
3690 * The function return the number of pending IOs on success.
3692 int flush_completed_IO(struct inode *inode)
3694 ext4_io_end_t *io;
3695 struct ext4_inode_info *ei = EXT4_I(inode);
3696 unsigned long flags;
3697 int ret = 0;
3698 int ret2 = 0;
3700 if (list_empty(&ei->i_completed_io_list))
3701 return ret;
3703 dump_completed_IO(inode);
3704 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3705 while (!list_empty(&ei->i_completed_io_list)){
3706 io = list_entry(ei->i_completed_io_list.next,
3707 ext4_io_end_t, list);
3709 * Calling ext4_end_io_nolock() to convert completed
3710 * IO to written.
3712 * When ext4_sync_file() is called, run_queue() may already
3713 * about to flush the work corresponding to this io structure.
3714 * It will be upset if it founds the io structure related
3715 * to the work-to-be schedule is freed.
3717 * Thus we need to keep the io structure still valid here after
3718 * convertion finished. The io structure has a flag to
3719 * avoid double converting from both fsync and background work
3720 * queue work.
3722 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3723 ret = ext4_end_io_nolock(io);
3724 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3725 if (ret < 0)
3726 ret2 = ret;
3727 else
3728 list_del_init(&io->list);
3730 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3731 return (ret2 < 0) ? ret2 : 0;
3734 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3736 ext4_io_end_t *io = NULL;
3738 io = kmalloc(sizeof(*io), flags);
3740 if (io) {
3741 igrab(inode);
3742 io->inode = inode;
3743 io->flag = 0;
3744 io->offset = 0;
3745 io->size = 0;
3746 io->page = NULL;
3747 INIT_WORK(&io->work, ext4_end_io_work);
3748 INIT_LIST_HEAD(&io->list);
3751 return io;
3754 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3755 ssize_t size, void *private)
3757 ext4_io_end_t *io_end = iocb->private;
3758 struct workqueue_struct *wq;
3759 unsigned long flags;
3760 struct ext4_inode_info *ei;
3762 /* if not async direct IO or dio with 0 bytes write, just return */
3763 if (!io_end || !size)
3764 return;
3766 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3767 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3768 iocb->private, io_end->inode->i_ino, iocb, offset,
3769 size);
3771 /* if not aio dio with unwritten extents, just free io and return */
3772 if (io_end->flag != EXT4_IO_UNWRITTEN){
3773 ext4_free_io_end(io_end);
3774 iocb->private = NULL;
3775 return;
3778 io_end->offset = offset;
3779 io_end->size = size;
3780 io_end->flag = EXT4_IO_UNWRITTEN;
3781 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3783 /* queue the work to convert unwritten extents to written */
3784 queue_work(wq, &io_end->work);
3786 /* Add the io_end to per-inode completed aio dio list*/
3787 ei = EXT4_I(io_end->inode);
3788 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3789 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3790 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3791 iocb->private = NULL;
3794 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3796 ext4_io_end_t *io_end = bh->b_private;
3797 struct workqueue_struct *wq;
3798 struct inode *inode;
3799 unsigned long flags;
3801 if (!test_clear_buffer_uninit(bh) || !io_end)
3802 goto out;
3804 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3805 printk("sb umounted, discard end_io request for inode %lu\n",
3806 io_end->inode->i_ino);
3807 ext4_free_io_end(io_end);
3808 goto out;
3811 io_end->flag = EXT4_IO_UNWRITTEN;
3812 inode = io_end->inode;
3814 /* Add the io_end to per-inode completed io list*/
3815 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3816 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3817 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3819 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3820 /* queue the work to convert unwritten extents to written */
3821 queue_work(wq, &io_end->work);
3822 out:
3823 bh->b_private = NULL;
3824 bh->b_end_io = NULL;
3825 clear_buffer_uninit(bh);
3826 end_buffer_async_write(bh, uptodate);
3829 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3831 ext4_io_end_t *io_end;
3832 struct page *page = bh->b_page;
3833 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3834 size_t size = bh->b_size;
3836 retry:
3837 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3838 if (!io_end) {
3839 if (printk_ratelimit())
3840 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3841 schedule();
3842 goto retry;
3844 io_end->offset = offset;
3845 io_end->size = size;
3847 * We need to hold a reference to the page to make sure it
3848 * doesn't get evicted before ext4_end_io_work() has a chance
3849 * to convert the extent from written to unwritten.
3851 io_end->page = page;
3852 get_page(io_end->page);
3854 bh->b_private = io_end;
3855 bh->b_end_io = ext4_end_io_buffer_write;
3856 return 0;
3860 * For ext4 extent files, ext4 will do direct-io write to holes,
3861 * preallocated extents, and those write extend the file, no need to
3862 * fall back to buffered IO.
3864 * For holes, we fallocate those blocks, mark them as unintialized
3865 * If those blocks were preallocated, we mark sure they are splited, but
3866 * still keep the range to write as unintialized.
3868 * The unwrritten extents will be converted to written when DIO is completed.
3869 * For async direct IO, since the IO may still pending when return, we
3870 * set up an end_io call back function, which will do the convertion
3871 * when async direct IO completed.
3873 * If the O_DIRECT write will extend the file then add this inode to the
3874 * orphan list. So recovery will truncate it back to the original size
3875 * if the machine crashes during the write.
3878 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3879 const struct iovec *iov, loff_t offset,
3880 unsigned long nr_segs)
3882 struct file *file = iocb->ki_filp;
3883 struct inode *inode = file->f_mapping->host;
3884 ssize_t ret;
3885 size_t count = iov_length(iov, nr_segs);
3887 loff_t final_size = offset + count;
3888 if (rw == WRITE && final_size <= inode->i_size) {
3890 * We could direct write to holes and fallocate.
3892 * Allocated blocks to fill the hole are marked as uninitialized
3893 * to prevent paralel buffered read to expose the stale data
3894 * before DIO complete the data IO.
3896 * As to previously fallocated extents, ext4 get_block
3897 * will just simply mark the buffer mapped but still
3898 * keep the extents uninitialized.
3900 * for non AIO case, we will convert those unwritten extents
3901 * to written after return back from blockdev_direct_IO.
3903 * for async DIO, the conversion needs to be defered when
3904 * the IO is completed. The ext4 end_io callback function
3905 * will be called to take care of the conversion work.
3906 * Here for async case, we allocate an io_end structure to
3907 * hook to the iocb.
3909 iocb->private = NULL;
3910 EXT4_I(inode)->cur_aio_dio = NULL;
3911 if (!is_sync_kiocb(iocb)) {
3912 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3913 if (!iocb->private)
3914 return -ENOMEM;
3916 * we save the io structure for current async
3917 * direct IO, so that later ext4_get_blocks()
3918 * could flag the io structure whether there
3919 * is a unwritten extents needs to be converted
3920 * when IO is completed.
3922 EXT4_I(inode)->cur_aio_dio = iocb->private;
3925 ret = blockdev_direct_IO(rw, iocb, inode,
3926 inode->i_sb->s_bdev, iov,
3927 offset, nr_segs,
3928 ext4_get_block_write,
3929 ext4_end_io_dio);
3930 if (iocb->private)
3931 EXT4_I(inode)->cur_aio_dio = NULL;
3933 * The io_end structure takes a reference to the inode,
3934 * that structure needs to be destroyed and the
3935 * reference to the inode need to be dropped, when IO is
3936 * complete, even with 0 byte write, or failed.
3938 * In the successful AIO DIO case, the io_end structure will be
3939 * desctroyed and the reference to the inode will be dropped
3940 * after the end_io call back function is called.
3942 * In the case there is 0 byte write, or error case, since
3943 * VFS direct IO won't invoke the end_io call back function,
3944 * we need to free the end_io structure here.
3946 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3947 ext4_free_io_end(iocb->private);
3948 iocb->private = NULL;
3949 } else if (ret > 0 && ext4_test_inode_state(inode,
3950 EXT4_STATE_DIO_UNWRITTEN)) {
3951 int err;
3953 * for non AIO case, since the IO is already
3954 * completed, we could do the convertion right here
3956 err = ext4_convert_unwritten_extents(inode,
3957 offset, ret);
3958 if (err < 0)
3959 ret = err;
3960 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3962 return ret;
3965 /* for write the the end of file case, we fall back to old way */
3966 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3969 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3970 const struct iovec *iov, loff_t offset,
3971 unsigned long nr_segs)
3973 struct file *file = iocb->ki_filp;
3974 struct inode *inode = file->f_mapping->host;
3976 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3977 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3979 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3983 * Pages can be marked dirty completely asynchronously from ext4's journalling
3984 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3985 * much here because ->set_page_dirty is called under VFS locks. The page is
3986 * not necessarily locked.
