2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
44 #include "ext4_jbd2.h"
47 #include "ext4_extents.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode
->i_sb
)->s_journal
,
58 &EXT4_I(inode
)->jinode
,
62 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
65 * Test whether an inode is a fast symlink.
67 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
69 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
70 (inode
->i_sb
->s_blocksize
>> 9) : 0;
72 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
79 static unsigned long blocks_for_truncate(struct inode
*inode
)
83 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
88 * like a regular file for ext4 to try to delete it. Things
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
94 /* But we need to bound the transaction so we don't overflow the
96 if (needed
> EXT4_MAX_TRANS_DATA
)
97 needed
= EXT4_MAX_TRANS_DATA
;
99 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
112 static handle_t
*start_transaction(struct inode
*inode
)
116 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
120 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
125 * Try to extend this transaction for the purposes of truncation.
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
130 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
132 if (!ext4_handle_valid(handle
))
134 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
136 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
146 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
152 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
157 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
158 jbd_debug(2, "restarting handle %p\n", handle
);
159 up_write(&EXT4_I(inode
)->i_data_sem
);
160 ret
= ext4_journal_restart(handle
, blocks_for_truncate(inode
));
161 down_write(&EXT4_I(inode
)->i_data_sem
);
162 ext4_discard_preallocations(inode
);
168 * Called at the last iput() if i_nlink is zero.
170 void ext4_delete_inode(struct inode
*inode
)
175 if (!is_bad_inode(inode
))
176 dquot_initialize(inode
);
178 if (ext4_should_order_data(inode
))
179 ext4_begin_ordered_truncate(inode
, 0);
180 truncate_inode_pages(&inode
->i_data
, 0);
182 if (is_bad_inode(inode
))
185 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
186 if (IS_ERR(handle
)) {
187 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
193 ext4_orphan_del(NULL
, inode
);
198 ext4_handle_sync(handle
);
200 err
= ext4_mark_inode_dirty(handle
, inode
);
202 ext4_warning(inode
->i_sb
,
203 "couldn't mark inode dirty (err %d)", err
);
207 ext4_truncate(inode
);
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
215 if (!ext4_handle_has_enough_credits(handle
, 3)) {
216 err
= ext4_journal_extend(handle
, 3);
218 err
= ext4_journal_restart(handle
, 3);
220 ext4_warning(inode
->i_sb
,
221 "couldn't extend journal (err %d)", err
);
223 ext4_journal_stop(handle
);
229 * Kill off the orphan record which ext4_truncate created.
230 * AKPM: I think this can be inside the above `if'.
231 * Note that ext4_orphan_del() has to be able to cope with the
232 * deletion of a non-existent orphan - this is because we don't
233 * know if ext4_truncate() actually created an orphan record.
234 * (Well, we could do this if we need to, but heck - it works)
236 ext4_orphan_del(handle
, inode
);
237 EXT4_I(inode
)->i_dtime
= get_seconds();
240 * One subtle ordering requirement: if anything has gone wrong
241 * (transaction abort, IO errors, whatever), then we can still
242 * do these next steps (the fs will already have been marked as
243 * having errors), but we can't free the inode if the mark_dirty
246 if (ext4_mark_inode_dirty(handle
, inode
))
247 /* If that failed, just do the required in-core inode clear. */
250 ext4_free_inode(handle
, inode
);
251 ext4_journal_stop(handle
);
254 clear_inode(inode
); /* We must guarantee clearing of inode... */
260 struct buffer_head
*bh
;
263 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
265 p
->key
= *(p
->p
= v
);
270 * ext4_block_to_path - parse the block number into array of offsets
271 * @inode: inode in question (we are only interested in its superblock)
272 * @i_block: block number to be parsed
273 * @offsets: array to store the offsets in
274 * @boundary: set this non-zero if the referred-to block is likely to be
275 * followed (on disk) by an indirect block.
277 * To store the locations of file's data ext4 uses a data structure common
278 * for UNIX filesystems - tree of pointers anchored in the inode, with
279 * data blocks at leaves and indirect blocks in intermediate nodes.
280 * This function translates the block number into path in that tree -
281 * return value is the path length and @offsets[n] is the offset of
282 * pointer to (n+1)th node in the nth one. If @block is out of range
283 * (negative or too large) warning is printed and zero returned.
285 * Note: function doesn't find node addresses, so no IO is needed. All
286 * we need to know is the capacity of indirect blocks (taken from the
291 * Portability note: the last comparison (check that we fit into triple
292 * indirect block) is spelled differently, because otherwise on an
293 * architecture with 32-bit longs and 8Kb pages we might get into trouble
294 * if our filesystem had 8Kb blocks. We might use long long, but that would
295 * kill us on x86. Oh, well, at least the sign propagation does not matter -
296 * i_block would have to be negative in the very beginning, so we would not
300 static int ext4_block_to_path(struct inode
*inode
,
302 ext4_lblk_t offsets
[4], int *boundary
)
304 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
305 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
306 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
307 indirect_blocks
= ptrs
,
308 double_blocks
= (1 << (ptrs_bits
* 2));
312 if (i_block
< direct_blocks
) {
313 offsets
[n
++] = i_block
;
314 final
= direct_blocks
;
315 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
316 offsets
[n
++] = EXT4_IND_BLOCK
;
317 offsets
[n
++] = i_block
;
319 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
320 offsets
[n
++] = EXT4_DIND_BLOCK
;
321 offsets
[n
++] = i_block
>> ptrs_bits
;
322 offsets
[n
++] = i_block
& (ptrs
- 1);
324 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
325 offsets
[n
++] = EXT4_TIND_BLOCK
;
326 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
327 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
328 offsets
[n
++] = i_block
& (ptrs
- 1);
331 ext4_warning(inode
->i_sb
, "block %lu > max in inode %lu",
332 i_block
+ direct_blocks
+
333 indirect_blocks
+ double_blocks
, inode
->i_ino
);
336 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
340 static int __ext4_check_blockref(const char *function
, struct inode
*inode
,
341 __le32
*p
, unsigned int max
)
346 while (bref
< p
+max
) {
347 blk
= le32_to_cpu(*bref
++);
349 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
351 __ext4_error(inode
->i_sb
, function
,
352 "invalid block reference %u "
353 "in inode #%lu", blk
, inode
->i_ino
);
361 #define ext4_check_indirect_blockref(inode, bh) \
362 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
363 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
365 #define ext4_check_inode_blockref(inode) \
366 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
370 * ext4_get_branch - read the chain of indirect blocks leading to data
371 * @inode: inode in question
372 * @depth: depth of the chain (1 - direct pointer, etc.)
373 * @offsets: offsets of pointers in inode/indirect blocks
374 * @chain: place to store the result
375 * @err: here we store the error value
377 * Function fills the array of triples <key, p, bh> and returns %NULL
378 * if everything went OK or the pointer to the last filled triple
379 * (incomplete one) otherwise. Upon the return chain[i].key contains
380 * the number of (i+1)-th block in the chain (as it is stored in memory,
381 * i.e. little-endian 32-bit), chain[i].p contains the address of that
382 * number (it points into struct inode for i==0 and into the bh->b_data
383 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
384 * block for i>0 and NULL for i==0. In other words, it holds the block
385 * numbers of the chain, addresses they were taken from (and where we can
386 * verify that chain did not change) and buffer_heads hosting these
389 * Function stops when it stumbles upon zero pointer (absent block)
390 * (pointer to last triple returned, *@err == 0)
391 * or when it gets an IO error reading an indirect block
392 * (ditto, *@err == -EIO)
393 * or when it reads all @depth-1 indirect blocks successfully and finds
394 * the whole chain, all way to the data (returns %NULL, *err == 0).
396 * Need to be called with
397 * down_read(&EXT4_I(inode)->i_data_sem)
399 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
400 ext4_lblk_t
*offsets
,
401 Indirect chain
[4], int *err
)
403 struct super_block
*sb
= inode
->i_sb
;
405 struct buffer_head
*bh
;
408 /* i_data is not going away, no lock needed */
409 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
413 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
417 if (!bh_uptodate_or_lock(bh
)) {
418 if (bh_submit_read(bh
) < 0) {
422 /* validate block references */
423 if (ext4_check_indirect_blockref(inode
, bh
)) {
429 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
443 * ext4_find_near - find a place for allocation with sufficient locality
445 * @ind: descriptor of indirect block.
447 * This function returns the preferred place for block allocation.
448 * It is used when heuristic for sequential allocation fails.
450 * + if there is a block to the left of our position - allocate near it.
451 * + if pointer will live in indirect block - allocate near that block.
452 * + if pointer will live in inode - allocate in the same
455 * In the latter case we colour the starting block by the callers PID to
456 * prevent it from clashing with concurrent allocations for a different inode
457 * in the same block group. The PID is used here so that functionally related
458 * files will be close-by on-disk.
460 * Caller must make sure that @ind is valid and will stay that way.
462 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
464 struct ext4_inode_info
*ei
= EXT4_I(inode
);
465 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
467 ext4_fsblk_t bg_start
;
468 ext4_fsblk_t last_block
;
469 ext4_grpblk_t colour
;
470 ext4_group_t block_group
;
471 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
473 /* Try to find previous block */
474 for (p
= ind
->p
- 1; p
>= start
; p
--) {
476 return le32_to_cpu(*p
);
479 /* No such thing, so let's try location of indirect block */
481 return ind
->bh
->b_blocknr
;
484 * It is going to be referred to from the inode itself? OK, just put it
485 * into the same cylinder group then.
487 block_group
= ei
->i_block_group
;
488 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
489 block_group
&= ~(flex_size
-1);
490 if (S_ISREG(inode
->i_mode
))
493 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
494 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
497 * If we are doing delayed allocation, we don't need take
498 * colour into account.
500 if (test_opt(inode
->i_sb
, DELALLOC
))
503 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
504 colour
= (current
->pid
% 16) *
505 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
507 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
508 return bg_start
+ colour
;
512 * ext4_find_goal - find a preferred place for allocation.
514 * @block: block we want
515 * @partial: pointer to the last triple within a chain
517 * Normally this function find the preferred place for block allocation,
519 * Because this is only used for non-extent files, we limit the block nr
522 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
528 * XXX need to get goal block from mballoc's data structures
531 goal
= ext4_find_near(inode
, partial
);
532 goal
= goal
& EXT4_MAX_BLOCK_FILE_PHYS
;
537 * ext4_blks_to_allocate: Look up the block map and count the number
538 * of direct blocks need to be allocated for the given branch.
540 * @branch: chain of indirect blocks
541 * @k: number of blocks need for indirect blocks
542 * @blks: number of data blocks to be mapped.
543 * @blocks_to_boundary: the offset in the indirect block
545 * return the total number of blocks to be allocate, including the
546 * direct and indirect blocks.
548 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
549 int blocks_to_boundary
)
551 unsigned int count
= 0;
554 * Simple case, [t,d]Indirect block(s) has not allocated yet
555 * then it's clear blocks on that path have not allocated
558 /* right now we don't handle cross boundary allocation */
559 if (blks
< blocks_to_boundary
+ 1)
562 count
+= blocks_to_boundary
+ 1;
567 while (count
< blks
&& count
<= blocks_to_boundary
&&
568 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
575 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
576 * @indirect_blks: the number of blocks need to allocate for indirect
579 * @new_blocks: on return it will store the new block numbers for
580 * the indirect blocks(if needed) and the first direct block,
581 * @blks: on return it will store the total number of allocated
584 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
585 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
586 int indirect_blks
, int blks
,
587 ext4_fsblk_t new_blocks
[4], int *err
)
589 struct ext4_allocation_request ar
;
591 unsigned long count
= 0, blk_allocated
= 0;
593 ext4_fsblk_t current_block
= 0;
597 * Here we try to allocate the requested multiple blocks at once,
598 * on a best-effort basis.
599 * To build a branch, we should allocate blocks for
600 * the indirect blocks(if not allocated yet), and at least
601 * the first direct block of this branch. That's the
602 * minimum number of blocks need to allocate(required)
604 /* first we try to allocate the indirect blocks */
605 target
= indirect_blks
;
608 /* allocating blocks for indirect blocks and direct blocks */
609 current_block
= ext4_new_meta_blocks(handle
, inode
,
614 if (unlikely(current_block
+ count
> EXT4_MAX_BLOCK_FILE_PHYS
)) {
615 EXT4_ERROR_INODE(inode
,
616 "current_block %llu + count %lu > %d!",
617 current_block
, count
,
618 EXT4_MAX_BLOCK_FILE_PHYS
);
624 /* allocate blocks for indirect blocks */
625 while (index
< indirect_blks
&& count
) {
626 new_blocks
[index
++] = current_block
++;
631 * save the new block number
632 * for the first direct block
634 new_blocks
[index
] = current_block
;
635 printk(KERN_INFO
"%s returned more blocks than "
636 "requested\n", __func__
);
642 target
= blks
- count
;
643 blk_allocated
= count
;
646 /* Now allocate data blocks */
647 memset(&ar
, 0, sizeof(ar
));
652 if (S_ISREG(inode
->i_mode
))
653 /* enable in-core preallocation only for regular files */
654 ar
.flags
= EXT4_MB_HINT_DATA
;
656 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
657 if (unlikely(current_block
+ ar
.len
> EXT4_MAX_BLOCK_FILE_PHYS
)) {
658 EXT4_ERROR_INODE(inode
,
659 "current_block %llu + ar.len %d > %d!",
660 current_block
, ar
.len
,
661 EXT4_MAX_BLOCK_FILE_PHYS
);
666 if (*err
&& (target
== blks
)) {
668 * if the allocation failed and we didn't allocate
674 if (target
== blks
) {
676 * save the new block number
677 * for the first direct block
679 new_blocks
[index
] = current_block
;
681 blk_allocated
+= ar
.len
;
684 /* total number of blocks allocated for direct blocks */
689 for (i
= 0; i
< index
; i
++)
690 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], 1, 0);
695 * ext4_alloc_branch - allocate and set up a chain of blocks.
697 * @indirect_blks: number of allocated indirect blocks
698 * @blks: number of allocated direct blocks
699 * @offsets: offsets (in the blocks) to store the pointers to next.
700 * @branch: place to store the chain in.
702 * This function allocates blocks, zeroes out all but the last one,
703 * links them into chain and (if we are synchronous) writes them to disk.
704 * In other words, it prepares a branch that can be spliced onto the
705 * inode. It stores the information about that chain in the branch[], in
706 * the same format as ext4_get_branch() would do. We are calling it after
707 * we had read the existing part of chain and partial points to the last
708 * triple of that (one with zero ->key). Upon the exit we have the same
709 * picture as after the successful ext4_get_block(), except that in one
710 * place chain is disconnected - *branch->p is still zero (we did not
711 * set the last link), but branch->key contains the number that should
712 * be placed into *branch->p to fill that gap.
714 * If allocation fails we free all blocks we've allocated (and forget
715 * their buffer_heads) and return the error value the from failed
716 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
717 * as described above and return 0.
719 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
720 ext4_lblk_t iblock
, int indirect_blks
,
721 int *blks
, ext4_fsblk_t goal
,
722 ext4_lblk_t
*offsets
, Indirect
*branch
)
724 int blocksize
= inode
->i_sb
->s_blocksize
;
727 struct buffer_head
*bh
;
729 ext4_fsblk_t new_blocks
[4];
730 ext4_fsblk_t current_block
;
732 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
733 *blks
, new_blocks
, &err
);
737 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
739 * metadata blocks and data blocks are allocated.
741 for (n
= 1; n
<= indirect_blks
; n
++) {
743 * Get buffer_head for parent block, zero it out
744 * and set the pointer to new one, then send
747 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
750 BUFFER_TRACE(bh
, "call get_create_access");
751 err
= ext4_journal_get_create_access(handle
, bh
);
753 /* Don't brelse(bh) here; it's done in
754 * ext4_journal_forget() below */
759 memset(bh
->b_data
, 0, blocksize
);
760 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
761 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
762 *branch
[n
].p
= branch
[n
].key
;
763 if (n
== indirect_blks
) {
764 current_block
= new_blocks
[n
];
766 * End of chain, update the last new metablock of
767 * the chain to point to the new allocated
768 * data blocks numbers
770 for (i
= 1; i
< num
; i
++)
771 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
773 BUFFER_TRACE(bh
, "marking uptodate");
774 set_buffer_uptodate(bh
);
777 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
778 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
785 /* Allocation failed, free what we already allocated */
786 ext4_free_blocks(handle
, inode
, 0, new_blocks
[0], 1, 0);
787 for (i
= 1; i
<= n
; i
++) {
789 * branch[i].bh is newly allocated, so there is no
790 * need to revoke the block, which is why we don't
791 * need to set EXT4_FREE_BLOCKS_METADATA.
793 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], 1,
794 EXT4_FREE_BLOCKS_FORGET
);
796 for (i
= n
+1; i
< indirect_blks
; i
++)
797 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], 1, 0);
799 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], num
, 0);
805 * ext4_splice_branch - splice the allocated branch onto inode.
807 * @block: (logical) number of block we are adding
808 * @chain: chain of indirect blocks (with a missing link - see
810 * @where: location of missing link
811 * @num: number of indirect blocks we are adding
812 * @blks: number of direct blocks we are adding
814 * This function fills the missing link and does all housekeeping needed in
815 * inode (->i_blocks, etc.). In case of success we end up with the full
816 * chain to new block and return 0.
818 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
819 ext4_lblk_t block
, Indirect
*where
, int num
,
824 ext4_fsblk_t current_block
;
827 * If we're splicing into a [td]indirect block (as opposed to the
828 * inode) then we need to get write access to the [td]indirect block
832 BUFFER_TRACE(where
->bh
, "get_write_access");
833 err
= ext4_journal_get_write_access(handle
, where
->bh
);
839 *where
->p
= where
->key
;
842 * Update the host buffer_head or inode to point to more just allocated
843 * direct blocks blocks
845 if (num
== 0 && blks
> 1) {
846 current_block
= le32_to_cpu(where
->key
) + 1;
847 for (i
= 1; i
< blks
; i
++)
848 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
851 /* We are done with atomic stuff, now do the rest of housekeeping */
852 /* had we spliced it onto indirect block? */
855 * If we spliced it onto an indirect block, we haven't
856 * altered the inode. Note however that if it is being spliced
857 * onto an indirect block at the very end of the file (the
858 * file is growing) then we *will* alter the inode to reflect
859 * the new i_size. But that is not done here - it is done in
860 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
862 jbd_debug(5, "splicing indirect only\n");
863 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
864 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
869 * OK, we spliced it into the inode itself on a direct block.
871 ext4_mark_inode_dirty(handle
, inode
);
872 jbd_debug(5, "splicing direct\n");
877 for (i
= 1; i
<= num
; i
++) {
879 * branch[i].bh is newly allocated, so there is no
880 * need to revoke the block, which is why we don't
881 * need to set EXT4_FREE_BLOCKS_METADATA.
