Merge branch 'bugfix' of git://git.kernel.org/pub/scm/linux/kernel/git/jeremy/xen
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob28dd4f490bfc6cdbb3412d45a69659d254e5991a
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
266 struct rt_bandwidth rt_bandwidth;
267 #endif
269 struct rcu_head rcu;
270 struct list_head list;
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
282 user->tg->uid = user->uid;
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock);
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
315 return list_empty(&root_task_group.children);
317 #endif
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
343 struct task_group init_task_group;
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
348 struct task_group *tg;
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
377 #else
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 static inline struct task_group *task_group(struct task_struct *p)
382 return NULL;
385 #endif /* CONFIG_GROUP_SCHED */
387 /* CFS-related fields in a runqueue */
388 struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
392 u64 exec_clock;
393 u64 min_vruntime;
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
398 struct list_head tasks;
399 struct list_head *balance_iterator;
402 * 'curr' points to currently running entity on this cfs_rq.
403 * It is set to NULL otherwise (i.e when none are currently running).
405 struct sched_entity *curr, *next, *last;
407 unsigned int nr_spread_over;
409 #ifdef CONFIG_FAIR_GROUP_SCHED
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
423 #ifdef CONFIG_SMP
425 * the part of load.weight contributed by tasks
427 unsigned long task_weight;
430 * h_load = weight * f(tg)
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
435 unsigned long h_load;
438 * this cpu's part of tg->shares
440 unsigned long shares;
443 * load.weight at the time we set shares
445 unsigned long rq_weight;
446 #endif
447 #endif
450 /* Real-Time classes' related field in a runqueue: */
451 struct rt_rq {
452 struct rt_prio_array active;
453 unsigned long rt_nr_running;
454 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 struct {
456 int curr; /* highest queued rt task prio */
457 #ifdef CONFIG_SMP
458 int next; /* next highest */
459 #endif
460 } highest_prio;
461 #endif
462 #ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 unsigned long rt_nr_total;
465 int overloaded;
466 struct plist_head pushable_tasks;
467 #endif
468 int rt_throttled;
469 u64 rt_time;
470 u64 rt_runtime;
471 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock;
474 #ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted;
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481 #endif
484 #ifdef CONFIG_SMP
487 * We add the notion of a root-domain which will be used to define per-domain
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
494 struct root_domain {
495 atomic_t refcount;
496 cpumask_var_t span;
497 cpumask_var_t online;
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
503 cpumask_var_t rto_mask;
504 atomic_t rto_count;
505 #ifdef CONFIG_SMP
506 struct cpupri cpupri;
507 #endif
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
514 static struct root_domain def_root_domain;
516 #endif
519 * This is the main, per-CPU runqueue data structure.
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
525 struct rq {
526 /* runqueue lock: */
527 spinlock_t lock;
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
533 unsigned long nr_running;
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536 #ifdef CONFIG_NO_HZ
537 unsigned long last_tick_seen;
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544 u64 nr_migrations_in;
546 struct cfs_rq cfs;
547 struct rt_rq rt;
549 #ifdef CONFIG_FAIR_GROUP_SCHED
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
552 #endif
553 #ifdef CONFIG_RT_GROUP_SCHED
554 struct list_head leaf_rt_rq_list;
555 #endif
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
563 unsigned long nr_uninterruptible;
565 struct task_struct *curr, *idle;
566 unsigned long next_balance;
567 struct mm_struct *prev_mm;
569 u64 clock;
571 atomic_t nr_iowait;
573 #ifdef CONFIG_SMP
574 struct root_domain *rd;
575 struct sched_domain *sd;
577 unsigned char idle_at_tick;
578 /* For active balancing */
579 int post_schedule;
580 int active_balance;
581 int push_cpu;
582 /* cpu of this runqueue: */
583 int cpu;
584 int online;
586 unsigned long avg_load_per_task;
588 struct task_struct *migration_thread;
589 struct list_head migration_queue;
591 u64 rt_avg;
592 u64 age_stamp;
593 #endif
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
599 #ifdef CONFIG_SCHED_HRTICK
600 #ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603 #endif
604 struct hrtimer hrtick_timer;
605 #endif
607 #ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613 /* sys_sched_yield() stats */
614 unsigned int yld_count;
616 /* schedule() stats */
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
625 /* BKL stats */
626 unsigned int bkl_count;
627 #endif
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
632 static inline
633 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
638 static inline int cpu_of(struct rq *rq)
640 #ifdef CONFIG_SMP
641 return rq->cpu;
642 #else
643 return 0;
644 #endif
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649 * See detach_destroy_domains: synchronize_sched for details.
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
654 #define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658 #define this_rq() (&__get_cpu_var(runqueues))
659 #define task_rq(p) cpu_rq(task_cpu(p))
660 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663 inline void update_rq_clock(struct rq *rq)
665 rq->clock = sched_clock_cpu(cpu_of(rq));
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 #ifdef CONFIG_SCHED_DEBUG
672 # define const_debug __read_mostly
673 #else
674 # define const_debug static const
675 #endif
678 * runqueue_is_locked
679 * @cpu: the processor in question.
681 * Returns true if the current cpu runqueue is locked.
682 * This interface allows printk to be called with the runqueue lock
683 * held and know whether or not it is OK to wake up the klogd.
685 int runqueue_is_locked(int cpu)
687 return spin_is_locked(&cpu_rq(cpu)->lock);
691 * Debugging: various feature bits
694 #define SCHED_FEAT(name, enabled) \
695 __SCHED_FEAT_##name ,
697 enum {
698 #include "sched_features.h"
701 #undef SCHED_FEAT
703 #define SCHED_FEAT(name, enabled) \
704 (1UL << __SCHED_FEAT_##name) * enabled |
706 const_debug unsigned int sysctl_sched_features =
707 #include "sched_features.h"
710 #undef SCHED_FEAT
712 #ifdef CONFIG_SCHED_DEBUG
713 #define SCHED_FEAT(name, enabled) \
714 #name ,
716 static __read_mostly char *sched_feat_names[] = {
717 #include "sched_features.h"
718 NULL
721 #undef SCHED_FEAT
723 static int sched_feat_show(struct seq_file *m, void *v)
725 int i;
727 for (i = 0; sched_feat_names[i]; i++) {
728 if (!(sysctl_sched_features & (1UL << i)))
729 seq_puts(m, "NO_");
730 seq_printf(m, "%s ", sched_feat_names[i]);
732 seq_puts(m, "\n");
734 return 0;
737 static ssize_t
738 sched_feat_write(struct file *filp, const char __user *ubuf,
739 size_t cnt, loff_t *ppos)
741 char buf[64];
742 char *cmp = buf;
743 int neg = 0;
744 int i;
746 if (cnt > 63)
747 cnt = 63;
749 if (copy_from_user(&buf, ubuf, cnt))
750 return -EFAULT;
752 buf[cnt] = 0;
754 if (strncmp(buf, "NO_", 3) == 0) {
755 neg = 1;
756 cmp += 3;
759 for (i = 0; sched_feat_names[i]; i++) {
760 int len = strlen(sched_feat_names[i]);
762 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
763 if (neg)
764 sysctl_sched_features &= ~(1UL << i);
765 else
766 sysctl_sched_features |= (1UL << i);
767 break;
771 if (!sched_feat_names[i])
772 return -EINVAL;
774 filp->f_pos += cnt;
776 return cnt;
779 static int sched_feat_open(struct inode *inode, struct file *filp)
781 return single_open(filp, sched_feat_show, NULL);
784 static const struct file_operations sched_feat_fops = {
785 .open = sched_feat_open,
786 .write = sched_feat_write,
787 .read = seq_read,
788 .llseek = seq_lseek,
789 .release = single_release,
792 static __init int sched_init_debug(void)
794 debugfs_create_file("sched_features", 0644, NULL, NULL,
795 &sched_feat_fops);
797 return 0;
799 late_initcall(sched_init_debug);
801 #endif
803 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
806 * Number of tasks to iterate in a single balance run.
807 * Limited because this is done with IRQs disabled.
809 const_debug unsigned int sysctl_sched_nr_migrate = 32;
812 * ratelimit for updating the group shares.
813 * default: 0.25ms
815 unsigned int sysctl_sched_shares_ratelimit = 250000;
818 * Inject some fuzzyness into changing the per-cpu group shares
819 * this avoids remote rq-locks at the expense of fairness.
820 * default: 4
822 unsigned int sysctl_sched_shares_thresh = 4;
825 * period over which we average the RT time consumption, measured
826 * in ms.
828 * default: 1s
830 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833 * period over which we measure -rt task cpu usage in us.
834 * default: 1s
836 unsigned int sysctl_sched_rt_period = 1000000;
838 static __read_mostly int scheduler_running;
841 * part of the period that we allow rt tasks to run in us.
842 * default: 0.95s
844 int sysctl_sched_rt_runtime = 950000;
846 static inline u64 global_rt_period(void)
848 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851 static inline u64 global_rt_runtime(void)
853 if (sysctl_sched_rt_runtime < 0)
854 return RUNTIME_INF;
856 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859 #ifndef prepare_arch_switch
860 # define prepare_arch_switch(next) do { } while (0)
861 #endif
862 #ifndef finish_arch_switch
863 # define finish_arch_switch(prev) do { } while (0)
864 #endif
866 static inline int task_current(struct rq *rq, struct task_struct *p)
868 return rq->curr == p;
871 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
872 static inline int task_running(struct rq *rq, struct task_struct *p)
874 return task_current(rq, p);
877 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
881 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
883 #ifdef CONFIG_DEBUG_SPINLOCK
884 /* this is a valid case when another task releases the spinlock */
885 rq->lock.owner = current;
886 #endif
888 * If we are tracking spinlock dependencies then we have to
889 * fix up the runqueue lock - which gets 'carried over' from
890 * prev into current:
892 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894 spin_unlock_irq(&rq->lock);
897 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
898 static inline int task_running(struct rq *rq, struct task_struct *p)
900 #ifdef CONFIG_SMP
901 return p->oncpu;
902 #else
903 return task_current(rq, p);
904 #endif
907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
909 #ifdef CONFIG_SMP
911 * We can optimise this out completely for !SMP, because the
912 * SMP rebalancing from interrupt is the only thing that cares
913 * here.
915 next->oncpu = 1;
916 #endif
917 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 spin_unlock_irq(&rq->lock);
919 #else
920 spin_unlock(&rq->lock);
921 #endif
924 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
926 #ifdef CONFIG_SMP
928 * After ->oncpu is cleared, the task can be moved to a different CPU.
929 * We must ensure this doesn't happen until the switch is completely
930 * finished.
932 smp_wmb();
933 prev->oncpu = 0;
934 #endif
935 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
936 local_irq_enable();
937 #endif
939 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942 * __task_rq_lock - lock the runqueue a given task resides on.
943 * Must be called interrupts disabled.
945 static inline struct rq *__task_rq_lock(struct task_struct *p)
946 __acquires(rq->lock)
948 for (;;) {
949 struct rq *rq = task_rq(p);
950 spin_lock(&rq->lock);
951 if (likely(rq == task_rq(p)))
952 return rq;
953 spin_unlock(&rq->lock);
958 * task_rq_lock - lock the runqueue a given task resides on and disable
959 * interrupts. Note the ordering: we can safely lookup the task_rq without
960 * explicitly disabling preemption.
962 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
963 __acquires(rq->lock)
965 struct rq *rq;
967 for (;;) {
968 local_irq_save(*flags);
969 rq = task_rq(p);
970 spin_lock(&rq->lock);
971 if (likely(rq == task_rq(p)))
972 return rq;
973 spin_unlock_irqrestore(&rq->lock, *flags);
977 void task_rq_unlock_wait(struct task_struct *p)
979 struct rq *rq = task_rq(p);
981 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
982 spin_unlock_wait(&rq->lock);
985 static void __task_rq_unlock(struct rq *rq)
986 __releases(rq->lock)
988 spin_unlock(&rq->lock);
991 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
992 __releases(rq->lock)
994 spin_unlock_irqrestore(&rq->lock, *flags);
998 * this_rq_lock - lock this runqueue and disable interrupts.
1000 static struct rq *this_rq_lock(void)
1001 __acquires(rq->lock)
1003 struct rq *rq;
1005 local_irq_disable();
1006 rq = this_rq();
1007 spin_lock(&rq->lock);
1009 return rq;
1012 #ifdef CONFIG_SCHED_HRTICK
1014 * Use HR-timers to deliver accurate preemption points.
1016 * Its all a bit involved since we cannot program an hrt while holding the
1017 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1018 * reschedule event.
1020 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * rq->lock.
1025 * Use hrtick when:
1026 * - enabled by features
1027 * - hrtimer is actually high res
1029 static inline int hrtick_enabled(struct rq *rq)
1031 if (!sched_feat(HRTICK))
1032 return 0;
1033 if (!cpu_active(cpu_of(rq)))
1034 return 0;
1035 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038 static void hrtick_clear(struct rq *rq)
1040 if (hrtimer_active(&rq->hrtick_timer))
1041 hrtimer_cancel(&rq->hrtick_timer);
1045 * High-resolution timer tick.
1046 * Runs from hardirq context with interrupts disabled.
1048 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054 spin_lock(&rq->lock);
1055 update_rq_clock(rq);
1056 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1057 spin_unlock(&rq->lock);
1059 return HRTIMER_NORESTART;
1062 #ifdef CONFIG_SMP
1064 * called from hardirq (IPI) context
1066 static void __hrtick_start(void *arg)
1068 struct rq *rq = arg;
1070 spin_lock(&rq->lock);
1071 hrtimer_restart(&rq->hrtick_timer);
1072 rq->hrtick_csd_pending = 0;
1073 spin_unlock(&rq->lock);
1077 * Called to set the hrtick timer state.
1079 * called with rq->lock held and irqs disabled
1081 static void hrtick_start(struct rq *rq, u64 delay)
1083 struct hrtimer *timer = &rq->hrtick_timer;
1084 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1086 hrtimer_set_expires(timer, time);
1088 if (rq == this_rq()) {
1089 hrtimer_restart(timer);
1090 } else if (!rq->hrtick_csd_pending) {
1091 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1092 rq->hrtick_csd_pending = 1;
1096 static int
1097 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099 int cpu = (int)(long)hcpu;
1101 switch (action) {
1102 case CPU_UP_CANCELED:
1103 case CPU_UP_CANCELED_FROZEN:
1104 case CPU_DOWN_PREPARE:
1105 case CPU_DOWN_PREPARE_FROZEN:
1106 case CPU_DEAD:
1107 case CPU_DEAD_FROZEN:
1108 hrtick_clear(cpu_rq(cpu));
1109 return NOTIFY_OK;
1112 return NOTIFY_DONE;
1115 static __init void init_hrtick(void)
1117 hotcpu_notifier(hotplug_hrtick, 0);
1119 #else
1121 * Called to set the hrtick timer state.
1123 * called with rq->lock held and irqs disabled
1125 static void hrtick_start(struct rq *rq, u64 delay)
1127 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1128 HRTIMER_MODE_REL_PINNED, 0);
1131 static inline void init_hrtick(void)
1134 #endif /* CONFIG_SMP */
1136 static void init_rq_hrtick(struct rq *rq)
1138 #ifdef CONFIG_SMP
1139 rq->hrtick_csd_pending = 0;
1141 rq->hrtick_csd.flags = 0;
1142 rq->hrtick_csd.func = __hrtick_start;
1143 rq->hrtick_csd.info = rq;
1144 #endif
1146 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1147 rq->hrtick_timer.function = hrtick;
1149 #else /* CONFIG_SCHED_HRTICK */
1150 static inline void hrtick_clear(struct rq *rq)
1154 static inline void init_rq_hrtick(struct rq *rq)
1158 static inline void init_hrtick(void)
1161 #endif /* CONFIG_SCHED_HRTICK */
1164 * resched_task - mark a task 'to be rescheduled now'.
1166 * On UP this means the setting of the need_resched flag, on SMP it
1167 * might also involve a cross-CPU call to trigger the scheduler on
1168 * the target CPU.
1170 #ifdef CONFIG_SMP
1172 #ifndef tsk_is_polling
1173 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1174 #endif
1176 static void resched_task(struct task_struct *p)
1178 int cpu;
1180 assert_spin_locked(&task_rq(p)->lock);
1182 if (test_tsk_need_resched(p))
1183 return;
1185 set_tsk_need_resched(p);
1187 cpu = task_cpu(p);
1188 if (cpu == smp_processor_id())
1189 return;
1191 /* NEED_RESCHED must be visible before we test polling */
1192 smp_mb();
1193 if (!tsk_is_polling(p))
1194 smp_send_reschedule(cpu);
1197 static void resched_cpu(int cpu)
1199 struct rq *rq = cpu_rq(cpu);
1200 unsigned long flags;
1202 if (!spin_trylock_irqsave(&rq->lock, flags))
1203 return;
1204 resched_task(cpu_curr(cpu));
1205 spin_unlock_irqrestore(&rq->lock, flags);
1208 #ifdef CONFIG_NO_HZ
1210 * When add_timer_on() enqueues a timer into the timer wheel of an
1211 * idle CPU then this timer might expire before the next timer event
1212 * which is scheduled to wake up that CPU. In case of a completely
1213 * idle system the next event might even be infinite time into the
1214 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1215 * leaves the inner idle loop so the newly added timer is taken into
1216 * account when the CPU goes back to idle and evaluates the timer
1217 * wheel for the next timer event.
1219 void wake_up_idle_cpu(int cpu)
1221 struct rq *rq = cpu_rq(cpu);
1223 if (cpu == smp_processor_id())
1224 return;
1227 * This is safe, as this function is called with the timer
1228 * wheel base lock of (cpu) held. When the CPU is on the way
1229 * to idle and has not yet set rq->curr to idle then it will
1230 * be serialized on the timer wheel base lock and take the new
1231 * timer into account automatically.
1233 if (rq->curr != rq->idle)
1234 return;
1237 * We can set TIF_RESCHED on the idle task of the other CPU
1238 * lockless. The worst case is that the other CPU runs the
1239 * idle task through an additional NOOP schedule()
1241 set_tsk_need_resched(rq->idle);
1243 /* NEED_RESCHED must be visible before we test polling */
1244 smp_mb();
1245 if (!tsk_is_polling(rq->idle))
1246 smp_send_reschedule(cpu);
1248 #endif /* CONFIG_NO_HZ */
1250 static u64 sched_avg_period(void)
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255 static void sched_avg_update(struct rq *rq)
1257 s64 period = sched_avg_period();
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 rq->age_stamp += period;
1261 rq->rt_avg /= 2;
1265 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267 rq->rt_avg += rt_delta;
1268 sched_avg_update(rq);
1271 #else /* !CONFIG_SMP */
1272 static void resched_task(struct task_struct *p)
1274 assert_spin_locked(&task_rq(p)->lock);
1275 set_tsk_need_resched(p);
1278 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281 #endif /* CONFIG_SMP */
1283 #if BITS_PER_LONG == 32
1284 # define WMULT_CONST (~0UL)
1285 #else
1286 # define WMULT_CONST (1UL << 32)
1287 #endif
1289 #define WMULT_SHIFT 32
1292 * Shift right and round:
1294 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1297 * delta *= weight / lw
1299 static unsigned long
1300 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1303 u64 tmp;
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1313 tmp = (u64)delta_exec * weight;
1315 * Check whether we'd overflow the 64-bit multiplication:
1317 if (unlikely(tmp > WMULT_CONST))
1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1319 WMULT_SHIFT/2);
1320 else
1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1328 lw->weight += inc;
1329 lw->inv_weight = 0;
1332 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1334 lw->weight -= dec;
1335 lw->inv_weight = 0;
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1347 #define WEIGHT_IDLEPRIO 3
1348 #define WMULT_IDLEPRIO 1431655765
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
1362 static const int prio_to_weight[40] = {
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1380 static const u32 prio_to_wmult[40] = {
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1391 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394 * runqueue iterator, to support SMP load-balancing between different
1395 * scheduling classes, without having to expose their internal data
1396 * structures to the load-balancing proper:
1398 struct rq_iterator {
1399 void *arg;
1400 struct task_struct *(*start)(void *);
1401 struct task_struct *(*next)(void *);
1404 #ifdef CONFIG_SMP
1405 static unsigned long
1406 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 unsigned long max_load_move, struct sched_domain *sd,
1408 enum cpu_idle_type idle, int *all_pinned,
1409 int *this_best_prio, struct rq_iterator *iterator);
1411 static int
1412 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 struct sched_domain *sd, enum cpu_idle_type idle,
1414 struct rq_iterator *iterator);
1415 #endif
1417 /* Time spent by the tasks of the cpu accounting group executing in ... */
1418 enum cpuacct_stat_index {
1419 CPUACCT_STAT_USER, /* ... user mode */
1420 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1422 CPUACCT_STAT_NSTATS,
1425 #ifdef CONFIG_CGROUP_CPUACCT
1426 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1427 static void cpuacct_update_stats(struct task_struct *tsk,
1428 enum cpuacct_stat_index idx, cputime_t val);
1429 #else
1430 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1431 static inline void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val) {}
1433 #endif
1435 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1437 update_load_add(&rq->load, load);
1440 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1442 update_load_sub(&rq->load, load);
1445 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1446 typedef int (*tg_visitor)(struct task_group *, void *);
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1452 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1454 struct task_group *parent, *child;
1455 int ret;
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459 down:
1460 ret = (*down)(parent, data);
1461 if (ret)
1462 goto out_unlock;
1463 list_for_each_entry_rcu(child, &parent->children, siblings) {
1464 parent = child;
1465 goto down;
1468 continue;
1470 ret = (*up)(parent, data);
1471 if (ret)
1472 goto out_unlock;
1474 child = parent;
1475 parent = parent->parent;
1476 if (parent)
1477 goto up;
1478 out_unlock:
1479 rcu_read_unlock();
1481 return ret;
1484 static int tg_nop(struct task_group *tg, void *data)
1486 return 0;
1488 #endif
1490 #ifdef CONFIG_SMP
1491 /* Used instead of source_load when we know the type == 0 */
1492 static unsigned long weighted_cpuload(const int cpu)
1494 return cpu_rq(cpu)->load.weight;
1498 * Return a low guess at the load of a migration-source cpu weighted
1499 * according to the scheduling class and "nice" value.
1501 * We want to under-estimate the load of migration sources, to
1502 * balance conservatively.
1504 static unsigned long source_load(int cpu, int type)
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1509 if (type == 0 || !sched_feat(LB_BIAS))
1510 return total;
1512 return min(rq->cpu_load[type-1], total);
1516 * Return a high guess at the load of a migration-target cpu weighted
1517 * according to the scheduling class and "nice" value.
1519 static unsigned long target_load(int cpu, int type)
1521 struct rq *rq = cpu_rq(cpu);
1522 unsigned long total = weighted_cpuload(cpu);
1524 if (type == 0 || !sched_feat(LB_BIAS))
1525 return total;
1527 return max(rq->cpu_load[type-1], total);
1530 static struct sched_group *group_of(int cpu)
1532 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1534 if (!sd)
1535 return NULL;
1537 return sd->groups;
1540 static unsigned long power_of(int cpu)
1542 struct sched_group *group = group_of(cpu);
1544 if (!group)
1545 return SCHED_LOAD_SCALE;
1547 return group->cpu_power;
1550 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1552 static unsigned long cpu_avg_load_per_task(int cpu)
1554 struct rq *rq = cpu_rq(cpu);
1555 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1557 if (nr_running)
1558 rq->avg_load_per_task = rq->load.weight / nr_running;
1559 else
1560 rq->avg_load_per_task = 0;
1562 return rq->avg_load_per_task;
1565 #ifdef CONFIG_FAIR_GROUP_SCHED
1567 static __read_mostly unsigned long *update_shares_data;
1569 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572 * Calculate and set the cpu's group shares.
1574 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1575 unsigned long sd_shares,
1576 unsigned long sd_rq_weight,
1577 unsigned long *usd_rq_weight)
1579 unsigned long shares, rq_weight;
1580 int boost = 0;
1582 rq_weight = usd_rq_weight[cpu];
1583 if (!rq_weight) {
1584 boost = 1;
1585 rq_weight = NICE_0_LOAD;
1589 * \Sum_j shares_j * rq_weight_i
1590 * shares_i = -----------------------------
1591 * \Sum_j rq_weight_j
1593 shares = (sd_shares * rq_weight) / sd_rq_weight;
1594 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1596 if (abs(shares - tg->se[cpu]->load.weight) >
1597 sysctl_sched_shares_thresh) {
1598 struct rq *rq = cpu_rq(cpu);
1599 unsigned long flags;
1601 spin_lock_irqsave(&rq->lock, flags);
1602 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1603 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1604 __set_se_shares(tg->se[cpu], shares);
1605 spin_unlock_irqrestore(&rq->lock, flags);
1610 * Re-compute the task group their per cpu shares over the given domain.
1611 * This needs to be done in a bottom-up fashion because the rq weight of a
1612 * parent group depends on the shares of its child groups.
1614 static int tg_shares_up(struct task_group *tg, void *data)
1616 unsigned long weight, rq_weight = 0, shares = 0;
1617 unsigned long *usd_rq_weight;
1618 struct sched_domain *sd = data;
1619 unsigned long flags;
1620 int i;
1622 if (!tg->se[0])
1623 return 0;
1625 local_irq_save(flags);
1626 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1628 for_each_cpu(i, sched_domain_span(sd)) {
1629 weight = tg->cfs_rq[i]->load.weight;
1630 usd_rq_weight[i] = weight;
1633 * If there are currently no tasks on the cpu pretend there
1634 * is one of average load so that when a new task gets to
1635 * run here it will not get delayed by group starvation.
1637 if (!weight)
1638 weight = NICE_0_LOAD;
1640 rq_weight += weight;
1641 shares += tg->cfs_rq[i]->shares;
1644 if ((!shares && rq_weight) || shares > tg->shares)
1645 shares = tg->shares;
1647 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1648 shares = tg->shares;
1650 for_each_cpu(i, sched_domain_span(sd))
1651 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1653 local_irq_restore(flags);
1655 return 0;
1659 * Compute the cpu's hierarchical load factor for each task group.
1660 * This needs to be done in a top-down fashion because the load of a child
1661 * group is a fraction of its parents load.
1663 static int tg_load_down(struct task_group *tg, void *data)
1665 unsigned long load;
1666 long cpu = (long)data;
1668 if (!tg->parent) {
1669 load = cpu_rq(cpu)->load.weight;
1670 } else {
1671 load = tg->parent->cfs_rq[cpu]->h_load;
1672 load *= tg->cfs_rq[cpu]->shares;
1673 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1676 tg->cfs_rq[cpu]->h_load = load;
1678 return 0;
1681 static void update_shares(struct sched_domain *sd)
1683 s64 elapsed;
1684 u64 now;
1686 if (root_task_group_empty())
1687 return;
1689 now = cpu_clock(raw_smp_processor_id());
1690 elapsed = now - sd->last_update;
1692 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1693 sd->last_update = now;
1694 walk_tg_tree(tg_nop, tg_shares_up, sd);
1698 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1700 if (root_task_group_empty())
1701 return;
1703 spin_unlock(&rq->lock);
1704 update_shares(sd);
1705 spin_lock(&rq->lock);
1708 static void update_h_load(long cpu)
1710 if (root_task_group_empty())
1711 return;
1713 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1716 #else
1718 static inline void update_shares(struct sched_domain *sd)
1722 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1726 #endif
1728 #ifdef CONFIG_PREEMPT
1730 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1733 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1734 * way at the expense of forcing extra atomic operations in all
1735 * invocations. This assures that the double_lock is acquired using the
1736 * same underlying policy as the spinlock_t on this architecture, which
1737 * reduces latency compared to the unfair variant below. However, it
1738 * also adds more overhead and therefore may reduce throughput.
1740 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1741 __releases(this_rq->lock)
1742 __acquires(busiest->lock)
1743 __acquires(this_rq->lock)
1745 spin_unlock(&this_rq->lock);
1746 double_rq_lock(this_rq, busiest);
1748 return 1;
1751 #else
1753 * Unfair double_lock_balance: Optimizes throughput at the expense of
1754 * latency by eliminating extra atomic operations when the locks are
1755 * already in proper order on entry. This favors lower cpu-ids and will
1756 * grant the double lock to lower cpus over higher ids under contention,
1757 * regardless of entry order into the function.
1759 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1760 __releases(this_rq->lock)
1761 __acquires(busiest->lock)
1762 __acquires(this_rq->lock)
1764 int ret = 0;
1766 if (unlikely(!spin_trylock(&busiest->lock))) {
1767 if (busiest < this_rq) {
1768 spin_unlock(&this_rq->lock);
1769 spin_lock(&busiest->lock);
1770 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1771 ret = 1;
1772 } else
1773 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1775 return ret;
1778 #endif /* CONFIG_PREEMPT */
1781 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1783 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1785 if (unlikely(!irqs_disabled())) {
1786 /* printk() doesn't work good under rq->lock */
1787 spin_unlock(&this_rq->lock);
1788 BUG_ON(1);
1791 return _double_lock_balance(this_rq, busiest);
1794 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1795 __releases(busiest->lock)
1797 spin_unlock(&busiest->lock);
1798 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1800 #endif
1802 #ifdef CONFIG_FAIR_GROUP_SCHED
1803 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1805 #ifdef CONFIG_SMP
1806 cfs_rq->shares = shares;
1807 #endif
1809 #endif
1811 static void calc_load_account_active(struct rq *this_rq);
1813 #include "sched_stats.h"
1814 #include "sched_idletask.c"
1815 #include "sched_fair.c"
1816 #include "sched_rt.c"
1817 #ifdef CONFIG_SCHED_DEBUG
1818 # include "sched_debug.c"
1819 #endif
1821 #define sched_class_highest (&rt_sched_class)
1822 #define for_each_class(class) \
1823 for (class = sched_class_highest; class; class = class->next)
1825 static void inc_nr_running(struct rq *rq)
1827 rq->nr_running++;
1830 static void dec_nr_running(struct rq *rq)
1832 rq->nr_running--;
1835 static void set_load_weight(struct task_struct *p)
1837 if (task_has_rt_policy(p)) {
1838 p->se.load.weight = prio_to_weight[0] * 2;
1839 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1840 return;
1844 * SCHED_IDLE tasks get minimal weight:
1846 if (p->policy == SCHED_IDLE) {
1847 p->se.load.weight = WEIGHT_IDLEPRIO;
1848 p->se.load.inv_weight = WMULT_IDLEPRIO;
1849 return;
1852 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1853 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1856 static void update_avg(u64 *avg, u64 sample)
1858 s64 diff = sample - *avg;
1859 *avg += diff >> 3;
1862 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1864 if (wakeup)
1865 p->se.start_runtime = p->se.sum_exec_runtime;
1867 sched_info_queued(p);
1868 p->sched_class->enqueue_task(rq, p, wakeup);
1869 p->se.on_rq = 1;
1872 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1874 if (sleep) {
1875 if (p->se.last_wakeup) {
1876 update_avg(&p->se.avg_overlap,
1877 p->se.sum_exec_runtime - p->se.last_wakeup);
1878 p->se.last_wakeup = 0;
1879 } else {
1880 update_avg(&p->se.avg_wakeup,
1881 sysctl_sched_wakeup_granularity);
1885 sched_info_dequeued(p);
1886 p->sched_class->dequeue_task(rq, p, sleep);
1887 p->se.on_rq = 0;
1891 * __normal_prio - return the priority that is based on the static prio
1893 static inline int __normal_prio(struct task_struct *p)
1895 return p->static_prio;
1899 * Calculate the expected normal priority: i.e. priority
1900 * without taking RT-inheritance into account. Might be
1901 * boosted by interactivity modifiers. Changes upon fork,
1902 * setprio syscalls, and whenever the interactivity
1903 * estimator recalculates.
