4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/vmscan.h>
61 /* Incremented by the number of inactive pages that were scanned */
62 unsigned long nr_scanned
;
64 /* Number of pages freed so far during a call to shrink_zones() */
65 unsigned long nr_reclaimed
;
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim
;
70 unsigned long hibernation_mode
;
72 /* This context's GFP mask */
77 /* Can mapped pages be reclaimed? */
80 /* Can pages be swapped as part of reclaim? */
88 * Intend to reclaim enough continuous memory rather than reclaim
89 * enough amount of memory. i.e, mode for high order allocation.
91 enum lumpy_mode lumpy_reclaim_mode
;
93 /* Which cgroup do we reclaim from */
94 struct mem_cgroup
*mem_cgroup
;
97 * Nodemask of nodes allowed by the caller. If NULL, all nodes
100 nodemask_t
*nodemask
;
103 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
105 #ifdef ARCH_HAS_PREFETCH
106 #define prefetch_prev_lru_page(_page, _base, _field) \
108 if ((_page)->lru.prev != _base) { \
111 prev = lru_to_page(&(_page->lru)); \
112 prefetch(&prev->_field); \
116 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
119 #ifdef ARCH_HAS_PREFETCHW
120 #define prefetchw_prev_lru_page(_page, _base, _field) \
122 if ((_page)->lru.prev != _base) { \
125 prev = lru_to_page(&(_page->lru)); \
126 prefetchw(&prev->_field); \
130 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
134 * From 0 .. 100. Higher means more swappy.
136 int vm_swappiness
= 60;
137 long vm_total_pages
; /* The total number of pages which the VM controls */
139 static LIST_HEAD(shrinker_list
);
140 static DECLARE_RWSEM(shrinker_rwsem
);
142 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
143 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
145 #define scanning_global_lru(sc) (1)
148 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
149 struct scan_control
*sc
)
151 if (!scanning_global_lru(sc
))
152 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
154 return &zone
->reclaim_stat
;
157 static unsigned long zone_nr_lru_pages(struct zone
*zone
,
158 struct scan_control
*sc
, enum lru_list lru
)
160 if (!scanning_global_lru(sc
))
161 return mem_cgroup_zone_nr_pages(sc
->mem_cgroup
, zone
, lru
);
163 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
168 * Add a shrinker callback to be called from the vm
170 void register_shrinker(struct shrinker
*shrinker
)
173 down_write(&shrinker_rwsem
);
174 list_add_tail(&shrinker
->list
, &shrinker_list
);
175 up_write(&shrinker_rwsem
);
177 EXPORT_SYMBOL(register_shrinker
);
182 void unregister_shrinker(struct shrinker
*shrinker
)
184 down_write(&shrinker_rwsem
);
185 list_del(&shrinker
->list
);
186 up_write(&shrinker_rwsem
);
188 EXPORT_SYMBOL(unregister_shrinker
);
190 #define SHRINK_BATCH 128
192 * Call the shrink functions to age shrinkable caches
194 * Here we assume it costs one seek to replace a lru page and that it also
195 * takes a seek to recreate a cache object. With this in mind we age equal
196 * percentages of the lru and ageable caches. This should balance the seeks
197 * generated by these structures.
199 * If the vm encountered mapped pages on the LRU it increase the pressure on
200 * slab to avoid swapping.
202 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
204 * `lru_pages' represents the number of on-LRU pages in all the zones which
205 * are eligible for the caller's allocation attempt. It is used for balancing
206 * slab reclaim versus page reclaim.
208 * Returns the number of slab objects which we shrunk.
210 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
211 unsigned long lru_pages
)
213 struct shrinker
*shrinker
;
214 unsigned long ret
= 0;
217 scanned
= SWAP_CLUSTER_MAX
;
219 if (!down_read_trylock(&shrinker_rwsem
))
220 return 1; /* Assume we'll be able to shrink next time */
222 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
223 unsigned long long delta
;
224 unsigned long total_scan
;
225 unsigned long max_pass
;
227 max_pass
= (*shrinker
->shrink
)(shrinker
, 0, gfp_mask
);
228 delta
= (4 * scanned
) / shrinker
->seeks
;
230 do_div(delta
, lru_pages
+ 1);
231 shrinker
->nr
+= delta
;
232 if (shrinker
->nr
< 0) {
233 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
235 shrinker
->shrink
, shrinker
->nr
);
236 shrinker
->nr
= max_pass
;
240 * Avoid risking looping forever due to too large nr value:
241 * never try to free more than twice the estimate number of
244 if (shrinker
->nr
> max_pass
* 2)
245 shrinker
->nr
= max_pass
* 2;
247 total_scan
= shrinker
->nr
;
250 while (total_scan
>= SHRINK_BATCH
) {
251 long this_scan
= SHRINK_BATCH
;
255 nr_before
= (*shrinker
->shrink
)(shrinker
, 0, gfp_mask
);
256 shrink_ret
= (*shrinker
->shrink
)(shrinker
, this_scan
,
258 if (shrink_ret
== -1)
260 if (shrink_ret
< nr_before
)
261 ret
+= nr_before
- shrink_ret
;
262 count_vm_events(SLABS_SCANNED
, this_scan
);
263 total_scan
-= this_scan
;
268 shrinker
->nr
+= total_scan
;
270 up_read(&shrinker_rwsem
);
274 static void set_lumpy_reclaim_mode(int priority
, struct scan_control
*sc
,
277 enum lumpy_mode mode
= sync
? LUMPY_MODE_SYNC
: LUMPY_MODE_ASYNC
;
280 * Some reclaim have alredy been failed. No worth to try synchronous
283 if (sync
&& sc
->lumpy_reclaim_mode
== LUMPY_MODE_NONE
)
287 * If we need a large contiguous chunk of memory, or have
288 * trouble getting a small set of contiguous pages, we
289 * will reclaim both active and inactive pages.
291 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
292 sc
->lumpy_reclaim_mode
= mode
;
293 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
294 sc
->lumpy_reclaim_mode
= mode
;
296 sc
->lumpy_reclaim_mode
= LUMPY_MODE_NONE
;
299 static void disable_lumpy_reclaim_mode(struct scan_control
*sc
)
301 sc
->lumpy_reclaim_mode
= LUMPY_MODE_NONE
;
304 static inline int is_page_cache_freeable(struct page
*page
)
307 * A freeable page cache page is referenced only by the caller
308 * that isolated the page, the page cache radix tree and
309 * optional buffer heads at page->private.
311 return page_count(page
) - page_has_private(page
) == 2;
314 static int may_write_to_queue(struct backing_dev_info
*bdi
,
315 struct scan_control
*sc
)
317 if (current
->flags
& PF_SWAPWRITE
)
319 if (!bdi_write_congested(bdi
))
321 if (bdi
== current
->backing_dev_info
)
324 /* lumpy reclaim for hugepage often need a lot of write */
325 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
331 * We detected a synchronous write error writing a page out. Probably
332 * -ENOSPC. We need to propagate that into the address_space for a subsequent
333 * fsync(), msync() or close().
335 * The tricky part is that after writepage we cannot touch the mapping: nothing
336 * prevents it from being freed up. But we have a ref on the page and once
337 * that page is locked, the mapping is pinned.
339 * We're allowed to run sleeping lock_page() here because we know the caller has
342 static void handle_write_error(struct address_space
*mapping
,
343 struct page
*page
, int error
)
345 lock_page_nosync(page
);
346 if (page_mapping(page
) == mapping
)
347 mapping_set_error(mapping
, error
);
351 /* possible outcome of pageout() */
353 /* failed to write page out, page is locked */
355 /* move page to the active list, page is locked */
357 /* page has been sent to the disk successfully, page is unlocked */
359 /* page is clean and locked */
364 * pageout is called by shrink_page_list() for each dirty page.
365 * Calls ->writepage().
367 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
368 struct scan_control
*sc
)
371 * If the page is dirty, only perform writeback if that write
372 * will be non-blocking. To prevent this allocation from being
373 * stalled by pagecache activity. But note that there may be
374 * stalls if we need to run get_block(). We could test
375 * PagePrivate for that.
377 * If this process is currently in __generic_file_aio_write() against
378 * this page's queue, we can perform writeback even if that
381 * If the page is swapcache, write it back even if that would
382 * block, for some throttling. This happens by accident, because
383 * swap_backing_dev_info is bust: it doesn't reflect the
384 * congestion state of the swapdevs. Easy to fix, if needed.
386 if (!is_page_cache_freeable(page
))
390 * Some data journaling orphaned pages can have
391 * page->mapping == NULL while being dirty with clean buffers.
393 if (page_has_private(page
)) {
394 if (try_to_free_buffers(page
)) {
395 ClearPageDirty(page
);
396 printk("%s: orphaned page\n", __func__
);
402 if (mapping
->a_ops
->writepage
== NULL
)
403 return PAGE_ACTIVATE
;
404 if (!may_write_to_queue(mapping
->backing_dev_info
, sc
))
407 if (clear_page_dirty_for_io(page
)) {
409 struct writeback_control wbc
= {
410 .sync_mode
= WB_SYNC_NONE
,
411 .nr_to_write
= SWAP_CLUSTER_MAX
,
413 .range_end
= LLONG_MAX
,
417 SetPageReclaim(page
);
418 res
= mapping
->a_ops
->writepage(page
, &wbc
);
420 handle_write_error(mapping
, page
, res
);
421 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
422 ClearPageReclaim(page
);
423 return PAGE_ACTIVATE
;
427 * Wait on writeback if requested to. This happens when
428 * direct reclaiming a large contiguous area and the
429 * first attempt to free a range of pages fails.
