2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28 #include <linux/kprobes.h>
29 #include <linux/notifier.h>
30 #include <linux/kdb.h>
31 #include <linux/irq.h>
33 #include <asm/bootinfo.h>
34 #include <asm/branch.h>
35 #include <asm/break.h>
40 #include <asm/fpu_emulator.h>
41 #include <asm/mipsregs.h>
42 #include <asm/mipsmtregs.h>
43 #include <asm/module.h>
44 #include <asm/pgtable.h>
45 #include <asm/ptrace.h>
46 #include <asm/sections.h>
47 #include <asm/system.h>
48 #include <asm/tlbdebug.h>
49 #include <asm/traps.h>
50 #include <asm/uaccess.h>
51 #include <asm/watch.h>
52 #include <asm/mmu_context.h>
53 #include <asm/types.h>
54 #include <asm/stacktrace.h>
57 extern void check_wait(void);
58 extern asmlinkage
void r4k_wait(void);
59 extern asmlinkage
void rollback_handle_int(void);
60 extern asmlinkage
void handle_int(void);
61 extern asmlinkage
void handle_tlbm(void);
62 extern asmlinkage
void handle_tlbl(void);
63 extern asmlinkage
void handle_tlbs(void);
64 extern asmlinkage
void handle_adel(void);
65 extern asmlinkage
void handle_ades(void);
66 extern asmlinkage
void handle_ibe(void);
67 extern asmlinkage
void handle_dbe(void);
68 extern asmlinkage
void handle_sys(void);
69 extern asmlinkage
void handle_bp(void);
70 extern asmlinkage
void handle_ri(void);
71 extern asmlinkage
void handle_ri_rdhwr_vivt(void);
72 extern asmlinkage
void handle_ri_rdhwr(void);
73 extern asmlinkage
void handle_cpu(void);
74 extern asmlinkage
void handle_ov(void);
75 extern asmlinkage
void handle_tr(void);
76 extern asmlinkage
void handle_fpe(void);
77 extern asmlinkage
void handle_mdmx(void);
78 extern asmlinkage
void handle_watch(void);
79 extern asmlinkage
void handle_mt(void);
80 extern asmlinkage
void handle_dsp(void);
81 extern asmlinkage
void handle_mcheck(void);
82 extern asmlinkage
void handle_reserved(void);
84 extern int fpu_emulator_cop1Handler(struct pt_regs
*xcp
,
85 struct mips_fpu_struct
*ctx
, int has_fpu
);
87 void (*board_be_init
)(void);
88 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
89 void (*board_nmi_handler_setup
)(void);
90 void (*board_ejtag_handler_setup
)(void);
91 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
94 static void show_raw_backtrace(unsigned long reg29
)
96 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
99 printk("Call Trace:");
100 #ifdef CONFIG_KALLSYMS
103 while (!kstack_end(sp
)) {
104 unsigned long __user
*p
=
105 (unsigned long __user
*)(unsigned long)sp
++;
106 if (__get_user(addr
, p
)) {
107 printk(" (Bad stack address)");
110 if (__kernel_text_address(addr
))
116 #ifdef CONFIG_KALLSYMS
118 static int __init
set_raw_show_trace(char *str
)
123 __setup("raw_show_trace", set_raw_show_trace
);
126 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
)
128 unsigned long sp
= regs
->regs
[29];
129 unsigned long ra
= regs
->regs
[31];
130 unsigned long pc
= regs
->cp0_epc
;
132 if (raw_show_trace
|| !__kernel_text_address(pc
)) {
133 show_raw_backtrace(sp
);
136 printk("Call Trace:\n");
139 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
145 * This routine abuses get_user()/put_user() to reference pointers
146 * with at least a bit of error checking ...
148 static void show_stacktrace(struct task_struct
*task
,
149 const struct pt_regs
*regs
)
151 const int field
= 2 * sizeof(unsigned long);
154 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
158 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
159 if (i
&& ((i
% (64 / field
)) == 0))
166 if (__get_user(stackdata
, sp
++)) {
167 printk(" (Bad stack address)");
171 printk(" %0*lx", field
, stackdata
);
175 show_backtrace(task
, regs
);
178 void show_stack(struct task_struct
*task
, unsigned long *sp
)
182 regs
.regs
[29] = (unsigned long)sp
;
186 if (task
&& task
!= current
) {
187 regs
.regs
[29] = task
->thread
.reg29
;
189 regs
.cp0_epc
= task
->thread
.reg31
;
190 #ifdef CONFIG_KGDB_KDB
191 } else if (atomic_read(&kgdb_active
) != -1 &&
193 memcpy(®s
, kdb_current_regs
, sizeof(regs
));
194 #endif /* CONFIG_KGDB_KDB */
196 prepare_frametrace(®s
);
199 show_stacktrace(task
, ®s
);
203 * The architecture-independent dump_stack generator
205 void dump_stack(void)
209 prepare_frametrace(®s
);
210 show_backtrace(current
, ®s
);
213 EXPORT_SYMBOL(dump_stack
);
215 static void show_code(unsigned int __user
*pc
)
218 unsigned short __user
*pc16
= NULL
;
222 if ((unsigned long)pc
& 1)
223 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
224 for(i
= -3 ; i
< 6 ; i
++) {