3988 * We cannot just dirty the page and leave attached buffers clean, because the
3989 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3990 * or jbddirty because all the journalling code will explode.
3992 * So what we do is to mark the page "pending dirty" and next time writepage
3993 * is called, propagate that into the buffers appropriately.
3995 static int ext4_journalled_set_page_dirty(struct page *page)
3997 SetPageChecked(page);
3998 return __set_page_dirty_nobuffers(page);
4001 static const struct address_space_operations ext4_ordered_aops = {
4002 .readpage = ext4_readpage,
4003 .readpages = ext4_readpages,
4004 .writepage = ext4_writepage,
4005 .sync_page = block_sync_page,
4006 .write_begin = ext4_write_begin,
4007 .write_end = ext4_ordered_write_end,
4008 .bmap = ext4_bmap,
4009 .invalidatepage = ext4_invalidatepage,
4010 .releasepage = ext4_releasepage,
4011 .direct_IO = ext4_direct_IO,
4012 .migratepage = buffer_migrate_page,
4013 .is_partially_uptodate = block_is_partially_uptodate,
4014 .error_remove_page = generic_error_remove_page,
4017 static const struct address_space_operations ext4_writeback_aops = {
4018 .readpage = ext4_readpage,
4019 .readpages = ext4_readpages,
4020 .writepage = ext4_writepage,
4021 .sync_page = block_sync_page,
4022 .write_begin = ext4_write_begin,
4023 .write_end = ext4_writeback_write_end,
4024 .bmap = ext4_bmap,
4025 .invalidatepage = ext4_invalidatepage,
4026 .releasepage = ext4_releasepage,
4027 .direct_IO = ext4_direct_IO,
4028 .migratepage = buffer_migrate_page,
4029 .is_partially_uptodate = block_is_partially_uptodate,
4030 .error_remove_page = generic_error_remove_page,
4033 static const struct address_space_operations ext4_journalled_aops = {
4034 .readpage = ext4_readpage,
4035 .readpages = ext4_readpages,
4036 .writepage = ext4_writepage,
4037 .sync_page = block_sync_page,
4038 .write_begin = ext4_write_begin,
4039 .write_end = ext4_journalled_write_end,
4040 .set_page_dirty = ext4_journalled_set_page_dirty,
4041 .bmap = ext4_bmap,
4042 .invalidatepage = ext4_invalidatepage,
4043 .releasepage = ext4_releasepage,
4044 .is_partially_uptodate = block_is_partially_uptodate,
4045 .error_remove_page = generic_error_remove_page,
4048 static const struct address_space_operations ext4_da_aops = {
4049 .readpage = ext4_readpage,
4050 .readpages = ext4_readpages,
4051 .writepage = ext4_writepage,
4052 .writepages = ext4_da_writepages,
4053 .sync_page = block_sync_page,
4054 .write_begin = ext4_da_write_begin,
4055 .write_end = ext4_da_write_end,
4056 .bmap = ext4_bmap,
4057 .invalidatepage = ext4_da_invalidatepage,
4058 .releasepage = ext4_releasepage,
4059 .direct_IO = ext4_direct_IO,
4060 .migratepage = buffer_migrate_page,
4061 .is_partially_uptodate = block_is_partially_uptodate,
4062 .error_remove_page = generic_error_remove_page,
4065 void ext4_set_aops(struct inode *inode)
4067 if (ext4_should_order_data(inode) &&
4068 test_opt(inode->i_sb, DELALLOC))
4069 inode->i_mapping->a_ops = &ext4_da_aops;
4070 else if (ext4_should_order_data(inode))
4071 inode->i_mapping->a_ops = &ext4_ordered_aops;
4072 else if (ext4_should_writeback_data(inode) &&
4073 test_opt(inode->i_sb, DELALLOC))
4074 inode->i_mapping->a_ops = &ext4_da_aops;
4075 else if (ext4_should_writeback_data(inode))
4076 inode->i_mapping->a_ops = &ext4_writeback_aops;
4077 else
4078 inode->i_mapping->a_ops = &ext4_journalled_aops;
4082 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4083 * up to the end of the block which corresponds to `from'.
4084 * This required during truncate. We need to physically zero the tail end
4085 * of that block so it doesn't yield old data if the file is later grown.
4087 int ext4_block_truncate_page(handle_t *handle,
4088 struct address_space *mapping, loff_t from)
4090 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4091 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4092 unsigned blocksize, length, pos;
4093 ext4_lblk_t iblock;
4094 struct inode *inode = mapping->host;
4095 struct buffer_head *bh;
4096 struct page *page;
4097 int err = 0;
4099 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4100 mapping_gfp_mask(mapping) & ~__GFP_FS);
4101 if (!page)
4102 return -EINVAL;
4104 blocksize = inode->i_sb->s_blocksize;
4105 length = blocksize - (offset & (blocksize - 1));
4106 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4109 * For "nobh" option, we can only work if we don't need to
4110 * read-in the page - otherwise we create buffers to do the IO.
4112 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4113 ext4_should_writeback_data(inode) && PageUptodate(page)) {
4114 zero_user(page, offset, length);
4115 set_page_dirty(page);
4116 goto unlock;
4119 if (!page_has_buffers(page))
4120 create_empty_buffers(page, blocksize, 0);
4122 /* Find the buffer that contains "offset" */
4123 bh = page_buffers(page);
4124 pos = blocksize;
4125 while (offset >= pos) {
4126 bh = bh->b_this_page;
4127 iblock++;
4128 pos += blocksize;
4131 err = 0;
4132 if (buffer_freed(bh)) {
4133 BUFFER_TRACE(bh, "freed: skip");
4134 goto unlock;
4137 if (!buffer_mapped(bh)) {
4138 BUFFER_TRACE(bh, "unmapped");
4139 ext4_get_block(inode, iblock, bh, 0);
4140 /* unmapped? It's a hole - nothing to do */
4141 if (!buffer_mapped(bh)) {
4142 BUFFER_TRACE(bh, "still unmapped");
4143 goto unlock;
4147 /* Ok, it's mapped. Make sure it's up-to-date */
4148 if (PageUptodate(page))
4149 set_buffer_uptodate(bh);
4151 if (!buffer_uptodate(bh)) {
4152 err = -EIO;
4153 ll_rw_block(READ, 1, &bh);
4154 wait_on_buffer(bh);
4155 /* Uhhuh. Read error. Complain and punt. */
4156 if (!buffer_uptodate(bh))
4157 goto unlock;
4160 if (ext4_should_journal_data(inode)) {
4161 BUFFER_TRACE(bh, "get write access");
4162 err = ext4_journal_get_write_access(handle, bh);
4163 if (err)
4164 goto unlock;
4167 zero_user(page, offset, length);
4169 BUFFER_TRACE(bh, "zeroed end of block");
4171 err = 0;
4172 if (ext4_should_journal_data(inode)) {
4173 err = ext4_handle_dirty_metadata(handle, inode, bh);
4174 } else {
4175 if (ext4_should_order_data(inode))
4176 err = ext4_jbd2_file_inode(handle, inode);
4177 mark_buffer_dirty(bh);
4180 unlock:
4181 unlock_page(page);
4182 page_cache_release(page);
4183 return err;
4187 * Probably it should be a library function... search for first non-zero word
4188 * or memcmp with zero_page, whatever is better for particular architecture.
4189 * Linus?
4191 static inline int all_zeroes(__le32 *p, __le32 *q)
4193 while (p < q)
4194 if (*p++)
4195 return 0;
4196 return 1;
4200 * ext4_find_shared - find the indirect blocks for partial truncation.
4201 * @inode: inode in question
4202 * @depth: depth of the affected branch
4203 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4204 * @chain: place to store the pointers to partial indirect blocks
4205 * @top: place to the (detached) top of branch
4207 * This is a helper function used by ext4_truncate().
4209 * When we do truncate() we may have to clean the ends of several
4210 * indirect blocks but leave the blocks themselves alive. Block is
4211 * partially truncated if some data below the new i_size is refered
4212 * from it (and it is on the path to the first completely truncated
4213 * data block, indeed). We have to free the top of that path along
4214 * with everything to the right of the path. Since no allocation
4215 * past the truncation point is possible until ext4_truncate()
4216 * finishes, we may safely do the latter, but top of branch may
4217 * require special attention - pageout below the truncation point
4218 * might try to populate it.
4220 * We atomically detach the top of branch from the tree, store the
4221 * block number of its root in *@top, pointers to buffer_heads of
4222 * partially truncated blocks - in @chain[].bh and pointers to
4223 * their last elements that should not be removed - in
4224 * @chain[].p. Return value is the pointer to last filled element
4225 * of @chain.