883 ext4_free_blocks(handle
, inode
, where
[i
].bh
, 0, 1,
884 EXT4_FREE_BLOCKS_FORGET
);
886 ext4_free_blocks(handle
, inode
, 0, le32_to_cpu(where
[num
].key
),
893 * The ext4_ind_get_blocks() function handles non-extents inodes
894 * (i.e., using the traditional indirect/double-indirect i_blocks
895 * scheme) for ext4_get_blocks().
897 * Allocation strategy is simple: if we have to allocate something, we will
898 * have to go the whole way to leaf. So let's do it before attaching anything
899 * to tree, set linkage between the newborn blocks, write them if sync is
900 * required, recheck the path, free and repeat if check fails, otherwise
901 * set the last missing link (that will protect us from any truncate-generated
902 * removals - all blocks on the path are immune now) and possibly force the
903 * write on the parent block.
904 * That has a nice additional property: no special recovery from the failed
905 * allocations is needed - we simply release blocks and do not touch anything
906 * reachable from inode.
908 * `handle' can be NULL if create == 0.
910 * return > 0, # of blocks mapped or allocated.
911 * return = 0, if plain lookup failed.
912 * return < 0, error case.
914 * The ext4_ind_get_blocks() function should be called with
915 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
916 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
917 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
920 static int ext4_ind_get_blocks(handle_t
*handle
, struct inode
*inode
,
921 ext4_lblk_t iblock
, unsigned int maxblocks
,
922 struct buffer_head
*bh_result
,
926 ext4_lblk_t offsets
[4];
931 int blocks_to_boundary
= 0;
934 ext4_fsblk_t first_block
= 0;
936 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
937 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
938 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
939 &blocks_to_boundary
);
944 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
946 /* Simplest case - block found, no allocation needed */
948 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
949 clear_buffer_new(bh_result
);
952 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
955 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
957 if (blk
== first_block
+ count
)
965 /* Next simple case - plain lookup or failed read of indirect block */
966 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
970 * Okay, we need to do block allocation.
972 goal
= ext4_find_goal(inode
, iblock
, partial
);
974 /* the number of blocks need to allocate for [d,t]indirect blocks */
975 indirect_blks
= (chain
+ depth
) - partial
- 1;
978 * Next look up the indirect map to count the totoal number of
979 * direct blocks to allocate for this branch.
981 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
982 maxblocks
, blocks_to_boundary
);
984 * Block out ext4_truncate while we alter the tree
986 err
= ext4_alloc_branch(handle
, inode
, iblock
, indirect_blks
,
988 offsets
+ (partial
- chain
), partial
);
991 * The ext4_splice_branch call will free and forget any buffers
992 * on the new chain if there is a failure, but that risks using
993 * up transaction credits, especially for bitmaps where the
994 * credits cannot be returned. Can we handle this somehow? We
995 * may need to return -EAGAIN upwards in the worst case. --sct
998 err
= ext4_splice_branch(handle
, inode
, iblock
,
999 partial
, indirect_blks
, count
);
1003 set_buffer_new(bh_result
);
1005 ext4_update_inode_fsync_trans(handle
, inode
, 1);
1007 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
1008 if (count
> blocks_to_boundary
)
1009 set_buffer_boundary(bh_result
);
1011 /* Clean up and exit */
1012 partial
= chain
+ depth
- 1; /* the whole chain */
1014 while (partial
> chain
) {
1015 BUFFER_TRACE(partial
->bh
, "call brelse");
1016 brelse(partial
->bh
);
1019 BUFFER_TRACE(bh_result
, "returned");
1025 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
1027 return &EXT4_I(inode
)->i_reserved_quota
;
1032 * Calculate the number of metadata blocks need to reserve
1033 * to allocate a new block at @lblocks for non extent file based file
1035 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
,
1038 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1039 sector_t dind_mask
= ~((sector_t
)EXT4_ADDR_PER_BLOCK(inode
->i_sb
) - 1);
1042 if (lblock
< EXT4_NDIR_BLOCKS
)
1045 lblock
-= EXT4_NDIR_BLOCKS
;
1047 if (ei
->i_da_metadata_calc_len
&&
1048 (lblock
& dind_mask
) == ei
->i_da_metadata_calc_last_lblock
) {
1049 ei
->i_da_metadata_calc_len
++;
1052 ei
->i_da_metadata_calc_last_lblock
= lblock
& dind_mask
;
1053 ei
->i_da_metadata_calc_len
= 1;
1054 blk_bits
= order_base_2(lblock
);
1055 return (blk_bits
/ EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
)) + 1;
1059 * Calculate the number of metadata blocks need to reserve
1060 * to allocate a block located at @lblock
1062 static int ext4_calc_metadata_amount(struct inode
*inode
, sector_t lblock
)
1064 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
1065 return ext4_ext_calc_metadata_amount(inode
, lblock
);
1067 return ext4_indirect_calc_metadata_amount(inode
, lblock
);
1071 * Called with i_data_sem down, which is important since we can call
1072 * ext4_discard_preallocations() from here.
1074 void ext4_da_update_reserve_space(struct inode
*inode
,
1075 int used
, int quota_claim
)
1077 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1078 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1079 int mdb_free
= 0, allocated_meta_blocks
= 0;
1081 spin_lock(&ei
->i_block_reservation_lock
);
1082 trace_ext4_da_update_reserve_space(inode
, used
);
1083 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
1084 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
1085 "with only %d reserved data blocks\n",
1086 __func__
, inode
->i_ino
, used
,
1087 ei
->i_reserved_data_blocks
);
1089 used
= ei
->i_reserved_data_blocks
;
1092 /* Update per-inode reservations */
1093 ei
->i_reserved_data_blocks
-= used
;
1094 used
+= ei
->i_allocated_meta_blocks
;
1095 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
1096 allocated_meta_blocks
= ei
->i_allocated_meta_blocks
;
1097 ei
->i_allocated_meta_blocks
= 0;
1098 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, used
);
1100 if (ei
->i_reserved_data_blocks
== 0) {
1102 * We can release all of the reserved metadata blocks
1103 * only when we have written all of the delayed
1104 * allocation blocks.
1106 mdb_free
= ei
->i_reserved_meta_blocks
;
1107 ei
->i_reserved_meta_blocks
= 0;
1108 ei
->i_da_metadata_calc_len
= 0;
1109 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, mdb_free
);
1111 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1113 /* Update quota subsystem */
1115 dquot_claim_block(inode
, used
);
1117 dquot_release_reservation_block(inode
, mdb_free
);
1120 * We did fallocate with an offset that is already delayed
1121 * allocated. So on delayed allocated writeback we should
1122 * not update the quota for allocated blocks. But then
1123 * converting an fallocate region to initialized region would
1124 * have caused a metadata allocation. So claim quota for
1127 if (allocated_meta_blocks
)
1128 dquot_claim_block(inode
, allocated_meta_blocks
);
1129 dquot_release_reservation_block(inode
, mdb_free
+ used
);
1133 * If we have done all the pending block allocations and if
1134 * there aren't any writers on the inode, we can discard the
1135 * inode's preallocations.
1137 if ((ei
->i_reserved_data_blocks
== 0) &&
1138 (atomic_read(&inode
->i_writecount
) == 0))
1139 ext4_discard_preallocations(inode
);
1142 static int check_block_validity(struct inode
*inode
, const char *msg
,
1143 sector_t logical
, sector_t phys
, int len
)
1145 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), phys
, len
)) {
1146 __ext4_error(inode
->i_sb
, msg
,
1147 "inode #%lu logical block %llu mapped to %llu "
1148 "(size %d)", inode
->i_ino
,
1149 (unsigned long long) logical
,
1150 (unsigned long long) phys
, len
);
1157 * Return the number of contiguous dirty pages in a given inode
1158 * starting at page frame idx.
1160 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
1161 unsigned int max_pages
)
1163 struct address_space
*mapping
= inode
->i_mapping
;
1165 struct pagevec pvec
;
1167 int i
, nr_pages
, done
= 0;
1171 pagevec_init(&pvec
, 0);
1174 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
1175 PAGECACHE_TAG_DIRTY
,
1176 (pgoff_t
)PAGEVEC_SIZE
);
1179 for (i
= 0; i
< nr_pages
; i
++) {
1180 struct page
*page
= pvec
.pages
[i
];
1181 struct buffer_head
*bh
, *head
;
1184 if (unlikely(page
->mapping
!= mapping
) ||
1186 PageWriteback(page
) ||
1187 page
->index
!= idx
) {
1192 if (page_has_buffers(page
)) {
1193 bh
= head
= page_buffers(page
);
1195 if (!buffer_delay(bh
) &&
1196 !buffer_unwritten(bh
))
1198 bh
= bh
->b_this_page
;
1199 } while (!done
&& (bh
!= head
));
1206 if (num
>= max_pages
)
1209 pagevec_release(&pvec
);
1215 * The ext4_get_blocks() function tries to look up the requested blocks,
1216 * and returns if the blocks are already mapped.
1218 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1219 * and store the allocated blocks in the result buffer head and mark it
1222 * If file type is extents based, it will call ext4_ext_get_blocks(),
1223 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1226 * On success, it returns the number of blocks being mapped or allocate.
1227 * if create==0 and the blocks are pre-allocated and uninitialized block,
1228 * the result buffer head is unmapped. If the create ==1, it will make sure
1229 * the buffer head is mapped.
1231 * It returns 0 if plain look up failed (blocks have not been allocated), in
1232 * that casem, buffer head is unmapped
1234 * It returns the error in case of allocation failure.
1236 int ext4_get_blocks(handle_t
*handle
, struct inode
*inode
, sector_t block
,
1237 unsigned int max_blocks
, struct buffer_head
*bh
,
1242 clear_buffer_mapped(bh
);
1243 clear_buffer_unwritten(bh
);
1245 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1246 "logical block %lu\n", inode
->i_ino
, flags
, max_blocks
,
1247 (unsigned long)block
);
1249 * Try to see if we can get the block without requesting a new
1250 * file system block.
1252 down_read((&EXT4_I(inode
)->i_data_sem
));
1253 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1254 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1257 retval
= ext4_ind_get_blocks(handle
, inode
, block
, max_blocks
,
1260 up_read((&EXT4_I(inode
)->i_data_sem
));
1262 if (retval
> 0 && buffer_mapped(bh
)) {
1263 int ret
= check_block_validity(inode
, "file system corruption",
1264 block
, bh
->b_blocknr
, retval
);
1269 /* If it is only a block(s) look up */
1270 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1274 * Returns if the blocks have already allocated
1276 * Note that if blocks have been preallocated
1277 * ext4_ext_get_block() returns th create = 0
1278 * with buffer head unmapped.
1280 if (retval
> 0 && buffer_mapped(bh
))
1284 * When we call get_blocks without the create flag, the
1285 * BH_Unwritten flag could have gotten set if the blocks
1286 * requested were part of a uninitialized extent. We need to
1287 * clear this flag now that we are committed to convert all or
1288 * part of the uninitialized extent to be an initialized
1289 * extent. This is because we need to avoid the combination
1290 * of BH_Unwritten and BH_Mapped flags being simultaneously
1291 * set on the buffer_head.
1293 clear_buffer_unwritten(bh
);
1296 * New blocks allocate and/or writing to uninitialized extent
1297 * will possibly result in updating i_data, so we take
1298 * the write lock of i_data_sem, and call get_blocks()
1299 * with create == 1 flag.
1301 down_write((&EXT4_I(inode
)->i_data_sem
));
1304 * if the caller is from delayed allocation writeout path
1305 * we have already reserved fs blocks for allocation
1306 * let the underlying get_block() function know to
1307 * avoid double accounting
1309 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1310 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1312 * We need to check for EXT4 here because migrate
1313 * could have changed the inode type in between
1315 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1316 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1319 retval
= ext4_ind_get_blocks(handle
, inode
, block
,
1320 max_blocks
, bh
, flags
);
1322 if (retval
> 0 && buffer_new(bh
)) {
1324 * We allocated new blocks which will result in
1325 * i_data's format changing. Force the migrate
1326 * to fail by clearing migrate flags
1328 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
1332 * Update reserved blocks/metadata blocks after successful
1333 * block allocation which had been deferred till now. We don't
1334 * support fallocate for non extent files. So we can update
1335 * reserve space here.
1338 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
1339 ext4_da_update_reserve_space(inode
, retval
, 1);
1341 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1342 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1344 up_write((&EXT4_I(inode
)->i_data_sem
));
1345 if (retval
> 0 && buffer_mapped(bh
)) {
1346 int ret
= check_block_validity(inode
, "file system "
1347 "corruption after allocation",
1348 block
, bh
->b_blocknr
, retval
);
1355 /* Maximum number of blocks we map for direct IO at once. */
1356 #define DIO_MAX_BLOCKS 4096
1358 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1359 struct buffer_head
*bh_result
, int create
)
1361 handle_t
*handle
= ext4_journal_current_handle();
1362 int ret
= 0, started
= 0;
1363 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1366 if (create
&& !handle
) {
1367 /* Direct IO write... */
1368 if (max_blocks
> DIO_MAX_BLOCKS
)
1369 max_blocks
= DIO_MAX_BLOCKS
;
1370 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
1371 handle
= ext4_journal_start(inode
, dio_credits
);
1372 if (IS_ERR(handle
)) {
1373 ret
= PTR_ERR(handle
);
1379 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
1380 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1382 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1386 ext4_journal_stop(handle
);
1392 * `handle' can be NULL if create is zero
1394 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1395 ext4_lblk_t block
, int create
, int *errp
)
1397 struct buffer_head dummy
;
1401 J_ASSERT(handle
!= NULL
|| create
== 0);
1404 dummy
.b_blocknr
= -1000;
1405 buffer_trace_init(&dummy
.b_history
);
1407 flags
|= EXT4_GET_BLOCKS_CREATE
;
1408 err
= ext4_get_blocks(handle
, inode
, block
, 1, &dummy
, flags
);
1410 * ext4_get_blocks() returns number of blocks mapped. 0 in
1419 if (!err
&& buffer_mapped(&dummy
)) {
1420 struct buffer_head
*bh
;
1421 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1426 if (buffer_new(&dummy
)) {
1427 J_ASSERT(create
!= 0);
1428 J_ASSERT(handle
!= NULL
);
1431 * Now that we do not always journal data, we should
1432 * keep in mind whether this should always journal the
1433 * new buffer as metadata. For now, regular file
1434 * writes use ext4_get_block instead, so it's not a
1438 BUFFER_TRACE(bh
, "call get_create_access");
1439 fatal
= ext4_journal_get_create_access(handle
, bh
);
1440 if (!fatal
&& !buffer_uptodate(bh
)) {
1441 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1442 set_buffer_uptodate(bh
);
1445 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1446 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1450 BUFFER_TRACE(bh
, "not a new buffer");
1463 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1464 ext4_lblk_t block
, int create
, int *err
)
1466 struct buffer_head
*bh
;
1468 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1471 if (buffer_uptodate(bh
))
1473 ll_rw_block(READ_META
, 1, &bh
);
1475 if (buffer_uptodate(bh
))
1482 static int walk_page_buffers(handle_t
*handle
,
1483 struct buffer_head
*head
,
1487 int (*fn
)(handle_t
*handle
,
1488 struct buffer_head
*bh
))
1490 struct buffer_head
*bh
;
1491 unsigned block_start
, block_end
;
1492 unsigned blocksize
= head
->b_size
;
1494 struct buffer_head
*next
;
1496 for (bh
= head
, block_start
= 0;
1497 ret
== 0 && (bh
!= head
|| !block_start
);
1498 block_start
= block_end
, bh
= next
) {
1499 next
= bh
->b_this_page
;
1500 block_end
= block_start
+ blocksize
;
1501 if (block_end
<= from
|| block_start
>= to
) {
1502 if (partial
&& !buffer_uptodate(bh
))
1506 err
= (*fn
)(handle
, bh
);
1514 * To preserve ordering, it is essential that the hole instantiation and
1515 * the data write be encapsulated in a single transaction. We cannot
1516 * close off a transaction and start a new one between the ext4_get_block()
1517 * and the commit_write(). So doing the jbd2_journal_start at the start of
1518 * prepare_write() is the right place.
1520 * Also, this function can nest inside ext4_writepage() ->
1521 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1522 * has generated enough buffer credits to do the whole page. So we won't
1523 * block on the journal in that case, which is good, because the caller may
1526 * By accident, ext4 can be reentered when a transaction is open via
1527 * quota file writes. If we were to commit the transaction while thus
1528 * reentered, there can be a deadlock - we would be holding a quota
1529 * lock, and the commit would never complete if another thread had a
1530 * transaction open and was blocking on the quota lock - a ranking
1533 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1534 * will _not_ run commit under these circumstances because handle->h_ref
1535 * is elevated. We'll still have enough credits for the tiny quotafile
1538 static int do_journal_get_write_access(handle_t
*handle
,
1539 struct buffer_head
*bh
)
1541 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1543 return ext4_journal_get_write_access(handle
, bh
);
1547 * Truncate blocks that were not used by write. We have to truncate the
1548 * pagecache as well so that corresponding buffers get properly unmapped.
1550 static void ext4_truncate_failed_write(struct inode
*inode
)
1552 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1553 ext4_truncate(inode
);
1556 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
1557 struct buffer_head
*bh_result
, int create
);
1558 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1559 loff_t pos
, unsigned len
, unsigned flags
,
1560 struct page
**pagep
, void **fsdata
)
1562 struct inode
*inode
= mapping
->host
;
1563 int ret
, needed_blocks
;
1570 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1572 * Reserve one block more for addition to orphan list in case
1573 * we allocate blocks but write fails for some reason
1575 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1576 index
= pos
>> PAGE_CACHE_SHIFT
;
1577 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1581 handle
= ext4_journal_start(inode
, needed_blocks
);
1582 if (IS_ERR(handle
)) {
1583 ret
= PTR_ERR(handle
);
1587 /* We cannot recurse into the filesystem as the transaction is already
1589 flags
|= AOP_FLAG_NOFS
;
1591 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1593 ext4_journal_stop(handle
);
1599 if (ext4_should_dioread_nolock(inode
))
1600 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
,
1601 fsdata
, ext4_get_block_write
);
1603 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
,
1604 fsdata
, ext4_get_block
);
1606 if (!ret
&& ext4_should_journal_data(inode
)) {
1607 ret
= walk_page_buffers(handle
, page_buffers(page
),
1608 from
, to
, NULL
, do_journal_get_write_access
);
1613 page_cache_release(page
);
1615 * block_write_begin may have instantiated a few blocks
1616 * outside i_size. Trim these off again. Don't need
1617 * i_size_read because we hold i_mutex.
1619 * Add inode to orphan list in case we crash before
1622 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1623 ext4_orphan_add(handle
, inode
);
1625 ext4_journal_stop(handle
);
1626 if (pos
+ len
> inode
->i_size
) {
1627 ext4_truncate_failed_write(inode
);
1629 * If truncate failed early the inode might
1630 * still be on the orphan list; we need to
1631 * make sure the inode is removed from the
1632 * orphan list in that case.
