2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
39 struct scsi_host_sg_pool
{
42 struct kmem_cache
*slab
;
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
50 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 SP(SCSI_MAX_SG_SEGMENTS
)
69 struct kmem_cache
*scsi_sdb_cache
;
72 #include <acpi/acpi_bus.h>
74 int scsi_register_acpi_bus_type(struct acpi_bus_type
*bus
)
76 bus
->bus
= &scsi_bus_type
;
77 return register_acpi_bus_type(bus
);
79 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type
);
81 void scsi_unregister_acpi_bus_type(struct acpi_bus_type
*bus
)
83 unregister_acpi_bus_type(bus
);
85 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type
);
89 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
90 * not change behaviour from the previous unplug mechanism, experimentation
91 * may prove this needs changing.
93 #define SCSI_QUEUE_DELAY 3
96 * Function: scsi_unprep_request()
98 * Purpose: Remove all preparation done for a request, including its
99 * associated scsi_cmnd, so that it can be requeued.
101 * Arguments: req - request to unprepare
103 * Lock status: Assumed that no locks are held upon entry.
107 static void scsi_unprep_request(struct request
*req
)
109 struct scsi_cmnd
*cmd
= req
->special
;
111 blk_unprep_request(req
);
114 scsi_put_command(cmd
);
118 * __scsi_queue_insert - private queue insertion
119 * @cmd: The SCSI command being requeued
120 * @reason: The reason for the requeue
121 * @unbusy: Whether the queue should be unbusied
123 * This is a private queue insertion. The public interface
124 * scsi_queue_insert() always assumes the queue should be unbusied
125 * because it's always called before the completion. This function is
126 * for a requeue after completion, which should only occur in this
129 static void __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
131 struct Scsi_Host
*host
= cmd
->device
->host
;
132 struct scsi_device
*device
= cmd
->device
;
133 struct scsi_target
*starget
= scsi_target(device
);
134 struct request_queue
*q
= device
->request_queue
;
138 printk("Inserting command %p into mlqueue\n", cmd
));
141 * Set the appropriate busy bit for the device/host.
143 * If the host/device isn't busy, assume that something actually
144 * completed, and that we should be able to queue a command now.
146 * Note that the prior mid-layer assumption that any host could
147 * always queue at least one command is now broken. The mid-layer
148 * will implement a user specifiable stall (see
149 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
150 * if a command is requeued with no other commands outstanding
151 * either for the device or for the host.
154 case SCSI_MLQUEUE_HOST_BUSY
:
155 host
->host_blocked
= host
->max_host_blocked
;
157 case SCSI_MLQUEUE_DEVICE_BUSY
:
158 case SCSI_MLQUEUE_EH_RETRY
:
159 device
->device_blocked
= device
->max_device_blocked
;
161 case SCSI_MLQUEUE_TARGET_BUSY
:
162 starget
->target_blocked
= starget
->max_target_blocked
;
167 * Decrement the counters, since these commands are no longer
168 * active on the host/device.
171 scsi_device_unbusy(device
);
174 * Requeue this command. It will go before all other commands
175 * that are already in the queue. Schedule requeue work under
176 * lock such that the kblockd_schedule_work() call happens
177 * before blk_cleanup_queue() finishes.
179 spin_lock_irqsave(q
->queue_lock
, flags
);
180 blk_requeue_request(q
, cmd
->request
);
181 kblockd_schedule_work(q
, &device
->requeue_work
);
182 spin_unlock_irqrestore(q
->queue_lock
, flags
);
186 * Function: scsi_queue_insert()
188 * Purpose: Insert a command in the midlevel queue.
190 * Arguments: cmd - command that we are adding to queue.
191 * reason - why we are inserting command to queue.
193 * Lock status: Assumed that lock is not held upon entry.
197 * Notes: We do this for one of two cases. Either the host is busy
198 * and it cannot accept any more commands for the time being,
199 * or the device returned QUEUE_FULL and can accept no more
201 * Notes: This could be called either from an interrupt context or a
202 * normal process context.
204 void scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
206 __scsi_queue_insert(cmd
, reason
, 1);
209 * scsi_execute - insert request and wait for the result
212 * @data_direction: data direction
213 * @buffer: data buffer
214 * @bufflen: len of buffer
215 * @sense: optional sense buffer
216 * @timeout: request timeout in seconds
217 * @retries: number of times to retry request
218 * @flags: or into request flags;
219 * @resid: optional residual length
221 * returns the req->errors value which is the scsi_cmnd result
224 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
225 int data_direction
, void *buffer
, unsigned bufflen
,
226 unsigned char *sense
, int timeout
, int retries
, int flags
,
230 int write
= (data_direction
== DMA_TO_DEVICE
);
231 int ret
= DRIVER_ERROR
<< 24;
233 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
237 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
238 buffer
, bufflen
, __GFP_WAIT
))
241 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
242 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
245 req
->retries
= retries
;
246 req
->timeout
= timeout
;
247 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
248 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
251 * head injection *required* here otherwise quiesce won't work
253 blk_execute_rq(req
->q
, NULL
, req
, 1);
256 * Some devices (USB mass-storage in particular) may transfer
257 * garbage data together with a residue indicating that the data
258 * is invalid. Prevent the garbage from being misinterpreted
259 * and prevent security leaks by zeroing out the excess data.
261 if (unlikely(req
->resid_len
> 0 && req
->resid_len
<= bufflen
))
262 memset(buffer
+ (bufflen
- req
->resid_len
), 0, req
->resid_len
);
265 *resid
= req
->resid_len
;
268 blk_put_request(req
);
272 EXPORT_SYMBOL(scsi_execute
);
275 int scsi_execute_req(struct scsi_device
*sdev
, const unsigned char *cmd
,
276 int data_direction
, void *buffer
, unsigned bufflen
,
277 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
,
284 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
286 return DRIVER_ERROR
<< 24;
288 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
289 sense
, timeout
, retries
, 0, resid
);
291 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
296 EXPORT_SYMBOL(scsi_execute_req
);
299 * Function: scsi_init_cmd_errh()
301 * Purpose: Initialize cmd fields related to error handling.
303 * Arguments: cmd - command that is ready to be queued.
305 * Notes: This function has the job of initializing a number of
306 * fields related to error handling. Typically this will
307 * be called once for each command, as required.
309 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
311 cmd
->serial_number
= 0;
312 scsi_set_resid(cmd
, 0);
313 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
314 if (cmd
->cmd_len
== 0)
315 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
318 void scsi_device_unbusy(struct scsi_device
*sdev
)
320 struct Scsi_Host
*shost
= sdev
->host
;
321 struct scsi_target
*starget
= scsi_target(sdev
);
324 spin_lock_irqsave(shost
->host_lock
, flags
);
326 starget
->target_busy
--;
327 if (unlikely(scsi_host_in_recovery(shost
) &&
328 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
329 scsi_eh_wakeup(shost
);
330 spin_unlock(shost
->host_lock
);
331 spin_lock(sdev
->request_queue
->queue_lock
);
333 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
337 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338 * and call blk_run_queue for all the scsi_devices on the target -
339 * including current_sdev first.
341 * Called with *no* scsi locks held.
343 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
345 struct Scsi_Host
*shost
= current_sdev
->host
;
346 struct scsi_device
*sdev
, *tmp
;
347 struct scsi_target
*starget
= scsi_target(current_sdev
);
350 spin_lock_irqsave(shost
->host_lock
, flags
);
351 starget
->starget_sdev_user
= NULL
;
352 spin_unlock_irqrestore(shost
->host_lock
, flags
);
355 * Call blk_run_queue for all LUNs on the target, starting with
356 * current_sdev. We race with others (to set starget_sdev_user),
357 * but in most cases, we will be first. Ideally, each LU on the
358 * target would get some limited time or requests on the target.