431 if (PageWriteback(page
) &&
432 sc
->lumpy_reclaim_mode
== LUMPY_MODE_SYNC
)
433 wait_on_page_writeback(page
);
435 if (!PageWriteback(page
)) {
436 /* synchronous write or broken a_ops? */
437 ClearPageReclaim(page
);
439 trace_mm_vmscan_writepage(page
,
440 trace_reclaim_flags(page
, sc
->lumpy_reclaim_mode
));
441 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
452 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
454 BUG_ON(!PageLocked(page
));
455 BUG_ON(mapping
!= page_mapping(page
));
457 spin_lock_irq(&mapping
->tree_lock
);
459 * The non racy check for a busy page.
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
466 * get_user_pages(&page);
467 * [user mapping goes away]
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
472 * !page_count(page) [good, discard it]
474 * [oops, our write_to data is lost]
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
483 if (!page_freeze_refs(page
, 2))
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page
))) {
487 page_unfreeze_refs(page
, 2);
491 if (PageSwapCache(page
)) {
492 swp_entry_t swap
= { .val
= page_private(page
) };
493 __delete_from_swap_cache(page
);
494 spin_unlock_irq(&mapping
->tree_lock
);
495 swapcache_free(swap
, page
);
497 void (*freepage
)(struct page
*);
499 freepage
= mapping
->a_ops
->freepage
;
501 __remove_from_page_cache(page
);
502 spin_unlock_irq(&mapping
->tree_lock
);
503 mem_cgroup_uncharge_cache_page(page
);
505 if (freepage
!= NULL
)
512 spin_unlock_irq(&mapping
->tree_lock
);
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
522 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
524 if (__remove_mapping(mapping
, page
)) {
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
530 page_unfreeze_refs(page
, 1);
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
543 * lru_lock must not be held, interrupts must be enabled.
545 void putback_lru_page(struct page
*page
)
548 int active
= !!TestClearPageActive(page
);
549 int was_unevictable
= PageUnevictable(page
);
551 VM_BUG_ON(PageLRU(page
));
554 ClearPageUnevictable(page
);
556 if (page_evictable(page
, NULL
)) {
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
563 lru
= active
+ page_lru_base_type(page
);
564 lru_cache_add_lru(page
, lru
);
567 * Put unevictable pages directly on zone's unevictable
570 lru
= LRU_UNEVICTABLE
;
571 add_page_to_unevictable_list(page
);
573 * When racing with an mlock clearing (page is
574 * unlocked), make sure that if the other thread does
575 * not observe our setting of PG_lru and fails
576 * isolation, we see PG_mlocked cleared below and move
577 * the page back to the evictable list.
579 * The other side is TestClearPageMlocked().
585 * page's status can change while we move it among lru. If an evictable
586 * page is on unevictable list, it never be freed. To avoid that,
587 * check after we added it to the list, again.
589 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
590 if (!isolate_lru_page(page
)) {
594 /* This means someone else dropped this page from LRU
595 * So, it will be freed or putback to LRU again. There is
596 * nothing to do here.
600 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
601 count_vm_event(UNEVICTABLE_PGRESCUED
);
602 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
603 count_vm_event(UNEVICTABLE_PGCULLED
);
605 put_page(page
); /* drop ref from isolate */
608 enum page_references
{
610 PAGEREF_RECLAIM_CLEAN
,
615 static enum page_references
page_check_references(struct page
*page
,
616 struct scan_control
*sc
)
618 int referenced_ptes
, referenced_page
;
619 unsigned long vm_flags
;
621 referenced_ptes
= page_referenced(page
, 1, sc
->mem_cgroup
, &vm_flags
);
622 referenced_page
= TestClearPageReferenced(page
);
624 /* Lumpy reclaim - ignore references */
625 if (sc
->lumpy_reclaim_mode
!= LUMPY_MODE_NONE
)
626 return PAGEREF_RECLAIM
;
629 * Mlock lost the isolation race with us. Let try_to_unmap()
630 * move the page to the unevictable list.
632 if (vm_flags
& VM_LOCKED
)
633 return PAGEREF_RECLAIM
;
635 if (referenced_ptes
) {
637 return PAGEREF_ACTIVATE
;
639 * All mapped pages start out with page table
640 * references from the instantiating fault, so we need
641 * to look twice if a mapped file page is used more
644 * Mark it and spare it for another trip around the
645 * inactive list. Another page table reference will
646 * lead to its activation.
648 * Note: the mark is set for activated pages as well
649 * so that recently deactivated but used pages are
652 SetPageReferenced(page
);
655 return PAGEREF_ACTIVATE
;
660 /* Reclaim if clean, defer dirty pages to writeback */
661 if (referenced_page
&& !PageSwapBacked(page
))
662 return PAGEREF_RECLAIM_CLEAN
;
664 return PAGEREF_RECLAIM
;
667 static noinline_for_stack
void free_page_list(struct list_head
*free_pages
)
669 struct pagevec freed_pvec
;
670 struct page
*page
, *tmp
;
672 pagevec_init(&freed_pvec
, 1);
674 list_for_each_entry_safe(page
, tmp
, free_pages
, lru
) {
675 list_del(&page
->lru
);
676 if (!pagevec_add(&freed_pvec
, page
)) {
677 __pagevec_free(&freed_pvec
);
678 pagevec_reinit(&freed_pvec
);
682 pagevec_free(&freed_pvec
);
686 * shrink_page_list() returns the number of reclaimed pages
688 static unsigned long shrink_page_list(struct list_head
*page_list
,
690 struct scan_control
*sc
)
692 LIST_HEAD(ret_pages
);
693 LIST_HEAD(free_pages
);
695 unsigned long nr_dirty
= 0;
696 unsigned long nr_congested
= 0;
697 unsigned long nr_reclaimed
= 0;
701 while (!list_empty(page_list
)) {
702 enum page_references references
;
703 struct address_space
*mapping
;
709 page
= lru_to_page(page_list
);
710 list_del(&page
->lru
);
712 if (!trylock_page(page
))
715 VM_BUG_ON(PageActive(page
));
716 VM_BUG_ON(page_zone(page
) != zone
);
720 if (unlikely(!page_evictable(page
, NULL
)))
723 if (!sc
->may_unmap
&& page_mapped(page
))
726 /* Double the slab pressure for mapped and swapcache pages */
727 if (page_mapped(page
) || PageSwapCache(page
))
730 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
731 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
733 if (PageWriteback(page
)) {
735 * Synchronous reclaim is performed in two passes,
736 * first an asynchronous pass over the list to
737 * start parallel writeback, and a second synchronous
738 * pass to wait for the IO to complete. Wait here
739 * for any page for which writeback has already
742 if (sc
->lumpy_reclaim_mode
== LUMPY_MODE_SYNC
&&
744 wait_on_page_writeback(page
);
751 references
= page_check_references(page
, sc
);
752 switch (references
) {
753 case PAGEREF_ACTIVATE
:
754 goto activate_locked
;
757 case PAGEREF_RECLAIM
:
758 case PAGEREF_RECLAIM_CLEAN
:
759 ; /* try to reclaim the page below */
763 * Anonymous process memory has backing store?
764 * Try to allocate it some swap space here.
766 if (PageAnon(page
) && !PageSwapCache(page
)) {
767 if (!(sc
->gfp_mask
& __GFP_IO
))
769 if (!add_to_swap(page
))
770 goto activate_locked
;
774 mapping
= page_mapping(page
);
777 * The page is mapped into the page tables of one or more
778 * processes. Try to unmap it here.
780 if (page_mapped(page
) && mapping
) {
781 switch (try_to_unmap(page
, TTU_UNMAP
)) {
783 goto activate_locked
;
789 ; /* try to free the page below */
793 if (PageDirty(page
)) {
796 if (references
== PAGEREF_RECLAIM_CLEAN
)
800 if (!sc
->may_writepage
)
803 /* Page is dirty, try to write it out here */
804 switch (pageout(page
, mapping
, sc
)) {
809 goto activate_locked
;
811 if (PageWriteback(page
))
817 * A synchronous write - probably a ramdisk. Go
818 * ahead and try to reclaim the page.
820 if (!trylock_page(page
))
822 if (PageDirty(page
) || PageWriteback(page
))
824 mapping
= page_mapping(page
);
826 ; /* try to free the page below */
831 * If the page has buffers, try to free the buffer mappings
832 * associated with this page. If we succeed we try to free
835 * We do this even if the page is PageDirty().
836 * try_to_release_page() does not perform I/O, but it is
837 * possible for a page to have PageDirty set, but it is actually
838 * clean (all its buffers are clean). This happens if the
839 * buffers were written out directly, with submit_bh(). ext3
840 * will do this, as well as the blockdev mapping.
841 * try_to_release_page() will discover that cleanness and will
842 * drop the buffers and mark the page clean - it can be freed.