226 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
227 printk(" (Bad address in epc)\n");
230 printk("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
234 static void __show_regs(const struct pt_regs
*regs
)
236 const int field
= 2 * sizeof(unsigned long);
237 unsigned int cause
= regs
->cp0_cause
;
240 printk("Cpu %d\n", smp_processor_id());
243 * Saved main processor registers
245 for (i
= 0; i
< 32; ) {
249 printk(" %0*lx", field
, 0UL);
250 else if (i
== 26 || i
== 27)
251 printk(" %*s", field
, "");
253 printk(" %0*lx", field
, regs
->regs
[i
]);
260 #ifdef CONFIG_CPU_HAS_SMARTMIPS
261 printk("Acx : %0*lx\n", field
, regs
->acx
);
263 printk("Hi : %0*lx\n", field
, regs
->hi
);
264 printk("Lo : %0*lx\n", field
, regs
->lo
);
267 * Saved cp0 registers
269 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
270 (void *) regs
->cp0_epc
);
271 printk(" %s\n", print_tainted());
272 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
273 (void *) regs
->regs
[31]);
275 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
277 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_I
) {
278 if (regs
->cp0_status
& ST0_KUO
)
280 if (regs
->cp0_status
& ST0_IEO
)
282 if (regs
->cp0_status
& ST0_KUP
)
284 if (regs
->cp0_status
& ST0_IEP
)
286 if (regs
->cp0_status
& ST0_KUC
)
288 if (regs
->cp0_status
& ST0_IEC
)
291 if (regs
->cp0_status
& ST0_KX
)
293 if (regs
->cp0_status
& ST0_SX
)
295 if (regs
->cp0_status
& ST0_UX
)
297 switch (regs
->cp0_status
& ST0_KSU
) {
302 printk("SUPERVISOR ");
311 if (regs
->cp0_status
& ST0_ERL
)
313 if (regs
->cp0_status
& ST0_EXL
)
315 if (regs
->cp0_status
& ST0_IE
)
320 printk("Cause : %08x\n", cause
);
322 cause
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
323 if (1 <= cause
&& cause
<= 5)
324 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
326 printk("PrId : %08x (%s)\n", read_c0_prid(),
331 * FIXME: really the generic show_regs should take a const pointer argument.
333 void show_regs(struct pt_regs
*regs
)
335 __show_regs((struct pt_regs
*)regs
);
338 void show_registers(struct pt_regs
*regs
)
340 const int field
= 2 * sizeof(unsigned long);
344 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
345 current
->comm
, current
->pid
, current_thread_info(), current
,
346 field
, current_thread_info()->tp_value
);
347 if (cpu_has_userlocal
) {
350 tls
= read_c0_userlocal();
351 if (tls
!= current_thread_info()->tp_value
)
352 printk("*HwTLS: %0*lx\n", field
, tls
);
355 show_stacktrace(current
, regs
);
356 show_code((unsigned int __user
*) regs
->cp0_epc
);
360 static int regs_to_trapnr(struct pt_regs
*regs
)
362 return (regs
->cp0_cause
>> 2) & 0x1f;
365 static DEFINE_SPINLOCK(die_lock
);
367 void __noreturn
die(const char *str
, struct pt_regs
*regs
)
369 static int die_counter
;
371 #ifdef CONFIG_MIPS_MT_SMTC
372 unsigned long dvpret
= dvpe();
373 #endif /* CONFIG_MIPS_MT_SMTC */
375 notify_die(DIE_OOPS
, str
, regs
, 0, regs_to_trapnr(regs
), SIGSEGV
);
378 spin_lock_irq(&die_lock
);
380 #ifdef CONFIG_MIPS_MT_SMTC
381 mips_mt_regdump(dvpret
);
382 #endif /* CONFIG_MIPS_MT_SMTC */
384 if (notify_die(DIE_OOPS
, str
, regs
, 0, regs_to_trapnr(regs
), SIGSEGV
) == NOTIFY_STOP
)
387 printk("%s[#%d]:\n", str
, ++die_counter
);
388 show_registers(regs
);
389 add_taint(TAINT_DIE
);
390 spin_unlock_irq(&die_lock
);
393 panic("Fatal exception in interrupt");
396 printk(KERN_EMERG
"Fatal exception: panic in 5 seconds\n");
398 panic("Fatal exception");
404 extern struct exception_table_entry __start___dbe_table
[];
405 extern struct exception_table_entry __stop___dbe_table
[];
408 " .section __dbe_table, \"a\"\n"
411 /* Given an address, look for it in the exception tables. */
412 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
414 const struct exception_table_entry
*e
;
416 e
= search_extable(__start___dbe_table
, __stop___dbe_table
- 1, addr
);
418 e
= search_module_dbetables(addr
);
422 asmlinkage
void do_be(struct pt_regs
*regs
)
424 const int field
= 2 * sizeof(unsigned long);
425 const struct exception_table_entry
*fixup
= NULL
;
426 int data
= regs
->cp0_cause
& 4;
427 int action
= MIPS_BE_FATAL
;
429 /* XXX For now. Fixme, this searches the wrong table ... */
430 if (data
&& !user_mode(regs
))
431 fixup
= search_dbe_tables(exception_epc(regs
));
434 action
= MIPS_BE_FIXUP
;
436 if (board_be_handler
)
437 action
= board_be_handler(regs
, fixup
!= NULL
);
440 case MIPS_BE_DISCARD
:
444 regs
->cp0_epc
= fixup
->nextinsn
;
453 * Assume it would be too dangerous to continue ...
