2 * i8253.c 8253/PIT functions
5 #include <linux/clockchips.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/smp.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq.h>
14 #include <asm/delay.h>
15 #include <asm/i8253.h>
19 DEFINE_RAW_SPINLOCK(i8253_lock
);
20 EXPORT_SYMBOL(i8253_lock
);
23 * Initialize the PIT timer.
25 * This is also called after resume to bring the PIT into operation again.
27 static void init_pit_timer(enum clock_event_mode mode
,
28 struct clock_event_device
*evt
)
30 raw_spin_lock(&i8253_lock
);
33 case CLOCK_EVT_MODE_PERIODIC
:
34 /* binary, mode 2, LSB/MSB, ch 0 */
35 outb_p(0x34, PIT_MODE
);
36 outb_p(LATCH
& 0xff , PIT_CH0
); /* LSB */
37 outb(LATCH
>> 8 , PIT_CH0
); /* MSB */
40 case CLOCK_EVT_MODE_SHUTDOWN
:
41 case CLOCK_EVT_MODE_UNUSED
:
42 if (evt
->mode
== CLOCK_EVT_MODE_PERIODIC
||
43 evt
->mode
== CLOCK_EVT_MODE_ONESHOT
) {
44 outb_p(0x30, PIT_MODE
);
50 case CLOCK_EVT_MODE_ONESHOT
:
52 outb_p(0x38, PIT_MODE
);
55 case CLOCK_EVT_MODE_RESUME
:
56 /* Nothing to do here */
59 raw_spin_unlock(&i8253_lock
);
63 * Program the next event in oneshot mode
65 * Delta is given in PIT ticks
67 static int pit_next_event(unsigned long delta
, struct clock_event_device
*evt
)
69 raw_spin_lock(&i8253_lock
);
70 outb_p(delta
& 0xff , PIT_CH0
); /* LSB */
71 outb(delta
>> 8 , PIT_CH0
); /* MSB */
72 raw_spin_unlock(&i8253_lock
);
78 * On UP the PIT can serve all of the possible timer functions. On SMP systems
79 * it can be solely used for the global tick.
81 * The profiling and update capabilites are switched off once the local apic is
82 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
83 * !using_apic_timer decisions in do_timer_interrupt_hook()
85 static struct clock_event_device pit_clockevent
= {
87 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
88 .set_mode
= init_pit_timer
,
89 .set_next_event
= pit_next_event
,
93 static irqreturn_t
timer_interrupt(int irq
, void *dev_id
)
95 pit_clockevent
.event_handler(&pit_clockevent
);
100 static struct irqaction irq0
= {
101 .handler
= timer_interrupt
,
102 .flags
= IRQF_DISABLED
| IRQF_NOBALANCING
| IRQF_TIMER
,
107 * Initialize the conversion factor and the min/max deltas of the clock event
108 * structure and register the clock event source with the framework.
110 void __init
setup_pit_timer(void)
112 struct clock_event_device
*cd
= &pit_clockevent
;
113 unsigned int cpu
= smp_processor_id();
116 * Start pit with the boot cpu mask and make it global after the
117 * IO_APIC has been initialized.
119 cd
->cpumask
= cpumask_of(cpu
);
120 clockevent_set_clock(cd
, CLOCK_TICK_RATE
);
121 cd
->max_delta_ns
= clockevent_delta2ns(0x7FFF, cd
);
122 cd
->min_delta_ns
= clockevent_delta2ns(0xF, cd
);
123 clockevents_register_device(cd
);
129 * Since the PIT overflows every tick, its not very useful
130 * to just read by itself. So use jiffies to emulate a free
133 static cycle_t
pit_read(struct clocksource
*cs
)
138 static int old_count
;
141 raw_spin_lock_irqsave(&i8253_lock
, flags
);
143 * Although our caller may have the read side of xtime_lock,
144 * this is now a seqlock, and we are cheating in this routine
145 * by having side effects on state that we cannot undo if
146 * there is a collision on the seqlock and our caller has to
147 * retry. (Namely, old_jifs and old_count.) So we must treat
148 * jiffies as volatile despite the lock. We read jiffies
149 * before latching the timer count to guarantee that although
150 * the jiffies value might be older than the count (that is,
151 * the counter may underflow between the last point where
152 * jiffies was incremented and the point where we latch the
153 * count), it cannot be newer.
156 outb_p(0x00, PIT_MODE
); /* latch the count ASAP */
157 count
= inb_p(PIT_CH0
); /* read the latched count */
158 count
|= inb_p(PIT_CH0
) << 8;
160 /* VIA686a test code... reset the latch if count > max + 1 */
162 outb_p(0x34, PIT_MODE
);
163 outb_p(LATCH
& 0xff, PIT_CH0
);
164 outb(LATCH
>> 8, PIT_CH0
);
169 * It's possible for count to appear to go the wrong way for a
172 * 1. The timer counter underflows, but we haven't handled the
173 * resulting interrupt and incremented jiffies yet.
174 * 2. Hardware problem with the timer, not giving us continuous time,
175 * the counter does small "jumps" upwards on some Pentium systems,
176 * (see c't 95/10 page 335 for Neptun bug.)
178 * Previous attempts to handle these cases intelligently were
179 * buggy, so we just do the simple thing now.
181 if (count
> old_count
&& jifs
== old_jifs
) {
187 raw_spin_unlock_irqrestore(&i8253_lock
, flags
);
189 count
= (LATCH
- 1) - count
;
191 return (cycle_t
)(jifs
* LATCH
) + count
;
194 static struct clocksource clocksource_pit
= {
198 .mask
= CLOCKSOURCE_MASK(32),
203 static int __init
init_pit_clocksource(void)
205 if (num_possible_cpus() > 1) /* PIT does not scale! */
208 clocksource_pit
.mult
= clocksource_hz2mult(CLOCK_TICK_RATE
, 20);
209 return clocksource_register(&clocksource_pit
);
211 arch_initcall(init_pit_clocksource
);