1 /* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 * This file is part of the SCTP kernel implementation
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, write to
20 * the Free Software Foundation, 59 Temple Place - Suite 330,
21 * Boston, MA 02111-1307, USA.
23 * Please send any bug reports or fixes you make to the
25 * lksctp developers <lksctp-developers@lists.sourceforge.net>
27 * Or submit a bug report through the following website:
28 * http://www.sf.net/projects/lksctp
30 * Written or modified by:
31 * Vlad Yasevich <vladislav.yasevich@hp.com>
33 * Any bugs reported given to us we will try to fix... any fixes shared will
34 * be incorporated into the next SCTP release.
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/crypto.h>
40 #include <linux/scatterlist.h>
41 #include <net/sctp/sctp.h>
42 #include <net/sctp/auth.h>
44 static struct sctp_hmac sctp_hmac_list
[SCTP_AUTH_NUM_HMACS
] = {
46 /* id 0 is reserved. as all 0 */
47 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_0
,
50 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA1
,
51 .hmac_name
="hmac(sha1)",
52 .hmac_len
= SCTP_SHA1_SIG_SIZE
,
55 /* id 2 is reserved as well */
56 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_2
,
58 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
60 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA256
,
61 .hmac_name
="hmac(sha256)",
62 .hmac_len
= SCTP_SHA256_SIG_SIZE
,
68 void sctp_auth_key_put(struct sctp_auth_bytes
*key
)
73 if (atomic_dec_and_test(&key
->refcnt
)) {
75 SCTP_DBG_OBJCNT_DEC(keys
);
79 /* Create a new key structure of a given length */
80 static struct sctp_auth_bytes
*sctp_auth_create_key(__u32 key_len
, gfp_t gfp
)
82 struct sctp_auth_bytes
*key
;
84 /* Verify that we are not going to overflow INT_MAX */
85 if ((INT_MAX
- key_len
) < sizeof(struct sctp_auth_bytes
))
88 /* Allocate the shared key */
89 key
= kmalloc(sizeof(struct sctp_auth_bytes
) + key_len
, gfp
);
94 atomic_set(&key
->refcnt
, 1);
95 SCTP_DBG_OBJCNT_INC(keys
);
100 /* Create a new shared key container with a give key id */
101 struct sctp_shared_key
*sctp_auth_shkey_create(__u16 key_id
, gfp_t gfp
)
103 struct sctp_shared_key
*new;
105 /* Allocate the shared key container */
106 new = kzalloc(sizeof(struct sctp_shared_key
), gfp
);
110 INIT_LIST_HEAD(&new->key_list
);
111 new->key_id
= key_id
;
116 /* Free the shared key structure */
117 static void sctp_auth_shkey_free(struct sctp_shared_key
*sh_key
)
119 BUG_ON(!list_empty(&sh_key
->key_list
));
120 sctp_auth_key_put(sh_key
->key
);
125 /* Destroy the entire key list. This is done during the
126 * associon and endpoint free process.
128 void sctp_auth_destroy_keys(struct list_head
*keys
)
130 struct sctp_shared_key
*ep_key
;
131 struct sctp_shared_key
*tmp
;
133 if (list_empty(keys
))
136 key_for_each_safe(ep_key
, tmp
, keys
) {
137 list_del_init(&ep_key
->key_list
);
138 sctp_auth_shkey_free(ep_key
);
142 /* Compare two byte vectors as numbers. Return values
144 * 0 - vectors are equal
145 * < 0 - vector 1 is smaller than vector2
146 * > 0 - vector 1 is greater than vector2
149 * This is performed by selecting the numerically smaller key vector...
150 * If the key vectors are equal as numbers but differ in length ...
151 * the shorter vector is considered smaller
153 * Examples (with small values):
154 * 000123456789 > 123456789 (first number is longer)
155 * 000123456789 < 234567891 (second number is larger numerically)
156 * 123456789 > 2345678 (first number is both larger & longer)
158 static int sctp_auth_compare_vectors(struct sctp_auth_bytes
*vector1
,
159 struct sctp_auth_bytes
*vector2
)
165 diff
= vector1
->len
- vector2
->len
;
167 longer
= (diff
> 0) ? vector1
->data
: vector2
->data
;
169 /* Check to see if the longer number is
170 * lead-zero padded. If it is not, it
171 * is automatically larger numerically.