455 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
456 data
? "Data" : "Instruction",
457 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
458 if (notify_die(DIE_OOPS
, "bus error", regs
, 0, regs_to_trapnr(regs
), SIGBUS
)
462 die_if_kernel("Oops", regs
);
463 force_sig(SIGBUS
, current
);
467 * ll/sc, rdhwr, sync emulation
470 #define OPCODE 0xfc000000
471 #define BASE 0x03e00000
472 #define RT 0x001f0000
473 #define OFFSET 0x0000ffff
474 #define LL 0xc0000000
475 #define SC 0xe0000000
476 #define SPEC0 0x00000000
477 #define SPEC3 0x7c000000
478 #define RD 0x0000f800
479 #define FUNC 0x0000003f
480 #define SYNC 0x0000000f
481 #define RDHWR 0x0000003b
484 * The ll_bit is cleared by r*_switch.S
488 struct task_struct
*ll_task
;
490 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
492 unsigned long value
, __user
*vaddr
;
496 * analyse the ll instruction that just caused a ri exception
497 * and put the referenced address to addr.
500 /* sign extend offset */
501 offset
= opcode
& OFFSET
;
505 vaddr
= (unsigned long __user
*)
506 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
508 if ((unsigned long)vaddr
& 3)
510 if (get_user(value
, vaddr
))
515 if (ll_task
== NULL
|| ll_task
== current
) {
524 regs
->regs
[(opcode
& RT
) >> 16] = value
;
529 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
531 unsigned long __user
*vaddr
;
536 * analyse the sc instruction that just caused a ri exception
537 * and put the referenced address to addr.
540 /* sign extend offset */
541 offset
= opcode
& OFFSET
;
545 vaddr
= (unsigned long __user
*)
546 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
547 reg
= (opcode
& RT
) >> 16;
549 if ((unsigned long)vaddr
& 3)
554 if (ll_bit
== 0 || ll_task
!= current
) {
562 if (put_user(regs
->regs
[reg
], vaddr
))
571 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
572 * opcodes are supposed to result in coprocessor unusable exceptions if
573 * executed on ll/sc-less processors. That's the theory. In practice a
574 * few processors such as NEC's VR4100 throw reserved instruction exceptions
575 * instead, so we're doing the emulation thing in both exception handlers.
577 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
579 if ((opcode
& OPCODE
) == LL
)
580 return simulate_ll(regs
, opcode
);
581 if ((opcode
& OPCODE
) == SC
)
582 return simulate_sc(regs
, opcode
);
584 return -1; /* Must be something else ... */
588 * Simulate trapping 'rdhwr' instructions to provide user accessible
589 * registers not implemented in hardware.
591 static int simulate_rdhwr(struct pt_regs
*regs
, unsigned int opcode
)
593 struct thread_info
*ti
= task_thread_info(current
);
595 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
596 int rd
= (opcode
& RD
) >> 11;
597 int rt
= (opcode
& RT
) >> 16;
599 case 0: /* CPU number */
600 regs
->regs
[rt
] = smp_processor_id();
602 case 1: /* SYNCI length */
603 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
604 current_cpu_data
.icache
.linesz
);
606 case 2: /* Read count register */
607 regs
->regs
[rt
] = read_c0_count();
609 case 3: /* Count register resolution */
610 switch (current_cpu_data
.cputype
) {
620 regs
->regs
[rt
] = ti
->tp_value
;
631 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
633 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
)
636 return -1; /* Must be something else ... */
639 asmlinkage
void do_ov(struct pt_regs
*regs
)
643 die_if_kernel("Integer overflow", regs
);
645 info
.si_code
= FPE_INTOVF
;
646 info
.si_signo
= SIGFPE
;
648 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
649 force_sig_info(SIGFPE
, &info
, current
);
653 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
655 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
659 if (notify_die(DIE_FP
, "FP exception", regs
, 0, regs_to_trapnr(regs
), SIGFPE
)
662 die_if_kernel("FP exception in kernel code", regs
);
664 if (fcr31
& FPU_CSR_UNI_X
) {
668 * Unimplemented operation exception. If we've got the full
669 * software emulator on-board, let's use it...
671 * Force FPU to dump state into task/thread context. We're
672 * moving a lot of data here for what is probably a single
673 * instruction, but the alternative is to pre-decode the FP
674 * register operands before invoking the emulator, which seems
675 * a bit extreme for what should be an infrequent event.
677 /* Ensure 'resume' not overwrite saved fp context again. */
680 /* Run the emulator */
681 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1);
684 * We can't allow the emulated instruction to leave any of
685 * the cause bit set in $fcr31.
687 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
689 /* Restore the hardware register state */
690 own_fpu(1); /* Using the FPU again. */
692 /* If something went wrong, signal */
694 force_sig(sig
, current
);
697 } else if (fcr31
& FPU_CSR_INV_X
)
698 info
.si_code
= FPE_FLTINV
;
699 else if (fcr31
& FPU_CSR_DIV_X
)
700 info
.si_code
= FPE_FLTDIV
;
701 else if (fcr31
& FPU_CSR_OVF_X
)
702 info
.si_code
= FPE_FLTOVF
;
703 else if (fcr31
& FPU_CSR_UDF_X
)
704 info
.si_code
= FPE_FLTUND
;
705 else if (fcr31
& FPU_CSR_INE_X
)
706 info
.si_code
= FPE_FLTRES
;
708 info
.si_code
= __SI_FAULT
;
709 info
.si_signo
= SIGFPE
;
711 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
712 force_sig_info(SIGFPE
, &info
, current
);
715 static void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
,
721 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
722 if (kgdb_ll_trap(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
724 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
726 if (notify_die(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
730 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
731 * insns, even for trap and break codes that indicate arithmetic
732 * failures. Weird ...