844 * Rarely, pages can have buffers and no ->mapping. These are
845 * the pages which were not successfully invalidated in
846 * truncate_complete_page(). We try to drop those buffers here
847 * and if that worked, and the page is no longer mapped into
848 * process address space (page_count == 1) it can be freed.
849 * Otherwise, leave the page on the LRU so it is swappable.
851 if (page_has_private(page
)) {
852 if (!try_to_release_page(page
, sc
->gfp_mask
))
853 goto activate_locked
;
854 if (!mapping
&& page_count(page
) == 1) {
856 if (put_page_testzero(page
))
860 * rare race with speculative reference.
861 * the speculative reference will free
862 * this page shortly, so we may
863 * increment nr_reclaimed here (and
864 * leave it off the LRU).
872 if (!mapping
|| !__remove_mapping(mapping
, page
))
876 * At this point, we have no other references and there is
877 * no way to pick any more up (removed from LRU, removed
878 * from pagecache). Can use non-atomic bitops now (and
879 * we obviously don't have to worry about waking up a process
880 * waiting on the page lock, because there are no references.
882 __clear_page_locked(page
);
887 * Is there need to periodically free_page_list? It would
888 * appear not as the counts should be low
890 list_add(&page
->lru
, &free_pages
);
894 if (PageSwapCache(page
))
895 try_to_free_swap(page
);
897 putback_lru_page(page
);
898 disable_lumpy_reclaim_mode(sc
);
902 /* Not a candidate for swapping, so reclaim swap space. */
903 if (PageSwapCache(page
) && vm_swap_full())
904 try_to_free_swap(page
);
905 VM_BUG_ON(PageActive(page
));
911 disable_lumpy_reclaim_mode(sc
);
913 list_add(&page
->lru
, &ret_pages
);
914 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
918 * Tag a zone as congested if all the dirty pages encountered were
919 * backed by a congested BDI. In this case, reclaimers should just
920 * back off and wait for congestion to clear because further reclaim
921 * will encounter the same problem
923 if (nr_dirty
== nr_congested
&& nr_dirty
!= 0)
924 zone_set_flag(zone
, ZONE_CONGESTED
);
926 free_page_list(&free_pages
);
928 list_splice(&ret_pages
, page_list
);
929 count_vm_events(PGACTIVATE
, pgactivate
);
934 * Attempt to remove the specified page from its LRU. Only take this page
935 * if it is of the appropriate PageActive status. Pages which are being
936 * freed elsewhere are also ignored.
938 * page: page to consider
939 * mode: one of the LRU isolation modes defined above
941 * returns 0 on success, -ve errno on failure.
943 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
947 /* Only take pages on the LRU. */
952 * When checking the active state, we need to be sure we are
953 * dealing with comparible boolean values. Take the logical not
956 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
959 if (mode
!= ISOLATE_BOTH
&& page_is_file_cache(page
) != file
)
963 * When this function is being called for lumpy reclaim, we
964 * initially look into all LRU pages, active, inactive and
965 * unevictable; only give shrink_page_list evictable pages.
967 if (PageUnevictable(page
))
972 if (likely(get_page_unless_zero(page
))) {
974 * Be careful not to clear PageLRU until after we're
975 * sure the page is not being freed elsewhere -- the
976 * page release code relies on it.
986 * zone->lru_lock is heavily contended. Some of the functions that
987 * shrink the lists perform better by taking out a batch of pages
988 * and working on them outside the LRU lock.
990 * For pagecache intensive workloads, this function is the hottest
991 * spot in the kernel (apart from copy_*_user functions).
993 * Appropriate locks must be held before calling this function.
995 * @nr_to_scan: The number of pages to look through on the list.
996 * @src: The LRU list to pull pages off.
997 * @dst: The temp list to put pages on to.
998 * @scanned: The number of pages that were scanned.
999 * @order: The caller's attempted allocation order
1000 * @mode: One of the LRU isolation modes
1001 * @file: True [1] if isolating file [!anon] pages
1003 * returns how many pages were moved onto *@dst.
1005 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1006 struct list_head
*src
, struct list_head
*dst
,
1007 unsigned long *scanned
, int order
, int mode
, int file
)
1009 unsigned long nr_taken
= 0;
1010 unsigned long nr_lumpy_taken
= 0;
1011 unsigned long nr_lumpy_dirty
= 0;
1012 unsigned long nr_lumpy_failed
= 0;
1015 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
1018 unsigned long end_pfn
;
1019 unsigned long page_pfn
;
1022 page
= lru_to_page(src
);
1023 prefetchw_prev_lru_page(page
, src
, flags
);
1025 VM_BUG_ON(!PageLRU(page
));
1027 switch (__isolate_lru_page(page
, mode
, file
)) {
1029 list_move(&page
->lru
, dst
);
1030 mem_cgroup_del_lru(page
);
1035 /* else it is being freed elsewhere */
1036 list_move(&page
->lru
, src
);
1037 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1048 * Attempt to take all pages in the order aligned region
1049 * surrounding the tag page. Only take those pages of
1050 * the same active state as that tag page. We may safely
1051 * round the target page pfn down to the requested order
1052 * as the mem_map is guarenteed valid out to MAX_ORDER,
1053 * where that page is in a different zone we will detect
1054 * it from its zone id and abort this block scan.
1056 zone_id
= page_zone_id(page
);
1057 page_pfn
= page_to_pfn(page
);
1058 pfn
= page_pfn
& ~((1 << order
) - 1);
1059 end_pfn
= pfn
+ (1 << order
);
1060 for (; pfn
< end_pfn
; pfn
++) {
1061 struct page
*cursor_page
;
1063 /* The target page is in the block, ignore it. */
1064 if (unlikely(pfn
== page_pfn
))
1067 /* Avoid holes within the zone. */
1068 if (unlikely(!pfn_valid_within(pfn
)))
1071 cursor_page
= pfn_to_page(pfn
);
1073 /* Check that we have not crossed a zone boundary. */
1074 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
1078 * If we don't have enough swap space, reclaiming of
1079 * anon page which don't already have a swap slot is
1082 if (nr_swap_pages
<= 0 && PageAnon(cursor_page
) &&
1083 !PageSwapCache(cursor_page
))
1086 if (__isolate_lru_page(cursor_page
, mode
, file
) == 0) {
1087 list_move(&cursor_page
->lru
, dst
);
1088 mem_cgroup_del_lru(cursor_page
);
1091 if (PageDirty(cursor_page
))
1095 /* the page is freed already. */
1096 if (!page_count(cursor_page
))
1102 /* If we break out of the loop above, lumpy reclaim failed */
1109 trace_mm_vmscan_lru_isolate(order
,
1112 nr_lumpy_taken
, nr_lumpy_dirty
, nr_lumpy_failed
,
1117 static unsigned long isolate_pages_global(unsigned long nr
,
1118 struct list_head
*dst
,
1119 unsigned long *scanned
, int order
,
1120 int mode
, struct zone
*z
,
1121 int active
, int file
)
1128 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
1133 * clear_active_flags() is a helper for shrink_active_list(), clearing
1134 * any active bits from the pages in the list.
1136 static unsigned long clear_active_flags(struct list_head
*page_list
,
1137 unsigned int *count
)
1143 list_for_each_entry(page
, page_list
, lru
) {
1144 lru
= page_lru_base_type(page
);
1145 if (PageActive(page
)) {
1147 ClearPageActive(page
);
1158 * isolate_lru_page - tries to isolate a page from its LRU list
1159 * @page: page to isolate from its LRU list
1161 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1162 * vmstat statistic corresponding to whatever LRU list the page was on.
1164 * Returns 0 if the page was removed from an LRU list.
1165 * Returns -EBUSY if the page was not on an LRU list.
1167 * The returned page will have PageLRU() cleared. If it was found on
1168 * the active list, it will have PageActive set. If it was found on
1169 * the unevictable list, it will have the PageUnevictable bit set. That flag
1170 * may need to be cleared by the caller before letting the page go.
1172 * The vmstat statistic corresponding to the list on which the page was
1173 * found will be decremented.
1176 * (1) Must be called with an elevated refcount on the page. This is a
1177 * fundamentnal difference from isolate_lru_pages (which is called
1178 * without a stable reference).
1179 * (2) the lru_lock must not be held.
1180 * (3) interrupts must be enabled.
1182 int isolate_lru_page(struct page
*page
)
1186 if (PageLRU(page
)) {
1187 struct zone
*zone
= page_zone(page
);
1189 spin_lock_irq(&zone
->lru_lock
);
1190 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1191 int lru
= page_lru(page
);
1195 del_page_from_lru_list(zone
, page
, lru
);
1197 spin_unlock_irq(&zone
->lru_lock
);
1203 * Are there way too many processes in the direct reclaim path already?
1205 static int too_many_isolated(struct zone
*zone
, int file
,
1206 struct scan_control
*sc
)
1208 unsigned long inactive
, isolated
;
1210 if (current_is_kswapd())
1213 if (!scanning_global_lru(sc
))
1217 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1218 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1220 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1221 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1224 return isolated
> inactive
;
1228 * TODO: Try merging with migrations version of putback_lru_pages
1230 static noinline_for_stack
void
1231 putback_lru_pages(struct zone
*zone
, struct scan_control
*sc
,
1232 unsigned long nr_anon
, unsigned long nr_file
,
1233 struct list_head
*page_list
)
1236 struct pagevec pvec
;
1237 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1239 pagevec_init(&pvec
, 1);
1242 * Put back any unfreeable pages.