1905 static inline int normal_prio(struct task_struct *p)
1907 int prio;
1909 if (task_has_rt_policy(p))
1910 prio = MAX_RT_PRIO-1 - p->rt_priority;
1911 else
1912 prio = __normal_prio(p);
1913 return prio;
1917 * Calculate the current priority, i.e. the priority
1918 * taken into account by the scheduler. This value might
1919 * be boosted by RT tasks, or might be boosted by
1920 * interactivity modifiers. Will be RT if the task got
1921 * RT-boosted. If not then it returns p->normal_prio.
1923 static int effective_prio(struct task_struct *p)
1925 p->normal_prio = normal_prio(p);
1927 * If we are RT tasks or we were boosted to RT priority,
1928 * keep the priority unchanged. Otherwise, update priority
1929 * to the normal priority:
1931 if (!rt_prio(p->prio))
1932 return p->normal_prio;
1933 return p->prio;
1937 * activate_task - move a task to the runqueue.
1939 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1941 if (task_contributes_to_load(p))
1942 rq->nr_uninterruptible--;
1944 enqueue_task(rq, p, wakeup);
1945 inc_nr_running(rq);
1949 * deactivate_task - remove a task from the runqueue.
1951 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1953 if (task_contributes_to_load(p))
1954 rq->nr_uninterruptible++;
1956 dequeue_task(rq, p, sleep);
1957 dec_nr_running(rq);
1961 * task_curr - is this task currently executing on a CPU?
1962 * @p: the task in question.
1964 inline int task_curr(const struct task_struct *p)
1966 return cpu_curr(task_cpu(p)) == p;
1969 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1971 set_task_rq(p, cpu);
1972 #ifdef CONFIG_SMP
1974 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1975 * successfuly executed on another CPU. We must ensure that updates of
1976 * per-task data have been completed by this moment.
1978 smp_wmb();
1979 task_thread_info(p)->cpu = cpu;
1980 #endif
1983 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1984 const struct sched_class *prev_class,
1985 int oldprio, int running)
1987 if (prev_class != p->sched_class) {
1988 if (prev_class->switched_from)
1989 prev_class->switched_from(rq, p, running);
1990 p->sched_class->switched_to(rq, p, running);
1991 } else
1992 p->sched_class->prio_changed(rq, p, oldprio, running);
1996 * kthread_bind - bind a just-created kthread to a cpu.
1997 * @k: thread created by kthread_create().
1998 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2000 * Description: This function is equivalent to set_cpus_allowed(),
2001 * except that @cpu doesn't need to be online, and the thread must be
2002 * stopped (i.e., just returned from kthread_create()).
2004 * Function lives here instead of kthread.c because it messes with
2005 * scheduler internals which require locking.
2007 void kthread_bind(struct task_struct *p, unsigned int cpu)
2009 struct rq *rq = cpu_rq(cpu);
2010 unsigned long flags;
2012 /* Must have done schedule() in kthread() before we set_task_cpu */
2013 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2014 WARN_ON(1);
2015 return;
2018 spin_lock_irqsave(&rq->lock, flags);
2019 set_task_cpu(p, cpu);
2020 p->cpus_allowed = cpumask_of_cpu(cpu);
2021 p->rt.nr_cpus_allowed = 1;
2022 p->flags |= PF_THREAD_BOUND;
2023 spin_unlock_irqrestore(&rq->lock, flags);
2025 EXPORT_SYMBOL(kthread_bind);
2027 #ifdef CONFIG_SMP
2029 * Is this task likely cache-hot:
2031 static int
2032 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2034 s64 delta;
2037 * Buddy candidates are cache hot:
2039 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2040 (&p->se == cfs_rq_of(&p->se)->next ||
2041 &p->se == cfs_rq_of(&p->se)->last))
2042 return 1;
2044 if (p->sched_class != &fair_sched_class)
2045 return 0;
2047 if (sysctl_sched_migration_cost == -1)
2048 return 1;
2049 if (sysctl_sched_migration_cost == 0)
2050 return 0;
2052 delta = now - p->se.exec_start;
2054 return delta < (s64)sysctl_sched_migration_cost;
2058 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2060 int old_cpu = task_cpu(p);
2061 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2062 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2063 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2064 u64 clock_offset;
2066 clock_offset = old_rq->clock - new_rq->clock;
2068 trace_sched_migrate_task(p, new_cpu);
2070 #ifdef CONFIG_SCHEDSTATS
2071 if (p->se.wait_start)
2072 p->se.wait_start -= clock_offset;
2073 if (p->se.sleep_start)
2074 p->se.sleep_start -= clock_offset;
2075 if (p->se.block_start)
2076 p->se.block_start -= clock_offset;
2077 #endif
2078 if (old_cpu != new_cpu) {
2079 p->se.nr_migrations++;
2080 new_rq->nr_migrations_in++;
2081 #ifdef CONFIG_SCHEDSTATS
2082 if (task_hot(p, old_rq->clock, NULL))
2083 schedstat_inc(p, se.nr_forced2_migrations);
2084 #endif
2085 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2086 1, 1, NULL, 0);
2088 p->se.vruntime -= old_cfsrq->min_vruntime -
2089 new_cfsrq->min_vruntime;
2091 __set_task_cpu(p, new_cpu);
2094 struct migration_req {
2095 struct list_head list;
2097 struct task_struct *task;
2098 int dest_cpu;
2100 struct completion done;
2104 * The task's runqueue lock must be held.
2105 * Returns true if you have to wait for migration thread.
2107 static int
2108 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2110 struct rq *rq = task_rq(p);
2113 * If the task is not on a runqueue (and not running), then
2114 * it is sufficient to simply update the task's cpu field.
2116 if (!p->se.on_rq && !task_running(rq, p)) {
2117 set_task_cpu(p, dest_cpu);
2118 return 0;
2121 init_completion(&req->done);
2122 req->task = p;
2123 req->dest_cpu = dest_cpu;
2124 list_add(&req->list, &rq->migration_queue);
2126 return 1;
2130 * wait_task_context_switch - wait for a thread to complete at least one
2131 * context switch.
2133 * @p must not be current.
2135 void wait_task_context_switch(struct task_struct *p)
2137 unsigned long nvcsw, nivcsw, flags;
2138 int running;
2139 struct rq *rq;
2141 nvcsw = p->nvcsw;
2142 nivcsw = p->nivcsw;
2143 for (;;) {
2145 * The runqueue is assigned before the actual context
2146 * switch. We need to take the runqueue lock.
2148 * We could check initially without the lock but it is
2149 * very likely that we need to take the lock in every
2150 * iteration.
2152 rq = task_rq_lock(p, &flags);
2153 running = task_running(rq, p);
2154 task_rq_unlock(rq, &flags);
2156 if (likely(!running))
2157 break;
2159 * The switch count is incremented before the actual
2160 * context switch. We thus wait for two switches to be
2161 * sure at least one completed.
2163 if ((p->nvcsw - nvcsw) > 1)
2164 break;
2165 if ((p->nivcsw - nivcsw) > 1)
2166 break;
2168 cpu_relax();
2173 * wait_task_inactive - wait for a thread to unschedule.
2175 * If @match_state is nonzero, it's the @p->state value just checked and
2176 * not expected to change. If it changes, i.e. @p might have woken up,
2177 * then return zero. When we succeed in waiting for @p to be off its CPU,
2178 * we return a positive number (its total switch count). If a second call
2179 * a short while later returns the same number, the caller can be sure that
2180 * @p has remained unscheduled the whole time.
2182 * The caller must ensure that the task *will* unschedule sometime soon,
2183 * else this function might spin for a *long* time. This function can't
2184 * be called with interrupts off, or it may introduce deadlock with
2185 * smp_call_function() if an IPI is sent by the same process we are
2186 * waiting to become inactive.
2188 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2190 unsigned long flags;
2191 int running, on_rq;
2192 unsigned long ncsw;
2193 struct rq *rq;
2195 for (;;) {
2197 * We do the initial early heuristics without holding
2198 * any task-queue locks at all. We'll only try to get
2199 * the runqueue lock when things look like they will
2200 * work out!
2202 rq = task_rq(p);
2205 * If the task is actively running on another CPU
2206 * still, just relax and busy-wait without holding
2207 * any locks.
2209 * NOTE! Since we don't hold any locks, it's not
2210 * even sure that "rq" stays as the right runqueue!
2211 * But we don't care, since "task_running()" will
2212 * return false if the runqueue has changed and p
2213 * is actually now running somewhere else!
2215 while (task_running(rq, p)) {
2216 if (match_state && unlikely(p->state != match_state))
2217 return 0;
2218 cpu_relax();
2222 * Ok, time to look more closely! We need the rq
2223 * lock now, to be *sure*. If we're wrong, we'll
2224 * just go back and repeat.
2226 rq = task_rq_lock(p, &flags);
2227 trace_sched_wait_task(rq, p);
2228 running = task_running(rq, p);
2229 on_rq = p->se.on_rq;
2230 ncsw = 0;
2231 if (!match_state || p->state == match_state)
2232 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2233 task_rq_unlock(rq, &flags);
2236 * If it changed from the expected state, bail out now.
2238 if (unlikely(!ncsw))
2239 break;
2242 * Was it really running after all now that we
2243 * checked with the proper locks actually held?
2245 * Oops. Go back and try again..
2247 if (unlikely(running)) {
2248 cpu_relax();
2249 continue;
2253 * It's not enough that it's not actively running,
2254 * it must be off the runqueue _entirely_, and not
2255 * preempted!
2257 * So if it was still runnable (but just not actively
2258 * running right now), it's preempted, and we should
2259 * yield - it could be a while.
2261 if (unlikely(on_rq)) {
2262 schedule_timeout_uninterruptible(1);
2263 continue;
2267 * Ahh, all good. It wasn't running, and it wasn't
2268 * runnable, which means that it will never become
2269 * running in the future either. We're all done!
2271 break;
2274 return ncsw;
2277 /***
2278 * kick_process - kick a running thread to enter/exit the kernel
2279 * @p: the to-be-kicked thread
2281 * Cause a process which is running on another CPU to enter
2282 * kernel-mode, without any delay. (to get signals handled.)
2284 * NOTE: this function doesnt have to take the runqueue lock,
2285 * because all it wants to ensure is that the remote task enters
2286 * the kernel. If the IPI races and the task has been migrated
2287 * to another CPU then no harm is done and the purpose has been
2288 * achieved as well.
2290 void kick_process(struct task_struct *p)
2292 int cpu;
2294 preempt_disable();
2295 cpu = task_cpu(p);
2296 if ((cpu != smp_processor_id()) && task_curr(p))
2297 smp_send_reschedule(cpu);
2298 preempt_enable();
2300 EXPORT_SYMBOL_GPL(kick_process);
2301 #endif /* CONFIG_SMP */
2304 * task_oncpu_function_call - call a function on the cpu on which a task runs
2305 * @p: the task to evaluate
2306 * @func: the function to be called
2307 * @info: the function call argument
2309 * Calls the function @func when the task is currently running. This might
2310 * be on the current CPU, which just calls the function directly
2312 void task_oncpu_function_call(struct task_struct *p,
2313 void (*func) (void *info), void *info)
2315 int cpu;
2317 preempt_disable();
2318 cpu = task_cpu(p);
2319 if (task_curr(p))
2320 smp_call_function_single(cpu, func, info, 1);
2321 preempt_enable();
2324 /***
2325 * try_to_wake_up - wake up a thread
2326 * @p: the to-be-woken-up thread
2327 * @state: the mask of task states that can be woken
2328 * @sync: do a synchronous wakeup?
2330 * Put it on the run-queue if it's not already there. The "current"
2331 * thread is always on the run-queue (except when the actual
2332 * re-schedule is in progress), and as such you're allowed to do
2333 * the simpler "current->state = TASK_RUNNING" to mark yourself
2334 * runnable without the overhead of this.
2336 * returns failure only if the task is already active.
2338 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2339 int wake_flags)
2341 int cpu, orig_cpu, this_cpu, success = 0;
2342 unsigned long flags;
2343 struct rq *rq, *orig_rq;
2345 if (!sched_feat(SYNC_WAKEUPS))
2346 wake_flags &= ~WF_SYNC;
2348 this_cpu = get_cpu();
2350 smp_wmb();
2351 rq = orig_rq = task_rq_lock(p, &flags);
2352 update_rq_clock(rq);
2353 if (!(p->state & state))
2354 goto out;
2356 if (p->se.on_rq)
2357 goto out_running;
2359 cpu = task_cpu(p);
2360 orig_cpu = cpu;
2362 #ifdef CONFIG_SMP
2363 if (unlikely(task_running(rq, p)))
2364 goto out_activate;
2367 * In order to handle concurrent wakeups and release the rq->lock
2368 * we put the task in TASK_WAKING state.
2370 * First fix up the nr_uninterruptible count:
2372 if (task_contributes_to_load(p))
2373 rq->nr_uninterruptible--;
2374 p->state = TASK_WAKING;
2375 task_rq_unlock(rq, &flags);
2377 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2378 if (cpu != orig_cpu)
2379 set_task_cpu(p, cpu);
2381 rq = task_rq_lock(p, &flags);
2383 if (rq != orig_rq)
2384 update_rq_clock(rq);
2386 WARN_ON(p->state != TASK_WAKING);
2387 cpu = task_cpu(p);
2389 #ifdef CONFIG_SCHEDSTATS
2390 schedstat_inc(rq, ttwu_count);
2391 if (cpu == this_cpu)
2392 schedstat_inc(rq, ttwu_local);
2393 else {
2394 struct sched_domain *sd;
2395 for_each_domain(this_cpu, sd) {
2396 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2397 schedstat_inc(sd, ttwu_wake_remote);
2398 break;
2402 #endif /* CONFIG_SCHEDSTATS */
2404 out_activate:
2405 #endif /* CONFIG_SMP */
2406 schedstat_inc(p, se.nr_wakeups);
2407 if (wake_flags & WF_SYNC)
2408 schedstat_inc(p, se.nr_wakeups_sync);
2409 if (orig_cpu != cpu)
2410 schedstat_inc(p, se.nr_wakeups_migrate);
2411 if (cpu == this_cpu)
2412 schedstat_inc(p, se.nr_wakeups_local);
2413 else
2414 schedstat_inc(p, se.nr_wakeups_remote);
2415 activate_task(rq, p, 1);
2416 success = 1;
2419 * Only attribute actual wakeups done by this task.
2421 if (!in_interrupt()) {
2422 struct sched_entity *se = &current->se;
2423 u64 sample = se->sum_exec_runtime;
2425 if (se->last_wakeup)
2426 sample -= se->last_wakeup;
2427 else
2428 sample -= se->start_runtime;
2429 update_avg(&se->avg_wakeup, sample);
2431 se->last_wakeup = se->sum_exec_runtime;
2434 out_running:
2435 trace_sched_wakeup(rq, p, success);
2436 check_preempt_curr(rq, p, wake_flags);
2438 p->state = TASK_RUNNING;
2439 #ifdef CONFIG_SMP
2440 if (p->sched_class->task_wake_up)
2441 p->sched_class->task_wake_up(rq, p);
2442 #endif
2443 out:
2444 task_rq_unlock(rq, &flags);
2445 put_cpu();
2447 return success;
2451 * wake_up_process - Wake up a specific process
2452 * @p: The process to be woken up.
2454 * Attempt to wake up the nominated process and move it to the set of runnable
2455 * processes. Returns 1 if the process was woken up, 0 if it was already
2456 * running.
2458 * It may be assumed that this function implies a write memory barrier before
2459 * changing the task state if and only if any tasks are woken up.
2461 int wake_up_process(struct task_struct *p)
2463 return try_to_wake_up(p, TASK_ALL, 0);
2465 EXPORT_SYMBOL(wake_up_process);
2467 int wake_up_state(struct task_struct *p, unsigned int state)
2469 return try_to_wake_up(p, state, 0);
2473 * Perform scheduler related setup for a newly forked process p.
2474 * p is forked by current.
2476 * __sched_fork() is basic setup used by init_idle() too:
2478 static void __sched_fork(struct task_struct *p)
2480 p->se.exec_start = 0;
2481 p->se.sum_exec_runtime = 0;
2482 p->se.prev_sum_exec_runtime = 0;
2483 p->se.nr_migrations = 0;
2484 p->se.last_wakeup = 0;
2485 p->se.avg_overlap = 0;
2486 p->se.start_runtime = 0;
2487 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2488 p->se.avg_running = 0;
2490 #ifdef CONFIG_SCHEDSTATS
2491 p->se.wait_start = 0;
2492 p->se.wait_max = 0;
2493 p->se.wait_count = 0;
2494 p->se.wait_sum = 0;
2496 p->se.sleep_start = 0;
2497 p->se.sleep_max = 0;
2498 p->se.sum_sleep_runtime = 0;
2500 p->se.block_start = 0;
2501 p->se.block_max = 0;
2502 p->se.exec_max = 0;
2503 p->se.slice_max = 0;
2505 p->se.nr_migrations_cold = 0;
2506 p->se.nr_failed_migrations_affine = 0;
2507 p->se.nr_failed_migrations_running = 0;
2508 p->se.nr_failed_migrations_hot = 0;
2509 p->se.nr_forced_migrations = 0;
2510 p->se.nr_forced2_migrations = 0;
2512 p->se.nr_wakeups = 0;
2513 p->se.nr_wakeups_sync = 0;
2514 p->se.nr_wakeups_migrate = 0;
2515 p->se.nr_wakeups_local = 0;
2516 p->se.nr_wakeups_remote = 0;
2517 p->se.nr_wakeups_affine = 0;
2518 p->se.nr_wakeups_affine_attempts = 0;
2519 p->se.nr_wakeups_passive = 0;
2520 p->se.nr_wakeups_idle = 0;
2522 #endif
2524 INIT_LIST_HEAD(&p->rt.run_list);
2525 p->se.on_rq = 0;
2526 INIT_LIST_HEAD(&p->se.group_node);
2528 #ifdef CONFIG_PREEMPT_NOTIFIERS
2529 INIT_HLIST_HEAD(&p->preempt_notifiers);
2530 #endif
2533 * We mark the process as running here, but have not actually
2534 * inserted it onto the runqueue yet. This guarantees that
2535 * nobody will actually run it, and a signal or other external
2536 * event cannot wake it up and insert it on the runqueue either.
2538 p->state = TASK_RUNNING;
2542 * fork()/clone()-time setup:
2544 void sched_fork(struct task_struct *p, int clone_flags)
2546 int cpu = get_cpu();
2548 __sched_fork(p);
2551 * Revert to default priority/policy on fork if requested.
2553 if (unlikely(p->sched_reset_on_fork)) {
2554 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2555 p->policy = SCHED_NORMAL;
2556 p->normal_prio = p->static_prio;
2559 if (PRIO_TO_NICE(p->static_prio) < 0) {
2560 p->static_prio = NICE_TO_PRIO(0);
2561 p->normal_prio = p->static_prio;
2562 set_load_weight(p);
2566 * We don't need the reset flag anymore after the fork. It has
2567 * fulfilled its duty:
2569 p->sched_reset_on_fork = 0;
2573 * Make sure we do not leak PI boosting priority to the child.
2575 p->prio = current->normal_prio;
2577 if (!rt_prio(p->prio))
2578 p->sched_class = &fair_sched_class;
2580 #ifdef CONFIG_SMP
2581 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2582 #endif
2583 set_task_cpu(p, cpu);
2585 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2586 if (likely(sched_info_on()))
2587 memset(&p->sched_info, 0, sizeof(p->sched_info));
2588 #endif
2589 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2590 p->oncpu = 0;
2591 #endif
2592 #ifdef CONFIG_PREEMPT
2593 /* Want to start with kernel preemption disabled. */
2594 task_thread_info(p)->preempt_count = 1;
2595 #endif
2596 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2598 put_cpu();
2602 * wake_up_new_task - wake up a newly created task for the first time.
2604 * This function will do some initial scheduler statistics housekeeping
2605 * that must be done for every newly created context, then puts the task
2606 * on the runqueue and wakes it.
2608 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2610 unsigned long flags;
2611 struct rq *rq;
2613 rq = task_rq_lock(p, &flags);
2614 BUG_ON(p->state != TASK_RUNNING);
2615 update_rq_clock(rq);
2617 if (!p->sched_class->task_new || !current->se.on_rq) {
2618 activate_task(rq, p, 0);
2619 } else {
2621 * Let the scheduling class do new task startup
2622 * management (if any):
2624 p->sched_class->task_new(rq, p);
2625 inc_nr_running(rq);
2627 trace_sched_wakeup_new(rq, p, 1);
2628 check_preempt_curr(rq, p, WF_FORK);
2629 #ifdef CONFIG_SMP
2630 if (p->sched_class->task_wake_up)
2631 p->sched_class->task_wake_up(rq, p);
2632 #endif
2633 task_rq_unlock(rq, &flags);
2636 #ifdef CONFIG_PREEMPT_NOTIFIERS
2639 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2640 * @notifier: notifier struct to register
2642 void preempt_notifier_register(struct preempt_notifier *notifier)
2644 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2646 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2649 * preempt_notifier_unregister - no longer interested in preemption notifications
2650 * @notifier: notifier struct to unregister
2652 * This is safe to call from within a preemption notifier.
2654 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2656 hlist_del(&notifier->link);
2658 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2660 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2662 struct preempt_notifier *notifier;
2663 struct hlist_node *node;
2665 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2666 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2669 static void
2670 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2671 struct task_struct *next)
2673 struct preempt_notifier *notifier;
2674 struct hlist_node *node;
2676 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2677 notifier->ops->sched_out(notifier, next);
2680 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2682 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2686 static void
2687 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2688 struct task_struct *next)
2692 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2695 * prepare_task_switch - prepare to switch tasks
2696 * @rq: the runqueue preparing to switch
2697 * @prev: the current task that is being switched out
2698 * @next: the task we are going to switch to.
2700 * This is called with the rq lock held and interrupts off. It must
2701 * be paired with a subsequent finish_task_switch after the context
2702 * switch.
2704 * prepare_task_switch sets up locking and calls architecture specific
2705 * hooks.
2707 static inline void
2708 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2709 struct task_struct *next)
2711 fire_sched_out_preempt_notifiers(prev, next);
2712 prepare_lock_switch(rq, next);
2713 prepare_arch_switch(next);
2717 * finish_task_switch - clean up after a task-switch
2718 * @rq: runqueue associated with task-switch
2719 * @prev: the thread we just switched away from.
2721 * finish_task_switch must be called after the context switch, paired
2722 * with a prepare_task_switch call before the context switch.
2723 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2724 * and do any other architecture-specific cleanup actions.
2726 * Note that we may have delayed dropping an mm in context_switch(). If
2727 * so, we finish that here outside of the runqueue lock. (Doing it
2728 * with the lock held can cause deadlocks; see schedule() for
2729 * details.)
2731 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2732 __releases(rq->lock)
2734 struct mm_struct *mm = rq->prev_mm;
2735 long prev_state;
2737 rq->prev_mm = NULL;
2740 * A task struct has one reference for the use as "current".
2741 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2742 * schedule one last time. The schedule call will never return, and
2743 * the scheduled task must drop that reference.
2744 * The test for TASK_DEAD must occur while the runqueue locks are
2745 * still held, otherwise prev could be scheduled on another cpu, die
2746 * there before we look at prev->state, and then the reference would
2747 * be dropped twice.
2748 * Manfred Spraul <manfred@colorfullife.com>
2750 prev_state = prev->state;
2751 finish_arch_switch(prev);
2752 perf_event_task_sched_in(current, cpu_of(rq));
2753 finish_lock_switch(rq, prev);
2755 fire_sched_in_preempt_notifiers(current);
2756 if (mm)
2757 mmdrop(mm);
2758 if (unlikely(prev_state == TASK_DEAD)) {
2760 * Remove function-return probe instances associated with this
2761 * task and put them back on the free list.
2763 kprobe_flush_task(prev);
2764 put_task_struct(prev);
2768 #ifdef CONFIG_SMP
2770 /* assumes rq->lock is held */
2771 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2773 if (prev->sched_class->pre_schedule)
2774 prev->sched_class->pre_schedule(rq, prev);
2777 /* rq->lock is NOT held, but preemption is disabled */
2778 static inline void post_schedule(struct rq *rq)
2780 if (rq->post_schedule) {
2781 unsigned long flags;
2783 spin_lock_irqsave(&rq->lock, flags);
2784 if (rq->curr->sched_class->post_schedule)
2785 rq->curr->sched_class->post_schedule(rq);
2786 spin_unlock_irqrestore(&rq->lock, flags);
2788 rq->post_schedule = 0;
2792 #else
2794 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2798 static inline void post_schedule(struct rq *rq)
2802 #endif
2805 * schedule_tail - first thing a freshly forked thread must call.
2806 * @prev: the thread we just switched away from.
2808 asmlinkage void schedule_tail(struct task_struct *prev)
2809 __releases(rq->lock)
2811 struct rq *rq = this_rq();
2813 finish_task_switch(rq, prev);
2816 * FIXME: do we need to worry about rq being invalidated by the
2817 * task_switch?
2819 post_schedule(rq);
2821 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2822 /* In this case, finish_task_switch does not reenable preemption */
2823 preempt_enable();
2824 #endif
2825 if (current->set_child_tid)
2826 put_user(task_pid_vnr(current), current->set_child_tid);
2830 * context_switch - switch to the new MM and the new
2831 * thread's register state.
2833 static inline void
2834 context_switch(struct rq *rq, struct task_struct *prev,
2835 struct task_struct *next)
2837 struct mm_struct *mm, *oldmm;
2839 prepare_task_switch(rq, prev, next);
2840 trace_sched_switch(rq, prev, next);
2841 mm = next->mm;
2842 oldmm = prev->active_mm;
2844 * For paravirt, this is coupled with an exit in switch_to to
2845 * combine the page table reload and the switch backend into
2846 * one hypercall.
2848 arch_start_context_switch(prev);
2850 if (unlikely(!mm)) {
2851 next->active_mm = oldmm;
2852 atomic_inc(&oldmm->mm_count);
2853 enter_lazy_tlb(oldmm, next);
2854 } else
2855 switch_mm(oldmm, mm, next);
2857 if (unlikely(!prev->mm)) {
2858 prev->active_mm = NULL;
2859 rq->prev_mm = oldmm;
2862 * Since the runqueue lock will be released by the next
2863 * task (which is an invalid locking op but in the case
2864 * of the scheduler it's an obvious special-case), so we
2865 * do an early lockdep release here:
2867 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2868 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2869 #endif
2871 /* Here we just switch the register state and the stack. */
2872 switch_to(prev, next, prev);
2874 barrier();
2876 * this_rq must be evaluated again because prev may have moved
2877 * CPUs since it called schedule(), thus the 'rq' on its stack
2878 * frame will be invalid.
2880 finish_task_switch(this_rq(), prev);
2884 * nr_running, nr_uninterruptible and nr_context_switches:
2886 * externally visible scheduler statistics: current number of runnable
2887 * threads, current number of uninterruptible-sleeping threads, total
2888 * number of context switches performed since bootup.
2890 unsigned long nr_running(void)
2892 unsigned long i, sum = 0;
2894 for_each_online_cpu(i)
2895 sum += cpu_rq(i)->nr_running;
2897 return sum;
2900 unsigned long nr_uninterruptible(void)
2902 unsigned long i, sum = 0;
2904 for_each_possible_cpu(i)
2905 sum += cpu_rq(i)->nr_uninterruptible;
2908 * Since we read the counters lockless, it might be slightly
2909 * inaccurate. Do not allow it to go below zero though:
2911 if (unlikely((long)sum < 0))
2912 sum = 0;
2914 return sum;
2917 unsigned long long nr_context_switches(void)
2919 int i;
2920 unsigned long long sum = 0;
2922 for_each_possible_cpu(i)
2923 sum += cpu_rq(i)->nr_switches;
2925 return sum;
2928 unsigned long nr_iowait(void)
2930 unsigned long i, sum = 0;
2932 for_each_possible_cpu(i)
2933 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2935 return sum;
2938 unsigned long nr_iowait_cpu(void)
2940 struct rq *this = this_rq();
2941 return atomic_read(&this->nr_iowait);
2944 unsigned long this_cpu_load(void)
2946 struct rq *this = this_rq();
2947 return this->cpu_load[0];
2951 /* Variables and functions for calc_load */
2952 static atomic_long_t calc_load_tasks;
2953 static unsigned long calc_load_update;
2954 unsigned long avenrun[3];
2955 EXPORT_SYMBOL(avenrun);
2958 * get_avenrun - get the load average array
2959 * @loads: pointer to dest load array
2960 * @offset: offset to add
2961 * @shift: shift count to shift the result left
2963 * These values are estimates at best, so no need for locking.
2965 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2967 loads[0] = (avenrun[0] + offset) << shift;
2968 loads[1] = (avenrun[1] + offset) << shift;
2969 loads[2] = (avenrun[2] + offset) << shift;
2972 static unsigned long
2973 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2975 load *= exp;
2976 load += active * (FIXED_1 - exp);
2977 return load >> FSHIFT;
2981 * calc_load - update the avenrun load estimates 10 ticks after the
2982 * CPUs have updated calc_load_tasks.
2984 void calc_global_load(void)
2986 unsigned long upd = calc_load_update + 10;
2987 long active;
2989 if (time_before(jiffies, upd))
2990 return;
2992 active = atomic_long_read(&calc_load_tasks);
2993 active = active > 0 ? active * FIXED_1 : 0;
2995 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2996 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2997 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2999 calc_load_update += LOAD_FREQ;
3003 * Either called from update_cpu_load() or from a cpu going idle
3005 static void calc_load_account_active(struct rq *this_rq)
3007 long nr_active, delta;
3009 nr_active = this_rq->nr_running;
3010 nr_active += (long) this_rq->nr_uninterruptible;
3012 if (nr_active != this_rq->calc_load_active) {
3013 delta = nr_active - this_rq->calc_load_active;
3014 this_rq->calc_load_active = nr_active;
3015 atomic_long_add(delta, &calc_load_tasks);
3020 * Externally visible per-cpu scheduler statistics:
3021 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3023 u64 cpu_nr_migrations(int cpu)
3025 return cpu_rq(cpu)->nr_migrations_in;
3029 * Update rq->cpu_load[] statistics. This function is usually called every
3030 * scheduler tick (TICK_NSEC).
3032 static void update_cpu_load(struct rq *this_rq)
3034 unsigned long this_load = this_rq->load.weight;
3035 int i, scale;
3037 this_rq->nr_load_updates++;
3039 /* Update our load: */
3040 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3041 unsigned long old_load, new_load;
3043 /* scale is effectively 1 << i now, and >> i divides by scale */
3045 old_load = this_rq->cpu_load[i];
3046 new_load = this_load;
3048 * Round up the averaging division if load is increasing. This
3049 * prevents us from getting stuck on 9 if the load is 10, for
3050 * example.