733 * But should we continue the brokenness??? --macro
738 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
739 die_if_kernel(b
, regs
);
740 if (code
== BRK_DIVZERO
)
741 info
.si_code
= FPE_INTDIV
;
743 info
.si_code
= FPE_INTOVF
;
744 info
.si_signo
= SIGFPE
;
746 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
747 force_sig_info(SIGFPE
, &info
, current
);
750 die_if_kernel("Kernel bug detected", regs
);
751 force_sig(SIGTRAP
, current
);
755 * Address errors may be deliberately induced by the FPU
756 * emulator to retake control of the CPU after executing the
757 * instruction in the delay slot of an emulated branch.
759 * Terminate if exception was recognized as a delay slot return
760 * otherwise handle as normal.
762 if (do_dsemulret(regs
))
765 die_if_kernel("Math emu break/trap", regs
);
766 force_sig(SIGTRAP
, current
);
769 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
770 die_if_kernel(b
, regs
);
771 force_sig(SIGTRAP
, current
);
775 asmlinkage
void do_bp(struct pt_regs
*regs
)
777 unsigned int opcode
, bcode
;
779 if (__get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
783 * There is the ancient bug in the MIPS assemblers that the break
784 * code starts left to bit 16 instead to bit 6 in the opcode.
785 * Gas is bug-compatible, but not always, grrr...
786 * We handle both cases with a simple heuristics. --macro
788 bcode
= ((opcode
>> 6) & ((1 << 20) - 1));
789 if (bcode
>= (1 << 10))
793 * notify the kprobe handlers, if instruction is likely to
798 if (notify_die(DIE_BREAK
, "debug", regs
, bcode
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
802 case BRK_KPROBE_SSTEPBP
:
803 if (notify_die(DIE_SSTEPBP
, "single_step", regs
, bcode
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
811 do_trap_or_bp(regs
, bcode
, "Break");
815 force_sig(SIGSEGV
, current
);
818 asmlinkage
void do_tr(struct pt_regs
*regs
)
820 unsigned int opcode
, tcode
= 0;
822 if (__get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
825 /* Immediate versions don't provide a code. */
826 if (!(opcode
& OPCODE
))
827 tcode
= ((opcode
>> 6) & ((1 << 10) - 1));
829 do_trap_or_bp(regs
, tcode
, "Trap");
833 force_sig(SIGSEGV
, current
);
836 asmlinkage
void do_ri(struct pt_regs
*regs
)
838 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
839 unsigned long old_epc
= regs
->cp0_epc
;
840 unsigned int opcode
= 0;
843 if (notify_die(DIE_RI
, "RI Fault", regs
, 0, regs_to_trapnr(regs
), SIGILL
)
847 die_if_kernel("Reserved instruction in kernel code", regs
);
849 if (unlikely(compute_return_epc(regs
) < 0))
852 if (unlikely(get_user(opcode
, epc
) < 0))
855 if (!cpu_has_llsc
&& status
< 0)
856 status
= simulate_llsc(regs
, opcode
);
859 status
= simulate_rdhwr(regs
, opcode
);
862 status
= simulate_sync(regs
, opcode
);
867 if (unlikely(status
> 0)) {
868 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
869 force_sig(status
, current
);
874 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
875 * emulated more than some threshold number of instructions, force migration to
876 * a "CPU" that has FP support.
878 static void mt_ase_fp_affinity(void)
880 #ifdef CONFIG_MIPS_MT_FPAFF
881 if (mt_fpemul_threshold
> 0 &&
882 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
884 * If there's no FPU present, or if the application has already
885 * restricted the allowed set to exclude any CPUs with FPUs,
886 * we'll skip the procedure.
888 if (cpus_intersects(current
->cpus_allowed
, mt_fpu_cpumask
)) {
891 current
->thread
.user_cpus_allowed
892 = current
->cpus_allowed
;
893 cpus_and(tmask
, current
->cpus_allowed
,
895 set_cpus_allowed_ptr(current
, &tmask
);
896 set_thread_flag(TIF_FPUBOUND
);
899 #endif /* CONFIG_MIPS_MT_FPAFF */
903 * No lock; only written during early bootup by CPU 0.
905 static RAW_NOTIFIER_HEAD(cu2_chain
);
907 int __ref
register_cu2_notifier(struct notifier_block
*nb
)
909 return raw_notifier_chain_register(&cu2_chain
, nb
);
912 int cu2_notifier_call_chain(unsigned long val
, void *v
)
914 return raw_notifier_call_chain(&cu2_chain
, val
, v
);
917 static int default_cu2_call(struct notifier_block
*nfb
, unsigned long action
,
920 struct pt_regs
*regs
= data
;
924 die_if_kernel("Unhandled kernel unaligned access or invalid "
925 "instruction", regs
);
929 force_sig(SIGILL
, current
);
935 asmlinkage
void do_cpu(struct pt_regs
*regs
)
937 unsigned int __user
*epc
;
938 unsigned long old_epc
;
942 unsigned long __maybe_unused flags
;
944 die_if_kernel("do_cpu invoked from kernel context!", regs
);
946 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
950 epc
= (unsigned int __user
*)exception_epc(regs
);
951 old_epc
= regs
->cp0_epc
;
955 if (unlikely(compute_return_epc(regs
) < 0))
958 if (unlikely(get_user(opcode
, epc
) < 0))
961 if (!cpu_has_llsc
&& status
< 0)
962 status
= simulate_llsc(regs
, opcode
);
965 status
= simulate_rdhwr(regs
, opcode
);
970 if (unlikely(status
> 0)) {
971 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
972 force_sig(status
, current
);
978 if (used_math()) /* Using the FPU again. */
980 else { /* First time FPU user. */
985 if (!raw_cpu_has_fpu
) {
987 sig
= fpu_emulator_cop1Handler(regs
,
988 ¤t
->thread
.fpu
, 0);
990 force_sig(sig
, current
);
992 mt_ase_fp_affinity();
998 raw_notifier_call_chain(&cu2_chain
, CU2_EXCEPTION
, regs
);
1005 force_sig(SIGILL
, current
);
1008 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
1010 force_sig(SIGILL
, current
);
1014 * Called with interrupts disabled.