4227 * The work left to caller to do the actual freeing of subtrees:
4228 * a) free the subtree starting from *@top
4229 * b) free the subtrees whose roots are stored in
4230 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4231 * c) free the subtrees growing from the inode past the @chain[0].
4232 * (no partially truncated stuff there). */
4234 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4235 ext4_lblk_t offsets[4], Indirect chain[4],
4236 __le32 *top)
4238 Indirect *partial, *p;
4239 int k, err;
4241 *top = 0;
4242 /* Make k index the deepest non-null offset + 1 */
4243 for (k = depth; k > 1 && !offsets[k-1]; k--)
4245 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4246 /* Writer: pointers */
4247 if (!partial)
4248 partial = chain + k-1;
4250 * If the branch acquired continuation since we've looked at it -
4251 * fine, it should all survive and (new) top doesn't belong to us.
4253 if (!partial->key && *partial->p)
4254 /* Writer: end */
4255 goto no_top;
4256 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4259 * OK, we've found the last block that must survive. The rest of our
4260 * branch should be detached before unlocking. However, if that rest
4261 * of branch is all ours and does not grow immediately from the inode
4262 * it's easier to cheat and just decrement partial->p.
4264 if (p == chain + k - 1 && p > chain) {
4265 p->p--;
4266 } else {
4267 *top = *p->p;
4268 /* Nope, don't do this in ext4. Must leave the tree intact */
4269 #if 0
4270 *p->p = 0;
4271 #endif
4273 /* Writer: end */
4275 while (partial > p) {
4276 brelse(partial->bh);
4277 partial--;
4279 no_top:
4280 return partial;
4284 * Zero a number of block pointers in either an inode or an indirect block.
4285 * If we restart the transaction we must again get write access to the
4286 * indirect block for further modification.
4288 * We release `count' blocks on disk, but (last - first) may be greater
4289 * than `count' because there can be holes in there.
4291 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4292 struct buffer_head *bh,
4293 ext4_fsblk_t block_to_free,
4294 unsigned long count, __le32 *first,
4295 __le32 *last)
4297 __le32 *p;
4298 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4300 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4301 flags |= EXT4_FREE_BLOCKS_METADATA;
4303 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4304 count)) {
4305 ext4_error(inode->i_sb, "inode #%lu: "
4306 "attempt to clear blocks %llu len %lu, invalid",
4307 inode->i_ino, (unsigned long long) block_to_free,
4308 count);
4309 return 1;
4312 if (try_to_extend_transaction(handle, inode)) {
4313 if (bh) {
4314 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4315 ext4_handle_dirty_metadata(handle, inode, bh);
4317 ext4_mark_inode_dirty(handle, inode);
4318 ext4_truncate_restart_trans(handle, inode,
4319 blocks_for_truncate(inode));
4320 if (bh) {
4321 BUFFER_TRACE(bh, "retaking write access");
4322 ext4_journal_get_write_access(handle, bh);
4326 for (p = first; p < last; p++)
4327 *p = 0;
4329 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4330 return 0;
4334 * ext4_free_data - free a list of data blocks
4335 * @handle: handle for this transaction
4336 * @inode: inode we are dealing with
4337 * @this_bh: indirect buffer_head which contains *@first and *@last
4338 * @first: array of block numbers
4339 * @last: points immediately past the end of array
4341 * We are freeing all blocks refered from that array (numbers are stored as
4342 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4344 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4345 * blocks are contiguous then releasing them at one time will only affect one
4346 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4347 * actually use a lot of journal space.
4349 * @this_bh will be %NULL if @first and @last point into the inode's direct
4350 * block pointers.
4352 static void ext4_free_data(handle_t *handle, struct inode *inode,
4353 struct buffer_head *this_bh,
4354 __le32 *first, __le32 *last)
4356 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4357 unsigned long count = 0; /* Number of blocks in the run */
4358 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4359 corresponding to
4360 block_to_free */
4361 ext4_fsblk_t nr; /* Current block # */
4362 __le32 *p; /* Pointer into inode/ind
4363 for current block */
4364 int err;
4366 if (this_bh) { /* For indirect block */
4367 BUFFER_TRACE(this_bh, "get_write_access");
4368 err = ext4_journal_get_write_access(handle, this_bh);
4369 /* Important: if we can't update the indirect pointers
4370 * to the blocks, we can't free them. */
4371 if (err)
4372 return;
4375 for (p = first; p < last; p++) {
4376 nr = le32_to_cpu(*p);
4377 if (nr) {
4378 /* accumulate blocks to free if they're contiguous */
4379 if (count == 0) {
4380 block_to_free = nr;
4381 block_to_free_p = p;
4382 count = 1;
4383 } else if (nr == block_to_free + count) {
4384 count++;
4385 } else {
4386 if (ext4_clear_blocks(handle, inode, this_bh,
4387 block_to_free, count,
4388 block_to_free_p, p))
4389 break;
4390 block_to_free = nr;
4391 block_to_free_p = p;
4392 count = 1;
4397 if (count > 0)
4398 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4399 count, block_to_free_p, p);
4401 if (this_bh) {
4402 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4405 * The buffer head should have an attached journal head at this
4406 * point. However, if the data is corrupted and an indirect
4407 * block pointed to itself, it would have been detached when
4408 * the block was cleared. Check for this instead of OOPSing.
4410 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4411 ext4_handle_dirty_metadata(handle, inode, this_bh);
4412 else
4413 ext4_error(inode->i_sb,
4414 "circular indirect block detected, "
4415 "inode=%lu, block=%llu",
4416 inode->i_ino,
4417 (unsigned long long) this_bh->b_blocknr);
4422 * ext4_free_branches - free an array of branches
4423 * @handle: JBD handle for this transaction
4424 * @inode: inode we are dealing with
4425 * @parent_bh: the buffer_head which contains *@first and *@last
4426 * @first: array of block numbers
4427 * @last: pointer immediately past the end of array
4428 * @depth: depth of the branches to free
4430 * We are freeing all blocks refered from these branches (numbers are
4431 * stored as little-endian 32-bit) and updating @inode->i_blocks
4432 * appropriately.
4434 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4435 struct buffer_head *parent_bh,
4436 __le32 *first, __le32 *last, int depth)
4438 ext4_fsblk_t nr;
4439 __le32 *p;
4441 if (ext4_handle_is_aborted(handle))
4442 return;
4444 if (depth--) {
4445 struct buffer_head *bh;
4446 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4447 p = last;
4448 while (--p >= first) {
4449 nr = le32_to_cpu(*p);
4450 if (!nr)
4451 continue; /* A hole */
4453 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4454 nr, 1)) {
4455 ext4_error(inode->i_sb,
4456 "indirect mapped block in inode "
4457 "#%lu invalid (level %d, blk #%lu)",
4458 inode->i_ino, depth,
4459 (unsigned long) nr);
4460 break;
4463 /* Go read the buffer for the next level down */
4464 bh = sb_bread(inode->i_sb, nr);
4467 * A read failure? Report error and clear slot
4468 * (should be rare).
4470 if (!bh) {
4471 ext4_error(inode->i_sb,
4472 "Read failure, inode=%lu, block=%llu",
4473 inode->i_ino, nr);
4474 continue;
4477 /* This zaps the entire block. Bottom up. */
4478 BUFFER_TRACE(bh, "free child branches");
4479 ext4_free_branches(handle, inode, bh,
4480 (__le32 *) bh->b_data,
4481 (__le32 *) bh->b_data + addr_per_block,
4482 depth);
4485 * We've probably journalled the indirect block several
4486 * times during the truncate. But it's no longer
4487 * needed and we now drop it from the transaction via
4488 * jbd2_journal_revoke().
4490 * That's easy if it's exclusively part of this
4491 * transaction. But if it's part of the committing
4492 * transaction then jbd2_journal_forget() will simply
4493 * brelse() it. That means that if the underlying
4494 * block is reallocated in ext4_get_block(),
4495 * unmap_underlying_metadata() will find this block
4496 * and will try to get rid of it. damn, damn.
4498 * If this block has already been committed to the
4499 * journal, a revoke record will be written. And
4500 * revoke records must be emitted *before* clearing
4501 * this block's bit in the bitmaps.
4503 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4506 * Everything below this this pointer has been
4507 * released. Now let this top-of-subtree go.
4509 * We want the freeing of this indirect block to be
4510 * atomic in the journal with the updating of the
4511 * bitmap block which owns it. So make some room in
4512 * the journal.
4514 * We zero the parent pointer *after* freeing its
4515 * pointee in the bitmaps, so if extend_transaction()
4516 * for some reason fails to put the bitmap changes and
4517 * the release into the same transaction, recovery
4518 * will merely complain about releasing a free block,
4519 * rather than leaking blocks.
