[PATCH] USB: ftdi_sio: new microHAM and Evolution Robotics devices
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / ppc64 / kernel / nvram.c
blob4fb1a9f5060deb66b78867755ba31c320afd71b8
1 /*
2 * c 2001 PPC 64 Team, IBM Corp
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * /dev/nvram driver for PPC64
11 * This perhaps should live in drivers/char
13 * TODO: Split the /dev/nvram part (that one can use
14 * drivers/char/generic_nvram.c) from the arch & partition
15 * parsing code.
18 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/miscdevice.h>
24 #include <linux/fcntl.h>
25 #include <linux/nvram.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <asm/uaccess.h>
30 #include <asm/nvram.h>
31 #include <asm/rtas.h>
32 #include <asm/prom.h>
33 #include <asm/machdep.h>
34 #include <asm/systemcfg.h>
36 #undef DEBUG_NVRAM
38 static int nvram_scan_partitions(void);
39 static int nvram_setup_partition(void);
40 static int nvram_create_os_partition(void);
41 static int nvram_remove_os_partition(void);
43 static struct nvram_partition * nvram_part;
44 static long nvram_error_log_index = -1;
45 static long nvram_error_log_size = 0;
47 int no_logging = 1; /* Until we initialize everything,
48 * make sure we don't try logging
49 * anything */
51 extern volatile int error_log_cnt;
53 struct err_log_info {
54 int error_type;
55 unsigned int seq_num;
58 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
60 int size;
62 if (ppc_md.nvram_size == NULL)
63 return -ENODEV;
64 size = ppc_md.nvram_size();
66 switch (origin) {
67 case 1:
68 offset += file->f_pos;
69 break;
70 case 2:
71 offset += size;
72 break;
74 if (offset < 0)
75 return -EINVAL;
76 file->f_pos = offset;
77 return file->f_pos;
81 static ssize_t dev_nvram_read(struct file *file, char __user *buf,
82 size_t count, loff_t *ppos)
84 ssize_t len;
85 char *tmp_buffer;
86 int size;
88 if (ppc_md.nvram_size == NULL)
89 return -ENODEV;
90 size = ppc_md.nvram_size();
92 if (!access_ok(VERIFY_WRITE, buf, count))
93 return -EFAULT;
94 if (*ppos >= size)
95 return 0;
96 if (count > size)
97 count = size;
99 tmp_buffer = (char *) kmalloc(count, GFP_KERNEL);
100 if (!tmp_buffer) {
101 printk(KERN_ERR "dev_read_nvram: kmalloc failed\n");
102 return -ENOMEM;
105 len = ppc_md.nvram_read(tmp_buffer, count, ppos);
106 if ((long)len <= 0) {
107 kfree(tmp_buffer);
108 return len;
111 if (copy_to_user(buf, tmp_buffer, len)) {
112 kfree(tmp_buffer);
113 return -EFAULT;
116 kfree(tmp_buffer);
117 return len;
121 static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
122 size_t count, loff_t *ppos)
124 ssize_t len;
125 char * tmp_buffer;
126 int size;
128 if (ppc_md.nvram_size == NULL)
129 return -ENODEV;
130 size = ppc_md.nvram_size();
132 if (!access_ok(VERIFY_READ, buf, count))
133 return -EFAULT;
134 if (*ppos >= size)
135 return 0;
136 if (count > size)
137 count = size;
139 tmp_buffer = (char *) kmalloc(count, GFP_KERNEL);
140 if (!tmp_buffer) {
141 printk(KERN_ERR "dev_nvram_write: kmalloc failed\n");
142 return -ENOMEM;
145 if (copy_from_user(tmp_buffer, buf, count)) {
146 kfree(tmp_buffer);
147 return -EFAULT;
150 len = ppc_md.nvram_write(tmp_buffer, count, ppos);
151 if ((long)len <= 0) {
152 kfree(tmp_buffer);
153 return len;
156 kfree(tmp_buffer);
157 return len;
160 static int dev_nvram_ioctl(struct inode *inode, struct file *file,
161 unsigned int cmd, unsigned long arg)
163 switch(cmd) {
164 #ifdef CONFIG_PPC_PMAC
165 case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
166 printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
167 case IOC_NVRAM_GET_OFFSET: {
168 int part, offset;
170 if (systemcfg->platform != PLATFORM_POWERMAC)
171 return -EINVAL;
172 if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
173 return -EFAULT;
174 if (part < pmac_nvram_OF || part > pmac_nvram_NR)
175 return -EINVAL;
176 offset = pmac_get_partition(part);
177 if (offset < 0)
178 return offset;
179 if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
180 return -EFAULT;