360 blk_run_queue(current_sdev
->request_queue
);
362 spin_lock_irqsave(shost
->host_lock
, flags
);
363 if (starget
->starget_sdev_user
)
365 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
366 same_target_siblings
) {
367 if (sdev
== current_sdev
)
369 if (scsi_device_get(sdev
))
372 spin_unlock_irqrestore(shost
->host_lock
, flags
);
373 blk_run_queue(sdev
->request_queue
);
374 spin_lock_irqsave(shost
->host_lock
, flags
);
376 scsi_device_put(sdev
);
379 spin_unlock_irqrestore(shost
->host_lock
, flags
);
382 static inline int scsi_device_is_busy(struct scsi_device
*sdev
)
384 if (sdev
->device_busy
>= sdev
->queue_depth
|| sdev
->device_blocked
)
390 static inline int scsi_target_is_busy(struct scsi_target
*starget
)
392 return ((starget
->can_queue
> 0 &&
393 starget
->target_busy
>= starget
->can_queue
) ||
394 starget
->target_blocked
);
397 static inline int scsi_host_is_busy(struct Scsi_Host
*shost
)
399 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
400 shost
->host_blocked
|| shost
->host_self_blocked
)
407 * Function: scsi_run_queue()
409 * Purpose: Select a proper request queue to serve next
411 * Arguments: q - last request's queue
415 * Notes: The previous command was completely finished, start
416 * a new one if possible.
418 static void scsi_run_queue(struct request_queue
*q
)
420 struct scsi_device
*sdev
= q
->queuedata
;
421 struct Scsi_Host
*shost
;
422 LIST_HEAD(starved_list
);
426 if (scsi_target(sdev
)->single_lun
)
427 scsi_single_lun_run(sdev
);
429 spin_lock_irqsave(shost
->host_lock
, flags
);
430 list_splice_init(&shost
->starved_list
, &starved_list
);
432 while (!list_empty(&starved_list
)) {
434 * As long as shost is accepting commands and we have
435 * starved queues, call blk_run_queue. scsi_request_fn
436 * drops the queue_lock and can add us back to the
439 * host_lock protects the starved_list and starved_entry.
440 * scsi_request_fn must get the host_lock before checking
441 * or modifying starved_list or starved_entry.
443 if (scsi_host_is_busy(shost
))
446 sdev
= list_entry(starved_list
.next
,
447 struct scsi_device
, starved_entry
);
448 list_del_init(&sdev
->starved_entry
);
449 if (scsi_target_is_busy(scsi_target(sdev
))) {
450 list_move_tail(&sdev
->starved_entry
,
451 &shost
->starved_list
);
455 spin_unlock(shost
->host_lock
);
456 spin_lock(sdev
->request_queue
->queue_lock
);
457 __blk_run_queue(sdev
->request_queue
);
458 spin_unlock(sdev
->request_queue
->queue_lock
);
459 spin_lock(shost
->host_lock
);
461 /* put any unprocessed entries back */
462 list_splice(&starved_list
, &shost
->starved_list
);
463 spin_unlock_irqrestore(shost
->host_lock
, flags
);
468 void scsi_requeue_run_queue(struct work_struct
*work
)
470 struct scsi_device
*sdev
;
471 struct request_queue
*q
;
473 sdev
= container_of(work
, struct scsi_device
, requeue_work
);
474 q
= sdev
->request_queue
;
479 * Function: scsi_requeue_command()
481 * Purpose: Handle post-processing of completed commands.
483 * Arguments: q - queue to operate on
484 * cmd - command that may need to be requeued.
488 * Notes: After command completion, there may be blocks left
489 * over which weren't finished by the previous command
490 * this can be for a number of reasons - the main one is
491 * I/O errors in the middle of the request, in which case
492 * we need to request the blocks that come after the bad
494 * Notes: Upon return, cmd is a stale pointer.
496 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
498 struct scsi_device
*sdev
= cmd
->device
;
499 struct request
*req
= cmd
->request
;
503 * We need to hold a reference on the device to avoid the queue being
504 * killed after the unlock and before scsi_run_queue is invoked which
505 * may happen because scsi_unprep_request() puts the command which
506 * releases its reference on the device.
508 get_device(&sdev
->sdev_gendev
);
510 spin_lock_irqsave(q
->queue_lock
, flags
);
511 scsi_unprep_request(req
);
512 blk_requeue_request(q
, req
);
513 spin_unlock_irqrestore(q
->queue_lock
, flags
);
517 put_device(&sdev
->sdev_gendev
);
520 void scsi_next_command(struct scsi_cmnd
*cmd
)
522 struct scsi_device
*sdev
= cmd
->device
;
523 struct request_queue
*q
= sdev
->request_queue
;
525 /* need to hold a reference on the device before we let go of the cmd */
526 get_device(&sdev
->sdev_gendev
);
528 scsi_put_command(cmd
);
531 /* ok to remove device now */
532 put_device(&sdev
->sdev_gendev
);
535 void scsi_run_host_queues(struct Scsi_Host
*shost
)
537 struct scsi_device
*sdev
;
539 shost_for_each_device(sdev
, shost
)
540 scsi_run_queue(sdev
->request_queue
);
543 static void __scsi_release_buffers(struct scsi_cmnd
*, int);
546 * Function: scsi_end_request()
548 * Purpose: Post-processing of completed commands (usually invoked at end
549 * of upper level post-processing and scsi_io_completion).
551 * Arguments: cmd - command that is complete.
552 * error - 0 if I/O indicates success, < 0 for I/O error.
553 * bytes - number of bytes of completed I/O
554 * requeue - indicates whether we should requeue leftovers.
556 * Lock status: Assumed that lock is not held upon entry.
558 * Returns: cmd if requeue required, NULL otherwise.
560 * Notes: This is called for block device requests in order to
561 * mark some number of sectors as complete.
563 * We are guaranteeing that the request queue will be goosed
564 * at some point during this call.
565 * Notes: If cmd was requeued, upon return it will be a stale pointer.
567 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int error
,
568 int bytes
, int requeue
)
570 struct request_queue
*q
= cmd
->device
->request_queue
;
571 struct request
*req
= cmd
->request
;
574 * If there are blocks left over at the end, set up the command
575 * to queue the remainder of them.
577 if (blk_end_request(req
, error
, bytes
)) {
578 /* kill remainder if no retrys */
579 if (error
&& scsi_noretry_cmd(cmd
))
580 blk_end_request_all(req
, error
);
584 * Bleah. Leftovers again. Stick the
585 * leftovers in the front of the
586 * queue, and goose the queue again.
588 scsi_release_buffers(cmd
);
589 scsi_requeue_command(q
, cmd
);
597 * This will goose the queue request function at the end, so we don't
598 * need to worry about launching another command.