1016 asmlinkage
void do_watch(struct pt_regs
*regs
)
1021 * Clear WP (bit 22) bit of cause register so we don't loop
1024 cause
= read_c0_cause();
1025 cause
&= ~(1 << 22);
1026 write_c0_cause(cause
);
1029 * If the current thread has the watch registers loaded, save
1030 * their values and send SIGTRAP. Otherwise another thread
1031 * left the registers set, clear them and continue.
1033 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
1034 mips_read_watch_registers();
1036 force_sig(SIGTRAP
, current
);
1038 mips_clear_watch_registers();
1043 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
1045 const int field
= 2 * sizeof(unsigned long);
1046 int multi_match
= regs
->cp0_status
& ST0_TS
;
1051 printk("Index : %0x\n", read_c0_index());
1052 printk("Pagemask: %0x\n", read_c0_pagemask());
1053 printk("EntryHi : %0*lx\n", field
, read_c0_entryhi());
1054 printk("EntryLo0: %0*lx\n", field
, read_c0_entrylo0());
1055 printk("EntryLo1: %0*lx\n", field
, read_c0_entrylo1());
1060 show_code((unsigned int __user
*) regs
->cp0_epc
);
1063 * Some chips may have other causes of machine check (e.g. SB1
1066 panic("Caught Machine Check exception - %scaused by multiple "
1067 "matching entries in the TLB.",
1068 (multi_match
) ? "" : "not ");
1071 asmlinkage
void do_mt(struct pt_regs
*regs
)
1075 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1076 >> VPECONTROL_EXCPT_SHIFT
;
1079 printk(KERN_DEBUG
"Thread Underflow\n");
1082 printk(KERN_DEBUG
"Thread Overflow\n");
1085 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1088 printk(KERN_DEBUG
"Gating Storage Exception\n");
1091 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1094 printk(KERN_DEBUG
"Gating Storage Schedulier Exception\n");
1097 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1101 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1103 force_sig(SIGILL
, current
);
1107 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1110 panic("Unexpected DSP exception\n");
1112 force_sig(SIGILL
, current
);
1115 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1118 * Game over - no way to handle this if it ever occurs. Most probably
1119 * caused by a new unknown cpu type or after another deadly
1120 * hard/software error.
1123 panic("Caught reserved exception %ld - should not happen.",
1124 (regs
->cp0_cause
& 0x7f) >> 2);
1127 static int __initdata l1parity
= 1;
1128 static int __init
nol1parity(char *s
)
1133 __setup("nol1par", nol1parity
);
1134 static int __initdata l2parity
= 1;
1135 static int __init
nol2parity(char *s
)
1140 __setup("nol2par", nol2parity
);
1143 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1144 * it different ways.
1146 static inline void parity_protection_init(void)
1148 switch (current_cpu_type()) {
1154 #define ERRCTL_PE 0x80000000
1155 #define ERRCTL_L2P 0x00800000
1156 unsigned long errctl
;
1157 unsigned int l1parity_present
, l2parity_present
;
1159 errctl
= read_c0_ecc();
1160 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1162 /* probe L1 parity support */
1163 write_c0_ecc(errctl
| ERRCTL_PE
);
1164 back_to_back_c0_hazard();
1165 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1167 /* probe L2 parity support */
1168 write_c0_ecc(errctl
|ERRCTL_L2P
);
1169 back_to_back_c0_hazard();
1170 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1172 if (l1parity_present
&& l2parity_present
) {
1174 errctl
|= ERRCTL_PE
;
1175 if (l1parity
^ l2parity
)
1176 errctl
|= ERRCTL_L2P
;
1177 } else if (l1parity_present
) {
1179 errctl
|= ERRCTL_PE
;
1180 } else if (l2parity_present
) {
1182 errctl
|= ERRCTL_L2P
;
1184 /* No parity available */
1187 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1189 write_c0_ecc(errctl
);
1190 back_to_back_c0_hazard();
1191 errctl
= read_c0_ecc();
1192 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1194 if (l1parity_present
)
1195 printk(KERN_INFO
"Cache parity protection %sabled\n",
1196 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1198 if (l2parity_present
) {
1199 if (l1parity_present
&& l1parity
)
1200 errctl
^= ERRCTL_L2P
;
1201 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1202 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1208 write_c0_ecc(0x80000000);
1209 back_to_back_c0_hazard();
1210 /* Set the PE bit (bit 31) in the c0_errctl register. */
1211 printk(KERN_INFO
"Cache parity protection %sabled\n",
1212 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1216 /* Clear the DE bit (bit 16) in the c0_status register. */
1217 printk(KERN_INFO
"Enable cache parity protection for "
1218 "MIPS 20KC/25KF CPUs.\n");
1219 clear_c0_status(ST0_DE
);
1226 asmlinkage
void cache_parity_error(void)
1228 const int field
= 2 * sizeof(unsigned long);
1229 unsigned int reg_val
;
1231 /* For the moment, report the problem and hang. */
1232 printk("Cache error exception:\n");
1233 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1234 reg_val
= read_c0_cacheerr();
1235 printk("c0_cacheerr == %08x\n", reg_val
);
1237 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1238 reg_val
& (1<<30) ? "secondary" : "primary",
1239 reg_val
& (1<<31) ? "data" : "insn");
1240 printk("Error bits: %s%s%s%s%s%s%s\n",
1241 reg_val
& (1<<29) ? "ED " : "",
1242 reg_val
& (1<<28) ? "ET " : "",
1243 reg_val
& (1<<26) ? "EE " : "",
1244 reg_val
& (1<<25) ? "EB " : "",
1245 reg_val
& (1<<24) ? "EI " : "",
1246 reg_val
& (1<<23) ? "E1 " : "",
1247 reg_val
& (1<<22) ? "E0 " : "");
1248 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1250 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1251 if (reg_val
& (1<<22))
1252 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1254 if (reg_val
& (1<<23))
1255 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1258 panic("Can't handle the cache error!");
1262 * SDBBP EJTAG debug exception handler.