1635 ext4_orphan_del(NULL
, inode
);
1639 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1645 /* For write_end() in data=journal mode */
1646 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1648 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1650 set_buffer_uptodate(bh
);
1651 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1654 static int ext4_generic_write_end(struct file
*file
,
1655 struct address_space
*mapping
,
1656 loff_t pos
, unsigned len
, unsigned copied
,
1657 struct page
*page
, void *fsdata
)
1659 int i_size_changed
= 0;
1660 struct inode
*inode
= mapping
->host
;
1661 handle_t
*handle
= ext4_journal_current_handle();
1663 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1666 * No need to use i_size_read() here, the i_size
1667 * cannot change under us because we hold i_mutex.
1669 * But it's important to update i_size while still holding page lock:
1670 * page writeout could otherwise come in and zero beyond i_size.
1672 if (pos
+ copied
> inode
->i_size
) {
1673 i_size_write(inode
, pos
+ copied
);
1677 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1678 /* We need to mark inode dirty even if
1679 * new_i_size is less that inode->i_size
1680 * bu greater than i_disksize.(hint delalloc)
1682 ext4_update_i_disksize(inode
, (pos
+ copied
));
1686 page_cache_release(page
);
1689 * Don't mark the inode dirty under page lock. First, it unnecessarily
1690 * makes the holding time of page lock longer. Second, it forces lock
1691 * ordering of page lock and transaction start for journaling
1695 ext4_mark_inode_dirty(handle
, inode
);
1701 * We need to pick up the new inode size which generic_commit_write gave us
1702 * `file' can be NULL - eg, when called from page_symlink().
1704 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1705 * buffers are managed internally.
1707 static int ext4_ordered_write_end(struct file
*file
,
1708 struct address_space
*mapping
,
1709 loff_t pos
, unsigned len
, unsigned copied
,
1710 struct page
*page
, void *fsdata
)
1712 handle_t
*handle
= ext4_journal_current_handle();
1713 struct inode
*inode
= mapping
->host
;
1716 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1717 ret
= ext4_jbd2_file_inode(handle
, inode
);
1720 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1723 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1724 /* if we have allocated more blocks and copied
1725 * less. We will have blocks allocated outside
1726 * inode->i_size. So truncate them
1728 ext4_orphan_add(handle
, inode
);
1732 ret2
= ext4_journal_stop(handle
);
1736 if (pos
+ len
> inode
->i_size
) {
1737 ext4_truncate_failed_write(inode
);
1739 * If truncate failed early the inode might still be
1740 * on the orphan list; we need to make sure the inode
1741 * is removed from the orphan list in that case.
1744 ext4_orphan_del(NULL
, inode
);
1748 return ret
? ret
: copied
;
1751 static int ext4_writeback_write_end(struct file
*file
,
1752 struct address_space
*mapping
,
1753 loff_t pos
, unsigned len
, unsigned copied
,
1754 struct page
*page
, void *fsdata
)
1756 handle_t
*handle
= ext4_journal_current_handle();
1757 struct inode
*inode
= mapping
->host
;
1760 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1761 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1764 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1765 /* if we have allocated more blocks and copied
1766 * less. We will have blocks allocated outside
1767 * inode->i_size. So truncate them
1769 ext4_orphan_add(handle
, inode
);
1774 ret2
= ext4_journal_stop(handle
);
1778 if (pos
+ len
> inode
->i_size
) {
1779 ext4_truncate_failed_write(inode
);
1781 * If truncate failed early the inode might still be
1782 * on the orphan list; we need to make sure the inode
1783 * is removed from the orphan list in that case.
1786 ext4_orphan_del(NULL
, inode
);
1789 return ret
? ret
: copied
;
1792 static int ext4_journalled_write_end(struct file
*file
,
1793 struct address_space
*mapping
,
1794 loff_t pos
, unsigned len
, unsigned copied
,
1795 struct page
*page
, void *fsdata
)
1797 handle_t
*handle
= ext4_journal_current_handle();
1798 struct inode
*inode
= mapping
->host
;
1804 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1805 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1809 if (!PageUptodate(page
))
1811 page_zero_new_buffers(page
, from
+copied
, to
);
1814 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1815 to
, &partial
, write_end_fn
);
1817 SetPageUptodate(page
);
1818 new_i_size
= pos
+ copied
;
1819 if (new_i_size
> inode
->i_size
)
1820 i_size_write(inode
, pos
+copied
);
1821 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1822 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1823 ext4_update_i_disksize(inode
, new_i_size
);
1824 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1830 page_cache_release(page
);
1831 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1832 /* if we have allocated more blocks and copied
1833 * less. We will have blocks allocated outside
1834 * inode->i_size. So truncate them
1836 ext4_orphan_add(handle
, inode
);
1838 ret2
= ext4_journal_stop(handle
);
1841 if (pos
+ len
> inode
->i_size
) {
1842 ext4_truncate_failed_write(inode
);
1844 * If truncate failed early the inode might still be
1845 * on the orphan list; we need to make sure the inode
1846 * is removed from the orphan list in that case.
1849 ext4_orphan_del(NULL
, inode
);
1852 return ret
? ret
: copied
;
1856 * Reserve a single block located at lblock
1858 static int ext4_da_reserve_space(struct inode
*inode
, sector_t lblock
)
1861 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1862 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1863 unsigned long md_needed
, md_reserved
;
1867 * recalculate the amount of metadata blocks to reserve
1868 * in order to allocate nrblocks
1869 * worse case is one extent per block
1872 spin_lock(&ei
->i_block_reservation_lock
);
1873 md_reserved
= ei
->i_reserved_meta_blocks
;
1874 md_needed
= ext4_calc_metadata_amount(inode
, lblock
);
1875 trace_ext4_da_reserve_space(inode
, md_needed
);
1876 spin_unlock(&ei
->i_block_reservation_lock
);
1879 * Make quota reservation here to prevent quota overflow
1880 * later. Real quota accounting is done at pages writeout
1883 ret
= dquot_reserve_block(inode
, md_needed
+ 1);
1887 if (ext4_claim_free_blocks(sbi
, md_needed
+ 1)) {
1888 dquot_release_reservation_block(inode
, md_needed
+ 1);
1889 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1895 spin_lock(&ei
->i_block_reservation_lock
);
1896 ei
->i_reserved_data_blocks
++;
1897 ei
->i_reserved_meta_blocks
+= md_needed
;
1898 spin_unlock(&ei
->i_block_reservation_lock
);
1900 return 0; /* success */
1903 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1905 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1906 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1909 return; /* Nothing to release, exit */
1911 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1913 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1915 * if there aren't enough reserved blocks, then the
1916 * counter is messed up somewhere. Since this
1917 * function is called from invalidate page, it's
1918 * harmless to return without any action.
1920 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1921 "ino %lu, to_free %d with only %d reserved "
1922 "data blocks\n", inode
->i_ino
, to_free
,
1923 ei
->i_reserved_data_blocks
);
1925 to_free
= ei
->i_reserved_data_blocks
;
1927 ei
->i_reserved_data_blocks
-= to_free
;
1929 if (ei
->i_reserved_data_blocks
== 0) {
1931 * We can release all of the reserved metadata blocks
1932 * only when we have written all of the delayed
1933 * allocation blocks.
1935 to_free
+= ei
->i_reserved_meta_blocks
;
1936 ei
->i_reserved_meta_blocks
= 0;
1937 ei
->i_da_metadata_calc_len
= 0;
1940 /* update fs dirty blocks counter */
1941 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, to_free
);
1943 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1945 dquot_release_reservation_block(inode
, to_free
);
1948 static void ext4_da_page_release_reservation(struct page
*page
,
1949 unsigned long offset
)
1952 struct buffer_head
*head
, *bh
;
1953 unsigned int curr_off
= 0;
1955 head
= page_buffers(page
);
1958 unsigned int next_off
= curr_off
+ bh
->b_size
;
1960 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1962 clear_buffer_delay(bh
);
1964 curr_off
= next_off
;
1965 } while ((bh
= bh
->b_this_page
) != head
);
1966 ext4_da_release_space(page
->mapping
->host
, to_release
);
1970 * Delayed allocation stuff
1974 * mpage_da_submit_io - walks through extent of pages and try to write
1975 * them with writepage() call back
1977 * @mpd->inode: inode
1978 * @mpd->first_page: first page of the extent
1979 * @mpd->next_page: page after the last page of the extent
1981 * By the time mpage_da_submit_io() is called we expect all blocks
1982 * to be allocated. this may be wrong if allocation failed.
1984 * As pages are already locked by write_cache_pages(), we can't use it
1986 static int mpage_da_submit_io(struct mpage_da_data
*mpd
)
1989 struct pagevec pvec
;
1990 unsigned long index
, end
;
1991 int ret
= 0, err
, nr_pages
, i
;
1992 struct inode
*inode
= mpd
->inode
;
1993 struct address_space
*mapping
= inode
->i_mapping
;
1995 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1997 * We need to start from the first_page to the next_page - 1
1998 * to make sure we also write the mapped dirty buffer_heads.
1999 * If we look at mpd->b_blocknr we would only be looking
2000 * at the currently mapped buffer_heads.
2002 index
= mpd
->first_page
;
2003 end
= mpd
->next_page
- 1;
2005 pagevec_init(&pvec
, 0);
2006 while (index
<= end
) {
2007 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2010 for (i
= 0; i
< nr_pages
; i
++) {
2011 struct page
*page
= pvec
.pages
[i
];
2013 index
= page
->index
;
2018 BUG_ON(!PageLocked(page
));
2019 BUG_ON(PageWriteback(page
));
2021 pages_skipped
= mpd
->wbc
->pages_skipped
;
2022 err
= mapping
->a_ops
->writepage(page
, mpd
->wbc
);
2023 if (!err
&& (pages_skipped
== mpd
->wbc
->pages_skipped
))
2025 * have successfully written the page
2026 * without skipping the same
2028 mpd
->pages_written
++;
2030 * In error case, we have to continue because
2031 * remaining pages are still locked
2032 * XXX: unlock and re-dirty them?
2037 pagevec_release(&pvec
);
2043 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2045 * @mpd->inode - inode to walk through
2046 * @exbh->b_blocknr - first block on a disk
2047 * @exbh->b_size - amount of space in bytes
2048 * @logical - first logical block to start assignment with
2050 * the function goes through all passed space and put actual disk
2051 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2053 static void mpage_put_bnr_to_bhs(struct mpage_da_data
*mpd
, sector_t logical
,
2054 struct buffer_head
*exbh
)
2056 struct inode
*inode
= mpd
->inode
;
2057 struct address_space
*mapping
= inode
->i_mapping
;
2058 int blocks
= exbh
->b_size
>> inode
->i_blkbits
;
2059 sector_t pblock
= exbh
->b_blocknr
, cur_logical
;
2060 struct buffer_head
*head
, *bh
;
2062 struct pagevec pvec
;
2065 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2066 end
= (logical
+ blocks
- 1) >> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2067 cur_logical
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2069 pagevec_init(&pvec
, 0);
2071 while (index
<= end
) {
2072 /* XXX: optimize tail */
2073 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2076 for (i
= 0; i
< nr_pages
; i
++) {
2077 struct page
*page
= pvec
.pages
[i
];
2079 index
= page
->index
;
2084 BUG_ON(!PageLocked(page
));
2085 BUG_ON(PageWriteback(page
));
2086 BUG_ON(!page_has_buffers(page
));
2088 bh
= page_buffers(page
);
2091 /* skip blocks out of the range */
2093 if (cur_logical
>= logical
)
2096 } while ((bh
= bh
->b_this_page
) != head
);
2099 if (cur_logical
>= logical
+ blocks
)
2102 if (buffer_delay(bh
) ||
2103 buffer_unwritten(bh
)) {
2105 BUG_ON(bh
->b_bdev
!= inode
->i_sb
->s_bdev
);
2107 if (buffer_delay(bh
)) {
2108 clear_buffer_delay(bh
);
2109 bh
->b_blocknr
= pblock
;
2112 * unwritten already should have
2113 * blocknr assigned. Verify that
2115 clear_buffer_unwritten(bh
);
2116 BUG_ON(bh
->b_blocknr
!= pblock
);
2119 } else if (buffer_mapped(bh
))
2120 BUG_ON(bh
->b_blocknr
!= pblock
);
2122 if (buffer_uninit(exbh
))
2123 set_buffer_uninit(bh
);
2126 } while ((bh
= bh
->b_this_page
) != head
);
2128 pagevec_release(&pvec
);
2134 * __unmap_underlying_blocks - just a helper function to unmap
2135 * set of blocks described by @bh
2137 static inline void __unmap_underlying_blocks(struct inode
*inode
,
2138 struct buffer_head
*bh
)
2140 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2143 blocks
= bh
->b_size
>> inode
->i_blkbits
;
2144 for (i
= 0; i
< blocks
; i
++)
2145 unmap_underlying_metadata(bdev
, bh
->b_blocknr
+ i
);
2148 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
,
2149 sector_t logical
, long blk_cnt
)
2153 struct pagevec pvec
;
2154 struct inode
*inode
= mpd
->inode
;
2155 struct address_space
*mapping
= inode
->i_mapping
;
2157 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2158 end
= (logical
+ blk_cnt
- 1) >>
2159 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2160 while (index
<= end
) {
2161 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2164 for (i
= 0; i
< nr_pages
; i
++) {
2165 struct page
*page
= pvec
.pages
[i
];
2166 if (page
->index
> end
)
2168 BUG_ON(!PageLocked(page
));
2169 BUG_ON(PageWriteback(page
));
2170 block_invalidatepage(page
, 0);
2171 ClearPageUptodate(page
);
2174 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
2175 pagevec_release(&pvec
);
2180 static void ext4_print_free_blocks(struct inode
*inode
)
2182 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2183 printk(KERN_CRIT
"Total free blocks count %lld\n",
2184 ext4_count_free_blocks(inode
->i_sb
));
2185 printk(KERN_CRIT
"Free/Dirty block details\n");
2186 printk(KERN_CRIT
"free_blocks=%lld\n",
2187 (long long) percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2188 printk(KERN_CRIT
"dirty_blocks=%lld\n",
2189 (long long) percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2190 printk(KERN_CRIT
"Block reservation details\n");
2191 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
2192 EXT4_I(inode
)->i_reserved_data_blocks
);
2193 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
2194 EXT4_I(inode
)->i_reserved_meta_blocks
);
2199 * mpage_da_map_blocks - go through given space
2201 * @mpd - bh describing space
2203 * The function skips space we know is already mapped to disk blocks.
2206 static int mpage_da_map_blocks(struct mpage_da_data
*mpd
)
2208 int err
, blks
, get_blocks_flags
;
2209 struct buffer_head
new;
2210 sector_t next
= mpd
->b_blocknr
;
2211 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2212 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2213 handle_t
*handle
= NULL
;
2216 * We consider only non-mapped and non-allocated blocks
2218 if ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2219 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2220 !(mpd
->b_state
& (1 << BH_Unwritten
)))
2224 * If we didn't accumulate anything to write simply return
2229 handle
= ext4_journal_current_handle();
2233 * Call ext4_get_blocks() to allocate any delayed allocation
2234 * blocks, or to convert an uninitialized extent to be
2235 * initialized (in the case where we have written into
2236 * one or more preallocated blocks).
2238 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2239 * indicate that we are on the delayed allocation path. This
2240 * affects functions in many different parts of the allocation
2241 * call path. This flag exists primarily because we don't
2242 * want to change *many* call functions, so ext4_get_blocks()
2243 * will set the magic i_delalloc_reserved_flag once the
2244 * inode's allocation semaphore is taken.
2246 * If the blocks in questions were delalloc blocks, set
2247 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2248 * variables are updated after the blocks have been allocated.
2251 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
2252 if (ext4_should_dioread_nolock(mpd
->inode
))
2253 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2254 if (mpd
->b_state
& (1 << BH_Delay
))
2255 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2257 blks
= ext4_get_blocks(handle
, mpd
->inode
, next
, max_blocks
,
2258 &new, get_blocks_flags
);
2262 * If get block returns with error we simply
2263 * return. Later writepage will redirty the page and
2264 * writepages will find the dirty page again
2269 if (err
== -ENOSPC
&&
2270 ext4_count_free_blocks(mpd
->inode
->i_sb
)) {
2276 * get block failure will cause us to loop in
2277 * writepages, because a_ops->writepage won't be able
2278 * to make progress. The page will be redirtied by
2279 * writepage and writepages will again try to write
2282 ext4_msg(mpd
->inode
->i_sb
, KERN_CRIT
,
2283 "delayed block allocation failed for inode %lu at "
2284 "logical offset %llu with max blocks %zd with "
2285 "error %d\n", mpd
->inode
->i_ino
,
2286 (unsigned long long) next
,
2287 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2288 printk(KERN_CRIT
"This should not happen!! "
2289 "Data will be lost\n");
2290 if (err
== -ENOSPC
) {
2291 ext4_print_free_blocks(mpd
->inode
);
2293 /* invalidate all the pages */
2294 ext4_da_block_invalidatepages(mpd
, next
,
2295 mpd
->b_size
>> mpd
->inode
->i_blkbits
);
2300 new.b_size
= (blks
<< mpd
->inode
->i_blkbits
);
2302 if (buffer_new(&new))
2303 __unmap_underlying_blocks(mpd
->inode
, &new);
2306 * If blocks are delayed marked, we need to
2307 * put actual blocknr and drop delayed bit
2309 if ((mpd
->b_state
& (1 << BH_Delay
)) ||
2310 (mpd
->b_state
& (1 << BH_Unwritten
)))
2311 mpage_put_bnr_to_bhs(mpd
, next
, &new);
2313 if (ext4_should_order_data(mpd
->inode
)) {
2314 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2320 * Update on-disk size along with block allocation.
2322 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2323 if (disksize
> i_size_read(mpd
->inode
))
2324 disksize
= i_size_read(mpd
->inode
);
2325 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2326 ext4_update_i_disksize(mpd
->inode
, disksize
);
2327 return ext4_mark_inode_dirty(handle
, mpd
->inode
);
2333 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2334 (1 << BH_Delay) | (1 << BH_Unwritten))
2337 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2339 * @mpd->lbh - extent of blocks
2340 * @logical - logical number of the block in the file
2341 * @bh - bh of the block (used to access block's state)
2343 * the function is used to collect contig. blocks in same state
2345 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2346 sector_t logical
, size_t b_size
,
2347 unsigned long b_state
)
2350 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2352 /* check if thereserved journal credits might overflow */
2353 if (!(EXT4_I(mpd
->inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
2354 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2356 * With non-extent format we are limited by the journal
2357 * credit available. Total credit needed to insert
2358 * nrblocks contiguous blocks is dependent on the
2359 * nrblocks. So limit nrblocks.