600 __scsi_release_buffers(cmd
, 0);
601 scsi_next_command(cmd
);
605 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
609 BUG_ON(nents
> SCSI_MAX_SG_SEGMENTS
);
614 index
= get_count_order(nents
) - 3;
619 static void scsi_sg_free(struct scatterlist
*sgl
, unsigned int nents
)
621 struct scsi_host_sg_pool
*sgp
;
623 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
624 mempool_free(sgl
, sgp
->pool
);
627 static struct scatterlist
*scsi_sg_alloc(unsigned int nents
, gfp_t gfp_mask
)
629 struct scsi_host_sg_pool
*sgp
;
631 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
632 return mempool_alloc(sgp
->pool
, gfp_mask
);
635 static int scsi_alloc_sgtable(struct scsi_data_buffer
*sdb
, int nents
,
642 ret
= __sg_alloc_table(&sdb
->table
, nents
, SCSI_MAX_SG_SEGMENTS
,
643 gfp_mask
, scsi_sg_alloc
);
645 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
,
651 static void scsi_free_sgtable(struct scsi_data_buffer
*sdb
)
653 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
, scsi_sg_free
);
656 static void __scsi_release_buffers(struct scsi_cmnd
*cmd
, int do_bidi_check
)
659 if (cmd
->sdb
.table
.nents
)
660 scsi_free_sgtable(&cmd
->sdb
);
662 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
664 if (do_bidi_check
&& scsi_bidi_cmnd(cmd
)) {
665 struct scsi_data_buffer
*bidi_sdb
=
666 cmd
->request
->next_rq
->special
;
667 scsi_free_sgtable(bidi_sdb
);
668 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
669 cmd
->request
->next_rq
->special
= NULL
;
672 if (scsi_prot_sg_count(cmd
))
673 scsi_free_sgtable(cmd
->prot_sdb
);
677 * Function: scsi_release_buffers()
679 * Purpose: Completion processing for block device I/O requests.
681 * Arguments: cmd - command that we are bailing.
683 * Lock status: Assumed that no lock is held upon entry.
687 * Notes: In the event that an upper level driver rejects a
688 * command, we must release resources allocated during
689 * the __init_io() function. Primarily this would involve
690 * the scatter-gather table, and potentially any bounce
693 void scsi_release_buffers(struct scsi_cmnd
*cmd
)
695 __scsi_release_buffers(cmd
, 1);
697 EXPORT_SYMBOL(scsi_release_buffers
);
699 static int __scsi_error_from_host_byte(struct scsi_cmnd
*cmd
, int result
)
703 switch(host_byte(result
)) {
704 case DID_TRANSPORT_FAILFAST
:
707 case DID_TARGET_FAILURE
:
708 set_host_byte(cmd
, DID_OK
);
711 case DID_NEXUS_FAILURE
:
712 set_host_byte(cmd
, DID_OK
);
724 * Function: scsi_io_completion()
726 * Purpose: Completion processing for block device I/O requests.
728 * Arguments: cmd - command that is finished.
730 * Lock status: Assumed that no lock is held upon entry.
734 * Notes: This function is matched in terms of capabilities to
735 * the function that created the scatter-gather list.
736 * In other words, if there are no bounce buffers
737 * (the normal case for most drivers), we don't need
738 * the logic to deal with cleaning up afterwards.
740 * We must call scsi_end_request(). This will finish off
741 * the specified number of sectors. If we are done, the
742 * command block will be released and the queue function
743 * will be goosed. If we are not done then we have to
744 * figure out what to do next:
746 * a) We can call scsi_requeue_command(). The request
747 * will be unprepared and put back on the queue. Then
748 * a new command will be created for it. This should
749 * be used if we made forward progress, or if we want
750 * to switch from READ(10) to READ(6) for example.
752 * b) We can call scsi_queue_insert(). The request will
753 * be put back on the queue and retried using the same
754 * command as before, possibly after a delay.
756 * c) We can call blk_end_request() with -EIO to fail
757 * the remainder of the request.
759 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
761 int result
= cmd
->result
;
762 struct request_queue
*q
= cmd
->device
->request_queue
;
763 struct request
*req
= cmd
->request
;
765 struct scsi_sense_hdr sshdr
;
767 int sense_deferred
= 0;
768 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
769 ACTION_DELAYED_RETRY
} action
;
770 char *description
= NULL
;
773 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
775 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
778 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
) { /* SG_IO ioctl from block level */
780 if (sense_valid
&& req
->sense
) {
782 * SG_IO wants current and deferred errors
784 int len
= 8 + cmd
->sense_buffer
[7];
786 if (len
> SCSI_SENSE_BUFFERSIZE
)
787 len
= SCSI_SENSE_BUFFERSIZE
;
788 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
789 req
->sense_len
= len
;
792 error
= __scsi_error_from_host_byte(cmd
, result
);
795 * __scsi_error_from_host_byte may have reset the host_byte
797 req
->errors
= cmd
->result
;
799 req
->resid_len
= scsi_get_resid(cmd
);
801 if (scsi_bidi_cmnd(cmd
)) {
803 * Bidi commands Must be complete as a whole,
804 * both sides at once.
806 req
->next_rq
->resid_len
= scsi_in(cmd
)->resid
;
808 scsi_release_buffers(cmd
);
809 blk_end_request_all(req
, 0);
811 scsi_next_command(cmd
);
816 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
817 BUG_ON(blk_bidi_rq(req
));
820 * Next deal with any sectors which we were able to correctly
823 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
825 blk_rq_sectors(req
), good_bytes
));
828 * Recovered errors need reporting, but they're always treated
829 * as success, so fiddle the result code here. For BLOCK_PC
830 * we already took a copy of the original into rq->errors which
831 * is what gets returned to the user
833 if (sense_valid
&& (sshdr
.sense_key
== RECOVERED_ERROR
)) {
834 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
835 * print since caller wants ATA registers. Only occurs on
836 * SCSI ATA PASS_THROUGH commands when CK_COND=1
838 if ((sshdr
.asc
== 0x0) && (sshdr
.ascq
== 0x1d))
840 else if (!(req
->cmd_flags
& REQ_QUIET
))
841 scsi_print_sense("", cmd
);
843 /* BLOCK_PC may have set error */
848 * A number of bytes were successfully read. If there
849 * are leftovers and there is some kind of error
850 * (result != 0), retry the rest.
852 if (scsi_end_request(cmd
, error
, good_bytes
, result
== 0) == NULL
)
855 error
= __scsi_error_from_host_byte(cmd
, result
);
857 if (host_byte(result
) == DID_RESET
) {
858 /* Third party bus reset or reset for error recovery
859 * reasons. Just retry the command and see what
862 action
= ACTION_RETRY
;
863 } else if (sense_valid
&& !sense_deferred
) {
864 switch (sshdr
.sense_key
) {
866 if (cmd
->device
->removable
) {
867 /* Detected disc change. Set a bit
868 * and quietly refuse further access.
870 cmd
->device
->changed
= 1;
871 description
= "Media Changed";
872 action
= ACTION_FAIL
;
874 /* Must have been a power glitch, or a
875 * bus reset. Could not have been a
876 * media change, so we just retry the
877 * command and see what happens.
879 action
= ACTION_RETRY
;
882 case ILLEGAL_REQUEST
:
883 /* If we had an ILLEGAL REQUEST returned, then
884 * we may have performed an unsupported
885 * command. The only thing this should be
886 * would be a ten byte read where only a six
887 * byte read was supported. Also, on a system
888 * where READ CAPACITY failed, we may have
889 * read past the end of the disk.
891 if ((cmd
->device
->use_10_for_rw
&&
892 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
893 (cmd
->cmnd
[0] == READ_10
||
894 cmd
->cmnd
[0] == WRITE_10
)) {
895 /* This will issue a new 6-byte command. */
896 cmd
->device
->use_10_for_rw
= 0;
897 action
= ACTION_REPREP
;
898 } else if (sshdr
.asc
== 0x10) /* DIX */ {
899 description
= "Host Data Integrity Failure";
900 action
= ACTION_FAIL
;
902 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
903 } else if (sshdr
.asc
== 0x20 || sshdr
.asc
== 0x24) {
904 switch (cmd
->cmnd
[0]) {
906 description
= "Discard failure";
910 if (cmd
->cmnd
[1] & 0x8)
911 description
= "Discard failure";
914 "Write same failure";
917 description
= "Invalid command failure";
920 action
= ACTION_FAIL
;
923 action
= ACTION_FAIL
;
925 case ABORTED_COMMAND
:
926 action
= ACTION_FAIL
;
927 if (sshdr
.asc
== 0x10) { /* DIF */
928 description
= "Target Data Integrity Failure";
933 /* If the device is in the process of becoming
934 * ready, or has a temporary blockage, retry.