1263 * We skip the instruction and return to the next instruction.
1265 void ejtag_exception_handler(struct pt_regs
*regs
)
1267 const int field
= 2 * sizeof(unsigned long);
1268 unsigned long depc
, old_epc
;
1271 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1272 depc
= read_c0_depc();
1273 debug
= read_c0_debug();
1274 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1275 if (debug
& 0x80000000) {
1277 * In branch delay slot.
1278 * We cheat a little bit here and use EPC to calculate the
1279 * debug return address (DEPC). EPC is restored after the
1282 old_epc
= regs
->cp0_epc
;
1283 regs
->cp0_epc
= depc
;
1284 __compute_return_epc(regs
);
1285 depc
= regs
->cp0_epc
;
1286 regs
->cp0_epc
= old_epc
;
1289 write_c0_depc(depc
);
1292 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1293 write_c0_debug(debug
| 0x100);
1298 * NMI exception handler.
1300 NORET_TYPE
void ATTRIB_NORET
nmi_exception_handler(struct pt_regs
*regs
)
1303 printk("NMI taken!!!!\n");
1307 #define VECTORSPACING 0x100 /* for EI/VI mode */
1309 unsigned long ebase
;
1310 unsigned long exception_handlers
[32];
1311 unsigned long vi_handlers
[64];
1313 void __init
*set_except_vector(int n
, void *addr
)
1315 unsigned long handler
= (unsigned long) addr
;
1316 unsigned long old_handler
= exception_handlers
[n
];
1318 exception_handlers
[n
] = handler
;
1319 if (n
== 0 && cpu_has_divec
) {
1320 unsigned long jump_mask
= ~((1 << 28) - 1);
1321 u32
*buf
= (u32
*)(ebase
+ 0x200);
1322 unsigned int k0
= 26;
1323 if ((handler
& jump_mask
) == ((ebase
+ 0x200) & jump_mask
)) {
1324 uasm_i_j(&buf
, handler
& ~jump_mask
);
1327 UASM_i_LA(&buf
, k0
, handler
);
1328 uasm_i_jr(&buf
, k0
);
1331 local_flush_icache_range(ebase
+ 0x200, (unsigned long)buf
);
1333 return (void *)old_handler
;
1336 static asmlinkage
void do_default_vi(void)
1338 show_regs(get_irq_regs());
1339 panic("Caught unexpected vectored interrupt.");
1342 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
1344 unsigned long handler
;
1345 unsigned long old_handler
= vi_handlers
[n
];
1346 int srssets
= current_cpu_data
.srsets
;
1350 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
1353 handler
= (unsigned long) do_default_vi
;
1356 handler
= (unsigned long) addr
;
1357 vi_handlers
[n
] = (unsigned long) addr
;
1359 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
1362 panic("Shadow register set %d not supported", srs
);
1365 if (board_bind_eic_interrupt
)
1366 board_bind_eic_interrupt(n
, srs
);
1367 } else if (cpu_has_vint
) {
1368 /* SRSMap is only defined if shadow sets are implemented */
1370 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
1375 * If no shadow set is selected then use the default handler
1376 * that does normal register saving and a standard interrupt exit
1379 extern char except_vec_vi
, except_vec_vi_lui
;
1380 extern char except_vec_vi_ori
, except_vec_vi_end
;
1381 extern char rollback_except_vec_vi
;
1382 char *vec_start
= (cpu_wait
== r4k_wait
) ?
1383 &rollback_except_vec_vi
: &except_vec_vi
;
1384 #ifdef CONFIG_MIPS_MT_SMTC
1386 * We need to provide the SMTC vectored interrupt handler
1387 * not only with the address of the handler, but with the
1388 * Status.IM bit to be masked before going there.