4521 if (ext4_handle_is_aborted(handle))
4522 return;
4523 if (try_to_extend_transaction(handle, inode)) {
4524 ext4_mark_inode_dirty(handle, inode);
4525 ext4_truncate_restart_trans(handle, inode,
4526 blocks_for_truncate(inode));
4529 ext4_free_blocks(handle, inode, 0, nr, 1,
4530 EXT4_FREE_BLOCKS_METADATA);
4532 if (parent_bh) {
4534 * The block which we have just freed is
4535 * pointed to by an indirect block: journal it
4537 BUFFER_TRACE(parent_bh, "get_write_access");
4538 if (!ext4_journal_get_write_access(handle,
4539 parent_bh)){
4540 *p = 0;
4541 BUFFER_TRACE(parent_bh,
4542 "call ext4_handle_dirty_metadata");
4543 ext4_handle_dirty_metadata(handle,
4544 inode,
4545 parent_bh);
4549 } else {
4550 /* We have reached the bottom of the tree. */
4551 BUFFER_TRACE(parent_bh, "free data blocks");
4552 ext4_free_data(handle, inode, parent_bh, first, last);
4556 int ext4_can_truncate(struct inode *inode)
4558 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4559 return 0;
4560 if (S_ISREG(inode->i_mode))
4561 return 1;
4562 if (S_ISDIR(inode->i_mode))
4563 return 1;
4564 if (S_ISLNK(inode->i_mode))
4565 return !ext4_inode_is_fast_symlink(inode);
4566 return 0;
4570 * ext4_truncate()
4572 * We block out ext4_get_block() block instantiations across the entire
4573 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4574 * simultaneously on behalf of the same inode.
4576 * As we work through the truncate and commmit bits of it to the journal there
4577 * is one core, guiding principle: the file's tree must always be consistent on
4578 * disk. We must be able to restart the truncate after a crash.
4580 * The file's tree may be transiently inconsistent in memory (although it
4581 * probably isn't), but whenever we close off and commit a journal transaction,
4582 * the contents of (the filesystem + the journal) must be consistent and
4583 * restartable. It's pretty simple, really: bottom up, right to left (although
4584 * left-to-right works OK too).
4586 * Note that at recovery time, journal replay occurs *before* the restart of
4587 * truncate against the orphan inode list.
4589 * The committed inode has the new, desired i_size (which is the same as
4590 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4591 * that this inode's truncate did not complete and it will again call
4592 * ext4_truncate() to have another go. So there will be instantiated blocks
4593 * to the right of the truncation point in a crashed ext4 filesystem. But
4594 * that's fine - as long as they are linked from the inode, the post-crash
4595 * ext4_truncate() run will find them and release them.
4597 void ext4_truncate(struct inode *inode)
4599 handle_t *handle;
4600 struct ext4_inode_info *ei = EXT4_I(inode);
4601 __le32 *i_data = ei->i_data;
4602 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4603 struct address_space *mapping = inode->i_mapping;
4604 ext4_lblk_t offsets[4];
4605 Indirect chain[4];
4606 Indirect *partial;
4607 __le32 nr = 0;
4608 int n;
4609 ext4_lblk_t last_block;
4610 unsigned blocksize = inode->i_sb->s_blocksize;
4612 if (!ext4_can_truncate(inode))
4613 return;
4615 EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4617 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4618 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4620 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4621 ext4_ext_truncate(inode);
4622 return;
4625 handle = start_transaction(inode);
4626 if (IS_ERR(handle))
4627 return; /* AKPM: return what? */
4629 last_block = (inode->i_size + blocksize-1)
4630 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4632 if (inode->i_size & (blocksize - 1))
4633 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4634 goto out_stop;
4636 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4637 if (n == 0)
4638 goto out_stop; /* error */
4641 * OK. This truncate is going to happen. We add the inode to the
4642 * orphan list, so that if this truncate spans multiple transactions,
4643 * and we crash, we will resume the truncate when the filesystem
4644 * recovers. It also marks the inode dirty, to catch the new size.
4646 * Implication: the file must always be in a sane, consistent
4647 * truncatable state while each transaction commits.
4649 if (ext4_orphan_add(handle, inode))
4650 goto out_stop;
4653 * From here we block out all ext4_get_block() callers who want to
4654 * modify the block allocation tree.
4656 down_write(&ei->i_data_sem);
4658 ext4_discard_preallocations(inode);
4661 * The orphan list entry will now protect us from any crash which
4662 * occurs before the truncate completes, so it is now safe to propagate
4663 * the new, shorter inode size (held for now in i_size) into the
4664 * on-disk inode. We do this via i_disksize, which is the value which
4665 * ext4 *really* writes onto the disk inode.
4667 ei->i_disksize = inode->i_size;
4669 if (n == 1) { /* direct blocks */
4670 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4671 i_data + EXT4_NDIR_BLOCKS);
4672 goto do_indirects;
4675 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4676 /* Kill the top of shared branch (not detached) */
4677 if (nr) {
4678 if (partial == chain) {
4679 /* Shared branch grows from the inode */
4680 ext4_free_branches(handle, inode, NULL,
4681 &nr, &nr+1, (chain+n-1) - partial);
4682 *partial->p = 0;
4684 * We mark the inode dirty prior to restart,
4685 * and prior to stop. No need for it here.
4687 } else {
4688 /* Shared branch grows from an indirect block */
4689 BUFFER_TRACE(partial->bh, "get_write_access");
4690 ext4_free_branches(handle, inode, partial->bh,
4691 partial->p,
4692 partial->p+1, (chain+n-1) - partial);
4695 /* Clear the ends of indirect blocks on the shared branch */
4696 while (partial > chain) {
4697 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4698 (__le32*)partial->bh->b_data+addr_per_block,
4699 (chain+n-1) - partial);
4700 BUFFER_TRACE(partial->bh, "call brelse");
4701 brelse(partial->bh);
4702 partial--;
4704 do_indirects:
4705 /* Kill the remaining (whole) subtrees */
4706 switch (offsets[0]) {
4707 default:
4708 nr = i_data[EXT4_IND_BLOCK];
4709 if (nr) {
4710 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4711 i_data[EXT4_IND_BLOCK] = 0;
4713 case EXT4_IND_BLOCK:
4714 nr = i_data[EXT4_DIND_BLOCK];
4715 if (nr) {
4716 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4717 i_data[EXT4_DIND_BLOCK] = 0;
4719 case EXT4_DIND_BLOCK:
4720 nr = i_data[EXT4_TIND_BLOCK];
4721 if (nr) {
4722 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4723 i_data[EXT4_TIND_BLOCK] = 0;
4725 case EXT4_TIND_BLOCK:
4729 up_write(&ei->i_data_sem);
4730 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4731 ext4_mark_inode_dirty(handle, inode);
4734 * In a multi-transaction truncate, we only make the final transaction
4735 * synchronous
4737 if (IS_SYNC(inode))
4738 ext4_handle_sync(handle);
4739 out_stop:
4741 * If this was a simple ftruncate(), and the file will remain alive
4742 * then we need to clear up the orphan record which we created above.
4743 * However, if this was a real unlink then we were called by
4744 * ext4_delete_inode(), and we allow that function to clean up the
4745 * orphan info for us.
4747 if (inode->i_nlink)
4748 ext4_orphan_del(handle, inode);
4750 ext4_journal_stop(handle);
4754 * ext4_get_inode_loc returns with an extra refcount against the inode's
4755 * underlying buffer_head on success. If 'in_mem' is true, we have all
4756 * data in memory that is needed to recreate the on-disk version of this
4757 * inode.
4759 static int __ext4_get_inode_loc(struct inode *inode,
4760 struct ext4_iloc *iloc, int in_mem)
4762 struct ext4_group_desc *gdp;
4763 struct buffer_head *bh;
4764 struct super_block *sb = inode->i_sb;
4765 ext4_fsblk_t block;
4766 int inodes_per_block, inode_offset;
4768 iloc->bh = NULL;
4769 if (!ext4_valid_inum(sb, inode->i_ino))
4770 return -EIO;
4772 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4773 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4774 if (!gdp)
4775 return -EIO;
4778 * Figure out the offset within the block group inode table
4780 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4781 inode_offset = ((inode->i_ino - 1) %
4782 EXT4_INODES_PER_GROUP(sb));
4783 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4784 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4786 bh = sb_getblk(sb, block);
4787 if (!bh) {
4788 ext4_error(sb, "unable to read inode block - "
4789 "inode=%lu, block=%llu", inode->i_ino, block);
4790 return -EIO;
4792 if (!buffer_uptodate(bh)) {
4793 lock_buffer(bh);
4796 * If the buffer has the write error flag, we have failed
4797 * to write out another inode in the same block. In this
4798 * case, we don't have to read the block because we may
4799 * read the old inode data successfully.