173 for (i
= 0; i
< abs(diff
); i
++ ) {
179 /* lengths are the same, compare numbers */
180 return memcmp(vector1
->data
, vector2
->data
, vector1
->len
);
184 * Create a key vector as described in SCTP-AUTH, Section 6.1
185 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
186 * parameter sent by each endpoint are concatenated as byte vectors.
187 * These parameters include the parameter type, parameter length, and
188 * the parameter value, but padding is omitted; all padding MUST be
189 * removed from this concatenation before proceeding with further
190 * computation of keys. Parameters which were not sent are simply
191 * omitted from the concatenation process. The resulting two vectors
192 * are called the two key vectors.
194 static struct sctp_auth_bytes
*sctp_auth_make_key_vector(
195 sctp_random_param_t
*random
,
196 sctp_chunks_param_t
*chunks
,
197 sctp_hmac_algo_param_t
*hmacs
,
200 struct sctp_auth_bytes
*new;
204 len
= ntohs(random
->param_hdr
.length
) + ntohs(hmacs
->param_hdr
.length
);
206 len
+= ntohs(chunks
->param_hdr
.length
);
208 new = kmalloc(sizeof(struct sctp_auth_bytes
) + len
, gfp
);
214 memcpy(new->data
, random
, ntohs(random
->param_hdr
.length
));
215 offset
+= ntohs(random
->param_hdr
.length
);
218 memcpy(new->data
+ offset
, chunks
,
219 ntohs(chunks
->param_hdr
.length
));
220 offset
+= ntohs(chunks
->param_hdr
.length
);
223 memcpy(new->data
+ offset
, hmacs
, ntohs(hmacs
->param_hdr
.length
));
229 /* Make a key vector based on our local parameters */
230 static struct sctp_auth_bytes
*sctp_auth_make_local_vector(
231 const struct sctp_association
*asoc
,
234 return sctp_auth_make_key_vector(
235 (sctp_random_param_t
*)asoc
->c
.auth_random
,
236 (sctp_chunks_param_t
*)asoc
->c
.auth_chunks
,
237 (sctp_hmac_algo_param_t
*)asoc
->c
.auth_hmacs
,
241 /* Make a key vector based on peer's parameters */
242 static struct sctp_auth_bytes
*sctp_auth_make_peer_vector(
243 const struct sctp_association
*asoc
,
246 return sctp_auth_make_key_vector(asoc
->peer
.peer_random
,
247 asoc
->peer
.peer_chunks
,
248 asoc
->peer
.peer_hmacs
,
253 /* Set the value of the association shared key base on the parameters
254 * given. The algorithm is:
255 * From the endpoint pair shared keys and the key vectors the
256 * association shared keys are computed. This is performed by selecting
257 * the numerically smaller key vector and concatenating it to the
258 * endpoint pair shared key, and then concatenating the numerically
259 * larger key vector to that. The result of the concatenation is the
260 * association shared key.
262 static struct sctp_auth_bytes
*sctp_auth_asoc_set_secret(
263 struct sctp_shared_key
*ep_key
,
264 struct sctp_auth_bytes
*first_vector
,
265 struct sctp_auth_bytes
*last_vector
,
268 struct sctp_auth_bytes
*secret
;
272 auth_len
= first_vector
->len
+ last_vector
->len
;
274 auth_len
+= ep_key
->key
->len
;
276 secret
= sctp_auth_create_key(auth_len
, gfp
);
281 memcpy(secret
->data
, ep_key
->key
->data
, ep_key
->key
->len
);
282 offset
+= ep_key
->key
->len
;
285 memcpy(secret
->data
+ offset
, first_vector
->data
, first_vector
->len
);
286 offset
+= first_vector
->len
;
288 memcpy(secret
->data
+ offset
, last_vector
->data
, last_vector
->len
);
293 /* Create an association shared key. Follow the algorithm
294 * described in SCTP-AUTH, Section 6.1
296 static struct sctp_auth_bytes
*sctp_auth_asoc_create_secret(
297 const struct sctp_association
*asoc
,
298 struct sctp_shared_key
*ep_key
,
301 struct sctp_auth_bytes
*local_key_vector
;
302 struct sctp_auth_bytes
*peer_key_vector
;
303 struct sctp_auth_bytes
*first_vector
,
305 struct sctp_auth_bytes
*secret
= NULL
;
309 /* Now we need to build the key vectors
310 * SCTP-AUTH , Section 6.1
311 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
312 * parameter sent by each endpoint are concatenated as byte vectors.
