4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy
)
124 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
129 static inline int task_has_rt_policy(struct task_struct
*p
)
131 return rt_policy(p
->policy
);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array
{
138 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
139 struct list_head queue
[MAX_RT_PRIO
];
142 struct rt_bandwidth
{
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock
;
147 struct hrtimer rt_period_timer
;
150 static struct rt_bandwidth def_rt_bandwidth
;
152 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
154 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
156 struct rt_bandwidth
*rt_b
=
157 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
163 now
= hrtimer_cb_get_time(timer
);
164 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
169 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
172 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
176 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
178 rt_b
->rt_period
= ns_to_ktime(period
);
179 rt_b
->rt_runtime
= runtime
;
181 spin_lock_init(&rt_b
->rt_runtime_lock
);
183 hrtimer_init(&rt_b
->rt_period_timer
,
184 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
185 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime
>= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
197 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
200 if (hrtimer_active(&rt_b
->rt_period_timer
))
203 spin_lock(&rt_b
->rt_runtime_lock
);
208 if (hrtimer_active(&rt_b
->rt_period_timer
))
211 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
212 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
214 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
215 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
216 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
217 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
218 HRTIMER_MODE_ABS_PINNED
, 0);
220 spin_unlock(&rt_b
->rt_runtime_lock
);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
226 hrtimer_cancel(&rt_b
->rt_period_timer
);
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex
);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
242 static LIST_HEAD(task_groups
);
244 /* task group related information */
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css
;
250 #ifdef CONFIG_USER_SCHED
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity
**se
;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq
**cfs_rq
;
259 unsigned long shares
;
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity
**rt_se
;
264 struct rt_rq
**rt_rq
;
266 struct rt_bandwidth rt_bandwidth
;
270 struct list_head list
;
272 struct task_group
*parent
;
273 struct list_head siblings
;
274 struct list_head children
;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct
*user
)
282 user
->tg
->uid
= user
->uid
;
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group
;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq
, init_tg_cfs_rq
);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq
, init_rt_rq
);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock
);
313 static int root_task_group_empty(void)
315 return list_empty(&root_task_group
.children
);
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
335 #define MAX_SHARES (1UL << 18)
337 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
343 struct task_group init_task_group
;
345 /* return group to which a task belongs */
346 static inline struct task_group
*task_group(struct task_struct
*p
)
348 struct task_group
*tg
;
350 #ifdef CONFIG_USER_SCHED
352 tg
= __task_cred(p
)->user
->tg
;
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
356 struct task_group
, css
);
358 tg
= &init_task_group
;
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
368 p
->se
.parent
= task_group(p
)->se
[cpu
];
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
373 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
379 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
380 static inline struct task_group
*task_group(struct task_struct
*p
)
385 #endif /* CONFIG_GROUP_SCHED */
387 /* CFS-related fields in a runqueue */
389 struct load_weight load
;
390 unsigned long nr_running
;
395 struct rb_root tasks_timeline
;
396 struct rb_node
*rb_leftmost
;
398 struct list_head tasks
;
399 struct list_head
*balance_iterator
;
402 * 'curr' points to currently running entity on this cfs_rq.
403 * It is set to NULL otherwise (i.e when none are currently running).
405 struct sched_entity
*curr
, *next
, *last
;
407 unsigned int nr_spread_over
;
409 #ifdef CONFIG_FAIR_GROUP_SCHED
410 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
420 struct list_head leaf_cfs_rq_list
;
421 struct task_group
*tg
; /* group that "owns" this runqueue */
425 * the part of load.weight contributed by tasks
427 unsigned long task_weight
;
430 * h_load = weight * f(tg)
432 * Where f(tg) is the recursive weight fraction assigned to
435 unsigned long h_load
;
438 * this cpu's part of tg->shares
440 unsigned long shares
;
443 * load.weight at the time we set shares
445 unsigned long rq_weight
;
450 /* Real-Time classes' related field in a runqueue: */
452 struct rt_prio_array active
;
453 unsigned long rt_nr_running
;
454 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 int curr
; /* highest queued rt task prio */
458 int next
; /* next highest */
463 unsigned long rt_nr_migratory
;
464 unsigned long rt_nr_total
;
466 struct plist_head pushable_tasks
;
471 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock
;
474 #ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted
;
478 struct list_head leaf_rt_rq_list
;
479 struct task_group
*tg
;
480 struct sched_rt_entity
*rt_se
;
487 * We add the notion of a root-domain which will be used to define per-domain
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
490 * exclusive cpuset is created, we also create and attach a new root-domain
497 cpumask_var_t online
;
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
503 cpumask_var_t rto_mask
;
506 struct cpupri cpupri
;
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
514 static struct root_domain def_root_domain
;
519 * This is the main, per-CPU runqueue data structure.
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
533 unsigned long nr_running
;
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
537 unsigned long last_tick_seen
;
538 unsigned char in_nohz_recently
;
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load
;
542 unsigned long nr_load_updates
;
544 u64 nr_migrations_in
;
549 #ifdef CONFIG_FAIR_GROUP_SCHED
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list
;
553 #ifdef CONFIG_RT_GROUP_SCHED
554 struct list_head leaf_rt_rq_list
;
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
563 unsigned long nr_uninterruptible
;
565 struct task_struct
*curr
, *idle
;
566 unsigned long next_balance
;
567 struct mm_struct
*prev_mm
;
574 struct root_domain
*rd
;
575 struct sched_domain
*sd
;
577 unsigned char idle_at_tick
;
578 /* For active balancing */
582 /* cpu of this runqueue: */
586 unsigned long avg_load_per_task
;
588 struct task_struct
*migration_thread
;
589 struct list_head migration_queue
;
595 /* calc_load related fields */
596 unsigned long calc_load_update
;
597 long calc_load_active
;
599 #ifdef CONFIG_SCHED_HRTICK
601 int hrtick_csd_pending
;
602 struct call_single_data hrtick_csd
;
604 struct hrtimer hrtick_timer
;
607 #ifdef CONFIG_SCHEDSTATS
609 struct sched_info rq_sched_info
;
610 unsigned long long rq_cpu_time
;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613 /* sys_sched_yield() stats */
614 unsigned int yld_count
;
616 /* schedule() stats */
617 unsigned int sched_switch
;
618 unsigned int sched_count
;
619 unsigned int sched_goidle
;
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count
;
623 unsigned int ttwu_local
;
626 unsigned int bkl_count
;
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
633 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
635 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
638 static inline int cpu_of(struct rq
*rq
)
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649 * See detach_destroy_domains: synchronize_sched for details.
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
654 #define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658 #define this_rq() (&__get_cpu_var(runqueues))
659 #define task_rq(p) cpu_rq(task_cpu(p))
660 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663 inline void update_rq_clock(struct rq
*rq
)
665 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 #ifdef CONFIG_SCHED_DEBUG
672 # define const_debug __read_mostly
674 # define const_debug static const
679 * @cpu: the processor in question.
681 * Returns true if the current cpu runqueue is locked.
682 * This interface allows printk to be called with the runqueue lock
683 * held and know whether or not it is OK to wake up the klogd.
685 int runqueue_is_locked(int cpu
)
687 return spin_is_locked(&cpu_rq(cpu
)->lock
);
691 * Debugging: various feature bits
694 #define SCHED_FEAT(name, enabled) \
695 __SCHED_FEAT_##name ,
698 #include "sched_features.h"
703 #define SCHED_FEAT(name, enabled) \
704 (1UL << __SCHED_FEAT_##name) * enabled |
706 const_debug
unsigned int sysctl_sched_features
=
707 #include "sched_features.h"
712 #ifdef CONFIG_SCHED_DEBUG
713 #define SCHED_FEAT(name, enabled) \
716 static __read_mostly
char *sched_feat_names
[] = {
717 #include "sched_features.h"
723 static int sched_feat_show(struct seq_file
*m
, void *v
)
727 for (i
= 0; sched_feat_names
[i
]; i
++) {
728 if (!(sysctl_sched_features
& (1UL << i
)))
730 seq_printf(m
, "%s ", sched_feat_names
[i
]);
738 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
739 size_t cnt
, loff_t
*ppos
)
749 if (copy_from_user(&buf
, ubuf
, cnt
))
754 if (strncmp(buf
, "NO_", 3) == 0) {
759 for (i
= 0; sched_feat_names
[i
]; i
++) {
760 int len
= strlen(sched_feat_names
[i
]);
762 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
764 sysctl_sched_features
&= ~(1UL << i
);
766 sysctl_sched_features
|= (1UL << i
);
771 if (!sched_feat_names
[i
])
779 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
781 return single_open(filp
, sched_feat_show
, NULL
);
784 static const struct file_operations sched_feat_fops
= {
785 .open
= sched_feat_open
,
786 .write
= sched_feat_write
,
789 .release
= single_release
,
792 static __init
int sched_init_debug(void)
794 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
799 late_initcall(sched_init_debug
);
803 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
806 * Number of tasks to iterate in a single balance run.
807 * Limited because this is done with IRQs disabled.
809 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
812 * ratelimit for updating the group shares.
815 unsigned int sysctl_sched_shares_ratelimit
= 250000;
818 * Inject some fuzzyness into changing the per-cpu group shares
819 * this avoids remote rq-locks at the expense of fairness.
822 unsigned int sysctl_sched_shares_thresh
= 4;
825 * period over which we average the RT time consumption, measured
830 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
833 * period over which we measure -rt task cpu usage in us.
836 unsigned int sysctl_sched_rt_period
= 1000000;
838 static __read_mostly
int scheduler_running
;
841 * part of the period that we allow rt tasks to run in us.
844 int sysctl_sched_rt_runtime
= 950000;
846 static inline u64
global_rt_period(void)
848 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
851 static inline u64
global_rt_runtime(void)
853 if (sysctl_sched_rt_runtime
< 0)
856 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
859 #ifndef prepare_arch_switch
860 # define prepare_arch_switch(next) do { } while (0)
862 #ifndef finish_arch_switch
863 # define finish_arch_switch(prev) do { } while (0)
866 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
868 return rq
->curr
== p
;
871 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
872 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
874 return task_current(rq
, p
);
877 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
881 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
883 #ifdef CONFIG_DEBUG_SPINLOCK
884 /* this is a valid case when another task releases the spinlock */
885 rq
->lock
.owner
= current
;
888 * If we are tracking spinlock dependencies then we have to
889 * fix up the runqueue lock - which gets 'carried over' from
892 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
894 spin_unlock_irq(&rq
->lock
);
897 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
898 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
903 return task_current(rq
, p
);
907 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
911 * We can optimise this out completely for !SMP, because the
912 * SMP rebalancing from interrupt is the only thing that cares
917 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 spin_unlock_irq(&rq
->lock
);
920 spin_unlock(&rq
->lock
);
924 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
928 * After ->oncpu is cleared, the task can be moved to a different CPU.
929 * We must ensure this doesn't happen until the switch is completely
935 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
939 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942 * __task_rq_lock - lock the runqueue a given task resides on.
943 * Must be called interrupts disabled.
945 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
949 struct rq
*rq
= task_rq(p
);
950 spin_lock(&rq
->lock
);
951 if (likely(rq
== task_rq(p
)))
953 spin_unlock(&rq
->lock
);
958 * task_rq_lock - lock the runqueue a given task resides on and disable
959 * interrupts. Note the ordering: we can safely lookup the task_rq without
960 * explicitly disabling preemption.
962 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
968 local_irq_save(*flags
);
970 spin_lock(&rq
->lock
);
971 if (likely(rq
== task_rq(p
)))
973 spin_unlock_irqrestore(&rq
->lock
, *flags
);
977 void task_rq_unlock_wait(struct task_struct
*p
)
979 struct rq
*rq
= task_rq(p
);
981 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
982 spin_unlock_wait(&rq
->lock
);
985 static void __task_rq_unlock(struct rq
*rq
)
988 spin_unlock(&rq
->lock
);
991 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
994 spin_unlock_irqrestore(&rq
->lock
, *flags
);
998 * this_rq_lock - lock this runqueue and disable interrupts.
1000 static struct rq
*this_rq_lock(void)
1001 __acquires(rq
->lock
)
1005 local_irq_disable();
1007 spin_lock(&rq
->lock
);
1012 #ifdef CONFIG_SCHED_HRTICK
1014 * Use HR-timers to deliver accurate preemption points.
1016 * Its all a bit involved since we cannot program an hrt while holding the
1017 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * - enabled by features
1027 * - hrtimer is actually high res
1029 static inline int hrtick_enabled(struct rq
*rq
)
1031 if (!sched_feat(HRTICK
))
1033 if (!cpu_active(cpu_of(rq
)))
1035 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1038 static void hrtick_clear(struct rq
*rq
)
1040 if (hrtimer_active(&rq
->hrtick_timer
))
1041 hrtimer_cancel(&rq
->hrtick_timer
);
1045 * High-resolution timer tick.
1046 * Runs from hardirq context with interrupts disabled.
1048 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1050 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1052 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1054 spin_lock(&rq
->lock
);
1055 update_rq_clock(rq
);
1056 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1057 spin_unlock(&rq
->lock
);
1059 return HRTIMER_NORESTART
;
1064 * called from hardirq (IPI) context
1066 static void __hrtick_start(void *arg
)
1068 struct rq
*rq
= arg
;
1070 spin_lock(&rq
->lock
);
1071 hrtimer_restart(&rq
->hrtick_timer
);
1072 rq
->hrtick_csd_pending
= 0;
1073 spin_unlock(&rq
->lock
);
1077 * Called to set the hrtick timer state.
1079 * called with rq->lock held and irqs disabled
1081 static void hrtick_start(struct rq
*rq
, u64 delay
)
1083 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1084 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1086 hrtimer_set_expires(timer
, time
);
1088 if (rq
== this_rq()) {
1089 hrtimer_restart(timer
);
1090 } else if (!rq
->hrtick_csd_pending
) {
1091 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1092 rq
->hrtick_csd_pending
= 1;
1097 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1099 int cpu
= (int)(long)hcpu
;
1102 case CPU_UP_CANCELED
:
1103 case CPU_UP_CANCELED_FROZEN
:
1104 case CPU_DOWN_PREPARE
:
1105 case CPU_DOWN_PREPARE_FROZEN
:
1107 case CPU_DEAD_FROZEN
:
1108 hrtick_clear(cpu_rq(cpu
));
1115 static __init
void init_hrtick(void)
1117 hotcpu_notifier(hotplug_hrtick
, 0);
1121 * Called to set the hrtick timer state.
1123 * called with rq->lock held and irqs disabled
1125 static void hrtick_start(struct rq
*rq
, u64 delay
)
1127 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1128 HRTIMER_MODE_REL_PINNED
, 0);
1131 static inline void init_hrtick(void)
1134 #endif /* CONFIG_SMP */
1136 static void init_rq_hrtick(struct rq
*rq
)
1139 rq
->hrtick_csd_pending
= 0;
1141 rq
->hrtick_csd
.flags
= 0;
1142 rq
->hrtick_csd
.func
= __hrtick_start
;
1143 rq
->hrtick_csd
.info
= rq
;
1146 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1147 rq
->hrtick_timer
.function
= hrtick
;
1149 #else /* CONFIG_SCHED_HRTICK */
1150 static inline void hrtick_clear(struct rq
*rq
)
1154 static inline void init_rq_hrtick(struct rq
*rq
)
1158 static inline void init_hrtick(void)
1161 #endif /* CONFIG_SCHED_HRTICK */
1164 * resched_task - mark a task 'to be rescheduled now'.
1166 * On UP this means the setting of the need_resched flag, on SMP it
1167 * might also involve a cross-CPU call to trigger the scheduler on
1172 #ifndef tsk_is_polling
1173 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176 static void resched_task(struct task_struct
*p
)
1180 assert_spin_locked(&task_rq(p
)->lock
);
1182 if (test_tsk_need_resched(p
))
1185 set_tsk_need_resched(p
);
1188 if (cpu
== smp_processor_id())
1191 /* NEED_RESCHED must be visible before we test polling */
1193 if (!tsk_is_polling(p
))
1194 smp_send_reschedule(cpu
);
1197 static void resched_cpu(int cpu
)
1199 struct rq
*rq
= cpu_rq(cpu
);
1200 unsigned long flags
;
1202 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1204 resched_task(cpu_curr(cpu
));
1205 spin_unlock_irqrestore(&rq
->lock
, flags
);
1210 * When add_timer_on() enqueues a timer into the timer wheel of an
1211 * idle CPU then this timer might expire before the next timer event
1212 * which is scheduled to wake up that CPU. In case of a completely
1213 * idle system the next event might even be infinite time into the
1214 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1215 * leaves the inner idle loop so the newly added timer is taken into
1216 * account when the CPU goes back to idle and evaluates the timer
1217 * wheel for the next timer event.
1219 void wake_up_idle_cpu(int cpu
)
1221 struct rq
*rq
= cpu_rq(cpu
);
1223 if (cpu
== smp_processor_id())
1227 * This is safe, as this function is called with the timer
1228 * wheel base lock of (cpu) held. When the CPU is on the way
1229 * to idle and has not yet set rq->curr to idle then it will
1230 * be serialized on the timer wheel base lock and take the new
1231 * timer into account automatically.
1233 if (rq
->curr
!= rq
->idle
)
1237 * We can set TIF_RESCHED on the idle task of the other CPU
1238 * lockless. The worst case is that the other CPU runs the
1239 * idle task through an additional NOOP schedule()
1241 set_tsk_need_resched(rq
->idle
);
1243 /* NEED_RESCHED must be visible before we test polling */
1245 if (!tsk_is_polling(rq
->idle
))
1246 smp_send_reschedule(cpu
);
1248 #endif /* CONFIG_NO_HZ */
1250 static u64
sched_avg_period(void)
1252 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1255 static void sched_avg_update(struct rq
*rq
)
1257 s64 period
= sched_avg_period();
1259 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1260 rq
->age_stamp
+= period
;
1265 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1267 rq
->rt_avg
+= rt_delta
;
1268 sched_avg_update(rq
);
1271 #else /* !CONFIG_SMP */
1272 static void resched_task(struct task_struct
*p
)
1274 assert_spin_locked(&task_rq(p
)->lock
);
1275 set_tsk_need_resched(p
);
1278 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1281 #endif /* CONFIG_SMP */
1283 #if BITS_PER_LONG == 32
1284 # define WMULT_CONST (~0UL)
1286 # define WMULT_CONST (1UL << 32)
1289 #define WMULT_SHIFT 32
1292 * Shift right and round:
1294 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1297 * delta *= weight / lw
1299 static unsigned long
1300 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1301 struct load_weight
*lw
)
1305 if (!lw
->inv_weight
) {
1306 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1309 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1313 tmp
= (u64
)delta_exec
* weight
;
1315 * Check whether we'd overflow the 64-bit multiplication:
1317 if (unlikely(tmp
> WMULT_CONST
))
1318 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1321 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1323 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1326 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1332 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 * scaled version of the new time slice allocation that they receive on time
1347 #define WEIGHT_IDLEPRIO 3
1348 #define WMULT_IDLEPRIO 1431655765
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
1362 static const int prio_to_weight
[40] = {
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1380 static const u32 prio_to_wmult
[40] = {
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1391 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1394 * runqueue iterator, to support SMP load-balancing between different
1395 * scheduling classes, without having to expose their internal data
1396 * structures to the load-balancing proper:
1398 struct rq_iterator
{
1400 struct task_struct
*(*start
)(void *);
1401 struct task_struct
*(*next
)(void *);
1405 static unsigned long
1406 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1407 unsigned long max_load_move
, struct sched_domain
*sd
,
1408 enum cpu_idle_type idle
, int *all_pinned
,
1409 int *this_best_prio
, struct rq_iterator
*iterator
);
1412 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1413 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1414 struct rq_iterator
*iterator
);
1417 /* Time spent by the tasks of the cpu accounting group executing in ... */
1418 enum cpuacct_stat_index
{
1419 CPUACCT_STAT_USER
, /* ... user mode */
1420 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1422 CPUACCT_STAT_NSTATS
,
1425 #ifdef CONFIG_CGROUP_CPUACCT
1426 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1427 static void cpuacct_update_stats(struct task_struct
*tsk
,
1428 enum cpuacct_stat_index idx
, cputime_t val
);
1430 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1431 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1432 enum cpuacct_stat_index idx
, cputime_t val
) {}
1435 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1437 update_load_add(&rq
->load
, load
);
1440 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1442 update_load_sub(&rq
->load
, load
);
1445 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1446 typedef int (*tg_visitor
)(struct task_group
*, void *);
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1452 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1454 struct task_group
*parent
, *child
;
1458 parent
= &root_task_group
;
1460 ret
= (*down
)(parent
, data
);
1463 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1470 ret
= (*up
)(parent
, data
);
1475 parent
= parent
->parent
;
1484 static int tg_nop(struct task_group
*tg
, void *data
)
1491 /* Used instead of source_load when we know the type == 0 */
1492 static unsigned long weighted_cpuload(const int cpu
)
1494 return cpu_rq(cpu
)->load
.weight
;
1498 * Return a low guess at the load of a migration-source cpu weighted
1499 * according to the scheduling class and "nice" value.
1501 * We want to under-estimate the load of migration sources, to
1502 * balance conservatively.
1504 static unsigned long source_load(int cpu
, int type
)
1506 struct rq
*rq
= cpu_rq(cpu
);
1507 unsigned long total
= weighted_cpuload(cpu
);
1509 if (type
== 0 || !sched_feat(LB_BIAS
))
1512 return min(rq
->cpu_load
[type
-1], total
);
1516 * Return a high guess at the load of a migration-target cpu weighted
1517 * according to the scheduling class and "nice" value.
1519 static unsigned long target_load(int cpu
, int type
)
1521 struct rq
*rq
= cpu_rq(cpu
);
1522 unsigned long total
= weighted_cpuload(cpu
);
1524 if (type
== 0 || !sched_feat(LB_BIAS
))
1527 return max(rq
->cpu_load
[type
-1], total
);
1530 static struct sched_group
*group_of(int cpu
)
1532 struct sched_domain
*sd
= rcu_dereference(cpu_rq(cpu
)->sd
);
1540 static unsigned long power_of(int cpu
)
1542 struct sched_group
*group
= group_of(cpu
);
1545 return SCHED_LOAD_SCALE
;
1547 return group
->cpu_power
;
1550 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1552 static unsigned long cpu_avg_load_per_task(int cpu
)
1554 struct rq
*rq
= cpu_rq(cpu
);
1555 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1558 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1560 rq
->avg_load_per_task
= 0;
1562 return rq
->avg_load_per_task
;
1565 #ifdef CONFIG_FAIR_GROUP_SCHED
1567 static __read_mostly
unsigned long *update_shares_data
;
1569 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1572 * Calculate and set the cpu's group shares.
1574 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1575 unsigned long sd_shares
,
1576 unsigned long sd_rq_weight
,
1577 unsigned long *usd_rq_weight
)
1579 unsigned long shares
, rq_weight
;
1582 rq_weight
= usd_rq_weight
[cpu
];
1585 rq_weight
= NICE_0_LOAD
;
1589 * \Sum_j shares_j * rq_weight_i
1590 * shares_i = -----------------------------
1591 * \Sum_j rq_weight_j
1593 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1594 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1596 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1597 sysctl_sched_shares_thresh
) {
1598 struct rq
*rq
= cpu_rq(cpu
);
1599 unsigned long flags
;
1601 spin_lock_irqsave(&rq
->lock
, flags
);
1602 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1603 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1604 __set_se_shares(tg
->se
[cpu
], shares
);
1605 spin_unlock_irqrestore(&rq
->lock
, flags
);
1610 * Re-compute the task group their per cpu shares over the given domain.
1611 * This needs to be done in a bottom-up fashion because the rq weight of a
1612 * parent group depends on the shares of its child groups.
1614 static int tg_shares_up(struct task_group
*tg
, void *data
)
1616 unsigned long weight
, rq_weight
= 0, shares
= 0;
1617 unsigned long *usd_rq_weight
;
1618 struct sched_domain
*sd
= data
;
1619 unsigned long flags
;
1625 local_irq_save(flags
);
1626 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1628 for_each_cpu(i
, sched_domain_span(sd
)) {
1629 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1630 usd_rq_weight
[i
] = weight
;
1633 * If there are currently no tasks on the cpu pretend there
1634 * is one of average load so that when a new task gets to
1635 * run here it will not get delayed by group starvation.
1638 weight
= NICE_0_LOAD
;
1640 rq_weight
+= weight
;
1641 shares
+= tg
->cfs_rq
[i
]->shares
;
1644 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1645 shares
= tg
->shares
;
1647 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1648 shares
= tg
->shares
;
1650 for_each_cpu(i
, sched_domain_span(sd
))
1651 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1653 local_irq_restore(flags
);
1659 * Compute the cpu's hierarchical load factor for each task group.
1660 * This needs to be done in a top-down fashion because the load of a child
1661 * group is a fraction of its parents load.
1663 static int tg_load_down(struct task_group
*tg
, void *data
)
1666 long cpu
= (long)data
;
1669 load
= cpu_rq(cpu
)->load
.weight
;
1671 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1672 load
*= tg
->cfs_rq
[cpu
]->shares
;
1673 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1676 tg
->cfs_rq
[cpu
]->h_load
= load
;
1681 static void update_shares(struct sched_domain
*sd
)
1686 if (root_task_group_empty())
1689 now
= cpu_clock(raw_smp_processor_id());
1690 elapsed
= now
- sd
->last_update
;
1692 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1693 sd
->last_update
= now
;
1694 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1698 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1700 if (root_task_group_empty())
1703 spin_unlock(&rq
->lock
);
1705 spin_lock(&rq
->lock
);
1708 static void update_h_load(long cpu
)
1710 if (root_task_group_empty())
1713 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1718 static inline void update_shares(struct sched_domain
*sd
)
1722 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1728 #ifdef CONFIG_PREEMPT
1730 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1733 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1734 * way at the expense of forcing extra atomic operations in all
1735 * invocations. This assures that the double_lock is acquired using the
1736 * same underlying policy as the spinlock_t on this architecture, which
1737 * reduces latency compared to the unfair variant below. However, it
1738 * also adds more overhead and therefore may reduce throughput.
1740 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1741 __releases(this_rq
->lock
)
1742 __acquires(busiest
->lock
)
1743 __acquires(this_rq
->lock
)
1745 spin_unlock(&this_rq
->lock
);
1746 double_rq_lock(this_rq
, busiest
);
1753 * Unfair double_lock_balance: Optimizes throughput at the expense of
1754 * latency by eliminating extra atomic operations when the locks are
1755 * already in proper order on entry. This favors lower cpu-ids and will
1756 * grant the double lock to lower cpus over higher ids under contention,
1757 * regardless of entry order into the function.
1759 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1760 __releases(this_rq
->lock
)
1761 __acquires(busiest
->lock
)
1762 __acquires(this_rq
->lock
)
1766 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1767 if (busiest
< this_rq
) {
1768 spin_unlock(&this_rq
->lock
);
1769 spin_lock(&busiest
->lock
);
1770 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1773 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1778 #endif /* CONFIG_PREEMPT */
1781 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1783 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1785 if (unlikely(!irqs_disabled())) {
1786 /* printk() doesn't work good under rq->lock */
1787 spin_unlock(&this_rq
->lock
);
1791 return _double_lock_balance(this_rq
, busiest
);
1794 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1795 __releases(busiest
->lock
)
1797 spin_unlock(&busiest
->lock
);
1798 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1802 #ifdef CONFIG_FAIR_GROUP_SCHED
1803 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1806 cfs_rq
->shares
= shares
;
1811 static void calc_load_account_active(struct rq
*this_rq
);
1813 #include "sched_stats.h"
1814 #include "sched_idletask.c"
1815 #include "sched_fair.c"
1816 #include "sched_rt.c"
1817 #ifdef CONFIG_SCHED_DEBUG
1818 # include "sched_debug.c"
1821 #define sched_class_highest (&rt_sched_class)
1822 #define for_each_class(class) \
1823 for (class = sched_class_highest; class; class = class->next)
1825 static void inc_nr_running(struct rq
*rq
)
1830 static void dec_nr_running(struct rq
*rq
)
1835 static void set_load_weight(struct task_struct
*p
)
1837 if (task_has_rt_policy(p
)) {
1838 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1839 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1844 * SCHED_IDLE tasks get minimal weight:
1846 if (p
->policy
== SCHED_IDLE
) {
1847 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1848 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1852 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1853 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1856 static void update_avg(u64
*avg
, u64 sample
)
1858 s64 diff
= sample
- *avg
;
1862 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1865 p
->se
.start_runtime
= p
->se
.sum_exec_runtime
;
1867 sched_info_queued(p
);
1868 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1872 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1875 if (p
->se
.last_wakeup
) {
1876 update_avg(&p
->se
.avg_overlap
,
1877 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1878 p
->se
.last_wakeup
= 0;
1880 update_avg(&p
->se
.avg_wakeup
,
1881 sysctl_sched_wakeup_granularity
);
1885 sched_info_dequeued(p
);
1886 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1891 * __normal_prio - return the priority that is based on the static prio
1893 static inline int __normal_prio(struct task_struct
*p
)
1895 return p
->static_prio
;
1899 * Calculate the expected normal priority: i.e. priority
1900 * without taking RT-inheritance into account. Might be
1901 * boosted by interactivity modifiers. Changes upon fork,
1902 * setprio syscalls, and whenever the interactivity
1903 * estimator recalculates.