3052 if (new_load > old_load)
3053 new_load += scale-1;
3054 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3057 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3058 this_rq->calc_load_update += LOAD_FREQ;
3059 calc_load_account_active(this_rq);
3063 #ifdef CONFIG_SMP
3066 * double_rq_lock - safely lock two runqueues
3068 * Note this does not disable interrupts like task_rq_lock,
3069 * you need to do so manually before calling.
3071 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3072 __acquires(rq1->lock)
3073 __acquires(rq2->lock)
3075 BUG_ON(!irqs_disabled());
3076 if (rq1 == rq2) {
3077 spin_lock(&rq1->lock);
3078 __acquire(rq2->lock); /* Fake it out ;) */
3079 } else {
3080 if (rq1 < rq2) {
3081 spin_lock(&rq1->lock);
3082 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3083 } else {
3084 spin_lock(&rq2->lock);
3085 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3088 update_rq_clock(rq1);
3089 update_rq_clock(rq2);
3093 * double_rq_unlock - safely unlock two runqueues
3095 * Note this does not restore interrupts like task_rq_unlock,
3096 * you need to do so manually after calling.
3098 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3099 __releases(rq1->lock)
3100 __releases(rq2->lock)
3102 spin_unlock(&rq1->lock);
3103 if (rq1 != rq2)
3104 spin_unlock(&rq2->lock);
3105 else
3106 __release(rq2->lock);
3110 * If dest_cpu is allowed for this process, migrate the task to it.
3111 * This is accomplished by forcing the cpu_allowed mask to only
3112 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3113 * the cpu_allowed mask is restored.
3115 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3117 struct migration_req req;
3118 unsigned long flags;
3119 struct rq *rq;
3121 rq = task_rq_lock(p, &flags);
3122 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3123 || unlikely(!cpu_active(dest_cpu)))
3124 goto out;
3126 /* force the process onto the specified CPU */
3127 if (migrate_task(p, dest_cpu, &req)) {
3128 /* Need to wait for migration thread (might exit: take ref). */
3129 struct task_struct *mt = rq->migration_thread;
3131 get_task_struct(mt);
3132 task_rq_unlock(rq, &flags);
3133 wake_up_process(mt);
3134 put_task_struct(mt);
3135 wait_for_completion(&req.done);
3137 return;
3139 out:
3140 task_rq_unlock(rq, &flags);
3144 * sched_exec - execve() is a valuable balancing opportunity, because at
3145 * this point the task has the smallest effective memory and cache footprint.
3147 void sched_exec(void)
3149 int new_cpu, this_cpu = get_cpu();
3150 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3151 put_cpu();
3152 if (new_cpu != this_cpu)
3153 sched_migrate_task(current, new_cpu);
3157 * pull_task - move a task from a remote runqueue to the local runqueue.
3158 * Both runqueues must be locked.
3160 static void pull_task(struct rq *src_rq, struct task_struct *p,
3161 struct rq *this_rq, int this_cpu)
3163 deactivate_task(src_rq, p, 0);
3164 set_task_cpu(p, this_cpu);
3165 activate_task(this_rq, p, 0);
3167 * Note that idle threads have a prio of MAX_PRIO, for this test
3168 * to be always true for them.
3170 check_preempt_curr(this_rq, p, 0);
3174 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3176 static
3177 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3178 struct sched_domain *sd, enum cpu_idle_type idle,
3179 int *all_pinned)
3181 int tsk_cache_hot = 0;
3183 * We do not migrate tasks that are:
3184 * 1) running (obviously), or
3185 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3186 * 3) are cache-hot on their current CPU.
3188 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3189 schedstat_inc(p, se.nr_failed_migrations_affine);
3190 return 0;
3192 *all_pinned = 0;
3194 if (task_running(rq, p)) {
3195 schedstat_inc(p, se.nr_failed_migrations_running);
3196 return 0;
3200 * Aggressive migration if:
3201 * 1) task is cache cold, or
3202 * 2) too many balance attempts have failed.
3205 tsk_cache_hot = task_hot(p, rq->clock, sd);
3206 if (!tsk_cache_hot ||
3207 sd->nr_balance_failed > sd->cache_nice_tries) {
3208 #ifdef CONFIG_SCHEDSTATS
3209 if (tsk_cache_hot) {
3210 schedstat_inc(sd, lb_hot_gained[idle]);
3211 schedstat_inc(p, se.nr_forced_migrations);
3213 #endif
3214 return 1;
3217 if (tsk_cache_hot) {
3218 schedstat_inc(p, se.nr_failed_migrations_hot);
3219 return 0;
3221 return 1;
3224 static unsigned long
3225 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3226 unsigned long max_load_move, struct sched_domain *sd,
3227 enum cpu_idle_type idle, int *all_pinned,
3228 int *this_best_prio, struct rq_iterator *iterator)
3230 int loops = 0, pulled = 0, pinned = 0;
3231 struct task_struct *p;
3232 long rem_load_move = max_load_move;
3234 if (max_load_move == 0)
3235 goto out;
3237 pinned = 1;
3240 * Start the load-balancing iterator:
3242 p = iterator->start(iterator->arg);
3243 next:
3244 if (!p || loops++ > sysctl_sched_nr_migrate)
3245 goto out;
3247 if ((p->se.load.weight >> 1) > rem_load_move ||
3248 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3249 p = iterator->next(iterator->arg);
3250 goto next;
3253 pull_task(busiest, p, this_rq, this_cpu);
3254 pulled++;
3255 rem_load_move -= p->se.load.weight;
3257 #ifdef CONFIG_PREEMPT
3259 * NEWIDLE balancing is a source of latency, so preemptible kernels
3260 * will stop after the first task is pulled to minimize the critical
3261 * section.
3263 if (idle == CPU_NEWLY_IDLE)
3264 goto out;
3265 #endif
3268 * We only want to steal up to the prescribed amount of weighted load.
3270 if (rem_load_move > 0) {
3271 if (p->prio < *this_best_prio)
3272 *this_best_prio = p->prio;
3273 p = iterator->next(iterator->arg);
3274 goto next;
3276 out:
3278 * Right now, this is one of only two places pull_task() is called,
3279 * so we can safely collect pull_task() stats here rather than
3280 * inside pull_task().
3282 schedstat_add(sd, lb_gained[idle], pulled);
3284 if (all_pinned)
3285 *all_pinned = pinned;
3287 return max_load_move - rem_load_move;
3291 * move_tasks tries to move up to max_load_move weighted load from busiest to
3292 * this_rq, as part of a balancing operation within domain "sd".
3293 * Returns 1 if successful and 0 otherwise.
3295 * Called with both runqueues locked.
3297 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3298 unsigned long max_load_move,
3299 struct sched_domain *sd, enum cpu_idle_type idle,
3300 int *all_pinned)
3302 const struct sched_class *class = sched_class_highest;
3303 unsigned long total_load_moved = 0;
3304 int this_best_prio = this_rq->curr->prio;
3306 do {
3307 total_load_moved +=
3308 class->load_balance(this_rq, this_cpu, busiest,
3309 max_load_move - total_load_moved,
3310 sd, idle, all_pinned, &this_best_prio);
3311 class = class->next;
3313 #ifdef CONFIG_PREEMPT
3315 * NEWIDLE balancing is a source of latency, so preemptible
3316 * kernels will stop after the first task is pulled to minimize
3317 * the critical section.
3319 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3320 break;
3321 #endif
3322 } while (class && max_load_move > total_load_moved);
3324 return total_load_moved > 0;
3327 static int
3328 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3329 struct sched_domain *sd, enum cpu_idle_type idle,
3330 struct rq_iterator *iterator)
3332 struct task_struct *p = iterator->start(iterator->arg);
3333 int pinned = 0;
3335 while (p) {
3336 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3337 pull_task(busiest, p, this_rq, this_cpu);
3339 * Right now, this is only the second place pull_task()
3340 * is called, so we can safely collect pull_task()
3341 * stats here rather than inside pull_task().
3343 schedstat_inc(sd, lb_gained[idle]);
3345 return 1;
3347 p = iterator->next(iterator->arg);
3350 return 0;
3354 * move_one_task tries to move exactly one task from busiest to this_rq, as
3355 * part of active balancing operations within "domain".
3356 * Returns 1 if successful and 0 otherwise.
3358 * Called with both runqueues locked.
3360 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3361 struct sched_domain *sd, enum cpu_idle_type idle)
3363 const struct sched_class *class;
3365 for_each_class(class) {
3366 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3367 return 1;
3370 return 0;
3372 /********** Helpers for find_busiest_group ************************/
3374 * sd_lb_stats - Structure to store the statistics of a sched_domain
3375 * during load balancing.
3377 struct sd_lb_stats {
3378 struct sched_group *busiest; /* Busiest group in this sd */
3379 struct sched_group *this; /* Local group in this sd */
3380 unsigned long total_load; /* Total load of all groups in sd */
3381 unsigned long total_pwr; /* Total power of all groups in sd */
3382 unsigned long avg_load; /* Average load across all groups in sd */
3384 /** Statistics of this group */
3385 unsigned long this_load;
3386 unsigned long this_load_per_task;
3387 unsigned long this_nr_running;
3389 /* Statistics of the busiest group */
3390 unsigned long max_load;
3391 unsigned long busiest_load_per_task;
3392 unsigned long busiest_nr_running;
3394 int group_imb; /* Is there imbalance in this sd */
3395 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3396 int power_savings_balance; /* Is powersave balance needed for this sd */
3397 struct sched_group *group_min; /* Least loaded group in sd */
3398 struct sched_group *group_leader; /* Group which relieves group_min */
3399 unsigned long min_load_per_task; /* load_per_task in group_min */
3400 unsigned long leader_nr_running; /* Nr running of group_leader */
3401 unsigned long min_nr_running; /* Nr running of group_min */
3402 #endif
3406 * sg_lb_stats - stats of a sched_group required for load_balancing
3408 struct sg_lb_stats {
3409 unsigned long avg_load; /*Avg load across the CPUs of the group */
3410 unsigned long group_load; /* Total load over the CPUs of the group */
3411 unsigned long sum_nr_running; /* Nr tasks running in the group */
3412 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3413 unsigned long group_capacity;
3414 int group_imb; /* Is there an imbalance in the group ? */
3418 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3419 * @group: The group whose first cpu is to be returned.
3421 static inline unsigned int group_first_cpu(struct sched_group *group)
3423 return cpumask_first(sched_group_cpus(group));
3427 * get_sd_load_idx - Obtain the load index for a given sched domain.
3428 * @sd: The sched_domain whose load_idx is to be obtained.
3429 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3431 static inline int get_sd_load_idx(struct sched_domain *sd,
3432 enum cpu_idle_type idle)
3434 int load_idx;
3436 switch (idle) {
3437 case CPU_NOT_IDLE:
3438 load_idx = sd->busy_idx;
3439 break;
3441 case CPU_NEWLY_IDLE:
3442 load_idx = sd->newidle_idx;
3443 break;
3444 default:
3445 load_idx = sd->idle_idx;
3446 break;
3449 return load_idx;
3453 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3455 * init_sd_power_savings_stats - Initialize power savings statistics for
3456 * the given sched_domain, during load balancing.
3458 * @sd: Sched domain whose power-savings statistics are to be initialized.
3459 * @sds: Variable containing the statistics for sd.
3460 * @idle: Idle status of the CPU at which we're performing load-balancing.
3462 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3463 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3466 * Busy processors will not participate in power savings
3467 * balance.
3469 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3470 sds->power_savings_balance = 0;
3471 else {
3472 sds->power_savings_balance = 1;
3473 sds->min_nr_running = ULONG_MAX;
3474 sds->leader_nr_running = 0;
3479 * update_sd_power_savings_stats - Update the power saving stats for a
3480 * sched_domain while performing load balancing.
3482 * @group: sched_group belonging to the sched_domain under consideration.
3483 * @sds: Variable containing the statistics of the sched_domain
3484 * @local_group: Does group contain the CPU for which we're performing
3485 * load balancing ?
3486 * @sgs: Variable containing the statistics of the group.
3488 static inline void update_sd_power_savings_stats(struct sched_group *group,
3489 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3492 if (!sds->power_savings_balance)
3493 return;
3496 * If the local group is idle or completely loaded
3497 * no need to do power savings balance at this domain
3499 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3500 !sds->this_nr_running))
3501 sds->power_savings_balance = 0;
3504 * If a group is already running at full capacity or idle,
3505 * don't include that group in power savings calculations
3507 if (!sds->power_savings_balance ||
3508 sgs->sum_nr_running >= sgs->group_capacity ||
3509 !sgs->sum_nr_running)
3510 return;
3513 * Calculate the group which has the least non-idle load.
3514 * This is the group from where we need to pick up the load
3515 * for saving power
3517 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3518 (sgs->sum_nr_running == sds->min_nr_running &&
3519 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3520 sds->group_min = group;
3521 sds->min_nr_running = sgs->sum_nr_running;
3522 sds->min_load_per_task = sgs->sum_weighted_load /
3523 sgs->sum_nr_running;
3527 * Calculate the group which is almost near its
3528 * capacity but still has some space to pick up some load
3529 * from other group and save more power
3531 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3532 return;
3534 if (sgs->sum_nr_running > sds->leader_nr_running ||
3535 (sgs->sum_nr_running == sds->leader_nr_running &&
3536 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3537 sds->group_leader = group;
3538 sds->leader_nr_running = sgs->sum_nr_running;
3543 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3544 * @sds: Variable containing the statistics of the sched_domain
3545 * under consideration.
3546 * @this_cpu: Cpu at which we're currently performing load-balancing.
3547 * @imbalance: Variable to store the imbalance.
3549 * Description:
3550 * Check if we have potential to perform some power-savings balance.
3551 * If yes, set the busiest group to be the least loaded group in the
3552 * sched_domain, so that it's CPUs can be put to idle.
3554 * Returns 1 if there is potential to perform power-savings balance.
3555 * Else returns 0.
3557 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3558 int this_cpu, unsigned long *imbalance)
3560 if (!sds->power_savings_balance)
3561 return 0;
3563 if (sds->this != sds->group_leader ||
3564 sds->group_leader == sds->group_min)
3565 return 0;
3567 *imbalance = sds->min_load_per_task;
3568 sds->busiest = sds->group_min;
3570 return 1;
3573 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3574 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3575 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3577 return;
3580 static inline void update_sd_power_savings_stats(struct sched_group *group,
3581 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3583 return;
3586 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3587 int this_cpu, unsigned long *imbalance)
3589 return 0;
3591 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3594 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3596 return SCHED_LOAD_SCALE;
3599 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3601 return default_scale_freq_power(sd, cpu);
3604 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3606 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3607 unsigned long smt_gain = sd->smt_gain;
3609 smt_gain /= weight;
3611 return smt_gain;
3614 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3616 return default_scale_smt_power(sd, cpu);
3619 unsigned long scale_rt_power(int cpu)
3621 struct rq *rq = cpu_rq(cpu);
3622 u64 total, available;
3624 sched_avg_update(rq);
3626 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3627 available = total - rq->rt_avg;
3629 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3630 total = SCHED_LOAD_SCALE;
3632 total >>= SCHED_LOAD_SHIFT;
3634 return div_u64(available, total);
3637 static void update_cpu_power(struct sched_domain *sd, int cpu)
3639 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3640 unsigned long power = SCHED_LOAD_SCALE;
3641 struct sched_group *sdg = sd->groups;
3643 if (sched_feat(ARCH_POWER))
3644 power *= arch_scale_freq_power(sd, cpu);
3645 else
3646 power *= default_scale_freq_power(sd, cpu);
3648 power >>= SCHED_LOAD_SHIFT;
3650 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3651 if (sched_feat(ARCH_POWER))
3652 power *= arch_scale_smt_power(sd, cpu);
3653 else
3654 power *= default_scale_smt_power(sd, cpu);
3656 power >>= SCHED_LOAD_SHIFT;
3659 power *= scale_rt_power(cpu);
3660 power >>= SCHED_LOAD_SHIFT;
3662 if (!power)
3663 power = 1;
3665 sdg->cpu_power = power;
3668 static void update_group_power(struct sched_domain *sd, int cpu)
3670 struct sched_domain *child = sd->child;
3671 struct sched_group *group, *sdg = sd->groups;
3672 unsigned long power;
3674 if (!child) {
3675 update_cpu_power(sd, cpu);
3676 return;
3679 power = 0;
3681 group = child->groups;
3682 do {
3683 power += group->cpu_power;
3684 group = group->next;
3685 } while (group != child->groups);
3687 sdg->cpu_power = power;
3691 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3692 * @sd: The sched_domain whose statistics are to be updated.
3693 * @group: sched_group whose statistics are to be updated.
3694 * @this_cpu: Cpu for which load balance is currently performed.
3695 * @idle: Idle status of this_cpu
3696 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3697 * @sd_idle: Idle status of the sched_domain containing group.
3698 * @local_group: Does group contain this_cpu.
3699 * @cpus: Set of cpus considered for load balancing.
3700 * @balance: Should we balance.
3701 * @sgs: variable to hold the statistics for this group.
3703 static inline void update_sg_lb_stats(struct sched_domain *sd,
3704 struct sched_group *group, int this_cpu,
3705 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3706 int local_group, const struct cpumask *cpus,
3707 int *balance, struct sg_lb_stats *sgs)
3709 unsigned long load, max_cpu_load, min_cpu_load;
3710 int i;
3711 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3712 unsigned long sum_avg_load_per_task;
3713 unsigned long avg_load_per_task;
3715 if (local_group) {
3716 balance_cpu = group_first_cpu(group);
3717 if (balance_cpu == this_cpu)
3718 update_group_power(sd, this_cpu);
3721 /* Tally up the load of all CPUs in the group */
3722 sum_avg_load_per_task = avg_load_per_task = 0;
3723 max_cpu_load = 0;
3724 min_cpu_load = ~0UL;
3726 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3727 struct rq *rq = cpu_rq(i);
3729 if (*sd_idle && rq->nr_running)
3730 *sd_idle = 0;
3732 /* Bias balancing toward cpus of our domain */
3733 if (local_group) {
3734 if (idle_cpu(i) && !first_idle_cpu) {
3735 first_idle_cpu = 1;
3736 balance_cpu = i;
3739 load = target_load(i, load_idx);
3740 } else {
3741 load = source_load(i, load_idx);
3742 if (load > max_cpu_load)
3743 max_cpu_load = load;
3744 if (min_cpu_load > load)
3745 min_cpu_load = load;
3748 sgs->group_load += load;
3749 sgs->sum_nr_running += rq->nr_running;
3750 sgs->sum_weighted_load += weighted_cpuload(i);
3752 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3756 * First idle cpu or the first cpu(busiest) in this sched group
3757 * is eligible for doing load balancing at this and above
3758 * domains. In the newly idle case, we will allow all the cpu's
3759 * to do the newly idle load balance.
3761 if (idle != CPU_NEWLY_IDLE && local_group &&
3762 balance_cpu != this_cpu && balance) {
3763 *balance = 0;
3764 return;
3767 /* Adjust by relative CPU power of the group */
3768 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3772 * Consider the group unbalanced when the imbalance is larger
3773 * than the average weight of two tasks.
3775 * APZ: with cgroup the avg task weight can vary wildly and
3776 * might not be a suitable number - should we keep a
3777 * normalized nr_running number somewhere that negates
3778 * the hierarchy?
3780 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3781 group->cpu_power;
3783 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3784 sgs->group_imb = 1;
3786 sgs->group_capacity =
3787 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3791 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3792 * @sd: sched_domain whose statistics are to be updated.
3793 * @this_cpu: Cpu for which load balance is currently performed.
3794 * @idle: Idle status of this_cpu
3795 * @sd_idle: Idle status of the sched_domain containing group.
3796 * @cpus: Set of cpus considered for load balancing.
3797 * @balance: Should we balance.
3798 * @sds: variable to hold the statistics for this sched_domain.
3800 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3801 enum cpu_idle_type idle, int *sd_idle,
3802 const struct cpumask *cpus, int *balance,
3803 struct sd_lb_stats *sds)
3805 struct sched_domain *child = sd->child;
3806 struct sched_group *group = sd->groups;
3807 struct sg_lb_stats sgs;
3808 int load_idx, prefer_sibling = 0;
3810 if (child && child->flags & SD_PREFER_SIBLING)
3811 prefer_sibling = 1;
3813 init_sd_power_savings_stats(sd, sds, idle);
3814 load_idx = get_sd_load_idx(sd, idle);
3816 do {
3817 int local_group;
3819 local_group = cpumask_test_cpu(this_cpu,
3820 sched_group_cpus(group));
3821 memset(&sgs, 0, sizeof(sgs));
3822 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3823 local_group, cpus, balance, &sgs);
3825 if (local_group && balance && !(*balance))
3826 return;
3828 sds->total_load += sgs.group_load;
3829 sds->total_pwr += group->cpu_power;
3832 * In case the child domain prefers tasks go to siblings
3833 * first, lower the group capacity to one so that we'll try
3834 * and move all the excess tasks away.
3836 if (prefer_sibling)
3837 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3839 if (local_group) {
3840 sds->this_load = sgs.avg_load;
3841 sds->this = group;
3842 sds->this_nr_running = sgs.sum_nr_running;
3843 sds->this_load_per_task = sgs.sum_weighted_load;
3844 } else if (sgs.avg_load > sds->max_load &&
3845 (sgs.sum_nr_running > sgs.group_capacity ||
3846 sgs.group_imb)) {
3847 sds->max_load = sgs.avg_load;
3848 sds->busiest = group;
3849 sds->busiest_nr_running = sgs.sum_nr_running;
3850 sds->busiest_load_per_task = sgs.sum_weighted_load;
3851 sds->group_imb = sgs.group_imb;
3854 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3855 group = group->next;
3856 } while (group != sd->groups);
3860 * fix_small_imbalance - Calculate the minor imbalance that exists
3861 * amongst the groups of a sched_domain, during
3862 * load balancing.
3863 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3864 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3865 * @imbalance: Variable to store the imbalance.
3867 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3868 int this_cpu, unsigned long *imbalance)
3870 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3871 unsigned int imbn = 2;
3873 if (sds->this_nr_running) {
3874 sds->this_load_per_task /= sds->this_nr_running;
3875 if (sds->busiest_load_per_task >
3876 sds->this_load_per_task)
3877 imbn = 1;
3878 } else
3879 sds->this_load_per_task =
3880 cpu_avg_load_per_task(this_cpu);
3882 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3883 sds->busiest_load_per_task * imbn) {
3884 *imbalance = sds->busiest_load_per_task;
3885 return;
3889 * OK, we don't have enough imbalance to justify moving tasks,
3890 * however we may be able to increase total CPU power used by
3891 * moving them.
3894 pwr_now += sds->busiest->cpu_power *
3895 min(sds->busiest_load_per_task, sds->max_load);
3896 pwr_now += sds->this->cpu_power *
3897 min(sds->this_load_per_task, sds->this_load);
3898 pwr_now /= SCHED_LOAD_SCALE;
3900 /* Amount of load we'd subtract */
3901 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3902 sds->busiest->cpu_power;
3903 if (sds->max_load > tmp)
3904 pwr_move += sds->busiest->cpu_power *
3905 min(sds->busiest_load_per_task, sds->max_load - tmp);
3907 /* Amount of load we'd add */
3908 if (sds->max_load * sds->busiest->cpu_power <
3909 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3910 tmp = (sds->max_load * sds->busiest->cpu_power) /
3911 sds->this->cpu_power;
3912 else
3913 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3914 sds->this->cpu_power;
3915 pwr_move += sds->this->cpu_power *
3916 min(sds->this_load_per_task, sds->this_load + tmp);
3917 pwr_move /= SCHED_LOAD_SCALE;
3919 /* Move if we gain throughput */
3920 if (pwr_move > pwr_now)
3921 *imbalance = sds->busiest_load_per_task;
3925 * calculate_imbalance - Calculate the amount of imbalance present within the
3926 * groups of a given sched_domain during load balance.
3927 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3928 * @this_cpu: Cpu for which currently load balance is being performed.
3929 * @imbalance: The variable to store the imbalance.
3931 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3932 unsigned long *imbalance)
3934 unsigned long max_pull;
3936 * In the presence of smp nice balancing, certain scenarios can have
3937 * max load less than avg load(as we skip the groups at or below
3938 * its cpu_power, while calculating max_load..)
3940 if (sds->max_load < sds->avg_load) {
3941 *imbalance = 0;
3942 return fix_small_imbalance(sds, this_cpu, imbalance);
3945 /* Don't want to pull so many tasks that a group would go idle */
3946 max_pull = min(sds->max_load - sds->avg_load,
3947 sds->max_load - sds->busiest_load_per_task);
3949 /* How much load to actually move to equalise the imbalance */
3950 *imbalance = min(max_pull * sds->busiest->cpu_power,
3951 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3952 / SCHED_LOAD_SCALE;
3955 * if *imbalance is less than the average load per runnable task
3956 * there is no gaurantee that any tasks will be moved so we'll have
3957 * a think about bumping its value to force at least one task to be
3958 * moved
3960 if (*imbalance < sds->busiest_load_per_task)
3961 return fix_small_imbalance(sds, this_cpu, imbalance);
3964 /******* find_busiest_group() helpers end here *********************/
3967 * find_busiest_group - Returns the busiest group within the sched_domain
3968 * if there is an imbalance. If there isn't an imbalance, and
3969 * the user has opted for power-savings, it returns a group whose
3970 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3971 * such a group exists.
3973 * Also calculates the amount of weighted load which should be moved
3974 * to restore balance.
3976 * @sd: The sched_domain whose busiest group is to be returned.
3977 * @this_cpu: The cpu for which load balancing is currently being performed.
3978 * @imbalance: Variable which stores amount of weighted load which should
3979 * be moved to restore balance/put a group to idle.
3980 * @idle: The idle status of this_cpu.
3981 * @sd_idle: The idleness of sd
3982 * @cpus: The set of CPUs under consideration for load-balancing.
3983 * @balance: Pointer to a variable indicating if this_cpu
3984 * is the appropriate cpu to perform load balancing at this_level.
3986 * Returns: - the busiest group if imbalance exists.
3987 * - If no imbalance and user has opted for power-savings balance,
3988 * return the least loaded group whose CPUs can be
3989 * put to idle by rebalancing its tasks onto our group.
3991 static struct sched_group *
3992 find_busiest_group(struct sched_domain *sd, int this_cpu,
3993 unsigned long *imbalance, enum cpu_idle_type idle,
3994 int *sd_idle, const struct cpumask *cpus, int *balance)
3996 struct sd_lb_stats sds;
3998 memset(&sds, 0, sizeof(sds));
4001 * Compute the various statistics relavent for load balancing at
4002 * this level.
4004 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4005 balance, &sds);
4007 /* Cases where imbalance does not exist from POV of this_cpu */
4008 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4009 * at this level.
4010 * 2) There is no busy sibling group to pull from.
4011 * 3) This group is the busiest group.
4012 * 4) This group is more busy than the avg busieness at this
4013 * sched_domain.
4014 * 5) The imbalance is within the specified limit.
4015 * 6) Any rebalance would lead to ping-pong
4017 if (balance && !(*balance))
4018 goto ret;
4020 if (!sds.busiest || sds.busiest_nr_running == 0)
4021 goto out_balanced;
4023 if (sds.this_load >= sds.max_load)
4024 goto out_balanced;
4026 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4028 if (sds.this_load >= sds.avg_load)
4029 goto out_balanced;
4031 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4032 goto out_balanced;
4034 sds.busiest_load_per_task /= sds.busiest_nr_running;
4035 if (sds.group_imb)
4036 sds.busiest_load_per_task =
4037 min(sds.busiest_load_per_task, sds.avg_load);
4040 * We're trying to get all the cpus to the average_load, so we don't
4041 * want to push ourselves above the average load, nor do we wish to
4042 * reduce the max loaded cpu below the average load, as either of these
4043 * actions would just result in more rebalancing later, and ping-pong
4044 * tasks around. Thus we look for the minimum possible imbalance.
4045 * Negative imbalances (*we* are more loaded than anyone else) will
4046 * be counted as no imbalance for these purposes -- we can't fix that
4047 * by pulling tasks to us. Be careful of negative numbers as they'll
4048 * appear as very large values with unsigned longs.
4050 if (sds.max_load <= sds.busiest_load_per_task)
4051 goto out_balanced;
4053 /* Looks like there is an imbalance. Compute it */
4054 calculate_imbalance(&sds, this_cpu, imbalance);
4055 return sds.busiest;
4057 out_balanced:
4059 * There is no obvious imbalance. But check if we can do some balancing
4060 * to save power.
4062 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4063 return sds.busiest;
4064 ret:
4065 *imbalance = 0;
4066 return NULL;
4070 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4072 static struct rq *
4073 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4074 unsigned long imbalance, const struct cpumask *cpus)
4076 struct rq *busiest = NULL, *rq;
4077 unsigned long max_load = 0;
4078 int i;
4080 for_each_cpu(i, sched_group_cpus(group)) {
4081 unsigned long power = power_of(i);
4082 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4083 unsigned long wl;
4085 if (!cpumask_test_cpu(i, cpus))
4086 continue;
4088 rq = cpu_rq(i);
4089 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4090 wl /= power;
4092 if (capacity && rq->nr_running == 1 && wl > imbalance)
4093 continue;
4095 if (wl > max_load) {
4096 max_load = wl;
4097 busiest = rq;
4101 return busiest;
4105 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4106 * so long as it is large enough.
4108 #define MAX_PINNED_INTERVAL 512
4110 /* Working cpumask for load_balance and load_balance_newidle. */
4111 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4114 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4115 * tasks if there is an imbalance.
4117 static int load_balance(int this_cpu, struct rq *this_rq,
4118 struct sched_domain *sd, enum cpu_idle_type idle,
4119 int *balance)
4121 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4122 struct sched_group *group;
4123 unsigned long imbalance;
4124 struct rq *busiest;
4125 unsigned long flags;
4126 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4128 cpumask_setall(cpus);
4131 * When power savings policy is enabled for the parent domain, idle
4132 * sibling can pick up load irrespective of busy siblings. In this case,
4133 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4134 * portraying it as CPU_NOT_IDLE.
4136 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4137 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4138 sd_idle = 1;
4140 schedstat_inc(sd, lb_count[idle]);
4142 redo:
4143 update_shares(sd);
4144 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4145 cpus, balance);
4147 if (*balance == 0)
4148 goto out_balanced;
4150 if (!group) {
4151 schedstat_inc(sd, lb_nobusyg[idle]);
4152 goto out_balanced;
4155 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4156 if (!busiest) {
4157 schedstat_inc(sd, lb_nobusyq[idle]);
4158 goto out_balanced;
4161 BUG_ON(busiest == this_rq);
4163 schedstat_add(sd, lb_imbalance[idle], imbalance);
4165 ld_moved = 0;
4166 if (busiest->nr_running > 1) {
4168 * Attempt to move tasks. If find_busiest_group has found
4169 * an imbalance but busiest->nr_running <= 1, the group is
4170 * still unbalanced. ld_moved simply stays zero, so it is
4171 * correctly treated as an imbalance.
4173 local_irq_save(flags);
4174 double_rq_lock(this_rq, busiest);
4175 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4176 imbalance, sd, idle, &all_pinned);
4177 double_rq_unlock(this_rq, busiest);
4178 local_irq_restore(flags);
4181 * some other cpu did the load balance for us.