2362 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2363 EXT4_MAX_TRANS_DATA
) {
2365 * Adding the new buffer_head would make it cross the
2366 * allowed limit for which we have journal credit
2367 * reserved. So limit the new bh->b_size
2369 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2370 mpd
->inode
->i_blkbits
;
2371 /* we will do mpage_da_submit_io in the next loop */
2375 * First block in the extent
2377 if (mpd
->b_size
== 0) {
2378 mpd
->b_blocknr
= logical
;
2379 mpd
->b_size
= b_size
;
2380 mpd
->b_state
= b_state
& BH_FLAGS
;
2384 next
= mpd
->b_blocknr
+ nrblocks
;
2386 * Can we merge the block to our big extent?
2388 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2389 mpd
->b_size
+= b_size
;
2395 * We couldn't merge the block to our extent, so we
2396 * need to flush current extent and start new one
2398 if (mpage_da_map_blocks(mpd
) == 0)
2399 mpage_da_submit_io(mpd
);
2404 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2406 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2410 * __mpage_da_writepage - finds extent of pages and blocks
2412 * @page: page to consider
2413 * @wbc: not used, we just follow rules
2416 * The function finds extents of pages and scan them for all blocks.
2418 static int __mpage_da_writepage(struct page
*page
,
2419 struct writeback_control
*wbc
, void *data
)
2421 struct mpage_da_data
*mpd
= data
;
2422 struct inode
*inode
= mpd
->inode
;
2423 struct buffer_head
*bh
, *head
;
2428 * Rest of the page in the page_vec
2429 * redirty then and skip then. We will
2430 * try to write them again after
2431 * starting a new transaction
2433 redirty_page_for_writepage(wbc
, page
);
2435 return MPAGE_DA_EXTENT_TAIL
;
2438 * Can we merge this page to current extent?
2440 if (mpd
->next_page
!= page
->index
) {
2442 * Nope, we can't. So, we map non-allocated blocks
2443 * and start IO on them using writepage()
2445 if (mpd
->next_page
!= mpd
->first_page
) {
2446 if (mpage_da_map_blocks(mpd
) == 0)
2447 mpage_da_submit_io(mpd
);
2449 * skip rest of the page in the page_vec
2452 redirty_page_for_writepage(wbc
, page
);
2454 return MPAGE_DA_EXTENT_TAIL
;
2458 * Start next extent of pages ...
2460 mpd
->first_page
= page
->index
;
2470 mpd
->next_page
= page
->index
+ 1;
2471 logical
= (sector_t
) page
->index
<<
2472 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2474 if (!page_has_buffers(page
)) {
2475 mpage_add_bh_to_extent(mpd
, logical
, PAGE_CACHE_SIZE
,
2476 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2478 return MPAGE_DA_EXTENT_TAIL
;
2481 * Page with regular buffer heads, just add all dirty ones
2483 head
= page_buffers(page
);
2486 BUG_ON(buffer_locked(bh
));
2488 * We need to try to allocate
2489 * unmapped blocks in the same page.
2490 * Otherwise we won't make progress
2491 * with the page in ext4_writepage
2493 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2494 mpage_add_bh_to_extent(mpd
, logical
,
2498 return MPAGE_DA_EXTENT_TAIL
;
2499 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2501 * mapped dirty buffer. We need to update
2502 * the b_state because we look at
2503 * b_state in mpage_da_map_blocks. We don't
2504 * update b_size because if we find an
2505 * unmapped buffer_head later we need to
2506 * use the b_state flag of that buffer_head.
2508 if (mpd
->b_size
== 0)
2509 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2512 } while ((bh
= bh
->b_this_page
) != head
);
2519 * This is a special get_blocks_t callback which is used by
2520 * ext4_da_write_begin(). It will either return mapped block or
2521 * reserve space for a single block.
2523 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2524 * We also have b_blocknr = -1 and b_bdev initialized properly
2526 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2527 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2528 * initialized properly.
2530 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2531 struct buffer_head
*bh_result
, int create
)
2534 sector_t invalid_block
= ~((sector_t
) 0xffff);
2536 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2539 BUG_ON(create
== 0);
2540 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2543 * first, we need to know whether the block is allocated already
2544 * preallocated blocks are unmapped but should treated
2545 * the same as allocated blocks.
2547 ret
= ext4_get_blocks(NULL
, inode
, iblock
, 1, bh_result
, 0);
2548 if ((ret
== 0) && !buffer_delay(bh_result
)) {
2549 /* the block isn't (pre)allocated yet, let's reserve space */
2551 * XXX: __block_prepare_write() unmaps passed block,
2554 ret
= ext4_da_reserve_space(inode
, iblock
);
2556 /* not enough space to reserve */
2559 map_bh(bh_result
, inode
->i_sb
, invalid_block
);
2560 set_buffer_new(bh_result
);
2561 set_buffer_delay(bh_result
);
2562 } else if (ret
> 0) {
2563 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2564 if (buffer_unwritten(bh_result
)) {
2565 /* A delayed write to unwritten bh should
2566 * be marked new and mapped. Mapped ensures
2567 * that we don't do get_block multiple times
2568 * when we write to the same offset and new
2569 * ensures that we do proper zero out for
2572 set_buffer_new(bh_result
);
2573 set_buffer_mapped(bh_result
);
2582 * This function is used as a standard get_block_t calback function
2583 * when there is no desire to allocate any blocks. It is used as a
2584 * callback function for block_prepare_write(), nobh_writepage(), and
2585 * block_write_full_page(). These functions should only try to map a
2586 * single block at a time.
2588 * Since this function doesn't do block allocations even if the caller
2589 * requests it by passing in create=1, it is critically important that
2590 * any caller checks to make sure that any buffer heads are returned
2591 * by this function are either all already mapped or marked for
2592 * delayed allocation before calling nobh_writepage() or
2593 * block_write_full_page(). Otherwise, b_blocknr could be left
2594 * unitialized, and the page write functions will be taken by
2597 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2598 struct buffer_head
*bh_result
, int create
)
2601 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
2603 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2606 * we don't want to do block allocation in writepage
2607 * so call get_block_wrap with create = 0
2609 ret
= ext4_get_blocks(NULL
, inode
, iblock
, max_blocks
, bh_result
, 0);
2611 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2617 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2623 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2629 static int __ext4_journalled_writepage(struct page
*page
,
2632 struct address_space
*mapping
= page
->mapping
;
2633 struct inode
*inode
= mapping
->host
;
2634 struct buffer_head
*page_bufs
;
2635 handle_t
*handle
= NULL
;
2639 page_bufs
= page_buffers(page
);
2641 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2642 /* As soon as we unlock the page, it can go away, but we have
2643 * references to buffers so we are safe */
2646 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2647 if (IS_ERR(handle
)) {
2648 ret
= PTR_ERR(handle
);
2652 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2653 do_journal_get_write_access
);
2655 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2659 err
= ext4_journal_stop(handle
);
2663 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2664 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
2669 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
2670 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
2673 * Note that we don't need to start a transaction unless we're journaling data
2674 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2675 * need to file the inode to the transaction's list in ordered mode because if
2676 * we are writing back data added by write(), the inode is already there and if
2677 * we are writing back data modified via mmap(), noone guarantees in which
2678 * transaction the data will hit the disk. In case we are journaling data, we
2679 * cannot start transaction directly because transaction start ranks above page
2680 * lock so we have to do some magic.
2682 * This function can get called via...
2683 * - ext4_da_writepages after taking page lock (have journal handle)
2684 * - journal_submit_inode_data_buffers (no journal handle)
2685 * - shrink_page_list via pdflush (no journal handle)
2686 * - grab_page_cache when doing write_begin (have journal handle)
2688 * We don't do any block allocation in this function. If we have page with
2689 * multiple blocks we need to write those buffer_heads that are mapped. This
2690 * is important for mmaped based write. So if we do with blocksize 1K
2691 * truncate(f, 1024);
2692 * a = mmap(f, 0, 4096);
2694 * truncate(f, 4096);
2695 * we have in the page first buffer_head mapped via page_mkwrite call back
2696 * but other bufer_heads would be unmapped but dirty(dirty done via the
2697 * do_wp_page). So writepage should write the first block. If we modify
2698 * the mmap area beyond 1024 we will again get a page_fault and the
2699 * page_mkwrite callback will do the block allocation and mark the
2700 * buffer_heads mapped.
2702 * We redirty the page if we have any buffer_heads that is either delay or
2703 * unwritten in the page.
2705 * We can get recursively called as show below.
2707 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2710 * But since we don't do any block allocation we should not deadlock.
2711 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2713 static int ext4_writepage(struct page
*page
,
2714 struct writeback_control
*wbc
)
2719 struct buffer_head
*page_bufs
= NULL
;
2720 struct inode
*inode
= page
->mapping
->host
;
2722 trace_ext4_writepage(inode
, page
);
2723 size
= i_size_read(inode
);
2724 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2725 len
= size
& ~PAGE_CACHE_MASK
;
2727 len
= PAGE_CACHE_SIZE
;
2729 if (page_has_buffers(page
)) {
2730 page_bufs
= page_buffers(page
);
2731 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2732 ext4_bh_delay_or_unwritten
)) {
2734 * We don't want to do block allocation
2735 * So redirty the page and return
2736 * We may reach here when we do a journal commit
2737 * via journal_submit_inode_data_buffers.
2738 * If we don't have mapping block we just ignore
2739 * them. We can also reach here via shrink_page_list
2741 redirty_page_for_writepage(wbc
, page
);
2747 * The test for page_has_buffers() is subtle:
2748 * We know the page is dirty but it lost buffers. That means
2749 * that at some moment in time after write_begin()/write_end()
2750 * has been called all buffers have been clean and thus they
2751 * must have been written at least once. So they are all
2752 * mapped and we can happily proceed with mapping them
2753 * and writing the page.
2755 * Try to initialize the buffer_heads and check whether
2756 * all are mapped and non delay. We don't want to
2757 * do block allocation here.
2759 ret
= block_prepare_write(page
, 0, len
,
2760 noalloc_get_block_write
);
2762 page_bufs
= page_buffers(page
);
2763 /* check whether all are mapped and non delay */
2764 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2765 ext4_bh_delay_or_unwritten
)) {
2766 redirty_page_for_writepage(wbc
, page
);
2772 * We can't do block allocation here
2773 * so just redity the page and unlock
2776 redirty_page_for_writepage(wbc
, page
);
2780 /* now mark the buffer_heads as dirty and uptodate */
2781 block_commit_write(page
, 0, len
);
2784 if (PageChecked(page
) && ext4_should_journal_data(inode
)) {
2786 * It's mmapped pagecache. Add buffers and journal it. There
2787 * doesn't seem much point in redirtying the page here.
2789 ClearPageChecked(page
);
2790 return __ext4_journalled_writepage(page
, len
);
2793 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
2794 ret
= nobh_writepage(page
, noalloc_get_block_write
, wbc
);
2795 else if (page_bufs
&& buffer_uninit(page_bufs
)) {
2796 ext4_set_bh_endio(page_bufs
, inode
);
2797 ret
= block_write_full_page_endio(page
, noalloc_get_block_write
,
2798 wbc
, ext4_end_io_buffer_write
);
2800 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2807 * This is called via ext4_da_writepages() to
2808 * calulate the total number of credits to reserve to fit
2809 * a single extent allocation into a single transaction,
2810 * ext4_da_writpeages() will loop calling this before
2811 * the block allocation.
2814 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2816 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2819 * With non-extent format the journal credit needed to
2820 * insert nrblocks contiguous block is dependent on
2821 * number of contiguous block. So we will limit
2822 * number of contiguous block to a sane value
2824 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) &&
2825 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2826 max_blocks
= EXT4_MAX_TRANS_DATA
;
2828 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2831 static int ext4_da_writepages(struct address_space
*mapping
,
2832 struct writeback_control
*wbc
)
2835 int range_whole
= 0;
2836 handle_t
*handle
= NULL
;
2837 struct mpage_da_data mpd
;
2838 struct inode
*inode
= mapping
->host
;
2839 int no_nrwrite_index_update
;
2840 int pages_written
= 0;
2842 unsigned int max_pages
;
2843 int range_cyclic
, cycled
= 1, io_done
= 0;
2844 int needed_blocks
, ret
= 0;
2845 long desired_nr_to_write
, nr_to_writebump
= 0;
2846 loff_t range_start
= wbc
->range_start
;
2847 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2849 trace_ext4_da_writepages(inode
, wbc
);
2852 * No pages to write? This is mainly a kludge to avoid starting
2853 * a transaction for special inodes like journal inode on last iput()
2854 * because that could violate lock ordering on umount
2856 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2860 * If the filesystem has aborted, it is read-only, so return
2861 * right away instead of dumping stack traces later on that
2862 * will obscure the real source of the problem. We test
2863 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2864 * the latter could be true if the filesystem is mounted
2865 * read-only, and in that case, ext4_da_writepages should
2866 * *never* be called, so if that ever happens, we would want
2869 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2872 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2875 range_cyclic
= wbc
->range_cyclic
;
2876 if (wbc
->range_cyclic
) {
2877 index
= mapping
->writeback_index
;
2880 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2881 wbc
->range_end
= LLONG_MAX
;
2882 wbc
->range_cyclic
= 0;
2884 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2887 * This works around two forms of stupidity. The first is in
2888 * the writeback code, which caps the maximum number of pages
2889 * written to be 1024 pages. This is wrong on multiple
2890 * levels; different architectues have a different page size,
2891 * which changes the maximum amount of data which gets
2892 * written. Secondly, 4 megabytes is way too small. XFS
2893 * forces this value to be 16 megabytes by multiplying
2894 * nr_to_write parameter by four, and then relies on its
2895 * allocator to allocate larger extents to make them
2896 * contiguous. Unfortunately this brings us to the second
2897 * stupidity, which is that ext4's mballoc code only allocates
2898 * at most 2048 blocks. So we force contiguous writes up to
2899 * the number of dirty blocks in the inode, or
2900 * sbi->max_writeback_mb_bump whichever is smaller.
2902 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2903 if (!range_cyclic
&& range_whole
)
2904 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2906 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2908 if (desired_nr_to_write
> max_pages
)
2909 desired_nr_to_write
= max_pages
;
2911 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2912 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2913 wbc
->nr_to_write
= desired_nr_to_write
;
2917 mpd
.inode
= mapping
->host
;
2920 * we don't want write_cache_pages to update
2921 * nr_to_write and writeback_index
2923 no_nrwrite_index_update
= wbc
->no_nrwrite_index_update
;
2924 wbc
->no_nrwrite_index_update
= 1;
2925 pages_skipped
= wbc
->pages_skipped
;
2928 while (!ret
&& wbc
->nr_to_write
> 0) {
2931 * we insert one extent at a time. So we need
2932 * credit needed for single extent allocation.
2933 * journalled mode is currently not supported
2936 BUG_ON(ext4_should_journal_data(inode
));
2937 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2939 /* start a new transaction*/
2940 handle
= ext4_journal_start(inode
, needed_blocks
);
2941 if (IS_ERR(handle
)) {
2942 ret
= PTR_ERR(handle
);
2943 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2944 "%ld pages, ino %lu; err %d\n", __func__
,
2945 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2946 goto out_writepages
;
2950 * Now call __mpage_da_writepage to find the next
2951 * contiguous region of logical blocks that need
2952 * blocks to be allocated by ext4. We don't actually
2953 * submit the blocks for I/O here, even though
2954 * write_cache_pages thinks it will, and will set the
2955 * pages as clean for write before calling
2956 * __mpage_da_writepage().
2964 mpd
.pages_written
= 0;
2966 ret
= write_cache_pages(mapping
, wbc
, __mpage_da_writepage
,
2969 * If we have a contiguous extent of pages and we
2970 * haven't done the I/O yet, map the blocks and submit
2973 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2974 if (mpage_da_map_blocks(&mpd
) == 0)
2975 mpage_da_submit_io(&mpd
);
2977 ret
= MPAGE_DA_EXTENT_TAIL
;
2979 trace_ext4_da_write_pages(inode
, &mpd
);
2980 wbc
->nr_to_write
-= mpd
.pages_written
;
2982 ext4_journal_stop(handle
);
2984 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2985 /* commit the transaction which would
2986 * free blocks released in the transaction
2989 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2990 wbc
->pages_skipped
= pages_skipped
;
2992 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2994 * got one extent now try with
2997 pages_written
+= mpd
.pages_written
;
2998 wbc
->pages_skipped
= pages_skipped
;
3001 } else if (wbc
->nr_to_write
)
3003 * There is no more writeout needed
3004 * or we requested for a noblocking writeout
3005 * and we found the device congested
3009 if (!io_done
&& !cycled
) {
3012 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
3013 wbc
->range_end
= mapping
->writeback_index
- 1;
3016 if (pages_skipped
!= wbc
->pages_skipped
)
3017 ext4_msg(inode
->i_sb
, KERN_CRIT
,
3018 "This should not happen leaving %s "
3019 "with nr_to_write = %ld ret = %d\n",
3020 __func__
, wbc
->nr_to_write
, ret
);
3023 index
+= pages_written
;
3024 wbc
->range_cyclic
= range_cyclic
;
3025 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
3027 * set the writeback_index so that range_cyclic
3028 * mode will write it back later
3030 mapping
->writeback_index
= index
;
3033 if (!no_nrwrite_index_update
)
3034 wbc
->no_nrwrite_index_update
= 0;
3035 wbc
->nr_to_write
-= nr_to_writebump
;
3036 wbc
->range_start
= range_start
;
3037 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
3041 #define FALL_BACK_TO_NONDELALLOC 1
3042 static int ext4_nonda_switch(struct super_block
*sb
)
3044 s64 free_blocks
, dirty_blocks
;
3045 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3048 * switch to non delalloc mode if we are running low
3049 * on free block. The free block accounting via percpu
3050 * counters can get slightly wrong with percpu_counter_batch getting
3051 * accumulated on each CPU without updating global counters
3052 * Delalloc need an accurate free block accounting. So switch
3053 * to non delalloc when we are near to error range.
3055 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
3056 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
3057 if (2 * free_blocks
< 3 * dirty_blocks
||
3058 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
3060 * free block count is less than 150% of dirty blocks
3061 * or free blocks is less than watermark
3066 * Even if we don't switch but are nearing capacity,
3067 * start pushing delalloc when 1/2 of free blocks are dirty.
3069 if (free_blocks
< 2 * dirty_blocks
)
3070 writeback_inodes_sb_if_idle(sb
);
3075 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
3076 loff_t pos
, unsigned len
, unsigned flags
,
3077 struct page
**pagep
, void **fsdata
)
3079 int ret
, retries
= 0, quota_retries
= 0;
3083 struct inode
*inode
= mapping
->host
;
3086 index
= pos
>> PAGE_CACHE_SHIFT
;
3087 from
= pos
& (PAGE_CACHE_SIZE
- 1);
3090 if (ext4_nonda_switch(inode
->i_sb
)) {
3091 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
3092 return ext4_write_begin(file
, mapping
, pos
,
3093 len
, flags
, pagep
, fsdata
);
3095 *fsdata
= (void *)0;
3096 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
3099 * With delayed allocation, we don't log the i_disksize update
3100 * if there is delayed block allocation. But we still need
3101 * to journalling the i_disksize update if writes to the end
3102 * of file which has an already mapped buffer.