1905 static inline int normal_prio(struct task_struct
*p
)
1909 if (task_has_rt_policy(p
))
1910 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1912 prio
= __normal_prio(p
);
1917 * Calculate the current priority, i.e. the priority
1918 * taken into account by the scheduler. This value might
1919 * be boosted by RT tasks, or might be boosted by
1920 * interactivity modifiers. Will be RT if the task got
1921 * RT-boosted. If not then it returns p->normal_prio.
1923 static int effective_prio(struct task_struct
*p
)
1925 p
->normal_prio
= normal_prio(p
);
1927 * If we are RT tasks or we were boosted to RT priority,
1928 * keep the priority unchanged. Otherwise, update priority
1929 * to the normal priority:
1931 if (!rt_prio(p
->prio
))
1932 return p
->normal_prio
;
1937 * activate_task - move a task to the runqueue.
1939 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1941 if (task_contributes_to_load(p
))
1942 rq
->nr_uninterruptible
--;
1944 enqueue_task(rq
, p
, wakeup
);
1949 * deactivate_task - remove a task from the runqueue.
1951 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1953 if (task_contributes_to_load(p
))
1954 rq
->nr_uninterruptible
++;
1956 dequeue_task(rq
, p
, sleep
);
1961 * task_curr - is this task currently executing on a CPU?
1962 * @p: the task in question.
1964 inline int task_curr(const struct task_struct
*p
)
1966 return cpu_curr(task_cpu(p
)) == p
;
1969 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1971 set_task_rq(p
, cpu
);
1974 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1975 * successfuly executed on another CPU. We must ensure that updates of
1976 * per-task data have been completed by this moment.
1979 task_thread_info(p
)->cpu
= cpu
;
1983 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1984 const struct sched_class
*prev_class
,
1985 int oldprio
, int running
)
1987 if (prev_class
!= p
->sched_class
) {
1988 if (prev_class
->switched_from
)
1989 prev_class
->switched_from(rq
, p
, running
);
1990 p
->sched_class
->switched_to(rq
, p
, running
);
1992 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1996 * kthread_bind - bind a just-created kthread to a cpu.
1997 * @k: thread created by kthread_create().
1998 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2000 * Description: This function is equivalent to set_cpus_allowed(),
2001 * except that @cpu doesn't need to be online, and the thread must be
2002 * stopped (i.e., just returned from kthread_create()).
2004 * Function lives here instead of kthread.c because it messes with
2005 * scheduler internals which require locking.
2007 void kthread_bind(struct task_struct
*p
, unsigned int cpu
)
2009 struct rq
*rq
= cpu_rq(cpu
);
2010 unsigned long flags
;
2012 /* Must have done schedule() in kthread() before we set_task_cpu */
2013 if (!wait_task_inactive(p
, TASK_UNINTERRUPTIBLE
)) {
2018 spin_lock_irqsave(&rq
->lock
, flags
);
2019 set_task_cpu(p
, cpu
);
2020 p
->cpus_allowed
= cpumask_of_cpu(cpu
);
2021 p
->rt
.nr_cpus_allowed
= 1;
2022 p
->flags
|= PF_THREAD_BOUND
;
2023 spin_unlock_irqrestore(&rq
->lock
, flags
);
2025 EXPORT_SYMBOL(kthread_bind
);
2029 * Is this task likely cache-hot:
2032 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2037 * Buddy candidates are cache hot:
2039 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2040 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2041 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2044 if (p
->sched_class
!= &fair_sched_class
)
2047 if (sysctl_sched_migration_cost
== -1)
2049 if (sysctl_sched_migration_cost
== 0)
2052 delta
= now
- p
->se
.exec_start
;
2054 return delta
< (s64
)sysctl_sched_migration_cost
;
2058 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2060 int old_cpu
= task_cpu(p
);
2061 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
2062 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
2063 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
2066 clock_offset
= old_rq
->clock
- new_rq
->clock
;
2068 trace_sched_migrate_task(p
, new_cpu
);
2070 #ifdef CONFIG_SCHEDSTATS
2071 if (p
->se
.wait_start
)
2072 p
->se
.wait_start
-= clock_offset
;
2073 if (p
->se
.sleep_start
)
2074 p
->se
.sleep_start
-= clock_offset
;
2075 if (p
->se
.block_start
)
2076 p
->se
.block_start
-= clock_offset
;
2078 if (old_cpu
!= new_cpu
) {
2079 p
->se
.nr_migrations
++;
2080 new_rq
->nr_migrations_in
++;
2081 #ifdef CONFIG_SCHEDSTATS
2082 if (task_hot(p
, old_rq
->clock
, NULL
))
2083 schedstat_inc(p
, se
.nr_forced2_migrations
);
2085 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
,
2088 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
2089 new_cfsrq
->min_vruntime
;
2091 __set_task_cpu(p
, new_cpu
);
2094 struct migration_req
{
2095 struct list_head list
;
2097 struct task_struct
*task
;
2100 struct completion done
;
2104 * The task's runqueue lock must be held.
2105 * Returns true if you have to wait for migration thread.
2108 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2110 struct rq
*rq
= task_rq(p
);
2113 * If the task is not on a runqueue (and not running), then
2114 * it is sufficient to simply update the task's cpu field.
2116 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
2117 set_task_cpu(p
, dest_cpu
);
2121 init_completion(&req
->done
);
2123 req
->dest_cpu
= dest_cpu
;
2124 list_add(&req
->list
, &rq
->migration_queue
);
2130 * wait_task_context_switch - wait for a thread to complete at least one
2133 * @p must not be current.
2135 void wait_task_context_switch(struct task_struct
*p
)
2137 unsigned long nvcsw
, nivcsw
, flags
;
2145 * The runqueue is assigned before the actual context
2146 * switch. We need to take the runqueue lock.
2148 * We could check initially without the lock but it is
2149 * very likely that we need to take the lock in every
2152 rq
= task_rq_lock(p
, &flags
);
2153 running
= task_running(rq
, p
);
2154 task_rq_unlock(rq
, &flags
);
2156 if (likely(!running
))
2159 * The switch count is incremented before the actual
2160 * context switch. We thus wait for two switches to be
2161 * sure at least one completed.
2163 if ((p
->nvcsw
- nvcsw
) > 1)
2165 if ((p
->nivcsw
- nivcsw
) > 1)
2173 * wait_task_inactive - wait for a thread to unschedule.
2175 * If @match_state is nonzero, it's the @p->state value just checked and
2176 * not expected to change. If it changes, i.e. @p might have woken up,
2177 * then return zero. When we succeed in waiting for @p to be off its CPU,
2178 * we return a positive number (its total switch count). If a second call
2179 * a short while later returns the same number, the caller can be sure that
2180 * @p has remained unscheduled the whole time.
2182 * The caller must ensure that the task *will* unschedule sometime soon,
2183 * else this function might spin for a *long* time. This function can't
2184 * be called with interrupts off, or it may introduce deadlock with
2185 * smp_call_function() if an IPI is sent by the same process we are
2186 * waiting to become inactive.
2188 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2190 unsigned long flags
;
2197 * We do the initial early heuristics without holding
2198 * any task-queue locks at all. We'll only try to get
2199 * the runqueue lock when things look like they will
2205 * If the task is actively running on another CPU
2206 * still, just relax and busy-wait without holding
2209 * NOTE! Since we don't hold any locks, it's not
2210 * even sure that "rq" stays as the right runqueue!
2211 * But we don't care, since "task_running()" will
2212 * return false if the runqueue has changed and p
2213 * is actually now running somewhere else!
2215 while (task_running(rq
, p
)) {
2216 if (match_state
&& unlikely(p
->state
!= match_state
))
2222 * Ok, time to look more closely! We need the rq
2223 * lock now, to be *sure*. If we're wrong, we'll
2224 * just go back and repeat.
2226 rq
= task_rq_lock(p
, &flags
);
2227 trace_sched_wait_task(rq
, p
);
2228 running
= task_running(rq
, p
);
2229 on_rq
= p
->se
.on_rq
;
2231 if (!match_state
|| p
->state
== match_state
)
2232 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2233 task_rq_unlock(rq
, &flags
);
2236 * If it changed from the expected state, bail out now.
2238 if (unlikely(!ncsw
))
2242 * Was it really running after all now that we
2243 * checked with the proper locks actually held?
2245 * Oops. Go back and try again..
2247 if (unlikely(running
)) {
2253 * It's not enough that it's not actively running,
2254 * it must be off the runqueue _entirely_, and not
2257 * So if it was still runnable (but just not actively
2258 * running right now), it's preempted, and we should
2259 * yield - it could be a while.
2261 if (unlikely(on_rq
)) {
2262 schedule_timeout_uninterruptible(1);
2267 * Ahh, all good. It wasn't running, and it wasn't
2268 * runnable, which means that it will never become
2269 * running in the future either. We're all done!
2278 * kick_process - kick a running thread to enter/exit the kernel
2279 * @p: the to-be-kicked thread
2281 * Cause a process which is running on another CPU to enter
2282 * kernel-mode, without any delay. (to get signals handled.)
2284 * NOTE: this function doesnt have to take the runqueue lock,
2285 * because all it wants to ensure is that the remote task enters
2286 * the kernel. If the IPI races and the task has been migrated
2287 * to another CPU then no harm is done and the purpose has been
2290 void kick_process(struct task_struct
*p
)
2296 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2297 smp_send_reschedule(cpu
);
2300 EXPORT_SYMBOL_GPL(kick_process
);
2301 #endif /* CONFIG_SMP */
2304 * task_oncpu_function_call - call a function on the cpu on which a task runs
2305 * @p: the task to evaluate
2306 * @func: the function to be called
2307 * @info: the function call argument
2309 * Calls the function @func when the task is currently running. This might
2310 * be on the current CPU, which just calls the function directly
2312 void task_oncpu_function_call(struct task_struct
*p
,
2313 void (*func
) (void *info
), void *info
)
2320 smp_call_function_single(cpu
, func
, info
, 1);
2325 * try_to_wake_up - wake up a thread
2326 * @p: the to-be-woken-up thread
2327 * @state: the mask of task states that can be woken
2328 * @sync: do a synchronous wakeup?
2330 * Put it on the run-queue if it's not already there. The "current"
2331 * thread is always on the run-queue (except when the actual
2332 * re-schedule is in progress), and as such you're allowed to do
2333 * the simpler "current->state = TASK_RUNNING" to mark yourself
2334 * runnable without the overhead of this.
2336 * returns failure only if the task is already active.
2338 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2341 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2342 unsigned long flags
;
2343 struct rq
*rq
, *orig_rq
;
2345 if (!sched_feat(SYNC_WAKEUPS
))
2346 wake_flags
&= ~WF_SYNC
;
2348 this_cpu
= get_cpu();
2351 rq
= orig_rq
= task_rq_lock(p
, &flags
);
2352 update_rq_clock(rq
);
2353 if (!(p
->state
& state
))
2363 if (unlikely(task_running(rq
, p
)))
2367 * In order to handle concurrent wakeups and release the rq->lock
2368 * we put the task in TASK_WAKING state.
2370 * First fix up the nr_uninterruptible count:
2372 if (task_contributes_to_load(p
))
2373 rq
->nr_uninterruptible
--;
2374 p
->state
= TASK_WAKING
;
2375 task_rq_unlock(rq
, &flags
);
2377 cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2378 if (cpu
!= orig_cpu
)
2379 set_task_cpu(p
, cpu
);
2381 rq
= task_rq_lock(p
, &flags
);
2384 update_rq_clock(rq
);
2386 WARN_ON(p
->state
!= TASK_WAKING
);
2389 #ifdef CONFIG_SCHEDSTATS
2390 schedstat_inc(rq
, ttwu_count
);
2391 if (cpu
== this_cpu
)
2392 schedstat_inc(rq
, ttwu_local
);
2394 struct sched_domain
*sd
;
2395 for_each_domain(this_cpu
, sd
) {
2396 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2397 schedstat_inc(sd
, ttwu_wake_remote
);
2402 #endif /* CONFIG_SCHEDSTATS */
2405 #endif /* CONFIG_SMP */
2406 schedstat_inc(p
, se
.nr_wakeups
);
2407 if (wake_flags
& WF_SYNC
)
2408 schedstat_inc(p
, se
.nr_wakeups_sync
);
2409 if (orig_cpu
!= cpu
)
2410 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2411 if (cpu
== this_cpu
)
2412 schedstat_inc(p
, se
.nr_wakeups_local
);
2414 schedstat_inc(p
, se
.nr_wakeups_remote
);
2415 activate_task(rq
, p
, 1);
2419 * Only attribute actual wakeups done by this task.
2421 if (!in_interrupt()) {
2422 struct sched_entity
*se
= ¤t
->se
;
2423 u64 sample
= se
->sum_exec_runtime
;
2425 if (se
->last_wakeup
)
2426 sample
-= se
->last_wakeup
;
2428 sample
-= se
->start_runtime
;
2429 update_avg(&se
->avg_wakeup
, sample
);
2431 se
->last_wakeup
= se
->sum_exec_runtime
;
2435 trace_sched_wakeup(rq
, p
, success
);
2436 check_preempt_curr(rq
, p
, wake_flags
);
2438 p
->state
= TASK_RUNNING
;
2440 if (p
->sched_class
->task_wake_up
)
2441 p
->sched_class
->task_wake_up(rq
, p
);
2444 task_rq_unlock(rq
, &flags
);
2451 * wake_up_process - Wake up a specific process
2452 * @p: The process to be woken up.
2454 * Attempt to wake up the nominated process and move it to the set of runnable
2455 * processes. Returns 1 if the process was woken up, 0 if it was already
2458 * It may be assumed that this function implies a write memory barrier before
2459 * changing the task state if and only if any tasks are woken up.
2461 int wake_up_process(struct task_struct
*p
)
2463 return try_to_wake_up(p
, TASK_ALL
, 0);
2465 EXPORT_SYMBOL(wake_up_process
);
2467 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2469 return try_to_wake_up(p
, state
, 0);
2473 * Perform scheduler related setup for a newly forked process p.
2474 * p is forked by current.
2476 * __sched_fork() is basic setup used by init_idle() too:
2478 static void __sched_fork(struct task_struct
*p
)
2480 p
->se
.exec_start
= 0;
2481 p
->se
.sum_exec_runtime
= 0;
2482 p
->se
.prev_sum_exec_runtime
= 0;
2483 p
->se
.nr_migrations
= 0;
2484 p
->se
.last_wakeup
= 0;
2485 p
->se
.avg_overlap
= 0;
2486 p
->se
.start_runtime
= 0;
2487 p
->se
.avg_wakeup
= sysctl_sched_wakeup_granularity
;
2488 p
->se
.avg_running
= 0;
2490 #ifdef CONFIG_SCHEDSTATS
2491 p
->se
.wait_start
= 0;
2493 p
->se
.wait_count
= 0;
2496 p
->se
.sleep_start
= 0;
2497 p
->se
.sleep_max
= 0;
2498 p
->se
.sum_sleep_runtime
= 0;
2500 p
->se
.block_start
= 0;
2501 p
->se
.block_max
= 0;
2503 p
->se
.slice_max
= 0;
2505 p
->se
.nr_migrations_cold
= 0;
2506 p
->se
.nr_failed_migrations_affine
= 0;
2507 p
->se
.nr_failed_migrations_running
= 0;
2508 p
->se
.nr_failed_migrations_hot
= 0;
2509 p
->se
.nr_forced_migrations
= 0;
2510 p
->se
.nr_forced2_migrations
= 0;
2512 p
->se
.nr_wakeups
= 0;
2513 p
->se
.nr_wakeups_sync
= 0;
2514 p
->se
.nr_wakeups_migrate
= 0;
2515 p
->se
.nr_wakeups_local
= 0;
2516 p
->se
.nr_wakeups_remote
= 0;
2517 p
->se
.nr_wakeups_affine
= 0;
2518 p
->se
.nr_wakeups_affine_attempts
= 0;
2519 p
->se
.nr_wakeups_passive
= 0;
2520 p
->se
.nr_wakeups_idle
= 0;
2524 INIT_LIST_HEAD(&p
->rt
.run_list
);
2526 INIT_LIST_HEAD(&p
->se
.group_node
);
2528 #ifdef CONFIG_PREEMPT_NOTIFIERS
2529 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2533 * We mark the process as running here, but have not actually
2534 * inserted it onto the runqueue yet. This guarantees that
2535 * nobody will actually run it, and a signal or other external
2536 * event cannot wake it up and insert it on the runqueue either.
2538 p
->state
= TASK_RUNNING
;
2542 * fork()/clone()-time setup:
2544 void sched_fork(struct task_struct
*p
, int clone_flags
)
2546 int cpu
= get_cpu();
2551 * Revert to default priority/policy on fork if requested.
2553 if (unlikely(p
->sched_reset_on_fork
)) {
2554 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2555 p
->policy
= SCHED_NORMAL
;
2556 p
->normal_prio
= p
->static_prio
;
2559 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2560 p
->static_prio
= NICE_TO_PRIO(0);
2561 p
->normal_prio
= p
->static_prio
;
2566 * We don't need the reset flag anymore after the fork. It has
2567 * fulfilled its duty:
2569 p
->sched_reset_on_fork
= 0;
2573 * Make sure we do not leak PI boosting priority to the child.
2575 p
->prio
= current
->normal_prio
;
2577 if (!rt_prio(p
->prio
))
2578 p
->sched_class
= &fair_sched_class
;
2581 cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_FORK
, 0);
2583 set_task_cpu(p
, cpu
);
2585 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2586 if (likely(sched_info_on()))
2587 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2589 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2592 #ifdef CONFIG_PREEMPT
2593 /* Want to start with kernel preemption disabled. */
2594 task_thread_info(p
)->preempt_count
= 1;
2596 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2602 * wake_up_new_task - wake up a newly created task for the first time.
2604 * This function will do some initial scheduler statistics housekeeping
2605 * that must be done for every newly created context, then puts the task
2606 * on the runqueue and wakes it.
2608 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2610 unsigned long flags
;
2613 rq
= task_rq_lock(p
, &flags
);
2614 BUG_ON(p
->state
!= TASK_RUNNING
);
2615 update_rq_clock(rq
);
2617 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2618 activate_task(rq
, p
, 0);
2621 * Let the scheduling class do new task startup
2622 * management (if any):
2624 p
->sched_class
->task_new(rq
, p
);
2627 trace_sched_wakeup_new(rq
, p
, 1);
2628 check_preempt_curr(rq
, p
, WF_FORK
);
2630 if (p
->sched_class
->task_wake_up
)
2631 p
->sched_class
->task_wake_up(rq
, p
);
2633 task_rq_unlock(rq
, &flags
);
2636 #ifdef CONFIG_PREEMPT_NOTIFIERS
2639 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2640 * @notifier: notifier struct to register
2642 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2644 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2646 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2649 * preempt_notifier_unregister - no longer interested in preemption notifications
2650 * @notifier: notifier struct to unregister
2652 * This is safe to call from within a preemption notifier.
2654 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2656 hlist_del(¬ifier
->link
);
2658 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2660 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2662 struct preempt_notifier
*notifier
;
2663 struct hlist_node
*node
;
2665 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2666 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2670 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2671 struct task_struct
*next
)
2673 struct preempt_notifier
*notifier
;
2674 struct hlist_node
*node
;
2676 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2677 notifier
->ops
->sched_out(notifier
, next
);
2680 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2682 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2687 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2688 struct task_struct
*next
)
2692 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2695 * prepare_task_switch - prepare to switch tasks
2696 * @rq: the runqueue preparing to switch
2697 * @prev: the current task that is being switched out
2698 * @next: the task we are going to switch to.
2700 * This is called with the rq lock held and interrupts off. It must
2701 * be paired with a subsequent finish_task_switch after the context
2704 * prepare_task_switch sets up locking and calls architecture specific
2708 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2709 struct task_struct
*next
)
2711 fire_sched_out_preempt_notifiers(prev
, next
);
2712 prepare_lock_switch(rq
, next
);
2713 prepare_arch_switch(next
);
2717 * finish_task_switch - clean up after a task-switch
2718 * @rq: runqueue associated with task-switch
2719 * @prev: the thread we just switched away from.
2721 * finish_task_switch must be called after the context switch, paired
2722 * with a prepare_task_switch call before the context switch.
2723 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2724 * and do any other architecture-specific cleanup actions.
2726 * Note that we may have delayed dropping an mm in context_switch(). If
2727 * so, we finish that here outside of the runqueue lock. (Doing it
2728 * with the lock held can cause deadlocks; see schedule() for
2731 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2732 __releases(rq
->lock
)
2734 struct mm_struct
*mm
= rq
->prev_mm
;
2740 * A task struct has one reference for the use as "current".
2741 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2742 * schedule one last time. The schedule call will never return, and
2743 * the scheduled task must drop that reference.
2744 * The test for TASK_DEAD must occur while the runqueue locks are
2745 * still held, otherwise prev could be scheduled on another cpu, die
2746 * there before we look at prev->state, and then the reference would
2748 * Manfred Spraul <manfred@colorfullife.com>
2750 prev_state
= prev
->state
;
2751 finish_arch_switch(prev
);
2752 perf_event_task_sched_in(current
, cpu_of(rq
));
2753 finish_lock_switch(rq
, prev
);
2755 fire_sched_in_preempt_notifiers(current
);
2758 if (unlikely(prev_state
== TASK_DEAD
)) {
2760 * Remove function-return probe instances associated with this
2761 * task and put them back on the free list.
2763 kprobe_flush_task(prev
);
2764 put_task_struct(prev
);
2770 /* assumes rq->lock is held */
2771 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2773 if (prev
->sched_class
->pre_schedule
)
2774 prev
->sched_class
->pre_schedule(rq
, prev
);
2777 /* rq->lock is NOT held, but preemption is disabled */
2778 static inline void post_schedule(struct rq
*rq
)
2780 if (rq
->post_schedule
) {
2781 unsigned long flags
;
2783 spin_lock_irqsave(&rq
->lock
, flags
);
2784 if (rq
->curr
->sched_class
->post_schedule
)
2785 rq
->curr
->sched_class
->post_schedule(rq
);
2786 spin_unlock_irqrestore(&rq
->lock
, flags
);
2788 rq
->post_schedule
= 0;
2794 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2798 static inline void post_schedule(struct rq
*rq
)
2805 * schedule_tail - first thing a freshly forked thread must call.
2806 * @prev: the thread we just switched away from.
2808 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2809 __releases(rq
->lock
)
2811 struct rq
*rq
= this_rq();
2813 finish_task_switch(rq
, prev
);
2816 * FIXME: do we need to worry about rq being invalidated by the
2821 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2822 /* In this case, finish_task_switch does not reenable preemption */
2825 if (current
->set_child_tid
)
2826 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2830 * context_switch - switch to the new MM and the new
2831 * thread's register state.
2834 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2835 struct task_struct
*next
)
2837 struct mm_struct
*mm
, *oldmm
;
2839 prepare_task_switch(rq
, prev
, next
);
2840 trace_sched_switch(rq
, prev
, next
);
2842 oldmm
= prev
->active_mm
;
2844 * For paravirt, this is coupled with an exit in switch_to to
2845 * combine the page table reload and the switch backend into
2848 arch_start_context_switch(prev
);
2850 if (unlikely(!mm
)) {
2851 next
->active_mm
= oldmm
;
2852 atomic_inc(&oldmm
->mm_count
);
2853 enter_lazy_tlb(oldmm
, next
);
2855 switch_mm(oldmm
, mm
, next
);
2857 if (unlikely(!prev
->mm
)) {
2858 prev
->active_mm
= NULL
;
2859 rq
->prev_mm
= oldmm
;
2862 * Since the runqueue lock will be released by the next
2863 * task (which is an invalid locking op but in the case
2864 * of the scheduler it's an obvious special-case), so we
2865 * do an early lockdep release here:
2867 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2868 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2871 /* Here we just switch the register state and the stack. */
2872 switch_to(prev
, next
, prev
);
2876 * this_rq must be evaluated again because prev may have moved
2877 * CPUs since it called schedule(), thus the 'rq' on its stack
2878 * frame will be invalid.
2880 finish_task_switch(this_rq(), prev
);
2884 * nr_running, nr_uninterruptible and nr_context_switches:
2886 * externally visible scheduler statistics: current number of runnable
2887 * threads, current number of uninterruptible-sleeping threads, total
2888 * number of context switches performed since bootup.
2890 unsigned long nr_running(void)
2892 unsigned long i
, sum
= 0;
2894 for_each_online_cpu(i
)
2895 sum
+= cpu_rq(i
)->nr_running
;
2900 unsigned long nr_uninterruptible(void)
2902 unsigned long i
, sum
= 0;
2904 for_each_possible_cpu(i
)
2905 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2908 * Since we read the counters lockless, it might be slightly
2909 * inaccurate. Do not allow it to go below zero though:
2911 if (unlikely((long)sum
< 0))
2917 unsigned long long nr_context_switches(void)
2920 unsigned long long sum
= 0;
2922 for_each_possible_cpu(i
)
2923 sum
+= cpu_rq(i
)->nr_switches
;
2928 unsigned long nr_iowait(void)
2930 unsigned long i
, sum
= 0;
2932 for_each_possible_cpu(i
)
2933 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2938 unsigned long nr_iowait_cpu(void)
2940 struct rq
*this = this_rq();
2941 return atomic_read(&this->nr_iowait
);
2944 unsigned long this_cpu_load(void)
2946 struct rq
*this = this_rq();
2947 return this->cpu_load
[0];
2951 /* Variables and functions for calc_load */
2952 static atomic_long_t calc_load_tasks
;
2953 static unsigned long calc_load_update
;
2954 unsigned long avenrun
[3];
2955 EXPORT_SYMBOL(avenrun
);
2958 * get_avenrun - get the load average array
2959 * @loads: pointer to dest load array
2960 * @offset: offset to add
2961 * @shift: shift count to shift the result left
2963 * These values are estimates at best, so no need for locking.
2965 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2967 loads
[0] = (avenrun
[0] + offset
) << shift
;
2968 loads
[1] = (avenrun
[1] + offset
) << shift
;
2969 loads
[2] = (avenrun
[2] + offset
) << shift
;
2972 static unsigned long
2973 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
2976 load
+= active
* (FIXED_1
- exp
);
2977 return load
>> FSHIFT
;
2981 * calc_load - update the avenrun load estimates 10 ticks after the
2982 * CPUs have updated calc_load_tasks.
2984 void calc_global_load(void)
2986 unsigned long upd
= calc_load_update
+ 10;
2989 if (time_before(jiffies
, upd
))
2992 active
= atomic_long_read(&calc_load_tasks
);
2993 active
= active
> 0 ? active
* FIXED_1
: 0;
2995 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
2996 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
2997 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
2999 calc_load_update
+= LOAD_FREQ
;
3003 * Either called from update_cpu_load() or from a cpu going idle
3005 static void calc_load_account_active(struct rq
*this_rq
)
3007 long nr_active
, delta
;
3009 nr_active
= this_rq
->nr_running
;
3010 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3012 if (nr_active
!= this_rq
->calc_load_active
) {
3013 delta
= nr_active
- this_rq
->calc_load_active
;
3014 this_rq
->calc_load_active
= nr_active
;
3015 atomic_long_add(delta
, &calc_load_tasks
);
3020 * Externally visible per-cpu scheduler statistics:
3021 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3023 u64
cpu_nr_migrations(int cpu
)
3025 return cpu_rq(cpu
)->nr_migrations_in
;
3029 * Update rq->cpu_load[] statistics. This function is usually called every
3030 * scheduler tick (TICK_NSEC).
3032 static void update_cpu_load(struct rq
*this_rq
)
3034 unsigned long this_load
= this_rq
->load
.weight
;
3037 this_rq
->nr_load_updates
++;
3039 /* Update our load: */
3040 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3041 unsigned long old_load
, new_load
;
3043 /* scale is effectively 1 << i now, and >> i divides by scale */
3045 old_load
= this_rq
->cpu_load
[i
];
3046 new_load
= this_load
;
3048 * Round up the averaging division if load is increasing. This
3049 * prevents us from getting stuck on 9 if the load is 10, for
3052 if (new_load
> old_load
)
3053 new_load
+= scale
-1;
3054 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3057 if (time_after_eq(jiffies
, this_rq
->calc_load_update
)) {
3058 this_rq
->calc_load_update
+= LOAD_FREQ
;
3059 calc_load_account_active(this_rq
);
3066 * double_rq_lock - safely lock two runqueues
3068 * Note this does not disable interrupts like task_rq_lock,
3069 * you need to do so manually before calling.
3071 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
3072 __acquires(rq1
->lock
)
3073 __acquires(rq2
->lock
)
3075 BUG_ON(!irqs_disabled());
3077 spin_lock(&rq1
->lock
);
3078 __acquire(rq2
->lock
); /* Fake it out ;) */
3081 spin_lock(&rq1
->lock
);
3082 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
3084 spin_lock(&rq2
->lock
);
3085 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
3088 update_rq_clock(rq1
);
3089 update_rq_clock(rq2
);
3093 * double_rq_unlock - safely unlock two runqueues
3095 * Note this does not restore interrupts like task_rq_unlock,
3096 * you need to do so manually after calling.