4801 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4802 set_buffer_uptodate(bh);
4804 if (buffer_uptodate(bh)) {
4805 /* someone brought it uptodate while we waited */
4806 unlock_buffer(bh);
4807 goto has_buffer;
4811 * If we have all information of the inode in memory and this
4812 * is the only valid inode in the block, we need not read the
4813 * block.
4815 if (in_mem) {
4816 struct buffer_head *bitmap_bh;
4817 int i, start;
4819 start = inode_offset & ~(inodes_per_block - 1);
4821 /* Is the inode bitmap in cache? */
4822 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4823 if (!bitmap_bh)
4824 goto make_io;
4827 * If the inode bitmap isn't in cache then the
4828 * optimisation may end up performing two reads instead
4829 * of one, so skip it.
4831 if (!buffer_uptodate(bitmap_bh)) {
4832 brelse(bitmap_bh);
4833 goto make_io;
4835 for (i = start; i < start + inodes_per_block; i++) {
4836 if (i == inode_offset)
4837 continue;
4838 if (ext4_test_bit(i, bitmap_bh->b_data))
4839 break;
4841 brelse(bitmap_bh);
4842 if (i == start + inodes_per_block) {
4843 /* all other inodes are free, so skip I/O */
4844 memset(bh->b_data, 0, bh->b_size);
4845 set_buffer_uptodate(bh);
4846 unlock_buffer(bh);
4847 goto has_buffer;
4851 make_io:
4853 * If we need to do any I/O, try to pre-readahead extra
4854 * blocks from the inode table.
4856 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4857 ext4_fsblk_t b, end, table;
4858 unsigned num;
4860 table = ext4_inode_table(sb, gdp);
4861 /* s_inode_readahead_blks is always a power of 2 */
4862 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4863 if (table > b)
4864 b = table;
4865 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4866 num = EXT4_INODES_PER_GROUP(sb);
4867 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4868 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4869 num -= ext4_itable_unused_count(sb, gdp);
4870 table += num / inodes_per_block;
4871 if (end > table)
4872 end = table;
4873 while (b <= end)
4874 sb_breadahead(sb, b++);
4878 * There are other valid inodes in the buffer, this inode
4879 * has in-inode xattrs, or we don't have this inode in memory.
4880 * Read the block from disk.
4882 get_bh(bh);
4883 bh->b_end_io = end_buffer_read_sync;
4884 submit_bh(READ_META, bh);
4885 wait_on_buffer(bh);
4886 if (!buffer_uptodate(bh)) {
4887 ext4_error(sb, "unable to read inode block - inode=%lu,"
4888 " block=%llu", inode->i_ino, block);
4889 brelse(bh);
4890 return -EIO;
4893 has_buffer:
4894 iloc->bh = bh;
4895 return 0;
4898 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4900 /* We have all inode data except xattrs in memory here. */
4901 return __ext4_get_inode_loc(inode, iloc,
4902 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4905 void ext4_set_inode_flags(struct inode *inode)
4907 unsigned int flags = EXT4_I(inode)->i_flags;
4909 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4910 if (flags & EXT4_SYNC_FL)
4911 inode->i_flags |= S_SYNC;
4912 if (flags & EXT4_APPEND_FL)
4913 inode->i_flags |= S_APPEND;
4914 if (flags & EXT4_IMMUTABLE_FL)
4915 inode->i_flags |= S_IMMUTABLE;
4916 if (flags & EXT4_NOATIME_FL)
4917 inode->i_flags |= S_NOATIME;
4918 if (flags & EXT4_DIRSYNC_FL)
4919 inode->i_flags |= S_DIRSYNC;
4922 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4923 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4925 unsigned int flags = ei->vfs_inode.i_flags;
4927 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4928 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4929 if (flags & S_SYNC)
4930 ei->i_flags |= EXT4_SYNC_FL;
4931 if (flags & S_APPEND)
4932 ei->i_flags |= EXT4_APPEND_FL;
4933 if (flags & S_IMMUTABLE)
4934 ei->i_flags |= EXT4_IMMUTABLE_FL;
4935 if (flags & S_NOATIME)
4936 ei->i_flags |= EXT4_NOATIME_FL;
4937 if (flags & S_DIRSYNC)
4938 ei->i_flags |= EXT4_DIRSYNC_FL;
4941 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4942 struct ext4_inode_info *ei)
4944 blkcnt_t i_blocks ;
4945 struct inode *inode = &(ei->vfs_inode);
4946 struct super_block *sb = inode->i_sb;
4948 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4949 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4950 /* we are using combined 48 bit field */
4951 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4952 le32_to_cpu(raw_inode->i_blocks_lo);
4953 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4954 /* i_blocks represent file system block size */
4955 return i_blocks << (inode->i_blkbits - 9);
4956 } else {
4957 return i_blocks;
4959 } else {
4960 return le32_to_cpu(raw_inode->i_blocks_lo);
4964 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4966 struct ext4_iloc iloc;
4967 struct ext4_inode *raw_inode;
4968 struct ext4_inode_info *ei;
4969 struct inode *inode;
4970 journal_t *journal = EXT4_SB(sb)->s_journal;
4971 long ret;
4972 int block;
4974 inode = iget_locked(sb, ino);
4975 if (!inode)
4976 return ERR_PTR(-ENOMEM);
4977 if (!(inode->i_state & I_NEW))
4978 return inode;
4980 ei = EXT4_I(inode);
4981 iloc.bh = 0;
4983 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4984 if (ret < 0)
4985 goto bad_inode;
4986 raw_inode = ext4_raw_inode(&iloc);
4987 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4988 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4989 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4990 if (!(test_opt(inode->i_sb, NO_UID32))) {
4991 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4992 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4994 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4996 ei->i_state_flags = 0;
4997 ei->i_dir_start_lookup = 0;
4998 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4999 /* We now have enough fields to check if the inode was active or not.
5000 * This is needed because nfsd might try to access dead inodes
5001 * the test is that same one that e2fsck uses
5002 * NeilBrown 1999oct15
5004 if (inode->i_nlink == 0) {
5005 if (inode->i_mode == 0 ||
5006 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5007 /* this inode is deleted */
5008 ret = -ESTALE;
5009 goto bad_inode;
5011 /* The only unlinked inodes we let through here have
5012 * valid i_mode and are being read by the orphan
5013 * recovery code: that's fine, we're about to complete
5014 * the process of deleting those. */
5016 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5017 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5018 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5019 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5020 ei->i_file_acl |=
5021 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5022 inode->i_size = ext4_isize(raw_inode);
5023 ei->i_disksize = inode->i_size;
5024 #ifdef CONFIG_QUOTA
5025 ei->i_reserved_quota = 0;
5026 #endif
5027 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5028 ei->i_block_group = iloc.block_group;
5029 ei->i_last_alloc_group = ~0;
5031 * NOTE! The in-memory inode i_data array is in little-endian order
5032 * even on big-endian machines: we do NOT byteswap the block numbers!
5034 for (block = 0; block < EXT4_N_BLOCKS; block++)
5035 ei->i_data[block] = raw_inode->i_block[block];
5036 INIT_LIST_HEAD(&ei->i_orphan);
5039 * Set transaction id's of transactions that have to be committed
5040 * to finish f[data]sync. We set them to currently running transaction
5041 * as we cannot be sure that the inode or some of its metadata isn't
5042 * part of the transaction - the inode could have been reclaimed and
5043 * now it is reread from disk.