181 return 0;
183 #endif /* CONFIG_PPC_PMAC */
185 return -EINVAL;
188 struct file_operations nvram_fops = {
189 .owner = THIS_MODULE,
190 .llseek = dev_nvram_llseek,
191 .read = dev_nvram_read,
192 .write = dev_nvram_write,
193 .ioctl = dev_nvram_ioctl,
196 static struct miscdevice nvram_dev = {
197 NVRAM_MINOR,
198 "nvram",
199 &nvram_fops
203 #ifdef DEBUG_NVRAM
204 static void nvram_print_partitions(char * label)
206 struct list_head * p;
207 struct nvram_partition * tmp_part;
209 printk(KERN_WARNING "--------%s---------\n", label);
210 printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
211 list_for_each(p, &nvram_part->partition) {
212 tmp_part = list_entry(p, struct nvram_partition, partition);
213 printk(KERN_WARNING "%d \t%02x\t%02x\t%d\t%s\n",
214 tmp_part->index, tmp_part->header.signature,
215 tmp_part->header.checksum, tmp_part->header.length,
216 tmp_part->header.name);
219 #endif
222 static int nvram_write_header(struct nvram_partition * part)
224 loff_t tmp_index;
225 int rc;
227 tmp_index = part->index;
228 rc = ppc_md.nvram_write((char *)&part->header, NVRAM_HEADER_LEN, &tmp_index);
230 return rc;
234 static unsigned char nvram_checksum(struct nvram_header *p)
236 unsigned int c_sum, c_sum2;
237 unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
238 c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
240 /* The sum may have spilled into the 3rd byte. Fold it back. */
241 c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
242 /* The sum cannot exceed 2 bytes. Fold it into a checksum */
243 c_sum2 = (c_sum >> 8) + (c_sum << 8);
244 c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
245 return c_sum;
250 * Find an nvram partition, sig can be 0 for any
251 * partition or name can be NULL for any name, else
252 * tries to match both
254 struct nvram_partition *nvram_find_partition(int sig, const char *name)
256 struct nvram_partition * part;
257 struct list_head * p;
259 list_for_each(p, &nvram_part->partition) {
260 part = list_entry(p, struct nvram_partition, partition);
262 if (sig && part->header.signature != sig)
263 continue;
264 if (name && 0 != strncmp(name, part->header.name, 12))
265 continue;
266 return part;
268 return NULL;
270 EXPORT_SYMBOL(nvram_find_partition);
273 static int nvram_remove_os_partition(void)
275 struct list_head *i;
276 struct list_head *j;
277 struct nvram_partition * part;
278 struct nvram_partition * cur_part;
279 int rc;
281 list_for_each(i, &nvram_part->partition) {
282 part = list_entry(i, struct nvram_partition, partition);
283 if (part->header.signature != NVRAM_SIG_OS)
284 continue;
286 /* Make os partition a free partition */
287 part->header.signature = NVRAM_SIG_FREE;
288 sprintf(part->header.name, "wwwwwwwwwwww");
289 part->header.checksum = nvram_checksum(&part->header);
291 /* Merge contiguous free partitions backwards */
292 list_for_each_prev(j, &part->partition) {
293 cur_part = list_entry(j, struct nvram_partition, partition);
294 if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
295 break;
298 part->header.length += cur_part->header.length;
299 part->header.checksum = nvram_checksum(&part->header);
300 part->index = cur_part->index;
302 list_del(&cur_part->partition);
303 kfree(cur_part);
304 j = &part->partition; /* fixup our loop */
307 /* Merge contiguous free partitions forwards */
308 list_for_each(j, &part->partition) {
309 cur_part = list_entry(j, struct nvram_partition, partition);
310 if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
311 break;
314 part->header.length += cur_part->header.length;
315 part->header.checksum = nvram_checksum(&part->header);
317 list_del(&cur_part->partition);
318 kfree(cur_part);
319 j = &part->partition; /* fixup our loop */
322 rc = nvram_write_header(part);
323 if (rc <= 0) {
324 printk(KERN_ERR "nvram_remove_os_partition: nvram_write failed (%d)\n", rc);
325 return rc;
330 return 0;
333 /* nvram_create_os_partition
335 * Create a OS linux partition to buffer error logs.