3098 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
3099 __releases(rq1
->lock
)
3100 __releases(rq2
->lock
)
3102 spin_unlock(&rq1
->lock
);
3104 spin_unlock(&rq2
->lock
);
3106 __release(rq2
->lock
);
3110 * If dest_cpu is allowed for this process, migrate the task to it.
3111 * This is accomplished by forcing the cpu_allowed mask to only
3112 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3113 * the cpu_allowed mask is restored.
3115 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
3117 struct migration_req req
;
3118 unsigned long flags
;
3121 rq
= task_rq_lock(p
, &flags
);
3122 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
3123 || unlikely(!cpu_active(dest_cpu
)))
3126 /* force the process onto the specified CPU */
3127 if (migrate_task(p
, dest_cpu
, &req
)) {
3128 /* Need to wait for migration thread (might exit: take ref). */
3129 struct task_struct
*mt
= rq
->migration_thread
;
3131 get_task_struct(mt
);
3132 task_rq_unlock(rq
, &flags
);
3133 wake_up_process(mt
);
3134 put_task_struct(mt
);
3135 wait_for_completion(&req
.done
);
3140 task_rq_unlock(rq
, &flags
);
3144 * sched_exec - execve() is a valuable balancing opportunity, because at
3145 * this point the task has the smallest effective memory and cache footprint.
3147 void sched_exec(void)
3149 int new_cpu
, this_cpu
= get_cpu();
3150 new_cpu
= current
->sched_class
->select_task_rq(current
, SD_BALANCE_EXEC
, 0);
3152 if (new_cpu
!= this_cpu
)
3153 sched_migrate_task(current
, new_cpu
);
3157 * pull_task - move a task from a remote runqueue to the local runqueue.
3158 * Both runqueues must be locked.
3160 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3161 struct rq
*this_rq
, int this_cpu
)
3163 deactivate_task(src_rq
, p
, 0);
3164 set_task_cpu(p
, this_cpu
);
3165 activate_task(this_rq
, p
, 0);
3167 * Note that idle threads have a prio of MAX_PRIO, for this test
3168 * to be always true for them.
3170 check_preempt_curr(this_rq
, p
, 0);
3174 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3177 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3178 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3181 int tsk_cache_hot
= 0;
3183 * We do not migrate tasks that are:
3184 * 1) running (obviously), or
3185 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3186 * 3) are cache-hot on their current CPU.
3188 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
3189 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3194 if (task_running(rq
, p
)) {
3195 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3200 * Aggressive migration if:
3201 * 1) task is cache cold, or
3202 * 2) too many balance attempts have failed.
3205 tsk_cache_hot
= task_hot(p
, rq
->clock
, sd
);
3206 if (!tsk_cache_hot
||
3207 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3208 #ifdef CONFIG_SCHEDSTATS
3209 if (tsk_cache_hot
) {
3210 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3211 schedstat_inc(p
, se
.nr_forced_migrations
);
3217 if (tsk_cache_hot
) {
3218 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3224 static unsigned long
3225 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3226 unsigned long max_load_move
, struct sched_domain
*sd
,
3227 enum cpu_idle_type idle
, int *all_pinned
,
3228 int *this_best_prio
, struct rq_iterator
*iterator
)
3230 int loops
= 0, pulled
= 0, pinned
= 0;
3231 struct task_struct
*p
;
3232 long rem_load_move
= max_load_move
;
3234 if (max_load_move
== 0)
3240 * Start the load-balancing iterator:
3242 p
= iterator
->start(iterator
->arg
);
3244 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3247 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
3248 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3249 p
= iterator
->next(iterator
->arg
);
3253 pull_task(busiest
, p
, this_rq
, this_cpu
);
3255 rem_load_move
-= p
->se
.load
.weight
;
3257 #ifdef CONFIG_PREEMPT
3259 * NEWIDLE balancing is a source of latency, so preemptible kernels
3260 * will stop after the first task is pulled to minimize the critical
3263 if (idle
== CPU_NEWLY_IDLE
)
3268 * We only want to steal up to the prescribed amount of weighted load.
3270 if (rem_load_move
> 0) {
3271 if (p
->prio
< *this_best_prio
)
3272 *this_best_prio
= p
->prio
;
3273 p
= iterator
->next(iterator
->arg
);
3278 * Right now, this is one of only two places pull_task() is called,
3279 * so we can safely collect pull_task() stats here rather than
3280 * inside pull_task().
3282 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3285 *all_pinned
= pinned
;
3287 return max_load_move
- rem_load_move
;
3291 * move_tasks tries to move up to max_load_move weighted load from busiest to
3292 * this_rq, as part of a balancing operation within domain "sd".
3293 * Returns 1 if successful and 0 otherwise.
3295 * Called with both runqueues locked.
3297 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3298 unsigned long max_load_move
,
3299 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3302 const struct sched_class
*class = sched_class_highest
;
3303 unsigned long total_load_moved
= 0;
3304 int this_best_prio
= this_rq
->curr
->prio
;
3308 class->load_balance(this_rq
, this_cpu
, busiest
,
3309 max_load_move
- total_load_moved
,
3310 sd
, idle
, all_pinned
, &this_best_prio
);
3311 class = class->next
;
3313 #ifdef CONFIG_PREEMPT
3315 * NEWIDLE balancing is a source of latency, so preemptible
3316 * kernels will stop after the first task is pulled to minimize
3317 * the critical section.
3319 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3322 } while (class && max_load_move
> total_load_moved
);
3324 return total_load_moved
> 0;
3328 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3329 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3330 struct rq_iterator
*iterator
)
3332 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3336 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3337 pull_task(busiest
, p
, this_rq
, this_cpu
);
3339 * Right now, this is only the second place pull_task()
3340 * is called, so we can safely collect pull_task()
3341 * stats here rather than inside pull_task().
3343 schedstat_inc(sd
, lb_gained
[idle
]);
3347 p
= iterator
->next(iterator
->arg
);
3354 * move_one_task tries to move exactly one task from busiest to this_rq, as
3355 * part of active balancing operations within "domain".
3356 * Returns 1 if successful and 0 otherwise.
3358 * Called with both runqueues locked.
3360 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3361 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3363 const struct sched_class
*class;
3365 for_each_class(class) {
3366 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3372 /********** Helpers for find_busiest_group ************************/
3374 * sd_lb_stats - Structure to store the statistics of a sched_domain
3375 * during load balancing.
3377 struct sd_lb_stats
{
3378 struct sched_group
*busiest
; /* Busiest group in this sd */
3379 struct sched_group
*this; /* Local group in this sd */
3380 unsigned long total_load
; /* Total load of all groups in sd */
3381 unsigned long total_pwr
; /* Total power of all groups in sd */
3382 unsigned long avg_load
; /* Average load across all groups in sd */
3384 /** Statistics of this group */
3385 unsigned long this_load
;
3386 unsigned long this_load_per_task
;
3387 unsigned long this_nr_running
;
3389 /* Statistics of the busiest group */
3390 unsigned long max_load
;
3391 unsigned long busiest_load_per_task
;
3392 unsigned long busiest_nr_running
;
3394 int group_imb
; /* Is there imbalance in this sd */
3395 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3396 int power_savings_balance
; /* Is powersave balance needed for this sd */
3397 struct sched_group
*group_min
; /* Least loaded group in sd */
3398 struct sched_group
*group_leader
; /* Group which relieves group_min */
3399 unsigned long min_load_per_task
; /* load_per_task in group_min */
3400 unsigned long leader_nr_running
; /* Nr running of group_leader */
3401 unsigned long min_nr_running
; /* Nr running of group_min */
3406 * sg_lb_stats - stats of a sched_group required for load_balancing
3408 struct sg_lb_stats
{
3409 unsigned long avg_load
; /*Avg load across the CPUs of the group */
3410 unsigned long group_load
; /* Total load over the CPUs of the group */
3411 unsigned long sum_nr_running
; /* Nr tasks running in the group */
3412 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
3413 unsigned long group_capacity
;
3414 int group_imb
; /* Is there an imbalance in the group ? */
3418 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3419 * @group: The group whose first cpu is to be returned.
3421 static inline unsigned int group_first_cpu(struct sched_group
*group
)
3423 return cpumask_first(sched_group_cpus(group
));
3427 * get_sd_load_idx - Obtain the load index for a given sched domain.
3428 * @sd: The sched_domain whose load_idx is to be obtained.
3429 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3431 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3432 enum cpu_idle_type idle
)
3438 load_idx
= sd
->busy_idx
;
3441 case CPU_NEWLY_IDLE
:
3442 load_idx
= sd
->newidle_idx
;
3445 load_idx
= sd
->idle_idx
;
3453 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3455 * init_sd_power_savings_stats - Initialize power savings statistics for
3456 * the given sched_domain, during load balancing.
3458 * @sd: Sched domain whose power-savings statistics are to be initialized.
3459 * @sds: Variable containing the statistics for sd.
3460 * @idle: Idle status of the CPU at which we're performing load-balancing.
3462 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3463 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3466 * Busy processors will not participate in power savings
3469 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3470 sds
->power_savings_balance
= 0;
3472 sds
->power_savings_balance
= 1;
3473 sds
->min_nr_running
= ULONG_MAX
;
3474 sds
->leader_nr_running
= 0;
3479 * update_sd_power_savings_stats - Update the power saving stats for a
3480 * sched_domain while performing load balancing.
3482 * @group: sched_group belonging to the sched_domain under consideration.
3483 * @sds: Variable containing the statistics of the sched_domain
3484 * @local_group: Does group contain the CPU for which we're performing
3486 * @sgs: Variable containing the statistics of the group.
3488 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3489 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3492 if (!sds
->power_savings_balance
)
3496 * If the local group is idle or completely loaded
3497 * no need to do power savings balance at this domain
3499 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
3500 !sds
->this_nr_running
))
3501 sds
->power_savings_balance
= 0;
3504 * If a group is already running at full capacity or idle,
3505 * don't include that group in power savings calculations
3507 if (!sds
->power_savings_balance
||
3508 sgs
->sum_nr_running
>= sgs
->group_capacity
||
3509 !sgs
->sum_nr_running
)
3513 * Calculate the group which has the least non-idle load.
3514 * This is the group from where we need to pick up the load
3517 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
3518 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
3519 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
3520 sds
->group_min
= group
;
3521 sds
->min_nr_running
= sgs
->sum_nr_running
;
3522 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
3523 sgs
->sum_nr_running
;
3527 * Calculate the group which is almost near its
3528 * capacity but still has some space to pick up some load
3529 * from other group and save more power
3531 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
3534 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
3535 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
3536 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
3537 sds
->group_leader
= group
;
3538 sds
->leader_nr_running
= sgs
->sum_nr_running
;
3543 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3544 * @sds: Variable containing the statistics of the sched_domain
3545 * under consideration.
3546 * @this_cpu: Cpu at which we're currently performing load-balancing.
3547 * @imbalance: Variable to store the imbalance.
3550 * Check if we have potential to perform some power-savings balance.
3551 * If yes, set the busiest group to be the least loaded group in the
3552 * sched_domain, so that it's CPUs can be put to idle.
3554 * Returns 1 if there is potential to perform power-savings balance.
3557 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3558 int this_cpu
, unsigned long *imbalance
)
3560 if (!sds
->power_savings_balance
)
3563 if (sds
->this != sds
->group_leader
||
3564 sds
->group_leader
== sds
->group_min
)
3567 *imbalance
= sds
->min_load_per_task
;
3568 sds
->busiest
= sds
->group_min
;
3573 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3574 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3575 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3580 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3581 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3586 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3587 int this_cpu
, unsigned long *imbalance
)
3591 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3594 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3596 return SCHED_LOAD_SCALE
;
3599 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3601 return default_scale_freq_power(sd
, cpu
);
3604 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3606 unsigned long weight
= cpumask_weight(sched_domain_span(sd
));
3607 unsigned long smt_gain
= sd
->smt_gain
;
3614 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3616 return default_scale_smt_power(sd
, cpu
);
3619 unsigned long scale_rt_power(int cpu
)
3621 struct rq
*rq
= cpu_rq(cpu
);
3622 u64 total
, available
;
3624 sched_avg_update(rq
);
3626 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
3627 available
= total
- rq
->rt_avg
;
3629 if (unlikely((s64
)total
< SCHED_LOAD_SCALE
))
3630 total
= SCHED_LOAD_SCALE
;
3632 total
>>= SCHED_LOAD_SHIFT
;
3634 return div_u64(available
, total
);
3637 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
3639 unsigned long weight
= cpumask_weight(sched_domain_span(sd
));
3640 unsigned long power
= SCHED_LOAD_SCALE
;
3641 struct sched_group
*sdg
= sd
->groups
;
3643 if (sched_feat(ARCH_POWER
))
3644 power
*= arch_scale_freq_power(sd
, cpu
);
3646 power
*= default_scale_freq_power(sd
, cpu
);
3648 power
>>= SCHED_LOAD_SHIFT
;
3650 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
3651 if (sched_feat(ARCH_POWER
))
3652 power
*= arch_scale_smt_power(sd
, cpu
);
3654 power
*= default_scale_smt_power(sd
, cpu
);
3656 power
>>= SCHED_LOAD_SHIFT
;
3659 power
*= scale_rt_power(cpu
);
3660 power
>>= SCHED_LOAD_SHIFT
;
3665 sdg
->cpu_power
= power
;
3668 static void update_group_power(struct sched_domain
*sd
, int cpu
)
3670 struct sched_domain
*child
= sd
->child
;
3671 struct sched_group
*group
, *sdg
= sd
->groups
;
3672 unsigned long power
;
3675 update_cpu_power(sd
, cpu
);
3681 group
= child
->groups
;
3683 power
+= group
->cpu_power
;
3684 group
= group
->next
;
3685 } while (group
!= child
->groups
);
3687 sdg
->cpu_power
= power
;
3691 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3692 * @sd: The sched_domain whose statistics are to be updated.
3693 * @group: sched_group whose statistics are to be updated.
3694 * @this_cpu: Cpu for which load balance is currently performed.
3695 * @idle: Idle status of this_cpu
3696 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3697 * @sd_idle: Idle status of the sched_domain containing group.
3698 * @local_group: Does group contain this_cpu.
3699 * @cpus: Set of cpus considered for load balancing.
3700 * @balance: Should we balance.
3701 * @sgs: variable to hold the statistics for this group.
3703 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
3704 struct sched_group
*group
, int this_cpu
,
3705 enum cpu_idle_type idle
, int load_idx
, int *sd_idle
,
3706 int local_group
, const struct cpumask
*cpus
,
3707 int *balance
, struct sg_lb_stats
*sgs
)
3709 unsigned long load
, max_cpu_load
, min_cpu_load
;
3711 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3712 unsigned long sum_avg_load_per_task
;
3713 unsigned long avg_load_per_task
;
3716 balance_cpu
= group_first_cpu(group
);
3717 if (balance_cpu
== this_cpu
)
3718 update_group_power(sd
, this_cpu
);
3721 /* Tally up the load of all CPUs in the group */
3722 sum_avg_load_per_task
= avg_load_per_task
= 0;
3724 min_cpu_load
= ~0UL;
3726 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3727 struct rq
*rq
= cpu_rq(i
);
3729 if (*sd_idle
&& rq
->nr_running
)
3732 /* Bias balancing toward cpus of our domain */
3734 if (idle_cpu(i
) && !first_idle_cpu
) {
3739 load
= target_load(i
, load_idx
);
3741 load
= source_load(i
, load_idx
);
3742 if (load
> max_cpu_load
)
3743 max_cpu_load
= load
;
3744 if (min_cpu_load
> load
)
3745 min_cpu_load
= load
;
3748 sgs
->group_load
+= load
;
3749 sgs
->sum_nr_running
+= rq
->nr_running
;
3750 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
3752 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3756 * First idle cpu or the first cpu(busiest) in this sched group
3757 * is eligible for doing load balancing at this and above
3758 * domains. In the newly idle case, we will allow all the cpu's
3759 * to do the newly idle load balance.
3761 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3762 balance_cpu
!= this_cpu
&& balance
) {
3767 /* Adjust by relative CPU power of the group */
3768 sgs
->avg_load
= (sgs
->group_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
3772 * Consider the group unbalanced when the imbalance is larger
3773 * than the average weight of two tasks.
3775 * APZ: with cgroup the avg task weight can vary wildly and
3776 * might not be a suitable number - should we keep a
3777 * normalized nr_running number somewhere that negates
3780 avg_load_per_task
= (sum_avg_load_per_task
* SCHED_LOAD_SCALE
) /
3783 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3786 sgs
->group_capacity
=
3787 DIV_ROUND_CLOSEST(group
->cpu_power
, SCHED_LOAD_SCALE
);
3791 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3792 * @sd: sched_domain whose statistics are to be updated.
3793 * @this_cpu: Cpu for which load balance is currently performed.
3794 * @idle: Idle status of this_cpu
3795 * @sd_idle: Idle status of the sched_domain containing group.
3796 * @cpus: Set of cpus considered for load balancing.
3797 * @balance: Should we balance.
3798 * @sds: variable to hold the statistics for this sched_domain.
3800 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
3801 enum cpu_idle_type idle
, int *sd_idle
,
3802 const struct cpumask
*cpus
, int *balance
,
3803 struct sd_lb_stats
*sds
)
3805 struct sched_domain
*child
= sd
->child
;
3806 struct sched_group
*group
= sd
->groups
;
3807 struct sg_lb_stats sgs
;
3808 int load_idx
, prefer_sibling
= 0;
3810 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
3813 init_sd_power_savings_stats(sd
, sds
, idle
);
3814 load_idx
= get_sd_load_idx(sd
, idle
);
3819 local_group
= cpumask_test_cpu(this_cpu
,
3820 sched_group_cpus(group
));
3821 memset(&sgs
, 0, sizeof(sgs
));
3822 update_sg_lb_stats(sd
, group
, this_cpu
, idle
, load_idx
, sd_idle
,
3823 local_group
, cpus
, balance
, &sgs
);
3825 if (local_group
&& balance
&& !(*balance
))
3828 sds
->total_load
+= sgs
.group_load
;
3829 sds
->total_pwr
+= group
->cpu_power
;
3832 * In case the child domain prefers tasks go to siblings
3833 * first, lower the group capacity to one so that we'll try
3834 * and move all the excess tasks away.
3837 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
3840 sds
->this_load
= sgs
.avg_load
;
3842 sds
->this_nr_running
= sgs
.sum_nr_running
;
3843 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
3844 } else if (sgs
.avg_load
> sds
->max_load
&&
3845 (sgs
.sum_nr_running
> sgs
.group_capacity
||
3847 sds
->max_load
= sgs
.avg_load
;
3848 sds
->busiest
= group
;
3849 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
3850 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
3851 sds
->group_imb
= sgs
.group_imb
;
3854 update_sd_power_savings_stats(group
, sds
, local_group
, &sgs
);
3855 group
= group
->next
;
3856 } while (group
!= sd
->groups
);
3860 * fix_small_imbalance - Calculate the minor imbalance that exists
3861 * amongst the groups of a sched_domain, during
3863 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3864 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3865 * @imbalance: Variable to store the imbalance.
3867 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
3868 int this_cpu
, unsigned long *imbalance
)
3870 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
3871 unsigned int imbn
= 2;
3873 if (sds
->this_nr_running
) {
3874 sds
->this_load_per_task
/= sds
->this_nr_running
;
3875 if (sds
->busiest_load_per_task
>
3876 sds
->this_load_per_task
)
3879 sds
->this_load_per_task
=
3880 cpu_avg_load_per_task(this_cpu
);
3882 if (sds
->max_load
- sds
->this_load
+ sds
->busiest_load_per_task
>=
3883 sds
->busiest_load_per_task
* imbn
) {
3884 *imbalance
= sds
->busiest_load_per_task
;
3889 * OK, we don't have enough imbalance to justify moving tasks,
3890 * however we may be able to increase total CPU power used by
3894 pwr_now
+= sds
->busiest
->cpu_power
*
3895 min(sds
->busiest_load_per_task
, sds
->max_load
);
3896 pwr_now
+= sds
->this->cpu_power
*
3897 min(sds
->this_load_per_task
, sds
->this_load
);
3898 pwr_now
/= SCHED_LOAD_SCALE
;
3900 /* Amount of load we'd subtract */
3901 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3902 sds
->busiest
->cpu_power
;
3903 if (sds
->max_load
> tmp
)
3904 pwr_move
+= sds
->busiest
->cpu_power
*
3905 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
3907 /* Amount of load we'd add */
3908 if (sds
->max_load
* sds
->busiest
->cpu_power
<
3909 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
3910 tmp
= (sds
->max_load
* sds
->busiest
->cpu_power
) /
3911 sds
->this->cpu_power
;
3913 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3914 sds
->this->cpu_power
;
3915 pwr_move
+= sds
->this->cpu_power
*
3916 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
3917 pwr_move
/= SCHED_LOAD_SCALE
;
3919 /* Move if we gain throughput */
3920 if (pwr_move
> pwr_now
)
3921 *imbalance
= sds
->busiest_load_per_task
;
3925 * calculate_imbalance - Calculate the amount of imbalance present within the
3926 * groups of a given sched_domain during load balance.
3927 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3928 * @this_cpu: Cpu for which currently load balance is being performed.
3929 * @imbalance: The variable to store the imbalance.
3931 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3932 unsigned long *imbalance
)
3934 unsigned long max_pull
;
3936 * In the presence of smp nice balancing, certain scenarios can have
3937 * max load less than avg load(as we skip the groups at or below
3938 * its cpu_power, while calculating max_load..)
3940 if (sds
->max_load
< sds
->avg_load
) {
3942 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3945 /* Don't want to pull so many tasks that a group would go idle */
3946 max_pull
= min(sds
->max_load
- sds
->avg_load
,
3947 sds
->max_load
- sds
->busiest_load_per_task
);
3949 /* How much load to actually move to equalise the imbalance */
3950 *imbalance
= min(max_pull
* sds
->busiest
->cpu_power
,
3951 (sds
->avg_load
- sds
->this_load
) * sds
->this->cpu_power
)
3955 * if *imbalance is less than the average load per runnable task
3956 * there is no gaurantee that any tasks will be moved so we'll have
3957 * a think about bumping its value to force at least one task to be
3960 if (*imbalance
< sds
->busiest_load_per_task
)
3961 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3964 /******* find_busiest_group() helpers end here *********************/
3967 * find_busiest_group - Returns the busiest group within the sched_domain
3968 * if there is an imbalance. If there isn't an imbalance, and
3969 * the user has opted for power-savings, it returns a group whose
3970 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3971 * such a group exists.
3973 * Also calculates the amount of weighted load which should be moved
3974 * to restore balance.
3976 * @sd: The sched_domain whose busiest group is to be returned.
3977 * @this_cpu: The cpu for which load balancing is currently being performed.
3978 * @imbalance: Variable which stores amount of weighted load which should
3979 * be moved to restore balance/put a group to idle.
3980 * @idle: The idle status of this_cpu.
3981 * @sd_idle: The idleness of sd
3982 * @cpus: The set of CPUs under consideration for load-balancing.
3983 * @balance: Pointer to a variable indicating if this_cpu
3984 * is the appropriate cpu to perform load balancing at this_level.
3986 * Returns: - the busiest group if imbalance exists.
3987 * - If no imbalance and user has opted for power-savings balance,
3988 * return the least loaded group whose CPUs can be
3989 * put to idle by rebalancing its tasks onto our group.
3991 static struct sched_group
*
3992 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3993 unsigned long *imbalance
, enum cpu_idle_type idle
,
3994 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3996 struct sd_lb_stats sds
;
3998 memset(&sds
, 0, sizeof(sds
));
4001 * Compute the various statistics relavent for load balancing at
4004 update_sd_lb_stats(sd
, this_cpu
, idle
, sd_idle
, cpus
,
4007 /* Cases where imbalance does not exist from POV of this_cpu */
4008 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4010 * 2) There is no busy sibling group to pull from.
4011 * 3) This group is the busiest group.
4012 * 4) This group is more busy than the avg busieness at this
4014 * 5) The imbalance is within the specified limit.
4015 * 6) Any rebalance would lead to ping-pong
4017 if (balance
&& !(*balance
))
4020 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
4023 if (sds
.this_load
>= sds
.max_load
)
4026 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
4028 if (sds
.this_load
>= sds
.avg_load
)
4031 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
4034 sds
.busiest_load_per_task
/= sds
.busiest_nr_running
;
4036 sds
.busiest_load_per_task
=
4037 min(sds
.busiest_load_per_task
, sds
.avg_load
);
4040 * We're trying to get all the cpus to the average_load, so we don't
4041 * want to push ourselves above the average load, nor do we wish to
4042 * reduce the max loaded cpu below the average load, as either of these
4043 * actions would just result in more rebalancing later, and ping-pong
4044 * tasks around. Thus we look for the minimum possible imbalance.
4045 * Negative imbalances (*we* are more loaded than anyone else) will
4046 * be counted as no imbalance for these purposes -- we can't fix that
4047 * by pulling tasks to us. Be careful of negative numbers as they'll
4048 * appear as very large values with unsigned longs.
4050 if (sds
.max_load
<= sds
.busiest_load_per_task
)
4053 /* Looks like there is an imbalance. Compute it */
4054 calculate_imbalance(&sds
, this_cpu
, imbalance
);
4059 * There is no obvious imbalance. But check if we can do some balancing
4062 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
4070 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4073 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
4074 unsigned long imbalance
, const struct cpumask
*cpus
)
4076 struct rq
*busiest
= NULL
, *rq
;
4077 unsigned long max_load
= 0;
4080 for_each_cpu(i
, sched_group_cpus(group
)) {
4081 unsigned long power
= power_of(i
);
4082 unsigned long capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
4085 if (!cpumask_test_cpu(i
, cpus
))
4089 wl
= weighted_cpuload(i
) * SCHED_LOAD_SCALE
;
4092 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
4095 if (wl
> max_load
) {
4105 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4106 * so long as it is large enough.
4108 #define MAX_PINNED_INTERVAL 512
4110 /* Working cpumask for load_balance and load_balance_newidle. */
4111 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
4114 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4115 * tasks if there is an imbalance.
4117 static int load_balance(int this_cpu
, struct rq
*this_rq
,
4118 struct sched_domain
*sd
, enum cpu_idle_type idle
,
4121 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
4122 struct sched_group
*group
;
4123 unsigned long imbalance
;
4125 unsigned long flags
;
4126 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4128 cpumask_setall(cpus
);
4131 * When power savings policy is enabled for the parent domain, idle
4132 * sibling can pick up load irrespective of busy siblings. In this case,
4133 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4134 * portraying it as CPU_NOT_IDLE.
4136 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4137 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4140 schedstat_inc(sd
, lb_count
[idle
]);
4144 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
4151 schedstat_inc(sd
, lb_nobusyg
[idle
]);
4155 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
4157 schedstat_inc(sd
, lb_nobusyq
[idle
]);
4161 BUG_ON(busiest
== this_rq
);
4163 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
4166 if (busiest
->nr_running
> 1) {
4168 * Attempt to move tasks. If find_busiest_group has found
4169 * an imbalance but busiest->nr_running <= 1, the group is
4170 * still unbalanced. ld_moved simply stays zero, so it is
4171 * correctly treated as an imbalance.
4173 local_irq_save(flags
);
4174 double_rq_lock(this_rq
, busiest
);
4175 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4176 imbalance
, sd
, idle
, &all_pinned
);
4177 double_rq_unlock(this_rq
, busiest
);
4178 local_irq_restore(flags
);
4181 * some other cpu did the load balance for us.
4183 if (ld_moved
&& this_cpu
!= smp_processor_id())
4184 resched_cpu(this_cpu
);
4186 /* All tasks on this runqueue were pinned by CPU affinity */
4187 if (unlikely(all_pinned
)) {
4188 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4189 if (!cpumask_empty(cpus
))
4196 schedstat_inc(sd
, lb_failed
[idle
]);
4197 sd
->nr_balance_failed
++;
4199 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
4201 spin_lock_irqsave(&busiest
->lock
, flags
);
4203 /* don't kick the migration_thread, if the curr
4204 * task on busiest cpu can't be moved to this_cpu
4206 if (!cpumask_test_cpu(this_cpu
,
4207 &busiest
->curr
->cpus_allowed
)) {
4208 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4210 goto out_one_pinned
;
4213 if (!busiest
->active_balance
) {
4214 busiest
->active_balance
= 1;
4215 busiest
->push_cpu
= this_cpu
;
4218 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4220 wake_up_process(busiest
->migration_thread
);
4223 * We've kicked active balancing, reset the failure
4226 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
4229 sd
->nr_balance_failed
= 0;
4231 if (likely(!active_balance
)) {
4232 /* We were unbalanced, so reset the balancing interval */
4233 sd
->balance_interval
= sd
->min_interval
;
4236 * If we've begun active balancing, start to back off. This
4237 * case may not be covered by the all_pinned logic if there
4238 * is only 1 task on the busy runqueue (because we don't call
4241 if (sd
->balance_interval
< sd
->max_interval
)
4242 sd
->balance_interval
*= 2;
4245 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4246 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4252 schedstat_inc(sd
, lb_balanced
[idle
]);
4254 sd
->nr_balance_failed
= 0;
4257 /* tune up the balancing interval */
4258 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
4259 (sd
->balance_interval
< sd
->max_interval
))
4260 sd
->balance_interval
*= 2;
4262 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4263 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4274 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4275 * tasks if there is an imbalance.