1244 spin_lock(&zone
->lru_lock
);
1245 while (!list_empty(page_list
)) {
1247 page
= lru_to_page(page_list
);
1248 VM_BUG_ON(PageLRU(page
));
1249 list_del(&page
->lru
);
1250 if (unlikely(!page_evictable(page
, NULL
))) {
1251 spin_unlock_irq(&zone
->lru_lock
);
1252 putback_lru_page(page
);
1253 spin_lock_irq(&zone
->lru_lock
);
1257 lru
= page_lru(page
);
1258 add_page_to_lru_list(zone
, page
, lru
);
1259 if (is_active_lru(lru
)) {
1260 int file
= is_file_lru(lru
);
1261 reclaim_stat
->recent_rotated
[file
]++;
1263 if (!pagevec_add(&pvec
, page
)) {
1264 spin_unlock_irq(&zone
->lru_lock
);
1265 __pagevec_release(&pvec
);
1266 spin_lock_irq(&zone
->lru_lock
);
1269 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, -nr_anon
);
1270 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -nr_file
);
1272 spin_unlock_irq(&zone
->lru_lock
);
1273 pagevec_release(&pvec
);
1276 static noinline_for_stack
void update_isolated_counts(struct zone
*zone
,
1277 struct scan_control
*sc
,
1278 unsigned long *nr_anon
,
1279 unsigned long *nr_file
,
1280 struct list_head
*isolated_list
)
1282 unsigned long nr_active
;
1283 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1284 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1286 nr_active
= clear_active_flags(isolated_list
, count
);
1287 __count_vm_events(PGDEACTIVATE
, nr_active
);
1289 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1290 -count
[LRU_ACTIVE_FILE
]);
1291 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1292 -count
[LRU_INACTIVE_FILE
]);
1293 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1294 -count
[LRU_ACTIVE_ANON
]);
1295 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1296 -count
[LRU_INACTIVE_ANON
]);
1298 *nr_anon
= count
[LRU_ACTIVE_ANON
] + count
[LRU_INACTIVE_ANON
];
1299 *nr_file
= count
[LRU_ACTIVE_FILE
] + count
[LRU_INACTIVE_FILE
];
1300 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, *nr_anon
);
1301 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, *nr_file
);
1303 reclaim_stat
->recent_scanned
[0] += *nr_anon
;
1304 reclaim_stat
->recent_scanned
[1] += *nr_file
;
1308 * Returns true if the caller should wait to clean dirty/writeback pages.
1310 * If we are direct reclaiming for contiguous pages and we do not reclaim
1311 * everything in the list, try again and wait for writeback IO to complete.
1312 * This will stall high-order allocations noticeably. Only do that when really
1313 * need to free the pages under high memory pressure.
1315 static inline bool should_reclaim_stall(unsigned long nr_taken
,
1316 unsigned long nr_freed
,
1318 struct scan_control
*sc
)
1320 int lumpy_stall_priority
;
1322 /* kswapd should not stall on sync IO */
1323 if (current_is_kswapd())
1326 /* Only stall on lumpy reclaim */
1327 if (sc
->lumpy_reclaim_mode
== LUMPY_MODE_NONE
)
1330 /* If we have relaimed everything on the isolated list, no stall */
1331 if (nr_freed
== nr_taken
)
1335 * For high-order allocations, there are two stall thresholds.
1336 * High-cost allocations stall immediately where as lower
1337 * order allocations such as stacks require the scanning
1338 * priority to be much higher before stalling.
1340 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1341 lumpy_stall_priority
= DEF_PRIORITY
;
1343 lumpy_stall_priority
= DEF_PRIORITY
/ 3;
1345 return priority
<= lumpy_stall_priority
;
1349 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1350 * of reclaimed pages
1352 static noinline_for_stack
unsigned long
1353 shrink_inactive_list(unsigned long nr_to_scan
, struct zone
*zone
,
1354 struct scan_control
*sc
, int priority
, int file
)
1356 LIST_HEAD(page_list
);
1357 unsigned long nr_scanned
;
1358 unsigned long nr_reclaimed
= 0;
1359 unsigned long nr_taken
;
1360 unsigned long nr_anon
;
1361 unsigned long nr_file
;
1363 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1364 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1366 /* We are about to die and free our memory. Return now. */
1367 if (fatal_signal_pending(current
))
1368 return SWAP_CLUSTER_MAX
;
1371 set_lumpy_reclaim_mode(priority
, sc
, false);
1373 spin_lock_irq(&zone
->lru_lock
);
1375 if (scanning_global_lru(sc
)) {
1376 nr_taken
= isolate_pages_global(nr_to_scan
,
1377 &page_list
, &nr_scanned
, sc
->order
,
1378 sc
->lumpy_reclaim_mode
== LUMPY_MODE_NONE
?
1379 ISOLATE_INACTIVE
: ISOLATE_BOTH
,
1381 zone
->pages_scanned
+= nr_scanned
;
1382 if (current_is_kswapd())
1383 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
,
1386 __count_zone_vm_events(PGSCAN_DIRECT
, zone
,
1389 nr_taken
= mem_cgroup_isolate_pages(nr_to_scan
,
1390 &page_list
, &nr_scanned
, sc
->order
,
1391 sc
->lumpy_reclaim_mode
== LUMPY_MODE_NONE
?
1392 ISOLATE_INACTIVE
: ISOLATE_BOTH
,
1393 zone
, sc
->mem_cgroup
,
1396 * mem_cgroup_isolate_pages() keeps track of
1397 * scanned pages on its own.
1401 if (nr_taken
== 0) {
1402 spin_unlock_irq(&zone
->lru_lock
);
1406 update_isolated_counts(zone
, sc
, &nr_anon
, &nr_file
, &page_list
);
1408 spin_unlock_irq(&zone
->lru_lock
);
1410 nr_reclaimed
= shrink_page_list(&page_list
, zone
, sc
);
1412 /* Check if we should syncronously wait for writeback */
1413 if (should_reclaim_stall(nr_taken
, nr_reclaimed
, priority
, sc
)) {
1414 set_lumpy_reclaim_mode(priority
, sc
, true);
1415 nr_reclaimed
+= shrink_page_list(&page_list
, zone
, sc
);
1418 local_irq_disable();
1419 if (current_is_kswapd())
1420 __count_vm_events(KSWAPD_STEAL
, nr_reclaimed
);
1421 __count_zone_vm_events(PGSTEAL
, zone
, nr_reclaimed
);
1423 putback_lru_pages(zone
, sc
, nr_anon
, nr_file
, &page_list
);
1425 trace_mm_vmscan_lru_shrink_inactive(zone
->zone_pgdat
->node_id
,
1427 nr_scanned
, nr_reclaimed
,
1429 trace_shrink_flags(file
, sc
->lumpy_reclaim_mode
));
1430 return nr_reclaimed
;
1434 * This moves pages from the active list to the inactive list.
1436 * We move them the other way if the page is referenced by one or more
1437 * processes, from rmap.
1439 * If the pages are mostly unmapped, the processing is fast and it is
1440 * appropriate to hold zone->lru_lock across the whole operation. But if
1441 * the pages are mapped, the processing is slow (page_referenced()) so we
1442 * should drop zone->lru_lock around each page. It's impossible to balance
1443 * this, so instead we remove the pages from the LRU while processing them.
1444 * It is safe to rely on PG_active against the non-LRU pages in here because
1445 * nobody will play with that bit on a non-LRU page.
1447 * The downside is that we have to touch page->_count against each page.
1448 * But we had to alter page->flags anyway.
1451 static void move_active_pages_to_lru(struct zone
*zone
,
1452 struct list_head
*list
,
1455 unsigned long pgmoved
= 0;
1456 struct pagevec pvec
;
1459 pagevec_init(&pvec
, 1);
1461 while (!list_empty(list
)) {
1462 page
= lru_to_page(list
);
1464 VM_BUG_ON(PageLRU(page
));
1467 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1468 mem_cgroup_add_lru_list(page
, lru
);
1471 if (!pagevec_add(&pvec
, page
) || list_empty(list
)) {
1472 spin_unlock_irq(&zone
->lru_lock
);
1473 if (buffer_heads_over_limit
)
1474 pagevec_strip(&pvec
);
1475 __pagevec_release(&pvec
);
1476 spin_lock_irq(&zone
->lru_lock
);
1479 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1480 if (!is_active_lru(lru
))
1481 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1484 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1485 struct scan_control
*sc
, int priority
, int file
)
1487 unsigned long nr_taken
;
1488 unsigned long pgscanned
;
1489 unsigned long vm_flags
;
1490 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1491 LIST_HEAD(l_active
);
1492 LIST_HEAD(l_inactive
);
1494 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1495 unsigned long nr_rotated
= 0;
1498 spin_lock_irq(&zone
->lru_lock
);
1499 if (scanning_global_lru(sc
)) {
1500 nr_taken
= isolate_pages_global(nr_pages
, &l_hold
,
1501 &pgscanned
, sc
->order
,
1502 ISOLATE_ACTIVE
, zone
,
1504 zone
->pages_scanned
+= pgscanned
;
1506 nr_taken
= mem_cgroup_isolate_pages(nr_pages
, &l_hold
,
1507 &pgscanned
, sc
->order
,
1508 ISOLATE_ACTIVE
, zone
,
1509 sc
->mem_cgroup
, 1, file
);
1511 * mem_cgroup_isolate_pages() keeps track of
1512 * scanned pages on its own.