4183 if (ld_moved && this_cpu != smp_processor_id())
4184 resched_cpu(this_cpu);
4186 /* All tasks on this runqueue were pinned by CPU affinity */
4187 if (unlikely(all_pinned)) {
4188 cpumask_clear_cpu(cpu_of(busiest), cpus);
4189 if (!cpumask_empty(cpus))
4190 goto redo;
4191 goto out_balanced;
4195 if (!ld_moved) {
4196 schedstat_inc(sd, lb_failed[idle]);
4197 sd->nr_balance_failed++;
4199 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4201 spin_lock_irqsave(&busiest->lock, flags);
4203 /* don't kick the migration_thread, if the curr
4204 * task on busiest cpu can't be moved to this_cpu
4206 if (!cpumask_test_cpu(this_cpu,
4207 &busiest->curr->cpus_allowed)) {
4208 spin_unlock_irqrestore(&busiest->lock, flags);
4209 all_pinned = 1;
4210 goto out_one_pinned;
4213 if (!busiest->active_balance) {
4214 busiest->active_balance = 1;
4215 busiest->push_cpu = this_cpu;
4216 active_balance = 1;
4218 spin_unlock_irqrestore(&busiest->lock, flags);
4219 if (active_balance)
4220 wake_up_process(busiest->migration_thread);
4223 * We've kicked active balancing, reset the failure
4224 * counter.
4226 sd->nr_balance_failed = sd->cache_nice_tries+1;
4228 } else
4229 sd->nr_balance_failed = 0;
4231 if (likely(!active_balance)) {
4232 /* We were unbalanced, so reset the balancing interval */
4233 sd->balance_interval = sd->min_interval;
4234 } else {
4236 * If we've begun active balancing, start to back off. This
4237 * case may not be covered by the all_pinned logic if there
4238 * is only 1 task on the busy runqueue (because we don't call
4239 * move_tasks).
4241 if (sd->balance_interval < sd->max_interval)
4242 sd->balance_interval *= 2;
4245 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4246 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4247 ld_moved = -1;
4249 goto out;
4251 out_balanced:
4252 schedstat_inc(sd, lb_balanced[idle]);
4254 sd->nr_balance_failed = 0;
4256 out_one_pinned:
4257 /* tune up the balancing interval */
4258 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4259 (sd->balance_interval < sd->max_interval))
4260 sd->balance_interval *= 2;
4262 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4263 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4264 ld_moved = -1;
4265 else
4266 ld_moved = 0;
4267 out:
4268 if (ld_moved)
4269 update_shares(sd);
4270 return ld_moved;
4274 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4275 * tasks if there is an imbalance.
4277 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4278 * this_rq is locked.
4280 static int
4281 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4283 struct sched_group *group;
4284 struct rq *busiest = NULL;
4285 unsigned long imbalance;
4286 int ld_moved = 0;
4287 int sd_idle = 0;
4288 int all_pinned = 0;
4289 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4291 cpumask_setall(cpus);
4294 * When power savings policy is enabled for the parent domain, idle
4295 * sibling can pick up load irrespective of busy siblings. In this case,
4296 * let the state of idle sibling percolate up as IDLE, instead of
4297 * portraying it as CPU_NOT_IDLE.
4299 if (sd->flags & SD_SHARE_CPUPOWER &&
4300 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4301 sd_idle = 1;
4303 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4304 redo:
4305 update_shares_locked(this_rq, sd);
4306 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4307 &sd_idle, cpus, NULL);
4308 if (!group) {
4309 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4310 goto out_balanced;
4313 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4314 if (!busiest) {
4315 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4316 goto out_balanced;
4319 BUG_ON(busiest == this_rq);
4321 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4323 ld_moved = 0;
4324 if (busiest->nr_running > 1) {
4325 /* Attempt to move tasks */
4326 double_lock_balance(this_rq, busiest);
4327 /* this_rq->clock is already updated */
4328 update_rq_clock(busiest);
4329 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4330 imbalance, sd, CPU_NEWLY_IDLE,
4331 &all_pinned);
4332 double_unlock_balance(this_rq, busiest);
4334 if (unlikely(all_pinned)) {
4335 cpumask_clear_cpu(cpu_of(busiest), cpus);
4336 if (!cpumask_empty(cpus))
4337 goto redo;
4341 if (!ld_moved) {
4342 int active_balance = 0;
4344 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4345 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4346 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4347 return -1;
4349 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4350 return -1;
4352 if (sd->nr_balance_failed++ < 2)
4353 return -1;
4356 * The only task running in a non-idle cpu can be moved to this
4357 * cpu in an attempt to completely freeup the other CPU
4358 * package. The same method used to move task in load_balance()
4359 * have been extended for load_balance_newidle() to speedup
4360 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4362 * The package power saving logic comes from
4363 * find_busiest_group(). If there are no imbalance, then
4364 * f_b_g() will return NULL. However when sched_mc={1,2} then
4365 * f_b_g() will select a group from which a running task may be
4366 * pulled to this cpu in order to make the other package idle.
4367 * If there is no opportunity to make a package idle and if
4368 * there are no imbalance, then f_b_g() will return NULL and no
4369 * action will be taken in load_balance_newidle().
4371 * Under normal task pull operation due to imbalance, there
4372 * will be more than one task in the source run queue and
4373 * move_tasks() will succeed. ld_moved will be true and this
4374 * active balance code will not be triggered.
4377 /* Lock busiest in correct order while this_rq is held */
4378 double_lock_balance(this_rq, busiest);
4381 * don't kick the migration_thread, if the curr
4382 * task on busiest cpu can't be moved to this_cpu
4384 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4385 double_unlock_balance(this_rq, busiest);
4386 all_pinned = 1;
4387 return ld_moved;
4390 if (!busiest->active_balance) {
4391 busiest->active_balance = 1;
4392 busiest->push_cpu = this_cpu;
4393 active_balance = 1;
4396 double_unlock_balance(this_rq, busiest);
4398 * Should not call ttwu while holding a rq->lock
4400 spin_unlock(&this_rq->lock);
4401 if (active_balance)
4402 wake_up_process(busiest->migration_thread);
4403 spin_lock(&this_rq->lock);
4405 } else
4406 sd->nr_balance_failed = 0;
4408 update_shares_locked(this_rq, sd);
4409 return ld_moved;
4411 out_balanced:
4412 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4413 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4414 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4415 return -1;
4416 sd->nr_balance_failed = 0;
4418 return 0;
4422 * idle_balance is called by schedule() if this_cpu is about to become
4423 * idle. Attempts to pull tasks from other CPUs.
4425 static void idle_balance(int this_cpu, struct rq *this_rq)
4427 struct sched_domain *sd;
4428 int pulled_task = 0;
4429 unsigned long next_balance = jiffies + HZ;
4431 for_each_domain(this_cpu, sd) {
4432 unsigned long interval;
4434 if (!(sd->flags & SD_LOAD_BALANCE))
4435 continue;
4437 if (sd->flags & SD_BALANCE_NEWIDLE)
4438 /* If we've pulled tasks over stop searching: */
4439 pulled_task = load_balance_newidle(this_cpu, this_rq,
4440 sd);
4442 interval = msecs_to_jiffies(sd->balance_interval);
4443 if (time_after(next_balance, sd->last_balance + interval))
4444 next_balance = sd->last_balance + interval;
4445 if (pulled_task)
4446 break;
4448 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4450 * We are going idle. next_balance may be set based on
4451 * a busy processor. So reset next_balance.
4453 this_rq->next_balance = next_balance;
4458 * active_load_balance is run by migration threads. It pushes running tasks
4459 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4460 * running on each physical CPU where possible, and avoids physical /
4461 * logical imbalances.
4463 * Called with busiest_rq locked.
4465 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4467 int target_cpu = busiest_rq->push_cpu;
4468 struct sched_domain *sd;
4469 struct rq *target_rq;
4471 /* Is there any task to move? */
4472 if (busiest_rq->nr_running <= 1)
4473 return;
4475 target_rq = cpu_rq(target_cpu);
4478 * This condition is "impossible", if it occurs
4479 * we need to fix it. Originally reported by
4480 * Bjorn Helgaas on a 128-cpu setup.
4482 BUG_ON(busiest_rq == target_rq);
4484 /* move a task from busiest_rq to target_rq */
4485 double_lock_balance(busiest_rq, target_rq);
4486 update_rq_clock(busiest_rq);
4487 update_rq_clock(target_rq);
4489 /* Search for an sd spanning us and the target CPU. */
4490 for_each_domain(target_cpu, sd) {
4491 if ((sd->flags & SD_LOAD_BALANCE) &&
4492 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4493 break;
4496 if (likely(sd)) {
4497 schedstat_inc(sd, alb_count);
4499 if (move_one_task(target_rq, target_cpu, busiest_rq,
4500 sd, CPU_IDLE))
4501 schedstat_inc(sd, alb_pushed);
4502 else
4503 schedstat_inc(sd, alb_failed);
4505 double_unlock_balance(busiest_rq, target_rq);
4508 #ifdef CONFIG_NO_HZ
4509 static struct {
4510 atomic_t load_balancer;
4511 cpumask_var_t cpu_mask;
4512 cpumask_var_t ilb_grp_nohz_mask;
4513 } nohz ____cacheline_aligned = {
4514 .load_balancer = ATOMIC_INIT(-1),
4517 int get_nohz_load_balancer(void)
4519 return atomic_read(&nohz.load_balancer);
4522 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4524 * lowest_flag_domain - Return lowest sched_domain containing flag.
4525 * @cpu: The cpu whose lowest level of sched domain is to
4526 * be returned.
4527 * @flag: The flag to check for the lowest sched_domain
4528 * for the given cpu.
4530 * Returns the lowest sched_domain of a cpu which contains the given flag.
4532 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4534 struct sched_domain *sd;
4536 for_each_domain(cpu, sd)
4537 if (sd && (sd->flags & flag))
4538 break;
4540 return sd;
4544 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4545 * @cpu: The cpu whose domains we're iterating over.
4546 * @sd: variable holding the value of the power_savings_sd
4547 * for cpu.
4548 * @flag: The flag to filter the sched_domains to be iterated.
4550 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4551 * set, starting from the lowest sched_domain to the highest.
4553 #define for_each_flag_domain(cpu, sd, flag) \
4554 for (sd = lowest_flag_domain(cpu, flag); \
4555 (sd && (sd->flags & flag)); sd = sd->parent)
4558 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4559 * @ilb_group: group to be checked for semi-idleness
4561 * Returns: 1 if the group is semi-idle. 0 otherwise.
4563 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4564 * and atleast one non-idle CPU. This helper function checks if the given
4565 * sched_group is semi-idle or not.
4567 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4569 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4570 sched_group_cpus(ilb_group));
4573 * A sched_group is semi-idle when it has atleast one busy cpu
4574 * and atleast one idle cpu.
4576 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4577 return 0;
4579 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4580 return 0;
4582 return 1;
4585 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4586 * @cpu: The cpu which is nominating a new idle_load_balancer.
4588 * Returns: Returns the id of the idle load balancer if it exists,
4589 * Else, returns >= nr_cpu_ids.
4591 * This algorithm picks the idle load balancer such that it belongs to a
4592 * semi-idle powersavings sched_domain. The idea is to try and avoid
4593 * completely idle packages/cores just for the purpose of idle load balancing
4594 * when there are other idle cpu's which are better suited for that job.
4596 static int find_new_ilb(int cpu)
4598 struct sched_domain *sd;
4599 struct sched_group *ilb_group;
4602 * Have idle load balancer selection from semi-idle packages only
4603 * when power-aware load balancing is enabled
4605 if (!(sched_smt_power_savings || sched_mc_power_savings))
4606 goto out_done;
4609 * Optimize for the case when we have no idle CPUs or only one
4610 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4612 if (cpumask_weight(nohz.cpu_mask) < 2)
4613 goto out_done;
4615 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4616 ilb_group = sd->groups;
4618 do {
4619 if (is_semi_idle_group(ilb_group))
4620 return cpumask_first(nohz.ilb_grp_nohz_mask);
4622 ilb_group = ilb_group->next;
4624 } while (ilb_group != sd->groups);
4627 out_done:
4628 return cpumask_first(nohz.cpu_mask);
4630 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4631 static inline int find_new_ilb(int call_cpu)
4633 return cpumask_first(nohz.cpu_mask);
4635 #endif
4638 * This routine will try to nominate the ilb (idle load balancing)
4639 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4640 * load balancing on behalf of all those cpus. If all the cpus in the system
4641 * go into this tickless mode, then there will be no ilb owner (as there is
4642 * no need for one) and all the cpus will sleep till the next wakeup event
4643 * arrives...
4645 * For the ilb owner, tick is not stopped. And this tick will be used
4646 * for idle load balancing. ilb owner will still be part of
4647 * nohz.cpu_mask..
4649 * While stopping the tick, this cpu will become the ilb owner if there
4650 * is no other owner. And will be the owner till that cpu becomes busy
4651 * or if all cpus in the system stop their ticks at which point
4652 * there is no need for ilb owner.
4654 * When the ilb owner becomes busy, it nominates another owner, during the
4655 * next busy scheduler_tick()
4657 int select_nohz_load_balancer(int stop_tick)
4659 int cpu = smp_processor_id();
4661 if (stop_tick) {
4662 cpu_rq(cpu)->in_nohz_recently = 1;
4664 if (!cpu_active(cpu)) {
4665 if (atomic_read(&nohz.load_balancer) != cpu)
4666 return 0;
4669 * If we are going offline and still the leader,
4670 * give up!
4672 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4673 BUG();
4675 return 0;
4678 cpumask_set_cpu(cpu, nohz.cpu_mask);
4680 /* time for ilb owner also to sleep */
4681 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4682 if (atomic_read(&nohz.load_balancer) == cpu)
4683 atomic_set(&nohz.load_balancer, -1);
4684 return 0;
4687 if (atomic_read(&nohz.load_balancer) == -1) {
4688 /* make me the ilb owner */
4689 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4690 return 1;
4691 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4692 int new_ilb;
4694 if (!(sched_smt_power_savings ||
4695 sched_mc_power_savings))
4696 return 1;
4698 * Check to see if there is a more power-efficient
4699 * ilb.
4701 new_ilb = find_new_ilb(cpu);
4702 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4703 atomic_set(&nohz.load_balancer, -1);
4704 resched_cpu(new_ilb);
4705 return 0;
4707 return 1;
4709 } else {
4710 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4711 return 0;
4713 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4715 if (atomic_read(&nohz.load_balancer) == cpu)
4716 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4717 BUG();
4719 return 0;
4721 #endif
4723 static DEFINE_SPINLOCK(balancing);
4726 * It checks each scheduling domain to see if it is due to be balanced,
4727 * and initiates a balancing operation if so.
4729 * Balancing parameters are set up in arch_init_sched_domains.
4731 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4733 int balance = 1;
4734 struct rq *rq = cpu_rq(cpu);
4735 unsigned long interval;
4736 struct sched_domain *sd;
4737 /* Earliest time when we have to do rebalance again */
4738 unsigned long next_balance = jiffies + 60*HZ;
4739 int update_next_balance = 0;
4740 int need_serialize;
4742 for_each_domain(cpu, sd) {
4743 if (!(sd->flags & SD_LOAD_BALANCE))
4744 continue;
4746 interval = sd->balance_interval;
4747 if (idle != CPU_IDLE)
4748 interval *= sd->busy_factor;
4750 /* scale ms to jiffies */
4751 interval = msecs_to_jiffies(interval);
4752 if (unlikely(!interval))
4753 interval = 1;
4754 if (interval > HZ*NR_CPUS/10)
4755 interval = HZ*NR_CPUS/10;
4757 need_serialize = sd->flags & SD_SERIALIZE;
4759 if (need_serialize) {
4760 if (!spin_trylock(&balancing))
4761 goto out;
4764 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4765 if (load_balance(cpu, rq, sd, idle, &balance)) {
4767 * We've pulled tasks over so either we're no
4768 * longer idle, or one of our SMT siblings is
4769 * not idle.
4771 idle = CPU_NOT_IDLE;
4773 sd->last_balance = jiffies;
4775 if (need_serialize)
4776 spin_unlock(&balancing);
4777 out:
4778 if (time_after(next_balance, sd->last_balance + interval)) {
4779 next_balance = sd->last_balance + interval;
4780 update_next_balance = 1;
4784 * Stop the load balance at this level. There is another
4785 * CPU in our sched group which is doing load balancing more
4786 * actively.
4788 if (!balance)
4789 break;
4793 * next_balance will be updated only when there is a need.
4794 * When the cpu is attached to null domain for ex, it will not be
4795 * updated.
4797 if (likely(update_next_balance))
4798 rq->next_balance = next_balance;
4802 * run_rebalance_domains is triggered when needed from the scheduler tick.
4803 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4804 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4806 static void run_rebalance_domains(struct softirq_action *h)
4808 int this_cpu = smp_processor_id();
4809 struct rq *this_rq = cpu_rq(this_cpu);
4810 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4811 CPU_IDLE : CPU_NOT_IDLE;
4813 rebalance_domains(this_cpu, idle);
4815 #ifdef CONFIG_NO_HZ
4817 * If this cpu is the owner for idle load balancing, then do the
4818 * balancing on behalf of the other idle cpus whose ticks are
4819 * stopped.
4821 if (this_rq->idle_at_tick &&
4822 atomic_read(&nohz.load_balancer) == this_cpu) {
4823 struct rq *rq;
4824 int balance_cpu;
4826 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4827 if (balance_cpu == this_cpu)
4828 continue;
4831 * If this cpu gets work to do, stop the load balancing
4832 * work being done for other cpus. Next load
4833 * balancing owner will pick it up.
4835 if (need_resched())
4836 break;
4838 rebalance_domains(balance_cpu, CPU_IDLE);
4840 rq = cpu_rq(balance_cpu);
4841 if (time_after(this_rq->next_balance, rq->next_balance))
4842 this_rq->next_balance = rq->next_balance;
4845 #endif
4848 static inline int on_null_domain(int cpu)
4850 return !rcu_dereference(cpu_rq(cpu)->sd);
4854 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4856 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4857 * idle load balancing owner or decide to stop the periodic load balancing,
4858 * if the whole system is idle.
4860 static inline void trigger_load_balance(struct rq *rq, int cpu)
4862 #ifdef CONFIG_NO_HZ
4864 * If we were in the nohz mode recently and busy at the current
4865 * scheduler tick, then check if we need to nominate new idle
4866 * load balancer.
4868 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4869 rq->in_nohz_recently = 0;
4871 if (atomic_read(&nohz.load_balancer) == cpu) {
4872 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4873 atomic_set(&nohz.load_balancer, -1);
4876 if (atomic_read(&nohz.load_balancer) == -1) {
4877 int ilb = find_new_ilb(cpu);
4879 if (ilb < nr_cpu_ids)
4880 resched_cpu(ilb);
4885 * If this cpu is idle and doing idle load balancing for all the
4886 * cpus with ticks stopped, is it time for that to stop?
4888 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4889 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4890 resched_cpu(cpu);
4891 return;
4895 * If this cpu is idle and the idle load balancing is done by
4896 * someone else, then no need raise the SCHED_SOFTIRQ
4898 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4899 cpumask_test_cpu(cpu, nohz.cpu_mask))
4900 return;
4901 #endif
4902 /* Don't need to rebalance while attached to NULL domain */
4903 if (time_after_eq(jiffies, rq->next_balance) &&
4904 likely(!on_null_domain(cpu)))
4905 raise_softirq(SCHED_SOFTIRQ);
4908 #else /* CONFIG_SMP */
4911 * on UP we do not need to balance between CPUs:
4913 static inline void idle_balance(int cpu, struct rq *rq)
4917 #endif
4919 DEFINE_PER_CPU(struct kernel_stat, kstat);
4921 EXPORT_PER_CPU_SYMBOL(kstat);
4924 * Return any ns on the sched_clock that have not yet been accounted in
4925 * @p in case that task is currently running.
4927 * Called with task_rq_lock() held on @rq.
4929 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4931 u64 ns = 0;
4933 if (task_current(rq, p)) {
4934 update_rq_clock(rq);
4935 ns = rq->clock - p->se.exec_start;
4936 if ((s64)ns < 0)
4937 ns = 0;
4940 return ns;
4943 unsigned long long task_delta_exec(struct task_struct *p)
4945 unsigned long flags;
4946 struct rq *rq;
4947 u64 ns = 0;
4949 rq = task_rq_lock(p, &flags);
4950 ns = do_task_delta_exec(p, rq);
4951 task_rq_unlock(rq, &flags);
4953 return ns;
4957 * Return accounted runtime for the task.
4958 * In case the task is currently running, return the runtime plus current's
4959 * pending runtime that have not been accounted yet.
4961 unsigned long long task_sched_runtime(struct task_struct *p)
4963 unsigned long flags;
4964 struct rq *rq;
4965 u64 ns = 0;
4967 rq = task_rq_lock(p, &flags);
4968 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4969 task_rq_unlock(rq, &flags);
4971 return ns;
4975 * Return sum_exec_runtime for the thread group.
4976 * In case the task is currently running, return the sum plus current's
4977 * pending runtime that have not been accounted yet.
4979 * Note that the thread group might have other running tasks as well,
4980 * so the return value not includes other pending runtime that other
4981 * running tasks might have.
4983 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4985 struct task_cputime totals;
4986 unsigned long flags;
4987 struct rq *rq;
4988 u64 ns;
4990 rq = task_rq_lock(p, &flags);
4991 thread_group_cputime(p, &totals);
4992 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4993 task_rq_unlock(rq, &flags);
4995 return ns;
4999 * Account user cpu time to a process.
5000 * @p: the process that the cpu time gets accounted to
5001 * @cputime: the cpu time spent in user space since the last update
5002 * @cputime_scaled: cputime scaled by cpu frequency
5004 void account_user_time(struct task_struct *p, cputime_t cputime,
5005 cputime_t cputime_scaled)
5007 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5008 cputime64_t tmp;
5010 /* Add user time to process. */
5011 p->utime = cputime_add(p->utime, cputime);
5012 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5013 account_group_user_time(p, cputime);
5015 /* Add user time to cpustat. */
5016 tmp = cputime_to_cputime64(cputime);
5017 if (TASK_NICE(p) > 0)
5018 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5019 else
5020 cpustat->user = cputime64_add(cpustat->user, tmp);
5022 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5023 /* Account for user time used */
5024 acct_update_integrals(p);
5028 * Account guest cpu time to a process.
5029 * @p: the process that the cpu time gets accounted to
5030 * @cputime: the cpu time spent in virtual machine since the last update
5031 * @cputime_scaled: cputime scaled by cpu frequency
5033 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5034 cputime_t cputime_scaled)
5036 cputime64_t tmp;
5037 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5039 tmp = cputime_to_cputime64(cputime);
5041 /* Add guest time to process. */
5042 p->utime = cputime_add(p->utime, cputime);
5043 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5044 account_group_user_time(p, cputime);
5045 p->gtime = cputime_add(p->gtime, cputime);
5047 /* Add guest time to cpustat. */
5048 cpustat->user = cputime64_add(cpustat->user, tmp);
5049 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5053 * Account system cpu time to a process.
5054 * @p: the process that the cpu time gets accounted to
5055 * @hardirq_offset: the offset to subtract from hardirq_count()
5056 * @cputime: the cpu time spent in kernel space since the last update
5057 * @cputime_scaled: cputime scaled by cpu frequency
5059 void account_system_time(struct task_struct *p, int hardirq_offset,
5060 cputime_t cputime, cputime_t cputime_scaled)
5062 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5063 cputime64_t tmp;
5065 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5066 account_guest_time(p, cputime, cputime_scaled);
5067 return;
5070 /* Add system time to process. */
5071 p->stime = cputime_add(p->stime, cputime);
5072 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5073 account_group_system_time(p, cputime);
5075 /* Add system time to cpustat. */
5076 tmp = cputime_to_cputime64(cputime);
5077 if (hardirq_count() - hardirq_offset)
5078 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5079 else if (softirq_count())
5080 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5081 else
5082 cpustat->system = cputime64_add(cpustat->system, tmp);
5084 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5086 /* Account for system time used */
5087 acct_update_integrals(p);
5091 * Account for involuntary wait time.
5092 * @steal: the cpu time spent in involuntary wait
5094 void account_steal_time(cputime_t cputime)
5096 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5097 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5099 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5103 * Account for idle time.
5104 * @cputime: the cpu time spent in idle wait
5106 void account_idle_time(cputime_t cputime)
5108 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5109 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5110 struct rq *rq = this_rq();
5112 if (atomic_read(&rq->nr_iowait) > 0)
5113 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5114 else
5115 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5118 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5121 * Account a single tick of cpu time.
5122 * @p: the process that the cpu time gets accounted to
5123 * @user_tick: indicates if the tick is a user or a system tick
5125 void account_process_tick(struct task_struct *p, int user_tick)
5127 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5128 struct rq *rq = this_rq();
5130 if (user_tick)
5131 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5132 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5133 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5134 one_jiffy_scaled);
5135 else
5136 account_idle_time(cputime_one_jiffy);
5140 * Account multiple ticks of steal time.
5141 * @p: the process from which the cpu time has been stolen
5142 * @ticks: number of stolen ticks
5144 void account_steal_ticks(unsigned long ticks)
5146 account_steal_time(jiffies_to_cputime(ticks));
5150 * Account multiple ticks of idle time.
5151 * @ticks: number of stolen ticks
5153 void account_idle_ticks(unsigned long ticks)
5155 account_idle_time(jiffies_to_cputime(ticks));
5158 #endif
5161 * Use precise platform statistics if available:
5163 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5164 cputime_t task_utime(struct task_struct *p)
5166 return p->utime;
5169 cputime_t task_stime(struct task_struct *p)
5171 return p->stime;
5173 #else
5174 cputime_t task_utime(struct task_struct *p)
5176 clock_t utime = cputime_to_clock_t(p->utime),
5177 total = utime + cputime_to_clock_t(p->stime);
5178 u64 temp;
5181 * Use CFS's precise accounting:
5183 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5185 if (total) {
5186 temp *= utime;
5187 do_div(temp, total);
5189 utime = (clock_t)temp;
5191 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5192 return p->prev_utime;
5195 cputime_t task_stime(struct task_struct *p)
5197 clock_t stime;
5200 * Use CFS's precise accounting. (we subtract utime from
5201 * the total, to make sure the total observed by userspace
5202 * grows monotonically - apps rely on that):
5204 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5205 cputime_to_clock_t(task_utime(p));
5207 if (stime >= 0)
5208 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5210 return p->prev_stime;
5212 #endif
5214 inline cputime_t task_gtime(struct task_struct *p)
5216 return p->gtime;
5220 * This function gets called by the timer code, with HZ frequency.
5221 * We call it with interrupts disabled.
5223 * It also gets called by the fork code, when changing the parent's
5224 * timeslices.
5226 void scheduler_tick(void)
5228 int cpu = smp_processor_id();
5229 struct rq *rq = cpu_rq(cpu);
5230 struct task_struct *curr = rq->curr;
5232 sched_clock_tick();
5234 spin_lock(&rq->lock);
5235 update_rq_clock(rq);
5236 update_cpu_load(rq);
5237 curr->sched_class->task_tick(rq, curr, 0);
5238 spin_unlock(&rq->lock);
5240 perf_event_task_tick(curr, cpu);
5242 #ifdef CONFIG_SMP
5243 rq->idle_at_tick = idle_cpu(cpu);
5244 trigger_load_balance(rq, cpu);
5245 #endif
5248 notrace unsigned long get_parent_ip(unsigned long addr)
5250 if (in_lock_functions(addr)) {
5251 addr = CALLER_ADDR2;
5252 if (in_lock_functions(addr))
5253 addr = CALLER_ADDR3;
5255 return addr;
5258 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5259 defined(CONFIG_PREEMPT_TRACER))
5261 void __kprobes add_preempt_count(int val)
5263 #ifdef CONFIG_DEBUG_PREEMPT
5265 * Underflow?
5267 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5268 return;
5269 #endif
5270 preempt_count() += val;
5271 #ifdef CONFIG_DEBUG_PREEMPT
5273 * Spinlock count overflowing soon?
5275 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5276 PREEMPT_MASK - 10);
5277 #endif
5278 if (preempt_count() == val)
5279 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5281 EXPORT_SYMBOL(add_preempt_count);
5283 void __kprobes sub_preempt_count(int val)
5285 #ifdef CONFIG_DEBUG_PREEMPT
5287 * Underflow?
5289 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5290 return;
5292 * Is the spinlock portion underflowing?
5294 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5295 !(preempt_count() & PREEMPT_MASK)))
5296 return;
5297 #endif
5299 if (preempt_count() == val)
5300 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5301 preempt_count() -= val;
5303 EXPORT_SYMBOL(sub_preempt_count);
5305 #endif
5308 * Print scheduling while atomic bug:
5310 static noinline void __schedule_bug(struct task_struct *prev)
5312 struct pt_regs *regs = get_irq_regs();
5314 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5315 prev->comm, prev->pid, preempt_count());
5317 debug_show_held_locks(prev);
5318 print_modules();
5319 if (irqs_disabled())
5320 print_irqtrace_events(prev);
5322 if (regs)
5323 show_regs(regs);
5324 else
5325 dump_stack();
5329 * Various schedule()-time debugging checks and statistics:
5331 static inline void schedule_debug(struct task_struct *prev)
5334 * Test if we are atomic. Since do_exit() needs to call into
5335 * schedule() atomically, we ignore that path for now.
5336 * Otherwise, whine if we are scheduling when we should not be.
5338 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5339 __schedule_bug(prev);
5341 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5343 schedstat_inc(this_rq(), sched_count);
5344 #ifdef CONFIG_SCHEDSTATS
5345 if (unlikely(prev->lock_depth >= 0)) {
5346 schedstat_inc(this_rq(), bkl_count);
5347 schedstat_inc(prev, sched_info.bkl_count);
5349 #endif
5352 static void put_prev_task(struct rq *rq, struct task_struct *p)
5354 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5356 update_avg(&p->se.avg_running, runtime);
5358 if (p->state == TASK_RUNNING) {
5360 * In order to avoid avg_overlap growing stale when we are
5361 * indeed overlapping and hence not getting put to sleep, grow
5362 * the avg_overlap on preemption.
5364 * We use the average preemption runtime because that
5365 * correlates to the amount of cache footprint a task can
5366 * build up.
5368 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5369 update_avg(&p->se.avg_overlap, runtime);
5370 } else {
5371 update_avg(&p->se.avg_running, 0);
5373 p->sched_class->put_prev_task(rq, p);
5377 * Pick up the highest-prio task:
5379 static inline struct task_struct *
5380 pick_next_task(struct rq *rq)
5382 const struct sched_class *class;
5383 struct task_struct *p;
5386 * Optimization: we know that if all tasks are in
5387 * the fair class we can call that function directly:
5389 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5390 p = fair_sched_class.pick_next_task(rq);
5391 if (likely(p))
5392 return p;
5395 class = sched_class_highest;
5396 for ( ; ; ) {
5397 p = class->pick_next_task(rq);
5398 if (p)
5399 return p;
5401 * Will never be NULL as the idle class always
5402 * returns a non-NULL p:
5404 class = class->next;
5409 * schedule() is the main scheduler function.