936 if (sshdr
.asc
== 0x04) {
937 switch (sshdr
.ascq
) {
938 case 0x01: /* becoming ready */
939 case 0x04: /* format in progress */
940 case 0x05: /* rebuild in progress */
941 case 0x06: /* recalculation in progress */
942 case 0x07: /* operation in progress */
943 case 0x08: /* Long write in progress */
944 case 0x09: /* self test in progress */
945 case 0x14: /* space allocation in progress */
946 action
= ACTION_DELAYED_RETRY
;
949 description
= "Device not ready";
950 action
= ACTION_FAIL
;
954 description
= "Device not ready";
955 action
= ACTION_FAIL
;
958 case VOLUME_OVERFLOW
:
959 /* See SSC3rXX or current. */
960 action
= ACTION_FAIL
;
963 description
= "Unhandled sense code";
964 action
= ACTION_FAIL
;
968 description
= "Unhandled error code";
969 action
= ACTION_FAIL
;
974 /* Give up and fail the remainder of the request */
975 scsi_release_buffers(cmd
);
976 if (!(req
->cmd_flags
& REQ_QUIET
)) {
978 scmd_printk(KERN_INFO
, cmd
, "%s\n",
980 scsi_print_result(cmd
);
981 if (driver_byte(result
) & DRIVER_SENSE
)
982 scsi_print_sense("", cmd
);
983 scsi_print_command(cmd
);
985 if (blk_end_request_err(req
, error
))
986 scsi_requeue_command(q
, cmd
);
988 scsi_next_command(cmd
);
991 /* Unprep the request and put it back at the head of the queue.
992 * A new command will be prepared and issued.
994 scsi_release_buffers(cmd
);
995 scsi_requeue_command(q
, cmd
);
998 /* Retry the same command immediately */
999 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
1001 case ACTION_DELAYED_RETRY
:
1002 /* Retry the same command after a delay */
1003 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
1008 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
,
1014 * If sg table allocation fails, requeue request later.
1016 if (unlikely(scsi_alloc_sgtable(sdb
, req
->nr_phys_segments
,
1018 return BLKPREP_DEFER
;
1024 * Next, walk the list, and fill in the addresses and sizes of
1027 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
1028 BUG_ON(count
> sdb
->table
.nents
);
1029 sdb
->table
.nents
= count
;
1030 sdb
->length
= blk_rq_bytes(req
);
1035 * Function: scsi_init_io()
1037 * Purpose: SCSI I/O initialize function.
1039 * Arguments: cmd - Command descriptor we wish to initialize
1041 * Returns: 0 on success
1042 * BLKPREP_DEFER if the failure is retryable
1043 * BLKPREP_KILL if the failure is fatal
1045 int scsi_init_io(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
1047 struct request
*rq
= cmd
->request
;
1049 int error
= scsi_init_sgtable(rq
, &cmd
->sdb
, gfp_mask
);
1053 if (blk_bidi_rq(rq
)) {
1054 struct scsi_data_buffer
*bidi_sdb
= kmem_cache_zalloc(
1055 scsi_sdb_cache
, GFP_ATOMIC
);
1057 error
= BLKPREP_DEFER
;
1061 rq
->next_rq
->special
= bidi_sdb
;
1062 error
= scsi_init_sgtable(rq
->next_rq
, bidi_sdb
, GFP_ATOMIC
);
1067 if (blk_integrity_rq(rq
)) {
1068 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
1071 BUG_ON(prot_sdb
== NULL
);
1072 ivecs
= blk_rq_count_integrity_sg(rq
->q
, rq
->bio
);
1074 if (scsi_alloc_sgtable(prot_sdb
, ivecs
, gfp_mask
)) {
1075 error
= BLKPREP_DEFER
;
1079 count
= blk_rq_map_integrity_sg(rq
->q
, rq
->bio
,
1080 prot_sdb
->table
.sgl
);
1081 BUG_ON(unlikely(count
> ivecs
));
1082 BUG_ON(unlikely(count
> queue_max_integrity_segments(rq
->q
)));
1084 cmd
->prot_sdb
= prot_sdb
;
1085 cmd
->prot_sdb
->table
.nents
= count
;
1091 scsi_release_buffers(cmd
);
1092 cmd
->request
->special
= NULL
;
1093 scsi_put_command(cmd
);
1096 EXPORT_SYMBOL(scsi_init_io
);
1098 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1099 struct request
*req
)
1101 struct scsi_cmnd
*cmd
;
1103 if (!req
->special
) {
1104 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1112 /* pull a tag out of the request if we have one */
1113 cmd
->tag
= req
->tag
;
1116 cmd
->cmnd
= req
->cmd
;
1117 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1122 int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1124 struct scsi_cmnd
*cmd
;
1125 int ret
= scsi_prep_state_check(sdev
, req
);
1127 if (ret
!= BLKPREP_OK
)
1130 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1132 return BLKPREP_DEFER
;
1135 * BLOCK_PC requests may transfer data, in which case they must
1136 * a bio attached to them. Or they might contain a SCSI command
1137 * that does not transfer data, in which case they may optionally
1138 * submit a request without an attached bio.
1143 BUG_ON(!req
->nr_phys_segments
);
1145 ret
= scsi_init_io(cmd
, GFP_ATOMIC
);
1149 BUG_ON(blk_rq_bytes(req
));
1151 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1155 cmd
->cmd_len
= req
->cmd_len
;
1156 if (!blk_rq_bytes(req
))
1157 cmd
->sc_data_direction
= DMA_NONE
;
1158 else if (rq_data_dir(req
) == WRITE
)
1159 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1161 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1163 cmd
->transfersize
= blk_rq_bytes(req
);
1164 cmd
->allowed
= req
->retries
;
1167 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd
);
1170 * Setup a REQ_TYPE_FS command. These are simple read/write request
1171 * from filesystems that still need to be translated to SCSI CDBs from
1174 int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1176 struct scsi_cmnd
*cmd
;
1177 int ret
= scsi_prep_state_check(sdev
, req
);
1179 if (ret
!= BLKPREP_OK
)
1182 if (unlikely(sdev
->scsi_dh_data
&& sdev
->scsi_dh_data
->scsi_dh
1183 && sdev
->scsi_dh_data
->scsi_dh
->prep_fn
)) {
1184 ret
= sdev
->scsi_dh_data
->scsi_dh
->prep_fn(sdev
, req
);
1185 if (ret
!= BLKPREP_OK
)
1190 * Filesystem requests must transfer data.
1192 BUG_ON(!req
->nr_phys_segments
);
1194 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1196 return BLKPREP_DEFER
;
1198 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1199 return scsi_init_io(cmd
, GFP_ATOMIC
);
1201 EXPORT_SYMBOL(scsi_setup_fs_cmnd
);
1203 int scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1205 int ret
= BLKPREP_OK
;
1208 * If the device is not in running state we will reject some
1211 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1212 switch (sdev
->sdev_state
) {
1214 case SDEV_TRANSPORT_OFFLINE
:
1216 * If the device is offline we refuse to process any
1217 * commands. The device must be brought online
1218 * before trying any recovery commands.
1220 sdev_printk(KERN_ERR
, sdev
,
1221 "rejecting I/O to offline device\n");
1226 * If the device is fully deleted, we refuse to
1227 * process any commands as well.
1229 sdev_printk(KERN_ERR
, sdev
,
1230 "rejecting I/O to dead device\n");
1235 case SDEV_CREATED_BLOCK
:
1237 * If the devices is blocked we defer normal commands.