1516 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1518 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1520 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -nr_taken
);
1522 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -nr_taken
);
1523 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1524 spin_unlock_irq(&zone
->lru_lock
);
1526 while (!list_empty(&l_hold
)) {
1528 page
= lru_to_page(&l_hold
);
1529 list_del(&page
->lru
);
1531 if (unlikely(!page_evictable(page
, NULL
))) {
1532 putback_lru_page(page
);
1536 if (page_referenced(page
, 0, sc
->mem_cgroup
, &vm_flags
)) {
1539 * Identify referenced, file-backed active pages and
1540 * give them one more trip around the active list. So
1541 * that executable code get better chances to stay in
1542 * memory under moderate memory pressure. Anon pages
1543 * are not likely to be evicted by use-once streaming
1544 * IO, plus JVM can create lots of anon VM_EXEC pages,
1545 * so we ignore them here.
1547 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1548 list_add(&page
->lru
, &l_active
);
1553 ClearPageActive(page
); /* we are de-activating */
1554 list_add(&page
->lru
, &l_inactive
);
1558 * Move pages back to the lru list.
1560 spin_lock_irq(&zone
->lru_lock
);
1562 * Count referenced pages from currently used mappings as rotated,
1563 * even though only some of them are actually re-activated. This
1564 * helps balance scan pressure between file and anonymous pages in
1567 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1569 move_active_pages_to_lru(zone
, &l_active
,
1570 LRU_ACTIVE
+ file
* LRU_FILE
);
1571 move_active_pages_to_lru(zone
, &l_inactive
,
1572 LRU_BASE
+ file
* LRU_FILE
);
1573 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1574 spin_unlock_irq(&zone
->lru_lock
);
1578 static int inactive_anon_is_low_global(struct zone
*zone
)
1580 unsigned long active
, inactive
;
1582 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1583 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1585 if (inactive
* zone
->inactive_ratio
< active
)
1592 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1593 * @zone: zone to check
1594 * @sc: scan control of this context
1596 * Returns true if the zone does not have enough inactive anon pages,
1597 * meaning some active anon pages need to be deactivated.
1599 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1604 * If we don't have swap space, anonymous page deactivation
1607 if (!total_swap_pages
)
1610 if (scanning_global_lru(sc
))
1611 low
= inactive_anon_is_low_global(zone
);
1613 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1617 static inline int inactive_anon_is_low(struct zone
*zone
,
1618 struct scan_control
*sc
)
1624 static int inactive_file_is_low_global(struct zone
*zone
)
1626 unsigned long active
, inactive
;
1628 active
= zone_page_state(zone
, NR_ACTIVE_FILE
);
1629 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1631 return (active
> inactive
);
1635 * inactive_file_is_low - check if file pages need to be deactivated
1636 * @zone: zone to check
1637 * @sc: scan control of this context
1639 * When the system is doing streaming IO, memory pressure here
1640 * ensures that active file pages get deactivated, until more
1641 * than half of the file pages are on the inactive list.
1643 * Once we get to that situation, protect the system's working
1644 * set from being evicted by disabling active file page aging.
1646 * This uses a different ratio than the anonymous pages, because
1647 * the page cache uses a use-once replacement algorithm.
1649 static int inactive_file_is_low(struct zone
*zone
, struct scan_control
*sc
)
1653 if (scanning_global_lru(sc
))
1654 low
= inactive_file_is_low_global(zone
);
1656 low
= mem_cgroup_inactive_file_is_low(sc
->mem_cgroup
);
1660 static int inactive_list_is_low(struct zone
*zone
, struct scan_control
*sc
,
1664 return inactive_file_is_low(zone
, sc
);
1666 return inactive_anon_is_low(zone
, sc
);
1669 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1670 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1672 int file
= is_file_lru(lru
);
1674 if (is_active_lru(lru
)) {
1675 if (inactive_list_is_low(zone
, sc
, file
))
1676 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1680 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1684 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1685 * until we collected @swap_cluster_max pages to scan.
1687 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan
,
1688 unsigned long *nr_saved_scan
)
1692 *nr_saved_scan
+= nr_to_scan
;
1693 nr
= *nr_saved_scan
;
1695 if (nr
>= SWAP_CLUSTER_MAX
)
1704 * Determine how aggressively the anon and file LRU lists should be
1705 * scanned. The relative value of each set of LRU lists is determined
1706 * by looking at the fraction of the pages scanned we did rotate back
1707 * onto the active list instead of evict.
1709 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1711 static void get_scan_count(struct zone
*zone
, struct scan_control
*sc
,
1712 unsigned long *nr
, int priority
)
1714 unsigned long anon
, file
, free
;
1715 unsigned long anon_prio
, file_prio
;
1716 unsigned long ap
, fp
;
1717 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1718 u64 fraction
[2], denominator
;
1722 /* If we have no swap space, do not bother scanning anon pages. */
1723 if (!sc
->may_swap
|| (nr_swap_pages
<= 0)) {
1731 anon
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1732 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1733 file
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1734 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1736 if (scanning_global_lru(sc
)) {
1737 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1738 /* If we have very few page cache pages,
1739 force-scan anon pages. */
1740 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1749 * With swappiness at 100, anonymous and file have the same priority.
1750 * This scanning priority is essentially the inverse of IO cost.
1752 anon_prio
= sc
->swappiness
;
1753 file_prio
= 200 - sc
->swappiness
;
1756 * OK, so we have swap space and a fair amount of page cache
1757 * pages. We use the recently rotated / recently scanned
1758 * ratios to determine how valuable each cache is.
1760 * Because workloads change over time (and to avoid overflow)
1761 * we keep these statistics as a floating average, which ends
1762 * up weighing recent references more than old ones.
1764 * anon in [0], file in [1]
1766 spin_lock_irq(&zone
->lru_lock
);
1767 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1768 reclaim_stat
->recent_scanned
[0] /= 2;
1769 reclaim_stat
->recent_rotated
[0] /= 2;
1772 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1773 reclaim_stat
->recent_scanned
[1] /= 2;
1774 reclaim_stat
->recent_rotated
[1] /= 2;
1778 * The amount of pressure on anon vs file pages is inversely
1779 * proportional to the fraction of recently scanned pages on
1780 * each list that were recently referenced and in active use.
1782 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1783 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1785 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1786 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1787 spin_unlock_irq(&zone
->lru_lock
);
1791 denominator
= ap
+ fp
+ 1;
1793 for_each_evictable_lru(l
) {
1794 int file
= is_file_lru(l
);
1797 scan
= zone_nr_lru_pages(zone
, sc
, l
);
1798 if (priority
|| noswap
) {
1800 scan
= div64_u64(scan
* fraction
[file
], denominator
);
1802 nr
[l
] = nr_scan_try_batch(scan
,
1803 &reclaim_stat
->nr_saved_scan
[l
]);
1808 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1810 static void shrink_zone(int priority
, struct zone
*zone
,
1811 struct scan_control
*sc
)
1813 unsigned long nr
[NR_LRU_LISTS
];
1814 unsigned long nr_to_scan
;
1816 unsigned long nr_reclaimed
= sc
->nr_reclaimed
;
1817 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
1819 get_scan_count(zone
, sc
, nr
, priority
);
1821 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1822 nr
[LRU_INACTIVE_FILE
]) {
1823 for_each_evictable_lru(l
) {
1825 nr_to_scan
= min_t(unsigned long,
1826 nr
[l
], SWAP_CLUSTER_MAX
);
1827 nr
[l
] -= nr_to_scan
;
1829 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1830 zone
, sc
, priority
);
1834 * On large memory systems, scan >> priority can become
1835 * really large. This is fine for the starting priority;
1836 * we want to put equal scanning pressure on each zone.
1837 * However, if the VM has a harder time of freeing pages,
1838 * with multiple processes reclaiming pages, the total
1839 * freeing target can get unreasonably large.
1841 if (nr_reclaimed
>= nr_to_reclaim
&& priority
< DEF_PRIORITY
)
1845 sc
->nr_reclaimed
= nr_reclaimed
;
1848 * Even if we did not try to evict anon pages at all, we want to
1849 * rebalance the anon lru active/inactive ratio.
1851 if (inactive_anon_is_low(zone
, sc
))
1852 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1854 throttle_vm_writeout(sc
->gfp_mask
);
1858 * This is the direct reclaim path, for page-allocating processes. We only
1859 * try to reclaim pages from zones which will satisfy the caller's allocation
1862 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1864 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1866 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1867 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1868 * zone defense algorithm.
1870 * If a zone is deemed to be full of pinned pages then just give it a light
1871 * scan then give up on it.