3104 handle
= ext4_journal_start(inode
, 1);
3105 if (IS_ERR(handle
)) {
3106 ret
= PTR_ERR(handle
);
3109 /* We cannot recurse into the filesystem as the transaction is already
3111 flags
|= AOP_FLAG_NOFS
;
3113 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
3115 ext4_journal_stop(handle
);
3121 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
3122 ext4_da_get_block_prep
);
3125 ext4_journal_stop(handle
);
3126 page_cache_release(page
);
3128 * block_write_begin may have instantiated a few blocks
3129 * outside i_size. Trim these off again. Don't need
3130 * i_size_read because we hold i_mutex.
3132 if (pos
+ len
> inode
->i_size
)
3133 ext4_truncate_failed_write(inode
);
3136 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3139 if ((ret
== -EDQUOT
) &&
3140 EXT4_I(inode
)->i_reserved_meta_blocks
&&
3141 (quota_retries
++ < 3)) {
3143 * Since we often over-estimate the number of meta
3144 * data blocks required, we may sometimes get a
3145 * spurios out of quota error even though there would
3146 * be enough space once we write the data blocks and
3147 * find out how many meta data blocks were _really_
3148 * required. So try forcing the inode write to see if
3151 write_inode_now(inode
, (quota_retries
== 3));
3159 * Check if we should update i_disksize
3160 * when write to the end of file but not require block allocation
3162 static int ext4_da_should_update_i_disksize(struct page
*page
,
3163 unsigned long offset
)
3165 struct buffer_head
*bh
;
3166 struct inode
*inode
= page
->mapping
->host
;
3170 bh
= page_buffers(page
);
3171 idx
= offset
>> inode
->i_blkbits
;
3173 for (i
= 0; i
< idx
; i
++)
3174 bh
= bh
->b_this_page
;
3176 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3181 static int ext4_da_write_end(struct file
*file
,
3182 struct address_space
*mapping
,
3183 loff_t pos
, unsigned len
, unsigned copied
,
3184 struct page
*page
, void *fsdata
)
3186 struct inode
*inode
= mapping
->host
;
3188 handle_t
*handle
= ext4_journal_current_handle();
3190 unsigned long start
, end
;
3191 int write_mode
= (int)(unsigned long)fsdata
;
3193 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3194 if (ext4_should_order_data(inode
)) {
3195 return ext4_ordered_write_end(file
, mapping
, pos
,
3196 len
, copied
, page
, fsdata
);
3197 } else if (ext4_should_writeback_data(inode
)) {
3198 return ext4_writeback_write_end(file
, mapping
, pos
,
3199 len
, copied
, page
, fsdata
);
3205 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3206 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3207 end
= start
+ copied
- 1;
3210 * generic_write_end() will run mark_inode_dirty() if i_size
3211 * changes. So let's piggyback the i_disksize mark_inode_dirty
3215 new_i_size
= pos
+ copied
;
3216 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3217 if (ext4_da_should_update_i_disksize(page
, end
)) {
3218 down_write(&EXT4_I(inode
)->i_data_sem
);
3219 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3221 * Updating i_disksize when extending file
3222 * without needing block allocation
3224 if (ext4_should_order_data(inode
))
3225 ret
= ext4_jbd2_file_inode(handle
,
3228 EXT4_I(inode
)->i_disksize
= new_i_size
;
3230 up_write(&EXT4_I(inode
)->i_data_sem
);
3231 /* We need to mark inode dirty even if
3232 * new_i_size is less that inode->i_size
3233 * bu greater than i_disksize.(hint delalloc)
3235 ext4_mark_inode_dirty(handle
, inode
);
3238 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3243 ret2
= ext4_journal_stop(handle
);
3247 return ret
? ret
: copied
;
3250 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3253 * Drop reserved blocks
3255 BUG_ON(!PageLocked(page
));
3256 if (!page_has_buffers(page
))
3259 ext4_da_page_release_reservation(page
, offset
);
3262 ext4_invalidatepage(page
, offset
);
3268 * Force all delayed allocation blocks to be allocated for a given inode.
3270 int ext4_alloc_da_blocks(struct inode
*inode
)
3272 trace_ext4_alloc_da_blocks(inode
);
3274 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3275 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3279 * We do something simple for now. The filemap_flush() will
3280 * also start triggering a write of the data blocks, which is
3281 * not strictly speaking necessary (and for users of
3282 * laptop_mode, not even desirable). However, to do otherwise
3283 * would require replicating code paths in:
3285 * ext4_da_writepages() ->
3286 * write_cache_pages() ---> (via passed in callback function)
3287 * __mpage_da_writepage() -->
3288 * mpage_add_bh_to_extent()
3289 * mpage_da_map_blocks()
3291 * The problem is that write_cache_pages(), located in
3292 * mm/page-writeback.c, marks pages clean in preparation for
3293 * doing I/O, which is not desirable if we're not planning on
3296 * We could call write_cache_pages(), and then redirty all of
3297 * the pages by calling redirty_page_for_writeback() but that
3298 * would be ugly in the extreme. So instead we would need to
3299 * replicate parts of the code in the above functions,
3300 * simplifying them becuase we wouldn't actually intend to
3301 * write out the pages, but rather only collect contiguous
3302 * logical block extents, call the multi-block allocator, and
3303 * then update the buffer heads with the block allocations.
3305 * For now, though, we'll cheat by calling filemap_flush(),
3306 * which will map the blocks, and start the I/O, but not
3307 * actually wait for the I/O to complete.
3309 return filemap_flush(inode
->i_mapping
);
3313 * bmap() is special. It gets used by applications such as lilo and by
3314 * the swapper to find the on-disk block of a specific piece of data.
3316 * Naturally, this is dangerous if the block concerned is still in the
3317 * journal. If somebody makes a swapfile on an ext4 data-journaling
3318 * filesystem and enables swap, then they may get a nasty shock when the
3319 * data getting swapped to that swapfile suddenly gets overwritten by
3320 * the original zero's written out previously to the journal and
3321 * awaiting writeback in the kernel's buffer cache.
3323 * So, if we see any bmap calls here on a modified, data-journaled file,
3324 * take extra steps to flush any blocks which might be in the cache.
3326 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3328 struct inode
*inode
= mapping
->host
;
3332 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3333 test_opt(inode
->i_sb
, DELALLOC
)) {
3335 * With delalloc we want to sync the file
3336 * so that we can make sure we allocate
3339 filemap_write_and_wait(mapping
);
3342 if (EXT4_JOURNAL(inode
) &&
3343 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
3345 * This is a REALLY heavyweight approach, but the use of
3346 * bmap on dirty files is expected to be extremely rare:
3347 * only if we run lilo or swapon on a freshly made file
3348 * do we expect this to happen.
3350 * (bmap requires CAP_SYS_RAWIO so this does not
3351 * represent an unprivileged user DOS attack --- we'd be
3352 * in trouble if mortal users could trigger this path at
3355 * NB. EXT4_STATE_JDATA is not set on files other than
3356 * regular files. If somebody wants to bmap a directory
3357 * or symlink and gets confused because the buffer
3358 * hasn't yet been flushed to disk, they deserve
3359 * everything they get.
3362 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
3363 journal
= EXT4_JOURNAL(inode
);
3364 jbd2_journal_lock_updates(journal
);
3365 err
= jbd2_journal_flush(journal
);
3366 jbd2_journal_unlock_updates(journal
);
3372 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3375 static int ext4_readpage(struct file
*file
, struct page
*page
)
3377 return mpage_readpage(page
, ext4_get_block
);
3381 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3382 struct list_head
*pages
, unsigned nr_pages
)
3384 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3387 static void ext4_free_io_end(ext4_io_end_t
*io
)
3396 static void ext4_invalidatepage_free_endio(struct page
*page
, unsigned long offset
)
3398 struct buffer_head
*head
, *bh
;
3399 unsigned int curr_off
= 0;
3401 if (!page_has_buffers(page
))
3403 head
= bh
= page_buffers(page
);
3405 if (offset
<= curr_off
&& test_clear_buffer_uninit(bh
)
3407 ext4_free_io_end(bh
->b_private
);
3408 bh
->b_private
= NULL
;
3409 bh
->b_end_io
= NULL
;
3411 curr_off
= curr_off
+ bh
->b_size
;
3412 bh
= bh
->b_this_page
;
3413 } while (bh
!= head
);
3416 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3418 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3421 * free any io_end structure allocated for buffers to be discarded
3423 if (ext4_should_dioread_nolock(page
->mapping
->host
))
3424 ext4_invalidatepage_free_endio(page
, offset
);
3426 * If it's a full truncate we just forget about the pending dirtying
3429 ClearPageChecked(page
);
3432 jbd2_journal_invalidatepage(journal
, page
, offset
);
3434 block_invalidatepage(page
, offset
);
3437 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3439 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3441 WARN_ON(PageChecked(page
));
3442 if (!page_has_buffers(page
))
3445 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3447 return try_to_free_buffers(page
);
3451 * O_DIRECT for ext3 (or indirect map) based files
3453 * If the O_DIRECT write will extend the file then add this inode to the
3454 * orphan list. So recovery will truncate it back to the original size
3455 * if the machine crashes during the write.
3457 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3458 * crashes then stale disk data _may_ be exposed inside the file. But current
3459 * VFS code falls back into buffered path in that case so we are safe.
3461 static ssize_t
ext4_ind_direct_IO(int rw
, struct kiocb
*iocb
,
3462 const struct iovec
*iov
, loff_t offset
,
3463 unsigned long nr_segs
)
3465 struct file
*file
= iocb
->ki_filp
;
3466 struct inode
*inode
= file
->f_mapping
->host
;
3467 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3471 size_t count
= iov_length(iov
, nr_segs
);
3475 loff_t final_size
= offset
+ count
;
3477 if (final_size
> inode
->i_size
) {
3478 /* Credits for sb + inode write */
3479 handle
= ext4_journal_start(inode
, 2);
3480 if (IS_ERR(handle
)) {
3481 ret
= PTR_ERR(handle
);
3484 ret
= ext4_orphan_add(handle
, inode
);
3486 ext4_journal_stop(handle
);
3490 ei
->i_disksize
= inode
->i_size
;
3491 ext4_journal_stop(handle
);
3496 if (rw
== READ
&& ext4_should_dioread_nolock(inode
))
3497 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
3498 inode
->i_sb
->s_bdev
, iov
,
3500 ext4_get_block
, NULL
);
3502 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3503 inode
->i_sb
->s_bdev
, iov
,
3505 ext4_get_block
, NULL
);
3506 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3512 /* Credits for sb + inode write */
3513 handle
= ext4_journal_start(inode
, 2);
3514 if (IS_ERR(handle
)) {
3515 /* This is really bad luck. We've written the data
3516 * but cannot extend i_size. Bail out and pretend
3517 * the write failed... */
3518 ret
= PTR_ERR(handle
);
3520 ext4_orphan_del(NULL
, inode
);
3525 ext4_orphan_del(handle
, inode
);
3527 loff_t end
= offset
+ ret
;
3528 if (end
> inode
->i_size
) {
3529 ei
->i_disksize
= end
;
3530 i_size_write(inode
, end
);
3532 * We're going to return a positive `ret'
3533 * here due to non-zero-length I/O, so there's
3534 * no way of reporting error returns from
3535 * ext4_mark_inode_dirty() to userspace. So
3538 ext4_mark_inode_dirty(handle
, inode
);
3541 err
= ext4_journal_stop(handle
);
3549 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3550 struct buffer_head
*bh_result
, int create
)
3552 handle_t
*handle
= ext4_journal_current_handle();
3554 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
3558 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3559 inode
->i_ino
, create
);
3561 * ext4_get_block in prepare for a DIO write or buffer write.
3562 * We allocate an uinitialized extent if blocks haven't been allocated.
3563 * The extent will be converted to initialized after IO complete.
3565 create
= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
3568 if (max_blocks
> DIO_MAX_BLOCKS
)
3569 max_blocks
= DIO_MAX_BLOCKS
;
3570 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
3571 handle
= ext4_journal_start(inode
, dio_credits
);
3572 if (IS_ERR(handle
)) {
3573 ret
= PTR_ERR(handle
);
3579 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
3582 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
3586 ext4_journal_stop(handle
);
3591 static void dump_completed_IO(struct inode
* inode
)
3594 struct list_head
*cur
, *before
, *after
;
3595 ext4_io_end_t
*io
, *io0
, *io1
;
3596 unsigned long flags
;
3598 if (list_empty(&EXT4_I(inode
)->i_completed_io_list
)){
3599 ext4_debug("inode %lu completed_io list is empty\n", inode
->i_ino
);
3603 ext4_debug("Dump inode %lu completed_io list \n", inode
->i_ino
);
3604 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3605 list_for_each_entry(io
, &EXT4_I(inode
)->i_completed_io_list
, list
){
3608 io0
= container_of(before
, ext4_io_end_t
, list
);
3610 io1
= container_of(after
, ext4_io_end_t
, list
);
3612 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3613 io
, inode
->i_ino
, io0
, io1
);
3615 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3620 * check a range of space and convert unwritten extents to written.
3622 static int ext4_end_io_nolock(ext4_io_end_t
*io
)
3624 struct inode
*inode
= io
->inode
;
3625 loff_t offset
= io
->offset
;
3626 ssize_t size
= io
->size
;
3629 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3630 "list->prev 0x%p\n",
3631 io
, inode
->i_ino
, io
->list
.next
, io
->list
.prev
);
3633 if (list_empty(&io
->list
))
3636 if (io
->flag
!= EXT4_IO_UNWRITTEN
)
3639 ret
= ext4_convert_unwritten_extents(inode
, offset
, size
);
3641 printk(KERN_EMERG
"%s: failed to convert unwritten"
3642 "extents to written extents, error is %d"
3643 " io is still on inode %lu aio dio list\n",
3644 __func__
, ret
, inode
->i_ino
);
3648 /* clear the DIO AIO unwritten flag */
3654 * work on completed aio dio IO, to convert unwritten extents to extents
3656 static void ext4_end_io_work(struct work_struct
*work
)
3658 ext4_io_end_t
*io
= container_of(work
, ext4_io_end_t
, work
);
3659 struct inode
*inode
= io
->inode
;
3660 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3661 unsigned long flags
;
3664 mutex_lock(&inode
->i_mutex
);
3665 ret
= ext4_end_io_nolock(io
);
3667 mutex_unlock(&inode
->i_mutex
);
3671 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
3672 if (!list_empty(&io
->list
))
3673 list_del_init(&io
->list
);
3674 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
3675 mutex_unlock(&inode
->i_mutex
);
3676 ext4_free_io_end(io
);
3680 * This function is called from ext4_sync_file().
3682 * When IO is completed, the work to convert unwritten extents to
3683 * written is queued on workqueue but may not get immediately
3684 * scheduled. When fsync is called, we need to ensure the
3685 * conversion is complete before fsync returns.
3686 * The inode keeps track of a list of pending/completed IO that
3687 * might needs to do the conversion. This function walks through
3688 * the list and convert the related unwritten extents for completed IO
3690 * The function return the number of pending IOs on success.
3692 int flush_completed_IO(struct inode
*inode
)
3695 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3696 unsigned long flags
;
3700 if (list_empty(&ei
->i_completed_io_list
))
3703 dump_completed_IO(inode
);
3704 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
3705 while (!list_empty(&ei
->i_completed_io_list
)){
3706 io
= list_entry(ei
->i_completed_io_list
.next
,
3707 ext4_io_end_t
, list
);
3709 * Calling ext4_end_io_nolock() to convert completed
3712 * When ext4_sync_file() is called, run_queue() may already
3713 * about to flush the work corresponding to this io structure.
3714 * It will be upset if it founds the io structure related
3715 * to the work-to-be schedule is freed.
3717 * Thus we need to keep the io structure still valid here after
3718 * convertion finished. The io structure has a flag to
3719 * avoid double converting from both fsync and background work
3722 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
3723 ret
= ext4_end_io_nolock(io
);
3724 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
3728 list_del_init(&io
->list
);
3730 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
3731 return (ret2
< 0) ? ret2
: 0;
3734 static ext4_io_end_t
*ext4_init_io_end (struct inode
*inode
, gfp_t flags
)
3736 ext4_io_end_t
*io
= NULL
;
3738 io
= kmalloc(sizeof(*io
), flags
);
3747 INIT_WORK(&io
->work
, ext4_end_io_work
);
3748 INIT_LIST_HEAD(&io
->list
);
3754 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3755 ssize_t size
, void *private)
3757 ext4_io_end_t
*io_end
= iocb
->private;
3758 struct workqueue_struct
*wq
;
3759 unsigned long flags
;
3760 struct ext4_inode_info
*ei
;
3762 /* if not async direct IO or dio with 0 bytes write, just return */
3763 if (!io_end
|| !size
)
3766 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3767 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3768 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3771 /* if not aio dio with unwritten extents, just free io and return */
3772 if (io_end
->flag
!= EXT4_IO_UNWRITTEN
){
3773 ext4_free_io_end(io_end
);
3774 iocb
->private = NULL
;
3778 io_end
->offset
= offset
;
3779 io_end
->size
= size
;
3780 io_end
->flag
= EXT4_IO_UNWRITTEN
;
3781 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
3783 /* queue the work to convert unwritten extents to written */
3784 queue_work(wq
, &io_end
->work
);
3786 /* Add the io_end to per-inode completed aio dio list*/
3787 ei
= EXT4_I(io_end
->inode
);
3788 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
3789 list_add_tail(&io_end
->list
, &ei
->i_completed_io_list
);
3790 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
3791 iocb
->private = NULL
;
3794 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
)
3796 ext4_io_end_t
*io_end
= bh
->b_private
;
3797 struct workqueue_struct
*wq
;
3798 struct inode
*inode
;
3799 unsigned long flags
;
3801 if (!test_clear_buffer_uninit(bh
) || !io_end
)
3804 if (!(io_end
->inode
->i_sb
->s_flags
& MS_ACTIVE
)) {
3805 printk("sb umounted, discard end_io request for inode %lu\n",
3806 io_end
->inode
->i_ino
);
3807 ext4_free_io_end(io_end
);
3811 io_end
->flag
= EXT4_IO_UNWRITTEN
;
3812 inode
= io_end
->inode
;
3814 /* Add the io_end to per-inode completed io list*/
3815 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3816 list_add_tail(&io_end
->list
, &EXT4_I(inode
)->i_completed_io_list
);
3817 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3819 wq
= EXT4_SB(inode
->i_sb
)->dio_unwritten_wq
;
3820 /* queue the work to convert unwritten extents to written */
3821 queue_work(wq
, &io_end
->work
);
3823 bh
->b_private
= NULL
;
3824 bh
->b_end_io
= NULL
;
3825 clear_buffer_uninit(bh
);
3826 end_buffer_async_write(bh
, uptodate
);
3829 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
)
3831 ext4_io_end_t
*io_end
;
3832 struct page
*page
= bh
->b_page
;
3833 loff_t offset
= (sector_t
)page
->index
<< PAGE_CACHE_SHIFT
;
3834 size_t size
= bh
->b_size
;
3837 io_end
= ext4_init_io_end(inode
, GFP_ATOMIC
);
3839 if (printk_ratelimit())
3840 printk(KERN_WARNING
"%s: allocation fail\n", __func__
);
3844 io_end
->offset
= offset
;
3845 io_end
->size
= size
;
3847 * We need to hold a reference to the page to make sure it
3848 * doesn't get evicted before ext4_end_io_work() has a chance
3849 * to convert the extent from written to unwritten.