4277 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4278 * this_rq is locked.
4281 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
4283 struct sched_group
*group
;
4284 struct rq
*busiest
= NULL
;
4285 unsigned long imbalance
;
4289 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4291 cpumask_setall(cpus
);
4294 * When power savings policy is enabled for the parent domain, idle
4295 * sibling can pick up load irrespective of busy siblings. In this case,
4296 * let the state of idle sibling percolate up as IDLE, instead of
4297 * portraying it as CPU_NOT_IDLE.
4299 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
4300 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4303 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
4305 update_shares_locked(this_rq
, sd
);
4306 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
4307 &sd_idle
, cpus
, NULL
);
4309 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
4313 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
4315 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
4319 BUG_ON(busiest
== this_rq
);
4321 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
4324 if (busiest
->nr_running
> 1) {
4325 /* Attempt to move tasks */
4326 double_lock_balance(this_rq
, busiest
);
4327 /* this_rq->clock is already updated */
4328 update_rq_clock(busiest
);
4329 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4330 imbalance
, sd
, CPU_NEWLY_IDLE
,
4332 double_unlock_balance(this_rq
, busiest
);
4334 if (unlikely(all_pinned
)) {
4335 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4336 if (!cpumask_empty(cpus
))
4342 int active_balance
= 0;
4344 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
4345 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4346 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4349 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
4352 if (sd
->nr_balance_failed
++ < 2)
4356 * The only task running in a non-idle cpu can be moved to this
4357 * cpu in an attempt to completely freeup the other CPU
4358 * package. The same method used to move task in load_balance()
4359 * have been extended for load_balance_newidle() to speedup
4360 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4362 * The package power saving logic comes from
4363 * find_busiest_group(). If there are no imbalance, then
4364 * f_b_g() will return NULL. However when sched_mc={1,2} then
4365 * f_b_g() will select a group from which a running task may be
4366 * pulled to this cpu in order to make the other package idle.
4367 * If there is no opportunity to make a package idle and if
4368 * there are no imbalance, then f_b_g() will return NULL and no
4369 * action will be taken in load_balance_newidle().
4371 * Under normal task pull operation due to imbalance, there
4372 * will be more than one task in the source run queue and
4373 * move_tasks() will succeed. ld_moved will be true and this
4374 * active balance code will not be triggered.
4377 /* Lock busiest in correct order while this_rq is held */
4378 double_lock_balance(this_rq
, busiest
);
4381 * don't kick the migration_thread, if the curr
4382 * task on busiest cpu can't be moved to this_cpu
4384 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
4385 double_unlock_balance(this_rq
, busiest
);
4390 if (!busiest
->active_balance
) {
4391 busiest
->active_balance
= 1;
4392 busiest
->push_cpu
= this_cpu
;
4396 double_unlock_balance(this_rq
, busiest
);
4398 * Should not call ttwu while holding a rq->lock
4400 spin_unlock(&this_rq
->lock
);
4402 wake_up_process(busiest
->migration_thread
);
4403 spin_lock(&this_rq
->lock
);
4406 sd
->nr_balance_failed
= 0;
4408 update_shares_locked(this_rq
, sd
);
4412 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
4413 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4414 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4416 sd
->nr_balance_failed
= 0;
4422 * idle_balance is called by schedule() if this_cpu is about to become
4423 * idle. Attempts to pull tasks from other CPUs.
4425 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
4427 struct sched_domain
*sd
;
4428 int pulled_task
= 0;
4429 unsigned long next_balance
= jiffies
+ HZ
;
4431 for_each_domain(this_cpu
, sd
) {
4432 unsigned long interval
;
4434 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4437 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
4438 /* If we've pulled tasks over stop searching: */
4439 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
4442 interval
= msecs_to_jiffies(sd
->balance_interval
);
4443 if (time_after(next_balance
, sd
->last_balance
+ interval
))
4444 next_balance
= sd
->last_balance
+ interval
;
4448 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
4450 * We are going idle. next_balance may be set based on
4451 * a busy processor. So reset next_balance.
4453 this_rq
->next_balance
= next_balance
;
4458 * active_load_balance is run by migration threads. It pushes running tasks
4459 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4460 * running on each physical CPU where possible, and avoids physical /
4461 * logical imbalances.
4463 * Called with busiest_rq locked.
4465 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
4467 int target_cpu
= busiest_rq
->push_cpu
;
4468 struct sched_domain
*sd
;
4469 struct rq
*target_rq
;
4471 /* Is there any task to move? */
4472 if (busiest_rq
->nr_running
<= 1)
4475 target_rq
= cpu_rq(target_cpu
);
4478 * This condition is "impossible", if it occurs
4479 * we need to fix it. Originally reported by
4480 * Bjorn Helgaas on a 128-cpu setup.
4482 BUG_ON(busiest_rq
== target_rq
);
4484 /* move a task from busiest_rq to target_rq */
4485 double_lock_balance(busiest_rq
, target_rq
);
4486 update_rq_clock(busiest_rq
);
4487 update_rq_clock(target_rq
);
4489 /* Search for an sd spanning us and the target CPU. */
4490 for_each_domain(target_cpu
, sd
) {
4491 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4492 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
4497 schedstat_inc(sd
, alb_count
);
4499 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4501 schedstat_inc(sd
, alb_pushed
);
4503 schedstat_inc(sd
, alb_failed
);
4505 double_unlock_balance(busiest_rq
, target_rq
);
4510 atomic_t load_balancer
;
4511 cpumask_var_t cpu_mask
;
4512 cpumask_var_t ilb_grp_nohz_mask
;
4513 } nohz ____cacheline_aligned
= {
4514 .load_balancer
= ATOMIC_INIT(-1),
4517 int get_nohz_load_balancer(void)
4519 return atomic_read(&nohz
.load_balancer
);
4522 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4524 * lowest_flag_domain - Return lowest sched_domain containing flag.
4525 * @cpu: The cpu whose lowest level of sched domain is to
4527 * @flag: The flag to check for the lowest sched_domain
4528 * for the given cpu.
4530 * Returns the lowest sched_domain of a cpu which contains the given flag.
4532 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
4534 struct sched_domain
*sd
;
4536 for_each_domain(cpu
, sd
)
4537 if (sd
&& (sd
->flags
& flag
))
4544 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4545 * @cpu: The cpu whose domains we're iterating over.
4546 * @sd: variable holding the value of the power_savings_sd
4548 * @flag: The flag to filter the sched_domains to be iterated.
4550 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4551 * set, starting from the lowest sched_domain to the highest.
4553 #define for_each_flag_domain(cpu, sd, flag) \
4554 for (sd = lowest_flag_domain(cpu, flag); \
4555 (sd && (sd->flags & flag)); sd = sd->parent)
4558 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4559 * @ilb_group: group to be checked for semi-idleness
4561 * Returns: 1 if the group is semi-idle. 0 otherwise.
4563 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4564 * and atleast one non-idle CPU. This helper function checks if the given
4565 * sched_group is semi-idle or not.
4567 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
4569 cpumask_and(nohz
.ilb_grp_nohz_mask
, nohz
.cpu_mask
,
4570 sched_group_cpus(ilb_group
));
4573 * A sched_group is semi-idle when it has atleast one busy cpu
4574 * and atleast one idle cpu.
4576 if (cpumask_empty(nohz
.ilb_grp_nohz_mask
))
4579 if (cpumask_equal(nohz
.ilb_grp_nohz_mask
, sched_group_cpus(ilb_group
)))
4585 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4586 * @cpu: The cpu which is nominating a new idle_load_balancer.
4588 * Returns: Returns the id of the idle load balancer if it exists,
4589 * Else, returns >= nr_cpu_ids.
4591 * This algorithm picks the idle load balancer such that it belongs to a
4592 * semi-idle powersavings sched_domain. The idea is to try and avoid
4593 * completely idle packages/cores just for the purpose of idle load balancing
4594 * when there are other idle cpu's which are better suited for that job.
4596 static int find_new_ilb(int cpu
)
4598 struct sched_domain
*sd
;
4599 struct sched_group
*ilb_group
;
4602 * Have idle load balancer selection from semi-idle packages only
4603 * when power-aware load balancing is enabled
4605 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
4609 * Optimize for the case when we have no idle CPUs or only one
4610 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4612 if (cpumask_weight(nohz
.cpu_mask
) < 2)
4615 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
4616 ilb_group
= sd
->groups
;
4619 if (is_semi_idle_group(ilb_group
))
4620 return cpumask_first(nohz
.ilb_grp_nohz_mask
);
4622 ilb_group
= ilb_group
->next
;
4624 } while (ilb_group
!= sd
->groups
);
4628 return cpumask_first(nohz
.cpu_mask
);
4630 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4631 static inline int find_new_ilb(int call_cpu
)
4633 return cpumask_first(nohz
.cpu_mask
);
4638 * This routine will try to nominate the ilb (idle load balancing)
4639 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4640 * load balancing on behalf of all those cpus. If all the cpus in the system
4641 * go into this tickless mode, then there will be no ilb owner (as there is
4642 * no need for one) and all the cpus will sleep till the next wakeup event
4645 * For the ilb owner, tick is not stopped. And this tick will be used
4646 * for idle load balancing. ilb owner will still be part of
4649 * While stopping the tick, this cpu will become the ilb owner if there
4650 * is no other owner. And will be the owner till that cpu becomes busy
4651 * or if all cpus in the system stop their ticks at which point
4652 * there is no need for ilb owner.
4654 * When the ilb owner becomes busy, it nominates another owner, during the
4655 * next busy scheduler_tick()
4657 int select_nohz_load_balancer(int stop_tick
)
4659 int cpu
= smp_processor_id();
4662 cpu_rq(cpu
)->in_nohz_recently
= 1;
4664 if (!cpu_active(cpu
)) {
4665 if (atomic_read(&nohz
.load_balancer
) != cpu
)
4669 * If we are going offline and still the leader,
4672 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4678 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
4680 /* time for ilb owner also to sleep */
4681 if (cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4682 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4683 atomic_set(&nohz
.load_balancer
, -1);
4687 if (atomic_read(&nohz
.load_balancer
) == -1) {
4688 /* make me the ilb owner */
4689 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
4691 } else if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4694 if (!(sched_smt_power_savings
||
4695 sched_mc_power_savings
))
4698 * Check to see if there is a more power-efficient
4701 new_ilb
= find_new_ilb(cpu
);
4702 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
4703 atomic_set(&nohz
.load_balancer
, -1);
4704 resched_cpu(new_ilb
);
4710 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4713 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4715 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4716 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4723 static DEFINE_SPINLOCK(balancing
);
4726 * It checks each scheduling domain to see if it is due to be balanced,
4727 * and initiates a balancing operation if so.
4729 * Balancing parameters are set up in arch_init_sched_domains.
4731 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4734 struct rq
*rq
= cpu_rq(cpu
);
4735 unsigned long interval
;
4736 struct sched_domain
*sd
;
4737 /* Earliest time when we have to do rebalance again */
4738 unsigned long next_balance
= jiffies
+ 60*HZ
;
4739 int update_next_balance
= 0;
4742 for_each_domain(cpu
, sd
) {
4743 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4746 interval
= sd
->balance_interval
;
4747 if (idle
!= CPU_IDLE
)
4748 interval
*= sd
->busy_factor
;
4750 /* scale ms to jiffies */
4751 interval
= msecs_to_jiffies(interval
);
4752 if (unlikely(!interval
))
4754 if (interval
> HZ
*NR_CPUS
/10)
4755 interval
= HZ
*NR_CPUS
/10;
4757 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4759 if (need_serialize
) {
4760 if (!spin_trylock(&balancing
))
4764 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4765 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
4767 * We've pulled tasks over so either we're no
4768 * longer idle, or one of our SMT siblings is
4771 idle
= CPU_NOT_IDLE
;
4773 sd
->last_balance
= jiffies
;
4776 spin_unlock(&balancing
);
4778 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4779 next_balance
= sd
->last_balance
+ interval
;
4780 update_next_balance
= 1;
4784 * Stop the load balance at this level. There is another
4785 * CPU in our sched group which is doing load balancing more
4793 * next_balance will be updated only when there is a need.
4794 * When the cpu is attached to null domain for ex, it will not be
4797 if (likely(update_next_balance
))
4798 rq
->next_balance
= next_balance
;
4802 * run_rebalance_domains is triggered when needed from the scheduler tick.
4803 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4804 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4806 static void run_rebalance_domains(struct softirq_action
*h
)
4808 int this_cpu
= smp_processor_id();
4809 struct rq
*this_rq
= cpu_rq(this_cpu
);
4810 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4811 CPU_IDLE
: CPU_NOT_IDLE
;
4813 rebalance_domains(this_cpu
, idle
);
4817 * If this cpu is the owner for idle load balancing, then do the
4818 * balancing on behalf of the other idle cpus whose ticks are
4821 if (this_rq
->idle_at_tick
&&
4822 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4826 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4827 if (balance_cpu
== this_cpu
)
4831 * If this cpu gets work to do, stop the load balancing
4832 * work being done for other cpus. Next load
4833 * balancing owner will pick it up.
4838 rebalance_domains(balance_cpu
, CPU_IDLE
);
4840 rq
= cpu_rq(balance_cpu
);
4841 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4842 this_rq
->next_balance
= rq
->next_balance
;
4848 static inline int on_null_domain(int cpu
)
4850 return !rcu_dereference(cpu_rq(cpu
)->sd
);
4854 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4856 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4857 * idle load balancing owner or decide to stop the periodic load balancing,
4858 * if the whole system is idle.
4860 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4864 * If we were in the nohz mode recently and busy at the current
4865 * scheduler tick, then check if we need to nominate new idle
4868 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4869 rq
->in_nohz_recently
= 0;
4871 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4872 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4873 atomic_set(&nohz
.load_balancer
, -1);
4876 if (atomic_read(&nohz
.load_balancer
) == -1) {
4877 int ilb
= find_new_ilb(cpu
);
4879 if (ilb
< nr_cpu_ids
)
4885 * If this cpu is idle and doing idle load balancing for all the
4886 * cpus with ticks stopped, is it time for that to stop?
4888 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4889 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4895 * If this cpu is idle and the idle load balancing is done by
4896 * someone else, then no need raise the SCHED_SOFTIRQ
4898 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4899 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4902 /* Don't need to rebalance while attached to NULL domain */
4903 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4904 likely(!on_null_domain(cpu
)))
4905 raise_softirq(SCHED_SOFTIRQ
);
4908 #else /* CONFIG_SMP */
4911 * on UP we do not need to balance between CPUs:
4913 static inline void idle_balance(int cpu
, struct rq
*rq
)
4919 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4921 EXPORT_PER_CPU_SYMBOL(kstat
);
4924 * Return any ns on the sched_clock that have not yet been accounted in
4925 * @p in case that task is currently running.
4927 * Called with task_rq_lock() held on @rq.
4929 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
4933 if (task_current(rq
, p
)) {
4934 update_rq_clock(rq
);
4935 ns
= rq
->clock
- p
->se
.exec_start
;
4943 unsigned long long task_delta_exec(struct task_struct
*p
)
4945 unsigned long flags
;
4949 rq
= task_rq_lock(p
, &flags
);
4950 ns
= do_task_delta_exec(p
, rq
);
4951 task_rq_unlock(rq
, &flags
);
4957 * Return accounted runtime for the task.
4958 * In case the task is currently running, return the runtime plus current's
4959 * pending runtime that have not been accounted yet.
4961 unsigned long long task_sched_runtime(struct task_struct
*p
)
4963 unsigned long flags
;
4967 rq
= task_rq_lock(p
, &flags
);
4968 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4969 task_rq_unlock(rq
, &flags
);
4975 * Return sum_exec_runtime for the thread group.
4976 * In case the task is currently running, return the sum plus current's
4977 * pending runtime that have not been accounted yet.
4979 * Note that the thread group might have other running tasks as well,
4980 * so the return value not includes other pending runtime that other
4981 * running tasks might have.
4983 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
4985 struct task_cputime totals
;
4986 unsigned long flags
;
4990 rq
= task_rq_lock(p
, &flags
);
4991 thread_group_cputime(p
, &totals
);
4992 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4993 task_rq_unlock(rq
, &flags
);
4999 * Account user cpu time to a process.
5000 * @p: the process that the cpu time gets accounted to
5001 * @cputime: the cpu time spent in user space since the last update
5002 * @cputime_scaled: cputime scaled by cpu frequency
5004 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
5005 cputime_t cputime_scaled
)
5007 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5010 /* Add user time to process. */
5011 p
->utime
= cputime_add(p
->utime
, cputime
);
5012 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
5013 account_group_user_time(p
, cputime
);
5015 /* Add user time to cpustat. */
5016 tmp
= cputime_to_cputime64(cputime
);
5017 if (TASK_NICE(p
) > 0)
5018 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
5020 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
5022 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
5023 /* Account for user time used */
5024 acct_update_integrals(p
);
5028 * Account guest cpu time to a process.
5029 * @p: the process that the cpu time gets accounted to
5030 * @cputime: the cpu time spent in virtual machine since the last update
5031 * @cputime_scaled: cputime scaled by cpu frequency
5033 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
5034 cputime_t cputime_scaled
)
5037 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5039 tmp
= cputime_to_cputime64(cputime
);
5041 /* Add guest time to process. */
5042 p
->utime
= cputime_add(p
->utime
, cputime
);
5043 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
5044 account_group_user_time(p
, cputime
);
5045 p
->gtime
= cputime_add(p
->gtime
, cputime
);
5047 /* Add guest time to cpustat. */
5048 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
5049 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
5053 * Account system cpu time to a process.
5054 * @p: the process that the cpu time gets accounted to
5055 * @hardirq_offset: the offset to subtract from hardirq_count()
5056 * @cputime: the cpu time spent in kernel space since the last update
5057 * @cputime_scaled: cputime scaled by cpu frequency
5059 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
5060 cputime_t cputime
, cputime_t cputime_scaled
)
5062 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5065 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
5066 account_guest_time(p
, cputime
, cputime_scaled
);
5070 /* Add system time to process. */
5071 p
->stime
= cputime_add(p
->stime
, cputime
);
5072 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
5073 account_group_system_time(p
, cputime
);
5075 /* Add system time to cpustat. */
5076 tmp
= cputime_to_cputime64(cputime
);
5077 if (hardirq_count() - hardirq_offset
)
5078 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
5079 else if (softirq_count())
5080 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
5082 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
5084 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
5086 /* Account for system time used */
5087 acct_update_integrals(p
);
5091 * Account for involuntary wait time.
5092 * @steal: the cpu time spent in involuntary wait
5094 void account_steal_time(cputime_t cputime
)
5096 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5097 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5099 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
5103 * Account for idle time.
5104 * @cputime: the cpu time spent in idle wait
5106 void account_idle_time(cputime_t cputime
)
5108 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5109 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5110 struct rq
*rq
= this_rq();
5112 if (atomic_read(&rq
->nr_iowait
) > 0)
5113 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
5115 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
5118 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5121 * Account a single tick of cpu time.
5122 * @p: the process that the cpu time gets accounted to
5123 * @user_tick: indicates if the tick is a user or a system tick
5125 void account_process_tick(struct task_struct
*p
, int user_tick
)
5127 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
5128 struct rq
*rq
= this_rq();
5131 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
5132 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
5133 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
5136 account_idle_time(cputime_one_jiffy
);
5140 * Account multiple ticks of steal time.
5141 * @p: the process from which the cpu time has been stolen
5142 * @ticks: number of stolen ticks
5144 void account_steal_ticks(unsigned long ticks
)
5146 account_steal_time(jiffies_to_cputime(ticks
));
5150 * Account multiple ticks of idle time.
5151 * @ticks: number of stolen ticks
5153 void account_idle_ticks(unsigned long ticks
)
5155 account_idle_time(jiffies_to_cputime(ticks
));
5161 * Use precise platform statistics if available:
5163 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5164 cputime_t
task_utime(struct task_struct
*p
)
5169 cputime_t
task_stime(struct task_struct
*p
)
5174 cputime_t
task_utime(struct task_struct
*p
)
5176 clock_t utime
= cputime_to_clock_t(p
->utime
),
5177 total
= utime
+ cputime_to_clock_t(p
->stime
);
5181 * Use CFS's precise accounting:
5183 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
5187 do_div(temp
, total
);
5189 utime
= (clock_t)temp
;
5191 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
5192 return p
->prev_utime
;
5195 cputime_t
task_stime(struct task_struct
*p
)
5200 * Use CFS's precise accounting. (we subtract utime from
5201 * the total, to make sure the total observed by userspace
5202 * grows monotonically - apps rely on that):
5204 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
5205 cputime_to_clock_t(task_utime(p
));
5208 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
5210 return p
->prev_stime
;
5214 inline cputime_t
task_gtime(struct task_struct
*p
)
5220 * This function gets called by the timer code, with HZ frequency.
5221 * We call it with interrupts disabled.
5223 * It also gets called by the fork code, when changing the parent's
5226 void scheduler_tick(void)
5228 int cpu
= smp_processor_id();
5229 struct rq
*rq
= cpu_rq(cpu
);
5230 struct task_struct
*curr
= rq
->curr
;
5234 spin_lock(&rq
->lock
);
5235 update_rq_clock(rq
);
5236 update_cpu_load(rq
);
5237 curr
->sched_class
->task_tick(rq
, curr
, 0);
5238 spin_unlock(&rq
->lock
);
5240 perf_event_task_tick(curr
, cpu
);
5243 rq
->idle_at_tick
= idle_cpu(cpu
);
5244 trigger_load_balance(rq
, cpu
);
5248 notrace
unsigned long get_parent_ip(unsigned long addr
)
5250 if (in_lock_functions(addr
)) {
5251 addr
= CALLER_ADDR2
;
5252 if (in_lock_functions(addr
))
5253 addr
= CALLER_ADDR3
;
5258 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5259 defined(CONFIG_PREEMPT_TRACER))
5261 void __kprobes
add_preempt_count(int val
)
5263 #ifdef CONFIG_DEBUG_PREEMPT
5267 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5270 preempt_count() += val
;
5271 #ifdef CONFIG_DEBUG_PREEMPT
5273 * Spinlock count overflowing soon?
5275 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
5278 if (preempt_count() == val
)
5279 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5281 EXPORT_SYMBOL(add_preempt_count
);
5283 void __kprobes
sub_preempt_count(int val
)
5285 #ifdef CONFIG_DEBUG_PREEMPT
5289 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
5292 * Is the spinlock portion underflowing?
5294 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
5295 !(preempt_count() & PREEMPT_MASK
)))
5299 if (preempt_count() == val
)
5300 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5301 preempt_count() -= val
;
5303 EXPORT_SYMBOL(sub_preempt_count
);
5308 * Print scheduling while atomic bug:
5310 static noinline
void __schedule_bug(struct task_struct
*prev
)
5312 struct pt_regs
*regs
= get_irq_regs();
5314 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
5315 prev
->comm
, prev
->pid
, preempt_count());
5317 debug_show_held_locks(prev
);
5319 if (irqs_disabled())
5320 print_irqtrace_events(prev
);
5329 * Various schedule()-time debugging checks and statistics:
5331 static inline void schedule_debug(struct task_struct
*prev
)
5334 * Test if we are atomic. Since do_exit() needs to call into
5335 * schedule() atomically, we ignore that path for now.
5336 * Otherwise, whine if we are scheduling when we should not be.
5338 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
5339 __schedule_bug(prev
);
5341 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
5343 schedstat_inc(this_rq(), sched_count
);
5344 #ifdef CONFIG_SCHEDSTATS
5345 if (unlikely(prev
->lock_depth
>= 0)) {
5346 schedstat_inc(this_rq(), bkl_count
);
5347 schedstat_inc(prev
, sched_info
.bkl_count
);
5352 static void put_prev_task(struct rq
*rq
, struct task_struct
*p
)
5354 u64 runtime
= p
->se
.sum_exec_runtime
- p
->se
.prev_sum_exec_runtime
;
5356 update_avg(&p
->se
.avg_running
, runtime
);
5358 if (p
->state
== TASK_RUNNING
) {
5360 * In order to avoid avg_overlap growing stale when we are
5361 * indeed overlapping and hence not getting put to sleep, grow
5362 * the avg_overlap on preemption.
5364 * We use the average preemption runtime because that
5365 * correlates to the amount of cache footprint a task can
5368 runtime
= min_t(u64
, runtime
, 2*sysctl_sched_migration_cost
);
5369 update_avg(&p
->se
.avg_overlap
, runtime
);
5371 update_avg(&p
->se
.avg_running
, 0);
5373 p
->sched_class
->put_prev_task(rq
, p
);
5377 * Pick up the highest-prio task:
5379 static inline struct task_struct
*
5380 pick_next_task(struct rq
*rq
)
5382 const struct sched_class
*class;
5383 struct task_struct
*p
;
5386 * Optimization: we know that if all tasks are in
5387 * the fair class we can call that function directly:
5389 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
5390 p
= fair_sched_class
.pick_next_task(rq
);
5395 class = sched_class_highest
;
5397 p
= class->pick_next_task(rq
);
5401 * Will never be NULL as the idle class always
5402 * returns a non-NULL p:
5404 class = class->next
;
5409 * schedule() is the main scheduler function.
5411 asmlinkage
void __sched
schedule(void)
5413 struct task_struct
*prev
, *next
;
5414 unsigned long *switch_count
;
5420 cpu
= smp_processor_id();
5424 switch_count
= &prev
->nivcsw
;
5426 release_kernel_lock(prev
);
5427 need_resched_nonpreemptible
:
5429 schedule_debug(prev
);
5431 if (sched_feat(HRTICK
))
5434 spin_lock_irq(&rq
->lock
);
5435 update_rq_clock(rq
);
5436 clear_tsk_need_resched(prev
);
5438 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
5439 if (unlikely(signal_pending_state(prev
->state
, prev
)))
5440 prev
->state
= TASK_RUNNING
;
5442 deactivate_task(rq
, prev
, 1);
5443 switch_count
= &prev
->nvcsw
;
5446 pre_schedule(rq
, prev
);
5448 if (unlikely(!rq
->nr_running
))
5449 idle_balance(cpu
, rq
);
5451 put_prev_task(rq
, prev
);
5452 next
= pick_next_task(rq
);
5454 if (likely(prev
!= next
)) {
5455 sched_info_switch(prev
, next
);
5456 perf_event_task_sched_out(prev
, next
, cpu
);
5462 context_switch(rq
, prev
, next
); /* unlocks the rq */
5464 * the context switch might have flipped the stack from under
5465 * us, hence refresh the local variables.
5467 cpu
= smp_processor_id();
5470 spin_unlock_irq(&rq
->lock
);
5474 if (unlikely(reacquire_kernel_lock(current
) < 0))
5475 goto need_resched_nonpreemptible
;
5477 preempt_enable_no_resched();
5481 EXPORT_SYMBOL(schedule
);
5485 * Look out! "owner" is an entirely speculative pointer
5486 * access and not reliable.
5488 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
5493 if (!sched_feat(OWNER_SPIN
))
5496 #ifdef CONFIG_DEBUG_PAGEALLOC
5498 * Need to access the cpu field knowing that
5499 * DEBUG_PAGEALLOC could have unmapped it if
5500 * the mutex owner just released it and exited.
5502 if (probe_kernel_address(&owner
->cpu
, cpu
))
5509 * Even if the access succeeded (likely case),
5510 * the cpu field may no longer be valid.
5512 if (cpu
>= nr_cpumask_bits
)
5516 * We need to validate that we can do a
5517 * get_cpu() and that we have the percpu area.
5519 if (!cpu_online(cpu
))
5526 * Owner changed, break to re-assess state.
5528 if (lock
->owner
!= owner
)
5532 * Is that owner really running on that cpu?
5534 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
5544 #ifdef CONFIG_PREEMPT
5546 * this is the entry point to schedule() from in-kernel preemption
5547 * off of preempt_enable. Kernel preemptions off return from interrupt
5548 * occur there and call schedule directly.
5550 asmlinkage
void __sched
preempt_schedule(void)
5552 struct thread_info
*ti
= current_thread_info();
5555 * If there is a non-zero preempt_count or interrupts are disabled,
5556 * we do not want to preempt the current task. Just return..
5558 if (likely(ti
->preempt_count
|| irqs_disabled()))
5562 add_preempt_count(PREEMPT_ACTIVE
);
5564 sub_preempt_count(PREEMPT_ACTIVE
);
5567 * Check again in case we missed a preemption opportunity
5568 * between schedule and now.
5571 } while (need_resched());
5573 EXPORT_SYMBOL(preempt_schedule
);
5576 * this is the entry point to schedule() from kernel preemption
5577 * off of irq context.
5578 * Note, that this is called and return with irqs disabled. This will
5579 * protect us against recursive calling from irq.
5581 asmlinkage
void __sched
preempt_schedule_irq(void)
5583 struct thread_info
*ti
= current_thread_info();
5585 /* Catch callers which need to be fixed */
5586 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
5589 add_preempt_count(PREEMPT_ACTIVE
);
5592 local_irq_disable();
5593 sub_preempt_count(PREEMPT_ACTIVE
);
5596 * Check again in case we missed a preemption opportunity
5597 * between schedule and now.