1873 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
1874 struct scan_control
*sc
)
1879 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1880 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
1881 if (!populated_zone(zone
))
1884 * Take care memory controller reclaiming has small influence
1887 if (scanning_global_lru(sc
)) {
1888 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1890 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1891 continue; /* Let kswapd poll it */
1894 shrink_zone(priority
, zone
, sc
);
1898 static bool zone_reclaimable(struct zone
*zone
)
1900 return zone
->pages_scanned
< zone_reclaimable_pages(zone
) * 6;
1904 * As hibernation is going on, kswapd is freezed so that it can't mark
1905 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1906 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1908 static bool all_unreclaimable(struct zonelist
*zonelist
,
1909 struct scan_control
*sc
)
1913 bool all_unreclaimable
= true;
1915 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1916 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
1917 if (!populated_zone(zone
))
1919 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1921 if (zone_reclaimable(zone
)) {
1922 all_unreclaimable
= false;
1927 return all_unreclaimable
;
1931 * This is the main entry point to direct page reclaim.
1933 * If a full scan of the inactive list fails to free enough memory then we
1934 * are "out of memory" and something needs to be killed.
1936 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1937 * high - the zone may be full of dirty or under-writeback pages, which this
1938 * caller can't do much about. We kick the writeback threads and take explicit
1939 * naps in the hope that some of these pages can be written. But if the
1940 * allocating task holds filesystem locks which prevent writeout this might not
1941 * work, and the allocation attempt will fail.
1943 * returns: 0, if no pages reclaimed
1944 * else, the number of pages reclaimed
1946 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1947 struct scan_control
*sc
)
1950 unsigned long total_scanned
= 0;
1951 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1954 unsigned long writeback_threshold
;
1957 delayacct_freepages_start();
1959 if (scanning_global_lru(sc
))
1960 count_vm_event(ALLOCSTALL
);
1962 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1965 disable_swap_token();
1966 shrink_zones(priority
, zonelist
, sc
);
1968 * Don't shrink slabs when reclaiming memory from
1969 * over limit cgroups
1971 if (scanning_global_lru(sc
)) {
1972 unsigned long lru_pages
= 0;
1973 for_each_zone_zonelist(zone
, z
, zonelist
,
1974 gfp_zone(sc
->gfp_mask
)) {
1975 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1978 lru_pages
+= zone_reclaimable_pages(zone
);
1981 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1982 if (reclaim_state
) {
1983 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1984 reclaim_state
->reclaimed_slab
= 0;
1987 total_scanned
+= sc
->nr_scanned
;
1988 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
1992 * Try to write back as many pages as we just scanned. This
1993 * tends to cause slow streaming writers to write data to the
1994 * disk smoothly, at the dirtying rate, which is nice. But
1995 * that's undesirable in laptop mode, where we *want* lumpy
1996 * writeout. So in laptop mode, write out the whole world.
1998 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
1999 if (total_scanned
> writeback_threshold
) {
2000 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
);
2001 sc
->may_writepage
= 1;
2004 /* Take a nap, wait for some writeback to complete */
2005 if (!sc
->hibernation_mode
&& sc
->nr_scanned
&&
2006 priority
< DEF_PRIORITY
- 2) {
2007 struct zone
*preferred_zone
;
2009 first_zones_zonelist(zonelist
, gfp_zone(sc
->gfp_mask
),
2010 NULL
, &preferred_zone
);
2011 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/10);
2016 delayacct_freepages_end();
2019 if (sc
->nr_reclaimed
)
2020 return sc
->nr_reclaimed
;
2022 /* top priority shrink_zones still had more to do? don't OOM, then */
2023 if (scanning_global_lru(sc
) && !all_unreclaimable(zonelist
, sc
))
2029 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2030 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2032 unsigned long nr_reclaimed
;
2033 struct scan_control sc
= {
2034 .gfp_mask
= gfp_mask
,
2035 .may_writepage
= !laptop_mode
,
2036 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2039 .swappiness
= vm_swappiness
,
2042 .nodemask
= nodemask
,
2045 trace_mm_vmscan_direct_reclaim_begin(order
,
2049 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2051 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2053 return nr_reclaimed
;
2056 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2058 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*mem
,
2059 gfp_t gfp_mask
, bool noswap
,
2060 unsigned int swappiness
,
2063 struct scan_control sc
= {
2064 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2065 .may_writepage
= !laptop_mode
,
2067 .may_swap
= !noswap
,
2068 .swappiness
= swappiness
,
2072 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2073 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2075 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2080 * NOTE: Although we can get the priority field, using it
2081 * here is not a good idea, since it limits the pages we can scan.
2082 * if we don't reclaim here, the shrink_zone from balance_pgdat
2083 * will pick up pages from other mem cgroup's as well. We hack
2084 * the priority and make it zero.
2086 shrink_zone(0, zone
, &sc
);
2088 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2090 return sc
.nr_reclaimed
;
2093 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
2096 unsigned int swappiness
)
2098 struct zonelist
*zonelist
;
2099 unsigned long nr_reclaimed
;
2100 struct scan_control sc
= {
2101 .may_writepage
= !laptop_mode
,
2103 .may_swap
= !noswap
,
2104 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2105 .swappiness
= swappiness
,
2107 .mem_cgroup
= mem_cont
,
2108 .nodemask
= NULL
, /* we don't care the placement */
2111 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2112 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2113 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
2115 trace_mm_vmscan_memcg_reclaim_begin(0,
2119 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2121 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2123 return nr_reclaimed
;
2127 /* is kswapd sleeping prematurely? */
2128 static int sleeping_prematurely(pg_data_t
*pgdat
, int order
, long remaining
)
2132 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2136 /* If after HZ/10, a zone is below the high mark, it's premature */
2137 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
2138 struct zone
*zone
= pgdat
->node_zones
+ i
;
2140 if (!populated_zone(zone
))
2143 if (zone
->all_unreclaimable
)
2146 if (!zone_watermark_ok(zone
, order
, high_wmark_pages(zone
),
2155 * For kswapd, balance_pgdat() will work across all this node's zones until
2156 * they are all at high_wmark_pages(zone).
2158 * Returns the number of pages which were actually freed.
2160 * There is special handling here for zones which are full of pinned pages.
2161 * This can happen if the pages are all mlocked, or if they are all used by
2162 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2163 * What we do is to detect the case where all pages in the zone have been
2164 * scanned twice and there has been zero successful reclaim. Mark the zone as
2165 * dead and from now on, only perform a short scan. Basically we're polling
2166 * the zone for when the problem goes away.
2168 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2169 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2170 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2171 * lower zones regardless of the number of free pages in the lower zones. This
2172 * interoperates with the page allocator fallback scheme to ensure that aging
2173 * of pages is balanced across the zones.
2175 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
2180 unsigned long total_scanned
;
2181 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2182 struct scan_control sc
= {
2183 .gfp_mask
= GFP_KERNEL
,
2187 * kswapd doesn't want to be bailed out while reclaim. because
2188 * we want to put equal scanning pressure on each zone.
2190 .nr_to_reclaim
= ULONG_MAX
,
2191 .swappiness
= vm_swappiness
,
2197 sc
.nr_reclaimed
= 0;
2198 sc
.may_writepage
= !laptop_mode
;
2199 count_vm_event(PAGEOUTRUN
);
2201 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2202 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
2203 unsigned long lru_pages
= 0;
2204 int has_under_min_watermark_zone
= 0;
2206 /* The swap token gets in the way of swapout... */
2208 disable_swap_token();
2213 * Scan in the highmem->dma direction for the highest
2214 * zone which needs scanning
2216 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
2217 struct zone
*zone
= pgdat
->node_zones
+ i
;
2219 if (!populated_zone(zone
))
2222 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2226 * Do some background aging of the anon list, to give
2227 * pages a chance to be referenced before reclaiming.
2229 if (inactive_anon_is_low(zone
, &sc
))
2230 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
2233 if (!zone_watermark_ok(zone
, order
,
2234 high_wmark_pages(zone
), 0, 0)) {
2242 for (i
= 0; i
<= end_zone
; i
++) {
2243 struct zone
*zone
= pgdat
->node_zones
+ i
;
2245 lru_pages
+= zone_reclaimable_pages(zone
);
2249 * Now scan the zone in the dma->highmem direction, stopping
2250 * at the last zone which needs scanning.
2252 * We do this because the page allocator works in the opposite
2253 * direction. This prevents the page allocator from allocating
2254 * pages behind kswapd's direction of progress, which would
2255 * cause too much scanning of the lower zones.
2257 for (i
= 0; i
<= end_zone
; i
++) {
2258 struct zone
*zone
= pgdat
->node_zones
+ i
;
2261 if (!populated_zone(zone
))
2264 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2270 * Call soft limit reclaim before calling shrink_zone.
2271 * For now we ignore the return value
2273 mem_cgroup_soft_limit_reclaim(zone
, order
, sc
.gfp_mask
);
2276 * We put equal pressure on every zone, unless one
2277 * zone has way too many pages free already.
2279 if (!zone_watermark_ok(zone
, order
,
2280 8*high_wmark_pages(zone
), end_zone
, 0))
2281 shrink_zone(priority
, zone
, &sc
);
2282 reclaim_state
->reclaimed_slab
= 0;
2283 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
2285 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2286 total_scanned
+= sc
.nr_scanned
;
2287 if (zone
->all_unreclaimable
)
2289 if (nr_slab
== 0 && !zone_reclaimable(zone
))
2290 zone
->all_unreclaimable
= 1;
2292 * If we've done a decent amount of scanning and
2293 * the reclaim ratio is low, start doing writepage
2294 * even in laptop mode
2296 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
2297 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
2298 sc
.may_writepage
= 1;
2300 if (!zone_watermark_ok(zone
, order
,
2301 high_wmark_pages(zone
), end_zone
, 0)) {
2304 * We are still under min water mark. This
2305 * means that we have a GFP_ATOMIC allocation
2306 * failure risk. Hurry up!