1239 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1240 ret
= BLKPREP_DEFER
;
1244 * For any other not fully online state we only allow
1245 * special commands. In particular any user initiated
1246 * command is not allowed.
1248 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1255 EXPORT_SYMBOL(scsi_prep_state_check
);
1257 int scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1259 struct scsi_device
*sdev
= q
->queuedata
;
1263 req
->errors
= DID_NO_CONNECT
<< 16;
1264 /* release the command and kill it */
1266 struct scsi_cmnd
*cmd
= req
->special
;
1267 scsi_release_buffers(cmd
);
1268 scsi_put_command(cmd
);
1269 req
->special
= NULL
;
1274 * If we defer, the blk_peek_request() returns NULL, but the
1275 * queue must be restarted, so we schedule a callback to happen
1278 if (sdev
->device_busy
== 0)
1279 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1282 req
->cmd_flags
|= REQ_DONTPREP
;
1287 EXPORT_SYMBOL(scsi_prep_return
);
1289 int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1291 struct scsi_device
*sdev
= q
->queuedata
;
1292 int ret
= BLKPREP_KILL
;
1294 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1295 ret
= scsi_setup_blk_pc_cmnd(sdev
, req
);
1296 return scsi_prep_return(q
, req
, ret
);
1298 EXPORT_SYMBOL(scsi_prep_fn
);
1301 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1304 * Called with the queue_lock held.
1306 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1307 struct scsi_device
*sdev
)
1309 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1311 * unblock after device_blocked iterates to zero
1313 if (--sdev
->device_blocked
== 0) {
1315 sdev_printk(KERN_INFO
, sdev
,
1316 "unblocking device at zero depth\n"));
1318 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1322 if (scsi_device_is_busy(sdev
))
1330 * scsi_target_queue_ready: checks if there we can send commands to target
1331 * @sdev: scsi device on starget to check.
1333 * Called with the host lock held.
1335 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1336 struct scsi_device
*sdev
)
1338 struct scsi_target
*starget
= scsi_target(sdev
);
1340 if (starget
->single_lun
) {
1341 if (starget
->starget_sdev_user
&&
1342 starget
->starget_sdev_user
!= sdev
)
1344 starget
->starget_sdev_user
= sdev
;
1347 if (starget
->target_busy
== 0 && starget
->target_blocked
) {
1349 * unblock after target_blocked iterates to zero
1351 if (--starget
->target_blocked
== 0) {
1352 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1353 "unblocking target at zero depth\n"));
1358 if (scsi_target_is_busy(starget
)) {
1359 list_move_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1367 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1368 * return 0. We must end up running the queue again whenever 0 is
1369 * returned, else IO can hang.
1371 * Called with host_lock held.
1373 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1374 struct Scsi_Host
*shost
,
1375 struct scsi_device
*sdev
)
1377 if (scsi_host_in_recovery(shost
))
1379 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1381 * unblock after host_blocked iterates to zero
1383 if (--shost
->host_blocked
== 0) {
1385 printk("scsi%d unblocking host at zero depth\n",
1391 if (scsi_host_is_busy(shost
)) {
1392 if (list_empty(&sdev
->starved_entry
))
1393 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1397 /* We're OK to process the command, so we can't be starved */
1398 if (!list_empty(&sdev
->starved_entry
))
1399 list_del_init(&sdev
->starved_entry
);
1405 * Busy state exporting function for request stacking drivers.
1407 * For efficiency, no lock is taken to check the busy state of
1408 * shost/starget/sdev, since the returned value is not guaranteed and
1409 * may be changed after request stacking drivers call the function,
1410 * regardless of taking lock or not.
1412 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1413 * needs to return 'not busy'. Otherwise, request stacking drivers
1414 * may hold requests forever.
1416 static int scsi_lld_busy(struct request_queue
*q
)
1418 struct scsi_device
*sdev
= q
->queuedata
;
1419 struct Scsi_Host
*shost
;
1421 if (blk_queue_dying(q
))
1427 * Ignore host/starget busy state.
1428 * Since block layer does not have a concept of fairness across
1429 * multiple queues, congestion of host/starget needs to be handled
1432 if (scsi_host_in_recovery(shost
) || scsi_device_is_busy(sdev
))
1439 * Kill a request for a dead device
1441 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1443 struct scsi_cmnd
*cmd
= req
->special
;
1444 struct scsi_device
*sdev
;
1445 struct scsi_target
*starget
;
1446 struct Scsi_Host
*shost
;
1448 blk_start_request(req
);
1450 scmd_printk(KERN_INFO
, cmd
, "killing request\n");
1453 starget
= scsi_target(sdev
);
1455 scsi_init_cmd_errh(cmd
);
1456 cmd
->result
= DID_NO_CONNECT
<< 16;
1457 atomic_inc(&cmd
->device
->iorequest_cnt
);
1460 * SCSI request completion path will do scsi_device_unbusy(),
1461 * bump busy counts. To bump the counters, we need to dance
1462 * with the locks as normal issue path does.
1464 sdev
->device_busy
++;
1465 spin_unlock(sdev
->request_queue
->queue_lock
);
1466 spin_lock(shost
->host_lock
);
1468 starget
->target_busy
++;
1469 spin_unlock(shost
->host_lock
);
1470 spin_lock(sdev
->request_queue
->queue_lock
);
1472 blk_complete_request(req
);
1475 static void scsi_softirq_done(struct request
*rq
)
1477 struct scsi_cmnd
*cmd
= rq
->special
;
1478 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1481 INIT_LIST_HEAD(&cmd
->eh_entry
);
1483 atomic_inc(&cmd
->device
->iodone_cnt
);
1485 atomic_inc(&cmd
->device
->ioerr_cnt
);
1487 disposition
= scsi_decide_disposition(cmd
);
1488 if (disposition
!= SUCCESS
&&
1489 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1490 sdev_printk(KERN_ERR
, cmd
->device
,
1491 "timing out command, waited %lus\n",
1493 disposition
= SUCCESS
;
1496 scsi_log_completion(cmd
, disposition
);
1498 switch (disposition
) {
1500 scsi_finish_command(cmd
);
1503 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1505 case ADD_TO_MLQUEUE
:
1506 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1509 if (!scsi_eh_scmd_add(cmd
, 0))
1510 scsi_finish_command(cmd
);
1515 * Function: scsi_request_fn()
1517 * Purpose: Main strategy routine for SCSI.
1519 * Arguments: q - Pointer to actual queue.
1523 * Lock status: IO request lock assumed to be held when called.
1525 static void scsi_request_fn(struct request_queue
*q
)
1527 struct scsi_device
*sdev
= q
->queuedata
;
1528 struct Scsi_Host
*shost
;
1529 struct scsi_cmnd
*cmd
;
1530 struct request
*req
;
1532 if(!get_device(&sdev
->sdev_gendev
))
1533 /* We must be tearing the block queue down already */
1537 * To start with, we keep looping until the queue is empty, or until
1538 * the host is no longer able to accept any more requests.
1544 * get next queueable request. We do this early to make sure
1545 * that the request is fully prepared even if we cannot
1548 req
= blk_peek_request(q
);
1549 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1552 if (unlikely(!scsi_device_online(sdev
))) {
1553 sdev_printk(KERN_ERR
, sdev
,
1554 "rejecting I/O to offline device\n");
1555 scsi_kill_request(req
, q
);
1561 * Remove the request from the request list.