3851 io_end
->page
= page
;
3852 get_page(io_end
->page
);
3854 bh
->b_private
= io_end
;
3855 bh
->b_end_io
= ext4_end_io_buffer_write
;
3860 * For ext4 extent files, ext4 will do direct-io write to holes,
3861 * preallocated extents, and those write extend the file, no need to
3862 * fall back to buffered IO.
3864 * For holes, we fallocate those blocks, mark them as unintialized
3865 * If those blocks were preallocated, we mark sure they are splited, but
3866 * still keep the range to write as unintialized.
3868 * The unwrritten extents will be converted to written when DIO is completed.
3869 * For async direct IO, since the IO may still pending when return, we
3870 * set up an end_io call back function, which will do the convertion
3871 * when async direct IO completed.
3873 * If the O_DIRECT write will extend the file then add this inode to the
3874 * orphan list. So recovery will truncate it back to the original size
3875 * if the machine crashes during the write.
3878 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3879 const struct iovec
*iov
, loff_t offset
,
3880 unsigned long nr_segs
)
3882 struct file
*file
= iocb
->ki_filp
;
3883 struct inode
*inode
= file
->f_mapping
->host
;
3885 size_t count
= iov_length(iov
, nr_segs
);
3887 loff_t final_size
= offset
+ count
;
3888 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
3890 * We could direct write to holes and fallocate.
3892 * Allocated blocks to fill the hole are marked as uninitialized
3893 * to prevent paralel buffered read to expose the stale data
3894 * before DIO complete the data IO.
3896 * As to previously fallocated extents, ext4 get_block
3897 * will just simply mark the buffer mapped but still
3898 * keep the extents uninitialized.
3900 * for non AIO case, we will convert those unwritten extents
3901 * to written after return back from blockdev_direct_IO.
3903 * for async DIO, the conversion needs to be defered when
3904 * the IO is completed. The ext4 end_io callback function
3905 * will be called to take care of the conversion work.
3906 * Here for async case, we allocate an io_end structure to
3909 iocb
->private = NULL
;
3910 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3911 if (!is_sync_kiocb(iocb
)) {
3912 iocb
->private = ext4_init_io_end(inode
, GFP_NOFS
);
3916 * we save the io structure for current async
3917 * direct IO, so that later ext4_get_blocks()
3918 * could flag the io structure whether there
3919 * is a unwritten extents needs to be converted
3920 * when IO is completed.
3922 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
3925 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3926 inode
->i_sb
->s_bdev
, iov
,
3928 ext4_get_block_write
,
3931 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3933 * The io_end structure takes a reference to the inode,
3934 * that structure needs to be destroyed and the
3935 * reference to the inode need to be dropped, when IO is
3936 * complete, even with 0 byte write, or failed.
3938 * In the successful AIO DIO case, the io_end structure will be
3939 * desctroyed and the reference to the inode will be dropped
3940 * after the end_io call back function is called.
3942 * In the case there is 0 byte write, or error case, since
3943 * VFS direct IO won't invoke the end_io call back function,
3944 * we need to free the end_io structure here.
3946 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3947 ext4_free_io_end(iocb
->private);
3948 iocb
->private = NULL
;
3949 } else if (ret
> 0 && ext4_test_inode_state(inode
,
3950 EXT4_STATE_DIO_UNWRITTEN
)) {
3953 * for non AIO case, since the IO is already
3954 * completed, we could do the convertion right here
3956 err
= ext4_convert_unwritten_extents(inode
,
3960 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3965 /* for write the the end of file case, we fall back to old way */
3966 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3969 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3970 const struct iovec
*iov
, loff_t offset
,
3971 unsigned long nr_segs
)
3973 struct file
*file
= iocb
->ki_filp
;
3974 struct inode
*inode
= file
->f_mapping
->host
;
3976 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
3977 return ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3979 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3983 * Pages can be marked dirty completely asynchronously from ext4's journalling
3984 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3985 * much here because ->set_page_dirty is called under VFS locks. The page is
3986 * not necessarily locked.
3988 * We cannot just dirty the page and leave attached buffers clean, because the
3989 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3990 * or jbddirty because all the journalling code will explode.
3992 * So what we do is to mark the page "pending dirty" and next time writepage
3993 * is called, propagate that into the buffers appropriately.
3995 static int ext4_journalled_set_page_dirty(struct page
*page
)
3997 SetPageChecked(page
);
3998 return __set_page_dirty_nobuffers(page
);
4001 static const struct address_space_operations ext4_ordered_aops
= {
4002 .readpage
= ext4_readpage
,
4003 .readpages
= ext4_readpages
,
4004 .writepage
= ext4_writepage
,
4005 .sync_page
= block_sync_page
,
4006 .write_begin
= ext4_write_begin
,
4007 .write_end
= ext4_ordered_write_end
,
4009 .invalidatepage
= ext4_invalidatepage
,
4010 .releasepage
= ext4_releasepage
,
4011 .direct_IO
= ext4_direct_IO
,
4012 .migratepage
= buffer_migrate_page
,
4013 .is_partially_uptodate
= block_is_partially_uptodate
,
4014 .error_remove_page
= generic_error_remove_page
,
4017 static const struct address_space_operations ext4_writeback_aops
= {
4018 .readpage
= ext4_readpage
,
4019 .readpages
= ext4_readpages
,
4020 .writepage
= ext4_writepage
,
4021 .sync_page
= block_sync_page
,
4022 .write_begin
= ext4_write_begin
,
4023 .write_end
= ext4_writeback_write_end
,
4025 .invalidatepage
= ext4_invalidatepage
,
4026 .releasepage
= ext4_releasepage
,
4027 .direct_IO
= ext4_direct_IO
,
4028 .migratepage
= buffer_migrate_page
,
4029 .is_partially_uptodate
= block_is_partially_uptodate
,
4030 .error_remove_page
= generic_error_remove_page
,
4033 static const struct address_space_operations ext4_journalled_aops
= {
4034 .readpage
= ext4_readpage
,
4035 .readpages
= ext4_readpages
,
4036 .writepage
= ext4_writepage
,
4037 .sync_page
= block_sync_page
,
4038 .write_begin
= ext4_write_begin
,
4039 .write_end
= ext4_journalled_write_end
,
4040 .set_page_dirty
= ext4_journalled_set_page_dirty
,
4042 .invalidatepage
= ext4_invalidatepage
,
4043 .releasepage
= ext4_releasepage
,
4044 .is_partially_uptodate
= block_is_partially_uptodate
,
4045 .error_remove_page
= generic_error_remove_page
,
4048 static const struct address_space_operations ext4_da_aops
= {
4049 .readpage
= ext4_readpage
,
4050 .readpages
= ext4_readpages
,
4051 .writepage
= ext4_writepage
,
4052 .writepages
= ext4_da_writepages
,
4053 .sync_page
= block_sync_page
,
4054 .write_begin
= ext4_da_write_begin
,
4055 .write_end
= ext4_da_write_end
,
4057 .invalidatepage
= ext4_da_invalidatepage
,
4058 .releasepage
= ext4_releasepage
,
4059 .direct_IO
= ext4_direct_IO
,
4060 .migratepage
= buffer_migrate_page
,
4061 .is_partially_uptodate
= block_is_partially_uptodate
,
4062 .error_remove_page
= generic_error_remove_page
,
4065 void ext4_set_aops(struct inode
*inode
)
4067 if (ext4_should_order_data(inode
) &&
4068 test_opt(inode
->i_sb
, DELALLOC
))
4069 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
4070 else if (ext4_should_order_data(inode
))
4071 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
4072 else if (ext4_should_writeback_data(inode
) &&
4073 test_opt(inode
->i_sb
, DELALLOC
))
4074 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
4075 else if (ext4_should_writeback_data(inode
))
4076 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
4078 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
4082 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4083 * up to the end of the block which corresponds to `from'.
4084 * This required during truncate. We need to physically zero the tail end
4085 * of that block so it doesn't yield old data if the file is later grown.
4087 int ext4_block_truncate_page(handle_t
*handle
,
4088 struct address_space
*mapping
, loff_t from
)
4090 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
4091 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
4092 unsigned blocksize
, length
, pos
;
4094 struct inode
*inode
= mapping
->host
;
4095 struct buffer_head
*bh
;
4099 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
4100 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
4104 blocksize
= inode
->i_sb
->s_blocksize
;
4105 length
= blocksize
- (offset
& (blocksize
- 1));
4106 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
4109 * For "nobh" option, we can only work if we don't need to
4110 * read-in the page - otherwise we create buffers to do the IO.
4112 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
4113 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
4114 zero_user(page
, offset
, length
);
4115 set_page_dirty(page
);
4119 if (!page_has_buffers(page
))
4120 create_empty_buffers(page
, blocksize
, 0);
4122 /* Find the buffer that contains "offset" */
4123 bh
= page_buffers(page
);
4125 while (offset
>= pos
) {
4126 bh
= bh
->b_this_page
;
4132 if (buffer_freed(bh
)) {
4133 BUFFER_TRACE(bh
, "freed: skip");
4137 if (!buffer_mapped(bh
)) {
4138 BUFFER_TRACE(bh
, "unmapped");
4139 ext4_get_block(inode
, iblock
, bh
, 0);
4140 /* unmapped? It's a hole - nothing to do */
4141 if (!buffer_mapped(bh
)) {
4142 BUFFER_TRACE(bh
, "still unmapped");
4147 /* Ok, it's mapped. Make sure it's up-to-date */
4148 if (PageUptodate(page
))
4149 set_buffer_uptodate(bh
);
4151 if (!buffer_uptodate(bh
)) {
4153 ll_rw_block(READ
, 1, &bh
);
4155 /* Uhhuh. Read error. Complain and punt. */
4156 if (!buffer_uptodate(bh
))
4160 if (ext4_should_journal_data(inode
)) {
4161 BUFFER_TRACE(bh
, "get write access");
4162 err
= ext4_journal_get_write_access(handle
, bh
);
4167 zero_user(page
, offset
, length
);
4169 BUFFER_TRACE(bh
, "zeroed end of block");
4172 if (ext4_should_journal_data(inode
)) {
4173 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4175 if (ext4_should_order_data(inode
))
4176 err
= ext4_jbd2_file_inode(handle
, inode
);
4177 mark_buffer_dirty(bh
);
4182 page_cache_release(page
);
4187 * Probably it should be a library function... search for first non-zero word
4188 * or memcmp with zero_page, whatever is better for particular architecture.
4191 static inline int all_zeroes(__le32
*p
, __le32
*q
)
4200 * ext4_find_shared - find the indirect blocks for partial truncation.
4201 * @inode: inode in question
4202 * @depth: depth of the affected branch
4203 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4204 * @chain: place to store the pointers to partial indirect blocks
4205 * @top: place to the (detached) top of branch
4207 * This is a helper function used by ext4_truncate().
4209 * When we do truncate() we may have to clean the ends of several
4210 * indirect blocks but leave the blocks themselves alive. Block is
4211 * partially truncated if some data below the new i_size is refered
4212 * from it (and it is on the path to the first completely truncated
4213 * data block, indeed). We have to free the top of that path along
4214 * with everything to the right of the path. Since no allocation
4215 * past the truncation point is possible until ext4_truncate()
4216 * finishes, we may safely do the latter, but top of branch may
4217 * require special attention - pageout below the truncation point
4218 * might try to populate it.
4220 * We atomically detach the top of branch from the tree, store the
4221 * block number of its root in *@top, pointers to buffer_heads of
4222 * partially truncated blocks - in @chain[].bh and pointers to
4223 * their last elements that should not be removed - in
4224 * @chain[].p. Return value is the pointer to last filled element
4227 * The work left to caller to do the actual freeing of subtrees:
4228 * a) free the subtree starting from *@top
4229 * b) free the subtrees whose roots are stored in
4230 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4231 * c) free the subtrees growing from the inode past the @chain[0].
4232 * (no partially truncated stuff there). */
4234 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
4235 ext4_lblk_t offsets
[4], Indirect chain
[4],
4238 Indirect
*partial
, *p
;
4242 /* Make k index the deepest non-null offset + 1 */
4243 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
4245 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
4246 /* Writer: pointers */
4248 partial
= chain
+ k
-1;
4250 * If the branch acquired continuation since we've looked at it -
4251 * fine, it should all survive and (new) top doesn't belong to us.
4253 if (!partial
->key
&& *partial
->p
)
4256 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
4259 * OK, we've found the last block that must survive. The rest of our
4260 * branch should be detached before unlocking. However, if that rest
4261 * of branch is all ours and does not grow immediately from the inode
4262 * it's easier to cheat and just decrement partial->p.
4264 if (p
== chain
+ k
- 1 && p
> chain
) {
4268 /* Nope, don't do this in ext4. Must leave the tree intact */
4275 while (partial
> p
) {
4276 brelse(partial
->bh
);
4284 * Zero a number of block pointers in either an inode or an indirect block.
4285 * If we restart the transaction we must again get write access to the
4286 * indirect block for further modification.
4288 * We release `count' blocks on disk, but (last - first) may be greater
4289 * than `count' because there can be holes in there.
4291 static int ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
4292 struct buffer_head
*bh
,
4293 ext4_fsblk_t block_to_free
,
4294 unsigned long count
, __le32
*first
,
4298 int flags
= EXT4_FREE_BLOCKS_FORGET
| EXT4_FREE_BLOCKS_VALIDATED
;
4300 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
4301 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4303 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block_to_free
,
4305 ext4_error(inode
->i_sb
, "inode #%lu: "
4306 "attempt to clear blocks %llu len %lu, invalid",
4307 inode
->i_ino
, (unsigned long long) block_to_free
,
4312 if (try_to_extend_transaction(handle
, inode
)) {
4314 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4315 ext4_handle_dirty_metadata(handle
, inode
, bh
);
4317 ext4_mark_inode_dirty(handle
, inode
);
4318 ext4_truncate_restart_trans(handle
, inode
,
4319 blocks_for_truncate(inode
));
4321 BUFFER_TRACE(bh
, "retaking write access");
4322 ext4_journal_get_write_access(handle
, bh
);
4326 for (p
= first
; p
< last
; p
++)
4329 ext4_free_blocks(handle
, inode
, 0, block_to_free
, count
, flags
);
4334 * ext4_free_data - free a list of data blocks
4335 * @handle: handle for this transaction
4336 * @inode: inode we are dealing with
4337 * @this_bh: indirect buffer_head which contains *@first and *@last
4338 * @first: array of block numbers
4339 * @last: points immediately past the end of array
4341 * We are freeing all blocks refered from that array (numbers are stored as
4342 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4344 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4345 * blocks are contiguous then releasing them at one time will only affect one
4346 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4347 * actually use a lot of journal space.
4349 * @this_bh will be %NULL if @first and @last point into the inode's direct
4352 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
4353 struct buffer_head
*this_bh
,
4354 __le32
*first
, __le32
*last
)
4356 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
4357 unsigned long count
= 0; /* Number of blocks in the run */
4358 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
4361 ext4_fsblk_t nr
; /* Current block # */
4362 __le32
*p
; /* Pointer into inode/ind
4363 for current block */
4366 if (this_bh
) { /* For indirect block */
4367 BUFFER_TRACE(this_bh
, "get_write_access");
4368 err
= ext4_journal_get_write_access(handle
, this_bh
);
4369 /* Important: if we can't update the indirect pointers
4370 * to the blocks, we can't free them. */
4375 for (p
= first
; p
< last
; p
++) {
4376 nr
= le32_to_cpu(*p
);
4378 /* accumulate blocks to free if they're contiguous */
4381 block_to_free_p
= p
;
4383 } else if (nr
== block_to_free
+ count
) {
4386 if (ext4_clear_blocks(handle
, inode
, this_bh
,
4387 block_to_free
, count
,
4388 block_to_free_p
, p
))
4391 block_to_free_p
= p
;
4398 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
4399 count
, block_to_free_p
, p
);
4402 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
4405 * The buffer head should have an attached journal head at this
4406 * point. However, if the data is corrupted and an indirect
4407 * block pointed to itself, it would have been detached when
4408 * the block was cleared. Check for this instead of OOPSing.
4410 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
4411 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
4413 ext4_error(inode
->i_sb
,
4414 "circular indirect block detected, "
4415 "inode=%lu, block=%llu",
4417 (unsigned long long) this_bh
->b_blocknr
);
4422 * ext4_free_branches - free an array of branches
4423 * @handle: JBD handle for this transaction
4424 * @inode: inode we are dealing with
4425 * @parent_bh: the buffer_head which contains *@first and *@last
4426 * @first: array of block numbers
4427 * @last: pointer immediately past the end of array
4428 * @depth: depth of the branches to free
4430 * We are freeing all blocks refered from these branches (numbers are
4431 * stored as little-endian 32-bit) and updating @inode->i_blocks
4434 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
4435 struct buffer_head
*parent_bh
,
4436 __le32
*first
, __le32
*last
, int depth
)
4441 if (ext4_handle_is_aborted(handle
))
4445 struct buffer_head
*bh
;
4446 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4448 while (--p
>= first
) {
4449 nr
= le32_to_cpu(*p
);
4451 continue; /* A hole */
4453 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
4455 ext4_error(inode
->i_sb
,
4456 "indirect mapped block in inode "
4457 "#%lu invalid (level %d, blk #%lu)",
4458 inode
->i_ino
, depth
,
4459 (unsigned long) nr
);
4463 /* Go read the buffer for the next level down */
4464 bh
= sb_bread(inode
->i_sb
, nr
);
4467 * A read failure? Report error and clear slot
4471 ext4_error(inode
->i_sb
,
4472 "Read failure, inode=%lu, block=%llu",
4477 /* This zaps the entire block. Bottom up. */
4478 BUFFER_TRACE(bh
, "free child branches");
4479 ext4_free_branches(handle
, inode
, bh
,
4480 (__le32
*) bh
->b_data
,
4481 (__le32
*) bh
->b_data
+ addr_per_block
,
4485 * We've probably journalled the indirect block several
4486 * times during the truncate. But it's no longer
4487 * needed and we now drop it from the transaction via
4488 * jbd2_journal_revoke().