2308 if (!zone_watermark_ok(zone
, order
,
2309 min_wmark_pages(zone
), end_zone
, 0))
2310 has_under_min_watermark_zone
= 1;
2313 * If a zone reaches its high watermark,
2314 * consider it to be no longer congested. It's
2315 * possible there are dirty pages backed by
2316 * congested BDIs but as pressure is relieved,
2317 * spectulatively avoid congestion waits
2319 zone_clear_flag(zone
, ZONE_CONGESTED
);
2324 break; /* kswapd: all done */
2326 * OK, kswapd is getting into trouble. Take a nap, then take
2327 * another pass across the zones.
2329 if (total_scanned
&& (priority
< DEF_PRIORITY
- 2)) {
2330 if (has_under_min_watermark_zone
)
2331 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT
);
2333 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2337 * We do this so kswapd doesn't build up large priorities for
2338 * example when it is freeing in parallel with allocators. It
2339 * matches the direct reclaim path behaviour in terms of impact
2340 * on zone->*_priority.
2342 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
2346 if (!all_zones_ok
) {
2352 * Fragmentation may mean that the system cannot be
2353 * rebalanced for high-order allocations in all zones.
2354 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2355 * it means the zones have been fully scanned and are still
2356 * not balanced. For high-order allocations, there is
2357 * little point trying all over again as kswapd may
2360 * Instead, recheck all watermarks at order-0 as they
2361 * are the most important. If watermarks are ok, kswapd will go
2362 * back to sleep. High-order users can still perform direct
2363 * reclaim if they wish.
2365 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
2366 order
= sc
.order
= 0;
2371 return sc
.nr_reclaimed
;
2375 * The background pageout daemon, started as a kernel thread
2376 * from the init process.
2378 * This basically trickles out pages so that we have _some_
2379 * free memory available even if there is no other activity
2380 * that frees anything up. This is needed for things like routing
2381 * etc, where we otherwise might have all activity going on in
2382 * asynchronous contexts that cannot page things out.
2384 * If there are applications that are active memory-allocators
2385 * (most normal use), this basically shouldn't matter.
2387 static int kswapd(void *p
)
2389 unsigned long order
;
2390 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2391 struct task_struct
*tsk
= current
;
2393 struct reclaim_state reclaim_state
= {
2394 .reclaimed_slab
= 0,
2396 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2398 lockdep_set_current_reclaim_state(GFP_KERNEL
);
2400 if (!cpumask_empty(cpumask
))
2401 set_cpus_allowed_ptr(tsk
, cpumask
);
2402 current
->reclaim_state
= &reclaim_state
;
2405 * Tell the memory management that we're a "memory allocator",
2406 * and that if we need more memory we should get access to it
2407 * regardless (see "__alloc_pages()"). "kswapd" should
2408 * never get caught in the normal page freeing logic.
2410 * (Kswapd normally doesn't need memory anyway, but sometimes
2411 * you need a small amount of memory in order to be able to
2412 * page out something else, and this flag essentially protects
2413 * us from recursively trying to free more memory as we're
2414 * trying to free the first piece of memory in the first place).
2416 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2421 unsigned long new_order
;
2424 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2425 new_order
= pgdat
->kswapd_max_order
;
2426 pgdat
->kswapd_max_order
= 0;
2427 if (order
< new_order
) {
2429 * Don't sleep if someone wants a larger 'order'
2434 if (!freezing(current
) && !kthread_should_stop()) {
2437 /* Try to sleep for a short interval */
2438 if (!sleeping_prematurely(pgdat
, order
, remaining
)) {
2439 remaining
= schedule_timeout(HZ
/10);
2440 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2441 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2445 * After a short sleep, check if it was a
2446 * premature sleep. If not, then go fully
2447 * to sleep until explicitly woken up
2449 if (!sleeping_prematurely(pgdat
, order
, remaining
)) {
2450 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
2454 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
2456 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
2460 order
= pgdat
->kswapd_max_order
;
2462 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2464 ret
= try_to_freeze();
2465 if (kthread_should_stop())
2469 * We can speed up thawing tasks if we don't call balance_pgdat
2470 * after returning from the refrigerator
2473 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
2474 balance_pgdat(pgdat
, order
);
2481 * A zone is low on free memory, so wake its kswapd task to service it.
2483 void wakeup_kswapd(struct zone
*zone
, int order
)
2487 if (!populated_zone(zone
))
2490 pgdat
= zone
->zone_pgdat
;
2491 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
), 0, 0))
2493 if (pgdat
->kswapd_max_order
< order
)
2494 pgdat
->kswapd_max_order
= order
;
2495 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
2496 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2498 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2500 wake_up_interruptible(&pgdat
->kswapd_wait
);
2504 * The reclaimable count would be mostly accurate.
2505 * The less reclaimable pages may be
2506 * - mlocked pages, which will be moved to unevictable list when encountered
2507 * - mapped pages, which may require several travels to be reclaimed
2508 * - dirty pages, which is not "instantly" reclaimable
2510 unsigned long global_reclaimable_pages(void)
2514 nr
= global_page_state(NR_ACTIVE_FILE
) +
2515 global_page_state(NR_INACTIVE_FILE
);
2517 if (nr_swap_pages
> 0)
2518 nr
+= global_page_state(NR_ACTIVE_ANON
) +
2519 global_page_state(NR_INACTIVE_ANON
);
2524 unsigned long zone_reclaimable_pages(struct zone
*zone
)
2528 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
2529 zone_page_state(zone
, NR_INACTIVE_FILE
);
2531 if (nr_swap_pages
> 0)
2532 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
2533 zone_page_state(zone
, NR_INACTIVE_ANON
);
2538 #ifdef CONFIG_HIBERNATION
2540 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2543 * Rather than trying to age LRUs the aim is to preserve the overall
2544 * LRU order by reclaiming preferentially
2545 * inactive > active > active referenced > active mapped
2547 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
2549 struct reclaim_state reclaim_state
;
2550 struct scan_control sc
= {
2551 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
2555 .nr_to_reclaim
= nr_to_reclaim
,
2556 .hibernation_mode
= 1,
2557 .swappiness
= vm_swappiness
,
2560 struct zonelist
* zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
2561 struct task_struct
*p
= current
;
2562 unsigned long nr_reclaimed
;
2564 p
->flags
|= PF_MEMALLOC
;
2565 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
2566 reclaim_state
.reclaimed_slab
= 0;
2567 p
->reclaim_state
= &reclaim_state
;
2569 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2571 p
->reclaim_state
= NULL
;
2572 lockdep_clear_current_reclaim_state();
2573 p
->flags
&= ~PF_MEMALLOC
;
2575 return nr_reclaimed
;
2577 #endif /* CONFIG_HIBERNATION */
2579 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2580 not required for correctness. So if the last cpu in a node goes
2581 away, we get changed to run anywhere: as the first one comes back,
2582 restore their cpu bindings. */
2583 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2584 unsigned long action
, void *hcpu
)
2588 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2589 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2590 pg_data_t
*pgdat
= NODE_DATA(nid
);
2591 const struct cpumask
*mask
;
2593 mask
= cpumask_of_node(pgdat
->node_id
);
2595 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2596 /* One of our CPUs online: restore mask */
2597 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2604 * This kswapd start function will be called by init and node-hot-add.
2605 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2607 int kswapd_run(int nid
)
2609 pg_data_t
*pgdat
= NODE_DATA(nid
);
2615 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2616 if (IS_ERR(pgdat
->kswapd
)) {
2617 /* failure at boot is fatal */
2618 BUG_ON(system_state
== SYSTEM_BOOTING
);
2619 printk("Failed to start kswapd on node %d\n",nid
);
2626 * Called by memory hotplug when all memory in a node is offlined.
2628 void kswapd_stop(int nid
)
2630 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
2633 kthread_stop(kswapd
);
2636 static int __init
kswapd_init(void)
2641 for_each_node_state(nid
, N_HIGH_MEMORY
)
2643 hotcpu_notifier(cpu_callback
, 0);
2647 module_init(kswapd_init
)
2653 * If non-zero call zone_reclaim when the number of free pages falls below
2656 int zone_reclaim_mode __read_mostly
;
2658 #define RECLAIM_OFF 0
2659 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2660 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2661 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2664 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2665 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2668 #define ZONE_RECLAIM_PRIORITY 4
2671 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2674 int sysctl_min_unmapped_ratio
= 1;
2677 * If the number of slab pages in a zone grows beyond this percentage then
2678 * slab reclaim needs to occur.