1563 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1564 blk_start_request(req
);
1565 sdev
->device_busy
++;
1567 spin_unlock(q
->queue_lock
);
1569 if (unlikely(cmd
== NULL
)) {
1570 printk(KERN_CRIT
"impossible request in %s.\n"
1571 "please mail a stack trace to "
1572 "linux-scsi@vger.kernel.org\n",
1574 blk_dump_rq_flags(req
, "foo");
1577 spin_lock(shost
->host_lock
);
1580 * We hit this when the driver is using a host wide
1581 * tag map. For device level tag maps the queue_depth check
1582 * in the device ready fn would prevent us from trying
1583 * to allocate a tag. Since the map is a shared host resource
1584 * we add the dev to the starved list so it eventually gets
1585 * a run when a tag is freed.
1587 if (blk_queue_tagged(q
) && !blk_rq_tagged(req
)) {
1588 if (list_empty(&sdev
->starved_entry
))
1589 list_add_tail(&sdev
->starved_entry
,
1590 &shost
->starved_list
);
1594 if (!scsi_target_queue_ready(shost
, sdev
))
1597 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1600 scsi_target(sdev
)->target_busy
++;
1604 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1605 * take the lock again.
1607 spin_unlock_irq(shost
->host_lock
);
1610 * Finally, initialize any error handling parameters, and set up
1611 * the timers for timeouts.
1613 scsi_init_cmd_errh(cmd
);
1616 * Dispatch the command to the low-level driver.
1618 rtn
= scsi_dispatch_cmd(cmd
);
1619 spin_lock_irq(q
->queue_lock
);
1627 spin_unlock_irq(shost
->host_lock
);
1630 * lock q, handle tag, requeue req, and decrement device_busy. We
1631 * must return with queue_lock held.
1633 * Decrementing device_busy without checking it is OK, as all such
1634 * cases (host limits or settings) should run the queue at some
1637 spin_lock_irq(q
->queue_lock
);
1638 blk_requeue_request(q
, req
);
1639 sdev
->device_busy
--;
1641 if (sdev
->device_busy
== 0)
1642 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1644 /* must be careful here...if we trigger the ->remove() function
1645 * we cannot be holding the q lock */
1646 spin_unlock_irq(q
->queue_lock
);
1647 put_device(&sdev
->sdev_gendev
);
1648 spin_lock_irq(q
->queue_lock
);
1651 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1653 struct device
*host_dev
;
1654 u64 bounce_limit
= 0xffffffff;
1656 if (shost
->unchecked_isa_dma
)
1657 return BLK_BOUNCE_ISA
;
1659 * Platforms with virtual-DMA translation
1660 * hardware have no practical limit.
1662 if (!PCI_DMA_BUS_IS_PHYS
)
1663 return BLK_BOUNCE_ANY
;
1665 host_dev
= scsi_get_device(shost
);
1666 if (host_dev
&& host_dev
->dma_mask
)
1667 bounce_limit
= *host_dev
->dma_mask
;
1669 return bounce_limit
;
1671 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1673 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
1674 request_fn_proc
*request_fn
)
1676 struct request_queue
*q
;
1677 struct device
*dev
= shost
->dma_dev
;
1679 q
= blk_init_queue(request_fn
, NULL
);
1684 * this limit is imposed by hardware restrictions
1686 blk_queue_max_segments(q
, min_t(unsigned short, shost
->sg_tablesize
,
1687 SCSI_MAX_SG_CHAIN_SEGMENTS
));
1689 if (scsi_host_prot_dma(shost
)) {
1690 shost
->sg_prot_tablesize
=
1691 min_not_zero(shost
->sg_prot_tablesize
,
1692 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS
);
1693 BUG_ON(shost
->sg_prot_tablesize
< shost
->sg_tablesize
);
1694 blk_queue_max_integrity_segments(q
, shost
->sg_prot_tablesize
);
1697 blk_queue_max_hw_sectors(q
, shost
->max_sectors
);
1698 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1699 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1700 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
1702 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
1704 if (!shost
->use_clustering
)
1705 q
->limits
.cluster
= 0;
1708 * set a reasonable default alignment on word boundaries: the
1709 * host and device may alter it using
1710 * blk_queue_update_dma_alignment() later.
1712 blk_queue_dma_alignment(q
, 0x03);
1716 EXPORT_SYMBOL(__scsi_alloc_queue
);
1718 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1720 struct request_queue
*q
;
1722 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
1726 blk_queue_prep_rq(q
, scsi_prep_fn
);
1727 blk_queue_softirq_done(q
, scsi_softirq_done
);
1728 blk_queue_rq_timed_out(q
, scsi_times_out
);
1729 blk_queue_lld_busy(q
, scsi_lld_busy
);
1734 * Function: scsi_block_requests()
1736 * Purpose: Utility function used by low-level drivers to prevent further
1737 * commands from being queued to the device.
1739 * Arguments: shost - Host in question
1743 * Lock status: No locks are assumed held.
1745 * Notes: There is no timer nor any other means by which the requests
1746 * get unblocked other than the low-level driver calling
1747 * scsi_unblock_requests().
1749 void scsi_block_requests(struct Scsi_Host
*shost
)
1751 shost
->host_self_blocked
= 1;
1753 EXPORT_SYMBOL(scsi_block_requests
);
1756 * Function: scsi_unblock_requests()
1758 * Purpose: Utility function used by low-level drivers to allow further
1759 * commands from being queued to the device.
1761 * Arguments: shost - Host in question
1765 * Lock status: No locks are assumed held.
1767 * Notes: There is no timer nor any other means by which the requests
1768 * get unblocked other than the low-level driver calling
1769 * scsi_unblock_requests().
1771 * This is done as an API function so that changes to the
1772 * internals of the scsi mid-layer won't require wholesale
1773 * changes to drivers that use this feature.
1775 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1777 shost
->host_self_blocked
= 0;
1778 scsi_run_host_queues(shost
);
1780 EXPORT_SYMBOL(scsi_unblock_requests
);
1782 int __init
scsi_init_queue(void)
1786 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
1787 sizeof(struct scsi_data_buffer
),
1789 if (!scsi_sdb_cache
) {
1790 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
1794 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1795 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1796 int size
= sgp
->size
* sizeof(struct scatterlist
);
1798 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1799 SLAB_HWCACHE_ALIGN
, NULL
);
1801 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1806 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1809 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1818 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1819 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1821 mempool_destroy(sgp
->pool
);
1823 kmem_cache_destroy(sgp
->slab
);
1825 kmem_cache_destroy(scsi_sdb_cache
);
1830 void scsi_exit_queue(void)
1834 kmem_cache_destroy(scsi_sdb_cache
);
1836 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1837 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1838 mempool_destroy(sgp
->pool
);
1839 kmem_cache_destroy(sgp
->slab
);
1844 * scsi_mode_select - issue a mode select
1845 * @sdev: SCSI device to be queried
1846 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1847 * @sp: Save page bit (0 == don't save, 1 == save)
1848 * @modepage: mode page being requested
1849 * @buffer: request buffer (may not be smaller than eight bytes)
1850 * @len: length of request buffer.
1851 * @timeout: command timeout
1852 * @retries: number of retries before failing
1853 * @data: returns a structure abstracting the mode header data
1854 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1855 * must be SCSI_SENSE_BUFFERSIZE big.