336 * Will create a partition starting at the first free
337 * space found if space has enough room.
339 static int nvram_create_os_partition(void)
341 struct nvram_partition *part;
342 struct nvram_partition *new_part;
343 struct nvram_partition *free_part = NULL;
344 int seq_init[2] = { 0, 0 };
345 loff_t tmp_index;
346 long size = 0;
347 int rc;
349 /* Find a free partition that will give us the maximum needed size
350 If can't find one that will give us the minimum size needed */
351 list_for_each_entry(part, &nvram_part->partition, partition) {
352 if (part->header.signature != NVRAM_SIG_FREE)
353 continue;
355 if (part->header.length >= NVRAM_MAX_REQ) {
356 size = NVRAM_MAX_REQ;
357 free_part = part;
358 break;
360 if (!size && part->header.length >= NVRAM_MIN_REQ) {
361 size = NVRAM_MIN_REQ;
362 free_part = part;
365 if (!size)
366 return -ENOSPC;
368 /* Create our OS partition */
369 new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
370 if (!new_part) {
371 printk(KERN_ERR "nvram_create_os_partition: kmalloc failed\n");
372 return -ENOMEM;
375 new_part->index = free_part->index;
376 new_part->header.signature = NVRAM_SIG_OS;
377 new_part->header.length = size;
378 strcpy(new_part->header.name, "ppc64,linux");
379 new_part->header.checksum = nvram_checksum(&new_part->header);
381 rc = nvram_write_header(new_part);
382 if (rc <= 0) {
383 printk(KERN_ERR "nvram_create_os_partition: nvram_write_header \
384 failed (%d)\n", rc);
385 return rc;
388 /* make sure and initialize to zero the sequence number and the error
389 type logged */
390 tmp_index = new_part->index + NVRAM_HEADER_LEN;
391 rc = ppc_md.nvram_write((char *)&seq_init, sizeof(seq_init), &tmp_index);
392 if (rc <= 0) {
393 printk(KERN_ERR "nvram_create_os_partition: nvram_write "
394 "failed (%d)\n", rc);
395 return rc;
398 nvram_error_log_index = new_part->index + NVRAM_HEADER_LEN;
399 nvram_error_log_size = ((part->header.length - 1) *
400 NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
402 list_add_tail(&new_part->partition, &free_part->partition);
404 if (free_part->header.length <= size) {
405 list_del(&free_part->partition);
406 kfree(free_part);
407 return 0;
410 /* Adjust the partition we stole the space from */
411 free_part->index += size * NVRAM_BLOCK_LEN;
412 free_part->header.length -= size;
413 free_part->header.checksum = nvram_checksum(&free_part->header);
415 rc = nvram_write_header(free_part);
416 if (rc <= 0) {
417 printk(KERN_ERR "nvram_create_os_partition: nvram_write_header "
418 "failed (%d)\n", rc);
419 return rc;
422 return 0;
426 /* nvram_setup_partition
428 * This will setup the partition we need for buffering the
429 * error logs and cleanup partitions if needed.
431 * The general strategy is the following:
432 * 1.) If there is ppc64,linux partition large enough then use it.
433 * 2.) If there is not a ppc64,linux partition large enough, search
434 * for a free partition that is large enough.
435 * 3.) If there is not a free partition large enough remove
436 * _all_ OS partitions and consolidate the space.