2680 int sysctl_min_slab_ratio
= 5;
2682 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
2684 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
2685 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
2686 zone_page_state(zone
, NR_ACTIVE_FILE
);
2689 * It's possible for there to be more file mapped pages than
2690 * accounted for by the pages on the file LRU lists because
2691 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2693 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
2696 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2697 static long zone_pagecache_reclaimable(struct zone
*zone
)
2699 long nr_pagecache_reclaimable
;
2703 * If RECLAIM_SWAP is set, then all file pages are considered
2704 * potentially reclaimable. Otherwise, we have to worry about
2705 * pages like swapcache and zone_unmapped_file_pages() provides
2708 if (zone_reclaim_mode
& RECLAIM_SWAP
)
2709 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
2711 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
2713 /* If we can't clean pages, remove dirty pages from consideration */
2714 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
2715 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
2717 /* Watch for any possible underflows due to delta */
2718 if (unlikely(delta
> nr_pagecache_reclaimable
))
2719 delta
= nr_pagecache_reclaimable
;
2721 return nr_pagecache_reclaimable
- delta
;
2725 * Try to free up some pages from this zone through reclaim.
2727 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2729 /* Minimum pages needed in order to stay on node */
2730 const unsigned long nr_pages
= 1 << order
;
2731 struct task_struct
*p
= current
;
2732 struct reclaim_state reclaim_state
;
2734 struct scan_control sc
= {
2735 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2736 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2738 .nr_to_reclaim
= max_t(unsigned long, nr_pages
,
2740 .gfp_mask
= gfp_mask
,
2741 .swappiness
= vm_swappiness
,
2744 unsigned long nr_slab_pages0
, nr_slab_pages1
;
2748 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2749 * and we also need to be able to write out pages for RECLAIM_WRITE
2752 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2753 lockdep_set_current_reclaim_state(gfp_mask
);
2754 reclaim_state
.reclaimed_slab
= 0;
2755 p
->reclaim_state
= &reclaim_state
;
2757 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
2759 * Free memory by calling shrink zone with increasing
2760 * priorities until we have enough memory freed.
2762 priority
= ZONE_RECLAIM_PRIORITY
;
2764 shrink_zone(priority
, zone
, &sc
);
2766 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2769 nr_slab_pages0
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2770 if (nr_slab_pages0
> zone
->min_slab_pages
) {
2772 * shrink_slab() does not currently allow us to determine how
2773 * many pages were freed in this zone. So we take the current
2774 * number of slab pages and shake the slab until it is reduced
2775 * by the same nr_pages that we used for reclaiming unmapped
2778 * Note that shrink_slab will free memory on all zones and may
2782 unsigned long lru_pages
= zone_reclaimable_pages(zone
);
2784 /* No reclaimable slab or very low memory pressure */
2785 if (!shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
))
2788 /* Freed enough memory */
2789 nr_slab_pages1
= zone_page_state(zone
,
2790 NR_SLAB_RECLAIMABLE
);
2791 if (nr_slab_pages1
+ nr_pages
<= nr_slab_pages0
)
2796 * Update nr_reclaimed by the number of slab pages we
2797 * reclaimed from this zone.
2799 nr_slab_pages1
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2800 if (nr_slab_pages1
< nr_slab_pages0
)
2801 sc
.nr_reclaimed
+= nr_slab_pages0
- nr_slab_pages1
;
2804 p
->reclaim_state
= NULL
;
2805 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2806 lockdep_clear_current_reclaim_state();
2807 return sc
.nr_reclaimed
>= nr_pages
;
2810 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2816 * Zone reclaim reclaims unmapped file backed pages and
2817 * slab pages if we are over the defined limits.
2819 * A small portion of unmapped file backed pages is needed for
2820 * file I/O otherwise pages read by file I/O will be immediately
2821 * thrown out if the zone is overallocated. So we do not reclaim
2822 * if less than a specified percentage of the zone is used by
2823 * unmapped file backed pages.
2825 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
2826 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
2827 return ZONE_RECLAIM_FULL
;
2829 if (zone
->all_unreclaimable
)
2830 return ZONE_RECLAIM_FULL
;
2833 * Do not scan if the allocation should not be delayed.
2835 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2836 return ZONE_RECLAIM_NOSCAN
;
2839 * Only run zone reclaim on the local zone or on zones that do not
2840 * have associated processors. This will favor the local processor
2841 * over remote processors and spread off node memory allocations
2842 * as wide as possible.
2844 node_id
= zone_to_nid(zone
);
2845 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2846 return ZONE_RECLAIM_NOSCAN
;
2848 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2849 return ZONE_RECLAIM_NOSCAN
;
2851 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2852 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2855 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
2862 * page_evictable - test whether a page is evictable
2863 * @page: the page to test
2864 * @vma: the VMA in which the page is or will be mapped, may be NULL
2866 * Test whether page is evictable--i.e., should be placed on active/inactive
2867 * lists vs unevictable list. The vma argument is !NULL when called from the
2868 * fault path to determine how to instantate a new page.
2870 * Reasons page might not be evictable:
2871 * (1) page's mapping marked unevictable
2872 * (2) page is part of an mlocked VMA
2875 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2878 if (mapping_unevictable(page_mapping(page
)))
2881 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2888 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2889 * @page: page to check evictability and move to appropriate lru list
2890 * @zone: zone page is in
2892 * Checks a page for evictability and moves the page to the appropriate
2895 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2896 * have PageUnevictable set.
2898 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2900 VM_BUG_ON(PageActive(page
));
2903 ClearPageUnevictable(page
);
2904 if (page_evictable(page
, NULL
)) {
2905 enum lru_list l
= page_lru_base_type(page
);
2907 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2908 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2909 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
2910 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2911 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2914 * rotate unevictable list
2916 SetPageUnevictable(page
);
2917 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2918 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
2919 if (page_evictable(page
, NULL
))
2925 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2926 * @mapping: struct address_space to scan for evictable pages
2928 * Scan all pages in mapping. Check unevictable pages for
2929 * evictability and move them to the appropriate zone lru list.
2931 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2934 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2937 struct pagevec pvec
;
2939 if (mapping
->nrpages
== 0)
2942 pagevec_init(&pvec
, 0);
2943 while (next
< end
&&
2944 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2950 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2951 struct page
*page
= pvec
.pages
[i
];
2952 pgoff_t page_index
= page
->index
;
2953 struct zone
*pagezone
= page_zone(page
);
2956 if (page_index
> next
)
2960 if (pagezone
!= zone
) {
2962 spin_unlock_irq(&zone
->lru_lock
);
2964 spin_lock_irq(&zone
->lru_lock
);
2967 if (PageLRU(page
) && PageUnevictable(page
))
2968 check_move_unevictable_page(page
, zone
);
2971 spin_unlock_irq(&zone
->lru_lock
);
2972 pagevec_release(&pvec
);
2974 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2980 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2981 * @zone - zone of which to scan the unevictable list
2983 * Scan @zone's unevictable LRU lists to check for pages that have become
2984 * evictable. Move those that have to @zone's inactive list where they
2985 * become candidates for reclaim, unless shrink_inactive_zone() decides
2986 * to reactivate them. Pages that are still unevictable are rotated
2987 * back onto @zone's unevictable list.
2989 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2990 static void scan_zone_unevictable_pages(struct zone
*zone
)
2992 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2994 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2996 while (nr_to_scan
> 0) {
2997 unsigned long batch_size
= min(nr_to_scan
,
2998 SCAN_UNEVICTABLE_BATCH_SIZE
);
3000 spin_lock_irq(&zone
->lru_lock
);
3001 for (scan
= 0; scan
< batch_size
; scan
++) {
3002 struct page
*page
= lru_to_page(l_unevictable
);
3004 if (!trylock_page(page
))
3007 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
3009 if (likely(PageLRU(page
) && PageUnevictable(page
)))
3010 check_move_unevictable_page(page
, zone
);
3014 spin_unlock_irq(&zone
->lru_lock
);
3016 nr_to_scan
-= batch_size
;
3022 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3024 * A really big hammer: scan all zones' unevictable LRU lists to check for
3025 * pages that have become evictable. Move those back to the zones'
3026 * inactive list where they become candidates for reclaim.
3027 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3028 * and we add swap to the system. As such, it runs in the context of a task
3029 * that has possibly/probably made some previously unevictable pages
3032 static void scan_all_zones_unevictable_pages(void)
3036 for_each_zone(zone
) {
3037 scan_zone_unevictable_pages(zone
);
3042 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3043 * all nodes' unevictable lists for evictable pages
3045 unsigned long scan_unevictable_pages
;
3047 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
3048 void __user
*buffer
,
3049 size_t *length
, loff_t
*ppos
)
3051 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3053 if (write
&& *(unsigned long *)table
->data
)
3054 scan_all_zones_unevictable_pages();
3056 scan_unevictable_pages
= 0;
3062 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3063 * a specified node's per zone unevictable lists for evictable pages.
3066 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
3067 struct sysdev_attribute
*attr
,
3070 return sprintf(buf
, "0\n"); /* always zero; should fit... */
3073 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
3074 struct sysdev_attribute
*attr
,
3075 const char *buf
, size_t count
)
3077 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
3080 unsigned long req
= strict_strtoul(buf
, 10, &res
);
3083 return 1; /* zero is no-op */
3085 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
3086 if (!populated_zone(zone
))
3088 scan_zone_unevictable_pages(zone
);
3094 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
3095 read_scan_unevictable_node
,
3096 write_scan_unevictable_node
);
3098 int scan_unevictable_register_node(struct node
*node
)
3100 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
3103 void scan_unevictable_unregister_node(struct node
*node
)
3105 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);