4490 * That's easy if it's exclusively part of this
4491 * transaction. But if it's part of the committing
4492 * transaction then jbd2_journal_forget() will simply
4493 * brelse() it. That means that if the underlying
4494 * block is reallocated in ext4_get_block(),
4495 * unmap_underlying_metadata() will find this block
4496 * and will try to get rid of it. damn, damn.
4498 * If this block has already been committed to the
4499 * journal, a revoke record will be written. And
4500 * revoke records must be emitted *before* clearing
4501 * this block's bit in the bitmaps.
4503 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
4506 * Everything below this this pointer has been
4507 * released. Now let this top-of-subtree go.
4509 * We want the freeing of this indirect block to be
4510 * atomic in the journal with the updating of the
4511 * bitmap block which owns it. So make some room in
4514 * We zero the parent pointer *after* freeing its
4515 * pointee in the bitmaps, so if extend_transaction()
4516 * for some reason fails to put the bitmap changes and
4517 * the release into the same transaction, recovery
4518 * will merely complain about releasing a free block,
4519 * rather than leaking blocks.
4521 if (ext4_handle_is_aborted(handle
))
4523 if (try_to_extend_transaction(handle
, inode
)) {
4524 ext4_mark_inode_dirty(handle
, inode
);
4525 ext4_truncate_restart_trans(handle
, inode
,
4526 blocks_for_truncate(inode
));
4529 ext4_free_blocks(handle
, inode
, 0, nr
, 1,
4530 EXT4_FREE_BLOCKS_METADATA
);
4534 * The block which we have just freed is
4535 * pointed to by an indirect block: journal it
4537 BUFFER_TRACE(parent_bh
, "get_write_access");
4538 if (!ext4_journal_get_write_access(handle
,
4541 BUFFER_TRACE(parent_bh
,
4542 "call ext4_handle_dirty_metadata");
4543 ext4_handle_dirty_metadata(handle
,
4550 /* We have reached the bottom of the tree. */
4551 BUFFER_TRACE(parent_bh
, "free data blocks");
4552 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
4556 int ext4_can_truncate(struct inode
*inode
)
4558 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4560 if (S_ISREG(inode
->i_mode
))
4562 if (S_ISDIR(inode
->i_mode
))
4564 if (S_ISLNK(inode
->i_mode
))
4565 return !ext4_inode_is_fast_symlink(inode
);
4572 * We block out ext4_get_block() block instantiations across the entire
4573 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4574 * simultaneously on behalf of the same inode.
4576 * As we work through the truncate and commmit bits of it to the journal there
4577 * is one core, guiding principle: the file's tree must always be consistent on
4578 * disk. We must be able to restart the truncate after a crash.
4580 * The file's tree may be transiently inconsistent in memory (although it
4581 * probably isn't), but whenever we close off and commit a journal transaction,
4582 * the contents of (the filesystem + the journal) must be consistent and
4583 * restartable. It's pretty simple, really: bottom up, right to left (although
4584 * left-to-right works OK too).
4586 * Note that at recovery time, journal replay occurs *before* the restart of
4587 * truncate against the orphan inode list.
4589 * The committed inode has the new, desired i_size (which is the same as
4590 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4591 * that this inode's truncate did not complete and it will again call
4592 * ext4_truncate() to have another go. So there will be instantiated blocks
4593 * to the right of the truncation point in a crashed ext4 filesystem. But
4594 * that's fine - as long as they are linked from the inode, the post-crash
4595 * ext4_truncate() run will find them and release them.
4597 void ext4_truncate(struct inode
*inode
)
4600 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4601 __le32
*i_data
= ei
->i_data
;
4602 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4603 struct address_space
*mapping
= inode
->i_mapping
;
4604 ext4_lblk_t offsets
[4];
4609 ext4_lblk_t last_block
;
4610 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
4612 if (!ext4_can_truncate(inode
))
4615 EXT4_I(inode
)->i_flags
&= ~EXT4_EOFBLOCKS_FL
;
4617 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4618 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
4620 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
4621 ext4_ext_truncate(inode
);
4625 handle
= start_transaction(inode
);
4627 return; /* AKPM: return what? */
4629 last_block
= (inode
->i_size
+ blocksize
-1)
4630 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
4632 if (inode
->i_size
& (blocksize
- 1))
4633 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
4636 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
4638 goto out_stop
; /* error */
4641 * OK. This truncate is going to happen. We add the inode to the
4642 * orphan list, so that if this truncate spans multiple transactions,
4643 * and we crash, we will resume the truncate when the filesystem
4644 * recovers. It also marks the inode dirty, to catch the new size.
4646 * Implication: the file must always be in a sane, consistent
4647 * truncatable state while each transaction commits.
4649 if (ext4_orphan_add(handle
, inode
))
4653 * From here we block out all ext4_get_block() callers who want to
4654 * modify the block allocation tree.
4656 down_write(&ei
->i_data_sem
);
4658 ext4_discard_preallocations(inode
);
4661 * The orphan list entry will now protect us from any crash which
4662 * occurs before the truncate completes, so it is now safe to propagate
4663 * the new, shorter inode size (held for now in i_size) into the
4664 * on-disk inode. We do this via i_disksize, which is the value which
4665 * ext4 *really* writes onto the disk inode.
4667 ei
->i_disksize
= inode
->i_size
;
4669 if (n
== 1) { /* direct blocks */
4670 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4671 i_data
+ EXT4_NDIR_BLOCKS
);
4675 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4676 /* Kill the top of shared branch (not detached) */
4678 if (partial
== chain
) {
4679 /* Shared branch grows from the inode */
4680 ext4_free_branches(handle
, inode
, NULL
,
4681 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4684 * We mark the inode dirty prior to restart,
4685 * and prior to stop. No need for it here.
4688 /* Shared branch grows from an indirect block */
4689 BUFFER_TRACE(partial
->bh
, "get_write_access");
4690 ext4_free_branches(handle
, inode
, partial
->bh
,
4692 partial
->p
+1, (chain
+n
-1) - partial
);
4695 /* Clear the ends of indirect blocks on the shared branch */
4696 while (partial
> chain
) {
4697 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4698 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4699 (chain
+n
-1) - partial
);
4700 BUFFER_TRACE(partial
->bh
, "call brelse");
4701 brelse(partial
->bh
);
4705 /* Kill the remaining (whole) subtrees */
4706 switch (offsets
[0]) {
4708 nr
= i_data
[EXT4_IND_BLOCK
];
4710 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4711 i_data
[EXT4_IND_BLOCK
] = 0;
4713 case EXT4_IND_BLOCK
:
4714 nr
= i_data
[EXT4_DIND_BLOCK
];
4716 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4717 i_data
[EXT4_DIND_BLOCK
] = 0;
4719 case EXT4_DIND_BLOCK
:
4720 nr
= i_data
[EXT4_TIND_BLOCK
];
4722 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4723 i_data
[EXT4_TIND_BLOCK
] = 0;
4725 case EXT4_TIND_BLOCK
:
4729 up_write(&ei
->i_data_sem
);
4730 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4731 ext4_mark_inode_dirty(handle
, inode
);
4734 * In a multi-transaction truncate, we only make the final transaction
4738 ext4_handle_sync(handle
);
4741 * If this was a simple ftruncate(), and the file will remain alive
4742 * then we need to clear up the orphan record which we created above.
4743 * However, if this was a real unlink then we were called by
4744 * ext4_delete_inode(), and we allow that function to clean up the
4745 * orphan info for us.
4748 ext4_orphan_del(handle
, inode
);
4750 ext4_journal_stop(handle
);
4754 * ext4_get_inode_loc returns with an extra refcount against the inode's
4755 * underlying buffer_head on success. If 'in_mem' is true, we have all
4756 * data in memory that is needed to recreate the on-disk version of this
4759 static int __ext4_get_inode_loc(struct inode
*inode
,
4760 struct ext4_iloc
*iloc
, int in_mem
)
4762 struct ext4_group_desc
*gdp
;
4763 struct buffer_head
*bh
;
4764 struct super_block
*sb
= inode
->i_sb
;
4766 int inodes_per_block
, inode_offset
;
4769 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4772 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4773 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4778 * Figure out the offset within the block group inode table
4780 inodes_per_block
= (EXT4_BLOCK_SIZE(sb
) / EXT4_INODE_SIZE(sb
));
4781 inode_offset
= ((inode
->i_ino
- 1) %
4782 EXT4_INODES_PER_GROUP(sb
));
4783 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4784 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4786 bh
= sb_getblk(sb
, block
);
4788 ext4_error(sb
, "unable to read inode block - "
4789 "inode=%lu, block=%llu", inode
->i_ino
, block
);
4792 if (!buffer_uptodate(bh
)) {
4796 * If the buffer has the write error flag, we have failed
4797 * to write out another inode in the same block. In this
4798 * case, we don't have to read the block because we may
4799 * read the old inode data successfully.
4801 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4802 set_buffer_uptodate(bh
);
4804 if (buffer_uptodate(bh
)) {
4805 /* someone brought it uptodate while we waited */
4811 * If we have all information of the inode in memory and this
4812 * is the only valid inode in the block, we need not read the
4816 struct buffer_head
*bitmap_bh
;
4819 start
= inode_offset
& ~(inodes_per_block
- 1);
4821 /* Is the inode bitmap in cache? */
4822 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4827 * If the inode bitmap isn't in cache then the
4828 * optimisation may end up performing two reads instead
4829 * of one, so skip it.
4831 if (!buffer_uptodate(bitmap_bh
)) {
4835 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4836 if (i
== inode_offset
)
4838 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4842 if (i
== start
+ inodes_per_block
) {
4843 /* all other inodes are free, so skip I/O */
4844 memset(bh
->b_data
, 0, bh
->b_size
);
4845 set_buffer_uptodate(bh
);
4853 * If we need to do any I/O, try to pre-readahead extra
4854 * blocks from the inode table.
4856 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4857 ext4_fsblk_t b
, end
, table
;
4860 table
= ext4_inode_table(sb
, gdp
);
4861 /* s_inode_readahead_blks is always a power of 2 */
4862 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4865 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4866 num
= EXT4_INODES_PER_GROUP(sb
);
4867 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4868 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4869 num
-= ext4_itable_unused_count(sb
, gdp
);
4870 table
+= num
/ inodes_per_block
;
4874 sb_breadahead(sb
, b
++);
4878 * There are other valid inodes in the buffer, this inode
4879 * has in-inode xattrs, or we don't have this inode in memory.
4880 * Read the block from disk.
4883 bh
->b_end_io
= end_buffer_read_sync
;
4884 submit_bh(READ_META
, bh
);
4886 if (!buffer_uptodate(bh
)) {
4887 ext4_error(sb
, "unable to read inode block - inode=%lu,"
4888 " block=%llu", inode
->i_ino
, block
);
4898 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4900 /* We have all inode data except xattrs in memory here. */
4901 return __ext4_get_inode_loc(inode
, iloc
,
4902 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4905 void ext4_set_inode_flags(struct inode
*inode
)
4907 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4909 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4910 if (flags
& EXT4_SYNC_FL
)
4911 inode
->i_flags
|= S_SYNC
;
4912 if (flags
& EXT4_APPEND_FL
)
4913 inode
->i_flags
|= S_APPEND
;
4914 if (flags
& EXT4_IMMUTABLE_FL
)
4915 inode
->i_flags
|= S_IMMUTABLE
;
4916 if (flags
& EXT4_NOATIME_FL
)
4917 inode
->i_flags
|= S_NOATIME
;
4918 if (flags
& EXT4_DIRSYNC_FL
)
4919 inode
->i_flags
|= S_DIRSYNC
;
4922 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4923 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4925 unsigned int flags
= ei
->vfs_inode
.i_flags
;
4927 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4928 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
4930 ei
->i_flags
|= EXT4_SYNC_FL
;
4931 if (flags
& S_APPEND
)
4932 ei
->i_flags
|= EXT4_APPEND_FL
;
4933 if (flags
& S_IMMUTABLE
)
4934 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
4935 if (flags
& S_NOATIME
)
4936 ei
->i_flags
|= EXT4_NOATIME_FL
;
4937 if (flags
& S_DIRSYNC
)
4938 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
4941 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4942 struct ext4_inode_info
*ei
)
4945 struct inode
*inode
= &(ei
->vfs_inode
);
4946 struct super_block
*sb
= inode
->i_sb
;
4948 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4949 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4950 /* we are using combined 48 bit field */
4951 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4952 le32_to_cpu(raw_inode
->i_blocks_lo
);
4953 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
4954 /* i_blocks represent file system block size */
4955 return i_blocks
<< (inode
->i_blkbits
- 9);
4960 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4964 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4966 struct ext4_iloc iloc
;
4967 struct ext4_inode
*raw_inode
;
4968 struct ext4_inode_info
*ei
;
4969 struct inode
*inode
;
4970 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4974 inode
= iget_locked(sb
, ino
);
4976 return ERR_PTR(-ENOMEM
);
4977 if (!(inode
->i_state
& I_NEW
))
4983 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4986 raw_inode
= ext4_raw_inode(&iloc
);
4987 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4988 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4989 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4990 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4991 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4992 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4994 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4996 ei
->i_state_flags
= 0;
4997 ei
->i_dir_start_lookup
= 0;
4998 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4999 /* We now have enough fields to check if the inode was active or not.
5000 * This is needed because nfsd might try to access dead inodes
5001 * the test is that same one that e2fsck uses
5002 * NeilBrown 1999oct15
5004 if (inode
->i_nlink
== 0) {
5005 if (inode
->i_mode
== 0 ||
5006 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
5007 /* this inode is deleted */
5011 /* The only unlinked inodes we let through here have
5012 * valid i_mode and are being read by the orphan
5013 * recovery code: that's fine, we're about to complete
5014 * the process of deleting those. */
5016 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
5017 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
5018 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
5019 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
5021 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
5022 inode
->i_size
= ext4_isize(raw_inode
);
5023 ei
->i_disksize
= inode
->i_size
;
5025 ei
->i_reserved_quota
= 0;
5027 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
5028 ei
->i_block_group
= iloc
.block_group
;
5029 ei
->i_last_alloc_group
= ~0;
5031 * NOTE! The in-memory inode i_data array is in little-endian order
5032 * even on big-endian machines: we do NOT byteswap the block numbers!
5034 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5035 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
5036 INIT_LIST_HEAD(&ei
->i_orphan
);
5039 * Set transaction id's of transactions that have to be committed
5040 * to finish f[data]sync. We set them to currently running transaction
5041 * as we cannot be sure that the inode or some of its metadata isn't
5042 * part of the transaction - the inode could have been reclaimed and
5043 * now it is reread from disk.
5046 transaction_t
*transaction
;
5049 spin_lock(&journal
->j_state_lock
);
5050 if (journal
->j_running_transaction
)
5051 transaction
= journal
->j_running_transaction
;
5053 transaction
= journal
->j_committing_transaction
;
5055 tid
= transaction
->t_tid
;
5057 tid
= journal
->j_commit_sequence
;
5058 spin_unlock(&journal
->j_state_lock
);
5059 ei
->i_sync_tid
= tid
;
5060 ei
->i_datasync_tid
= tid
;
5063 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
5064 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
5065 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
5066 EXT4_INODE_SIZE(inode
->i_sb
)) {
5070 if (ei
->i_extra_isize
== 0) {
5071 /* The extra space is currently unused. Use it. */
5072 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
5073 EXT4_GOOD_OLD_INODE_SIZE
;
5075 __le32
*magic
= (void *)raw_inode
+
5076 EXT4_GOOD_OLD_INODE_SIZE
+
5078 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
5079 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
5082 ei
->i_extra_isize
= 0;
5084 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
5085 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
5086 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
5087 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
5089 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
5090 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
5091 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5093 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
5097 if (ei
->i_file_acl
&&
5098 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
5099 ext4_error(sb
, "bad extended attribute block %llu inode #%lu",
5100 ei
->i_file_acl
, inode
->i_ino
);
5103 } else if (ei
->i_flags
& EXT4_EXTENTS_FL
) {
5104 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
5105 (S_ISLNK(inode
->i_mode
) &&
5106 !ext4_inode_is_fast_symlink(inode
)))
5107 /* Validate extent which is part of inode */
5108 ret
= ext4_ext_check_inode(inode
);
5109 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
5110 (S_ISLNK(inode
->i_mode
) &&
5111 !ext4_inode_is_fast_symlink(inode
))) {
5112 /* Validate block references which are part of inode */
5113 ret
= ext4_check_inode_blockref(inode
);
5118 if (S_ISREG(inode
->i_mode
)) {
5119 inode
->i_op
= &ext4_file_inode_operations
;
5120 inode
->i_fop
= &ext4_file_operations
;
5121 ext4_set_aops(inode
);
5122 } else if (S_ISDIR(inode
->i_mode
)) {
5123 inode
->i_op
= &ext4_dir_inode_operations
;
5124 inode
->i_fop
= &ext4_dir_operations
;
5125 } else if (S_ISLNK(inode
->i_mode
)) {
5126 if (ext4_inode_is_fast_symlink(inode
)) {
5127 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
5128 nd_terminate_link(ei
->i_data
, inode
->i_size
,
5129 sizeof(ei
->i_data
) - 1);
5131 inode
->i_op
= &ext4_symlink_inode_operations
;
5132 ext4_set_aops(inode
);
5134 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
5135 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
5136 inode
->i_op
= &ext4_special_inode_operations
;
5137 if (raw_inode
->i_block
[0])
5138 init_special_inode(inode
, inode
->i_mode
,
5139 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
5141 init_special_inode(inode
, inode
->i_mode
,
5142 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
5145 ext4_error(inode
->i_sb
, "bogus i_mode (%o) for inode=%lu",
5146 inode
->i_mode
, inode
->i_ino
);
5150 ext4_set_inode_flags(inode
);
5151 unlock_new_inode(inode
);
5157 return ERR_PTR(ret
);
5160 static int ext4_inode_blocks_set(handle_t
*handle
,
5161 struct ext4_inode
*raw_inode
,
5162 struct ext4_inode_info
*ei
)
5164 struct inode
*inode
= &(ei
->vfs_inode
);
5165 u64 i_blocks
= inode
->i_blocks
;
5166 struct super_block
*sb
= inode
->i_sb
;
5168 if (i_blocks
<= ~0U) {
5170 * i_blocks can be represnted in a 32 bit variable
5171 * as multiple of 512 bytes
5173 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5174 raw_inode
->i_blocks_high
= 0;
5175 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
5178 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
5181 if (i_blocks
<= 0xffffffffffffULL
) {
5183 * i_blocks can be represented in a 48 bit variable
5184 * as multiple of 512 bytes
5186 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5187 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5188 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
5190 ei
->i_flags
|= EXT4_HUGE_FILE_FL
;
5191 /* i_block is stored in file system block size */
5192 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
5193 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5194 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5200 * Post the struct inode info into an on-disk inode location in the
5201 * buffer-cache. This gobbles the caller's reference to the
5202 * buffer_head in the inode location struct.