437 * 4.) Will first try getting a chunk that will satisfy the maximum
438 * error log size (NVRAM_MAX_REQ).
439 * 5.) If the max chunk cannot be allocated then try finding a chunk
440 * that will satisfy the minum needed (NVRAM_MIN_REQ).
442 static int nvram_setup_partition(void)
444 struct list_head * p;
445 struct nvram_partition * part;
446 int rc;
448 /* For now, we don't do any of this on pmac, until I
449 * have figured out if it's worth killing some unused stuffs
450 * in our nvram, as Apple defined partitions use pretty much
451 * all of the space
453 if (systemcfg->platform == PLATFORM_POWERMAC)
454 return -ENOSPC;
456 /* see if we have an OS partition that meets our needs.
457 will try getting the max we need. If not we'll delete
458 partitions and try again. */
459 list_for_each(p, &nvram_part->partition) {
460 part = list_entry(p, struct nvram_partition, partition);
461 if (part->header.signature != NVRAM_SIG_OS)
462 continue;
464 if (strcmp(part->header.name, "ppc64,linux"))
465 continue;
467 if (part->header.length >= NVRAM_MIN_REQ) {
468 /* found our partition */
469 nvram_error_log_index = part->index + NVRAM_HEADER_LEN;
470 nvram_error_log_size = ((part->header.length - 1) *
471 NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
472 return 0;
476 /* try creating a partition with the free space we have */
477 rc = nvram_create_os_partition();
478 if (!rc) {
479 return 0;
482 /* need to free up some space */
483 rc = nvram_remove_os_partition();
484 if (rc) {
485 return rc;
488 /* create a partition in this new space */
489 rc = nvram_create_os_partition();
490 if (rc) {
491 printk(KERN_ERR "nvram_create_os_partition: Could not find a "
492 "NVRAM partition large enough\n");
493 return rc;
496 return 0;
500 static int nvram_scan_partitions(void)
502 loff_t cur_index = 0;
503 struct nvram_header phead;
504 struct nvram_partition * tmp_part;
505 unsigned char c_sum;
506 char * header;
507 int total_size;
508 int err;
510 if (ppc_md.nvram_size == NULL)
511 return -ENODEV;
512 total_size = ppc_md.nvram_size();
514 header = (char *) kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
515 if (!header) {
516 printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
517 return -ENOMEM;
520 while (cur_index < total_size) {
522 err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
523 if (err != NVRAM_HEADER_LEN) {
524 printk(KERN_ERR "nvram_scan_partitions: Error parsing "
525 "nvram partitions\n");
526 goto out;
529 cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
531 memcpy(&phead, header, NVRAM_HEADER_LEN);
533 err = 0;
534 c_sum = nvram_checksum(&phead);
535 if (c_sum != phead.checksum) {
536 printk(KERN_WARNING "WARNING: nvram partition checksum"
537 " was %02x, should be %02x!\n",
538 phead.checksum, c_sum);
539 printk(KERN_WARNING "Terminating nvram partition scan\n");
540 goto out;
542 if (!phead.length) {
543 printk(KERN_WARNING "WARNING: nvram corruption "
544 "detected: 0-length partition\n");
545 goto out;
547 tmp_part = (struct nvram_partition *)
548 kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
549 err = -ENOMEM;
550 if (!tmp_part) {
551 printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
552 goto out;
555 memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
556 tmp_part->index = cur_index;
557 list_add_tail(&tmp_part->partition, &nvram_part->partition);
559 cur_index += phead.length * NVRAM_BLOCK_LEN;
561 err = 0;
563 out:
564 kfree(header);
565 return err;
568 static int __init nvram_init(void)
570 int error;
571 int rc;
573 if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
574 return -ENODEV;
576 rc = misc_register(&nvram_dev);
577 if (rc != 0) {
578 printk(KERN_ERR "nvram_init: failed to register device\n");
579 return rc;
582 /* initialize our anchor for the nvram partition list */
583 nvram_part = (struct nvram_partition *) kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
584 if (!nvram_part) {
585 printk(KERN_ERR "nvram_init: Failed kmalloc\n");
586 return -ENOMEM;
588 INIT_LIST_HEAD(&nvram_part->partition);