1857 * Returns zero if successful; negative error number or scsi
1862 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1863 unsigned char *buffer
, int len
, int timeout
, int retries
,
1864 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1866 unsigned char cmd
[10];
1867 unsigned char *real_buffer
;
1870 memset(cmd
, 0, sizeof(cmd
));
1871 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1873 if (sdev
->use_10_for_ms
) {
1876 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1879 memcpy(real_buffer
+ 8, buffer
, len
);
1883 real_buffer
[2] = data
->medium_type
;
1884 real_buffer
[3] = data
->device_specific
;
1885 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1887 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1888 real_buffer
[7] = data
->block_descriptor_length
;
1890 cmd
[0] = MODE_SELECT_10
;
1894 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1898 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1901 memcpy(real_buffer
+ 4, buffer
, len
);
1904 real_buffer
[1] = data
->medium_type
;
1905 real_buffer
[2] = data
->device_specific
;
1906 real_buffer
[3] = data
->block_descriptor_length
;
1909 cmd
[0] = MODE_SELECT
;
1913 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1914 sshdr
, timeout
, retries
, NULL
);
1918 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1921 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1922 * @sdev: SCSI device to be queried
1923 * @dbd: set if mode sense will allow block descriptors to be returned
1924 * @modepage: mode page being requested
1925 * @buffer: request buffer (may not be smaller than eight bytes)
1926 * @len: length of request buffer.
1927 * @timeout: command timeout
1928 * @retries: number of retries before failing
1929 * @data: returns a structure abstracting the mode header data
1930 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1931 * must be SCSI_SENSE_BUFFERSIZE big.
1933 * Returns zero if unsuccessful, or the header offset (either 4
1934 * or 8 depending on whether a six or ten byte command was
1935 * issued) if successful.
1938 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1939 unsigned char *buffer
, int len
, int timeout
, int retries
,
1940 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1942 unsigned char cmd
[12];
1946 struct scsi_sense_hdr my_sshdr
;
1948 memset(data
, 0, sizeof(*data
));
1949 memset(&cmd
[0], 0, 12);
1950 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1953 /* caller might not be interested in sense, but we need it */
1958 use_10_for_ms
= sdev
->use_10_for_ms
;
1960 if (use_10_for_ms
) {
1964 cmd
[0] = MODE_SENSE_10
;
1971 cmd
[0] = MODE_SENSE
;
1976 memset(buffer
, 0, len
);
1978 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
1979 sshdr
, timeout
, retries
, NULL
);
1981 /* This code looks awful: what it's doing is making sure an
1982 * ILLEGAL REQUEST sense return identifies the actual command
1983 * byte as the problem. MODE_SENSE commands can return
1984 * ILLEGAL REQUEST if the code page isn't supported */
1986 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
1987 (driver_byte(result
) & DRIVER_SENSE
)) {
1988 if (scsi_sense_valid(sshdr
)) {
1989 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
1990 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
1992 * Invalid command operation code
1994 sdev
->use_10_for_ms
= 0;
2000 if(scsi_status_is_good(result
)) {
2001 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
2002 (modepage
== 6 || modepage
== 8))) {
2003 /* Initio breakage? */
2006 data
->medium_type
= 0;
2007 data
->device_specific
= 0;
2009 data
->block_descriptor_length
= 0;
2010 } else if(use_10_for_ms
) {
2011 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
2012 data
->medium_type
= buffer
[2];
2013 data
->device_specific
= buffer
[3];
2014 data
->longlba
= buffer
[4] & 0x01;
2015 data
->block_descriptor_length
= buffer
[6]*256
2018 data
->length
= buffer
[0] + 1;
2019 data
->medium_type
= buffer
[1];
2020 data
->device_specific
= buffer
[2];
2021 data
->block_descriptor_length
= buffer
[3];
2023 data
->header_length
= header_length
;
2028 EXPORT_SYMBOL(scsi_mode_sense
);
2031 * scsi_test_unit_ready - test if unit is ready
2032 * @sdev: scsi device to change the state of.
2033 * @timeout: command timeout
2034 * @retries: number of retries before failing
2035 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2036 * returning sense. Make sure that this is cleared before passing
2039 * Returns zero if unsuccessful or an error if TUR failed. For
2040 * removable media, UNIT_ATTENTION sets ->changed flag.
2043 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
2044 struct scsi_sense_hdr
*sshdr_external
)
2047 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
2049 struct scsi_sense_hdr
*sshdr
;
2052 if (!sshdr_external
)
2053 sshdr
= kzalloc(sizeof(*sshdr
), GFP_KERNEL
);
2055 sshdr
= sshdr_external
;
2057 /* try to eat the UNIT_ATTENTION if there are enough retries */
2059 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2060 timeout
, retries
, NULL
);
2061 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2062 sshdr
->sense_key
== UNIT_ATTENTION
)
2064 } while (scsi_sense_valid(sshdr
) &&
2065 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2067 if (!sshdr_external
)
2071 EXPORT_SYMBOL(scsi_test_unit_ready
);
2074 * scsi_device_set_state - Take the given device through the device state model.
2075 * @sdev: scsi device to change the state of.
2076 * @state: state to change to.
2078 * Returns zero if unsuccessful or an error if the requested
2079 * transition is illegal.
2082 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2084 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2086 if (state
== oldstate
)
2092 case SDEV_CREATED_BLOCK
:
2103 case SDEV_TRANSPORT_OFFLINE
:
2116 case SDEV_TRANSPORT_OFFLINE
:
2124 case SDEV_TRANSPORT_OFFLINE
:
2139 case SDEV_CREATED_BLOCK
:
2146 case SDEV_CREATED_BLOCK
:
2161 case SDEV_TRANSPORT_OFFLINE
:
2174 case SDEV_TRANSPORT_OFFLINE
:
2183 sdev
->sdev_state
= state
;
2187 SCSI_LOG_ERROR_RECOVERY(1,
2188 sdev_printk(KERN_ERR
, sdev
,
2189 "Illegal state transition %s->%s\n",
2190 scsi_device_state_name(oldstate
),
2191 scsi_device_state_name(state
))
2195 EXPORT_SYMBOL(scsi_device_set_state
);
2198 * sdev_evt_emit - emit a single SCSI device uevent
2199 * @sdev: associated SCSI device
2200 * @evt: event to emit
2202 * Send a single uevent (scsi_event) to the associated scsi_device.
2204 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2209 switch (evt
->evt_type
) {
2210 case SDEV_EVT_MEDIA_CHANGE
:
2211 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2221 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2225 * sdev_evt_thread - send a uevent for each scsi event
2226 * @work: work struct for scsi_device
2228 * Dispatch queued events to their associated scsi_device kobjects
2231 void scsi_evt_thread(struct work_struct
*work
)
2233 struct scsi_device
*sdev
;
2234 LIST_HEAD(event_list
);
2236 sdev
= container_of(work
, struct scsi_device
, event_work
);
2239 struct scsi_event
*evt
;
2240 struct list_head
*this, *tmp
;
2241 unsigned long flags
;
2243 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2244 list_splice_init(&sdev
->event_list
, &event_list
);
2245 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2247 if (list_empty(&event_list
))
2250 list_for_each_safe(this, tmp
, &event_list
) {
2251 evt
= list_entry(this, struct scsi_event
, node
);
2252 list_del(&evt
->node
);
2253 scsi_evt_emit(sdev
, evt
);
2260 * sdev_evt_send - send asserted event to uevent thread
2261 * @sdev: scsi_device event occurred on
2262 * @evt: event to send
2264 * Assert scsi device event asynchronously.
2266 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2268 unsigned long flags
;
2271 /* FIXME: currently this check eliminates all media change events
2272 * for polled devices. Need to update to discriminate between AN
2273 * and polled events */
2274 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2280 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2281 list_add_tail(&evt
->node
, &sdev
->event_list
);
2282 schedule_work(&sdev
->event_work
);
2283 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2285 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2288 * sdev_evt_alloc - allocate a new scsi event
2289 * @evt_type: type of event to allocate
2290 * @gfpflags: GFP flags for allocation
2292 * Allocates and returns a new scsi_event.