313 * These parameters include the parameter type, parameter length, and
314 * the parameter value, but padding is omitted; all padding MUST be
315 * removed from this concatenation before proceeding with further
316 * computation of keys. Parameters which were not sent are simply
317 * omitted from the concatenation process. The resulting two vectors
318 * are called the two key vectors.
321 local_key_vector
= sctp_auth_make_local_vector(asoc
, gfp
);
322 peer_key_vector
= sctp_auth_make_peer_vector(asoc
, gfp
);
324 if (!peer_key_vector
|| !local_key_vector
)
327 /* Figure out the order in which the key_vectors will be
328 * added to the endpoint shared key.
329 * SCTP-AUTH, Section 6.1:
330 * This is performed by selecting the numerically smaller key
331 * vector and concatenating it to the endpoint pair shared
332 * key, and then concatenating the numerically larger key
333 * vector to that. If the key vectors are equal as numbers
334 * but differ in length, then the concatenation order is the
335 * endpoint shared key, followed by the shorter key vector,
336 * followed by the longer key vector. Otherwise, the key
337 * vectors are identical, and may be concatenated to the
338 * endpoint pair key in any order.
340 cmp
= sctp_auth_compare_vectors(local_key_vector
,
343 first_vector
= local_key_vector
;
344 last_vector
= peer_key_vector
;
346 first_vector
= peer_key_vector
;
347 last_vector
= local_key_vector
;
350 secret
= sctp_auth_asoc_set_secret(ep_key
, first_vector
, last_vector
,
353 kfree(local_key_vector
);
354 kfree(peer_key_vector
);
360 * Populate the association overlay list with the list
363 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint
*ep
,
364 struct sctp_association
*asoc
,
367 struct sctp_shared_key
*sh_key
;
368 struct sctp_shared_key
*new;
370 BUG_ON(!list_empty(&asoc
->endpoint_shared_keys
));
372 key_for_each(sh_key
, &ep
->endpoint_shared_keys
) {
373 new = sctp_auth_shkey_create(sh_key
->key_id
, gfp
);
377 new->key
= sh_key
->key
;
378 sctp_auth_key_hold(new->key
);
379 list_add(&new->key_list
, &asoc
->endpoint_shared_keys
);
385 sctp_auth_destroy_keys(&asoc
->endpoint_shared_keys
);
390 /* Public interface to creat the association shared key.
391 * See code above for the algorithm.
393 int sctp_auth_asoc_init_active_key(struct sctp_association
*asoc
, gfp_t gfp
)
395 struct sctp_auth_bytes
*secret
;
396 struct sctp_shared_key
*ep_key
;
398 /* If we don't support AUTH, or peer is not capable
399 * we don't need to do anything.
401 if (!sctp_auth_enable
|| !asoc
->peer
.auth_capable
)
404 /* If the key_id is non-zero and we couldn't find an
405 * endpoint pair shared key, we can't compute the
407 * For key_id 0, endpoint pair shared key is a NULL key.
409 ep_key
= sctp_auth_get_shkey(asoc
, asoc
->active_key_id
);
412 secret
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
416 sctp_auth_key_put(asoc
->asoc_shared_key
);
417 asoc
->asoc_shared_key
= secret
;
423 /* Find the endpoint pair shared key based on the key_id */
424 struct sctp_shared_key
*sctp_auth_get_shkey(
425 const struct sctp_association
*asoc
,
428 struct sctp_shared_key
*key
;
430 /* First search associations set of endpoint pair shared keys */
431 key_for_each(key
, &asoc
->endpoint_shared_keys
) {
432 if (key
->key_id
== key_id
)
440 * Initialize all the possible digest transforms that we can use. Right now
441 * now, the supported digests are SHA1 and SHA256. We do this here once
442 * because of the restrictiong that transforms may only be allocated in
443 * user context. This forces us to pre-allocated all possible transforms
444 * at the endpoint init time.