5411 asmlinkage void __sched schedule(void)
5413 struct task_struct *prev, *next;
5414 unsigned long *switch_count;
5415 struct rq *rq;
5416 int cpu;
5418 need_resched:
5419 preempt_disable();
5420 cpu = smp_processor_id();
5421 rq = cpu_rq(cpu);
5422 rcu_sched_qs(cpu);
5423 prev = rq->curr;
5424 switch_count = &prev->nivcsw;
5426 release_kernel_lock(prev);
5427 need_resched_nonpreemptible:
5429 schedule_debug(prev);
5431 if (sched_feat(HRTICK))
5432 hrtick_clear(rq);
5434 spin_lock_irq(&rq->lock);
5435 update_rq_clock(rq);
5436 clear_tsk_need_resched(prev);
5438 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5439 if (unlikely(signal_pending_state(prev->state, prev)))
5440 prev->state = TASK_RUNNING;
5441 else
5442 deactivate_task(rq, prev, 1);
5443 switch_count = &prev->nvcsw;
5446 pre_schedule(rq, prev);
5448 if (unlikely(!rq->nr_running))
5449 idle_balance(cpu, rq);
5451 put_prev_task(rq, prev);
5452 next = pick_next_task(rq);
5454 if (likely(prev != next)) {
5455 sched_info_switch(prev, next);
5456 perf_event_task_sched_out(prev, next, cpu);
5458 rq->nr_switches++;
5459 rq->curr = next;
5460 ++*switch_count;
5462 context_switch(rq, prev, next); /* unlocks the rq */
5464 * the context switch might have flipped the stack from under
5465 * us, hence refresh the local variables.
5467 cpu = smp_processor_id();
5468 rq = cpu_rq(cpu);
5469 } else
5470 spin_unlock_irq(&rq->lock);
5472 post_schedule(rq);
5474 if (unlikely(reacquire_kernel_lock(current) < 0))
5475 goto need_resched_nonpreemptible;
5477 preempt_enable_no_resched();
5478 if (need_resched())
5479 goto need_resched;
5481 EXPORT_SYMBOL(schedule);
5483 #ifdef CONFIG_SMP
5485 * Look out! "owner" is an entirely speculative pointer
5486 * access and not reliable.
5488 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5490 unsigned int cpu;
5491 struct rq *rq;
5493 if (!sched_feat(OWNER_SPIN))
5494 return 0;
5496 #ifdef CONFIG_DEBUG_PAGEALLOC
5498 * Need to access the cpu field knowing that
5499 * DEBUG_PAGEALLOC could have unmapped it if
5500 * the mutex owner just released it and exited.
5502 if (probe_kernel_address(&owner->cpu, cpu))
5503 goto out;
5504 #else
5505 cpu = owner->cpu;
5506 #endif
5509 * Even if the access succeeded (likely case),
5510 * the cpu field may no longer be valid.
5512 if (cpu >= nr_cpumask_bits)
5513 goto out;
5516 * We need to validate that we can do a
5517 * get_cpu() and that we have the percpu area.
5519 if (!cpu_online(cpu))
5520 goto out;
5522 rq = cpu_rq(cpu);
5524 for (;;) {
5526 * Owner changed, break to re-assess state.
5528 if (lock->owner != owner)
5529 break;
5532 * Is that owner really running on that cpu?
5534 if (task_thread_info(rq->curr) != owner || need_resched())
5535 return 0;
5537 cpu_relax();
5539 out:
5540 return 1;
5542 #endif
5544 #ifdef CONFIG_PREEMPT
5546 * this is the entry point to schedule() from in-kernel preemption
5547 * off of preempt_enable. Kernel preemptions off return from interrupt
5548 * occur there and call schedule directly.
5550 asmlinkage void __sched preempt_schedule(void)
5552 struct thread_info *ti = current_thread_info();
5555 * If there is a non-zero preempt_count or interrupts are disabled,
5556 * we do not want to preempt the current task. Just return..
5558 if (likely(ti->preempt_count || irqs_disabled()))
5559 return;
5561 do {
5562 add_preempt_count(PREEMPT_ACTIVE);
5563 schedule();
5564 sub_preempt_count(PREEMPT_ACTIVE);
5567 * Check again in case we missed a preemption opportunity
5568 * between schedule and now.
5570 barrier();
5571 } while (need_resched());
5573 EXPORT_SYMBOL(preempt_schedule);
5576 * this is the entry point to schedule() from kernel preemption
5577 * off of irq context.
5578 * Note, that this is called and return with irqs disabled. This will
5579 * protect us against recursive calling from irq.
5581 asmlinkage void __sched preempt_schedule_irq(void)
5583 struct thread_info *ti = current_thread_info();
5585 /* Catch callers which need to be fixed */
5586 BUG_ON(ti->preempt_count || !irqs_disabled());
5588 do {
5589 add_preempt_count(PREEMPT_ACTIVE);
5590 local_irq_enable();
5591 schedule();
5592 local_irq_disable();
5593 sub_preempt_count(PREEMPT_ACTIVE);
5596 * Check again in case we missed a preemption opportunity
5597 * between schedule and now.
5599 barrier();
5600 } while (need_resched());
5603 #endif /* CONFIG_PREEMPT */
5605 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5606 void *key)
5608 return try_to_wake_up(curr->private, mode, wake_flags);
5610 EXPORT_SYMBOL(default_wake_function);
5613 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5614 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5615 * number) then we wake all the non-exclusive tasks and one exclusive task.
5617 * There are circumstances in which we can try to wake a task which has already
5618 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5619 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5621 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5622 int nr_exclusive, int wake_flags, void *key)
5624 wait_queue_t *curr, *next;
5626 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5627 unsigned flags = curr->flags;
5629 if (curr->func(curr, mode, wake_flags, key) &&
5630 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5631 break;
5636 * __wake_up - wake up threads blocked on a waitqueue.
5637 * @q: the waitqueue
5638 * @mode: which threads
5639 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5640 * @key: is directly passed to the wakeup function
5642 * It may be assumed that this function implies a write memory barrier before
5643 * changing the task state if and only if any tasks are woken up.
5645 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5646 int nr_exclusive, void *key)
5648 unsigned long flags;
5650 spin_lock_irqsave(&q->lock, flags);
5651 __wake_up_common(q, mode, nr_exclusive, 0, key);
5652 spin_unlock_irqrestore(&q->lock, flags);
5654 EXPORT_SYMBOL(__wake_up);
5657 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5659 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5661 __wake_up_common(q, mode, 1, 0, NULL);
5664 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5666 __wake_up_common(q, mode, 1, 0, key);
5670 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5671 * @q: the waitqueue
5672 * @mode: which threads
5673 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5674 * @key: opaque value to be passed to wakeup targets
5676 * The sync wakeup differs that the waker knows that it will schedule
5677 * away soon, so while the target thread will be woken up, it will not
5678 * be migrated to another CPU - ie. the two threads are 'synchronized'
5679 * with each other. This can prevent needless bouncing between CPUs.
5681 * On UP it can prevent extra preemption.
5683 * It may be assumed that this function implies a write memory barrier before
5684 * changing the task state if and only if any tasks are woken up.
5686 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5687 int nr_exclusive, void *key)
5689 unsigned long flags;
5690 int wake_flags = WF_SYNC;
5692 if (unlikely(!q))
5693 return;
5695 if (unlikely(!nr_exclusive))
5696 wake_flags = 0;
5698 spin_lock_irqsave(&q->lock, flags);
5699 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5700 spin_unlock_irqrestore(&q->lock, flags);
5702 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5705 * __wake_up_sync - see __wake_up_sync_key()
5707 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5709 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5711 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5714 * complete: - signals a single thread waiting on this completion
5715 * @x: holds the state of this particular completion
5717 * This will wake up a single thread waiting on this completion. Threads will be
5718 * awakened in the same order in which they were queued.
5720 * See also complete_all(), wait_for_completion() and related routines.
5722 * It may be assumed that this function implies a write memory barrier before
5723 * changing the task state if and only if any tasks are woken up.
5725 void complete(struct completion *x)
5727 unsigned long flags;
5729 spin_lock_irqsave(&x->wait.lock, flags);
5730 x->done++;
5731 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5732 spin_unlock_irqrestore(&x->wait.lock, flags);
5734 EXPORT_SYMBOL(complete);
5737 * complete_all: - signals all threads waiting on this completion
5738 * @x: holds the state of this particular completion
5740 * This will wake up all threads waiting on this particular completion event.
5742 * It may be assumed that this function implies a write memory barrier before
5743 * changing the task state if and only if any tasks are woken up.
5745 void complete_all(struct completion *x)
5747 unsigned long flags;
5749 spin_lock_irqsave(&x->wait.lock, flags);
5750 x->done += UINT_MAX/2;
5751 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5752 spin_unlock_irqrestore(&x->wait.lock, flags);
5754 EXPORT_SYMBOL(complete_all);
5756 static inline long __sched
5757 do_wait_for_common(struct completion *x, long timeout, int state)
5759 if (!x->done) {
5760 DECLARE_WAITQUEUE(wait, current);
5762 wait.flags |= WQ_FLAG_EXCLUSIVE;
5763 __add_wait_queue_tail(&x->wait, &wait);
5764 do {
5765 if (signal_pending_state(state, current)) {
5766 timeout = -ERESTARTSYS;
5767 break;
5769 __set_current_state(state);
5770 spin_unlock_irq(&x->wait.lock);
5771 timeout = schedule_timeout(timeout);
5772 spin_lock_irq(&x->wait.lock);
5773 } while (!x->done && timeout);
5774 __remove_wait_queue(&x->wait, &wait);
5775 if (!x->done)
5776 return timeout;
5778 x->done--;
5779 return timeout ?: 1;
5782 static long __sched
5783 wait_for_common(struct completion *x, long timeout, int state)
5785 might_sleep();
5787 spin_lock_irq(&x->wait.lock);
5788 timeout = do_wait_for_common(x, timeout, state);
5789 spin_unlock_irq(&x->wait.lock);
5790 return timeout;
5794 * wait_for_completion: - waits for completion of a task
5795 * @x: holds the state of this particular completion
5797 * This waits to be signaled for completion of a specific task. It is NOT
5798 * interruptible and there is no timeout.
5800 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5801 * and interrupt capability. Also see complete().
5803 void __sched wait_for_completion(struct completion *x)
5805 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5807 EXPORT_SYMBOL(wait_for_completion);
5810 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5811 * @x: holds the state of this particular completion
5812 * @timeout: timeout value in jiffies
5814 * This waits for either a completion of a specific task to be signaled or for a
5815 * specified timeout to expire. The timeout is in jiffies. It is not
5816 * interruptible.
5818 unsigned long __sched
5819 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5821 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5823 EXPORT_SYMBOL(wait_for_completion_timeout);
5826 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5827 * @x: holds the state of this particular completion
5829 * This waits for completion of a specific task to be signaled. It is
5830 * interruptible.
5832 int __sched wait_for_completion_interruptible(struct completion *x)
5834 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5835 if (t == -ERESTARTSYS)
5836 return t;
5837 return 0;
5839 EXPORT_SYMBOL(wait_for_completion_interruptible);
5842 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5843 * @x: holds the state of this particular completion
5844 * @timeout: timeout value in jiffies
5846 * This waits for either a completion of a specific task to be signaled or for a
5847 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5849 unsigned long __sched
5850 wait_for_completion_interruptible_timeout(struct completion *x,
5851 unsigned long timeout)
5853 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5855 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5858 * wait_for_completion_killable: - waits for completion of a task (killable)
5859 * @x: holds the state of this particular completion
5861 * This waits to be signaled for completion of a specific task. It can be
5862 * interrupted by a kill signal.
5864 int __sched wait_for_completion_killable(struct completion *x)
5866 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5867 if (t == -ERESTARTSYS)
5868 return t;
5869 return 0;
5871 EXPORT_SYMBOL(wait_for_completion_killable);
5874 * try_wait_for_completion - try to decrement a completion without blocking
5875 * @x: completion structure
5877 * Returns: 0 if a decrement cannot be done without blocking
5878 * 1 if a decrement succeeded.
5880 * If a completion is being used as a counting completion,
5881 * attempt to decrement the counter without blocking. This
5882 * enables us to avoid waiting if the resource the completion
5883 * is protecting is not available.
5885 bool try_wait_for_completion(struct completion *x)
5887 int ret = 1;
5889 spin_lock_irq(&x->wait.lock);
5890 if (!x->done)
5891 ret = 0;
5892 else
5893 x->done--;
5894 spin_unlock_irq(&x->wait.lock);
5895 return ret;
5897 EXPORT_SYMBOL(try_wait_for_completion);
5900 * completion_done - Test to see if a completion has any waiters
5901 * @x: completion structure
5903 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5904 * 1 if there are no waiters.
5907 bool completion_done(struct completion *x)
5909 int ret = 1;
5911 spin_lock_irq(&x->wait.lock);
5912 if (!x->done)
5913 ret = 0;
5914 spin_unlock_irq(&x->wait.lock);
5915 return ret;
5917 EXPORT_SYMBOL(completion_done);
5919 static long __sched
5920 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5922 unsigned long flags;
5923 wait_queue_t wait;
5925 init_waitqueue_entry(&wait, current);
5927 __set_current_state(state);
5929 spin_lock_irqsave(&q->lock, flags);
5930 __add_wait_queue(q, &wait);
5931 spin_unlock(&q->lock);
5932 timeout = schedule_timeout(timeout);
5933 spin_lock_irq(&q->lock);
5934 __remove_wait_queue(q, &wait);
5935 spin_unlock_irqrestore(&q->lock, flags);
5937 return timeout;
5940 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5942 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5944 EXPORT_SYMBOL(interruptible_sleep_on);
5946 long __sched
5947 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5949 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5951 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5953 void __sched sleep_on(wait_queue_head_t *q)
5955 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5957 EXPORT_SYMBOL(sleep_on);
5959 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5961 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5963 EXPORT_SYMBOL(sleep_on_timeout);
5965 #ifdef CONFIG_RT_MUTEXES
5968 * rt_mutex_setprio - set the current priority of a task
5969 * @p: task
5970 * @prio: prio value (kernel-internal form)
5972 * This function changes the 'effective' priority of a task. It does
5973 * not touch ->normal_prio like __setscheduler().
5975 * Used by the rt_mutex code to implement priority inheritance logic.
5977 void rt_mutex_setprio(struct task_struct *p, int prio)
5979 unsigned long flags;
5980 int oldprio, on_rq, running;
5981 struct rq *rq;
5982 const struct sched_class *prev_class = p->sched_class;
5984 BUG_ON(prio < 0 || prio > MAX_PRIO);
5986 rq = task_rq_lock(p, &flags);
5987 update_rq_clock(rq);
5989 oldprio = p->prio;
5990 on_rq = p->se.on_rq;
5991 running = task_current(rq, p);
5992 if (on_rq)
5993 dequeue_task(rq, p, 0);
5994 if (running)
5995 p->sched_class->put_prev_task(rq, p);
5997 if (rt_prio(prio))
5998 p->sched_class = &rt_sched_class;
5999 else
6000 p->sched_class = &fair_sched_class;
6002 p->prio = prio;
6004 if (running)
6005 p->sched_class->set_curr_task(rq);
6006 if (on_rq) {
6007 enqueue_task(rq, p, 0);
6009 check_class_changed(rq, p, prev_class, oldprio, running);
6011 task_rq_unlock(rq, &flags);
6014 #endif
6016 void set_user_nice(struct task_struct *p, long nice)
6018 int old_prio, delta, on_rq;
6019 unsigned long flags;
6020 struct rq *rq;
6022 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6023 return;
6025 * We have to be careful, if called from sys_setpriority(),
6026 * the task might be in the middle of scheduling on another CPU.
6028 rq = task_rq_lock(p, &flags);
6029 update_rq_clock(rq);
6031 * The RT priorities are set via sched_setscheduler(), but we still
6032 * allow the 'normal' nice value to be set - but as expected
6033 * it wont have any effect on scheduling until the task is
6034 * SCHED_FIFO/SCHED_RR:
6036 if (task_has_rt_policy(p)) {
6037 p->static_prio = NICE_TO_PRIO(nice);
6038 goto out_unlock;
6040 on_rq = p->se.on_rq;
6041 if (on_rq)
6042 dequeue_task(rq, p, 0);
6044 p->static_prio = NICE_TO_PRIO(nice);
6045 set_load_weight(p);
6046 old_prio = p->prio;
6047 p->prio = effective_prio(p);
6048 delta = p->prio - old_prio;
6050 if (on_rq) {
6051 enqueue_task(rq, p, 0);
6053 * If the task increased its priority or is running and
6054 * lowered its priority, then reschedule its CPU:
6056 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6057 resched_task(rq->curr);
6059 out_unlock:
6060 task_rq_unlock(rq, &flags);
6062 EXPORT_SYMBOL(set_user_nice);
6065 * can_nice - check if a task can reduce its nice value
6066 * @p: task
6067 * @nice: nice value
6069 int can_nice(const struct task_struct *p, const int nice)
6071 /* convert nice value [19,-20] to rlimit style value [1,40] */
6072 int nice_rlim = 20 - nice;
6074 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6075 capable(CAP_SYS_NICE));
6078 #ifdef __ARCH_WANT_SYS_NICE
6081 * sys_nice - change the priority of the current process.
6082 * @increment: priority increment
6084 * sys_setpriority is a more generic, but much slower function that
6085 * does similar things.
6087 SYSCALL_DEFINE1(nice, int, increment)
6089 long nice, retval;
6092 * Setpriority might change our priority at the same moment.
6093 * We don't have to worry. Conceptually one call occurs first
6094 * and we have a single winner.
6096 if (increment < -40)
6097 increment = -40;
6098 if (increment > 40)
6099 increment = 40;
6101 nice = TASK_NICE(current) + increment;
6102 if (nice < -20)
6103 nice = -20;
6104 if (nice > 19)
6105 nice = 19;
6107 if (increment < 0 && !can_nice(current, nice))
6108 return -EPERM;
6110 retval = security_task_setnice(current, nice);
6111 if (retval)
6112 return retval;
6114 set_user_nice(current, nice);
6115 return 0;
6118 #endif
6121 * task_prio - return the priority value of a given task.
6122 * @p: the task in question.
6124 * This is the priority value as seen by users in /proc.
6125 * RT tasks are offset by -200. Normal tasks are centered
6126 * around 0, value goes from -16 to +15.
6128 int task_prio(const struct task_struct *p)
6130 return p->prio - MAX_RT_PRIO;
6134 * task_nice - return the nice value of a given task.
6135 * @p: the task in question.
6137 int task_nice(const struct task_struct *p)
6139 return TASK_NICE(p);
6141 EXPORT_SYMBOL(task_nice);
6144 * idle_cpu - is a given cpu idle currently?
6145 * @cpu: the processor in question.
6147 int idle_cpu(int cpu)
6149 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6153 * idle_task - return the idle task for a given cpu.
6154 * @cpu: the processor in question.
6156 struct task_struct *idle_task(int cpu)
6158 return cpu_rq(cpu)->idle;
6162 * find_process_by_pid - find a process with a matching PID value.
6163 * @pid: the pid in question.
6165 static struct task_struct *find_process_by_pid(pid_t pid)
6167 return pid ? find_task_by_vpid(pid) : current;
6170 /* Actually do priority change: must hold rq lock. */
6171 static void
6172 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6174 BUG_ON(p->se.on_rq);
6176 p->policy = policy;
6177 switch (p->policy) {
6178 case SCHED_NORMAL:
6179 case SCHED_BATCH:
6180 case SCHED_IDLE:
6181 p->sched_class = &fair_sched_class;
6182 break;
6183 case SCHED_FIFO:
6184 case SCHED_RR:
6185 p->sched_class = &rt_sched_class;
6186 break;
6189 p->rt_priority = prio;
6190 p->normal_prio = normal_prio(p);
6191 /* we are holding p->pi_lock already */
6192 p->prio = rt_mutex_getprio(p);
6193 set_load_weight(p);
6197 * check the target process has a UID that matches the current process's
6199 static bool check_same_owner(struct task_struct *p)
6201 const struct cred *cred = current_cred(), *pcred;
6202 bool match;
6204 rcu_read_lock();
6205 pcred = __task_cred(p);
6206 match = (cred->euid == pcred->euid ||
6207 cred->euid == pcred->uid);
6208 rcu_read_unlock();
6209 return match;
6212 static int __sched_setscheduler(struct task_struct *p, int policy,
6213 struct sched_param *param, bool user)
6215 int retval, oldprio, oldpolicy = -1, on_rq, running;
6216 unsigned long flags;
6217 const struct sched_class *prev_class = p->sched_class;
6218 struct rq *rq;
6219 int reset_on_fork;
6221 /* may grab non-irq protected spin_locks */
6222 BUG_ON(in_interrupt());
6223 recheck:
6224 /* double check policy once rq lock held */
6225 if (policy < 0) {
6226 reset_on_fork = p->sched_reset_on_fork;
6227 policy = oldpolicy = p->policy;
6228 } else {
6229 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6230 policy &= ~SCHED_RESET_ON_FORK;
6232 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6233 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6234 policy != SCHED_IDLE)
6235 return -EINVAL;
6239 * Valid priorities for SCHED_FIFO and SCHED_RR are
6240 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6241 * SCHED_BATCH and SCHED_IDLE is 0.
6243 if (param->sched_priority < 0 ||
6244 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6245 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6246 return -EINVAL;
6247 if (rt_policy(policy) != (param->sched_priority != 0))
6248 return -EINVAL;
6251 * Allow unprivileged RT tasks to decrease priority:
6253 if (user && !capable(CAP_SYS_NICE)) {
6254 if (rt_policy(policy)) {
6255 unsigned long rlim_rtprio;
6257 if (!lock_task_sighand(p, &flags))
6258 return -ESRCH;
6259 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6260 unlock_task_sighand(p, &flags);
6262 /* can't set/change the rt policy */
6263 if (policy != p->policy && !rlim_rtprio)
6264 return -EPERM;
6266 /* can't increase priority */
6267 if (param->sched_priority > p->rt_priority &&
6268 param->sched_priority > rlim_rtprio)
6269 return -EPERM;
6272 * Like positive nice levels, dont allow tasks to
6273 * move out of SCHED_IDLE either:
6275 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6276 return -EPERM;
6278 /* can't change other user's priorities */
6279 if (!check_same_owner(p))
6280 return -EPERM;
6282 /* Normal users shall not reset the sched_reset_on_fork flag */
6283 if (p->sched_reset_on_fork && !reset_on_fork)
6284 return -EPERM;
6287 if (user) {
6288 #ifdef CONFIG_RT_GROUP_SCHED
6290 * Do not allow realtime tasks into groups that have no runtime
6291 * assigned.
6293 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6294 task_group(p)->rt_bandwidth.rt_runtime == 0)
6295 return -EPERM;
6296 #endif
6298 retval = security_task_setscheduler(p, policy, param);
6299 if (retval)
6300 return retval;
6304 * make sure no PI-waiters arrive (or leave) while we are
6305 * changing the priority of the task:
6307 spin_lock_irqsave(&p->pi_lock, flags);
6309 * To be able to change p->policy safely, the apropriate
6310 * runqueue lock must be held.
6312 rq = __task_rq_lock(p);
6313 /* recheck policy now with rq lock held */
6314 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6315 policy = oldpolicy = -1;
6316 __task_rq_unlock(rq);
6317 spin_unlock_irqrestore(&p->pi_lock, flags);
6318 goto recheck;
6320 update_rq_clock(rq);
6321 on_rq = p->se.on_rq;
6322 running = task_current(rq, p);
6323 if (on_rq)
6324 deactivate_task(rq, p, 0);
6325 if (running)
6326 p->sched_class->put_prev_task(rq, p);
6328 p->sched_reset_on_fork = reset_on_fork;
6330 oldprio = p->prio;
6331 __setscheduler(rq, p, policy, param->sched_priority);
6333 if (running)
6334 p->sched_class->set_curr_task(rq);
6335 if (on_rq) {
6336 activate_task(rq, p, 0);
6338 check_class_changed(rq, p, prev_class, oldprio, running);
6340 __task_rq_unlock(rq);
6341 spin_unlock_irqrestore(&p->pi_lock, flags);
6343 rt_mutex_adjust_pi(p);
6345 return 0;
6349 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6350 * @p: the task in question.
6351 * @policy: new policy.
6352 * @param: structure containing the new RT priority.
6354 * NOTE that the task may be already dead.
6356 int sched_setscheduler(struct task_struct *p, int policy,
6357 struct sched_param *param)
6359 return __sched_setscheduler(p, policy, param, true);
6361 EXPORT_SYMBOL_GPL(sched_setscheduler);
6364 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6365 * @p: the task in question.
6366 * @policy: new policy.
6367 * @param: structure containing the new RT priority.
6369 * Just like sched_setscheduler, only don't bother checking if the
6370 * current context has permission. For example, this is needed in
6371 * stop_machine(): we create temporary high priority worker threads,
6372 * but our caller might not have that capability.
6374 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6375 struct sched_param *param)
6377 return __sched_setscheduler(p, policy, param, false);
6380 static int
6381 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6383 struct sched_param lparam;
6384 struct task_struct *p;
6385 int retval;
6387 if (!param || pid < 0)
6388 return -EINVAL;
6389 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6390 return -EFAULT;
6392 rcu_read_lock();
6393 retval = -ESRCH;
6394 p = find_process_by_pid(pid);
6395 if (p != NULL)
6396 retval = sched_setscheduler(p, policy, &lparam);
6397 rcu_read_unlock();
6399 return retval;
6403 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6404 * @pid: the pid in question.
6405 * @policy: new policy.
6406 * @param: structure containing the new RT priority.
6408 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6409 struct sched_param __user *, param)
6411 /* negative values for policy are not valid */
6412 if (policy < 0)
6413 return -EINVAL;
6415 return do_sched_setscheduler(pid, policy, param);
6419 * sys_sched_setparam - set/change the RT priority of a thread
6420 * @pid: the pid in question.
6421 * @param: structure containing the new RT priority.
6423 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6425 return do_sched_setscheduler(pid, -1, param);
6429 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6430 * @pid: the pid in question.
6432 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6434 struct task_struct *p;
6435 int retval;
6437 if (pid < 0)
6438 return -EINVAL;
6440 retval = -ESRCH;
6441 read_lock(&tasklist_lock);
6442 p = find_process_by_pid(pid);
6443 if (p) {
6444 retval = security_task_getscheduler(p);
6445 if (!retval)
6446 retval = p->policy
6447 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6449 read_unlock(&tasklist_lock);
6450 return retval;
6454 * sys_sched_getparam - get the RT priority of a thread
6455 * @pid: the pid in question.
6456 * @param: structure containing the RT priority.
6458 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6460 struct sched_param lp;
6461 struct task_struct *p;
6462 int retval;
6464 if (!param || pid < 0)
6465 return -EINVAL;
6467 read_lock(&tasklist_lock);
6468 p = find_process_by_pid(pid);
6469 retval = -ESRCH;
6470 if (!p)
6471 goto out_unlock;
6473 retval = security_task_getscheduler(p);
6474 if (retval)
6475 goto out_unlock;
6477 lp.sched_priority = p->rt_priority;
6478 read_unlock(&tasklist_lock);
6481 * This one might sleep, we cannot do it with a spinlock held ...
6483 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6485 return retval;
6487 out_unlock:
6488 read_unlock(&tasklist_lock);
6489 return retval;
6492 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6494 cpumask_var_t cpus_allowed, new_mask;
6495 struct task_struct *p;
6496 int retval;
6498 get_online_cpus();
6499 read_lock(&tasklist_lock);
6501 p = find_process_by_pid(pid);
6502 if (!p) {
6503 read_unlock(&tasklist_lock);
6504 put_online_cpus();
6505 return -ESRCH;
6509 * It is not safe to call set_cpus_allowed with the
6510 * tasklist_lock held. We will bump the task_struct's
6511 * usage count and then drop tasklist_lock.
6513 get_task_struct(p);
6514 read_unlock(&tasklist_lock);
6516 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6517 retval = -ENOMEM;
6518 goto out_put_task;
6520 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6521 retval = -ENOMEM;
6522 goto out_free_cpus_allowed;
6524 retval = -EPERM;
6525 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6526 goto out_unlock;
6528 retval = security_task_setscheduler(p, 0, NULL);
6529 if (retval)
6530 goto out_unlock;
6532 cpuset_cpus_allowed(p, cpus_allowed);
6533 cpumask_and(new_mask, in_mask, cpus_allowed);
6534 again:
6535 retval = set_cpus_allowed_ptr(p, new_mask);
6537 if (!retval) {
6538 cpuset_cpus_allowed(p, cpus_allowed);
6539 if (!cpumask_subset(new_mask, cpus_allowed)) {
6541 * We must have raced with a concurrent cpuset
6542 * update. Just reset the cpus_allowed to the
6543 * cpuset's cpus_allowed
6545 cpumask_copy(new_mask, cpus_allowed);
6546 goto again;
6549 out_unlock:
6550 free_cpumask_var(new_mask);
6551 out_free_cpus_allowed:
6552 free_cpumask_var(cpus_allowed);
6553 out_put_task:
6554 put_task_struct(p);
6555 put_online_cpus();
6556 return retval;
6559 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6560 struct cpumask *new_mask)
6562 if (len < cpumask_size())
6563 cpumask_clear(new_mask);
6564 else if (len > cpumask_size())
6565 len = cpumask_size();
6567 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6571 * sys_sched_setaffinity - set the cpu affinity of a process
6572 * @pid: pid of the process
6573 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6574 * @user_mask_ptr: user-space pointer to the new cpu mask
6576 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6577 unsigned long __user *, user_mask_ptr)
6579 cpumask_var_t new_mask;
6580 int retval;
6582 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6583 return -ENOMEM;
6585 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6586 if (retval == 0)
6587 retval = sched_setaffinity(pid, new_mask);
6588 free_cpumask_var(new_mask);
6589 return retval;
6592 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6594 struct task_struct *p;
6595 int retval;
6597 get_online_cpus();
6598 read_lock(&tasklist_lock);
6600 retval = -ESRCH;
6601 p = find_process_by_pid(pid);
6602 if (!p)
6603 goto out_unlock;
6605 retval = security_task_getscheduler(p);
6606 if (retval)
6607 goto out_unlock;
6609 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6611 out_unlock:
6612 read_unlock(&tasklist_lock);
6613 put_online_cpus();
6615 return retval;
6619 * sys_sched_getaffinity - get the cpu affinity of a process
6620 * @pid: pid of the process
6621 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6622 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6624 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6625 unsigned long __user *, user_mask_ptr)
6627 int ret;
6628 cpumask_var_t mask;
6630 if (len < cpumask_size())
6631 return -EINVAL;
6633 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6634 return -ENOMEM;
6636 ret = sched_getaffinity(pid, mask);
6637 if (ret == 0) {
6638 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6639 ret = -EFAULT;
6640 else
6641 ret = cpumask_size();
6643 free_cpumask_var(mask);
6645 return ret;
6649 * sys_sched_yield - yield the current processor to other threads.
6651 * This function yields the current CPU to other tasks. If there are no
6652 * other threads running on this CPU then this function will return.
6654 SYSCALL_DEFINE0(sched_yield)
6656 struct rq *rq = this_rq_lock();
6658 schedstat_inc(rq, yld_count);
6659 current->sched_class->yield_task(rq);
6662 * Since we are going to call schedule() anyway, there's
6663 * no need to preempt or enable interrupts:
6665 __release(rq->lock);
6666 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6667 _raw_spin_unlock(&rq->lock);
6668 preempt_enable_no_resched();
6670 schedule();
6672 return 0;
6675 static inline int should_resched(void)
6677 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6680 static void __cond_resched(void)
6682 add_preempt_count(PREEMPT_ACTIVE);
6683 schedule();
6684 sub_preempt_count(PREEMPT_ACTIVE);
6687 int __sched _cond_resched(void)
6689 if (should_resched()) {
6690 __cond_resched();
6691 return 1;
6693 return 0;
6695 EXPORT_SYMBOL(_cond_resched);
6698 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6699 * call schedule, and on return reacquire the lock.