590 /* Get all the NVRAM partitions */
591 error = nvram_scan_partitions();
592 if (error) {
593 printk(KERN_ERR "nvram_init: Failed nvram_scan_partitions\n");
594 return error;
597 if(nvram_setup_partition())
598 printk(KERN_WARNING "nvram_init: Could not find nvram partition"
599 " for nvram buffered error logging.\n");
601 #ifdef DEBUG_NVRAM
602 nvram_print_partitions("NVRAM Partitions");
603 #endif
605 return rc;
608 void __exit nvram_cleanup(void)
610 misc_deregister( &nvram_dev );
614 #ifdef CONFIG_PPC_PSERIES
616 /* nvram_write_error_log
618 * We need to buffer the error logs into nvram to ensure that we have
619 * the failure information to decode. If we have a severe error there
620 * is no way to guarantee that the OS or the machine is in a state to
621 * get back to user land and write the error to disk. For example if
622 * the SCSI device driver causes a Machine Check by writing to a bad
623 * IO address, there is no way of guaranteeing that the device driver
624 * is in any state that is would also be able to write the error data
625 * captured to disk, thus we buffer it in NVRAM for analysis on the
626 * next boot.
628 * In NVRAM the partition containing the error log buffer will looks like:
629 * Header (in bytes):
630 * +-----------+----------+--------+------------+------------------+
631 * | signature | checksum | length | name | data |
632 * |0 |1 |2 3|4 15|16 length-1|
633 * +-----------+----------+--------+------------+------------------+
635 * The 'data' section would look like (in bytes):
636 * +--------------+------------+-----------------------------------+
637 * | event_logged | sequence # | error log |
638 * |0 3|4 7|8 nvram_error_log_size-1|
639 * +--------------+------------+-----------------------------------+
641 * event_logged: 0 if event has not been logged to syslog, 1 if it has
642 * sequence #: The unique sequence # for each event. (until it wraps)
643 * error log: The error log from event_scan
645 int nvram_write_error_log(char * buff, int length, unsigned int err_type)
647 int rc;
648 loff_t tmp_index;
649 struct err_log_info info;
651 if (no_logging) {
652 return -EPERM;
655 if (nvram_error_log_index == -1) {
656 return -ESPIPE;
659 if (length > nvram_error_log_size) {
660 length = nvram_error_log_size;
663 info.error_type = err_type;
664 info.seq_num = error_log_cnt;
666 tmp_index = nvram_error_log_index;
668 rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
669 if (rc <= 0) {
670 printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
671 return rc;
674 rc = ppc_md.nvram_write(buff, length, &tmp_index);
675 if (rc <= 0) {
676 printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
677 return rc;
680 return 0;
683 /* nvram_read_error_log
685 * Reads nvram for error log for at most 'length'
687 int nvram_read_error_log(char * buff, int length, unsigned int * err_type)
689 int rc;
690 loff_t tmp_index;
691 struct err_log_info info;
693 if (nvram_error_log_index == -1)
694 return -1;
696 if (length > nvram_error_log_size)
697 length = nvram_error_log_size;
699 tmp_index = nvram_error_log_index;
701 rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
702 if (rc <= 0) {
703 printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
704 return rc;
707 rc = ppc_md.nvram_read(buff, length, &tmp_index);
708 if (rc <= 0) {
709 printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
710 return rc;
713 error_log_cnt = info.seq_num;
714 *err_type = info.error_type;
716 return 0;
719 /* This doesn't actually zero anything, but it sets the event_logged
720 * word to tell that this event is safely in syslog.
722 int nvram_clear_error_log(void)
724 loff_t tmp_index;
725 int clear_word = ERR_FLAG_ALREADY_LOGGED;
726 int rc;
728 tmp_index = nvram_error_log_index;
730 rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
731 if (rc <= 0) {
732 printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
733 return rc;
736 return 0;
739 #endif /* CONFIG_PPC_PSERIES */
741 module_init(nvram_init);
742 module_exit(nvram_cleanup);
743 MODULE_LICENSE("GPL");