446 int sctp_auth_init_hmacs(struct sctp_endpoint
*ep
, gfp_t gfp
)
448 struct crypto_hash
*tfm
= NULL
;
451 /* if the transforms are already allocted, we are done */
452 if (!sctp_auth_enable
) {
453 ep
->auth_hmacs
= NULL
;
460 /* Allocated the array of pointers to transorms */
461 ep
->auth_hmacs
= kzalloc(
462 sizeof(struct crypto_hash
*) * SCTP_AUTH_NUM_HMACS
,
467 for (id
= 0; id
< SCTP_AUTH_NUM_HMACS
; id
++) {
469 /* See is we support the id. Supported IDs have name and
470 * length fields set, so that we can allocated and use
471 * them. We can safely just check for name, for without the
472 * name, we can't allocate the TFM.
474 if (!sctp_hmac_list
[id
].hmac_name
)
477 /* If this TFM has been allocated, we are all set */
478 if (ep
->auth_hmacs
[id
])
481 /* Allocate the ID */
482 tfm
= crypto_alloc_hash(sctp_hmac_list
[id
].hmac_name
, 0,
487 ep
->auth_hmacs
[id
] = tfm
;
493 /* Clean up any successful allocations */
494 sctp_auth_destroy_hmacs(ep
->auth_hmacs
);
498 /* Destroy the hmac tfm array */
499 void sctp_auth_destroy_hmacs(struct crypto_hash
*auth_hmacs
[])
506 for (i
= 0; i
< SCTP_AUTH_NUM_HMACS
; i
++)
509 crypto_free_hash(auth_hmacs
[i
]);
515 struct sctp_hmac
*sctp_auth_get_hmac(__u16 hmac_id
)
517 return &sctp_hmac_list
[hmac_id
];
520 /* Get an hmac description information that we can use to build
523 struct sctp_hmac
*sctp_auth_asoc_get_hmac(const struct sctp_association
*asoc
)
525 struct sctp_hmac_algo_param
*hmacs
;
530 /* If we have a default entry, use it */
531 if (asoc
->default_hmac_id
)
532 return &sctp_hmac_list
[asoc
->default_hmac_id
];
534 /* Since we do not have a default entry, find the first entry
535 * we support and return that. Do not cache that id.
537 hmacs
= asoc
->peer
.peer_hmacs
;
541 n_elt
= (ntohs(hmacs
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
)) >> 1;
542 for (i
= 0; i
< n_elt
; i
++) {
543 id
= ntohs(hmacs
->hmac_ids
[i
]);
545 /* Check the id is in the supported range */
546 if (id
> SCTP_AUTH_HMAC_ID_MAX
) {
551 /* See is we support the id. Supported IDs have name and
552 * length fields set, so that we can allocated and use
553 * them. We can safely just check for name, for without the
554 * name, we can't allocate the TFM.
556 if (!sctp_hmac_list
[id
].hmac_name
) {
567 return &sctp_hmac_list
[id
];
570 static int __sctp_auth_find_hmacid(__be16
*hmacs
, int n_elts
, __be16 hmac_id
)
575 for (i
= 0; i
< n_elts
; i
++) {
576 if (hmac_id
== hmacs
[i
]) {
585 /* See if the HMAC_ID is one that we claim as supported */
586 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association
*asoc
,
589 struct sctp_hmac_algo_param
*hmacs
;
595 hmacs
= (struct sctp_hmac_algo_param
*)asoc
->c
.auth_hmacs
;
596 n_elt
= (ntohs(hmacs
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
)) >> 1;
598 return __sctp_auth_find_hmacid(hmacs
->hmac_ids
, n_elt
, hmac_id
);
602 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
604 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
605 * algorithm it supports.