5204 * The caller must have write access to iloc->bh.
5206 static int ext4_do_update_inode(handle_t
*handle
,
5207 struct inode
*inode
,
5208 struct ext4_iloc
*iloc
)
5210 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
5211 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5212 struct buffer_head
*bh
= iloc
->bh
;
5213 int err
= 0, rc
, block
;
5215 /* For fields not not tracking in the in-memory inode,
5216 * initialise them to zero for new inodes. */
5217 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
5218 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
5220 ext4_get_inode_flags(ei
);
5221 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
5222 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
5223 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
5224 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
5226 * Fix up interoperability with old kernels. Otherwise, old inodes get
5227 * re-used with the upper 16 bits of the uid/gid intact
5230 raw_inode
->i_uid_high
=
5231 cpu_to_le16(high_16_bits(inode
->i_uid
));
5232 raw_inode
->i_gid_high
=
5233 cpu_to_le16(high_16_bits(inode
->i_gid
));
5235 raw_inode
->i_uid_high
= 0;
5236 raw_inode
->i_gid_high
= 0;
5239 raw_inode
->i_uid_low
=
5240 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
5241 raw_inode
->i_gid_low
=
5242 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
5243 raw_inode
->i_uid_high
= 0;
5244 raw_inode
->i_gid_high
= 0;
5246 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
5248 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
5249 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
5250 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
5251 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
5253 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
5255 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
5256 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
5257 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
5258 cpu_to_le32(EXT4_OS_HURD
))
5259 raw_inode
->i_file_acl_high
=
5260 cpu_to_le16(ei
->i_file_acl
>> 32);
5261 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
5262 ext4_isize_set(raw_inode
, ei
->i_disksize
);
5263 if (ei
->i_disksize
> 0x7fffffffULL
) {
5264 struct super_block
*sb
= inode
->i_sb
;
5265 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
5266 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
5267 EXT4_SB(sb
)->s_es
->s_rev_level
==
5268 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
5269 /* If this is the first large file
5270 * created, add a flag to the superblock.
5272 err
= ext4_journal_get_write_access(handle
,
5273 EXT4_SB(sb
)->s_sbh
);
5276 ext4_update_dynamic_rev(sb
);
5277 EXT4_SET_RO_COMPAT_FEATURE(sb
,
5278 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
5280 ext4_handle_sync(handle
);
5281 err
= ext4_handle_dirty_metadata(handle
, NULL
,
5282 EXT4_SB(sb
)->s_sbh
);
5285 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
5286 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
5287 if (old_valid_dev(inode
->i_rdev
)) {
5288 raw_inode
->i_block
[0] =
5289 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
5290 raw_inode
->i_block
[1] = 0;
5292 raw_inode
->i_block
[0] = 0;
5293 raw_inode
->i_block
[1] =
5294 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
5295 raw_inode
->i_block
[2] = 0;
5298 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5299 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5301 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
5302 if (ei
->i_extra_isize
) {
5303 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5304 raw_inode
->i_version_hi
=
5305 cpu_to_le32(inode
->i_version
>> 32);
5306 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
5309 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5310 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
5313 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
5315 ext4_update_inode_fsync_trans(handle
, inode
, 0);
5318 ext4_std_error(inode
->i_sb
, err
);
5323 * ext4_write_inode()
5325 * We are called from a few places:
5327 * - Within generic_file_write() for O_SYNC files.
5328 * Here, there will be no transaction running. We wait for any running
5329 * trasnaction to commit.
5331 * - Within sys_sync(), kupdate and such.
5332 * We wait on commit, if tol to.
5334 * - Within prune_icache() (PF_MEMALLOC == true)
5335 * Here we simply return. We can't afford to block kswapd on the
5338 * In all cases it is actually safe for us to return without doing anything,
5339 * because the inode has been copied into a raw inode buffer in
5340 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5343 * Note that we are absolutely dependent upon all inode dirtiers doing the
5344 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5345 * which we are interested.
5347 * It would be a bug for them to not do this. The code:
5349 * mark_inode_dirty(inode)
5351 * inode->i_size = expr;
5353 * is in error because a kswapd-driven write_inode() could occur while
5354 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5355 * will no longer be on the superblock's dirty inode list.
5357 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5361 if (current
->flags
& PF_MEMALLOC
)
5364 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5365 if (ext4_journal_current_handle()) {
5366 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5371 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
5374 err
= ext4_force_commit(inode
->i_sb
);
5376 struct ext4_iloc iloc
;
5378 err
= ext4_get_inode_loc(inode
, &iloc
);
5381 if (wbc
->sync_mode
== WB_SYNC_ALL
)
5382 sync_dirty_buffer(iloc
.bh
);
5383 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5384 ext4_error(inode
->i_sb
, "IO error syncing inode, "
5385 "inode=%lu, block=%llu", inode
->i_ino
,
5386 (unsigned long long)iloc
.bh
->b_blocknr
);
5396 * Called from notify_change.
5398 * We want to trap VFS attempts to truncate the file as soon as
5399 * possible. In particular, we want to make sure that when the VFS
5400 * shrinks i_size, we put the inode on the orphan list and modify
5401 * i_disksize immediately, so that during the subsequent flushing of
5402 * dirty pages and freeing of disk blocks, we can guarantee that any
5403 * commit will leave the blocks being flushed in an unused state on
5404 * disk. (On recovery, the inode will get truncated and the blocks will
5405 * be freed, so we have a strong guarantee that no future commit will
5406 * leave these blocks visible to the user.)
5408 * Another thing we have to assure is that if we are in ordered mode
5409 * and inode is still attached to the committing transaction, we must
5410 * we start writeout of all the dirty pages which are being truncated.
5411 * This way we are sure that all the data written in the previous
5412 * transaction are already on disk (truncate waits for pages under
5415 * Called with inode->i_mutex down.
5417 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5419 struct inode
*inode
= dentry
->d_inode
;
5421 const unsigned int ia_valid
= attr
->ia_valid
;
5423 error
= inode_change_ok(inode
, attr
);
5427 if (ia_valid
& ATTR_SIZE
)
5428 dquot_initialize(inode
);
5429 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
5430 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
5433 /* (user+group)*(old+new) structure, inode write (sb,
5434 * inode block, ? - but truncate inode update has it) */
5435 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
5436 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
5437 if (IS_ERR(handle
)) {
5438 error
= PTR_ERR(handle
);
5441 error
= dquot_transfer(inode
, attr
);
5443 ext4_journal_stop(handle
);
5446 /* Update corresponding info in inode so that everything is in
5447 * one transaction */
5448 if (attr
->ia_valid
& ATTR_UID
)
5449 inode
->i_uid
= attr
->ia_uid
;
5450 if (attr
->ia_valid
& ATTR_GID
)
5451 inode
->i_gid
= attr
->ia_gid
;
5452 error
= ext4_mark_inode_dirty(handle
, inode
);
5453 ext4_journal_stop(handle
);
5456 if (attr
->ia_valid
& ATTR_SIZE
) {
5457 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
5458 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5460 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
5467 if (S_ISREG(inode
->i_mode
) &&
5468 attr
->ia_valid
& ATTR_SIZE
&&
5469 (attr
->ia_size
< inode
->i_size
||
5470 (EXT4_I(inode
)->i_flags
& EXT4_EOFBLOCKS_FL
))) {
5473 handle
= ext4_journal_start(inode
, 3);
5474 if (IS_ERR(handle
)) {
5475 error
= PTR_ERR(handle
);
5479 error
= ext4_orphan_add(handle
, inode
);
5480 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5481 rc
= ext4_mark_inode_dirty(handle
, inode
);
5484 ext4_journal_stop(handle
);
5486 if (ext4_should_order_data(inode
)) {
5487 error
= ext4_begin_ordered_truncate(inode
,
5490 /* Do as much error cleanup as possible */
5491 handle
= ext4_journal_start(inode
, 3);
5492 if (IS_ERR(handle
)) {
5493 ext4_orphan_del(NULL
, inode
);
5496 ext4_orphan_del(handle
, inode
);
5497 ext4_journal_stop(handle
);
5501 /* ext4_truncate will clear the flag */
5502 if ((EXT4_I(inode
)->i_flags
& EXT4_EOFBLOCKS_FL
))
5503 ext4_truncate(inode
);
5506 rc
= inode_setattr(inode
, attr
);
5508 /* If inode_setattr's call to ext4_truncate failed to get a
5509 * transaction handle at all, we need to clean up the in-core
5510 * orphan list manually. */
5512 ext4_orphan_del(NULL
, inode
);
5514 if (!rc
&& (ia_valid
& ATTR_MODE
))
5515 rc
= ext4_acl_chmod(inode
);
5518 ext4_std_error(inode
->i_sb
, error
);
5524 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
5527 struct inode
*inode
;
5528 unsigned long delalloc_blocks
;
5530 inode
= dentry
->d_inode
;
5531 generic_fillattr(inode
, stat
);
5534 * We can't update i_blocks if the block allocation is delayed
5535 * otherwise in the case of system crash before the real block
5536 * allocation is done, we will have i_blocks inconsistent with
5537 * on-disk file blocks.
5538 * We always keep i_blocks updated together with real
5539 * allocation. But to not confuse with user, stat
5540 * will return the blocks that include the delayed allocation
5541 * blocks for this file.
5543 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
5544 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
5545 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
5547 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
5551 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
5556 /* if nrblocks are contiguous */
5559 * With N contiguous data blocks, it need at most
5560 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5561 * 2 dindirect blocks
5564 indirects
= nrblocks
/ EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
5565 return indirects
+ 3;
5568 * if nrblocks are not contiguous, worse case, each block touch
5569 * a indirect block, and each indirect block touch a double indirect
5570 * block, plus a triple indirect block
5572 indirects
= nrblocks
* 2 + 1;
5576 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5578 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
))
5579 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
5580 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
5584 * Account for index blocks, block groups bitmaps and block group
5585 * descriptor blocks if modify datablocks and index blocks
5586 * worse case, the indexs blocks spread over different block groups
5588 * If datablocks are discontiguous, they are possible to spread over
5589 * different block groups too. If they are contiuguous, with flexbg,
5590 * they could still across block group boundary.
5592 * Also account for superblock, inode, quota and xattr blocks
5594 int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5596 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5602 * How many index blocks need to touch to modify nrblocks?
5603 * The "Chunk" flag indicating whether the nrblocks is
5604 * physically contiguous on disk
5606 * For Direct IO and fallocate, they calls get_block to allocate
5607 * one single extent at a time, so they could set the "Chunk" flag
5609 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
5614 * Now let's see how many group bitmaps and group descriptors need
5624 if (groups
> ngroups
)
5626 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5627 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5629 /* bitmaps and block group descriptor blocks */
5630 ret
+= groups
+ gdpblocks
;
5632 /* Blocks for super block, inode, quota and xattr blocks */
5633 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5639 * Calulate the total number of credits to reserve to fit
5640 * the modification of a single pages into a single transaction,
5641 * which may include multiple chunks of block allocations.
5643 * This could be called via ext4_write_begin()
5645 * We need to consider the worse case, when
5646 * one new block per extent.
5648 int ext4_writepage_trans_blocks(struct inode
*inode
)
5650 int bpp
= ext4_journal_blocks_per_page(inode
);
5653 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
5655 /* Account for data blocks for journalled mode */
5656 if (ext4_should_journal_data(inode
))
5662 * Calculate the journal credits for a chunk of data modification.
5664 * This is called from DIO, fallocate or whoever calling
5665 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5667 * journal buffers for data blocks are not included here, as DIO
5668 * and fallocate do no need to journal data buffers.
5670 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5672 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5676 * The caller must have previously called ext4_reserve_inode_write().
5677 * Give this, we know that the caller already has write access to iloc->bh.
5679 int ext4_mark_iloc_dirty(handle_t
*handle
,
5680 struct inode
*inode
, struct ext4_iloc
*iloc
)
5684 if (test_opt(inode
->i_sb
, I_VERSION
))
5685 inode_inc_iversion(inode
);
5687 /* the do_update_inode consumes one bh->b_count */
5690 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5691 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5697 * On success, We end up with an outstanding reference count against
5698 * iloc->bh. This _must_ be cleaned up later.
5702 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5703 struct ext4_iloc
*iloc
)
5707 err
= ext4_get_inode_loc(inode
, iloc
);
5709 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5710 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5716 ext4_std_error(inode
->i_sb
, err
);
5721 * Expand an inode by new_extra_isize bytes.
5722 * Returns 0 on success or negative error number on failure.
5724 static int ext4_expand_extra_isize(struct inode
*inode
,
5725 unsigned int new_extra_isize
,
5726 struct ext4_iloc iloc
,
5729 struct ext4_inode
*raw_inode
;
5730 struct ext4_xattr_ibody_header
*header
;
5731 struct ext4_xattr_entry
*entry
;
5733 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5736 raw_inode
= ext4_raw_inode(&iloc
);
5738 header
= IHDR(inode
, raw_inode
);
5739 entry
= IFIRST(header
);
5741 /* No extended attributes present */
5742 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5743 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5744 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5746 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5750 /* try to expand with EAs present */
5751 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5756 * What we do here is to mark the in-core inode as clean with respect to inode
5757 * dirtiness (it may still be data-dirty).
5758 * This means that the in-core inode may be reaped by prune_icache
5759 * without having to perform any I/O. This is a very good thing,
5760 * because *any* task may call prune_icache - even ones which
5761 * have a transaction open against a different journal.
5763 * Is this cheating? Not really. Sure, we haven't written the
5764 * inode out, but prune_icache isn't a user-visible syncing function.
5765 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5766 * we start and wait on commits.
5768 * Is this efficient/effective? Well, we're being nice to the system
5769 * by cleaning up our inodes proactively so they can be reaped
5770 * without I/O. But we are potentially leaving up to five seconds'
5771 * worth of inodes floating about which prune_icache wants us to
5772 * write out. One way to fix that would be to get prune_icache()
5773 * to do a write_super() to free up some memory. It has the desired
5776 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5778 struct ext4_iloc iloc
;
5779 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5780 static unsigned int mnt_count
;
5784 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5785 if (ext4_handle_valid(handle
) &&
5786 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5787 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5789 * We need extra buffer credits since we may write into EA block
5790 * with this same handle. If journal_extend fails, then it will
5791 * only result in a minor loss of functionality for that inode.
5792 * If this is felt to be critical, then e2fsck should be run to
5793 * force a large enough s_min_extra_isize.
5795 if ((jbd2_journal_extend(handle
,
5796 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5797 ret
= ext4_expand_extra_isize(inode
,
5798 sbi
->s_want_extra_isize
,
5801 ext4_set_inode_state(inode
,
5802 EXT4_STATE_NO_EXPAND
);
5804 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5805 ext4_warning(inode
->i_sb
,
5806 "Unable to expand inode %lu. Delete"
5807 " some EAs or run e2fsck.",
5810 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5816 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5821 * ext4_dirty_inode() is called from __mark_inode_dirty()
5823 * We're really interested in the case where a file is being extended.
5824 * i_size has been changed by generic_commit_write() and we thus need
5825 * to include the updated inode in the current transaction.
5827 * Also, dquot_alloc_block() will always dirty the inode when blocks
5828 * are allocated to the file.
5830 * If the inode is marked synchronous, we don't honour that here - doing
5831 * so would cause a commit on atime updates, which we don't bother doing.
5832 * We handle synchronous inodes at the highest possible level.
5834 void ext4_dirty_inode(struct inode
*inode
)
5838 handle
= ext4_journal_start(inode
, 2);
5842 ext4_mark_inode_dirty(handle
, inode
);
5844 ext4_journal_stop(handle
);
5851 * Bind an inode's backing buffer_head into this transaction, to prevent
5852 * it from being flushed to disk early. Unlike
5853 * ext4_reserve_inode_write, this leaves behind no bh reference and
5854 * returns no iloc structure, so the caller needs to repeat the iloc
5855 * lookup to mark the inode dirty later.
5857 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5859 struct ext4_iloc iloc
;
5863 err
= ext4_get_inode_loc(inode
, &iloc
);
5865 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5866 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5868 err
= ext4_handle_dirty_metadata(handle
,
5874 ext4_std_error(inode
->i_sb
, err
);
5879 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5886 * We have to be very careful here: changing a data block's
5887 * journaling status dynamically is dangerous. If we write a
5888 * data block to the journal, change the status and then delete
5889 * that block, we risk forgetting to revoke the old log record
5890 * from the journal and so a subsequent replay can corrupt data.
5891 * So, first we make sure that the journal is empty and that
5892 * nobody is changing anything.
5895 journal
= EXT4_JOURNAL(inode
);
5898 if (is_journal_aborted(journal
))
5901 jbd2_journal_lock_updates(journal
);
5902 jbd2_journal_flush(journal
);
5905 * OK, there are no updates running now, and all cached data is
5906 * synced to disk. We are now in a completely consistent state
5907 * which doesn't have anything in the journal, and we know that
5908 * no filesystem updates are running, so it is safe to modify
5909 * the inode's in-core data-journaling state flag now.
5913 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
5915 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
5916 ext4_set_aops(inode
);
5918 jbd2_journal_unlock_updates(journal
);
5920 /* Finally we can mark the inode as dirty. */
5922 handle
= ext4_journal_start(inode
, 1);
5924 return PTR_ERR(handle
);
5926 err
= ext4_mark_inode_dirty(handle
, inode
);
5927 ext4_handle_sync(handle
);
5928 ext4_journal_stop(handle
);
5929 ext4_std_error(inode
->i_sb
, err
);
5934 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5936 return !buffer_mapped(bh
);
5939 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5941 struct page
*page
= vmf
->page
;
5946 struct file
*file
= vma
->vm_file
;
5947 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5948 struct address_space
*mapping
= inode
->i_mapping
;
5951 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5952 * get i_mutex because we are already holding mmap_sem.
5954 down_read(&inode
->i_alloc_sem
);
5955 size
= i_size_read(inode
);
5956 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5957 || !PageUptodate(page
)) {
5958 /* page got truncated from under us? */
5962 if (PageMappedToDisk(page
))
5965 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5966 len
= size
& ~PAGE_CACHE_MASK
;
5968 len
= PAGE_CACHE_SIZE
;
5972 * return if we have all the buffers mapped. This avoid
5973 * the need to call write_begin/write_end which does a
5974 * journal_start/journal_stop which can block and take
5977 if (page_has_buffers(page
)) {
5978 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5979 ext4_bh_unmapped
)) {
5986 * OK, we need to fill the hole... Do write_begin write_end
5987 * to do block allocation/reservation.We are not holding
5988 * inode.i__mutex here. That allow * parallel write_begin,
5989 * write_end call. lock_page prevent this from happening
5990 * on the same page though
5992 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5993 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5996 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5997 len
, len
, page
, fsdata
);
6003 ret
= VM_FAULT_SIGBUS
;
6004 up_read(&inode
->i_alloc_sem
);