5600 } while (need_resched());
5603 #endif /* CONFIG_PREEMPT */
5605 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
5608 return try_to_wake_up(curr
->private, mode
, wake_flags
);
5610 EXPORT_SYMBOL(default_wake_function
);
5613 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5614 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5615 * number) then we wake all the non-exclusive tasks and one exclusive task.
5617 * There are circumstances in which we can try to wake a task which has already
5618 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5619 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5621 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
5622 int nr_exclusive
, int wake_flags
, void *key
)
5624 wait_queue_t
*curr
, *next
;
5626 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
5627 unsigned flags
= curr
->flags
;
5629 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
5630 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
5636 * __wake_up - wake up threads blocked on a waitqueue.
5638 * @mode: which threads
5639 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5640 * @key: is directly passed to the wakeup function
5642 * It may be assumed that this function implies a write memory barrier before
5643 * changing the task state if and only if any tasks are woken up.
5645 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
5646 int nr_exclusive
, void *key
)
5648 unsigned long flags
;
5650 spin_lock_irqsave(&q
->lock
, flags
);
5651 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
5652 spin_unlock_irqrestore(&q
->lock
, flags
);
5654 EXPORT_SYMBOL(__wake_up
);
5657 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5659 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
5661 __wake_up_common(q
, mode
, 1, 0, NULL
);
5664 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
5666 __wake_up_common(q
, mode
, 1, 0, key
);
5670 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5672 * @mode: which threads
5673 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5674 * @key: opaque value to be passed to wakeup targets
5676 * The sync wakeup differs that the waker knows that it will schedule
5677 * away soon, so while the target thread will be woken up, it will not
5678 * be migrated to another CPU - ie. the two threads are 'synchronized'
5679 * with each other. This can prevent needless bouncing between CPUs.
5681 * On UP it can prevent extra preemption.
5683 * It may be assumed that this function implies a write memory barrier before
5684 * changing the task state if and only if any tasks are woken up.
5686 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
5687 int nr_exclusive
, void *key
)
5689 unsigned long flags
;
5690 int wake_flags
= WF_SYNC
;
5695 if (unlikely(!nr_exclusive
))
5698 spin_lock_irqsave(&q
->lock
, flags
);
5699 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
5700 spin_unlock_irqrestore(&q
->lock
, flags
);
5702 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
5705 * __wake_up_sync - see __wake_up_sync_key()
5707 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
5709 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
5711 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
5714 * complete: - signals a single thread waiting on this completion
5715 * @x: holds the state of this particular completion
5717 * This will wake up a single thread waiting on this completion. Threads will be
5718 * awakened in the same order in which they were queued.
5720 * See also complete_all(), wait_for_completion() and related routines.
5722 * It may be assumed that this function implies a write memory barrier before
5723 * changing the task state if and only if any tasks are woken up.
5725 void complete(struct completion
*x
)
5727 unsigned long flags
;
5729 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5731 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
5732 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5734 EXPORT_SYMBOL(complete
);
5737 * complete_all: - signals all threads waiting on this completion
5738 * @x: holds the state of this particular completion
5740 * This will wake up all threads waiting on this particular completion event.
5742 * It may be assumed that this function implies a write memory barrier before
5743 * changing the task state if and only if any tasks are woken up.
5745 void complete_all(struct completion
*x
)
5747 unsigned long flags
;
5749 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5750 x
->done
+= UINT_MAX
/2;
5751 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
5752 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5754 EXPORT_SYMBOL(complete_all
);
5756 static inline long __sched
5757 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
5760 DECLARE_WAITQUEUE(wait
, current
);
5762 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
5763 __add_wait_queue_tail(&x
->wait
, &wait
);
5765 if (signal_pending_state(state
, current
)) {
5766 timeout
= -ERESTARTSYS
;
5769 __set_current_state(state
);
5770 spin_unlock_irq(&x
->wait
.lock
);
5771 timeout
= schedule_timeout(timeout
);
5772 spin_lock_irq(&x
->wait
.lock
);
5773 } while (!x
->done
&& timeout
);
5774 __remove_wait_queue(&x
->wait
, &wait
);
5779 return timeout
?: 1;
5783 wait_for_common(struct completion
*x
, long timeout
, int state
)
5787 spin_lock_irq(&x
->wait
.lock
);
5788 timeout
= do_wait_for_common(x
, timeout
, state
);
5789 spin_unlock_irq(&x
->wait
.lock
);
5794 * wait_for_completion: - waits for completion of a task
5795 * @x: holds the state of this particular completion
5797 * This waits to be signaled for completion of a specific task. It is NOT
5798 * interruptible and there is no timeout.
5800 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5801 * and interrupt capability. Also see complete().
5803 void __sched
wait_for_completion(struct completion
*x
)
5805 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
5807 EXPORT_SYMBOL(wait_for_completion
);
5810 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5811 * @x: holds the state of this particular completion
5812 * @timeout: timeout value in jiffies
5814 * This waits for either a completion of a specific task to be signaled or for a
5815 * specified timeout to expire. The timeout is in jiffies. It is not
5818 unsigned long __sched
5819 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
5821 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
5823 EXPORT_SYMBOL(wait_for_completion_timeout
);
5826 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5827 * @x: holds the state of this particular completion
5829 * This waits for completion of a specific task to be signaled. It is
5832 int __sched
wait_for_completion_interruptible(struct completion
*x
)
5834 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
5835 if (t
== -ERESTARTSYS
)
5839 EXPORT_SYMBOL(wait_for_completion_interruptible
);
5842 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5843 * @x: holds the state of this particular completion
5844 * @timeout: timeout value in jiffies
5846 * This waits for either a completion of a specific task to be signaled or for a
5847 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5849 unsigned long __sched
5850 wait_for_completion_interruptible_timeout(struct completion
*x
,
5851 unsigned long timeout
)
5853 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
5855 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
5858 * wait_for_completion_killable: - waits for completion of a task (killable)
5859 * @x: holds the state of this particular completion
5861 * This waits to be signaled for completion of a specific task. It can be
5862 * interrupted by a kill signal.
5864 int __sched
wait_for_completion_killable(struct completion
*x
)
5866 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
5867 if (t
== -ERESTARTSYS
)
5871 EXPORT_SYMBOL(wait_for_completion_killable
);
5874 * try_wait_for_completion - try to decrement a completion without blocking
5875 * @x: completion structure
5877 * Returns: 0 if a decrement cannot be done without blocking
5878 * 1 if a decrement succeeded.
5880 * If a completion is being used as a counting completion,
5881 * attempt to decrement the counter without blocking. This
5882 * enables us to avoid waiting if the resource the completion
5883 * is protecting is not available.
5885 bool try_wait_for_completion(struct completion
*x
)
5889 spin_lock_irq(&x
->wait
.lock
);
5894 spin_unlock_irq(&x
->wait
.lock
);
5897 EXPORT_SYMBOL(try_wait_for_completion
);
5900 * completion_done - Test to see if a completion has any waiters
5901 * @x: completion structure
5903 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5904 * 1 if there are no waiters.
5907 bool completion_done(struct completion
*x
)
5911 spin_lock_irq(&x
->wait
.lock
);
5914 spin_unlock_irq(&x
->wait
.lock
);
5917 EXPORT_SYMBOL(completion_done
);
5920 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
5922 unsigned long flags
;
5925 init_waitqueue_entry(&wait
, current
);
5927 __set_current_state(state
);
5929 spin_lock_irqsave(&q
->lock
, flags
);
5930 __add_wait_queue(q
, &wait
);
5931 spin_unlock(&q
->lock
);
5932 timeout
= schedule_timeout(timeout
);
5933 spin_lock_irq(&q
->lock
);
5934 __remove_wait_queue(q
, &wait
);
5935 spin_unlock_irqrestore(&q
->lock
, flags
);
5940 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
5942 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5944 EXPORT_SYMBOL(interruptible_sleep_on
);
5947 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5949 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
5951 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
5953 void __sched
sleep_on(wait_queue_head_t
*q
)
5955 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5957 EXPORT_SYMBOL(sleep_on
);
5959 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5961 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
5963 EXPORT_SYMBOL(sleep_on_timeout
);
5965 #ifdef CONFIG_RT_MUTEXES
5968 * rt_mutex_setprio - set the current priority of a task
5970 * @prio: prio value (kernel-internal form)
5972 * This function changes the 'effective' priority of a task. It does
5973 * not touch ->normal_prio like __setscheduler().
5975 * Used by the rt_mutex code to implement priority inheritance logic.
5977 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
5979 unsigned long flags
;
5980 int oldprio
, on_rq
, running
;
5982 const struct sched_class
*prev_class
= p
->sched_class
;
5984 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5986 rq
= task_rq_lock(p
, &flags
);
5987 update_rq_clock(rq
);
5990 on_rq
= p
->se
.on_rq
;
5991 running
= task_current(rq
, p
);
5993 dequeue_task(rq
, p
, 0);
5995 p
->sched_class
->put_prev_task(rq
, p
);
5998 p
->sched_class
= &rt_sched_class
;
6000 p
->sched_class
= &fair_sched_class
;
6005 p
->sched_class
->set_curr_task(rq
);
6007 enqueue_task(rq
, p
, 0);
6009 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6011 task_rq_unlock(rq
, &flags
);
6016 void set_user_nice(struct task_struct
*p
, long nice
)
6018 int old_prio
, delta
, on_rq
;
6019 unsigned long flags
;
6022 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
6025 * We have to be careful, if called from sys_setpriority(),
6026 * the task might be in the middle of scheduling on another CPU.
6028 rq
= task_rq_lock(p
, &flags
);
6029 update_rq_clock(rq
);
6031 * The RT priorities are set via sched_setscheduler(), but we still
6032 * allow the 'normal' nice value to be set - but as expected
6033 * it wont have any effect on scheduling until the task is
6034 * SCHED_FIFO/SCHED_RR:
6036 if (task_has_rt_policy(p
)) {
6037 p
->static_prio
= NICE_TO_PRIO(nice
);
6040 on_rq
= p
->se
.on_rq
;
6042 dequeue_task(rq
, p
, 0);
6044 p
->static_prio
= NICE_TO_PRIO(nice
);
6047 p
->prio
= effective_prio(p
);
6048 delta
= p
->prio
- old_prio
;
6051 enqueue_task(rq
, p
, 0);
6053 * If the task increased its priority or is running and
6054 * lowered its priority, then reschedule its CPU:
6056 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
6057 resched_task(rq
->curr
);
6060 task_rq_unlock(rq
, &flags
);
6062 EXPORT_SYMBOL(set_user_nice
);
6065 * can_nice - check if a task can reduce its nice value
6069 int can_nice(const struct task_struct
*p
, const int nice
)
6071 /* convert nice value [19,-20] to rlimit style value [1,40] */
6072 int nice_rlim
= 20 - nice
;
6074 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
6075 capable(CAP_SYS_NICE
));
6078 #ifdef __ARCH_WANT_SYS_NICE
6081 * sys_nice - change the priority of the current process.
6082 * @increment: priority increment
6084 * sys_setpriority is a more generic, but much slower function that
6085 * does similar things.
6087 SYSCALL_DEFINE1(nice
, int, increment
)
6092 * Setpriority might change our priority at the same moment.
6093 * We don't have to worry. Conceptually one call occurs first
6094 * and we have a single winner.
6096 if (increment
< -40)
6101 nice
= TASK_NICE(current
) + increment
;
6107 if (increment
< 0 && !can_nice(current
, nice
))
6110 retval
= security_task_setnice(current
, nice
);
6114 set_user_nice(current
, nice
);
6121 * task_prio - return the priority value of a given task.
6122 * @p: the task in question.
6124 * This is the priority value as seen by users in /proc.
6125 * RT tasks are offset by -200. Normal tasks are centered
6126 * around 0, value goes from -16 to +15.
6128 int task_prio(const struct task_struct
*p
)
6130 return p
->prio
- MAX_RT_PRIO
;
6134 * task_nice - return the nice value of a given task.
6135 * @p: the task in question.
6137 int task_nice(const struct task_struct
*p
)
6139 return TASK_NICE(p
);
6141 EXPORT_SYMBOL(task_nice
);
6144 * idle_cpu - is a given cpu idle currently?
6145 * @cpu: the processor in question.
6147 int idle_cpu(int cpu
)
6149 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
6153 * idle_task - return the idle task for a given cpu.
6154 * @cpu: the processor in question.
6156 struct task_struct
*idle_task(int cpu
)
6158 return cpu_rq(cpu
)->idle
;
6162 * find_process_by_pid - find a process with a matching PID value.
6163 * @pid: the pid in question.
6165 static struct task_struct
*find_process_by_pid(pid_t pid
)
6167 return pid
? find_task_by_vpid(pid
) : current
;
6170 /* Actually do priority change: must hold rq lock. */
6172 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
6174 BUG_ON(p
->se
.on_rq
);
6177 switch (p
->policy
) {
6181 p
->sched_class
= &fair_sched_class
;
6185 p
->sched_class
= &rt_sched_class
;
6189 p
->rt_priority
= prio
;
6190 p
->normal_prio
= normal_prio(p
);
6191 /* we are holding p->pi_lock already */
6192 p
->prio
= rt_mutex_getprio(p
);
6197 * check the target process has a UID that matches the current process's
6199 static bool check_same_owner(struct task_struct
*p
)
6201 const struct cred
*cred
= current_cred(), *pcred
;
6205 pcred
= __task_cred(p
);
6206 match
= (cred
->euid
== pcred
->euid
||
6207 cred
->euid
== pcred
->uid
);
6212 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
6213 struct sched_param
*param
, bool user
)
6215 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
6216 unsigned long flags
;
6217 const struct sched_class
*prev_class
= p
->sched_class
;
6221 /* may grab non-irq protected spin_locks */
6222 BUG_ON(in_interrupt());
6224 /* double check policy once rq lock held */
6226 reset_on_fork
= p
->sched_reset_on_fork
;
6227 policy
= oldpolicy
= p
->policy
;
6229 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
6230 policy
&= ~SCHED_RESET_ON_FORK
;
6232 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
6233 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
6234 policy
!= SCHED_IDLE
)
6239 * Valid priorities for SCHED_FIFO and SCHED_RR are
6240 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6241 * SCHED_BATCH and SCHED_IDLE is 0.
6243 if (param
->sched_priority
< 0 ||
6244 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
6245 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
6247 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
6251 * Allow unprivileged RT tasks to decrease priority:
6253 if (user
&& !capable(CAP_SYS_NICE
)) {
6254 if (rt_policy(policy
)) {
6255 unsigned long rlim_rtprio
;
6257 if (!lock_task_sighand(p
, &flags
))
6259 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
6260 unlock_task_sighand(p
, &flags
);
6262 /* can't set/change the rt policy */
6263 if (policy
!= p
->policy
&& !rlim_rtprio
)
6266 /* can't increase priority */
6267 if (param
->sched_priority
> p
->rt_priority
&&
6268 param
->sched_priority
> rlim_rtprio
)
6272 * Like positive nice levels, dont allow tasks to
6273 * move out of SCHED_IDLE either:
6275 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
6278 /* can't change other user's priorities */
6279 if (!check_same_owner(p
))
6282 /* Normal users shall not reset the sched_reset_on_fork flag */
6283 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
6288 #ifdef CONFIG_RT_GROUP_SCHED
6290 * Do not allow realtime tasks into groups that have no runtime
6293 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
6294 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
6298 retval
= security_task_setscheduler(p
, policy
, param
);
6304 * make sure no PI-waiters arrive (or leave) while we are
6305 * changing the priority of the task:
6307 spin_lock_irqsave(&p
->pi_lock
, flags
);
6309 * To be able to change p->policy safely, the apropriate
6310 * runqueue lock must be held.
6312 rq
= __task_rq_lock(p
);
6313 /* recheck policy now with rq lock held */
6314 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
6315 policy
= oldpolicy
= -1;
6316 __task_rq_unlock(rq
);
6317 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6320 update_rq_clock(rq
);
6321 on_rq
= p
->se
.on_rq
;
6322 running
= task_current(rq
, p
);
6324 deactivate_task(rq
, p
, 0);
6326 p
->sched_class
->put_prev_task(rq
, p
);
6328 p
->sched_reset_on_fork
= reset_on_fork
;
6331 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
6334 p
->sched_class
->set_curr_task(rq
);
6336 activate_task(rq
, p
, 0);
6338 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6340 __task_rq_unlock(rq
);
6341 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6343 rt_mutex_adjust_pi(p
);
6349 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6350 * @p: the task in question.
6351 * @policy: new policy.
6352 * @param: structure containing the new RT priority.
6354 * NOTE that the task may be already dead.
6356 int sched_setscheduler(struct task_struct
*p
, int policy
,
6357 struct sched_param
*param
)
6359 return __sched_setscheduler(p
, policy
, param
, true);
6361 EXPORT_SYMBOL_GPL(sched_setscheduler
);
6364 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6365 * @p: the task in question.
6366 * @policy: new policy.
6367 * @param: structure containing the new RT priority.
6369 * Just like sched_setscheduler, only don't bother checking if the
6370 * current context has permission. For example, this is needed in
6371 * stop_machine(): we create temporary high priority worker threads,
6372 * but our caller might not have that capability.
6374 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
6375 struct sched_param
*param
)
6377 return __sched_setscheduler(p
, policy
, param
, false);
6381 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
6383 struct sched_param lparam
;
6384 struct task_struct
*p
;
6387 if (!param
|| pid
< 0)
6389 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
6394 p
= find_process_by_pid(pid
);
6396 retval
= sched_setscheduler(p
, policy
, &lparam
);
6403 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6404 * @pid: the pid in question.
6405 * @policy: new policy.
6406 * @param: structure containing the new RT priority.
6408 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
6409 struct sched_param __user
*, param
)
6411 /* negative values for policy are not valid */
6415 return do_sched_setscheduler(pid
, policy
, param
);
6419 * sys_sched_setparam - set/change the RT priority of a thread
6420 * @pid: the pid in question.
6421 * @param: structure containing the new RT priority.
6423 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6425 return do_sched_setscheduler(pid
, -1, param
);
6429 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6430 * @pid: the pid in question.
6432 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
6434 struct task_struct
*p
;
6441 read_lock(&tasklist_lock
);
6442 p
= find_process_by_pid(pid
);
6444 retval
= security_task_getscheduler(p
);
6447 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
6449 read_unlock(&tasklist_lock
);
6454 * sys_sched_getparam - get the RT priority of a thread
6455 * @pid: the pid in question.
6456 * @param: structure containing the RT priority.
6458 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6460 struct sched_param lp
;
6461 struct task_struct
*p
;
6464 if (!param
|| pid
< 0)
6467 read_lock(&tasklist_lock
);
6468 p
= find_process_by_pid(pid
);
6473 retval
= security_task_getscheduler(p
);
6477 lp
.sched_priority
= p
->rt_priority
;
6478 read_unlock(&tasklist_lock
);
6481 * This one might sleep, we cannot do it with a spinlock held ...
6483 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
6488 read_unlock(&tasklist_lock
);
6492 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
6494 cpumask_var_t cpus_allowed
, new_mask
;
6495 struct task_struct
*p
;
6499 read_lock(&tasklist_lock
);
6501 p
= find_process_by_pid(pid
);
6503 read_unlock(&tasklist_lock
);
6509 * It is not safe to call set_cpus_allowed with the
6510 * tasklist_lock held. We will bump the task_struct's
6511 * usage count and then drop tasklist_lock.
6514 read_unlock(&tasklist_lock
);
6516 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
6520 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
6522 goto out_free_cpus_allowed
;
6525 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
6528 retval
= security_task_setscheduler(p
, 0, NULL
);
6532 cpuset_cpus_allowed(p
, cpus_allowed
);
6533 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
6535 retval
= set_cpus_allowed_ptr(p
, new_mask
);
6538 cpuset_cpus_allowed(p
, cpus_allowed
);
6539 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
6541 * We must have raced with a concurrent cpuset
6542 * update. Just reset the cpus_allowed to the
6543 * cpuset's cpus_allowed
6545 cpumask_copy(new_mask
, cpus_allowed
);
6550 free_cpumask_var(new_mask
);
6551 out_free_cpus_allowed
:
6552 free_cpumask_var(cpus_allowed
);
6559 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
6560 struct cpumask
*new_mask
)
6562 if (len
< cpumask_size())
6563 cpumask_clear(new_mask
);
6564 else if (len
> cpumask_size())
6565 len
= cpumask_size();
6567 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
6571 * sys_sched_setaffinity - set the cpu affinity of a process
6572 * @pid: pid of the process
6573 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6574 * @user_mask_ptr: user-space pointer to the new cpu mask
6576 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
6577 unsigned long __user
*, user_mask_ptr
)
6579 cpumask_var_t new_mask
;
6582 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
6585 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
6587 retval
= sched_setaffinity(pid
, new_mask
);
6588 free_cpumask_var(new_mask
);
6592 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
6594 struct task_struct
*p
;
6598 read_lock(&tasklist_lock
);
6601 p
= find_process_by_pid(pid
);
6605 retval
= security_task_getscheduler(p
);
6609 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
6612 read_unlock(&tasklist_lock
);
6619 * sys_sched_getaffinity - get the cpu affinity of a process
6620 * @pid: pid of the process
6621 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6622 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6624 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
6625 unsigned long __user
*, user_mask_ptr
)
6630 if (len
< cpumask_size())
6633 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
6636 ret
= sched_getaffinity(pid
, mask
);
6638 if (copy_to_user(user_mask_ptr
, mask
, cpumask_size()))
6641 ret
= cpumask_size();
6643 free_cpumask_var(mask
);
6649 * sys_sched_yield - yield the current processor to other threads.
6651 * This function yields the current CPU to other tasks. If there are no
6652 * other threads running on this CPU then this function will return.
6654 SYSCALL_DEFINE0(sched_yield
)
6656 struct rq
*rq
= this_rq_lock();
6658 schedstat_inc(rq
, yld_count
);
6659 current
->sched_class
->yield_task(rq
);
6662 * Since we are going to call schedule() anyway, there's
6663 * no need to preempt or enable interrupts:
6665 __release(rq
->lock
);
6666 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
6667 _raw_spin_unlock(&rq
->lock
);
6668 preempt_enable_no_resched();
6675 static inline int should_resched(void)
6677 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
6680 static void __cond_resched(void)
6682 add_preempt_count(PREEMPT_ACTIVE
);
6684 sub_preempt_count(PREEMPT_ACTIVE
);
6687 int __sched
_cond_resched(void)
6689 if (should_resched()) {
6695 EXPORT_SYMBOL(_cond_resched
);
6698 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6699 * call schedule, and on return reacquire the lock.
6701 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6702 * operations here to prevent schedule() from being called twice (once via
6703 * spin_unlock(), once by hand).
6705 int __cond_resched_lock(spinlock_t
*lock
)
6707 int resched
= should_resched();
6710 lockdep_assert_held(lock
);
6712 if (spin_needbreak(lock
) || resched
) {
6723 EXPORT_SYMBOL(__cond_resched_lock
);
6725 int __sched
__cond_resched_softirq(void)
6727 BUG_ON(!in_softirq());
6729 if (should_resched()) {
6737 EXPORT_SYMBOL(__cond_resched_softirq
);
6740 * yield - yield the current processor to other threads.
6742 * This is a shortcut for kernel-space yielding - it marks the
6743 * thread runnable and calls sys_sched_yield().
6745 void __sched
yield(void)
6747 set_current_state(TASK_RUNNING
);
6750 EXPORT_SYMBOL(yield
);
6753 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6754 * that process accounting knows that this is a task in IO wait state.
6756 void __sched
io_schedule(void)
6758 struct rq
*rq
= raw_rq();
6760 delayacct_blkio_start();
6761 atomic_inc(&rq
->nr_iowait
);
6762 current
->in_iowait
= 1;
6764 current
->in_iowait
= 0;
6765 atomic_dec(&rq
->nr_iowait
);
6766 delayacct_blkio_end();
6768 EXPORT_SYMBOL(io_schedule
);
6770 long __sched
io_schedule_timeout(long timeout
)
6772 struct rq
*rq
= raw_rq();
6775 delayacct_blkio_start();
6776 atomic_inc(&rq
->nr_iowait
);
6777 current
->in_iowait
= 1;
6778 ret
= schedule_timeout(timeout
);
6779 current
->in_iowait
= 0;
6780 atomic_dec(&rq
->nr_iowait
);
6781 delayacct_blkio_end();
6786 * sys_sched_get_priority_max - return maximum RT priority.
6787 * @policy: scheduling class.
6789 * this syscall returns the maximum rt_priority that can be used
6790 * by a given scheduling class.
6792 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
6799 ret
= MAX_USER_RT_PRIO
-1;
6811 * sys_sched_get_priority_min - return minimum RT priority.
6812 * @policy: scheduling class.
6814 * this syscall returns the minimum rt_priority that can be used
6815 * by a given scheduling class.
6817 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
6835 * sys_sched_rr_get_interval - return the default timeslice of a process.
6836 * @pid: pid of the process.
6837 * @interval: userspace pointer to the timeslice value.
6839 * this syscall writes the default timeslice value of a given process
6840 * into the user-space timespec buffer. A value of '0' means infinity.
6842 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
6843 struct timespec __user
*, interval
)
6845 struct task_struct
*p
;
6846 unsigned int time_slice
;
6854 read_lock(&tasklist_lock
);
6855 p
= find_process_by_pid(pid
);
6859 retval
= security_task_getscheduler(p
);
6863 time_slice
= p
->sched_class
->get_rr_interval(p
);
6865 read_unlock(&tasklist_lock
);
6866 jiffies_to_timespec(time_slice
, &t
);
6867 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
6871 read_unlock(&tasklist_lock
);
6875 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
6877 void sched_show_task(struct task_struct
*p
)
6879 unsigned long free
= 0;
6882 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
6883 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
6884 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
6885 #if BITS_PER_LONG == 32
6886 if (state
== TASK_RUNNING
)
6887 printk(KERN_CONT
" running ");
6889 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
6891 if (state
== TASK_RUNNING
)
6892 printk(KERN_CONT
" running task ");
6894 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6896 #ifdef CONFIG_DEBUG_STACK_USAGE
6897 free
= stack_not_used(p
);
6899 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
6900 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
6901 (unsigned long)task_thread_info(p
)->flags
);
6903 show_stack(p
, NULL
);
6906 void show_state_filter(unsigned long state_filter
)
6908 struct task_struct
*g
, *p
;
6910 #if BITS_PER_LONG == 32
6912 " task PC stack pid father\n");
6915 " task PC stack pid father\n");
6917 read_lock(&tasklist_lock
);
6918 do_each_thread(g
, p
) {
6920 * reset the NMI-timeout, listing all files on a slow
6921 * console might take alot of time:
6923 touch_nmi_watchdog();
6924 if (!state_filter
|| (p
->state
& state_filter
))
6926 } while_each_thread(g
, p
);
6928 touch_all_softlockup_watchdogs();
6930 #ifdef CONFIG_SCHED_DEBUG
6931 sysrq_sched_debug_show();
6933 read_unlock(&tasklist_lock
);
6935 * Only show locks if all tasks are dumped:
6937 if (state_filter
== -1)
6938 debug_show_all_locks();
6941 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
6943 idle
->sched_class
= &idle_sched_class
;
6947 * init_idle - set up an idle thread for a given CPU
6948 * @idle: task in question
6949 * @cpu: cpu the idle task belongs to
6951 * NOTE: this function does not set the idle thread's NEED_RESCHED
6952 * flag, to make booting more robust.
6954 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6956 struct rq
*rq
= cpu_rq(cpu
);
6957 unsigned long flags
;
6959 spin_lock_irqsave(&rq
->lock
, flags
);
6962 idle
->se
.exec_start
= sched_clock();
6964 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
6965 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
6966 __set_task_cpu(idle
, cpu
);
6968 rq
->curr
= rq
->idle
= idle
;
6969 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6972 spin_unlock_irqrestore(&rq
->lock
, flags
);
6974 /* Set the preempt count _outside_ the spinlocks! */
6975 #if defined(CONFIG_PREEMPT)
6976 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
6978 task_thread_info(idle
)->preempt_count
= 0;
6981 * The idle tasks have their own, simple scheduling class:
6983 idle
->sched_class
= &idle_sched_class
;
6984 ftrace_graph_init_task(idle
);
6988 * In a system that switches off the HZ timer nohz_cpu_mask
6989 * indicates which cpus entered this state. This is used
6990 * in the rcu update to wait only for active cpus. For system
6991 * which do not switch off the HZ timer nohz_cpu_mask should
6992 * always be CPU_BITS_NONE.