2294 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2297 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2301 evt
->evt_type
= evt_type
;
2302 INIT_LIST_HEAD(&evt
->node
);
2304 /* evt_type-specific initialization, if any */
2306 case SDEV_EVT_MEDIA_CHANGE
:
2314 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2317 * sdev_evt_send_simple - send asserted event to uevent thread
2318 * @sdev: scsi_device event occurred on
2319 * @evt_type: type of event to send
2320 * @gfpflags: GFP flags for allocation
2322 * Assert scsi device event asynchronously, given an event type.
2324 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2325 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2327 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2329 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2334 sdev_evt_send(sdev
, evt
);
2336 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2339 * scsi_device_quiesce - Block user issued commands.
2340 * @sdev: scsi device to quiesce.
2342 * This works by trying to transition to the SDEV_QUIESCE state
2343 * (which must be a legal transition). When the device is in this
2344 * state, only special requests will be accepted, all others will
2345 * be deferred. Since special requests may also be requeued requests,
2346 * a successful return doesn't guarantee the device will be
2347 * totally quiescent.
2349 * Must be called with user context, may sleep.
2351 * Returns zero if unsuccessful or an error if not.
2354 scsi_device_quiesce(struct scsi_device
*sdev
)
2356 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2360 scsi_run_queue(sdev
->request_queue
);
2361 while (sdev
->device_busy
) {
2362 msleep_interruptible(200);
2363 scsi_run_queue(sdev
->request_queue
);
2367 EXPORT_SYMBOL(scsi_device_quiesce
);
2370 * scsi_device_resume - Restart user issued commands to a quiesced device.
2371 * @sdev: scsi device to resume.
2373 * Moves the device from quiesced back to running and restarts the
2376 * Must be called with user context, may sleep.
2378 void scsi_device_resume(struct scsi_device
*sdev
)
2380 /* check if the device state was mutated prior to resume, and if
2381 * so assume the state is being managed elsewhere (for example
2382 * device deleted during suspend)
2384 if (sdev
->sdev_state
!= SDEV_QUIESCE
||
2385 scsi_device_set_state(sdev
, SDEV_RUNNING
))
2387 scsi_run_queue(sdev
->request_queue
);
2389 EXPORT_SYMBOL(scsi_device_resume
);
2392 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2394 scsi_device_quiesce(sdev
);
2398 scsi_target_quiesce(struct scsi_target
*starget
)
2400 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2402 EXPORT_SYMBOL(scsi_target_quiesce
);
2405 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2407 scsi_device_resume(sdev
);
2411 scsi_target_resume(struct scsi_target
*starget
)
2413 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2415 EXPORT_SYMBOL(scsi_target_resume
);
2418 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2419 * @sdev: device to block
2421 * Block request made by scsi lld's to temporarily stop all
2422 * scsi commands on the specified device. Called from interrupt
2423 * or normal process context.
2425 * Returns zero if successful or error if not
2428 * This routine transitions the device to the SDEV_BLOCK state
2429 * (which must be a legal transition). When the device is in this
2430 * state, all commands are deferred until the scsi lld reenables
2431 * the device with scsi_device_unblock or device_block_tmo fires.
2434 scsi_internal_device_block(struct scsi_device
*sdev
)
2436 struct request_queue
*q
= sdev
->request_queue
;
2437 unsigned long flags
;
2440 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2442 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2449 * The device has transitioned to SDEV_BLOCK. Stop the
2450 * block layer from calling the midlayer with this device's
2453 spin_lock_irqsave(q
->queue_lock
, flags
);
2455 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2459 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2462 * scsi_internal_device_unblock - resume a device after a block request
2463 * @sdev: device to resume
2464 * @new_state: state to set devices to after unblocking
2466 * Called by scsi lld's or the midlayer to restart the device queue
2467 * for the previously suspended scsi device. Called from interrupt or
2468 * normal process context.
2470 * Returns zero if successful or error if not.
2473 * This routine transitions the device to the SDEV_RUNNING state
2474 * or to one of the offline states (which must be a legal transition)
2475 * allowing the midlayer to goose the queue for this device.
2478 scsi_internal_device_unblock(struct scsi_device
*sdev
,
2479 enum scsi_device_state new_state
)
2481 struct request_queue
*q
= sdev
->request_queue
;
2482 unsigned long flags
;
2485 * Try to transition the scsi device to SDEV_RUNNING or one of the
2486 * offlined states and goose the device queue if successful.
2488 if ((sdev
->sdev_state
== SDEV_BLOCK
) ||
2489 (sdev
->sdev_state
== SDEV_TRANSPORT_OFFLINE
))
2490 sdev
->sdev_state
= new_state
;
2491 else if (sdev
->sdev_state
== SDEV_CREATED_BLOCK
) {
2492 if (new_state
== SDEV_TRANSPORT_OFFLINE
||
2493 new_state
== SDEV_OFFLINE
)
2494 sdev
->sdev_state
= new_state
;
2496 sdev
->sdev_state
= SDEV_CREATED
;
2497 } else if (sdev
->sdev_state
!= SDEV_CANCEL
&&
2498 sdev
->sdev_state
!= SDEV_OFFLINE
)
2501 spin_lock_irqsave(q
->queue_lock
, flags
);
2503 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2507 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2510 device_block(struct scsi_device
*sdev
, void *data
)
2512 scsi_internal_device_block(sdev
);
2516 target_block(struct device
*dev
, void *data
)
2518 if (scsi_is_target_device(dev
))
2519 starget_for_each_device(to_scsi_target(dev
), NULL
,
2525 scsi_target_block(struct device
*dev
)
2527 if (scsi_is_target_device(dev
))
2528 starget_for_each_device(to_scsi_target(dev
), NULL
,
2531 device_for_each_child(dev
, NULL
, target_block
);
2533 EXPORT_SYMBOL_GPL(scsi_target_block
);
2536 device_unblock(struct scsi_device
*sdev
, void *data
)
2538 scsi_internal_device_unblock(sdev
, *(enum scsi_device_state
*)data
);
2542 target_unblock(struct device
*dev
, void *data
)
2544 if (scsi_is_target_device(dev
))
2545 starget_for_each_device(to_scsi_target(dev
), data
,
2551 scsi_target_unblock(struct device
*dev
, enum scsi_device_state new_state
)
2553 if (scsi_is_target_device(dev
))
2554 starget_for_each_device(to_scsi_target(dev
), &new_state
,
2557 device_for_each_child(dev
, &new_state
, target_unblock
);
2559 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2562 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2563 * @sgl: scatter-gather list
2564 * @sg_count: number of segments in sg
2565 * @offset: offset in bytes into sg, on return offset into the mapped area
2566 * @len: bytes to map, on return number of bytes mapped
2568 * Returns virtual address of the start of the mapped page
2570 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
2571 size_t *offset
, size_t *len
)
2574 size_t sg_len
= 0, len_complete
= 0;
2575 struct scatterlist
*sg
;
2578 WARN_ON(!irqs_disabled());
2580 for_each_sg(sgl
, sg
, sg_count
, i
) {
2581 len_complete
= sg_len
; /* Complete sg-entries */
2582 sg_len
+= sg
->length
;
2583 if (sg_len
> *offset
)
2587 if (unlikely(i
== sg_count
)) {
2588 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2590 __func__
, sg_len
, *offset
, sg_count
);
2595 /* Offset starting from the beginning of first page in this sg-entry */
2596 *offset
= *offset
- len_complete
+ sg
->offset
;
2598 /* Assumption: contiguous pages can be accessed as "page + i" */
2599 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
2600 *offset
&= ~PAGE_MASK
;
2602 /* Bytes in this sg-entry from *offset to the end of the page */
2603 sg_len
= PAGE_SIZE
- *offset
;
2607 return kmap_atomic(page
);
2609 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2612 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2613 * @virt: virtual address to be unmapped
2615 void scsi_kunmap_atomic_sg(void *virt
)
2617 kunmap_atomic(virt
);
2619 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);