6701 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6702 * operations here to prevent schedule() from being called twice (once via
6703 * spin_unlock(), once by hand).
6705 int __cond_resched_lock(spinlock_t *lock)
6707 int resched = should_resched();
6708 int ret = 0;
6710 lockdep_assert_held(lock);
6712 if (spin_needbreak(lock) || resched) {
6713 spin_unlock(lock);
6714 if (resched)
6715 __cond_resched();
6716 else
6717 cpu_relax();
6718 ret = 1;
6719 spin_lock(lock);
6721 return ret;
6723 EXPORT_SYMBOL(__cond_resched_lock);
6725 int __sched __cond_resched_softirq(void)
6727 BUG_ON(!in_softirq());
6729 if (should_resched()) {
6730 local_bh_enable();
6731 __cond_resched();
6732 local_bh_disable();
6733 return 1;
6735 return 0;
6737 EXPORT_SYMBOL(__cond_resched_softirq);
6740 * yield - yield the current processor to other threads.
6742 * This is a shortcut for kernel-space yielding - it marks the
6743 * thread runnable and calls sys_sched_yield().
6745 void __sched yield(void)
6747 set_current_state(TASK_RUNNING);
6748 sys_sched_yield();
6750 EXPORT_SYMBOL(yield);
6753 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6754 * that process accounting knows that this is a task in IO wait state.
6756 void __sched io_schedule(void)
6758 struct rq *rq = raw_rq();
6760 delayacct_blkio_start();
6761 atomic_inc(&rq->nr_iowait);
6762 current->in_iowait = 1;
6763 schedule();
6764 current->in_iowait = 0;
6765 atomic_dec(&rq->nr_iowait);
6766 delayacct_blkio_end();
6768 EXPORT_SYMBOL(io_schedule);
6770 long __sched io_schedule_timeout(long timeout)
6772 struct rq *rq = raw_rq();
6773 long ret;
6775 delayacct_blkio_start();
6776 atomic_inc(&rq->nr_iowait);
6777 current->in_iowait = 1;
6778 ret = schedule_timeout(timeout);
6779 current->in_iowait = 0;
6780 atomic_dec(&rq->nr_iowait);
6781 delayacct_blkio_end();
6782 return ret;
6786 * sys_sched_get_priority_max - return maximum RT priority.
6787 * @policy: scheduling class.
6789 * this syscall returns the maximum rt_priority that can be used
6790 * by a given scheduling class.
6792 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6794 int ret = -EINVAL;
6796 switch (policy) {
6797 case SCHED_FIFO:
6798 case SCHED_RR:
6799 ret = MAX_USER_RT_PRIO-1;
6800 break;
6801 case SCHED_NORMAL:
6802 case SCHED_BATCH:
6803 case SCHED_IDLE:
6804 ret = 0;
6805 break;
6807 return ret;
6811 * sys_sched_get_priority_min - return minimum RT priority.
6812 * @policy: scheduling class.
6814 * this syscall returns the minimum rt_priority that can be used
6815 * by a given scheduling class.
6817 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6819 int ret = -EINVAL;
6821 switch (policy) {
6822 case SCHED_FIFO:
6823 case SCHED_RR:
6824 ret = 1;
6825 break;
6826 case SCHED_NORMAL:
6827 case SCHED_BATCH:
6828 case SCHED_IDLE:
6829 ret = 0;
6831 return ret;
6835 * sys_sched_rr_get_interval - return the default timeslice of a process.
6836 * @pid: pid of the process.
6837 * @interval: userspace pointer to the timeslice value.
6839 * this syscall writes the default timeslice value of a given process
6840 * into the user-space timespec buffer. A value of '0' means infinity.
6842 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6843 struct timespec __user *, interval)
6845 struct task_struct *p;
6846 unsigned int time_slice;
6847 int retval;
6848 struct timespec t;
6850 if (pid < 0)
6851 return -EINVAL;
6853 retval = -ESRCH;
6854 read_lock(&tasklist_lock);
6855 p = find_process_by_pid(pid);
6856 if (!p)
6857 goto out_unlock;
6859 retval = security_task_getscheduler(p);
6860 if (retval)
6861 goto out_unlock;
6863 time_slice = p->sched_class->get_rr_interval(p);
6865 read_unlock(&tasklist_lock);
6866 jiffies_to_timespec(time_slice, &t);
6867 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6868 return retval;
6870 out_unlock:
6871 read_unlock(&tasklist_lock);
6872 return retval;
6875 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6877 void sched_show_task(struct task_struct *p)
6879 unsigned long free = 0;
6880 unsigned state;
6882 state = p->state ? __ffs(p->state) + 1 : 0;
6883 printk(KERN_INFO "%-13.13s %c", p->comm,
6884 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6885 #if BITS_PER_LONG == 32
6886 if (state == TASK_RUNNING)
6887 printk(KERN_CONT " running ");
6888 else
6889 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6890 #else
6891 if (state == TASK_RUNNING)
6892 printk(KERN_CONT " running task ");
6893 else
6894 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6895 #endif
6896 #ifdef CONFIG_DEBUG_STACK_USAGE
6897 free = stack_not_used(p);
6898 #endif
6899 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6900 task_pid_nr(p), task_pid_nr(p->real_parent),
6901 (unsigned long)task_thread_info(p)->flags);
6903 show_stack(p, NULL);
6906 void show_state_filter(unsigned long state_filter)
6908 struct task_struct *g, *p;
6910 #if BITS_PER_LONG == 32
6911 printk(KERN_INFO
6912 " task PC stack pid father\n");
6913 #else
6914 printk(KERN_INFO
6915 " task PC stack pid father\n");
6916 #endif
6917 read_lock(&tasklist_lock);
6918 do_each_thread(g, p) {
6920 * reset the NMI-timeout, listing all files on a slow
6921 * console might take alot of time:
6923 touch_nmi_watchdog();
6924 if (!state_filter || (p->state & state_filter))
6925 sched_show_task(p);
6926 } while_each_thread(g, p);
6928 touch_all_softlockup_watchdogs();
6930 #ifdef CONFIG_SCHED_DEBUG
6931 sysrq_sched_debug_show();
6932 #endif
6933 read_unlock(&tasklist_lock);
6935 * Only show locks if all tasks are dumped:
6937 if (state_filter == -1)
6938 debug_show_all_locks();
6941 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6943 idle->sched_class = &idle_sched_class;
6947 * init_idle - set up an idle thread for a given CPU
6948 * @idle: task in question
6949 * @cpu: cpu the idle task belongs to
6951 * NOTE: this function does not set the idle thread's NEED_RESCHED
6952 * flag, to make booting more robust.
6954 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6956 struct rq *rq = cpu_rq(cpu);
6957 unsigned long flags;
6959 spin_lock_irqsave(&rq->lock, flags);
6961 __sched_fork(idle);
6962 idle->se.exec_start = sched_clock();
6964 idle->prio = idle->normal_prio = MAX_PRIO;
6965 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6966 __set_task_cpu(idle, cpu);
6968 rq->curr = rq->idle = idle;
6969 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6970 idle->oncpu = 1;
6971 #endif
6972 spin_unlock_irqrestore(&rq->lock, flags);
6974 /* Set the preempt count _outside_ the spinlocks! */
6975 #if defined(CONFIG_PREEMPT)
6976 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6977 #else
6978 task_thread_info(idle)->preempt_count = 0;
6979 #endif
6981 * The idle tasks have their own, simple scheduling class:
6983 idle->sched_class = &idle_sched_class;
6984 ftrace_graph_init_task(idle);
6988 * In a system that switches off the HZ timer nohz_cpu_mask
6989 * indicates which cpus entered this state. This is used
6990 * in the rcu update to wait only for active cpus. For system
6991 * which do not switch off the HZ timer nohz_cpu_mask should
6992 * always be CPU_BITS_NONE.
6994 cpumask_var_t nohz_cpu_mask;
6997 * Increase the granularity value when there are more CPUs,
6998 * because with more CPUs the 'effective latency' as visible
6999 * to users decreases. But the relationship is not linear,
7000 * so pick a second-best guess by going with the log2 of the
7001 * number of CPUs.
7003 * This idea comes from the SD scheduler of Con Kolivas:
7005 static inline void sched_init_granularity(void)
7007 unsigned int factor = 1 + ilog2(num_online_cpus());
7008 const unsigned long limit = 200000000;
7010 sysctl_sched_min_granularity *= factor;
7011 if (sysctl_sched_min_granularity > limit)
7012 sysctl_sched_min_granularity = limit;
7014 sysctl_sched_latency *= factor;
7015 if (sysctl_sched_latency > limit)
7016 sysctl_sched_latency = limit;
7018 sysctl_sched_wakeup_granularity *= factor;
7020 sysctl_sched_shares_ratelimit *= factor;
7023 #ifdef CONFIG_SMP
7025 * This is how migration works:
7027 * 1) we queue a struct migration_req structure in the source CPU's
7028 * runqueue and wake up that CPU's migration thread.
7029 * 2) we down() the locked semaphore => thread blocks.
7030 * 3) migration thread wakes up (implicitly it forces the migrated
7031 * thread off the CPU)
7032 * 4) it gets the migration request and checks whether the migrated
7033 * task is still in the wrong runqueue.
7034 * 5) if it's in the wrong runqueue then the migration thread removes
7035 * it and puts it into the right queue.
7036 * 6) migration thread up()s the semaphore.
7037 * 7) we wake up and the migration is done.
7041 * Change a given task's CPU affinity. Migrate the thread to a
7042 * proper CPU and schedule it away if the CPU it's executing on
7043 * is removed from the allowed bitmask.
7045 * NOTE: the caller must have a valid reference to the task, the
7046 * task must not exit() & deallocate itself prematurely. The
7047 * call is not atomic; no spinlocks may be held.
7049 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7051 struct migration_req req;
7052 unsigned long flags;
7053 struct rq *rq;
7054 int ret = 0;
7056 rq = task_rq_lock(p, &flags);
7057 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7058 ret = -EINVAL;
7059 goto out;
7062 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7063 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7064 ret = -EINVAL;
7065 goto out;
7068 if (p->sched_class->set_cpus_allowed)
7069 p->sched_class->set_cpus_allowed(p, new_mask);
7070 else {
7071 cpumask_copy(&p->cpus_allowed, new_mask);
7072 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7075 /* Can the task run on the task's current CPU? If so, we're done */
7076 if (cpumask_test_cpu(task_cpu(p), new_mask))
7077 goto out;
7079 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7080 /* Need help from migration thread: drop lock and wait. */
7081 struct task_struct *mt = rq->migration_thread;
7083 get_task_struct(mt);
7084 task_rq_unlock(rq, &flags);
7085 wake_up_process(rq->migration_thread);
7086 put_task_struct(mt);
7087 wait_for_completion(&req.done);
7088 tlb_migrate_finish(p->mm);
7089 return 0;
7091 out:
7092 task_rq_unlock(rq, &flags);
7094 return ret;
7096 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7099 * Move (not current) task off this cpu, onto dest cpu. We're doing
7100 * this because either it can't run here any more (set_cpus_allowed()
7101 * away from this CPU, or CPU going down), or because we're
7102 * attempting to rebalance this task on exec (sched_exec).
7104 * So we race with normal scheduler movements, but that's OK, as long
7105 * as the task is no longer on this CPU.
7107 * Returns non-zero if task was successfully migrated.
7109 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7111 struct rq *rq_dest, *rq_src;
7112 int ret = 0, on_rq;
7114 if (unlikely(!cpu_active(dest_cpu)))
7115 return ret;
7117 rq_src = cpu_rq(src_cpu);
7118 rq_dest = cpu_rq(dest_cpu);
7120 double_rq_lock(rq_src, rq_dest);
7121 /* Already moved. */
7122 if (task_cpu(p) != src_cpu)
7123 goto done;
7124 /* Affinity changed (again). */
7125 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7126 goto fail;
7128 on_rq = p->se.on_rq;
7129 if (on_rq)
7130 deactivate_task(rq_src, p, 0);
7132 set_task_cpu(p, dest_cpu);
7133 if (on_rq) {
7134 activate_task(rq_dest, p, 0);
7135 check_preempt_curr(rq_dest, p, 0);
7137 done:
7138 ret = 1;
7139 fail:
7140 double_rq_unlock(rq_src, rq_dest);
7141 return ret;
7144 #define RCU_MIGRATION_IDLE 0
7145 #define RCU_MIGRATION_NEED_QS 1
7146 #define RCU_MIGRATION_GOT_QS 2
7147 #define RCU_MIGRATION_MUST_SYNC 3
7150 * migration_thread - this is a highprio system thread that performs
7151 * thread migration by bumping thread off CPU then 'pushing' onto
7152 * another runqueue.
7154 static int migration_thread(void *data)
7156 int badcpu;
7157 int cpu = (long)data;
7158 struct rq *rq;
7160 rq = cpu_rq(cpu);
7161 BUG_ON(rq->migration_thread != current);
7163 set_current_state(TASK_INTERRUPTIBLE);
7164 while (!kthread_should_stop()) {
7165 struct migration_req *req;
7166 struct list_head *head;
7168 spin_lock_irq(&rq->lock);
7170 if (cpu_is_offline(cpu)) {
7171 spin_unlock_irq(&rq->lock);
7172 break;
7175 if (rq->active_balance) {
7176 active_load_balance(rq, cpu);
7177 rq->active_balance = 0;
7180 head = &rq->migration_queue;
7182 if (list_empty(head)) {
7183 spin_unlock_irq(&rq->lock);
7184 schedule();
7185 set_current_state(TASK_INTERRUPTIBLE);
7186 continue;
7188 req = list_entry(head->next, struct migration_req, list);
7189 list_del_init(head->next);
7191 if (req->task != NULL) {
7192 spin_unlock(&rq->lock);
7193 __migrate_task(req->task, cpu, req->dest_cpu);
7194 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7195 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7196 spin_unlock(&rq->lock);
7197 } else {
7198 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7199 spin_unlock(&rq->lock);
7200 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7202 local_irq_enable();
7204 complete(&req->done);
7206 __set_current_state(TASK_RUNNING);
7208 return 0;
7211 #ifdef CONFIG_HOTPLUG_CPU
7213 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7215 int ret;
7217 local_irq_disable();
7218 ret = __migrate_task(p, src_cpu, dest_cpu);
7219 local_irq_enable();
7220 return ret;
7224 * Figure out where task on dead CPU should go, use force if necessary.
7226 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7228 int dest_cpu;
7229 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7231 again:
7232 /* Look for allowed, online CPU in same node. */
7233 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7234 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7235 goto move;
7237 /* Any allowed, online CPU? */
7238 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7239 if (dest_cpu < nr_cpu_ids)
7240 goto move;
7242 /* No more Mr. Nice Guy. */
7243 if (dest_cpu >= nr_cpu_ids) {
7244 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7245 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7248 * Don't tell them about moving exiting tasks or
7249 * kernel threads (both mm NULL), since they never
7250 * leave kernel.
7252 if (p->mm && printk_ratelimit()) {
7253 printk(KERN_INFO "process %d (%s) no "
7254 "longer affine to cpu%d\n",
7255 task_pid_nr(p), p->comm, dead_cpu);
7259 move:
7260 /* It can have affinity changed while we were choosing. */
7261 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7262 goto again;
7266 * While a dead CPU has no uninterruptible tasks queued at this point,
7267 * it might still have a nonzero ->nr_uninterruptible counter, because
7268 * for performance reasons the counter is not stricly tracking tasks to
7269 * their home CPUs. So we just add the counter to another CPU's counter,
7270 * to keep the global sum constant after CPU-down:
7272 static void migrate_nr_uninterruptible(struct rq *rq_src)
7274 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7275 unsigned long flags;
7277 local_irq_save(flags);
7278 double_rq_lock(rq_src, rq_dest);
7279 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7280 rq_src->nr_uninterruptible = 0;
7281 double_rq_unlock(rq_src, rq_dest);
7282 local_irq_restore(flags);
7285 /* Run through task list and migrate tasks from the dead cpu. */
7286 static void migrate_live_tasks(int src_cpu)
7288 struct task_struct *p, *t;
7290 read_lock(&tasklist_lock);
7292 do_each_thread(t, p) {
7293 if (p == current)
7294 continue;
7296 if (task_cpu(p) == src_cpu)
7297 move_task_off_dead_cpu(src_cpu, p);
7298 } while_each_thread(t, p);
7300 read_unlock(&tasklist_lock);
7304 * Schedules idle task to be the next runnable task on current CPU.
7305 * It does so by boosting its priority to highest possible.
7306 * Used by CPU offline code.
7308 void sched_idle_next(void)
7310 int this_cpu = smp_processor_id();
7311 struct rq *rq = cpu_rq(this_cpu);
7312 struct task_struct *p = rq->idle;
7313 unsigned long flags;
7315 /* cpu has to be offline */
7316 BUG_ON(cpu_online(this_cpu));
7319 * Strictly not necessary since rest of the CPUs are stopped by now
7320 * and interrupts disabled on the current cpu.
7322 spin_lock_irqsave(&rq->lock, flags);
7324 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7326 update_rq_clock(rq);
7327 activate_task(rq, p, 0);
7329 spin_unlock_irqrestore(&rq->lock, flags);
7333 * Ensures that the idle task is using init_mm right before its cpu goes
7334 * offline.
7336 void idle_task_exit(void)
7338 struct mm_struct *mm = current->active_mm;
7340 BUG_ON(cpu_online(smp_processor_id()));
7342 if (mm != &init_mm)
7343 switch_mm(mm, &init_mm, current);
7344 mmdrop(mm);
7347 /* called under rq->lock with disabled interrupts */
7348 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7350 struct rq *rq = cpu_rq(dead_cpu);
7352 /* Must be exiting, otherwise would be on tasklist. */
7353 BUG_ON(!p->exit_state);
7355 /* Cannot have done final schedule yet: would have vanished. */
7356 BUG_ON(p->state == TASK_DEAD);
7358 get_task_struct(p);
7361 * Drop lock around migration; if someone else moves it,
7362 * that's OK. No task can be added to this CPU, so iteration is
7363 * fine.
7365 spin_unlock_irq(&rq->lock);
7366 move_task_off_dead_cpu(dead_cpu, p);
7367 spin_lock_irq(&rq->lock);
7369 put_task_struct(p);
7372 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7373 static void migrate_dead_tasks(unsigned int dead_cpu)
7375 struct rq *rq = cpu_rq(dead_cpu);
7376 struct task_struct *next;
7378 for ( ; ; ) {
7379 if (!rq->nr_running)
7380 break;
7381 update_rq_clock(rq);
7382 next = pick_next_task(rq);
7383 if (!next)
7384 break;
7385 next->sched_class->put_prev_task(rq, next);
7386 migrate_dead(dead_cpu, next);
7392 * remove the tasks which were accounted by rq from calc_load_tasks.
7394 static void calc_global_load_remove(struct rq *rq)
7396 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7397 rq->calc_load_active = 0;
7399 #endif /* CONFIG_HOTPLUG_CPU */
7401 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7403 static struct ctl_table sd_ctl_dir[] = {
7405 .procname = "sched_domain",
7406 .mode = 0555,
7408 {0, },
7411 static struct ctl_table sd_ctl_root[] = {
7413 .ctl_name = CTL_KERN,
7414 .procname = "kernel",
7415 .mode = 0555,
7416 .child = sd_ctl_dir,
7418 {0, },
7421 static struct ctl_table *sd_alloc_ctl_entry(int n)
7423 struct ctl_table *entry =
7424 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7426 return entry;
7429 static void sd_free_ctl_entry(struct ctl_table **tablep)
7431 struct ctl_table *entry;
7434 * In the intermediate directories, both the child directory and
7435 * procname are dynamically allocated and could fail but the mode
7436 * will always be set. In the lowest directory the names are
7437 * static strings and all have proc handlers.
7439 for (entry = *tablep; entry->mode; entry++) {
7440 if (entry->child)
7441 sd_free_ctl_entry(&entry->child);
7442 if (entry->proc_handler == NULL)
7443 kfree(entry->procname);
7446 kfree(*tablep);
7447 *tablep = NULL;
7450 static void
7451 set_table_entry(struct ctl_table *entry,
7452 const char *procname, void *data, int maxlen,
7453 mode_t mode, proc_handler *proc_handler)
7455 entry->procname = procname;
7456 entry->data = data;
7457 entry->maxlen = maxlen;
7458 entry->mode = mode;
7459 entry->proc_handler = proc_handler;
7462 static struct ctl_table *
7463 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7465 struct ctl_table *table = sd_alloc_ctl_entry(13);
7467 if (table == NULL)
7468 return NULL;
7470 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7471 sizeof(long), 0644, proc_doulongvec_minmax);
7472 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7473 sizeof(long), 0644, proc_doulongvec_minmax);
7474 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7475 sizeof(int), 0644, proc_dointvec_minmax);
7476 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7477 sizeof(int), 0644, proc_dointvec_minmax);
7478 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7479 sizeof(int), 0644, proc_dointvec_minmax);
7480 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7481 sizeof(int), 0644, proc_dointvec_minmax);
7482 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7483 sizeof(int), 0644, proc_dointvec_minmax);
7484 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7485 sizeof(int), 0644, proc_dointvec_minmax);
7486 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7487 sizeof(int), 0644, proc_dointvec_minmax);
7488 set_table_entry(&table[9], "cache_nice_tries",
7489 &sd->cache_nice_tries,
7490 sizeof(int), 0644, proc_dointvec_minmax);
7491 set_table_entry(&table[10], "flags", &sd->flags,
7492 sizeof(int), 0644, proc_dointvec_minmax);
7493 set_table_entry(&table[11], "name", sd->name,
7494 CORENAME_MAX_SIZE, 0444, proc_dostring);
7495 /* &table[12] is terminator */
7497 return table;
7500 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7502 struct ctl_table *entry, *table;
7503 struct sched_domain *sd;
7504 int domain_num = 0, i;
7505 char buf[32];
7507 for_each_domain(cpu, sd)
7508 domain_num++;
7509 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7510 if (table == NULL)
7511 return NULL;
7513 i = 0;
7514 for_each_domain(cpu, sd) {
7515 snprintf(buf, 32, "domain%d", i);
7516 entry->procname = kstrdup(buf, GFP_KERNEL);
7517 entry->mode = 0555;
7518 entry->child = sd_alloc_ctl_domain_table(sd);
7519 entry++;
7520 i++;
7522 return table;
7525 static struct ctl_table_header *sd_sysctl_header;
7526 static void register_sched_domain_sysctl(void)
7528 int i, cpu_num = num_online_cpus();
7529 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7530 char buf[32];
7532 WARN_ON(sd_ctl_dir[0].child);
7533 sd_ctl_dir[0].child = entry;
7535 if (entry == NULL)
7536 return;
7538 for_each_online_cpu(i) {
7539 snprintf(buf, 32, "cpu%d", i);
7540 entry->procname = kstrdup(buf, GFP_KERNEL);
7541 entry->mode = 0555;
7542 entry->child = sd_alloc_ctl_cpu_table(i);
7543 entry++;
7546 WARN_ON(sd_sysctl_header);
7547 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7550 /* may be called multiple times per register */
7551 static void unregister_sched_domain_sysctl(void)
7553 if (sd_sysctl_header)
7554 unregister_sysctl_table(sd_sysctl_header);
7555 sd_sysctl_header = NULL;
7556 if (sd_ctl_dir[0].child)
7557 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7559 #else
7560 static void register_sched_domain_sysctl(void)
7563 static void unregister_sched_domain_sysctl(void)
7566 #endif
7568 static void set_rq_online(struct rq *rq)
7570 if (!rq->online) {
7571 const struct sched_class *class;
7573 cpumask_set_cpu(rq->cpu, rq->rd->online);
7574 rq->online = 1;
7576 for_each_class(class) {
7577 if (class->rq_online)
7578 class->rq_online(rq);
7583 static void set_rq_offline(struct rq *rq)
7585 if (rq->online) {
7586 const struct sched_class *class;
7588 for_each_class(class) {
7589 if (class->rq_offline)
7590 class->rq_offline(rq);
7593 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7594 rq->online = 0;
7599 * migration_call - callback that gets triggered when a CPU is added.
7600 * Here we can start up the necessary migration thread for the new CPU.
7602 static int __cpuinit
7603 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7605 struct task_struct *p;
7606 int cpu = (long)hcpu;
7607 unsigned long flags;
7608 struct rq *rq;
7610 switch (action) {
7612 case CPU_UP_PREPARE:
7613 case CPU_UP_PREPARE_FROZEN:
7614 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7615 if (IS_ERR(p))
7616 return NOTIFY_BAD;
7617 kthread_bind(p, cpu);
7618 /* Must be high prio: stop_machine expects to yield to it. */
7619 rq = task_rq_lock(p, &flags);
7620 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7621 task_rq_unlock(rq, &flags);
7622 get_task_struct(p);
7623 cpu_rq(cpu)->migration_thread = p;
7624 rq->calc_load_update = calc_load_update;
7625 break;
7627 case CPU_ONLINE:
7628 case CPU_ONLINE_FROZEN:
7629 /* Strictly unnecessary, as first user will wake it. */
7630 wake_up_process(cpu_rq(cpu)->migration_thread);
7632 /* Update our root-domain */
7633 rq = cpu_rq(cpu);
7634 spin_lock_irqsave(&rq->lock, flags);
7635 if (rq->rd) {
7636 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7638 set_rq_online(rq);
7640 spin_unlock_irqrestore(&rq->lock, flags);
7641 break;
7643 #ifdef CONFIG_HOTPLUG_CPU
7644 case CPU_UP_CANCELED:
7645 case CPU_UP_CANCELED_FROZEN:
7646 if (!cpu_rq(cpu)->migration_thread)
7647 break;
7648 /* Unbind it from offline cpu so it can run. Fall thru. */
7649 kthread_bind(cpu_rq(cpu)->migration_thread,
7650 cpumask_any(cpu_online_mask));
7651 kthread_stop(cpu_rq(cpu)->migration_thread);
7652 put_task_struct(cpu_rq(cpu)->migration_thread);
7653 cpu_rq(cpu)->migration_thread = NULL;
7654 break;
7656 case CPU_DEAD:
7657 case CPU_DEAD_FROZEN:
7658 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7659 migrate_live_tasks(cpu);
7660 rq = cpu_rq(cpu);
7661 kthread_stop(rq->migration_thread);
7662 put_task_struct(rq->migration_thread);
7663 rq->migration_thread = NULL;
7664 /* Idle task back to normal (off runqueue, low prio) */
7665 spin_lock_irq(&rq->lock);
7666 update_rq_clock(rq);
7667 deactivate_task(rq, rq->idle, 0);
7668 rq->idle->static_prio = MAX_PRIO;
7669 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7670 rq->idle->sched_class = &idle_sched_class;
7671 migrate_dead_tasks(cpu);
7672 spin_unlock_irq(&rq->lock);
7673 cpuset_unlock();
7674 migrate_nr_uninterruptible(rq);
7675 BUG_ON(rq->nr_running != 0);
7676 calc_global_load_remove(rq);
7678 * No need to migrate the tasks: it was best-effort if
7679 * they didn't take sched_hotcpu_mutex. Just wake up
7680 * the requestors.
7682 spin_lock_irq(&rq->lock);
7683 while (!list_empty(&rq->migration_queue)) {
7684 struct migration_req *req;
7686 req = list_entry(rq->migration_queue.next,
7687 struct migration_req, list);
7688 list_del_init(&req->list);
7689 spin_unlock_irq(&rq->lock);
7690 complete(&req->done);
7691 spin_lock_irq(&rq->lock);
7693 spin_unlock_irq(&rq->lock);
7694 break;
7696 case CPU_DYING:
7697 case CPU_DYING_FROZEN:
7698 /* Update our root-domain */
7699 rq = cpu_rq(cpu);
7700 spin_lock_irqsave(&rq->lock, flags);
7701 if (rq->rd) {
7702 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7703 set_rq_offline(rq);
7705 spin_unlock_irqrestore(&rq->lock, flags);
7706 break;
7707 #endif
7709 return NOTIFY_OK;
7713 * Register at high priority so that task migration (migrate_all_tasks)
7714 * happens before everything else. This has to be lower priority than
7715 * the notifier in the perf_event subsystem, though.