6994 cpumask_var_t nohz_cpu_mask
;
6997 * Increase the granularity value when there are more CPUs,
6998 * because with more CPUs the 'effective latency' as visible
6999 * to users decreases. But the relationship is not linear,
7000 * so pick a second-best guess by going with the log2 of the
7003 * This idea comes from the SD scheduler of Con Kolivas:
7005 static inline void sched_init_granularity(void)
7007 unsigned int factor
= 1 + ilog2(num_online_cpus());
7008 const unsigned long limit
= 200000000;
7010 sysctl_sched_min_granularity
*= factor
;
7011 if (sysctl_sched_min_granularity
> limit
)
7012 sysctl_sched_min_granularity
= limit
;
7014 sysctl_sched_latency
*= factor
;
7015 if (sysctl_sched_latency
> limit
)
7016 sysctl_sched_latency
= limit
;
7018 sysctl_sched_wakeup_granularity
*= factor
;
7020 sysctl_sched_shares_ratelimit
*= factor
;
7025 * This is how migration works:
7027 * 1) we queue a struct migration_req structure in the source CPU's
7028 * runqueue and wake up that CPU's migration thread.
7029 * 2) we down() the locked semaphore => thread blocks.
7030 * 3) migration thread wakes up (implicitly it forces the migrated
7031 * thread off the CPU)
7032 * 4) it gets the migration request and checks whether the migrated
7033 * task is still in the wrong runqueue.
7034 * 5) if it's in the wrong runqueue then the migration thread removes
7035 * it and puts it into the right queue.
7036 * 6) migration thread up()s the semaphore.
7037 * 7) we wake up and the migration is done.
7041 * Change a given task's CPU affinity. Migrate the thread to a
7042 * proper CPU and schedule it away if the CPU it's executing on
7043 * is removed from the allowed bitmask.
7045 * NOTE: the caller must have a valid reference to the task, the
7046 * task must not exit() & deallocate itself prematurely. The
7047 * call is not atomic; no spinlocks may be held.
7049 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
7051 struct migration_req req
;
7052 unsigned long flags
;
7056 rq
= task_rq_lock(p
, &flags
);
7057 if (!cpumask_intersects(new_mask
, cpu_online_mask
)) {
7062 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
7063 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
7068 if (p
->sched_class
->set_cpus_allowed
)
7069 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
7071 cpumask_copy(&p
->cpus_allowed
, new_mask
);
7072 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
7075 /* Can the task run on the task's current CPU? If so, we're done */
7076 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
7079 if (migrate_task(p
, cpumask_any_and(cpu_online_mask
, new_mask
), &req
)) {
7080 /* Need help from migration thread: drop lock and wait. */
7081 struct task_struct
*mt
= rq
->migration_thread
;
7083 get_task_struct(mt
);
7084 task_rq_unlock(rq
, &flags
);
7085 wake_up_process(rq
->migration_thread
);
7086 put_task_struct(mt
);
7087 wait_for_completion(&req
.done
);
7088 tlb_migrate_finish(p
->mm
);
7092 task_rq_unlock(rq
, &flags
);
7096 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
7099 * Move (not current) task off this cpu, onto dest cpu. We're doing
7100 * this because either it can't run here any more (set_cpus_allowed()
7101 * away from this CPU, or CPU going down), or because we're
7102 * attempting to rebalance this task on exec (sched_exec).
7104 * So we race with normal scheduler movements, but that's OK, as long
7105 * as the task is no longer on this CPU.
7107 * Returns non-zero if task was successfully migrated.
7109 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7111 struct rq
*rq_dest
, *rq_src
;
7114 if (unlikely(!cpu_active(dest_cpu
)))
7117 rq_src
= cpu_rq(src_cpu
);
7118 rq_dest
= cpu_rq(dest_cpu
);
7120 double_rq_lock(rq_src
, rq_dest
);
7121 /* Already moved. */
7122 if (task_cpu(p
) != src_cpu
)
7124 /* Affinity changed (again). */
7125 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7128 on_rq
= p
->se
.on_rq
;
7130 deactivate_task(rq_src
, p
, 0);
7132 set_task_cpu(p
, dest_cpu
);
7134 activate_task(rq_dest
, p
, 0);
7135 check_preempt_curr(rq_dest
, p
, 0);
7140 double_rq_unlock(rq_src
, rq_dest
);
7144 #define RCU_MIGRATION_IDLE 0
7145 #define RCU_MIGRATION_NEED_QS 1
7146 #define RCU_MIGRATION_GOT_QS 2
7147 #define RCU_MIGRATION_MUST_SYNC 3
7150 * migration_thread - this is a highprio system thread that performs
7151 * thread migration by bumping thread off CPU then 'pushing' onto
7154 static int migration_thread(void *data
)
7157 int cpu
= (long)data
;
7161 BUG_ON(rq
->migration_thread
!= current
);
7163 set_current_state(TASK_INTERRUPTIBLE
);
7164 while (!kthread_should_stop()) {
7165 struct migration_req
*req
;
7166 struct list_head
*head
;
7168 spin_lock_irq(&rq
->lock
);
7170 if (cpu_is_offline(cpu
)) {
7171 spin_unlock_irq(&rq
->lock
);
7175 if (rq
->active_balance
) {
7176 active_load_balance(rq
, cpu
);
7177 rq
->active_balance
= 0;
7180 head
= &rq
->migration_queue
;
7182 if (list_empty(head
)) {
7183 spin_unlock_irq(&rq
->lock
);
7185 set_current_state(TASK_INTERRUPTIBLE
);
7188 req
= list_entry(head
->next
, struct migration_req
, list
);
7189 list_del_init(head
->next
);
7191 if (req
->task
!= NULL
) {
7192 spin_unlock(&rq
->lock
);
7193 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
7194 } else if (likely(cpu
== (badcpu
= smp_processor_id()))) {
7195 req
->dest_cpu
= RCU_MIGRATION_GOT_QS
;
7196 spin_unlock(&rq
->lock
);
7198 req
->dest_cpu
= RCU_MIGRATION_MUST_SYNC
;
7199 spin_unlock(&rq
->lock
);
7200 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu
, cpu
);
7204 complete(&req
->done
);
7206 __set_current_state(TASK_RUNNING
);
7211 #ifdef CONFIG_HOTPLUG_CPU
7213 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7217 local_irq_disable();
7218 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
7224 * Figure out where task on dead CPU should go, use force if necessary.
7226 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
7229 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(dead_cpu
));
7232 /* Look for allowed, online CPU in same node. */
7233 for_each_cpu_and(dest_cpu
, nodemask
, cpu_online_mask
)
7234 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7237 /* Any allowed, online CPU? */
7238 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_online_mask
);
7239 if (dest_cpu
< nr_cpu_ids
)
7242 /* No more Mr. Nice Guy. */
7243 if (dest_cpu
>= nr_cpu_ids
) {
7244 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
7245 dest_cpu
= cpumask_any_and(cpu_online_mask
, &p
->cpus_allowed
);
7248 * Don't tell them about moving exiting tasks or
7249 * kernel threads (both mm NULL), since they never
7252 if (p
->mm
&& printk_ratelimit()) {
7253 printk(KERN_INFO
"process %d (%s) no "
7254 "longer affine to cpu%d\n",
7255 task_pid_nr(p
), p
->comm
, dead_cpu
);
7260 /* It can have affinity changed while we were choosing. */
7261 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
7266 * While a dead CPU has no uninterruptible tasks queued at this point,
7267 * it might still have a nonzero ->nr_uninterruptible counter, because
7268 * for performance reasons the counter is not stricly tracking tasks to
7269 * their home CPUs. So we just add the counter to another CPU's counter,
7270 * to keep the global sum constant after CPU-down:
7272 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
7274 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_online_mask
));
7275 unsigned long flags
;
7277 local_irq_save(flags
);
7278 double_rq_lock(rq_src
, rq_dest
);
7279 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
7280 rq_src
->nr_uninterruptible
= 0;
7281 double_rq_unlock(rq_src
, rq_dest
);
7282 local_irq_restore(flags
);
7285 /* Run through task list and migrate tasks from the dead cpu. */
7286 static void migrate_live_tasks(int src_cpu
)
7288 struct task_struct
*p
, *t
;
7290 read_lock(&tasklist_lock
);
7292 do_each_thread(t
, p
) {
7296 if (task_cpu(p
) == src_cpu
)
7297 move_task_off_dead_cpu(src_cpu
, p
);
7298 } while_each_thread(t
, p
);
7300 read_unlock(&tasklist_lock
);
7304 * Schedules idle task to be the next runnable task on current CPU.
7305 * It does so by boosting its priority to highest possible.
7306 * Used by CPU offline code.
7308 void sched_idle_next(void)
7310 int this_cpu
= smp_processor_id();
7311 struct rq
*rq
= cpu_rq(this_cpu
);
7312 struct task_struct
*p
= rq
->idle
;
7313 unsigned long flags
;
7315 /* cpu has to be offline */
7316 BUG_ON(cpu_online(this_cpu
));
7319 * Strictly not necessary since rest of the CPUs are stopped by now
7320 * and interrupts disabled on the current cpu.
7322 spin_lock_irqsave(&rq
->lock
, flags
);
7324 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7326 update_rq_clock(rq
);
7327 activate_task(rq
, p
, 0);
7329 spin_unlock_irqrestore(&rq
->lock
, flags
);
7333 * Ensures that the idle task is using init_mm right before its cpu goes
7336 void idle_task_exit(void)
7338 struct mm_struct
*mm
= current
->active_mm
;
7340 BUG_ON(cpu_online(smp_processor_id()));
7343 switch_mm(mm
, &init_mm
, current
);
7347 /* called under rq->lock with disabled interrupts */
7348 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
7350 struct rq
*rq
= cpu_rq(dead_cpu
);
7352 /* Must be exiting, otherwise would be on tasklist. */
7353 BUG_ON(!p
->exit_state
);
7355 /* Cannot have done final schedule yet: would have vanished. */
7356 BUG_ON(p
->state
== TASK_DEAD
);
7361 * Drop lock around migration; if someone else moves it,
7362 * that's OK. No task can be added to this CPU, so iteration is
7365 spin_unlock_irq(&rq
->lock
);
7366 move_task_off_dead_cpu(dead_cpu
, p
);
7367 spin_lock_irq(&rq
->lock
);
7372 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7373 static void migrate_dead_tasks(unsigned int dead_cpu
)
7375 struct rq
*rq
= cpu_rq(dead_cpu
);
7376 struct task_struct
*next
;
7379 if (!rq
->nr_running
)
7381 update_rq_clock(rq
);
7382 next
= pick_next_task(rq
);
7385 next
->sched_class
->put_prev_task(rq
, next
);
7386 migrate_dead(dead_cpu
, next
);
7392 * remove the tasks which were accounted by rq from calc_load_tasks.
7394 static void calc_global_load_remove(struct rq
*rq
)
7396 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
7397 rq
->calc_load_active
= 0;
7399 #endif /* CONFIG_HOTPLUG_CPU */
7401 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7403 static struct ctl_table sd_ctl_dir
[] = {
7405 .procname
= "sched_domain",
7411 static struct ctl_table sd_ctl_root
[] = {
7413 .ctl_name
= CTL_KERN
,
7414 .procname
= "kernel",
7416 .child
= sd_ctl_dir
,
7421 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
7423 struct ctl_table
*entry
=
7424 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
7429 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
7431 struct ctl_table
*entry
;
7434 * In the intermediate directories, both the child directory and
7435 * procname are dynamically allocated and could fail but the mode
7436 * will always be set. In the lowest directory the names are
7437 * static strings and all have proc handlers.
7439 for (entry
= *tablep
; entry
->mode
; entry
++) {
7441 sd_free_ctl_entry(&entry
->child
);
7442 if (entry
->proc_handler
== NULL
)
7443 kfree(entry
->procname
);
7451 set_table_entry(struct ctl_table
*entry
,
7452 const char *procname
, void *data
, int maxlen
,
7453 mode_t mode
, proc_handler
*proc_handler
)
7455 entry
->procname
= procname
;
7457 entry
->maxlen
= maxlen
;
7459 entry
->proc_handler
= proc_handler
;
7462 static struct ctl_table
*
7463 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
7465 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
7470 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
7471 sizeof(long), 0644, proc_doulongvec_minmax
);
7472 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
7473 sizeof(long), 0644, proc_doulongvec_minmax
);
7474 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
7475 sizeof(int), 0644, proc_dointvec_minmax
);
7476 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
7477 sizeof(int), 0644, proc_dointvec_minmax
);
7478 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
7479 sizeof(int), 0644, proc_dointvec_minmax
);
7480 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
7481 sizeof(int), 0644, proc_dointvec_minmax
);
7482 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
7483 sizeof(int), 0644, proc_dointvec_minmax
);
7484 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
7485 sizeof(int), 0644, proc_dointvec_minmax
);
7486 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
7487 sizeof(int), 0644, proc_dointvec_minmax
);
7488 set_table_entry(&table
[9], "cache_nice_tries",
7489 &sd
->cache_nice_tries
,
7490 sizeof(int), 0644, proc_dointvec_minmax
);
7491 set_table_entry(&table
[10], "flags", &sd
->flags
,
7492 sizeof(int), 0644, proc_dointvec_minmax
);
7493 set_table_entry(&table
[11], "name", sd
->name
,
7494 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
7495 /* &table[12] is terminator */
7500 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
7502 struct ctl_table
*entry
, *table
;
7503 struct sched_domain
*sd
;
7504 int domain_num
= 0, i
;
7507 for_each_domain(cpu
, sd
)
7509 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
7514 for_each_domain(cpu
, sd
) {
7515 snprintf(buf
, 32, "domain%d", i
);
7516 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7518 entry
->child
= sd_alloc_ctl_domain_table(sd
);
7525 static struct ctl_table_header
*sd_sysctl_header
;
7526 static void register_sched_domain_sysctl(void)
7528 int i
, cpu_num
= num_online_cpus();
7529 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
7532 WARN_ON(sd_ctl_dir
[0].child
);
7533 sd_ctl_dir
[0].child
= entry
;
7538 for_each_online_cpu(i
) {
7539 snprintf(buf
, 32, "cpu%d", i
);
7540 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7542 entry
->child
= sd_alloc_ctl_cpu_table(i
);
7546 WARN_ON(sd_sysctl_header
);
7547 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
7550 /* may be called multiple times per register */
7551 static void unregister_sched_domain_sysctl(void)
7553 if (sd_sysctl_header
)
7554 unregister_sysctl_table(sd_sysctl_header
);
7555 sd_sysctl_header
= NULL
;
7556 if (sd_ctl_dir
[0].child
)
7557 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
7560 static void register_sched_domain_sysctl(void)
7563 static void unregister_sched_domain_sysctl(void)
7568 static void set_rq_online(struct rq
*rq
)
7571 const struct sched_class
*class;
7573 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
7576 for_each_class(class) {
7577 if (class->rq_online
)
7578 class->rq_online(rq
);
7583 static void set_rq_offline(struct rq
*rq
)
7586 const struct sched_class
*class;
7588 for_each_class(class) {
7589 if (class->rq_offline
)
7590 class->rq_offline(rq
);
7593 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
7599 * migration_call - callback that gets triggered when a CPU is added.
7600 * Here we can start up the necessary migration thread for the new CPU.
7602 static int __cpuinit
7603 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
7605 struct task_struct
*p
;
7606 int cpu
= (long)hcpu
;
7607 unsigned long flags
;
7612 case CPU_UP_PREPARE
:
7613 case CPU_UP_PREPARE_FROZEN
:
7614 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
7617 kthread_bind(p
, cpu
);
7618 /* Must be high prio: stop_machine expects to yield to it. */
7619 rq
= task_rq_lock(p
, &flags
);
7620 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7621 task_rq_unlock(rq
, &flags
);
7623 cpu_rq(cpu
)->migration_thread
= p
;
7624 rq
->calc_load_update
= calc_load_update
;
7628 case CPU_ONLINE_FROZEN
:
7629 /* Strictly unnecessary, as first user will wake it. */
7630 wake_up_process(cpu_rq(cpu
)->migration_thread
);
7632 /* Update our root-domain */
7634 spin_lock_irqsave(&rq
->lock
, flags
);
7636 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7640 spin_unlock_irqrestore(&rq
->lock
, flags
);
7643 #ifdef CONFIG_HOTPLUG_CPU
7644 case CPU_UP_CANCELED
:
7645 case CPU_UP_CANCELED_FROZEN
:
7646 if (!cpu_rq(cpu
)->migration_thread
)
7648 /* Unbind it from offline cpu so it can run. Fall thru. */
7649 kthread_bind(cpu_rq(cpu
)->migration_thread
,
7650 cpumask_any(cpu_online_mask
));
7651 kthread_stop(cpu_rq(cpu
)->migration_thread
);
7652 put_task_struct(cpu_rq(cpu
)->migration_thread
);
7653 cpu_rq(cpu
)->migration_thread
= NULL
;
7657 case CPU_DEAD_FROZEN
:
7658 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7659 migrate_live_tasks(cpu
);
7661 kthread_stop(rq
->migration_thread
);
7662 put_task_struct(rq
->migration_thread
);
7663 rq
->migration_thread
= NULL
;
7664 /* Idle task back to normal (off runqueue, low prio) */
7665 spin_lock_irq(&rq
->lock
);
7666 update_rq_clock(rq
);
7667 deactivate_task(rq
, rq
->idle
, 0);
7668 rq
->idle
->static_prio
= MAX_PRIO
;
7669 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
7670 rq
->idle
->sched_class
= &idle_sched_class
;
7671 migrate_dead_tasks(cpu
);
7672 spin_unlock_irq(&rq
->lock
);
7674 migrate_nr_uninterruptible(rq
);
7675 BUG_ON(rq
->nr_running
!= 0);
7676 calc_global_load_remove(rq
);
7678 * No need to migrate the tasks: it was best-effort if
7679 * they didn't take sched_hotcpu_mutex. Just wake up
7682 spin_lock_irq(&rq
->lock
);
7683 while (!list_empty(&rq
->migration_queue
)) {
7684 struct migration_req
*req
;
7686 req
= list_entry(rq
->migration_queue
.next
,
7687 struct migration_req
, list
);
7688 list_del_init(&req
->list
);
7689 spin_unlock_irq(&rq
->lock
);
7690 complete(&req
->done
);
7691 spin_lock_irq(&rq
->lock
);
7693 spin_unlock_irq(&rq
->lock
);
7697 case CPU_DYING_FROZEN
:
7698 /* Update our root-domain */
7700 spin_lock_irqsave(&rq
->lock
, flags
);
7702 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7705 spin_unlock_irqrestore(&rq
->lock
, flags
);
7713 * Register at high priority so that task migration (migrate_all_tasks)
7714 * happens before everything else. This has to be lower priority than
7715 * the notifier in the perf_event subsystem, though.
7717 static struct notifier_block __cpuinitdata migration_notifier
= {
7718 .notifier_call
= migration_call
,
7722 static int __init
migration_init(void)
7724 void *cpu
= (void *)(long)smp_processor_id();
7727 /* Start one for the boot CPU: */
7728 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
7729 BUG_ON(err
== NOTIFY_BAD
);
7730 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
7731 register_cpu_notifier(&migration_notifier
);
7735 early_initcall(migration_init
);
7740 #ifdef CONFIG_SCHED_DEBUG
7742 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
7743 struct cpumask
*groupmask
)
7745 struct sched_group
*group
= sd
->groups
;
7748 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
7749 cpumask_clear(groupmask
);
7751 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
7753 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
7754 printk("does not load-balance\n");
7756 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
7761 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
7763 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
7764 printk(KERN_ERR
"ERROR: domain->span does not contain "
7767 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
7768 printk(KERN_ERR
"ERROR: domain->groups does not contain"
7772 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
7776 printk(KERN_ERR
"ERROR: group is NULL\n");
7780 if (!group
->cpu_power
) {
7781 printk(KERN_CONT
"\n");
7782 printk(KERN_ERR
"ERROR: domain->cpu_power not "
7787 if (!cpumask_weight(sched_group_cpus(group
))) {
7788 printk(KERN_CONT
"\n");
7789 printk(KERN_ERR
"ERROR: empty group\n");
7793 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
7794 printk(KERN_CONT
"\n");
7795 printk(KERN_ERR
"ERROR: repeated CPUs\n");
7799 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
7801 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
7803 printk(KERN_CONT
" %s", str
);
7804 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
7805 printk(KERN_CONT
" (cpu_power = %d)",
7809 group
= group
->next
;
7810 } while (group
!= sd
->groups
);
7811 printk(KERN_CONT
"\n");
7813 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
7814 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
7817 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
7818 printk(KERN_ERR
"ERROR: parent span is not a superset "
7819 "of domain->span\n");
7823 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
7825 cpumask_var_t groupmask
;
7829 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
7833 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
7835 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
7836 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
7841 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
7848 free_cpumask_var(groupmask
);
7850 #else /* !CONFIG_SCHED_DEBUG */
7851 # define sched_domain_debug(sd, cpu) do { } while (0)
7852 #endif /* CONFIG_SCHED_DEBUG */
7854 static int sd_degenerate(struct sched_domain
*sd
)
7856 if (cpumask_weight(sched_domain_span(sd
)) == 1)
7859 /* Following flags need at least 2 groups */
7860 if (sd
->flags
& (SD_LOAD_BALANCE
|
7861 SD_BALANCE_NEWIDLE
|
7865 SD_SHARE_PKG_RESOURCES
)) {
7866 if (sd
->groups
!= sd
->groups
->next
)
7870 /* Following flags don't use groups */
7871 if (sd
->flags
& (SD_WAKE_AFFINE
))
7878 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
7880 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
7882 if (sd_degenerate(parent
))
7885 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
7888 /* Flags needing groups don't count if only 1 group in parent */
7889 if (parent
->groups
== parent
->groups
->next
) {
7890 pflags
&= ~(SD_LOAD_BALANCE
|
7891 SD_BALANCE_NEWIDLE
|
7895 SD_SHARE_PKG_RESOURCES
);
7896 if (nr_node_ids
== 1)
7897 pflags
&= ~SD_SERIALIZE
;
7899 if (~cflags
& pflags
)
7905 static void free_rootdomain(struct root_domain
*rd
)
7907 cpupri_cleanup(&rd
->cpupri
);
7909 free_cpumask_var(rd
->rto_mask
);
7910 free_cpumask_var(rd
->online
);
7911 free_cpumask_var(rd
->span
);
7915 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
7917 struct root_domain
*old_rd
= NULL
;
7918 unsigned long flags
;
7920 spin_lock_irqsave(&rq
->lock
, flags
);
7925 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
7928 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
7931 * If we dont want to free the old_rt yet then
7932 * set old_rd to NULL to skip the freeing later
7935 if (!atomic_dec_and_test(&old_rd
->refcount
))
7939 atomic_inc(&rd
->refcount
);
7942 cpumask_set_cpu(rq
->cpu
, rd
->span
);
7943 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
7946 spin_unlock_irqrestore(&rq
->lock
, flags
);
7949 free_rootdomain(old_rd
);
7952 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
7954 gfp_t gfp
= GFP_KERNEL
;
7956 memset(rd
, 0, sizeof(*rd
));
7961 if (!alloc_cpumask_var(&rd
->span
, gfp
))
7963 if (!alloc_cpumask_var(&rd
->online
, gfp
))
7965 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
7968 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
7973 free_cpumask_var(rd
->rto_mask
);
7975 free_cpumask_var(rd
->online
);
7977 free_cpumask_var(rd
->span
);
7982 static void init_defrootdomain(void)
7984 init_rootdomain(&def_root_domain
, true);
7986 atomic_set(&def_root_domain
.refcount
, 1);
7989 static struct root_domain
*alloc_rootdomain(void)
7991 struct root_domain
*rd
;
7993 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
7997 if (init_rootdomain(rd
, false) != 0) {
8006 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8007 * hold the hotplug lock.
8010 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
8012 struct rq
*rq
= cpu_rq(cpu
);
8013 struct sched_domain
*tmp
;
8015 /* Remove the sched domains which do not contribute to scheduling. */
8016 for (tmp
= sd
; tmp
; ) {
8017 struct sched_domain
*parent
= tmp
->parent
;
8021 if (sd_parent_degenerate(tmp
, parent
)) {
8022 tmp
->parent
= parent
->parent
;
8024 parent
->parent
->child
= tmp
;
8029 if (sd
&& sd_degenerate(sd
)) {
8035 sched_domain_debug(sd
, cpu
);
8037 rq_attach_root(rq
, rd
);
8038 rcu_assign_pointer(rq
->sd
, sd
);
8041 /* cpus with isolated domains */
8042 static cpumask_var_t cpu_isolated_map
;
8044 /* Setup the mask of cpus configured for isolated domains */
8045 static int __init
isolated_cpu_setup(char *str
)
8047 cpulist_parse(str
, cpu_isolated_map
);
8051 __setup("isolcpus=", isolated_cpu_setup
);
8054 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8055 * to a function which identifies what group(along with sched group) a CPU
8056 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8057 * (due to the fact that we keep track of groups covered with a struct cpumask).
8059 * init_sched_build_groups will build a circular linked list of the groups
8060 * covered by the given span, and will set each group's ->cpumask correctly,
8061 * and ->cpu_power to 0.
8064 init_sched_build_groups(const struct cpumask
*span
,
8065 const struct cpumask
*cpu_map
,
8066 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
8067 struct sched_group
**sg
,
8068 struct cpumask
*tmpmask
),
8069 struct cpumask
*covered
, struct cpumask
*tmpmask
)
8071 struct sched_group
*first
= NULL
, *last
= NULL
;
8074 cpumask_clear(covered
);
8076 for_each_cpu(i
, span
) {
8077 struct sched_group
*sg
;
8078 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
8081 if (cpumask_test_cpu(i
, covered
))
8084 cpumask_clear(sched_group_cpus(sg
));
8087 for_each_cpu(j
, span
) {
8088 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
8091 cpumask_set_cpu(j
, covered
);
8092 cpumask_set_cpu(j
, sched_group_cpus(sg
));
8103 #define SD_NODES_PER_DOMAIN 16
8108 * find_next_best_node - find the next node to include in a sched_domain
8109 * @node: node whose sched_domain we're building
8110 * @used_nodes: nodes already in the sched_domain
8112 * Find the next node to include in a given scheduling domain. Simply
8113 * finds the closest node not already in the @used_nodes map.
8115 * Should use nodemask_t.
8117 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
8119 int i
, n
, val
, min_val
, best_node
= 0;
8123 for (i
= 0; i
< nr_node_ids
; i
++) {
8124 /* Start at @node */
8125 n
= (node
+ i
) % nr_node_ids
;
8127 if (!nr_cpus_node(n
))
8130 /* Skip already used nodes */
8131 if (node_isset(n
, *used_nodes
))
8134 /* Simple min distance search */
8135 val
= node_distance(node
, n
);
8137 if (val
< min_val
) {
8143 node_set(best_node
, *used_nodes
);
8148 * sched_domain_node_span - get a cpumask for a node's sched_domain
8149 * @node: node whose cpumask we're constructing
8150 * @span: resulting cpumask
8152 * Given a node, construct a good cpumask for its sched_domain to span. It
8153 * should be one that prevents unnecessary balancing, but also spreads tasks
8156 static void sched_domain_node_span(int node
, struct cpumask
*span
)
8158 nodemask_t used_nodes
;
8161 cpumask_clear(span
);
8162 nodes_clear(used_nodes
);
8164 cpumask_or(span
, span
, cpumask_of_node(node
));
8165 node_set(node
, used_nodes
);
8167 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
8168 int next_node
= find_next_best_node(node
, &used_nodes
);
8170 cpumask_or(span
, span
, cpumask_of_node(next_node
));
8173 #endif /* CONFIG_NUMA */
8175 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
8178 * The cpus mask in sched_group and sched_domain hangs off the end.
8180 * ( See the the comments in include/linux/sched.h:struct sched_group
8181 * and struct sched_domain. )
8183 struct static_sched_group
{
8184 struct sched_group sg
;
8185 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
8188 struct static_sched_domain
{
8189 struct sched_domain sd
;
8190 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
8196 cpumask_var_t domainspan
;
8197 cpumask_var_t covered
;
8198 cpumask_var_t notcovered
;
8200 cpumask_var_t nodemask
;
8201 cpumask_var_t this_sibling_map
;
8202 cpumask_var_t this_core_map
;
8203 cpumask_var_t send_covered
;
8204 cpumask_var_t tmpmask
;
8205 struct sched_group
**sched_group_nodes
;
8206 struct root_domain
*rd
;
8210 sa_sched_groups
= 0,
8215 sa_this_sibling_map
,
8217 sa_sched_group_nodes
,
8227 * SMT sched-domains:
8229 #ifdef CONFIG_SCHED_SMT
8230 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
8231 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_cpus
);
8234 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
8235 struct sched_group
**sg
, struct cpumask
*unused
)
8238 *sg
= &per_cpu(sched_group_cpus
, cpu
).sg
;
8241 #endif /* CONFIG_SCHED_SMT */
8244 * multi-core sched-domains:
8246 #ifdef CONFIG_SCHED_MC
8247 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
8248 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
8249 #endif /* CONFIG_SCHED_MC */
8251 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8253 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8254 struct sched_group
**sg
, struct cpumask
*mask
)
8258 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8259 group
= cpumask_first(mask
);
8261 *sg
= &per_cpu(sched_group_core
, group
).sg
;
8264 #elif defined(CONFIG_SCHED_MC)
8266 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8267 struct sched_group
**sg
, struct cpumask
*unused
)
8270 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
8275 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
8276 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
8279 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
8280 struct sched_group
**sg
, struct cpumask
*mask
)
8283 #ifdef CONFIG_SCHED_MC
8284 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
8285 group
= cpumask_first(mask
);
8286 #elif defined(CONFIG_SCHED_SMT)
8287 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8288 group
= cpumask_first(mask
);
8293 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
8299 * The init_sched_build_groups can't handle what we want to do with node
8300 * groups, so roll our own. Now each node has its own list of groups which
8301 * gets dynamically allocated.