5045 if (journal) {
5046 transaction_t *transaction;
5047 tid_t tid;
5049 spin_lock(&journal->j_state_lock);
5050 if (journal->j_running_transaction)
5051 transaction = journal->j_running_transaction;
5052 else
5053 transaction = journal->j_committing_transaction;
5054 if (transaction)
5055 tid = transaction->t_tid;
5056 else
5057 tid = journal->j_commit_sequence;
5058 spin_unlock(&journal->j_state_lock);
5059 ei->i_sync_tid = tid;
5060 ei->i_datasync_tid = tid;
5063 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5064 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5065 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5066 EXT4_INODE_SIZE(inode->i_sb)) {
5067 ret = -EIO;
5068 goto bad_inode;
5070 if (ei->i_extra_isize == 0) {
5071 /* The extra space is currently unused. Use it. */
5072 ei->i_extra_isize = sizeof(struct ext4_inode) -
5073 EXT4_GOOD_OLD_INODE_SIZE;
5074 } else {
5075 __le32 *magic = (void *)raw_inode +
5076 EXT4_GOOD_OLD_INODE_SIZE +
5077 ei->i_extra_isize;
5078 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5079 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5081 } else
5082 ei->i_extra_isize = 0;
5084 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5085 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5086 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5087 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5089 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5090 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5091 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5092 inode->i_version |=
5093 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5096 ret = 0;
5097 if (ei->i_file_acl &&
5098 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5099 ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5100 ei->i_file_acl, inode->i_ino);
5101 ret = -EIO;
5102 goto bad_inode;
5103 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
5104 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5105 (S_ISLNK(inode->i_mode) &&
5106 !ext4_inode_is_fast_symlink(inode)))
5107 /* Validate extent which is part of inode */
5108 ret = ext4_ext_check_inode(inode);
5109 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5110 (S_ISLNK(inode->i_mode) &&
5111 !ext4_inode_is_fast_symlink(inode))) {
5112 /* Validate block references which are part of inode */
5113 ret = ext4_check_inode_blockref(inode);
5115 if (ret)
5116 goto bad_inode;
5118 if (S_ISREG(inode->i_mode)) {
5119 inode->i_op = &ext4_file_inode_operations;
5120 inode->i_fop = &ext4_file_operations;
5121 ext4_set_aops(inode);
5122 } else if (S_ISDIR(inode->i_mode)) {
5123 inode->i_op = &ext4_dir_inode_operations;
5124 inode->i_fop = &ext4_dir_operations;
5125 } else if (S_ISLNK(inode->i_mode)) {
5126 if (ext4_inode_is_fast_symlink(inode)) {
5127 inode->i_op = &ext4_fast_symlink_inode_operations;
5128 nd_terminate_link(ei->i_data, inode->i_size,
5129 sizeof(ei->i_data) - 1);
5130 } else {
5131 inode->i_op = &ext4_symlink_inode_operations;
5132 ext4_set_aops(inode);
5134 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5135 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5136 inode->i_op = &ext4_special_inode_operations;
5137 if (raw_inode->i_block[0])
5138 init_special_inode(inode, inode->i_mode,
5139 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5140 else
5141 init_special_inode(inode, inode->i_mode,
5142 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5143 } else {
5144 ret = -EIO;
5145 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5146 inode->i_mode, inode->i_ino);
5147 goto bad_inode;
5149 brelse(iloc.bh);
5150 ext4_set_inode_flags(inode);
5151 unlock_new_inode(inode);
5152 return inode;
5154 bad_inode:
5155 brelse(iloc.bh);
5156 iget_failed(inode);
5157 return ERR_PTR(ret);
5160 static int ext4_inode_blocks_set(handle_t *handle,
5161 struct ext4_inode *raw_inode,
5162 struct ext4_inode_info *ei)
5164 struct inode *inode = &(ei->vfs_inode);
5165 u64 i_blocks = inode->i_blocks;
5166 struct super_block *sb = inode->i_sb;
5168 if (i_blocks <= ~0U) {
5170 * i_blocks can be represnted in a 32 bit variable
5171 * as multiple of 512 bytes
5173 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5174 raw_inode->i_blocks_high = 0;
5175 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5176 return 0;
5178 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5179 return -EFBIG;
5181 if (i_blocks <= 0xffffffffffffULL) {
5183 * i_blocks can be represented in a 48 bit variable
5184 * as multiple of 512 bytes
5186 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5187 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5188 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5189 } else {
5190 ei->i_flags |= EXT4_HUGE_FILE_FL;
5191 /* i_block is stored in file system block size */
5192 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5193 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5194 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5196 return 0;
5200 * Post the struct inode info into an on-disk inode location in the
5201 * buffer-cache. This gobbles the caller's reference to the
5202 * buffer_head in the inode location struct.
5204 * The caller must have write access to iloc->bh.
5206 static int ext4_do_update_inode(handle_t *handle,
5207 struct inode *inode,
5208 struct ext4_iloc *iloc)
5210 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5211 struct ext4_inode_info *ei = EXT4_I(inode);
5212 struct buffer_head *bh = iloc->bh;
5213 int err = 0, rc, block;
5215 /* For fields not not tracking in the in-memory inode,
5216 * initialise them to zero for new inodes. */
5217 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5218 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5220 ext4_get_inode_flags(ei);
5221 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5222 if (!(test_opt(inode->i_sb, NO_UID32))) {
5223 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5224 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5226 * Fix up interoperability with old kernels. Otherwise, old inodes get
5227 * re-used with the upper 16 bits of the uid/gid intact
5229 if (!ei->i_dtime) {
5230 raw_inode->i_uid_high =
5231 cpu_to_le16(high_16_bits(inode->i_uid));
5232 raw_inode->i_gid_high =
5233 cpu_to_le16(high_16_bits(inode->i_gid));
5234 } else {
5235 raw_inode->i_uid_high = 0;
5236 raw_inode->i_gid_high = 0;
5238 } else {
5239 raw_inode->i_uid_low =
5240 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5241 raw_inode->i_gid_low =
5242 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5243 raw_inode->i_uid_high = 0;
5244 raw_inode->i_gid_high = 0;
5246 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5248 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5249 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5250 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5251 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5253 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5254 goto out_brelse;
5255 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5256 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5257 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5258 cpu_to_le32(EXT4_OS_HURD))
5259 raw_inode->i_file_acl_high =
5260 cpu_to_le16(ei->i_file_acl >> 32);
5261 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5262 ext4_isize_set(raw_inode, ei->i_disksize);
5263 if (ei->i_disksize > 0x7fffffffULL) {
5264 struct super_block *sb = inode->i_sb;
5265 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5266 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5267 EXT4_SB(sb)->s_es->s_rev_level ==
5268 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5269 /* If this is the first large file
5270 * created, add a flag to the superblock.
5272 err = ext4_journal_get_write_access(handle,
5273 EXT4_SB(sb)->s_sbh);
5274 if (err)
5275 goto out_brelse;
5276 ext4_update_dynamic_rev(sb);
5277 EXT4_SET_RO_COMPAT_FEATURE(sb,
5278 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5279 sb->s_dirt = 1;
5280 ext4_handle_sync(handle);
5281 err = ext4_handle_dirty_metadata(handle, NULL,
5282 EXT4_SB(sb)->s_sbh);
5285 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5286 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5287 if (old_valid_dev(inode->i_rdev)) {
5288 raw_inode->i_block[0] =
5289 cpu_to_le32(old_encode_dev(inode->i_rdev));
5290 raw_inode->i_block[1] = 0;
5291 } else {
5292 raw_inode->i_block[0] = 0;
5293 raw_inode->i_block[1] =
5294 cpu_to_le32(new_encode_dev(inode->i_rdev));
5295 raw_inode->i_block[2] = 0;
5297 } else
5298 for (block = 0; block < EXT4_N_BLOCKS; block++)
5299 raw_inode->i_block[block] = ei->i_data[block];
5301 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5302 if (ei->i_extra_isize) {
5303 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5304 raw_inode->i_version_hi =
5305 cpu_to_le32(inode->i_version >> 32);
5306 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5309 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5310 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5311 if (!err)
5312 err = rc;
5313 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5315 ext4_update_inode_fsync_trans(handle, inode, 0);
5316 out_brelse:
5317 brelse(bh);
5318 ext4_std_error(inode->i_sb, err);
5319 return err;
5323 * ext4_write_inode()
5325 * We are called from a few places:
5327 * - Within generic_file_write() for O_SYNC files.
5328 * Here, there will be no transaction running. We wait for any running
5329 * trasnaction to commit.
5331 * - Within sys_sync(), kupdate and such.
5332 * We wait on commit, if tol to.
5334 * - Within prune_icache() (PF_MEMALLOC == true)
5335 * Here we simply return. We can't afford to block kswapd on the
5336 * journal commit.
5338 * In all cases it is actually safe for us to return without doing anything,
5339 * because the inode has been copied into a raw inode buffer in
5340 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5341 * knfsd.
5343 * Note that we are absolutely dependent upon all inode dirtiers doing the
5344 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5345 * which we are interested.
5347 * It would be a bug for them to not do this. The code:
5349 * mark_inode_dirty(inode)
5350 * stuff();
5351 * inode->i_size = expr;
5353 * is in error because a kswapd-driven write_inode() could occur while
5354 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5355 * will no longer be on the superblock's dirty inode list.
5357 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5359 int err;
5361 if (current->flags & PF_MEMALLOC)
5362 return 0;
5364 if (EXT4_SB(inode->i_sb)->s_journal) {
5365 if (ext4_journal_current_handle()) {
5366 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5367 dump_stack();
5368 return -EIO;
5371 if (wbc->sync_mode != WB_SYNC_ALL)
5372 return 0;
5374 err = ext4_force_commit(inode->i_sb);
5375 } else {
5376 struct ext4_iloc iloc;
5378 err = ext4_get_inode_loc(inode, &iloc);
5379 if (err)
5380 return err;
5381 if (wbc->sync_mode == WB_SYNC_ALL)
5382 sync_dirty_buffer(iloc.bh);
5383 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5384 ext4_error(inode->i_sb, "IO error syncing inode, "
5385 "inode=%lu, block=%llu", inode->i_ino,
5386 (unsigned long long)iloc.bh->b_blocknr);
5387 err = -EIO;
5390 return err;
5394 * ext4_setattr()
5396 * Called from notify_change.