607 void sctp_auth_asoc_set_default_hmac(struct sctp_association
*asoc
,
608 struct sctp_hmac_algo_param
*hmacs
)
610 struct sctp_endpoint
*ep
;
615 /* if the default id is already set, use it */
616 if (asoc
->default_hmac_id
)
619 n_params
= (ntohs(hmacs
->param_hdr
.length
)
620 - sizeof(sctp_paramhdr_t
)) >> 1;
622 for (i
= 0; i
< n_params
; i
++) {
623 id
= ntohs(hmacs
->hmac_ids
[i
]);
625 /* Check the id is in the supported range */
626 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
629 /* If this TFM has been allocated, use this id */
630 if (ep
->auth_hmacs
[id
]) {
631 asoc
->default_hmac_id
= id
;
638 /* Check to see if the given chunk is supposed to be authenticated */
639 static int __sctp_auth_cid(sctp_cid_t chunk
, struct sctp_chunks_param
*param
)
645 if (!param
|| param
->param_hdr
.length
== 0)
648 len
= ntohs(param
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
);
650 /* SCTP-AUTH, Section 3.2
651 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
652 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
653 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
654 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
656 for (i
= 0; !found
&& i
< len
; i
++) {
657 switch (param
->chunks
[i
]) {
659 case SCTP_CID_INIT_ACK
:
660 case SCTP_CID_SHUTDOWN_COMPLETE
:
665 if (param
->chunks
[i
] == chunk
)
674 /* Check if peer requested that this chunk is authenticated */
675 int sctp_auth_send_cid(sctp_cid_t chunk
, const struct sctp_association
*asoc
)
677 if (!sctp_auth_enable
|| !asoc
|| !asoc
->peer
.auth_capable
)
680 return __sctp_auth_cid(chunk
, asoc
->peer
.peer_chunks
);
683 /* Check if we requested that peer authenticate this chunk. */
684 int sctp_auth_recv_cid(sctp_cid_t chunk
, const struct sctp_association
*asoc
)
686 if (!sctp_auth_enable
|| !asoc
)
689 return __sctp_auth_cid(chunk
,
690 (struct sctp_chunks_param
*)asoc
->c
.auth_chunks
);
693 /* SCTP-AUTH: Section 6.2:
694 * The sender MUST calculate the MAC as described in RFC2104 [2] using
695 * the hash function H as described by the MAC Identifier and the shared
696 * association key K based on the endpoint pair shared key described by
697 * the shared key identifier. The 'data' used for the computation of
698 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
699 * zero (as shown in Figure 6) followed by all chunks that are placed
700 * after the AUTH chunk in the SCTP packet.
702 void sctp_auth_calculate_hmac(const struct sctp_association
*asoc
,
704 struct sctp_auth_chunk
*auth
,
707 struct scatterlist sg
;
708 struct hash_desc desc
;
709 struct sctp_auth_bytes
*asoc_key
;
710 __u16 key_id
, hmac_id
;
715 /* Extract the info we need:
719 key_id
= ntohs(auth
->auth_hdr
.shkey_id
);
720 hmac_id
= ntohs(auth
->auth_hdr
.hmac_id
);
722 if (key_id
== asoc
->active_key_id
)
723 asoc_key
= asoc
->asoc_shared_key
;
725 struct sctp_shared_key
*ep_key
;
727 ep_key
= sctp_auth_get_shkey(asoc
, key_id
);
731 asoc_key
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
738 /* set up scatter list */
739 end
= skb_tail_pointer(skb
);
740 sg_init_one(&sg
, auth
, end
- (unsigned char *)auth
);
742 desc
.tfm
= asoc
->ep
->auth_hmacs
[hmac_id
];
745 digest
= auth
->auth_hdr
.hmac
;
746 if (crypto_hash_setkey(desc
.tfm
, &asoc_key
->data
[0], asoc_key
->len
))
749 crypto_hash_digest(&desc
, &sg
, sg
.length
, digest
);
753 sctp_auth_key_put(asoc_key
);
758 /* Add a chunk to the endpoint authenticated chunk list */
759 int sctp_auth_ep_add_chunkid(struct sctp_endpoint
*ep
, __u8 chunk_id
)