8303 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
8304 static struct sched_group
***sched_group_nodes_bycpu
;
8306 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
8307 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
8309 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
8310 struct sched_group
**sg
,
8311 struct cpumask
*nodemask
)
8315 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
8316 group
= cpumask_first(nodemask
);
8319 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
8323 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
8325 struct sched_group
*sg
= group_head
;
8331 for_each_cpu(j
, sched_group_cpus(sg
)) {
8332 struct sched_domain
*sd
;
8334 sd
= &per_cpu(phys_domains
, j
).sd
;
8335 if (j
!= group_first_cpu(sd
->groups
)) {
8337 * Only add "power" once for each
8343 sg
->cpu_power
+= sd
->groups
->cpu_power
;
8346 } while (sg
!= group_head
);
8349 static int build_numa_sched_groups(struct s_data
*d
,
8350 const struct cpumask
*cpu_map
, int num
)
8352 struct sched_domain
*sd
;
8353 struct sched_group
*sg
, *prev
;
8356 cpumask_clear(d
->covered
);
8357 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
8358 if (cpumask_empty(d
->nodemask
)) {
8359 d
->sched_group_nodes
[num
] = NULL
;
8363 sched_domain_node_span(num
, d
->domainspan
);
8364 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
8366 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8369 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
8373 d
->sched_group_nodes
[num
] = sg
;
8375 for_each_cpu(j
, d
->nodemask
) {
8376 sd
= &per_cpu(node_domains
, j
).sd
;
8381 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
8383 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
8386 for (j
= 0; j
< nr_node_ids
; j
++) {
8387 n
= (num
+ j
) % nr_node_ids
;
8388 cpumask_complement(d
->notcovered
, d
->covered
);
8389 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
8390 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
8391 if (cpumask_empty(d
->tmpmask
))
8393 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
8394 if (cpumask_empty(d
->tmpmask
))
8396 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8400 "Can not alloc domain group for node %d\n", j
);
8404 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
8405 sg
->next
= prev
->next
;
8406 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
8413 #endif /* CONFIG_NUMA */
8416 /* Free memory allocated for various sched_group structures */
8417 static void free_sched_groups(const struct cpumask
*cpu_map
,
8418 struct cpumask
*nodemask
)
8422 for_each_cpu(cpu
, cpu_map
) {
8423 struct sched_group
**sched_group_nodes
8424 = sched_group_nodes_bycpu
[cpu
];
8426 if (!sched_group_nodes
)
8429 for (i
= 0; i
< nr_node_ids
; i
++) {
8430 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
8432 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8433 if (cpumask_empty(nodemask
))
8443 if (oldsg
!= sched_group_nodes
[i
])
8446 kfree(sched_group_nodes
);
8447 sched_group_nodes_bycpu
[cpu
] = NULL
;
8450 #else /* !CONFIG_NUMA */
8451 static void free_sched_groups(const struct cpumask
*cpu_map
,
8452 struct cpumask
*nodemask
)
8455 #endif /* CONFIG_NUMA */
8458 * Initialize sched groups cpu_power.
8460 * cpu_power indicates the capacity of sched group, which is used while
8461 * distributing the load between different sched groups in a sched domain.
8462 * Typically cpu_power for all the groups in a sched domain will be same unless
8463 * there are asymmetries in the topology. If there are asymmetries, group
8464 * having more cpu_power will pickup more load compared to the group having
8467 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
8469 struct sched_domain
*child
;
8470 struct sched_group
*group
;
8474 WARN_ON(!sd
|| !sd
->groups
);
8476 if (cpu
!= group_first_cpu(sd
->groups
))
8481 sd
->groups
->cpu_power
= 0;
8484 power
= SCHED_LOAD_SCALE
;
8485 weight
= cpumask_weight(sched_domain_span(sd
));
8487 * SMT siblings share the power of a single core.
8488 * Usually multiple threads get a better yield out of
8489 * that one core than a single thread would have,
8490 * reflect that in sd->smt_gain.
8492 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
8493 power
*= sd
->smt_gain
;
8495 power
>>= SCHED_LOAD_SHIFT
;
8497 sd
->groups
->cpu_power
+= power
;
8502 * Add cpu_power of each child group to this groups cpu_power.
8504 group
= child
->groups
;
8506 sd
->groups
->cpu_power
+= group
->cpu_power
;
8507 group
= group
->next
;
8508 } while (group
!= child
->groups
);
8512 * Initializers for schedule domains
8513 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8516 #ifdef CONFIG_SCHED_DEBUG
8517 # define SD_INIT_NAME(sd, type) sd->name = #type
8519 # define SD_INIT_NAME(sd, type) do { } while (0)
8522 #define SD_INIT(sd, type) sd_init_##type(sd)
8524 #define SD_INIT_FUNC(type) \
8525 static noinline void sd_init_##type(struct sched_domain *sd) \
8527 memset(sd, 0, sizeof(*sd)); \
8528 *sd = SD_##type##_INIT; \
8529 sd->level = SD_LV_##type; \
8530 SD_INIT_NAME(sd, type); \
8535 SD_INIT_FUNC(ALLNODES
)
8538 #ifdef CONFIG_SCHED_SMT
8539 SD_INIT_FUNC(SIBLING
)
8541 #ifdef CONFIG_SCHED_MC
8545 static int default_relax_domain_level
= -1;
8547 static int __init
setup_relax_domain_level(char *str
)
8551 val
= simple_strtoul(str
, NULL
, 0);
8552 if (val
< SD_LV_MAX
)
8553 default_relax_domain_level
= val
;
8557 __setup("relax_domain_level=", setup_relax_domain_level
);
8559 static void set_domain_attribute(struct sched_domain
*sd
,
8560 struct sched_domain_attr
*attr
)
8564 if (!attr
|| attr
->relax_domain_level
< 0) {
8565 if (default_relax_domain_level
< 0)
8568 request
= default_relax_domain_level
;
8570 request
= attr
->relax_domain_level
;
8571 if (request
< sd
->level
) {
8572 /* turn off idle balance on this domain */
8573 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8575 /* turn on idle balance on this domain */
8576 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8580 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
8581 const struct cpumask
*cpu_map
)
8584 case sa_sched_groups
:
8585 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
8586 d
->sched_group_nodes
= NULL
;
8588 free_rootdomain(d
->rd
); /* fall through */
8590 free_cpumask_var(d
->tmpmask
); /* fall through */
8591 case sa_send_covered
:
8592 free_cpumask_var(d
->send_covered
); /* fall through */
8593 case sa_this_core_map
:
8594 free_cpumask_var(d
->this_core_map
); /* fall through */
8595 case sa_this_sibling_map
:
8596 free_cpumask_var(d
->this_sibling_map
); /* fall through */
8598 free_cpumask_var(d
->nodemask
); /* fall through */
8599 case sa_sched_group_nodes
:
8601 kfree(d
->sched_group_nodes
); /* fall through */
8603 free_cpumask_var(d
->notcovered
); /* fall through */
8605 free_cpumask_var(d
->covered
); /* fall through */
8607 free_cpumask_var(d
->domainspan
); /* fall through */
8614 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
8615 const struct cpumask
*cpu_map
)
8618 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
8620 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
8621 return sa_domainspan
;
8622 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
8624 /* Allocate the per-node list of sched groups */
8625 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
8626 sizeof(struct sched_group
*), GFP_KERNEL
);
8627 if (!d
->sched_group_nodes
) {
8628 printk(KERN_WARNING
"Can not alloc sched group node list\n");
8629 return sa_notcovered
;
8631 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
8633 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
8634 return sa_sched_group_nodes
;
8635 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
8637 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
8638 return sa_this_sibling_map
;
8639 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
8640 return sa_this_core_map
;
8641 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
8642 return sa_send_covered
;
8643 d
->rd
= alloc_rootdomain();
8645 printk(KERN_WARNING
"Cannot alloc root domain\n");
8648 return sa_rootdomain
;
8651 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
8652 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
8654 struct sched_domain
*sd
= NULL
;
8656 struct sched_domain
*parent
;
8659 if (cpumask_weight(cpu_map
) >
8660 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
8661 sd
= &per_cpu(allnodes_domains
, i
).sd
;
8662 SD_INIT(sd
, ALLNODES
);
8663 set_domain_attribute(sd
, attr
);
8664 cpumask_copy(sched_domain_span(sd
), cpu_map
);
8665 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8670 sd
= &per_cpu(node_domains
, i
).sd
;
8672 set_domain_attribute(sd
, attr
);
8673 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
8674 sd
->parent
= parent
;
8677 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
8682 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
8683 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8684 struct sched_domain
*parent
, int i
)
8686 struct sched_domain
*sd
;
8687 sd
= &per_cpu(phys_domains
, i
).sd
;
8689 set_domain_attribute(sd
, attr
);
8690 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
8691 sd
->parent
= parent
;
8694 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8698 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
8699 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8700 struct sched_domain
*parent
, int i
)
8702 struct sched_domain
*sd
= parent
;
8703 #ifdef CONFIG_SCHED_MC
8704 sd
= &per_cpu(core_domains
, i
).sd
;
8706 set_domain_attribute(sd
, attr
);
8707 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
8708 sd
->parent
= parent
;
8710 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8715 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
8716 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8717 struct sched_domain
*parent
, int i
)
8719 struct sched_domain
*sd
= parent
;
8720 #ifdef CONFIG_SCHED_SMT
8721 sd
= &per_cpu(cpu_domains
, i
).sd
;
8722 SD_INIT(sd
, SIBLING
);
8723 set_domain_attribute(sd
, attr
);
8724 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
8725 sd
->parent
= parent
;
8727 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8732 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
8733 const struct cpumask
*cpu_map
, int cpu
)
8736 #ifdef CONFIG_SCHED_SMT
8737 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
8738 cpumask_and(d
->this_sibling_map
, cpu_map
,
8739 topology_thread_cpumask(cpu
));
8740 if (cpu
== cpumask_first(d
->this_sibling_map
))
8741 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
8743 d
->send_covered
, d
->tmpmask
);
8746 #ifdef CONFIG_SCHED_MC
8747 case SD_LV_MC
: /* set up multi-core groups */
8748 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
8749 if (cpu
== cpumask_first(d
->this_core_map
))
8750 init_sched_build_groups(d
->this_core_map
, cpu_map
,
8752 d
->send_covered
, d
->tmpmask
);
8755 case SD_LV_CPU
: /* set up physical groups */
8756 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
8757 if (!cpumask_empty(d
->nodemask
))
8758 init_sched_build_groups(d
->nodemask
, cpu_map
,
8760 d
->send_covered
, d
->tmpmask
);
8763 case SD_LV_ALLNODES
:
8764 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
8765 d
->send_covered
, d
->tmpmask
);
8774 * Build sched domains for a given set of cpus and attach the sched domains
8775 * to the individual cpus
8777 static int __build_sched_domains(const struct cpumask
*cpu_map
,
8778 struct sched_domain_attr
*attr
)
8780 enum s_alloc alloc_state
= sa_none
;
8782 struct sched_domain
*sd
;
8788 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
8789 if (alloc_state
!= sa_rootdomain
)
8791 alloc_state
= sa_sched_groups
;
8794 * Set up domains for cpus specified by the cpu_map.
8796 for_each_cpu(i
, cpu_map
) {
8797 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
8800 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
8801 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8802 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8803 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8806 for_each_cpu(i
, cpu_map
) {
8807 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
8808 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
8811 /* Set up physical groups */
8812 for (i
= 0; i
< nr_node_ids
; i
++)
8813 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
8816 /* Set up node groups */
8818 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
8820 for (i
= 0; i
< nr_node_ids
; i
++)
8821 if (build_numa_sched_groups(&d
, cpu_map
, i
))
8825 /* Calculate CPU power for physical packages and nodes */
8826 #ifdef CONFIG_SCHED_SMT
8827 for_each_cpu(i
, cpu_map
) {
8828 sd
= &per_cpu(cpu_domains
, i
).sd
;
8829 init_sched_groups_power(i
, sd
);
8832 #ifdef CONFIG_SCHED_MC
8833 for_each_cpu(i
, cpu_map
) {
8834 sd
= &per_cpu(core_domains
, i
).sd
;
8835 init_sched_groups_power(i
, sd
);
8839 for_each_cpu(i
, cpu_map
) {
8840 sd
= &per_cpu(phys_domains
, i
).sd
;
8841 init_sched_groups_power(i
, sd
);
8845 for (i
= 0; i
< nr_node_ids
; i
++)
8846 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
8848 if (d
.sd_allnodes
) {
8849 struct sched_group
*sg
;
8851 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
8853 init_numa_sched_groups_power(sg
);
8857 /* Attach the domains */
8858 for_each_cpu(i
, cpu_map
) {
8859 #ifdef CONFIG_SCHED_SMT
8860 sd
= &per_cpu(cpu_domains
, i
).sd
;
8861 #elif defined(CONFIG_SCHED_MC)
8862 sd
= &per_cpu(core_domains
, i
).sd
;
8864 sd
= &per_cpu(phys_domains
, i
).sd
;
8866 cpu_attach_domain(sd
, d
.rd
, i
);
8869 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
8870 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
8874 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
8878 static int build_sched_domains(const struct cpumask
*cpu_map
)
8880 return __build_sched_domains(cpu_map
, NULL
);
8883 static struct cpumask
*doms_cur
; /* current sched domains */
8884 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
8885 static struct sched_domain_attr
*dattr_cur
;
8886 /* attribues of custom domains in 'doms_cur' */
8889 * Special case: If a kmalloc of a doms_cur partition (array of
8890 * cpumask) fails, then fallback to a single sched domain,
8891 * as determined by the single cpumask fallback_doms.
8893 static cpumask_var_t fallback_doms
;
8896 * arch_update_cpu_topology lets virtualized architectures update the
8897 * cpu core maps. It is supposed to return 1 if the topology changed
8898 * or 0 if it stayed the same.
8900 int __attribute__((weak
)) arch_update_cpu_topology(void)
8906 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8907 * For now this just excludes isolated cpus, but could be used to
8908 * exclude other special cases in the future.
8910 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
8914 arch_update_cpu_topology();
8916 doms_cur
= kmalloc(cpumask_size(), GFP_KERNEL
);
8918 doms_cur
= fallback_doms
;
8919 cpumask_andnot(doms_cur
, cpu_map
, cpu_isolated_map
);
8921 err
= build_sched_domains(doms_cur
);
8922 register_sched_domain_sysctl();
8927 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
8928 struct cpumask
*tmpmask
)
8930 free_sched_groups(cpu_map
, tmpmask
);
8934 * Detach sched domains from a group of cpus specified in cpu_map
8935 * These cpus will now be attached to the NULL domain
8937 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
8939 /* Save because hotplug lock held. */
8940 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
8943 for_each_cpu(i
, cpu_map
)
8944 cpu_attach_domain(NULL
, &def_root_domain
, i
);
8945 synchronize_sched();
8946 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
8949 /* handle null as "default" */
8950 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
8951 struct sched_domain_attr
*new, int idx_new
)
8953 struct sched_domain_attr tmp
;
8960 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
8961 new ? (new + idx_new
) : &tmp
,
8962 sizeof(struct sched_domain_attr
));
8966 * Partition sched domains as specified by the 'ndoms_new'
8967 * cpumasks in the array doms_new[] of cpumasks. This compares
8968 * doms_new[] to the current sched domain partitioning, doms_cur[].
8969 * It destroys each deleted domain and builds each new domain.
8971 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8972 * The masks don't intersect (don't overlap.) We should setup one
8973 * sched domain for each mask. CPUs not in any of the cpumasks will
8974 * not be load balanced. If the same cpumask appears both in the
8975 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8978 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8979 * ownership of it and will kfree it when done with it. If the caller
8980 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8981 * ndoms_new == 1, and partition_sched_domains() will fallback to
8982 * the single partition 'fallback_doms', it also forces the domains
8985 * If doms_new == NULL it will be replaced with cpu_online_mask.
8986 * ndoms_new == 0 is a special case for destroying existing domains,
8987 * and it will not create the default domain.
8989 * Call with hotplug lock held
8991 /* FIXME: Change to struct cpumask *doms_new[] */
8992 void partition_sched_domains(int ndoms_new
, struct cpumask
*doms_new
,
8993 struct sched_domain_attr
*dattr_new
)
8998 mutex_lock(&sched_domains_mutex
);
9000 /* always unregister in case we don't destroy any domains */
9001 unregister_sched_domain_sysctl();
9003 /* Let architecture update cpu core mappings. */
9004 new_topology
= arch_update_cpu_topology();
9006 n
= doms_new
? ndoms_new
: 0;
9008 /* Destroy deleted domains */
9009 for (i
= 0; i
< ndoms_cur
; i
++) {
9010 for (j
= 0; j
< n
&& !new_topology
; j
++) {
9011 if (cpumask_equal(&doms_cur
[i
], &doms_new
[j
])
9012 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
9015 /* no match - a current sched domain not in new doms_new[] */
9016 detach_destroy_domains(doms_cur
+ i
);
9021 if (doms_new
== NULL
) {
9023 doms_new
= fallback_doms
;
9024 cpumask_andnot(&doms_new
[0], cpu_online_mask
, cpu_isolated_map
);
9025 WARN_ON_ONCE(dattr_new
);
9028 /* Build new domains */
9029 for (i
= 0; i
< ndoms_new
; i
++) {
9030 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
9031 if (cpumask_equal(&doms_new
[i
], &doms_cur
[j
])
9032 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
9035 /* no match - add a new doms_new */
9036 __build_sched_domains(doms_new
+ i
,
9037 dattr_new
? dattr_new
+ i
: NULL
);
9042 /* Remember the new sched domains */
9043 if (doms_cur
!= fallback_doms
)
9045 kfree(dattr_cur
); /* kfree(NULL) is safe */
9046 doms_cur
= doms_new
;
9047 dattr_cur
= dattr_new
;
9048 ndoms_cur
= ndoms_new
;
9050 register_sched_domain_sysctl();
9052 mutex_unlock(&sched_domains_mutex
);
9055 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9056 static void arch_reinit_sched_domains(void)
9060 /* Destroy domains first to force the rebuild */
9061 partition_sched_domains(0, NULL
, NULL
);
9063 rebuild_sched_domains();
9067 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
9069 unsigned int level
= 0;
9071 if (sscanf(buf
, "%u", &level
) != 1)
9075 * level is always be positive so don't check for
9076 * level < POWERSAVINGS_BALANCE_NONE which is 0
9077 * What happens on 0 or 1 byte write,
9078 * need to check for count as well?
9081 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
9085 sched_smt_power_savings
= level
;
9087 sched_mc_power_savings
= level
;
9089 arch_reinit_sched_domains();
9094 #ifdef CONFIG_SCHED_MC
9095 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
9098 return sprintf(page
, "%u\n", sched_mc_power_savings
);
9100 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
9101 const char *buf
, size_t count
)
9103 return sched_power_savings_store(buf
, count
, 0);
9105 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
9106 sched_mc_power_savings_show
,
9107 sched_mc_power_savings_store
);
9110 #ifdef CONFIG_SCHED_SMT
9111 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
9114 return sprintf(page
, "%u\n", sched_smt_power_savings
);
9116 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
9117 const char *buf
, size_t count
)
9119 return sched_power_savings_store(buf
, count
, 1);
9121 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
9122 sched_smt_power_savings_show
,
9123 sched_smt_power_savings_store
);
9126 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
9130 #ifdef CONFIG_SCHED_SMT
9132 err
= sysfs_create_file(&cls
->kset
.kobj
,
9133 &attr_sched_smt_power_savings
.attr
);
9135 #ifdef CONFIG_SCHED_MC
9136 if (!err
&& mc_capable())
9137 err
= sysfs_create_file(&cls
->kset
.kobj
,
9138 &attr_sched_mc_power_savings
.attr
);
9142 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9144 #ifndef CONFIG_CPUSETS
9146 * Add online and remove offline CPUs from the scheduler domains.
9147 * When cpusets are enabled they take over this function.
9149 static int update_sched_domains(struct notifier_block
*nfb
,
9150 unsigned long action
, void *hcpu
)
9154 case CPU_ONLINE_FROZEN
:
9156 case CPU_DEAD_FROZEN
:
9157 partition_sched_domains(1, NULL
, NULL
);
9166 static int update_runtime(struct notifier_block
*nfb
,
9167 unsigned long action
, void *hcpu
)
9169 int cpu
= (int)(long)hcpu
;
9172 case CPU_DOWN_PREPARE
:
9173 case CPU_DOWN_PREPARE_FROZEN
:
9174 disable_runtime(cpu_rq(cpu
));
9177 case CPU_DOWN_FAILED
:
9178 case CPU_DOWN_FAILED_FROZEN
:
9180 case CPU_ONLINE_FROZEN
:
9181 enable_runtime(cpu_rq(cpu
));
9189 void __init
sched_init_smp(void)
9191 cpumask_var_t non_isolated_cpus
;
9193 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
9194 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
9196 #if defined(CONFIG_NUMA)
9197 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
9199 BUG_ON(sched_group_nodes_bycpu
== NULL
);
9202 mutex_lock(&sched_domains_mutex
);
9203 arch_init_sched_domains(cpu_online_mask
);
9204 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
9205 if (cpumask_empty(non_isolated_cpus
))
9206 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
9207 mutex_unlock(&sched_domains_mutex
);
9210 #ifndef CONFIG_CPUSETS
9211 /* XXX: Theoretical race here - CPU may be hotplugged now */
9212 hotcpu_notifier(update_sched_domains
, 0);
9215 /* RT runtime code needs to handle some hotplug events */
9216 hotcpu_notifier(update_runtime
, 0);
9220 /* Move init over to a non-isolated CPU */
9221 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
9223 sched_init_granularity();
9224 free_cpumask_var(non_isolated_cpus
);
9226 init_sched_rt_class();
9229 void __init
sched_init_smp(void)
9231 sched_init_granularity();
9233 #endif /* CONFIG_SMP */
9235 const_debug
unsigned int sysctl_timer_migration
= 1;
9237 int in_sched_functions(unsigned long addr
)
9239 return in_lock_functions(addr
) ||
9240 (addr
>= (unsigned long)__sched_text_start
9241 && addr
< (unsigned long)__sched_text_end
);
9244 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
9246 cfs_rq
->tasks_timeline
= RB_ROOT
;
9247 INIT_LIST_HEAD(&cfs_rq
->tasks
);
9248 #ifdef CONFIG_FAIR_GROUP_SCHED
9251 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
9254 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
9256 struct rt_prio_array
*array
;
9259 array
= &rt_rq
->active
;
9260 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
9261 INIT_LIST_HEAD(array
->queue
+ i
);
9262 __clear_bit(i
, array
->bitmap
);
9264 /* delimiter for bitsearch: */
9265 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
9267 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9268 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
9270 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
9274 rt_rq
->rt_nr_migratory
= 0;
9275 rt_rq
->overloaded
= 0;
9276 plist_head_init(&rt_rq
->pushable_tasks
, &rq
->lock
);
9280 rt_rq
->rt_throttled
= 0;
9281 rt_rq
->rt_runtime
= 0;
9282 spin_lock_init(&rt_rq
->rt_runtime_lock
);
9284 #ifdef CONFIG_RT_GROUP_SCHED
9285 rt_rq
->rt_nr_boosted
= 0;
9290 #ifdef CONFIG_FAIR_GROUP_SCHED
9291 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
9292 struct sched_entity
*se
, int cpu
, int add
,
9293 struct sched_entity
*parent
)
9295 struct rq
*rq
= cpu_rq(cpu
);
9296 tg
->cfs_rq
[cpu
] = cfs_rq
;
9297 init_cfs_rq(cfs_rq
, rq
);
9300 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
9303 /* se could be NULL for init_task_group */
9308 se
->cfs_rq
= &rq
->cfs
;
9310 se
->cfs_rq
= parent
->my_q
;
9313 se
->load
.weight
= tg
->shares
;
9314 se
->load
.inv_weight
= 0;
9315 se
->parent
= parent
;
9319 #ifdef CONFIG_RT_GROUP_SCHED
9320 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
9321 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
9322 struct sched_rt_entity
*parent
)
9324 struct rq
*rq
= cpu_rq(cpu
);
9326 tg
->rt_rq
[cpu
] = rt_rq
;
9327 init_rt_rq(rt_rq
, rq
);
9329 rt_rq
->rt_se
= rt_se
;
9330 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9332 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
9334 tg
->rt_se
[cpu
] = rt_se
;
9339 rt_se
->rt_rq
= &rq
->rt
;
9341 rt_se
->rt_rq
= parent
->my_q
;
9343 rt_se
->my_q
= rt_rq
;
9344 rt_se
->parent
= parent
;
9345 INIT_LIST_HEAD(&rt_se
->run_list
);
9349 void __init
sched_init(void)
9352 unsigned long alloc_size
= 0, ptr
;
9354 #ifdef CONFIG_FAIR_GROUP_SCHED
9355 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9357 #ifdef CONFIG_RT_GROUP_SCHED
9358 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9360 #ifdef CONFIG_USER_SCHED
9363 #ifdef CONFIG_CPUMASK_OFFSTACK
9364 alloc_size
+= num_possible_cpus() * cpumask_size();
9367 * As sched_init() is called before page_alloc is setup,
9368 * we use alloc_bootmem().
9371 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
9373 #ifdef CONFIG_FAIR_GROUP_SCHED
9374 init_task_group
.se
= (struct sched_entity
**)ptr
;
9375 ptr
+= nr_cpu_ids
* sizeof(void **);
9377 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9378 ptr
+= nr_cpu_ids
* sizeof(void **);
9380 #ifdef CONFIG_USER_SCHED
9381 root_task_group
.se
= (struct sched_entity
**)ptr
;
9382 ptr
+= nr_cpu_ids
* sizeof(void **);
9384 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9385 ptr
+= nr_cpu_ids
* sizeof(void **);
9386 #endif /* CONFIG_USER_SCHED */
9387 #endif /* CONFIG_FAIR_GROUP_SCHED */
9388 #ifdef CONFIG_RT_GROUP_SCHED
9389 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9390 ptr
+= nr_cpu_ids
* sizeof(void **);
9392 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9393 ptr
+= nr_cpu_ids
* sizeof(void **);
9395 #ifdef CONFIG_USER_SCHED
9396 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9397 ptr
+= nr_cpu_ids
* sizeof(void **);
9399 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9400 ptr
+= nr_cpu_ids
* sizeof(void **);
9401 #endif /* CONFIG_USER_SCHED */
9402 #endif /* CONFIG_RT_GROUP_SCHED */
9403 #ifdef CONFIG_CPUMASK_OFFSTACK
9404 for_each_possible_cpu(i
) {
9405 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
9406 ptr
+= cpumask_size();
9408 #endif /* CONFIG_CPUMASK_OFFSTACK */
9412 init_defrootdomain();
9415 init_rt_bandwidth(&def_rt_bandwidth
,
9416 global_rt_period(), global_rt_runtime());
9418 #ifdef CONFIG_RT_GROUP_SCHED
9419 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
9420 global_rt_period(), global_rt_runtime());
9421 #ifdef CONFIG_USER_SCHED
9422 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
9423 global_rt_period(), RUNTIME_INF
);
9424 #endif /* CONFIG_USER_SCHED */
9425 #endif /* CONFIG_RT_GROUP_SCHED */
9427 #ifdef CONFIG_GROUP_SCHED
9428 list_add(&init_task_group
.list
, &task_groups
);
9429 INIT_LIST_HEAD(&init_task_group
.children
);
9431 #ifdef CONFIG_USER_SCHED
9432 INIT_LIST_HEAD(&root_task_group
.children
);
9433 init_task_group
.parent
= &root_task_group
;
9434 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
9435 #endif /* CONFIG_USER_SCHED */
9436 #endif /* CONFIG_GROUP_SCHED */
9438 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9439 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
9440 __alignof__(unsigned long));
9442 for_each_possible_cpu(i
) {
9446 spin_lock_init(&rq
->lock
);
9448 rq
->calc_load_active
= 0;
9449 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
9450 init_cfs_rq(&rq
->cfs
, rq
);
9451 init_rt_rq(&rq
->rt
, rq
);
9452 #ifdef CONFIG_FAIR_GROUP_SCHED
9453 init_task_group
.shares
= init_task_group_load
;
9454 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
9455 #ifdef CONFIG_CGROUP_SCHED
9457 * How much cpu bandwidth does init_task_group get?
9459 * In case of task-groups formed thr' the cgroup filesystem, it
9460 * gets 100% of the cpu resources in the system. This overall
9461 * system cpu resource is divided among the tasks of
9462 * init_task_group and its child task-groups in a fair manner,
9463 * based on each entity's (task or task-group's) weight
9464 * (se->load.weight).
9466 * In other words, if init_task_group has 10 tasks of weight
9467 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9468 * then A0's share of the cpu resource is:
9470 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9472 * We achieve this by letting init_task_group's tasks sit
9473 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9475 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
9476 #elif defined CONFIG_USER_SCHED
9477 root_task_group
.shares
= NICE_0_LOAD
;
9478 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
9480 * In case of task-groups formed thr' the user id of tasks,
9481 * init_task_group represents tasks belonging to root user.