5398 * We want to trap VFS attempts to truncate the file as soon as
5399 * possible. In particular, we want to make sure that when the VFS
5400 * shrinks i_size, we put the inode on the orphan list and modify
5401 * i_disksize immediately, so that during the subsequent flushing of
5402 * dirty pages and freeing of disk blocks, we can guarantee that any
5403 * commit will leave the blocks being flushed in an unused state on
5404 * disk. (On recovery, the inode will get truncated and the blocks will
5405 * be freed, so we have a strong guarantee that no future commit will
5406 * leave these blocks visible to the user.)
5408 * Another thing we have to assure is that if we are in ordered mode
5409 * and inode is still attached to the committing transaction, we must
5410 * we start writeout of all the dirty pages which are being truncated.
5411 * This way we are sure that all the data written in the previous
5412 * transaction are already on disk (truncate waits for pages under
5413 * writeback).
5415 * Called with inode->i_mutex down.
5417 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5419 struct inode *inode = dentry->d_inode;
5420 int error, rc = 0;
5421 const unsigned int ia_valid = attr->ia_valid;
5423 error = inode_change_ok(inode, attr);
5424 if (error)
5425 return error;
5427 if (ia_valid & ATTR_SIZE)
5428 dquot_initialize(inode);
5429 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5430 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5431 handle_t *handle;
5433 /* (user+group)*(old+new) structure, inode write (sb,
5434 * inode block, ? - but truncate inode update has it) */
5435 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5436 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5437 if (IS_ERR(handle)) {
5438 error = PTR_ERR(handle);
5439 goto err_out;
5441 error = dquot_transfer(inode, attr);
5442 if (error) {
5443 ext4_journal_stop(handle);
5444 return error;
5446 /* Update corresponding info in inode so that everything is in
5447 * one transaction */
5448 if (attr->ia_valid & ATTR_UID)
5449 inode->i_uid = attr->ia_uid;
5450 if (attr->ia_valid & ATTR_GID)
5451 inode->i_gid = attr->ia_gid;
5452 error = ext4_mark_inode_dirty(handle, inode);
5453 ext4_journal_stop(handle);
5456 if (attr->ia_valid & ATTR_SIZE) {
5457 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5458 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5460 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5461 error = -EFBIG;
5462 goto err_out;
5467 if (S_ISREG(inode->i_mode) &&
5468 attr->ia_valid & ATTR_SIZE &&
5469 (attr->ia_size < inode->i_size ||
5470 (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5471 handle_t *handle;
5473 handle = ext4_journal_start(inode, 3);
5474 if (IS_ERR(handle)) {
5475 error = PTR_ERR(handle);
5476 goto err_out;
5479 error = ext4_orphan_add(handle, inode);
5480 EXT4_I(inode)->i_disksize = attr->ia_size;
5481 rc = ext4_mark_inode_dirty(handle, inode);
5482 if (!error)
5483 error = rc;
5484 ext4_journal_stop(handle);
5486 if (ext4_should_order_data(inode)) {
5487 error = ext4_begin_ordered_truncate(inode,
5488 attr->ia_size);
5489 if (error) {
5490 /* Do as much error cleanup as possible */
5491 handle = ext4_journal_start(inode, 3);
5492 if (IS_ERR(handle)) {
5493 ext4_orphan_del(NULL, inode);
5494 goto err_out;
5496 ext4_orphan_del(handle, inode);
5497 ext4_journal_stop(handle);
5498 goto err_out;
5501 /* ext4_truncate will clear the flag */
5502 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5503 ext4_truncate(inode);
5506 rc = inode_setattr(inode, attr);
5508 /* If inode_setattr's call to ext4_truncate failed to get a
5509 * transaction handle at all, we need to clean up the in-core
5510 * orphan list manually. */
5511 if (inode->i_nlink)
5512 ext4_orphan_del(NULL, inode);
5514 if (!rc && (ia_valid & ATTR_MODE))
5515 rc = ext4_acl_chmod(inode);
5517 err_out:
5518 ext4_std_error(inode->i_sb, error);
5519 if (!error)
5520 error = rc;
5521 return error;
5524 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5525 struct kstat *stat)
5527 struct inode *inode;
5528 unsigned long delalloc_blocks;
5530 inode = dentry->d_inode;
5531 generic_fillattr(inode, stat);
5534 * We can't update i_blocks if the block allocation is delayed
5535 * otherwise in the case of system crash before the real block
5536 * allocation is done, we will have i_blocks inconsistent with
5537 * on-disk file blocks.
5538 * We always keep i_blocks updated together with real
5539 * allocation. But to not confuse with user, stat
5540 * will return the blocks that include the delayed allocation
5541 * blocks for this file.
5543 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5544 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5545 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5547 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5548 return 0;
5551 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5552 int chunk)
5554 int indirects;
5556 /* if nrblocks are contiguous */
5557 if (chunk) {
5559 * With N contiguous data blocks, it need at most
5560 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5561 * 2 dindirect blocks
5562 * 1 tindirect block
5564 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5565 return indirects + 3;
5568 * if nrblocks are not contiguous, worse case, each block touch
5569 * a indirect block, and each indirect block touch a double indirect
5570 * block, plus a triple indirect block
5572 indirects = nrblocks * 2 + 1;
5573 return indirects;
5576 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5578 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5579 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5580 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5584 * Account for index blocks, block groups bitmaps and block group
5585 * descriptor blocks if modify datablocks and index blocks
5586 * worse case, the indexs blocks spread over different block groups
5588 * If datablocks are discontiguous, they are possible to spread over
5589 * different block groups too. If they are contiuguous, with flexbg,
5590 * they could still across block group boundary.
5592 * Also account for superblock, inode, quota and xattr blocks
5594 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5596 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5597 int gdpblocks;
5598 int idxblocks;
5599 int ret = 0;
5602 * How many index blocks need to touch to modify nrblocks?
5603 * The "Chunk" flag indicating whether the nrblocks is
5604 * physically contiguous on disk
5606 * For Direct IO and fallocate, they calls get_block to allocate
5607 * one single extent at a time, so they could set the "Chunk" flag
5609 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5611 ret = idxblocks;
5614 * Now let's see how many group bitmaps and group descriptors need
5615 * to account
5617 groups = idxblocks;
5618 if (chunk)
5619 groups += 1;
5620 else
5621 groups += nrblocks;
5623 gdpblocks = groups;
5624 if (groups > ngroups)
5625 groups = ngroups;
5626 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5627 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5629 /* bitmaps and block group descriptor blocks */
5630 ret += groups + gdpblocks;
5632 /* Blocks for super block, inode, quota and xattr blocks */
5633 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5635 return ret;
5639 * Calulate the total number of credits to reserve to fit
5640 * the modification of a single pages into a single transaction,
5641 * which may include multiple chunks of block allocations.
5643 * This could be called via ext4_write_begin()
5645 * We need to consider the worse case, when
5646 * one new block per extent.
5648 int ext4_writepage_trans_blocks(struct inode *inode)
5650 int bpp = ext4_journal_blocks_per_page(inode);
5651 int ret;
5653 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5655 /* Account for data blocks for journalled mode */
5656 if (ext4_should_journal_data(inode))
5657 ret += bpp;
5658 return ret;
5662 * Calculate the journal credits for a chunk of data modification.
5664 * This is called from DIO, fallocate or whoever calling
5665 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5667 * journal buffers for data blocks are not included here, as DIO
5668 * and fallocate do no need to journal data buffers.
5670 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5672 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5676 * The caller must have previously called ext4_reserve_inode_write().
5677 * Give this, we know that the caller already has write access to iloc->bh.
5679 int ext4_mark_iloc_dirty(handle_t *handle,
5680 struct inode *inode, struct ext4_iloc *iloc)
5682 int err = 0;
5684 if (test_opt(inode->i_sb, I_VERSION))
5685 inode_inc_iversion(inode);
5687 /* the do_update_inode consumes one bh->b_count */
5688 get_bh(iloc->bh);
5690 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5691 err = ext4_do_update_inode(handle, inode, iloc);
5692 put_bh(iloc->bh);
5693 return err;
5697 * On success, We end up with an outstanding reference count against
5698 * iloc->bh. This _must_ be cleaned up later.