7717 static struct notifier_block __cpuinitdata migration_notifier = {
7718 .notifier_call = migration_call,
7719 .priority = 10
7722 static int __init migration_init(void)
7724 void *cpu = (void *)(long)smp_processor_id();
7725 int err;
7727 /* Start one for the boot CPU: */
7728 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7729 BUG_ON(err == NOTIFY_BAD);
7730 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7731 register_cpu_notifier(&migration_notifier);
7733 return 0;
7735 early_initcall(migration_init);
7736 #endif
7738 #ifdef CONFIG_SMP
7740 #ifdef CONFIG_SCHED_DEBUG
7742 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7743 struct cpumask *groupmask)
7745 struct sched_group *group = sd->groups;
7746 char str[256];
7748 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7749 cpumask_clear(groupmask);
7751 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7753 if (!(sd->flags & SD_LOAD_BALANCE)) {
7754 printk("does not load-balance\n");
7755 if (sd->parent)
7756 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7757 " has parent");
7758 return -1;
7761 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7763 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7764 printk(KERN_ERR "ERROR: domain->span does not contain "
7765 "CPU%d\n", cpu);
7767 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7768 printk(KERN_ERR "ERROR: domain->groups does not contain"
7769 " CPU%d\n", cpu);
7772 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7773 do {
7774 if (!group) {
7775 printk("\n");
7776 printk(KERN_ERR "ERROR: group is NULL\n");
7777 break;
7780 if (!group->cpu_power) {
7781 printk(KERN_CONT "\n");
7782 printk(KERN_ERR "ERROR: domain->cpu_power not "
7783 "set\n");
7784 break;
7787 if (!cpumask_weight(sched_group_cpus(group))) {
7788 printk(KERN_CONT "\n");
7789 printk(KERN_ERR "ERROR: empty group\n");
7790 break;
7793 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7794 printk(KERN_CONT "\n");
7795 printk(KERN_ERR "ERROR: repeated CPUs\n");
7796 break;
7799 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7801 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7803 printk(KERN_CONT " %s", str);
7804 if (group->cpu_power != SCHED_LOAD_SCALE) {
7805 printk(KERN_CONT " (cpu_power = %d)",
7806 group->cpu_power);
7809 group = group->next;
7810 } while (group != sd->groups);
7811 printk(KERN_CONT "\n");
7813 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7814 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7816 if (sd->parent &&
7817 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7818 printk(KERN_ERR "ERROR: parent span is not a superset "
7819 "of domain->span\n");
7820 return 0;
7823 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7825 cpumask_var_t groupmask;
7826 int level = 0;
7828 if (!sd) {
7829 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7830 return;
7833 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7835 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7836 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7837 return;
7840 for (;;) {
7841 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7842 break;
7843 level++;
7844 sd = sd->parent;
7845 if (!sd)
7846 break;
7848 free_cpumask_var(groupmask);
7850 #else /* !CONFIG_SCHED_DEBUG */
7851 # define sched_domain_debug(sd, cpu) do { } while (0)
7852 #endif /* CONFIG_SCHED_DEBUG */
7854 static int sd_degenerate(struct sched_domain *sd)
7856 if (cpumask_weight(sched_domain_span(sd)) == 1)
7857 return 1;
7859 /* Following flags need at least 2 groups */
7860 if (sd->flags & (SD_LOAD_BALANCE |
7861 SD_BALANCE_NEWIDLE |
7862 SD_BALANCE_FORK |
7863 SD_BALANCE_EXEC |
7864 SD_SHARE_CPUPOWER |
7865 SD_SHARE_PKG_RESOURCES)) {
7866 if (sd->groups != sd->groups->next)
7867 return 0;
7870 /* Following flags don't use groups */
7871 if (sd->flags & (SD_WAKE_AFFINE))
7872 return 0;
7874 return 1;
7877 static int
7878 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7880 unsigned long cflags = sd->flags, pflags = parent->flags;
7882 if (sd_degenerate(parent))
7883 return 1;
7885 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7886 return 0;
7888 /* Flags needing groups don't count if only 1 group in parent */
7889 if (parent->groups == parent->groups->next) {
7890 pflags &= ~(SD_LOAD_BALANCE |
7891 SD_BALANCE_NEWIDLE |
7892 SD_BALANCE_FORK |
7893 SD_BALANCE_EXEC |
7894 SD_SHARE_CPUPOWER |
7895 SD_SHARE_PKG_RESOURCES);
7896 if (nr_node_ids == 1)
7897 pflags &= ~SD_SERIALIZE;
7899 if (~cflags & pflags)
7900 return 0;
7902 return 1;
7905 static void free_rootdomain(struct root_domain *rd)
7907 cpupri_cleanup(&rd->cpupri);
7909 free_cpumask_var(rd->rto_mask);
7910 free_cpumask_var(rd->online);
7911 free_cpumask_var(rd->span);
7912 kfree(rd);
7915 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7917 struct root_domain *old_rd = NULL;
7918 unsigned long flags;
7920 spin_lock_irqsave(&rq->lock, flags);
7922 if (rq->rd) {
7923 old_rd = rq->rd;
7925 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7926 set_rq_offline(rq);
7928 cpumask_clear_cpu(rq->cpu, old_rd->span);
7931 * If we dont want to free the old_rt yet then
7932 * set old_rd to NULL to skip the freeing later
7933 * in this function:
7935 if (!atomic_dec_and_test(&old_rd->refcount))
7936 old_rd = NULL;
7939 atomic_inc(&rd->refcount);
7940 rq->rd = rd;
7942 cpumask_set_cpu(rq->cpu, rd->span);
7943 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7944 set_rq_online(rq);
7946 spin_unlock_irqrestore(&rq->lock, flags);
7948 if (old_rd)
7949 free_rootdomain(old_rd);
7952 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7954 gfp_t gfp = GFP_KERNEL;
7956 memset(rd, 0, sizeof(*rd));
7958 if (bootmem)
7959 gfp = GFP_NOWAIT;
7961 if (!alloc_cpumask_var(&rd->span, gfp))
7962 goto out;
7963 if (!alloc_cpumask_var(&rd->online, gfp))
7964 goto free_span;
7965 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7966 goto free_online;
7968 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7969 goto free_rto_mask;
7970 return 0;
7972 free_rto_mask:
7973 free_cpumask_var(rd->rto_mask);
7974 free_online:
7975 free_cpumask_var(rd->online);
7976 free_span:
7977 free_cpumask_var(rd->span);
7978 out:
7979 return -ENOMEM;
7982 static void init_defrootdomain(void)
7984 init_rootdomain(&def_root_domain, true);
7986 atomic_set(&def_root_domain.refcount, 1);
7989 static struct root_domain *alloc_rootdomain(void)
7991 struct root_domain *rd;
7993 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7994 if (!rd)
7995 return NULL;
7997 if (init_rootdomain(rd, false) != 0) {
7998 kfree(rd);
7999 return NULL;
8002 return rd;
8006 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8007 * hold the hotplug lock.
8009 static void
8010 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8012 struct rq *rq = cpu_rq(cpu);
8013 struct sched_domain *tmp;
8015 /* Remove the sched domains which do not contribute to scheduling. */
8016 for (tmp = sd; tmp; ) {
8017 struct sched_domain *parent = tmp->parent;
8018 if (!parent)
8019 break;
8021 if (sd_parent_degenerate(tmp, parent)) {
8022 tmp->parent = parent->parent;
8023 if (parent->parent)
8024 parent->parent->child = tmp;
8025 } else
8026 tmp = tmp->parent;
8029 if (sd && sd_degenerate(sd)) {
8030 sd = sd->parent;
8031 if (sd)
8032 sd->child = NULL;
8035 sched_domain_debug(sd, cpu);
8037 rq_attach_root(rq, rd);
8038 rcu_assign_pointer(rq->sd, sd);
8041 /* cpus with isolated domains */
8042 static cpumask_var_t cpu_isolated_map;
8044 /* Setup the mask of cpus configured for isolated domains */
8045 static int __init isolated_cpu_setup(char *str)
8047 cpulist_parse(str, cpu_isolated_map);
8048 return 1;
8051 __setup("isolcpus=", isolated_cpu_setup);
8054 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8055 * to a function which identifies what group(along with sched group) a CPU
8056 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8057 * (due to the fact that we keep track of groups covered with a struct cpumask).
8059 * init_sched_build_groups will build a circular linked list of the groups
8060 * covered by the given span, and will set each group's ->cpumask correctly,
8061 * and ->cpu_power to 0.
8063 static void
8064 init_sched_build_groups(const struct cpumask *span,
8065 const struct cpumask *cpu_map,
8066 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8067 struct sched_group **sg,
8068 struct cpumask *tmpmask),
8069 struct cpumask *covered, struct cpumask *tmpmask)
8071 struct sched_group *first = NULL, *last = NULL;
8072 int i;
8074 cpumask_clear(covered);
8076 for_each_cpu(i, span) {
8077 struct sched_group *sg;
8078 int group = group_fn(i, cpu_map, &sg, tmpmask);
8079 int j;
8081 if (cpumask_test_cpu(i, covered))
8082 continue;
8084 cpumask_clear(sched_group_cpus(sg));
8085 sg->cpu_power = 0;
8087 for_each_cpu(j, span) {
8088 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8089 continue;
8091 cpumask_set_cpu(j, covered);
8092 cpumask_set_cpu(j, sched_group_cpus(sg));
8094 if (!first)
8095 first = sg;
8096 if (last)
8097 last->next = sg;
8098 last = sg;
8100 last->next = first;
8103 #define SD_NODES_PER_DOMAIN 16
8105 #ifdef CONFIG_NUMA
8108 * find_next_best_node - find the next node to include in a sched_domain
8109 * @node: node whose sched_domain we're building
8110 * @used_nodes: nodes already in the sched_domain
8112 * Find the next node to include in a given scheduling domain. Simply
8113 * finds the closest node not already in the @used_nodes map.
8115 * Should use nodemask_t.
8117 static int find_next_best_node(int node, nodemask_t *used_nodes)
8119 int i, n, val, min_val, best_node = 0;
8121 min_val = INT_MAX;
8123 for (i = 0; i < nr_node_ids; i++) {
8124 /* Start at @node */
8125 n = (node + i) % nr_node_ids;
8127 if (!nr_cpus_node(n))
8128 continue;
8130 /* Skip already used nodes */
8131 if (node_isset(n, *used_nodes))
8132 continue;
8134 /* Simple min distance search */
8135 val = node_distance(node, n);
8137 if (val < min_val) {
8138 min_val = val;
8139 best_node = n;
8143 node_set(best_node, *used_nodes);
8144 return best_node;
8148 * sched_domain_node_span - get a cpumask for a node's sched_domain
8149 * @node: node whose cpumask we're constructing
8150 * @span: resulting cpumask
8152 * Given a node, construct a good cpumask for its sched_domain to span. It
8153 * should be one that prevents unnecessary balancing, but also spreads tasks
8154 * out optimally.
8156 static void sched_domain_node_span(int node, struct cpumask *span)
8158 nodemask_t used_nodes;
8159 int i;
8161 cpumask_clear(span);
8162 nodes_clear(used_nodes);
8164 cpumask_or(span, span, cpumask_of_node(node));
8165 node_set(node, used_nodes);
8167 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8168 int next_node = find_next_best_node(node, &used_nodes);
8170 cpumask_or(span, span, cpumask_of_node(next_node));
8173 #endif /* CONFIG_NUMA */
8175 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8178 * The cpus mask in sched_group and sched_domain hangs off the end.
8180 * ( See the the comments in include/linux/sched.h:struct sched_group
8181 * and struct sched_domain. )
8183 struct static_sched_group {
8184 struct sched_group sg;
8185 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8188 struct static_sched_domain {
8189 struct sched_domain sd;
8190 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8193 struct s_data {
8194 #ifdef CONFIG_NUMA
8195 int sd_allnodes;
8196 cpumask_var_t domainspan;
8197 cpumask_var_t covered;
8198 cpumask_var_t notcovered;
8199 #endif
8200 cpumask_var_t nodemask;
8201 cpumask_var_t this_sibling_map;
8202 cpumask_var_t this_core_map;
8203 cpumask_var_t send_covered;
8204 cpumask_var_t tmpmask;
8205 struct sched_group **sched_group_nodes;
8206 struct root_domain *rd;
8209 enum s_alloc {
8210 sa_sched_groups = 0,
8211 sa_rootdomain,
8212 sa_tmpmask,
8213 sa_send_covered,
8214 sa_this_core_map,
8215 sa_this_sibling_map,
8216 sa_nodemask,
8217 sa_sched_group_nodes,
8218 #ifdef CONFIG_NUMA
8219 sa_notcovered,
8220 sa_covered,
8221 sa_domainspan,
8222 #endif
8223 sa_none,
8227 * SMT sched-domains:
8229 #ifdef CONFIG_SCHED_SMT
8230 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8231 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8233 static int
8234 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8235 struct sched_group **sg, struct cpumask *unused)
8237 if (sg)
8238 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8239 return cpu;
8241 #endif /* CONFIG_SCHED_SMT */
8244 * multi-core sched-domains:
8246 #ifdef CONFIG_SCHED_MC
8247 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8248 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8249 #endif /* CONFIG_SCHED_MC */
8251 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8252 static int
8253 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8254 struct sched_group **sg, struct cpumask *mask)
8256 int group;
8258 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8259 group = cpumask_first(mask);
8260 if (sg)
8261 *sg = &per_cpu(sched_group_core, group).sg;
8262 return group;
8264 #elif defined(CONFIG_SCHED_MC)
8265 static int
8266 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8267 struct sched_group **sg, struct cpumask *unused)
8269 if (sg)
8270 *sg = &per_cpu(sched_group_core, cpu).sg;
8271 return cpu;
8273 #endif
8275 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8276 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8278 static int
8279 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8280 struct sched_group **sg, struct cpumask *mask)
8282 int group;
8283 #ifdef CONFIG_SCHED_MC
8284 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8285 group = cpumask_first(mask);
8286 #elif defined(CONFIG_SCHED_SMT)
8287 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8288 group = cpumask_first(mask);
8289 #else
8290 group = cpu;
8291 #endif
8292 if (sg)
8293 *sg = &per_cpu(sched_group_phys, group).sg;
8294 return group;
8297 #ifdef CONFIG_NUMA
8299 * The init_sched_build_groups can't handle what we want to do with node
8300 * groups, so roll our own. Now each node has its own list of groups which
8301 * gets dynamically allocated.
8303 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8304 static struct sched_group ***sched_group_nodes_bycpu;
8306 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8307 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8309 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8310 struct sched_group **sg,
8311 struct cpumask *nodemask)
8313 int group;
8315 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8316 group = cpumask_first(nodemask);
8318 if (sg)
8319 *sg = &per_cpu(sched_group_allnodes, group).sg;
8320 return group;
8323 static void init_numa_sched_groups_power(struct sched_group *group_head)
8325 struct sched_group *sg = group_head;
8326 int j;
8328 if (!sg)
8329 return;
8330 do {
8331 for_each_cpu(j, sched_group_cpus(sg)) {
8332 struct sched_domain *sd;
8334 sd = &per_cpu(phys_domains, j).sd;
8335 if (j != group_first_cpu(sd->groups)) {
8337 * Only add "power" once for each
8338 * physical package.
8340 continue;
8343 sg->cpu_power += sd->groups->cpu_power;
8345 sg = sg->next;
8346 } while (sg != group_head);
8349 static int build_numa_sched_groups(struct s_data *d,
8350 const struct cpumask *cpu_map, int num)
8352 struct sched_domain *sd;
8353 struct sched_group *sg, *prev;
8354 int n, j;
8356 cpumask_clear(d->covered);
8357 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8358 if (cpumask_empty(d->nodemask)) {
8359 d->sched_group_nodes[num] = NULL;
8360 goto out;
8363 sched_domain_node_span(num, d->domainspan);
8364 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8366 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8367 GFP_KERNEL, num);
8368 if (!sg) {
8369 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8370 num);
8371 return -ENOMEM;
8373 d->sched_group_nodes[num] = sg;
8375 for_each_cpu(j, d->nodemask) {
8376 sd = &per_cpu(node_domains, j).sd;
8377 sd->groups = sg;
8380 sg->cpu_power = 0;
8381 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8382 sg->next = sg;
8383 cpumask_or(d->covered, d->covered, d->nodemask);
8385 prev = sg;
8386 for (j = 0; j < nr_node_ids; j++) {
8387 n = (num + j) % nr_node_ids;
8388 cpumask_complement(d->notcovered, d->covered);
8389 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8390 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8391 if (cpumask_empty(d->tmpmask))
8392 break;
8393 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8394 if (cpumask_empty(d->tmpmask))
8395 continue;
8396 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8397 GFP_KERNEL, num);
8398 if (!sg) {
8399 printk(KERN_WARNING
8400 "Can not alloc domain group for node %d\n", j);
8401 return -ENOMEM;
8403 sg->cpu_power = 0;
8404 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8405 sg->next = prev->next;
8406 cpumask_or(d->covered, d->covered, d->tmpmask);
8407 prev->next = sg;
8408 prev = sg;
8410 out:
8411 return 0;
8413 #endif /* CONFIG_NUMA */
8415 #ifdef CONFIG_NUMA
8416 /* Free memory allocated for various sched_group structures */
8417 static void free_sched_groups(const struct cpumask *cpu_map,
8418 struct cpumask *nodemask)
8420 int cpu, i;
8422 for_each_cpu(cpu, cpu_map) {
8423 struct sched_group **sched_group_nodes
8424 = sched_group_nodes_bycpu[cpu];
8426 if (!sched_group_nodes)
8427 continue;
8429 for (i = 0; i < nr_node_ids; i++) {
8430 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8432 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8433 if (cpumask_empty(nodemask))
8434 continue;
8436 if (sg == NULL)
8437 continue;
8438 sg = sg->next;
8439 next_sg:
8440 oldsg = sg;
8441 sg = sg->next;
8442 kfree(oldsg);
8443 if (oldsg != sched_group_nodes[i])
8444 goto next_sg;
8446 kfree(sched_group_nodes);
8447 sched_group_nodes_bycpu[cpu] = NULL;
8450 #else /* !CONFIG_NUMA */
8451 static void free_sched_groups(const struct cpumask *cpu_map,
8452 struct cpumask *nodemask)
8455 #endif /* CONFIG_NUMA */
8458 * Initialize sched groups cpu_power.
8460 * cpu_power indicates the capacity of sched group, which is used while
8461 * distributing the load between different sched groups in a sched domain.
8462 * Typically cpu_power for all the groups in a sched domain will be same unless
8463 * there are asymmetries in the topology. If there are asymmetries, group
8464 * having more cpu_power will pickup more load compared to the group having
8465 * less cpu_power.
8467 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8469 struct sched_domain *child;
8470 struct sched_group *group;
8471 long power;
8472 int weight;
8474 WARN_ON(!sd || !sd->groups);
8476 if (cpu != group_first_cpu(sd->groups))
8477 return;
8479 child = sd->child;
8481 sd->groups->cpu_power = 0;
8483 if (!child) {
8484 power = SCHED_LOAD_SCALE;
8485 weight = cpumask_weight(sched_domain_span(sd));
8487 * SMT siblings share the power of a single core.
8488 * Usually multiple threads get a better yield out of
8489 * that one core than a single thread would have,
8490 * reflect that in sd->smt_gain.
8492 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8493 power *= sd->smt_gain;
8494 power /= weight;
8495 power >>= SCHED_LOAD_SHIFT;
8497 sd->groups->cpu_power += power;
8498 return;
8502 * Add cpu_power of each child group to this groups cpu_power.
8504 group = child->groups;
8505 do {
8506 sd->groups->cpu_power += group->cpu_power;
8507 group = group->next;
8508 } while (group != child->groups);
8512 * Initializers for schedule domains
8513 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8516 #ifdef CONFIG_SCHED_DEBUG
8517 # define SD_INIT_NAME(sd, type) sd->name = #type
8518 #else
8519 # define SD_INIT_NAME(sd, type) do { } while (0)
8520 #endif
8522 #define SD_INIT(sd, type) sd_init_##type(sd)
8524 #define SD_INIT_FUNC(type) \
8525 static noinline void sd_init_##type(struct sched_domain *sd) \
8527 memset(sd, 0, sizeof(*sd)); \
8528 *sd = SD_##type##_INIT; \
8529 sd->level = SD_LV_##type; \
8530 SD_INIT_NAME(sd, type); \
8533 SD_INIT_FUNC(CPU)
8534 #ifdef CONFIG_NUMA
8535 SD_INIT_FUNC(ALLNODES)
8536 SD_INIT_FUNC(NODE)
8537 #endif
8538 #ifdef CONFIG_SCHED_SMT
8539 SD_INIT_FUNC(SIBLING)
8540 #endif
8541 #ifdef CONFIG_SCHED_MC
8542 SD_INIT_FUNC(MC)
8543 #endif
8545 static int default_relax_domain_level = -1;
8547 static int __init setup_relax_domain_level(char *str)
8549 unsigned long val;
8551 val = simple_strtoul(str, NULL, 0);
8552 if (val < SD_LV_MAX)
8553 default_relax_domain_level = val;
8555 return 1;
8557 __setup("relax_domain_level=", setup_relax_domain_level);
8559 static void set_domain_attribute(struct sched_domain *sd,
8560 struct sched_domain_attr *attr)
8562 int request;
8564 if (!attr || attr->relax_domain_level < 0) {
8565 if (default_relax_domain_level < 0)
8566 return;
8567 else
8568 request = default_relax_domain_level;
8569 } else
8570 request = attr->relax_domain_level;
8571 if (request < sd->level) {
8572 /* turn off idle balance on this domain */
8573 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8574 } else {
8575 /* turn on idle balance on this domain */
8576 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8580 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8581 const struct cpumask *cpu_map)
8583 switch (what) {
8584 case sa_sched_groups:
8585 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8586 d->sched_group_nodes = NULL;
8587 case sa_rootdomain:
8588 free_rootdomain(d->rd); /* fall through */
8589 case sa_tmpmask:
8590 free_cpumask_var(d->tmpmask); /* fall through */
8591 case sa_send_covered:
8592 free_cpumask_var(d->send_covered); /* fall through */
8593 case sa_this_core_map:
8594 free_cpumask_var(d->this_core_map); /* fall through */
8595 case sa_this_sibling_map:
8596 free_cpumask_var(d->this_sibling_map); /* fall through */
8597 case sa_nodemask:
8598 free_cpumask_var(d->nodemask); /* fall through */
8599 case sa_sched_group_nodes:
8600 #ifdef CONFIG_NUMA
8601 kfree(d->sched_group_nodes); /* fall through */
8602 case sa_notcovered:
8603 free_cpumask_var(d->notcovered); /* fall through */
8604 case sa_covered:
8605 free_cpumask_var(d->covered); /* fall through */
8606 case sa_domainspan:
8607 free_cpumask_var(d->domainspan); /* fall through */
8608 #endif
8609 case sa_none:
8610 break;
8614 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8615 const struct cpumask *cpu_map)
8617 #ifdef CONFIG_NUMA
8618 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8619 return sa_none;
8620 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8621 return sa_domainspan;
8622 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8623 return sa_covered;
8624 /* Allocate the per-node list of sched groups */
8625 d->sched_group_nodes = kcalloc(nr_node_ids,
8626 sizeof(struct sched_group *), GFP_KERNEL);
8627 if (!d->sched_group_nodes) {
8628 printk(KERN_WARNING "Can not alloc sched group node list\n");
8629 return sa_notcovered;
8631 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8632 #endif
8633 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8634 return sa_sched_group_nodes;
8635 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8636 return sa_nodemask;
8637 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8638 return sa_this_sibling_map;
8639 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8640 return sa_this_core_map;
8641 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8642 return sa_send_covered;
8643 d->rd = alloc_rootdomain();
8644 if (!d->rd) {
8645 printk(KERN_WARNING "Cannot alloc root domain\n");
8646 return sa_tmpmask;
8648 return sa_rootdomain;
8651 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8652 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8654 struct sched_domain *sd = NULL;
8655 #ifdef CONFIG_NUMA
8656 struct sched_domain *parent;
8658 d->sd_allnodes = 0;
8659 if (cpumask_weight(cpu_map) >
8660 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8661 sd = &per_cpu(allnodes_domains, i).sd;
8662 SD_INIT(sd, ALLNODES);
8663 set_domain_attribute(sd, attr);
8664 cpumask_copy(sched_domain_span(sd), cpu_map);
8665 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8666 d->sd_allnodes = 1;
8668 parent = sd;
8670 sd = &per_cpu(node_domains, i).sd;
8671 SD_INIT(sd, NODE);
8672 set_domain_attribute(sd, attr);
8673 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8674 sd->parent = parent;
8675 if (parent)
8676 parent->child = sd;
8677 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8678 #endif
8679 return sd;
8682 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8683 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8684 struct sched_domain *parent, int i)
8686 struct sched_domain *sd;
8687 sd = &per_cpu(phys_domains, i).sd;
8688 SD_INIT(sd, CPU);
8689 set_domain_attribute(sd, attr);
8690 cpumask_copy(sched_domain_span(sd), d->nodemask);
8691 sd->parent = parent;
8692 if (parent)
8693 parent->child = sd;
8694 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8695 return sd;
8698 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8699 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8700 struct sched_domain *parent, int i)
8702 struct sched_domain *sd = parent;
8703 #ifdef CONFIG_SCHED_MC
8704 sd = &per_cpu(core_domains, i).sd;
8705 SD_INIT(sd, MC);
8706 set_domain_attribute(sd, attr);
8707 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8708 sd->parent = parent;
8709 parent->child = sd;
8710 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8711 #endif
8712 return sd;
8715 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8716 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8717 struct sched_domain *parent, int i)
8719 struct sched_domain *sd = parent;
8720 #ifdef CONFIG_SCHED_SMT
8721 sd = &per_cpu(cpu_domains, i).sd;
8722 SD_INIT(sd, SIBLING);
8723 set_domain_attribute(sd, attr);
8724 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8725 sd->parent = parent;
8726 parent->child = sd;
8727 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8728 #endif
8729 return sd;
8732 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8733 const struct cpumask *cpu_map, int cpu)
8735 switch (l) {
8736 #ifdef CONFIG_SCHED_SMT
8737 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8738 cpumask_and(d->this_sibling_map, cpu_map,
8739 topology_thread_cpumask(cpu));
8740 if (cpu == cpumask_first(d->this_sibling_map))
8741 init_sched_build_groups(d->this_sibling_map, cpu_map,
8742 &cpu_to_cpu_group,
8743 d->send_covered, d->tmpmask);
8744 break;
8745 #endif
8746 #ifdef CONFIG_SCHED_MC
8747 case SD_LV_MC: /* set up multi-core groups */
8748 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8749 if (cpu == cpumask_first(d->this_core_map))
8750 init_sched_build_groups(d->this_core_map, cpu_map,
8751 &cpu_to_core_group,
8752 d->send_covered, d->tmpmask);
8753 break;
8754 #endif
8755 case SD_LV_CPU: /* set up physical groups */
8756 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8757 if (!cpumask_empty(d->nodemask))
8758 init_sched_build_groups(d->nodemask, cpu_map,
8759 &cpu_to_phys_group,
8760 d->send_covered, d->tmpmask);
8761 break;
8762 #ifdef CONFIG_NUMA
8763 case SD_LV_ALLNODES:
8764 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8765 d->send_covered, d->tmpmask);
8766 break;
8767 #endif
8768 default:
8769 break;
8774 * Build sched domains for a given set of cpus and attach the sched domains
8775 * to the individual cpus
8777 static int __build_sched_domains(const struct cpumask *cpu_map,
8778 struct sched_domain_attr *attr)
8780 enum s_alloc alloc_state = sa_none;
8781 struct s_data d;
8782 struct sched_domain *sd;
8783 int i;
8784 #ifdef CONFIG_NUMA
8785 d.sd_allnodes = 0;
8786 #endif
8788 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8789 if (alloc_state != sa_rootdomain)
8790 goto error;
8791 alloc_state = sa_sched_groups;
8794 * Set up domains for cpus specified by the cpu_map.
8796 for_each_cpu(i, cpu_map) {
8797 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8798 cpu_map);
8800 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8801 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8802 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8803 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8806 for_each_cpu(i, cpu_map) {
8807 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8808 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8811 /* Set up physical groups */
8812 for (i = 0; i < nr_node_ids; i++)
8813 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8815 #ifdef CONFIG_NUMA
8816 /* Set up node groups */
8817 if (d.sd_allnodes)
8818 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8820 for (i = 0; i < nr_node_ids; i++)
8821 if (build_numa_sched_groups(&d, cpu_map, i))
8822 goto error;
8823 #endif
8825 /* Calculate CPU power for physical packages and nodes */
8826 #ifdef CONFIG_SCHED_SMT
8827 for_each_cpu(i, cpu_map) {
8828 sd = &per_cpu(cpu_domains, i).sd;
8829 init_sched_groups_power(i, sd);
8831 #endif
8832 #ifdef CONFIG_SCHED_MC
8833 for_each_cpu(i, cpu_map) {
8834 sd = &per_cpu(core_domains, i).sd;
8835 init_sched_groups_power(i, sd);
8837 #endif
8839 for_each_cpu(i, cpu_map) {
8840 sd = &per_cpu(phys_domains, i).sd;
8841 init_sched_groups_power(i, sd);
8844 #ifdef CONFIG_NUMA
8845 for (i = 0; i < nr_node_ids; i++)
8846 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8848 if (d.sd_allnodes) {
8849 struct sched_group *sg;
8851 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8852 d.tmpmask);
8853 init_numa_sched_groups_power(sg);
8855 #endif
8857 /* Attach the domains */
8858 for_each_cpu(i, cpu_map) {
8859 #ifdef CONFIG_SCHED_SMT
8860 sd = &per_cpu(cpu_domains, i).sd;
8861 #elif defined(CONFIG_SCHED_MC)
8862 sd = &per_cpu(core_domains, i).sd;
8863 #else
8864 sd = &per_cpu(phys_domains, i).sd;
8865 #endif
8866 cpu_attach_domain(sd, d.rd, i);
8869 d.sched_group_nodes = NULL; /* don't free this we still need it */
8870 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8871 return 0;
8873 error:
8874 __free_domain_allocs(&d, alloc_state, cpu_map);
8875 return -ENOMEM;
8878 static int build_sched_domains(const struct cpumask *cpu_map)
8880 return __build_sched_domains(cpu_map, NULL);
8883 static struct cpumask *doms_cur; /* current sched domains */
8884 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8885 static struct sched_domain_attr *dattr_cur;
8886 /* attribues of custom domains in 'doms_cur' */
8889 * Special case: If a kmalloc of a doms_cur partition (array of
8890 * cpumask) fails, then fallback to a single sched domain,
8891 * as determined by the single cpumask fallback_doms.
8893 static cpumask_var_t fallback_doms;
8896 * arch_update_cpu_topology lets virtualized architectures update the
8897 * cpu core maps. It is supposed to return 1 if the topology changed
8898 * or 0 if it stayed the same.
8900 int __attribute__((weak)) arch_update_cpu_topology(void)
8902 return 0;
8906 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8907 * For now this just excludes isolated cpus, but could be used to
8908 * exclude other special cases in the future.
8910 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8912 int err;
8914 arch_update_cpu_topology();
8915 ndoms_cur = 1;
8916 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8917 if (!doms_cur)
8918 doms_cur = fallback_doms;
8919 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8920 dattr_cur = NULL;
8921 err = build_sched_domains(doms_cur);
8922 register_sched_domain_sysctl();
8924 return err;
8927 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8928 struct cpumask *tmpmask)
8930 free_sched_groups(cpu_map, tmpmask);
8934 * Detach sched domains from a group of cpus specified in cpu_map
8935 * These cpus will now be attached to the NULL domain
8937 static void detach_destroy_domains(const struct cpumask *cpu_map)
8939 /* Save because hotplug lock held. */
8940 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8941 int i;
8943 for_each_cpu(i, cpu_map)
8944 cpu_attach_domain(NULL, &def_root_domain, i);
8945 synchronize_sched();
8946 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8949 /* handle null as "default" */
8950 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8951 struct sched_domain_attr *new, int idx_new)
8953 struct sched_domain_attr tmp;
8955 /* fast path */
8956 if (!new && !cur)
8957 return 1;
8959 tmp = SD_ATTR_INIT;
8960 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8961 new ? (new + idx_new) : &tmp,
8962 sizeof(struct sched_domain_attr));
8966 * Partition sched domains as specified by the 'ndoms_new'
8967 * cpumasks in the array doms_new[] of cpumasks. This compares
8968 * doms_new[] to the current sched domain partitioning, doms_cur[].
8969 * It destroys each deleted domain and builds each new domain.
8971 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8972 * The masks don't intersect (don't overlap.) We should setup one
8973 * sched domain for each mask. CPUs not in any of the cpumasks will
8974 * not be load balanced. If the same cpumask appears both in the
8975 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8976 * it as it is.
8978 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8979 * ownership of it and will kfree it when done with it. If the caller
8980 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8981 * ndoms_new == 1, and partition_sched_domains() will fallback to
8982 * the single partition 'fallback_doms', it also forces the domains
8983 * to be rebuilt.
8985 * If doms_new == NULL it will be replaced with cpu_online_mask.
8986 * ndoms_new == 0 is a special case for destroying existing domains,
8987 * and it will not create the default domain.