9482 * Hence it forms a sibling of all subsequent groups formed.
9483 * In this case, init_task_group gets only a fraction of overall
9484 * system cpu resource, based on the weight assigned to root
9485 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9486 * by letting tasks of init_task_group sit in a separate cfs_rq
9487 * (init_tg_cfs_rq) and having one entity represent this group of
9488 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9490 init_tg_cfs_entry(&init_task_group
,
9491 &per_cpu(init_tg_cfs_rq
, i
),
9492 &per_cpu(init_sched_entity
, i
), i
, 1,
9493 root_task_group
.se
[i
]);
9496 #endif /* CONFIG_FAIR_GROUP_SCHED */
9498 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
9499 #ifdef CONFIG_RT_GROUP_SCHED
9500 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
9501 #ifdef CONFIG_CGROUP_SCHED
9502 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
9503 #elif defined CONFIG_USER_SCHED
9504 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
9505 init_tg_rt_entry(&init_task_group
,
9506 &per_cpu(init_rt_rq
, i
),
9507 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
9508 root_task_group
.rt_se
[i
]);
9512 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
9513 rq
->cpu_load
[j
] = 0;
9517 rq
->post_schedule
= 0;
9518 rq
->active_balance
= 0;
9519 rq
->next_balance
= jiffies
;
9523 rq
->migration_thread
= NULL
;
9524 INIT_LIST_HEAD(&rq
->migration_queue
);
9525 rq_attach_root(rq
, &def_root_domain
);
9528 atomic_set(&rq
->nr_iowait
, 0);
9531 set_load_weight(&init_task
);
9533 #ifdef CONFIG_PREEMPT_NOTIFIERS
9534 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
9538 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9541 #ifdef CONFIG_RT_MUTEXES
9542 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
9546 * The boot idle thread does lazy MMU switching as well:
9548 atomic_inc(&init_mm
.mm_count
);
9549 enter_lazy_tlb(&init_mm
, current
);
9552 * Make us the idle thread. Technically, schedule() should not be
9553 * called from this thread, however somewhere below it might be,
9554 * but because we are the idle thread, we just pick up running again
9555 * when this runqueue becomes "idle".
9557 init_idle(current
, smp_processor_id());
9559 calc_load_update
= jiffies
+ LOAD_FREQ
;
9562 * During early bootup we pretend to be a normal task:
9564 current
->sched_class
= &fair_sched_class
;
9566 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9567 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
9570 zalloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
9571 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
9573 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
9578 scheduler_running
= 1;
9581 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9582 static inline int preempt_count_equals(int preempt_offset
)
9584 int nested
= preempt_count() & ~PREEMPT_ACTIVE
;
9586 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
9589 void __might_sleep(char *file
, int line
, int preempt_offset
)
9592 static unsigned long prev_jiffy
; /* ratelimiting */
9594 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
9595 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
9597 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
9599 prev_jiffy
= jiffies
;
9602 "BUG: sleeping function called from invalid context at %s:%d\n",
9605 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9606 in_atomic(), irqs_disabled(),
9607 current
->pid
, current
->comm
);
9609 debug_show_held_locks(current
);
9610 if (irqs_disabled())
9611 print_irqtrace_events(current
);
9615 EXPORT_SYMBOL(__might_sleep
);
9618 #ifdef CONFIG_MAGIC_SYSRQ
9619 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
9623 update_rq_clock(rq
);
9624 on_rq
= p
->se
.on_rq
;
9626 deactivate_task(rq
, p
, 0);
9627 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
9629 activate_task(rq
, p
, 0);
9630 resched_task(rq
->curr
);
9634 void normalize_rt_tasks(void)
9636 struct task_struct
*g
, *p
;
9637 unsigned long flags
;
9640 read_lock_irqsave(&tasklist_lock
, flags
);
9641 do_each_thread(g
, p
) {
9643 * Only normalize user tasks:
9648 p
->se
.exec_start
= 0;
9649 #ifdef CONFIG_SCHEDSTATS
9650 p
->se
.wait_start
= 0;
9651 p
->se
.sleep_start
= 0;
9652 p
->se
.block_start
= 0;
9657 * Renice negative nice level userspace
9660 if (TASK_NICE(p
) < 0 && p
->mm
)
9661 set_user_nice(p
, 0);
9665 spin_lock(&p
->pi_lock
);
9666 rq
= __task_rq_lock(p
);
9668 normalize_task(rq
, p
);
9670 __task_rq_unlock(rq
);
9671 spin_unlock(&p
->pi_lock
);
9672 } while_each_thread(g
, p
);
9674 read_unlock_irqrestore(&tasklist_lock
, flags
);
9677 #endif /* CONFIG_MAGIC_SYSRQ */
9681 * These functions are only useful for the IA64 MCA handling.
9683 * They can only be called when the whole system has been
9684 * stopped - every CPU needs to be quiescent, and no scheduling
9685 * activity can take place. Using them for anything else would
9686 * be a serious bug, and as a result, they aren't even visible
9687 * under any other configuration.
9691 * curr_task - return the current task for a given cpu.
9692 * @cpu: the processor in question.
9694 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9696 struct task_struct
*curr_task(int cpu
)
9698 return cpu_curr(cpu
);
9702 * set_curr_task - set the current task for a given cpu.
9703 * @cpu: the processor in question.
9704 * @p: the task pointer to set.
9706 * Description: This function must only be used when non-maskable interrupts
9707 * are serviced on a separate stack. It allows the architecture to switch the
9708 * notion of the current task on a cpu in a non-blocking manner. This function
9709 * must be called with all CPU's synchronized, and interrupts disabled, the
9710 * and caller must save the original value of the current task (see
9711 * curr_task() above) and restore that value before reenabling interrupts and
9712 * re-starting the system.
9714 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9716 void set_curr_task(int cpu
, struct task_struct
*p
)
9723 #ifdef CONFIG_FAIR_GROUP_SCHED
9724 static void free_fair_sched_group(struct task_group
*tg
)
9728 for_each_possible_cpu(i
) {
9730 kfree(tg
->cfs_rq
[i
]);
9740 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9742 struct cfs_rq
*cfs_rq
;
9743 struct sched_entity
*se
;
9747 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9750 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
9754 tg
->shares
= NICE_0_LOAD
;
9756 for_each_possible_cpu(i
) {
9759 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
9760 GFP_KERNEL
, cpu_to_node(i
));
9764 se
= kzalloc_node(sizeof(struct sched_entity
),
9765 GFP_KERNEL
, cpu_to_node(i
));
9769 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
9778 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9780 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
9781 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
9784 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9786 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
9788 #else /* !CONFG_FAIR_GROUP_SCHED */
9789 static inline void free_fair_sched_group(struct task_group
*tg
)
9794 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9799 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9803 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9806 #endif /* CONFIG_FAIR_GROUP_SCHED */
9808 #ifdef CONFIG_RT_GROUP_SCHED
9809 static void free_rt_sched_group(struct task_group
*tg
)
9813 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
9815 for_each_possible_cpu(i
) {
9817 kfree(tg
->rt_rq
[i
]);
9819 kfree(tg
->rt_se
[i
]);
9827 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9829 struct rt_rq
*rt_rq
;
9830 struct sched_rt_entity
*rt_se
;
9834 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9837 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
9841 init_rt_bandwidth(&tg
->rt_bandwidth
,
9842 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
9844 for_each_possible_cpu(i
) {
9847 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
9848 GFP_KERNEL
, cpu_to_node(i
));
9852 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
9853 GFP_KERNEL
, cpu_to_node(i
));
9857 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
9866 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9868 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
9869 &cpu_rq(cpu
)->leaf_rt_rq_list
);
9872 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9874 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
9876 #else /* !CONFIG_RT_GROUP_SCHED */
9877 static inline void free_rt_sched_group(struct task_group
*tg
)
9882 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9887 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9891 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9894 #endif /* CONFIG_RT_GROUP_SCHED */
9896 #ifdef CONFIG_GROUP_SCHED
9897 static void free_sched_group(struct task_group
*tg
)
9899 free_fair_sched_group(tg
);
9900 free_rt_sched_group(tg
);
9904 /* allocate runqueue etc for a new task group */
9905 struct task_group
*sched_create_group(struct task_group
*parent
)
9907 struct task_group
*tg
;
9908 unsigned long flags
;
9911 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
9913 return ERR_PTR(-ENOMEM
);
9915 if (!alloc_fair_sched_group(tg
, parent
))
9918 if (!alloc_rt_sched_group(tg
, parent
))
9921 spin_lock_irqsave(&task_group_lock
, flags
);
9922 for_each_possible_cpu(i
) {
9923 register_fair_sched_group(tg
, i
);
9924 register_rt_sched_group(tg
, i
);
9926 list_add_rcu(&tg
->list
, &task_groups
);
9928 WARN_ON(!parent
); /* root should already exist */
9930 tg
->parent
= parent
;
9931 INIT_LIST_HEAD(&tg
->children
);
9932 list_add_rcu(&tg
->siblings
, &parent
->children
);
9933 spin_unlock_irqrestore(&task_group_lock
, flags
);
9938 free_sched_group(tg
);
9939 return ERR_PTR(-ENOMEM
);
9942 /* rcu callback to free various structures associated with a task group */
9943 static void free_sched_group_rcu(struct rcu_head
*rhp
)
9945 /* now it should be safe to free those cfs_rqs */
9946 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
9949 /* Destroy runqueue etc associated with a task group */
9950 void sched_destroy_group(struct task_group
*tg
)
9952 unsigned long flags
;
9955 spin_lock_irqsave(&task_group_lock
, flags
);
9956 for_each_possible_cpu(i
) {
9957 unregister_fair_sched_group(tg
, i
);
9958 unregister_rt_sched_group(tg
, i
);
9960 list_del_rcu(&tg
->list
);
9961 list_del_rcu(&tg
->siblings
);
9962 spin_unlock_irqrestore(&task_group_lock
, flags
);
9964 /* wait for possible concurrent references to cfs_rqs complete */
9965 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
9968 /* change task's runqueue when it moves between groups.
9969 * The caller of this function should have put the task in its new group
9970 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9971 * reflect its new group.
9973 void sched_move_task(struct task_struct
*tsk
)
9976 unsigned long flags
;
9979 rq
= task_rq_lock(tsk
, &flags
);
9981 update_rq_clock(rq
);
9983 running
= task_current(rq
, tsk
);
9984 on_rq
= tsk
->se
.on_rq
;
9987 dequeue_task(rq
, tsk
, 0);
9988 if (unlikely(running
))
9989 tsk
->sched_class
->put_prev_task(rq
, tsk
);
9991 set_task_rq(tsk
, task_cpu(tsk
));
9993 #ifdef CONFIG_FAIR_GROUP_SCHED
9994 if (tsk
->sched_class
->moved_group
)
9995 tsk
->sched_class
->moved_group(tsk
);
9998 if (unlikely(running
))
9999 tsk
->sched_class
->set_curr_task(rq
);
10001 enqueue_task(rq
, tsk
, 0);
10003 task_rq_unlock(rq
, &flags
);
10005 #endif /* CONFIG_GROUP_SCHED */
10007 #ifdef CONFIG_FAIR_GROUP_SCHED
10008 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
10010 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
10015 dequeue_entity(cfs_rq
, se
, 0);
10017 se
->load
.weight
= shares
;
10018 se
->load
.inv_weight
= 0;
10021 enqueue_entity(cfs_rq
, se
, 0);
10024 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
10026 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
10027 struct rq
*rq
= cfs_rq
->rq
;
10028 unsigned long flags
;
10030 spin_lock_irqsave(&rq
->lock
, flags
);
10031 __set_se_shares(se
, shares
);
10032 spin_unlock_irqrestore(&rq
->lock
, flags
);
10035 static DEFINE_MUTEX(shares_mutex
);
10037 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
10040 unsigned long flags
;
10043 * We can't change the weight of the root cgroup.
10048 if (shares
< MIN_SHARES
)
10049 shares
= MIN_SHARES
;
10050 else if (shares
> MAX_SHARES
)
10051 shares
= MAX_SHARES
;
10053 mutex_lock(&shares_mutex
);
10054 if (tg
->shares
== shares
)
10057 spin_lock_irqsave(&task_group_lock
, flags
);
10058 for_each_possible_cpu(i
)
10059 unregister_fair_sched_group(tg
, i
);
10060 list_del_rcu(&tg
->siblings
);
10061 spin_unlock_irqrestore(&task_group_lock
, flags
);
10063 /* wait for any ongoing reference to this group to finish */
10064 synchronize_sched();
10067 * Now we are free to modify the group's share on each cpu
10068 * w/o tripping rebalance_share or load_balance_fair.
10070 tg
->shares
= shares
;
10071 for_each_possible_cpu(i
) {
10073 * force a rebalance
10075 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
10076 set_se_shares(tg
->se
[i
], shares
);
10080 * Enable load balance activity on this group, by inserting it back on
10081 * each cpu's rq->leaf_cfs_rq_list.
10083 spin_lock_irqsave(&task_group_lock
, flags
);
10084 for_each_possible_cpu(i
)
10085 register_fair_sched_group(tg
, i
);
10086 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
10087 spin_unlock_irqrestore(&task_group_lock
, flags
);
10089 mutex_unlock(&shares_mutex
);
10093 unsigned long sched_group_shares(struct task_group
*tg
)
10099 #ifdef CONFIG_RT_GROUP_SCHED
10101 * Ensure that the real time constraints are schedulable.
10103 static DEFINE_MUTEX(rt_constraints_mutex
);
10105 static unsigned long to_ratio(u64 period
, u64 runtime
)
10107 if (runtime
== RUNTIME_INF
)
10110 return div64_u64(runtime
<< 20, period
);
10113 /* Must be called with tasklist_lock held */
10114 static inline int tg_has_rt_tasks(struct task_group
*tg
)
10116 struct task_struct
*g
, *p
;
10118 do_each_thread(g
, p
) {
10119 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
10121 } while_each_thread(g
, p
);
10126 struct rt_schedulable_data
{
10127 struct task_group
*tg
;
10132 static int tg_schedulable(struct task_group
*tg
, void *data
)
10134 struct rt_schedulable_data
*d
= data
;
10135 struct task_group
*child
;
10136 unsigned long total
, sum
= 0;
10137 u64 period
, runtime
;
10139 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10140 runtime
= tg
->rt_bandwidth
.rt_runtime
;
10143 period
= d
->rt_period
;
10144 runtime
= d
->rt_runtime
;
10147 #ifdef CONFIG_USER_SCHED
10148 if (tg
== &root_task_group
) {
10149 period
= global_rt_period();
10150 runtime
= global_rt_runtime();
10155 * Cannot have more runtime than the period.
10157 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10161 * Ensure we don't starve existing RT tasks.
10163 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
10166 total
= to_ratio(period
, runtime
);
10169 * Nobody can have more than the global setting allows.
10171 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
10175 * The sum of our children's runtime should not exceed our own.
10177 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
10178 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
10179 runtime
= child
->rt_bandwidth
.rt_runtime
;
10181 if (child
== d
->tg
) {
10182 period
= d
->rt_period
;
10183 runtime
= d
->rt_runtime
;
10186 sum
+= to_ratio(period
, runtime
);
10195 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
10197 struct rt_schedulable_data data
= {
10199 .rt_period
= period
,
10200 .rt_runtime
= runtime
,
10203 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
10206 static int tg_set_bandwidth(struct task_group
*tg
,
10207 u64 rt_period
, u64 rt_runtime
)
10211 mutex_lock(&rt_constraints_mutex
);
10212 read_lock(&tasklist_lock
);
10213 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
10217 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10218 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
10219 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
10221 for_each_possible_cpu(i
) {
10222 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
10224 spin_lock(&rt_rq
->rt_runtime_lock
);
10225 rt_rq
->rt_runtime
= rt_runtime
;
10226 spin_unlock(&rt_rq
->rt_runtime_lock
);
10228 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10230 read_unlock(&tasklist_lock
);
10231 mutex_unlock(&rt_constraints_mutex
);
10236 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
10238 u64 rt_runtime
, rt_period
;
10240 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10241 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
10242 if (rt_runtime_us
< 0)
10243 rt_runtime
= RUNTIME_INF
;
10245 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10248 long sched_group_rt_runtime(struct task_group
*tg
)
10252 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
10255 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
10256 do_div(rt_runtime_us
, NSEC_PER_USEC
);
10257 return rt_runtime_us
;
10260 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
10262 u64 rt_runtime
, rt_period
;
10264 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
10265 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
10267 if (rt_period
== 0)
10270 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10273 long sched_group_rt_period(struct task_group
*tg
)
10277 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10278 do_div(rt_period_us
, NSEC_PER_USEC
);
10279 return rt_period_us
;
10282 static int sched_rt_global_constraints(void)
10284 u64 runtime
, period
;
10287 if (sysctl_sched_rt_period
<= 0)
10290 runtime
= global_rt_runtime();
10291 period
= global_rt_period();
10294 * Sanity check on the sysctl variables.
10296 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10299 mutex_lock(&rt_constraints_mutex
);
10300 read_lock(&tasklist_lock
);
10301 ret
= __rt_schedulable(NULL
, 0, 0);
10302 read_unlock(&tasklist_lock
);
10303 mutex_unlock(&rt_constraints_mutex
);
10308 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
10310 /* Don't accept realtime tasks when there is no way for them to run */
10311 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
10317 #else /* !CONFIG_RT_GROUP_SCHED */
10318 static int sched_rt_global_constraints(void)
10320 unsigned long flags
;
10323 if (sysctl_sched_rt_period
<= 0)
10327 * There's always some RT tasks in the root group
10328 * -- migration, kstopmachine etc..
10330 if (sysctl_sched_rt_runtime
== 0)
10333 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10334 for_each_possible_cpu(i
) {
10335 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
10337 spin_lock(&rt_rq
->rt_runtime_lock
);
10338 rt_rq
->rt_runtime
= global_rt_runtime();
10339 spin_unlock(&rt_rq
->rt_runtime_lock
);
10341 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10345 #endif /* CONFIG_RT_GROUP_SCHED */
10347 int sched_rt_handler(struct ctl_table
*table
, int write
,
10348 void __user
*buffer
, size_t *lenp
,
10352 int old_period
, old_runtime
;
10353 static DEFINE_MUTEX(mutex
);
10355 mutex_lock(&mutex
);
10356 old_period
= sysctl_sched_rt_period
;
10357 old_runtime
= sysctl_sched_rt_runtime
;
10359 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
10361 if (!ret
&& write
) {
10362 ret
= sched_rt_global_constraints();
10364 sysctl_sched_rt_period
= old_period
;
10365 sysctl_sched_rt_runtime
= old_runtime
;
10367 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
10368 def_rt_bandwidth
.rt_period
=
10369 ns_to_ktime(global_rt_period());
10372 mutex_unlock(&mutex
);
10377 #ifdef CONFIG_CGROUP_SCHED
10379 /* return corresponding task_group object of a cgroup */
10380 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
10382 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
10383 struct task_group
, css
);
10386 static struct cgroup_subsys_state
*
10387 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10389 struct task_group
*tg
, *parent
;
10391 if (!cgrp
->parent
) {
10392 /* This is early initialization for the top cgroup */
10393 return &init_task_group
.css
;
10396 parent
= cgroup_tg(cgrp
->parent
);
10397 tg
= sched_create_group(parent
);
10399 return ERR_PTR(-ENOMEM
);
10405 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10407 struct task_group
*tg
= cgroup_tg(cgrp
);
10409 sched_destroy_group(tg
);
10413 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
10415 #ifdef CONFIG_RT_GROUP_SCHED
10416 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
10419 /* We don't support RT-tasks being in separate groups */
10420 if (tsk
->sched_class
!= &fair_sched_class
)
10427 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10428 struct task_struct
*tsk
, bool threadgroup
)
10430 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
10434 struct task_struct
*c
;
10436 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
10437 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
10449 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10450 struct cgroup
*old_cont
, struct task_struct
*tsk
,
10453 sched_move_task(tsk
);
10455 struct task_struct
*c
;
10457 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
10458 sched_move_task(c
);
10464 #ifdef CONFIG_FAIR_GROUP_SCHED
10465 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
10468 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
10471 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
10473 struct task_group
*tg
= cgroup_tg(cgrp
);
10475 return (u64
) tg
->shares
;
10477 #endif /* CONFIG_FAIR_GROUP_SCHED */
10479 #ifdef CONFIG_RT_GROUP_SCHED
10480 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
10483 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
10486 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10488 return sched_group_rt_runtime(cgroup_tg(cgrp
));
10491 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
10494 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
10497 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
10499 return sched_group_rt_period(cgroup_tg(cgrp
));
10501 #endif /* CONFIG_RT_GROUP_SCHED */
10503 static struct cftype cpu_files
[] = {
10504 #ifdef CONFIG_FAIR_GROUP_SCHED
10507 .read_u64
= cpu_shares_read_u64
,
10508 .write_u64
= cpu_shares_write_u64
,
10511 #ifdef CONFIG_RT_GROUP_SCHED
10513 .name
= "rt_runtime_us",
10514 .read_s64
= cpu_rt_runtime_read
,
10515 .write_s64
= cpu_rt_runtime_write
,
10518 .name
= "rt_period_us",
10519 .read_u64
= cpu_rt_period_read_uint
,
10520 .write_u64
= cpu_rt_period_write_uint
,
10525 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
10527 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
10530 struct cgroup_subsys cpu_cgroup_subsys
= {
10532 .create
= cpu_cgroup_create
,
10533 .destroy
= cpu_cgroup_destroy
,
10534 .can_attach
= cpu_cgroup_can_attach
,
10535 .attach
= cpu_cgroup_attach
,
10536 .populate
= cpu_cgroup_populate
,
10537 .subsys_id
= cpu_cgroup_subsys_id
,
10541 #endif /* CONFIG_CGROUP_SCHED */
10543 #ifdef CONFIG_CGROUP_CPUACCT
10546 * CPU accounting code for task groups.
10548 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10549 * (balbir@in.ibm.com).
10552 /* track cpu usage of a group of tasks and its child groups */
10554 struct cgroup_subsys_state css
;
10555 /* cpuusage holds pointer to a u64-type object on every cpu */
10557 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
10558 struct cpuacct
*parent
;
10561 struct cgroup_subsys cpuacct_subsys
;
10563 /* return cpu accounting group corresponding to this container */
10564 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
10566 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
10567 struct cpuacct
, css
);
10570 /* return cpu accounting group to which this task belongs */
10571 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
10573 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
10574 struct cpuacct
, css
);
10577 /* create a new cpu accounting group */
10578 static struct cgroup_subsys_state
*cpuacct_create(
10579 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10581 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
10587 ca
->cpuusage
= alloc_percpu(u64
);
10591 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10592 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
10593 goto out_free_counters
;
10596 ca
->parent
= cgroup_ca(cgrp
->parent
);
10602 percpu_counter_destroy(&ca
->cpustat
[i
]);
10603 free_percpu(ca
->cpuusage
);
10607 return ERR_PTR(-ENOMEM
);
10610 /* destroy an existing cpu accounting group */
10612 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10614 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10617 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10618 percpu_counter_destroy(&ca
->cpustat
[i
]);
10619 free_percpu(ca
->cpuusage
);
10623 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
10625 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10628 #ifndef CONFIG_64BIT
10630 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10632 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10634 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10642 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
10644 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10646 #ifndef CONFIG_64BIT
10648 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10650 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10652 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10658 /* return total cpu usage (in nanoseconds) of a group */
10659 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10661 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10662 u64 totalcpuusage
= 0;
10665 for_each_present_cpu(i
)
10666 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
10668 return totalcpuusage
;
10671 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
10674 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10683 for_each_present_cpu(i
)
10684 cpuacct_cpuusage_write(ca
, i
, 0);
10690 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
10691 struct seq_file
*m
)
10693 struct cpuacct
*ca
= cgroup_ca(cgroup
);
10697 for_each_present_cpu(i
) {
10698 percpu
= cpuacct_cpuusage_read(ca
, i
);
10699 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
10701 seq_printf(m
, "\n");
10705 static const char *cpuacct_stat_desc
[] = {
10706 [CPUACCT_STAT_USER
] = "user",
10707 [CPUACCT_STAT_SYSTEM
] = "system",
10710 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
10711 struct cgroup_map_cb
*cb
)
10713 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10716 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
10717 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
10718 val
= cputime64_to_clock_t(val
);
10719 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
10724 static struct cftype files
[] = {
10727 .read_u64
= cpuusage_read
,
10728 .write_u64
= cpuusage_write
,
10731 .name
= "usage_percpu",
10732 .read_seq_string
= cpuacct_percpu_seq_read
,
10736 .read_map
= cpuacct_stats_show
,
10740 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10742 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
10746 * charge this task's execution time to its accounting group.
10748 * called with rq->lock held.
10750 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
10752 struct cpuacct
*ca
;
10755 if (unlikely(!cpuacct_subsys
.active
))
10758 cpu
= task_cpu(tsk
);
10764 for (; ca
; ca
= ca
->parent
) {
10765 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10766 *cpuusage
+= cputime
;
10773 * Charge the system/user time to the task's accounting group.
10775 static void cpuacct_update_stats(struct task_struct
*tsk
,
10776 enum cpuacct_stat_index idx
, cputime_t val
)
10778 struct cpuacct
*ca
;
10780 if (unlikely(!cpuacct_subsys
.active
))
10787 percpu_counter_add(&ca
->cpustat
[idx
], val
);
10793 struct cgroup_subsys cpuacct_subsys
= {
10795 .create
= cpuacct_create
,
10796 .destroy
= cpuacct_destroy
,
10797 .populate
= cpuacct_populate
,
10798 .subsys_id
= cpuacct_subsys_id
,
10800 #endif /* CONFIG_CGROUP_CPUACCT */
10804 int rcu_expedited_torture_stats(char *page
)
10808 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
10810 void synchronize_sched_expedited(void)
10813 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
10815 #else /* #ifndef CONFIG_SMP */
10817 static DEFINE_PER_CPU(struct migration_req
, rcu_migration_req
);
10818 static DEFINE_MUTEX(rcu_sched_expedited_mutex
);
10820 #define RCU_EXPEDITED_STATE_POST -2
10821 #define RCU_EXPEDITED_STATE_IDLE -1
10823 static int rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
10825 int rcu_expedited_torture_stats(char *page
)
10830 cnt
+= sprintf(&page
[cnt
], "state: %d /", rcu_expedited_state
);
10831 for_each_online_cpu(cpu
) {
10832 cnt
+= sprintf(&page
[cnt
], " %d:%d",
10833 cpu
, per_cpu(rcu_migration_req
, cpu
).dest_cpu
);
10835 cnt
+= sprintf(&page
[cnt
], "\n");
10838 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
10840 static long synchronize_sched_expedited_count
;
10843 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10844 * approach to force grace period to end quickly. This consumes
10845 * significant time on all CPUs, and is thus not recommended for
10846 * any sort of common-case code.
10848 * Note that it is illegal to call this function while holding any
10849 * lock that is acquired by a CPU-hotplug notifier. Failing to
10850 * observe this restriction will result in deadlock.
10852 void synchronize_sched_expedited(void)
10855 unsigned long flags
;
10856 bool need_full_sync
= 0;
10858 struct migration_req
*req
;
10862 smp_mb(); /* ensure prior mod happens before capturing snap. */
10863 snap
= ACCESS_ONCE(synchronize_sched_expedited_count
) + 1;
10865 while (!mutex_trylock(&rcu_sched_expedited_mutex
)) {
10867 if (trycount
++ < 10)
10868 udelay(trycount
* num_online_cpus());
10870 synchronize_sched();
10873 if (ACCESS_ONCE(synchronize_sched_expedited_count
) - snap
> 0) {
10874 smp_mb(); /* ensure test happens before caller kfree */
10879 rcu_expedited_state
= RCU_EXPEDITED_STATE_POST
;
10880 for_each_online_cpu(cpu
) {
10882 req
= &per_cpu(rcu_migration_req
, cpu
);
10883 init_completion(&req
->done
);
10885 req
->dest_cpu
= RCU_MIGRATION_NEED_QS
;
10886 spin_lock_irqsave(&rq
->lock
, flags
);
10887 list_add(&req
->list
, &rq
->migration_queue
);
10888 spin_unlock_irqrestore(&rq
->lock
, flags
);
10889 wake_up_process(rq
->migration_thread
);
10891 for_each_online_cpu(cpu
) {
10892 rcu_expedited_state
= cpu
;
10893 req
= &per_cpu(rcu_migration_req
, cpu
);
10895 wait_for_completion(&req
->done
);
10896 spin_lock_irqsave(&rq
->lock
, flags
);
10897 if (unlikely(req
->dest_cpu
== RCU_MIGRATION_MUST_SYNC
))
10898 need_full_sync
= 1;
10899 req
->dest_cpu
= RCU_MIGRATION_IDLE
;
10900 spin_unlock_irqrestore(&rq
->lock
, flags
);
10902 rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
10903 mutex_unlock(&rcu_sched_expedited_mutex
);
10905 if (need_full_sync
)
10906 synchronize_sched();
10908 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
10910 #endif /* #else #ifndef CONFIG_SMP */