5702 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5703 struct ext4_iloc *iloc)
5705 int err;
5707 err = ext4_get_inode_loc(inode, iloc);
5708 if (!err) {
5709 BUFFER_TRACE(iloc->bh, "get_write_access");
5710 err = ext4_journal_get_write_access(handle, iloc->bh);
5711 if (err) {
5712 brelse(iloc->bh);
5713 iloc->bh = NULL;
5716 ext4_std_error(inode->i_sb, err);
5717 return err;
5721 * Expand an inode by new_extra_isize bytes.
5722 * Returns 0 on success or negative error number on failure.
5724 static int ext4_expand_extra_isize(struct inode *inode,
5725 unsigned int new_extra_isize,
5726 struct ext4_iloc iloc,
5727 handle_t *handle)
5729 struct ext4_inode *raw_inode;
5730 struct ext4_xattr_ibody_header *header;
5731 struct ext4_xattr_entry *entry;
5733 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5734 return 0;
5736 raw_inode = ext4_raw_inode(&iloc);
5738 header = IHDR(inode, raw_inode);
5739 entry = IFIRST(header);
5741 /* No extended attributes present */
5742 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5743 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5744 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5745 new_extra_isize);
5746 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5747 return 0;
5750 /* try to expand with EAs present */
5751 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5752 raw_inode, handle);
5756 * What we do here is to mark the in-core inode as clean with respect to inode
5757 * dirtiness (it may still be data-dirty).
5758 * This means that the in-core inode may be reaped by prune_icache
5759 * without having to perform any I/O. This is a very good thing,
5760 * because *any* task may call prune_icache - even ones which
5761 * have a transaction open against a different journal.
5763 * Is this cheating? Not really. Sure, we haven't written the
5764 * inode out, but prune_icache isn't a user-visible syncing function.
5765 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5766 * we start and wait on commits.
5768 * Is this efficient/effective? Well, we're being nice to the system
5769 * by cleaning up our inodes proactively so they can be reaped
5770 * without I/O. But we are potentially leaving up to five seconds'
5771 * worth of inodes floating about which prune_icache wants us to
5772 * write out. One way to fix that would be to get prune_icache()
5773 * to do a write_super() to free up some memory. It has the desired
5774 * effect.
5776 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5778 struct ext4_iloc iloc;
5779 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5780 static unsigned int mnt_count;
5781 int err, ret;
5783 might_sleep();
5784 err = ext4_reserve_inode_write(handle, inode, &iloc);
5785 if (ext4_handle_valid(handle) &&
5786 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5787 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5789 * We need extra buffer credits since we may write into EA block
5790 * with this same handle. If journal_extend fails, then it will
5791 * only result in a minor loss of functionality for that inode.
5792 * If this is felt to be critical, then e2fsck should be run to
5793 * force a large enough s_min_extra_isize.
5795 if ((jbd2_journal_extend(handle,
5796 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5797 ret = ext4_expand_extra_isize(inode,
5798 sbi->s_want_extra_isize,
5799 iloc, handle);
5800 if (ret) {
5801 ext4_set_inode_state(inode,
5802 EXT4_STATE_NO_EXPAND);
5803 if (mnt_count !=
5804 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5805 ext4_warning(inode->i_sb,
5806 "Unable to expand inode %lu. Delete"
5807 " some EAs or run e2fsck.",
5808 inode->i_ino);
5809 mnt_count =
5810 le16_to_cpu(sbi->s_es->s_mnt_count);
5815 if (!err)
5816 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5817 return err;
5821 * ext4_dirty_inode() is called from __mark_inode_dirty()
5823 * We're really interested in the case where a file is being extended.
5824 * i_size has been changed by generic_commit_write() and we thus need
5825 * to include the updated inode in the current transaction.
5827 * Also, dquot_alloc_block() will always dirty the inode when blocks
5828 * are allocated to the file.
5830 * If the inode is marked synchronous, we don't honour that here - doing
5831 * so would cause a commit on atime updates, which we don't bother doing.
5832 * We handle synchronous inodes at the highest possible level.
5834 void ext4_dirty_inode(struct inode *inode)
5836 handle_t *handle;
5838 handle = ext4_journal_start(inode, 2);
5839 if (IS_ERR(handle))
5840 goto out;
5842 ext4_mark_inode_dirty(handle, inode);
5844 ext4_journal_stop(handle);
5845 out:
5846 return;
5849 #if 0
5851 * Bind an inode's backing buffer_head into this transaction, to prevent
5852 * it from being flushed to disk early. Unlike
5853 * ext4_reserve_inode_write, this leaves behind no bh reference and
5854 * returns no iloc structure, so the caller needs to repeat the iloc
5855 * lookup to mark the inode dirty later.
5857 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5859 struct ext4_iloc iloc;
5861 int err = 0;
5862 if (handle) {
5863 err = ext4_get_inode_loc(inode, &iloc);
5864 if (!err) {
5865 BUFFER_TRACE(iloc.bh, "get_write_access");
5866 err = jbd2_journal_get_write_access(handle, iloc.bh);
5867 if (!err)
5868 err = ext4_handle_dirty_metadata(handle,
5869 NULL,
5870 iloc.bh);
5871 brelse(iloc.bh);
5874 ext4_std_error(inode->i_sb, err);
5875 return err;
5877 #endif
5879 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5881 journal_t *journal;
5882 handle_t *handle;
5883 int err;
5886 * We have to be very careful here: changing a data block's
5887 * journaling status dynamically is dangerous. If we write a
5888 * data block to the journal, change the status and then delete
5889 * that block, we risk forgetting to revoke the old log record
5890 * from the journal and so a subsequent replay can corrupt data.
5891 * So, first we make sure that the journal is empty and that
5892 * nobody is changing anything.
5895 journal = EXT4_JOURNAL(inode);
5896 if (!journal)
5897 return 0;
5898 if (is_journal_aborted(journal))
5899 return -EROFS;
5901 jbd2_journal_lock_updates(journal);
5902 jbd2_journal_flush(journal);
5905 * OK, there are no updates running now, and all cached data is
5906 * synced to disk. We are now in a completely consistent state
5907 * which doesn't have anything in the journal, and we know that
5908 * no filesystem updates are running, so it is safe to modify
5909 * the inode's in-core data-journaling state flag now.
5912 if (val)
5913 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5914 else
5915 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5916 ext4_set_aops(inode);
5918 jbd2_journal_unlock_updates(journal);
5920 /* Finally we can mark the inode as dirty. */
5922 handle = ext4_journal_start(inode, 1);
5923 if (IS_ERR(handle))
5924 return PTR_ERR(handle);
5926 err = ext4_mark_inode_dirty(handle, inode);
5927 ext4_handle_sync(handle);
5928 ext4_journal_stop(handle);
5929 ext4_std_error(inode->i_sb, err);
5931 return err;
5934 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5936 return !buffer_mapped(bh);
5939 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5941 struct page *page = vmf->page;
5942 loff_t size;
5943 unsigned long len;
5944 int ret = -EINVAL;
5945 void *fsdata;
5946 struct file *file = vma->vm_file;
5947 struct inode *inode = file->f_path.dentry->d_inode;
5948 struct address_space *mapping = inode->i_mapping;
5951 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5952 * get i_mutex because we are already holding mmap_sem.
5954 down_read(&inode->i_alloc_sem);
5955 size = i_size_read(inode);
5956 if (page->mapping != mapping || size <= page_offset(page)
5957 || !PageUptodate(page)) {
5958 /* page got truncated from under us? */
5959 goto out_unlock;
5961 ret = 0;
5962 if (PageMappedToDisk(page))
5963 goto out_unlock;
5965 if (page->index == size >> PAGE_CACHE_SHIFT)
5966 len = size & ~PAGE_CACHE_MASK;
5967 else
5968 len = PAGE_CACHE_SIZE;
5970 lock_page(page);
5972 * return if we have all the buffers mapped. This avoid
5973 * the need to call write_begin/write_end which does a
5974 * journal_start/journal_stop which can block and take
5975 * long time
5977 if (page_has_buffers(page)) {
5978 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5979 ext4_bh_unmapped)) {
5980 unlock_page(page);
5981 goto out_unlock;
5984 unlock_page(page);
5986 * OK, we need to fill the hole... Do write_begin write_end
5987 * to do block allocation/reservation.We are not holding
5988 * inode.i__mutex here. That allow * parallel write_begin,
5989 * write_end call. lock_page prevent this from happening
5990 * on the same page though
5992 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5993 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5994 if (ret < 0)
5995 goto out_unlock;
5996 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5997 len, len, page, fsdata);
5998 if (ret < 0)
5999 goto out_unlock;
6000 ret = 0;
6001 out_unlock:
6002 if (ret)
6003 ret = VM_FAULT_SIGBUS;
6004 up_read(&inode->i_alloc_sem);
6005 return ret;