761 struct sctp_chunks_param
*p
= ep
->auth_chunk_list
;
765 /* If this chunk is already specified, we are done */
766 if (__sctp_auth_cid(chunk_id
, p
))
769 /* Check if we can add this chunk to the array */
770 param_len
= ntohs(p
->param_hdr
.length
);
771 nchunks
= param_len
- sizeof(sctp_paramhdr_t
);
772 if (nchunks
== SCTP_NUM_CHUNK_TYPES
)
775 p
->chunks
[nchunks
] = chunk_id
;
776 p
->param_hdr
.length
= htons(param_len
+ 1);
780 /* Add hmac identifires to the endpoint list of supported hmac ids */
781 int sctp_auth_ep_set_hmacs(struct sctp_endpoint
*ep
,
782 struct sctp_hmacalgo
*hmacs
)
788 /* Scan the list looking for unsupported id. Also make sure that
791 for (i
= 0; i
< hmacs
->shmac_num_idents
; i
++) {
792 id
= hmacs
->shmac_idents
[i
];
794 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
797 if (SCTP_AUTH_HMAC_ID_SHA1
== id
)
800 if (!sctp_hmac_list
[id
].hmac_name
)
807 memcpy(ep
->auth_hmacs_list
->hmac_ids
, &hmacs
->shmac_idents
[0],
808 hmacs
->shmac_num_idents
* sizeof(__u16
));
809 ep
->auth_hmacs_list
->param_hdr
.length
= htons(sizeof(sctp_paramhdr_t
) +
810 hmacs
->shmac_num_idents
* sizeof(__u16
));
814 /* Set a new shared key on either endpoint or association. If the
815 * the key with a same ID already exists, replace the key (remove the
816 * old key and add a new one).
818 int sctp_auth_set_key(struct sctp_endpoint
*ep
,
819 struct sctp_association
*asoc
,
820 struct sctp_authkey
*auth_key
)
822 struct sctp_shared_key
*cur_key
= NULL
;
823 struct sctp_auth_bytes
*key
;
824 struct list_head
*sh_keys
;
827 /* Try to find the given key id to see if
828 * we are doing a replace, or adding a new key
831 sh_keys
= &asoc
->endpoint_shared_keys
;
833 sh_keys
= &ep
->endpoint_shared_keys
;
835 key_for_each(cur_key
, sh_keys
) {
836 if (cur_key
->key_id
== auth_key
->sca_keynumber
) {
842 /* If we are not replacing a key id, we need to allocate
846 cur_key
= sctp_auth_shkey_create(auth_key
->sca_keynumber
,
852 /* Create a new key data based on the info passed in */
853 key
= sctp_auth_create_key(auth_key
->sca_keylength
, GFP_KERNEL
);
857 memcpy(key
->data
, &auth_key
->sca_key
[0], auth_key
->sca_keylength
);
859 /* If we are replacing, remove the old keys data from the
860 * key id. If we are adding new key id, add it to the
864 sctp_auth_key_put(cur_key
->key
);
866 list_add(&cur_key
->key_list
, sh_keys
);
869 sctp_auth_key_hold(key
);
874 sctp_auth_shkey_free(cur_key
);
879 int sctp_auth_set_active_key(struct sctp_endpoint
*ep
,
880 struct sctp_association
*asoc
,
883 struct sctp_shared_key
*key
;
884 struct list_head
*sh_keys
;
887 /* The key identifier MUST correst to an existing key */
889 sh_keys
= &asoc
->endpoint_shared_keys
;
891 sh_keys
= &ep
->endpoint_shared_keys
;
893 key_for_each(key
, sh_keys
) {
894 if (key
->key_id
== key_id
) {
904 asoc
->active_key_id
= key_id
;
905 sctp_auth_asoc_init_active_key(asoc
, GFP_KERNEL
);
907 ep
->active_key_id
= key_id
;
912 int sctp_auth_del_key_id(struct sctp_endpoint
*ep
,
913 struct sctp_association
*asoc
,
916 struct sctp_shared_key
*key
;
917 struct list_head
*sh_keys
;
920 /* The key identifier MUST NOT be the current active key
921 * The key identifier MUST correst to an existing key
924 if (asoc
->active_key_id
== key_id
)
927 sh_keys
= &asoc
->endpoint_shared_keys
;
929 if (ep
->active_key_id
== key_id
)
932 sh_keys
= &ep
->endpoint_shared_keys
;
935 key_for_each(key
, sh_keys
) {
936 if (key
->key_id
== key_id
) {
945 /* Delete the shared key */
946 list_del_init(&key
->key_list
);
947 sctp_auth_shkey_free(key
);