1390 extern char except_vec_vi_mori
;
1391 const int mori_offset
= &except_vec_vi_mori
- vec_start
;
1392 #endif /* CONFIG_MIPS_MT_SMTC */
1393 const int handler_len
= &except_vec_vi_end
- vec_start
;
1394 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
1395 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
1397 if (handler_len
> VECTORSPACING
) {
1399 * Sigh... panicing won't help as the console
1400 * is probably not configured :(
1402 panic("VECTORSPACING too small");
1405 memcpy(b
, vec_start
, handler_len
);
1406 #ifdef CONFIG_MIPS_MT_SMTC
1407 BUG_ON(n
> 7); /* Vector index %d exceeds SMTC maximum. */
1409 w
= (u32
*)(b
+ mori_offset
);
1410 *w
= (*w
& 0xffff0000) | (0x100 << n
);
1411 #endif /* CONFIG_MIPS_MT_SMTC */
1412 w
= (u32
*)(b
+ lui_offset
);
1413 *w
= (*w
& 0xffff0000) | (((u32
)handler
>> 16) & 0xffff);
1414 w
= (u32
*)(b
+ ori_offset
);
1415 *w
= (*w
& 0xffff0000) | ((u32
)handler
& 0xffff);
1416 local_flush_icache_range((unsigned long)b
,
1417 (unsigned long)(b
+handler_len
));
1421 * In other cases jump directly to the interrupt handler
1423 * It is the handlers responsibility to save registers if required
1424 * (eg hi/lo) and return from the exception using "eret"
1427 *w
++ = 0x08000000 | (((u32
)handler
>> 2) & 0x03fffff); /* j handler */
1429 local_flush_icache_range((unsigned long)b
,
1430 (unsigned long)(b
+8));
1433 return (void *)old_handler
;
1436 void *set_vi_handler(int n
, vi_handler_t addr
)
1438 return set_vi_srs_handler(n
, addr
, 0);
1441 extern void cpu_cache_init(void);
1442 extern void tlb_init(void);
1443 extern void flush_tlb_handlers(void);
1448 int cp0_compare_irq
;
1449 int cp0_compare_irq_shift
;
1452 * Performance counter IRQ or -1 if shared with timer
1454 int cp0_perfcount_irq
;
1455 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
1457 static int __cpuinitdata noulri
;
1459 static int __init
ulri_disable(char *s
)
1461 pr_info("Disabling ulri\n");
1466 __setup("noulri", ulri_disable
);
1468 void __cpuinit
per_cpu_trap_init(void)
1470 unsigned int cpu
= smp_processor_id();
1471 unsigned int status_set
= ST0_CU0
;
1472 #ifdef CONFIG_MIPS_MT_SMTC
1473 int secondaryTC
= 0;
1474 int bootTC
= (cpu
== 0);
1477 * Only do per_cpu_trap_init() for first TC of Each VPE.
1478 * Note that this hack assumes that the SMTC init code
1479 * assigns TCs consecutively and in ascending order.
1482 if (((read_c0_tcbind() & TCBIND_CURTC
) != 0) &&
1483 ((read_c0_tcbind() & TCBIND_CURVPE
) == cpu_data
[cpu
- 1].vpe_id
))
1485 #endif /* CONFIG_MIPS_MT_SMTC */
1488 * Disable coprocessors and select 32-bit or 64-bit addressing
1489 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1490 * flag that some firmware may have left set and the TS bit (for
1491 * IP27). Set XX for ISA IV code to work.
1494 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
1496 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_IV
)
1497 status_set
|= ST0_XX
;
1499 status_set
|= ST0_MX
;
1501 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
1504 if (cpu_has_mips_r2
) {
1505 unsigned int enable
= 0x0000000f | cpu_hwrena_impl_bits
;
1507 if (!noulri
&& cpu_has_userlocal
)
1508 enable
|= (1 << 29);
1510 write_c0_hwrena(enable
);
1513 #ifdef CONFIG_MIPS_MT_SMTC
1515 #endif /* CONFIG_MIPS_MT_SMTC */
1517 if (cpu_has_veic
|| cpu_has_vint
) {
1518 unsigned long sr
= set_c0_status(ST0_BEV
);
1519 write_c0_ebase(ebase
);
1520 write_c0_status(sr
);
1521 /* Setting vector spacing enables EI/VI mode */
1522 change_c0_intctl(0x3e0, VECTORSPACING
);
1524 if (cpu_has_divec
) {
1525 if (cpu_has_mipsmt
) {
1526 unsigned int vpflags
= dvpe();
1527 set_c0_cause(CAUSEF_IV
);
1530 set_c0_cause(CAUSEF_IV
);
1534 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1536 * o read IntCtl.IPTI to determine the timer interrupt
1537 * o read IntCtl.IPPCI to determine the performance counter interrupt
1539 if (cpu_has_mips_r2
) {
1540 cp0_compare_irq_shift
= CAUSEB_TI
- CAUSEB_IP
;
1541 cp0_compare_irq
= (read_c0_intctl() >> INTCTLB_IPTI
) & 7;
1542 cp0_perfcount_irq
= (read_c0_intctl() >> INTCTLB_IPPCI
) & 7;
1543 if (cp0_perfcount_irq
== cp0_compare_irq
)
1544 cp0_perfcount_irq
= -1;
1546 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
1547 cp0_compare_irq_shift
= cp0_compare_irq
;
1548 cp0_perfcount_irq
= -1;
1551 #ifdef CONFIG_MIPS_MT_SMTC
1553 #endif /* CONFIG_MIPS_MT_SMTC */
1555 cpu_data
[cpu
].asid_cache
= ASID_FIRST_VERSION
;
1556 TLBMISS_HANDLER_SETUP();
1558 atomic_inc(&init_mm
.mm_count
);
1559 current
->active_mm
= &init_mm
;
1560 BUG_ON(current
->mm
);
1561 enter_lazy_tlb(&init_mm
, current
);
1563 #ifdef CONFIG_MIPS_MT_SMTC
1565 #endif /* CONFIG_MIPS_MT_SMTC */
1568 #ifdef CONFIG_MIPS_MT_SMTC
1569 } else if (!secondaryTC
) {
1571 * First TC in non-boot VPE must do subset of tlb_init()
1572 * for MMU countrol registers.
1574 write_c0_pagemask(PM_DEFAULT_MASK
);
1577 #endif /* CONFIG_MIPS_MT_SMTC */
1580 /* Install CPU exception handler */
1581 void __init
set_handler(unsigned long offset
, void *addr
, unsigned long size
)
1583 memcpy((void *)(ebase
+ offset
), addr
, size
);
1584 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
1587 static char panic_null_cerr
[] __cpuinitdata
=
1588 "Trying to set NULL cache error exception handler";
1591 * Install uncached CPU exception handler.
1592 * This is suitable only for the cache error exception which is the only
1593 * exception handler that is being run uncached.
1595 void __cpuinit
set_uncached_handler(unsigned long offset
, void *addr
,
1598 unsigned long uncached_ebase
= CKSEG1ADDR(ebase
);
1601 panic(panic_null_cerr
);
1603 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
1606 static int __initdata rdhwr_noopt
;
1607 static int __init
set_rdhwr_noopt(char *str
)
1613 __setup("rdhwr_noopt", set_rdhwr_noopt
);
1615 void __init
trap_init(void)
1617 extern char except_vec3_generic
, except_vec3_r4000
;
1618 extern char except_vec4
;
1623 rollback
= (cpu_wait
== r4k_wait
);
1625 #if defined(CONFIG_KGDB)
1626 if (kgdb_early_setup
)
1627 return; /* Already done */
1630 if (cpu_has_veic
|| cpu_has_vint
) {
1631 unsigned long size
= 0x200 + VECTORSPACING
*64;
1632 ebase
= (unsigned long)
1633 __alloc_bootmem(size
, 1 << fls(size
), 0);
1636 if (cpu_has_mips_r2
)
1637 ebase
+= (read_c0_ebase() & 0x3ffff000);
1640 per_cpu_trap_init();
1643 * Copy the generic exception handlers to their final destination.
1644 * This will be overriden later as suitable for a particular
1647 set_handler(0x180, &except_vec3_generic
, 0x80);
1650 * Setup default vectors
1652 for (i
= 0; i
<= 31; i
++)
1653 set_except_vector(i
, handle_reserved
);
1656 * Copy the EJTAG debug exception vector handler code to it's final
1659 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
1660 board_ejtag_handler_setup();
1663 * Only some CPUs have the watch exceptions.
1666 set_except_vector(23, handle_watch
);
1669 * Initialise interrupt handlers
1671 if (cpu_has_veic
|| cpu_has_vint
) {
1672 int nvec
= cpu_has_veic
? 64 : 8;
1673 for (i
= 0; i
< nvec
; i
++)
1674 set_vi_handler(i
, NULL
);
1676 else if (cpu_has_divec
)
1677 set_handler(0x200, &except_vec4
, 0x8);
1680 * Some CPUs can enable/disable for cache parity detection, but does
1681 * it different ways.
1683 parity_protection_init();
1686 * The Data Bus Errors / Instruction Bus Errors are signaled
1687 * by external hardware. Therefore these two exceptions
1688 * may have board specific handlers.
1693 set_except_vector(0, rollback
? rollback_handle_int
: handle_int
);
1694 set_except_vector(1, handle_tlbm
);
1695 set_except_vector(2, handle_tlbl
);
1696 set_except_vector(3, handle_tlbs
);
1698 set_except_vector(4, handle_adel
);
1699 set_except_vector(5, handle_ades
);
1701 set_except_vector(6, handle_ibe
);
1702 set_except_vector(7, handle_dbe
);
1704 set_except_vector(8, handle_sys
);
1705 set_except_vector(9, handle_bp
);
1706 set_except_vector(10, rdhwr_noopt
? handle_ri
:
1707 (cpu_has_vtag_icache
?
1708 handle_ri_rdhwr_vivt
: handle_ri_rdhwr
));
1709 set_except_vector(11, handle_cpu
);
1710 set_except_vector(12, handle_ov
);
1711 set_except_vector(13, handle_tr
);
1713 if (current_cpu_type() == CPU_R6000
||
1714 current_cpu_type() == CPU_R6000A
) {
1716 * The R6000 is the only R-series CPU that features a machine
1717 * check exception (similar to the R4000 cache error) and
1718 * unaligned ldc1/sdc1 exception. The handlers have not been
1719 * written yet. Well, anyway there is no R6000 machine on the
1720 * current list of targets for Linux/MIPS.
1721 * (Duh, crap, there is someone with a triple R6k machine)
1723 //set_except_vector(14, handle_mc);
1724 //set_except_vector(15, handle_ndc);
1728 if (board_nmi_handler_setup
)
1729 board_nmi_handler_setup();
1731 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
1732 set_except_vector(15, handle_fpe
);
1734 set_except_vector(22, handle_mdmx
);
1737 set_except_vector(24, handle_mcheck
);
1740 set_except_vector(25, handle_mt
);
1742 set_except_vector(26, handle_dsp
);
1745 /* Special exception: R4[04]00 uses also the divec space. */
1746 memcpy((void *)(ebase
+ 0x180), &except_vec3_r4000
, 0x100);
1747 else if (cpu_has_4kex
)
1748 memcpy((void *)(ebase
+ 0x180), &except_vec3_generic
, 0x80);
1750 memcpy((void *)(ebase
+ 0x080), &except_vec3_generic
, 0x80);
1752 local_flush_icache_range(ebase
, ebase
+ 0x400);
1753 flush_tlb_handlers();
1755 sort_extable(__start___dbe_table
, __stop___dbe_table
);
1757 cu2_notifier(default_cu2_call
, 0x80000000); /* Run last */