8989 * Call with hotplug lock held
8991 /* FIXME: Change to struct cpumask *doms_new[] */
8992 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8993 struct sched_domain_attr *dattr_new)
8995 int i, j, n;
8996 int new_topology;
8998 mutex_lock(&sched_domains_mutex);
9000 /* always unregister in case we don't destroy any domains */
9001 unregister_sched_domain_sysctl();
9003 /* Let architecture update cpu core mappings. */
9004 new_topology = arch_update_cpu_topology();
9006 n = doms_new ? ndoms_new : 0;
9008 /* Destroy deleted domains */
9009 for (i = 0; i < ndoms_cur; i++) {
9010 for (j = 0; j < n && !new_topology; j++) {
9011 if (cpumask_equal(&doms_cur[i], &doms_new[j])
9012 && dattrs_equal(dattr_cur, i, dattr_new, j))
9013 goto match1;
9015 /* no match - a current sched domain not in new doms_new[] */
9016 detach_destroy_domains(doms_cur + i);
9017 match1:
9021 if (doms_new == NULL) {
9022 ndoms_cur = 0;
9023 doms_new = fallback_doms;
9024 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9025 WARN_ON_ONCE(dattr_new);
9028 /* Build new domains */
9029 for (i = 0; i < ndoms_new; i++) {
9030 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9031 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9032 && dattrs_equal(dattr_new, i, dattr_cur, j))
9033 goto match2;
9035 /* no match - add a new doms_new */
9036 __build_sched_domains(doms_new + i,
9037 dattr_new ? dattr_new + i : NULL);
9038 match2:
9042 /* Remember the new sched domains */
9043 if (doms_cur != fallback_doms)
9044 kfree(doms_cur);
9045 kfree(dattr_cur); /* kfree(NULL) is safe */
9046 doms_cur = doms_new;
9047 dattr_cur = dattr_new;
9048 ndoms_cur = ndoms_new;
9050 register_sched_domain_sysctl();
9052 mutex_unlock(&sched_domains_mutex);
9055 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9056 static void arch_reinit_sched_domains(void)
9058 get_online_cpus();
9060 /* Destroy domains first to force the rebuild */
9061 partition_sched_domains(0, NULL, NULL);
9063 rebuild_sched_domains();
9064 put_online_cpus();
9067 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9069 unsigned int level = 0;
9071 if (sscanf(buf, "%u", &level) != 1)
9072 return -EINVAL;
9075 * level is always be positive so don't check for
9076 * level < POWERSAVINGS_BALANCE_NONE which is 0
9077 * What happens on 0 or 1 byte write,
9078 * need to check for count as well?
9081 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9082 return -EINVAL;
9084 if (smt)
9085 sched_smt_power_savings = level;
9086 else
9087 sched_mc_power_savings = level;
9089 arch_reinit_sched_domains();
9091 return count;
9094 #ifdef CONFIG_SCHED_MC
9095 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9096 char *page)
9098 return sprintf(page, "%u\n", sched_mc_power_savings);
9100 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9101 const char *buf, size_t count)
9103 return sched_power_savings_store(buf, count, 0);
9105 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9106 sched_mc_power_savings_show,
9107 sched_mc_power_savings_store);
9108 #endif
9110 #ifdef CONFIG_SCHED_SMT
9111 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9112 char *page)
9114 return sprintf(page, "%u\n", sched_smt_power_savings);
9116 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9117 const char *buf, size_t count)
9119 return sched_power_savings_store(buf, count, 1);
9121 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9122 sched_smt_power_savings_show,
9123 sched_smt_power_savings_store);
9124 #endif
9126 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9128 int err = 0;
9130 #ifdef CONFIG_SCHED_SMT
9131 if (smt_capable())
9132 err = sysfs_create_file(&cls->kset.kobj,
9133 &attr_sched_smt_power_savings.attr);
9134 #endif
9135 #ifdef CONFIG_SCHED_MC
9136 if (!err && mc_capable())
9137 err = sysfs_create_file(&cls->kset.kobj,
9138 &attr_sched_mc_power_savings.attr);
9139 #endif
9140 return err;
9142 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9144 #ifndef CONFIG_CPUSETS
9146 * Add online and remove offline CPUs from the scheduler domains.
9147 * When cpusets are enabled they take over this function.
9149 static int update_sched_domains(struct notifier_block *nfb,
9150 unsigned long action, void *hcpu)
9152 switch (action) {
9153 case CPU_ONLINE:
9154 case CPU_ONLINE_FROZEN:
9155 case CPU_DEAD:
9156 case CPU_DEAD_FROZEN:
9157 partition_sched_domains(1, NULL, NULL);
9158 return NOTIFY_OK;
9160 default:
9161 return NOTIFY_DONE;
9164 #endif
9166 static int update_runtime(struct notifier_block *nfb,
9167 unsigned long action, void *hcpu)
9169 int cpu = (int)(long)hcpu;
9171 switch (action) {
9172 case CPU_DOWN_PREPARE:
9173 case CPU_DOWN_PREPARE_FROZEN:
9174 disable_runtime(cpu_rq(cpu));
9175 return NOTIFY_OK;
9177 case CPU_DOWN_FAILED:
9178 case CPU_DOWN_FAILED_FROZEN:
9179 case CPU_ONLINE:
9180 case CPU_ONLINE_FROZEN:
9181 enable_runtime(cpu_rq(cpu));
9182 return NOTIFY_OK;
9184 default:
9185 return NOTIFY_DONE;
9189 void __init sched_init_smp(void)
9191 cpumask_var_t non_isolated_cpus;
9193 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9194 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9196 #if defined(CONFIG_NUMA)
9197 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9198 GFP_KERNEL);
9199 BUG_ON(sched_group_nodes_bycpu == NULL);
9200 #endif
9201 get_online_cpus();
9202 mutex_lock(&sched_domains_mutex);
9203 arch_init_sched_domains(cpu_online_mask);
9204 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9205 if (cpumask_empty(non_isolated_cpus))
9206 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9207 mutex_unlock(&sched_domains_mutex);
9208 put_online_cpus();
9210 #ifndef CONFIG_CPUSETS
9211 /* XXX: Theoretical race here - CPU may be hotplugged now */
9212 hotcpu_notifier(update_sched_domains, 0);
9213 #endif
9215 /* RT runtime code needs to handle some hotplug events */
9216 hotcpu_notifier(update_runtime, 0);
9218 init_hrtick();
9220 /* Move init over to a non-isolated CPU */
9221 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9222 BUG();
9223 sched_init_granularity();
9224 free_cpumask_var(non_isolated_cpus);
9226 init_sched_rt_class();
9228 #else
9229 void __init sched_init_smp(void)
9231 sched_init_granularity();
9233 #endif /* CONFIG_SMP */
9235 const_debug unsigned int sysctl_timer_migration = 1;
9237 int in_sched_functions(unsigned long addr)
9239 return in_lock_functions(addr) ||
9240 (addr >= (unsigned long)__sched_text_start
9241 && addr < (unsigned long)__sched_text_end);
9244 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9246 cfs_rq->tasks_timeline = RB_ROOT;
9247 INIT_LIST_HEAD(&cfs_rq->tasks);
9248 #ifdef CONFIG_FAIR_GROUP_SCHED
9249 cfs_rq->rq = rq;
9250 #endif
9251 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9254 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9256 struct rt_prio_array *array;
9257 int i;
9259 array = &rt_rq->active;
9260 for (i = 0; i < MAX_RT_PRIO; i++) {
9261 INIT_LIST_HEAD(array->queue + i);
9262 __clear_bit(i, array->bitmap);
9264 /* delimiter for bitsearch: */
9265 __set_bit(MAX_RT_PRIO, array->bitmap);
9267 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9268 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9269 #ifdef CONFIG_SMP
9270 rt_rq->highest_prio.next = MAX_RT_PRIO;
9271 #endif
9272 #endif
9273 #ifdef CONFIG_SMP
9274 rt_rq->rt_nr_migratory = 0;
9275 rt_rq->overloaded = 0;
9276 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9277 #endif
9279 rt_rq->rt_time = 0;
9280 rt_rq->rt_throttled = 0;
9281 rt_rq->rt_runtime = 0;
9282 spin_lock_init(&rt_rq->rt_runtime_lock);
9284 #ifdef CONFIG_RT_GROUP_SCHED
9285 rt_rq->rt_nr_boosted = 0;
9286 rt_rq->rq = rq;
9287 #endif
9290 #ifdef CONFIG_FAIR_GROUP_SCHED
9291 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9292 struct sched_entity *se, int cpu, int add,
9293 struct sched_entity *parent)
9295 struct rq *rq = cpu_rq(cpu);
9296 tg->cfs_rq[cpu] = cfs_rq;
9297 init_cfs_rq(cfs_rq, rq);
9298 cfs_rq->tg = tg;
9299 if (add)
9300 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9302 tg->se[cpu] = se;
9303 /* se could be NULL for init_task_group */
9304 if (!se)
9305 return;
9307 if (!parent)
9308 se->cfs_rq = &rq->cfs;
9309 else
9310 se->cfs_rq = parent->my_q;
9312 se->my_q = cfs_rq;
9313 se->load.weight = tg->shares;
9314 se->load.inv_weight = 0;
9315 se->parent = parent;
9317 #endif
9319 #ifdef CONFIG_RT_GROUP_SCHED
9320 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9321 struct sched_rt_entity *rt_se, int cpu, int add,
9322 struct sched_rt_entity *parent)
9324 struct rq *rq = cpu_rq(cpu);
9326 tg->rt_rq[cpu] = rt_rq;
9327 init_rt_rq(rt_rq, rq);
9328 rt_rq->tg = tg;
9329 rt_rq->rt_se = rt_se;
9330 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9331 if (add)
9332 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9334 tg->rt_se[cpu] = rt_se;
9335 if (!rt_se)
9336 return;
9338 if (!parent)
9339 rt_se->rt_rq = &rq->rt;
9340 else
9341 rt_se->rt_rq = parent->my_q;
9343 rt_se->my_q = rt_rq;
9344 rt_se->parent = parent;
9345 INIT_LIST_HEAD(&rt_se->run_list);
9347 #endif
9349 void __init sched_init(void)
9351 int i, j;
9352 unsigned long alloc_size = 0, ptr;
9354 #ifdef CONFIG_FAIR_GROUP_SCHED
9355 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9356 #endif
9357 #ifdef CONFIG_RT_GROUP_SCHED
9358 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9359 #endif
9360 #ifdef CONFIG_USER_SCHED
9361 alloc_size *= 2;
9362 #endif
9363 #ifdef CONFIG_CPUMASK_OFFSTACK
9364 alloc_size += num_possible_cpus() * cpumask_size();
9365 #endif
9367 * As sched_init() is called before page_alloc is setup,
9368 * we use alloc_bootmem().
9370 if (alloc_size) {
9371 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9373 #ifdef CONFIG_FAIR_GROUP_SCHED
9374 init_task_group.se = (struct sched_entity **)ptr;
9375 ptr += nr_cpu_ids * sizeof(void **);
9377 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9378 ptr += nr_cpu_ids * sizeof(void **);
9380 #ifdef CONFIG_USER_SCHED
9381 root_task_group.se = (struct sched_entity **)ptr;
9382 ptr += nr_cpu_ids * sizeof(void **);
9384 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9385 ptr += nr_cpu_ids * sizeof(void **);
9386 #endif /* CONFIG_USER_SCHED */
9387 #endif /* CONFIG_FAIR_GROUP_SCHED */
9388 #ifdef CONFIG_RT_GROUP_SCHED
9389 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9390 ptr += nr_cpu_ids * sizeof(void **);
9392 init_task_group.rt_rq = (struct rt_rq **)ptr;
9393 ptr += nr_cpu_ids * sizeof(void **);
9395 #ifdef CONFIG_USER_SCHED
9396 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9397 ptr += nr_cpu_ids * sizeof(void **);
9399 root_task_group.rt_rq = (struct rt_rq **)ptr;
9400 ptr += nr_cpu_ids * sizeof(void **);
9401 #endif /* CONFIG_USER_SCHED */
9402 #endif /* CONFIG_RT_GROUP_SCHED */
9403 #ifdef CONFIG_CPUMASK_OFFSTACK
9404 for_each_possible_cpu(i) {
9405 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9406 ptr += cpumask_size();
9408 #endif /* CONFIG_CPUMASK_OFFSTACK */
9411 #ifdef CONFIG_SMP
9412 init_defrootdomain();
9413 #endif
9415 init_rt_bandwidth(&def_rt_bandwidth,
9416 global_rt_period(), global_rt_runtime());
9418 #ifdef CONFIG_RT_GROUP_SCHED
9419 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9420 global_rt_period(), global_rt_runtime());
9421 #ifdef CONFIG_USER_SCHED
9422 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9423 global_rt_period(), RUNTIME_INF);
9424 #endif /* CONFIG_USER_SCHED */
9425 #endif /* CONFIG_RT_GROUP_SCHED */
9427 #ifdef CONFIG_GROUP_SCHED
9428 list_add(&init_task_group.list, &task_groups);
9429 INIT_LIST_HEAD(&init_task_group.children);
9431 #ifdef CONFIG_USER_SCHED
9432 INIT_LIST_HEAD(&root_task_group.children);
9433 init_task_group.parent = &root_task_group;
9434 list_add(&init_task_group.siblings, &root_task_group.children);
9435 #endif /* CONFIG_USER_SCHED */
9436 #endif /* CONFIG_GROUP_SCHED */
9438 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9439 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9440 __alignof__(unsigned long));
9441 #endif
9442 for_each_possible_cpu(i) {
9443 struct rq *rq;
9445 rq = cpu_rq(i);
9446 spin_lock_init(&rq->lock);
9447 rq->nr_running = 0;
9448 rq->calc_load_active = 0;
9449 rq->calc_load_update = jiffies + LOAD_FREQ;
9450 init_cfs_rq(&rq->cfs, rq);
9451 init_rt_rq(&rq->rt, rq);
9452 #ifdef CONFIG_FAIR_GROUP_SCHED
9453 init_task_group.shares = init_task_group_load;
9454 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9455 #ifdef CONFIG_CGROUP_SCHED
9457 * How much cpu bandwidth does init_task_group get?
9459 * In case of task-groups formed thr' the cgroup filesystem, it
9460 * gets 100% of the cpu resources in the system. This overall
9461 * system cpu resource is divided among the tasks of
9462 * init_task_group and its child task-groups in a fair manner,
9463 * based on each entity's (task or task-group's) weight
9464 * (se->load.weight).
9466 * In other words, if init_task_group has 10 tasks of weight
9467 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9468 * then A0's share of the cpu resource is:
9470 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9472 * We achieve this by letting init_task_group's tasks sit
9473 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9475 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9476 #elif defined CONFIG_USER_SCHED
9477 root_task_group.shares = NICE_0_LOAD;
9478 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9480 * In case of task-groups formed thr' the user id of tasks,
9481 * init_task_group represents tasks belonging to root user.
9482 * Hence it forms a sibling of all subsequent groups formed.
9483 * In this case, init_task_group gets only a fraction of overall
9484 * system cpu resource, based on the weight assigned to root
9485 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9486 * by letting tasks of init_task_group sit in a separate cfs_rq
9487 * (init_tg_cfs_rq) and having one entity represent this group of
9488 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9490 init_tg_cfs_entry(&init_task_group,
9491 &per_cpu(init_tg_cfs_rq, i),
9492 &per_cpu(init_sched_entity, i), i, 1,
9493 root_task_group.se[i]);
9495 #endif
9496 #endif /* CONFIG_FAIR_GROUP_SCHED */
9498 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9499 #ifdef CONFIG_RT_GROUP_SCHED
9500 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9501 #ifdef CONFIG_CGROUP_SCHED
9502 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9503 #elif defined CONFIG_USER_SCHED
9504 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9505 init_tg_rt_entry(&init_task_group,
9506 &per_cpu(init_rt_rq, i),
9507 &per_cpu(init_sched_rt_entity, i), i, 1,
9508 root_task_group.rt_se[i]);
9509 #endif
9510 #endif
9512 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9513 rq->cpu_load[j] = 0;
9514 #ifdef CONFIG_SMP
9515 rq->sd = NULL;
9516 rq->rd = NULL;
9517 rq->post_schedule = 0;
9518 rq->active_balance = 0;
9519 rq->next_balance = jiffies;
9520 rq->push_cpu = 0;
9521 rq->cpu = i;
9522 rq->online = 0;
9523 rq->migration_thread = NULL;
9524 INIT_LIST_HEAD(&rq->migration_queue);
9525 rq_attach_root(rq, &def_root_domain);
9526 #endif
9527 init_rq_hrtick(rq);
9528 atomic_set(&rq->nr_iowait, 0);
9531 set_load_weight(&init_task);
9533 #ifdef CONFIG_PREEMPT_NOTIFIERS
9534 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9535 #endif
9537 #ifdef CONFIG_SMP
9538 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9539 #endif
9541 #ifdef CONFIG_RT_MUTEXES
9542 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9543 #endif
9546 * The boot idle thread does lazy MMU switching as well:
9548 atomic_inc(&init_mm.mm_count);
9549 enter_lazy_tlb(&init_mm, current);
9552 * Make us the idle thread. Technically, schedule() should not be
9553 * called from this thread, however somewhere below it might be,
9554 * but because we are the idle thread, we just pick up running again
9555 * when this runqueue becomes "idle".
9557 init_idle(current, smp_processor_id());
9559 calc_load_update = jiffies + LOAD_FREQ;
9562 * During early bootup we pretend to be a normal task:
9564 current->sched_class = &fair_sched_class;
9566 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9567 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9568 #ifdef CONFIG_SMP
9569 #ifdef CONFIG_NO_HZ
9570 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9571 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9572 #endif
9573 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9574 #endif /* SMP */
9576 perf_event_init();
9578 scheduler_running = 1;
9581 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9582 static inline int preempt_count_equals(int preempt_offset)
9584 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9586 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9589 void __might_sleep(char *file, int line, int preempt_offset)
9591 #ifdef in_atomic
9592 static unsigned long prev_jiffy; /* ratelimiting */
9594 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9595 system_state != SYSTEM_RUNNING || oops_in_progress)
9596 return;
9597 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9598 return;
9599 prev_jiffy = jiffies;
9601 printk(KERN_ERR
9602 "BUG: sleeping function called from invalid context at %s:%d\n",
9603 file, line);
9604 printk(KERN_ERR
9605 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9606 in_atomic(), irqs_disabled(),
9607 current->pid, current->comm);
9609 debug_show_held_locks(current);
9610 if (irqs_disabled())
9611 print_irqtrace_events(current);
9612 dump_stack();
9613 #endif
9615 EXPORT_SYMBOL(__might_sleep);
9616 #endif
9618 #ifdef CONFIG_MAGIC_SYSRQ
9619 static void normalize_task(struct rq *rq, struct task_struct *p)
9621 int on_rq;
9623 update_rq_clock(rq);
9624 on_rq = p->se.on_rq;
9625 if (on_rq)
9626 deactivate_task(rq, p, 0);
9627 __setscheduler(rq, p, SCHED_NORMAL, 0);
9628 if (on_rq) {
9629 activate_task(rq, p, 0);
9630 resched_task(rq->curr);
9634 void normalize_rt_tasks(void)
9636 struct task_struct *g, *p;
9637 unsigned long flags;
9638 struct rq *rq;
9640 read_lock_irqsave(&tasklist_lock, flags);
9641 do_each_thread(g, p) {
9643 * Only normalize user tasks:
9645 if (!p->mm)
9646 continue;
9648 p->se.exec_start = 0;
9649 #ifdef CONFIG_SCHEDSTATS
9650 p->se.wait_start = 0;
9651 p->se.sleep_start = 0;
9652 p->se.block_start = 0;
9653 #endif
9655 if (!rt_task(p)) {
9657 * Renice negative nice level userspace
9658 * tasks back to 0:
9660 if (TASK_NICE(p) < 0 && p->mm)
9661 set_user_nice(p, 0);
9662 continue;
9665 spin_lock(&p->pi_lock);
9666 rq = __task_rq_lock(p);
9668 normalize_task(rq, p);
9670 __task_rq_unlock(rq);
9671 spin_unlock(&p->pi_lock);
9672 } while_each_thread(g, p);
9674 read_unlock_irqrestore(&tasklist_lock, flags);
9677 #endif /* CONFIG_MAGIC_SYSRQ */
9679 #ifdef CONFIG_IA64
9681 * These functions are only useful for the IA64 MCA handling.
9683 * They can only be called when the whole system has been
9684 * stopped - every CPU needs to be quiescent, and no scheduling
9685 * activity can take place. Using them for anything else would
9686 * be a serious bug, and as a result, they aren't even visible
9687 * under any other configuration.
9691 * curr_task - return the current task for a given cpu.
9692 * @cpu: the processor in question.
9694 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9696 struct task_struct *curr_task(int cpu)
9698 return cpu_curr(cpu);
9702 * set_curr_task - set the current task for a given cpu.
9703 * @cpu: the processor in question.
9704 * @p: the task pointer to set.
9706 * Description: This function must only be used when non-maskable interrupts
9707 * are serviced on a separate stack. It allows the architecture to switch the
9708 * notion of the current task on a cpu in a non-blocking manner. This function
9709 * must be called with all CPU's synchronized, and interrupts disabled, the
9710 * and caller must save the original value of the current task (see
9711 * curr_task() above) and restore that value before reenabling interrupts and
9712 * re-starting the system.
9714 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9716 void set_curr_task(int cpu, struct task_struct *p)
9718 cpu_curr(cpu) = p;
9721 #endif
9723 #ifdef CONFIG_FAIR_GROUP_SCHED
9724 static void free_fair_sched_group(struct task_group *tg)
9726 int i;
9728 for_each_possible_cpu(i) {
9729 if (tg->cfs_rq)
9730 kfree(tg->cfs_rq[i]);
9731 if (tg->se)
9732 kfree(tg->se[i]);
9735 kfree(tg->cfs_rq);
9736 kfree(tg->se);
9739 static
9740 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9742 struct cfs_rq *cfs_rq;
9743 struct sched_entity *se;
9744 struct rq *rq;
9745 int i;
9747 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9748 if (!tg->cfs_rq)
9749 goto err;
9750 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9751 if (!tg->se)
9752 goto err;
9754 tg->shares = NICE_0_LOAD;
9756 for_each_possible_cpu(i) {
9757 rq = cpu_rq(i);
9759 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9760 GFP_KERNEL, cpu_to_node(i));
9761 if (!cfs_rq)
9762 goto err;
9764 se = kzalloc_node(sizeof(struct sched_entity),
9765 GFP_KERNEL, cpu_to_node(i));
9766 if (!se)
9767 goto err;
9769 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9772 return 1;
9774 err:
9775 return 0;
9778 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9780 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9781 &cpu_rq(cpu)->leaf_cfs_rq_list);
9784 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9786 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9788 #else /* !CONFG_FAIR_GROUP_SCHED */
9789 static inline void free_fair_sched_group(struct task_group *tg)
9793 static inline
9794 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9796 return 1;
9799 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9803 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9806 #endif /* CONFIG_FAIR_GROUP_SCHED */
9808 #ifdef CONFIG_RT_GROUP_SCHED
9809 static void free_rt_sched_group(struct task_group *tg)
9811 int i;
9813 destroy_rt_bandwidth(&tg->rt_bandwidth);
9815 for_each_possible_cpu(i) {
9816 if (tg->rt_rq)
9817 kfree(tg->rt_rq[i]);
9818 if (tg->rt_se)
9819 kfree(tg->rt_se[i]);
9822 kfree(tg->rt_rq);
9823 kfree(tg->rt_se);
9826 static
9827 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9829 struct rt_rq *rt_rq;
9830 struct sched_rt_entity *rt_se;
9831 struct rq *rq;
9832 int i;
9834 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9835 if (!tg->rt_rq)
9836 goto err;
9837 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9838 if (!tg->rt_se)
9839 goto err;
9841 init_rt_bandwidth(&tg->rt_bandwidth,
9842 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9844 for_each_possible_cpu(i) {
9845 rq = cpu_rq(i);
9847 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9848 GFP_KERNEL, cpu_to_node(i));
9849 if (!rt_rq)
9850 goto err;
9852 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9853 GFP_KERNEL, cpu_to_node(i));
9854 if (!rt_se)
9855 goto err;
9857 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9860 return 1;
9862 err:
9863 return 0;
9866 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9868 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9869 &cpu_rq(cpu)->leaf_rt_rq_list);
9872 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9874 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9876 #else /* !CONFIG_RT_GROUP_SCHED */
9877 static inline void free_rt_sched_group(struct task_group *tg)
9881 static inline
9882 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9884 return 1;
9887 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9891 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9894 #endif /* CONFIG_RT_GROUP_SCHED */
9896 #ifdef CONFIG_GROUP_SCHED
9897 static void free_sched_group(struct task_group *tg)
9899 free_fair_sched_group(tg);
9900 free_rt_sched_group(tg);
9901 kfree(tg);
9904 /* allocate runqueue etc for a new task group */
9905 struct task_group *sched_create_group(struct task_group *parent)
9907 struct task_group *tg;
9908 unsigned long flags;
9909 int i;
9911 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9912 if (!tg)
9913 return ERR_PTR(-ENOMEM);
9915 if (!alloc_fair_sched_group(tg, parent))
9916 goto err;
9918 if (!alloc_rt_sched_group(tg, parent))
9919 goto err;
9921 spin_lock_irqsave(&task_group_lock, flags);
9922 for_each_possible_cpu(i) {
9923 register_fair_sched_group(tg, i);
9924 register_rt_sched_group(tg, i);
9926 list_add_rcu(&tg->list, &task_groups);
9928 WARN_ON(!parent); /* root should already exist */
9930 tg->parent = parent;
9931 INIT_LIST_HEAD(&tg->children);
9932 list_add_rcu(&tg->siblings, &parent->children);
9933 spin_unlock_irqrestore(&task_group_lock, flags);
9935 return tg;
9937 err:
9938 free_sched_group(tg);
9939 return ERR_PTR(-ENOMEM);
9942 /* rcu callback to free various structures associated with a task group */
9943 static void free_sched_group_rcu(struct rcu_head *rhp)
9945 /* now it should be safe to free those cfs_rqs */
9946 free_sched_group(container_of(rhp, struct task_group, rcu));
9949 /* Destroy runqueue etc associated with a task group */
9950 void sched_destroy_group(struct task_group *tg)
9952 unsigned long flags;
9953 int i;
9955 spin_lock_irqsave(&task_group_lock, flags);
9956 for_each_possible_cpu(i) {
9957 unregister_fair_sched_group(tg, i);
9958 unregister_rt_sched_group(tg, i);
9960 list_del_rcu(&tg->list);
9961 list_del_rcu(&tg->siblings);
9962 spin_unlock_irqrestore(&task_group_lock, flags);
9964 /* wait for possible concurrent references to cfs_rqs complete */
9965 call_rcu(&tg->rcu, free_sched_group_rcu);
9968 /* change task's runqueue when it moves between groups.
9969 * The caller of this function should have put the task in its new group
9970 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9971 * reflect its new group.
9973 void sched_move_task(struct task_struct *tsk)
9975 int on_rq, running;
9976 unsigned long flags;
9977 struct rq *rq;
9979 rq = task_rq_lock(tsk, &flags);
9981 update_rq_clock(rq);
9983 running = task_current(rq, tsk);
9984 on_rq = tsk->se.on_rq;
9986 if (on_rq)
9987 dequeue_task(rq, tsk, 0);
9988 if (unlikely(running))
9989 tsk->sched_class->put_prev_task(rq, tsk);
9991 set_task_rq(tsk, task_cpu(tsk));
9993 #ifdef CONFIG_FAIR_GROUP_SCHED
9994 if (tsk->sched_class->moved_group)
9995 tsk->sched_class->moved_group(tsk);
9996 #endif
9998 if (unlikely(running))
9999 tsk->sched_class->set_curr_task(rq);
10000 if (on_rq)
10001 enqueue_task(rq, tsk, 0);
10003 task_rq_unlock(rq, &flags);
10005 #endif /* CONFIG_GROUP_SCHED */
10007 #ifdef CONFIG_FAIR_GROUP_SCHED
10008 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10010 struct cfs_rq *cfs_rq = se->cfs_rq;
10011 int on_rq;
10013 on_rq = se->on_rq;
10014 if (on_rq)
10015 dequeue_entity(cfs_rq, se, 0);
10017 se->load.weight = shares;
10018 se->load.inv_weight = 0;
10020 if (on_rq)
10021 enqueue_entity(cfs_rq, se, 0);
10024 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10026 struct cfs_rq *cfs_rq = se->cfs_rq;
10027 struct rq *rq = cfs_rq->rq;
10028 unsigned long flags;
10030 spin_lock_irqsave(&rq->lock, flags);
10031 __set_se_shares(se, shares);
10032 spin_unlock_irqrestore(&rq->lock, flags);
10035 static DEFINE_MUTEX(shares_mutex);
10037 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10039 int i;
10040 unsigned long flags;
10043 * We can't change the weight of the root cgroup.
10045 if (!tg->se[0])
10046 return -EINVAL;
10048 if (shares < MIN_SHARES)
10049 shares = MIN_SHARES;
10050 else if (shares > MAX_SHARES)
10051 shares = MAX_SHARES;
10053 mutex_lock(&shares_mutex);
10054 if (tg->shares == shares)
10055 goto done;
10057 spin_lock_irqsave(&task_group_lock, flags);
10058 for_each_possible_cpu(i)
10059 unregister_fair_sched_group(tg, i);
10060 list_del_rcu(&tg->siblings);
10061 spin_unlock_irqrestore(&task_group_lock, flags);
10063 /* wait for any ongoing reference to this group to finish */
10064 synchronize_sched();
10067 * Now we are free to modify the group's share on each cpu
10068 * w/o tripping rebalance_share or load_balance_fair.
10070 tg->shares = shares;
10071 for_each_possible_cpu(i) {
10073 * force a rebalance
10075 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10076 set_se_shares(tg->se[i], shares);
10080 * Enable load balance activity on this group, by inserting it back on
10081 * each cpu's rq->leaf_cfs_rq_list.
10083 spin_lock_irqsave(&task_group_lock, flags);
10084 for_each_possible_cpu(i)
10085 register_fair_sched_group(tg, i);
10086 list_add_rcu(&tg->siblings, &tg->parent->children);
10087 spin_unlock_irqrestore(&task_group_lock, flags);
10088 done:
10089 mutex_unlock(&shares_mutex);
10090 return 0;
10093 unsigned long sched_group_shares(struct task_group *tg)
10095 return tg->shares;
10097 #endif
10099 #ifdef CONFIG_RT_GROUP_SCHED
10101 * Ensure that the real time constraints are schedulable.
10103 static DEFINE_MUTEX(rt_constraints_mutex);
10105 static unsigned long to_ratio(u64 period, u64 runtime)
10107 if (runtime == RUNTIME_INF)
10108 return 1ULL << 20;
10110 return div64_u64(runtime << 20, period);
10113 /* Must be called with tasklist_lock held */
10114 static inline int tg_has_rt_tasks(struct task_group *tg)
10116 struct task_struct *g, *p;
10118 do_each_thread(g, p) {
10119 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10120 return 1;
10121 } while_each_thread(g, p);
10123 return 0;
10126 struct rt_schedulable_data {
10127 struct task_group *tg;
10128 u64 rt_period;
10129 u64 rt_runtime;
10132 static int tg_schedulable(struct task_group *tg, void *data)
10134 struct rt_schedulable_data *d = data;
10135 struct task_group *child;
10136 unsigned long total, sum = 0;
10137 u64 period, runtime;
10139 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10140 runtime = tg->rt_bandwidth.rt_runtime;
10142 if (tg == d->tg) {
10143 period = d->rt_period;
10144 runtime = d->rt_runtime;
10147 #ifdef CONFIG_USER_SCHED
10148 if (tg == &root_task_group) {
10149 period = global_rt_period();
10150 runtime = global_rt_runtime();
10152 #endif
10155 * Cannot have more runtime than the period.
10157 if (runtime > period && runtime != RUNTIME_INF)
10158 return -EINVAL;
10161 * Ensure we don't starve existing RT tasks.
10163 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10164 return -EBUSY;
10166 total = to_ratio(period, runtime);
10169 * Nobody can have more than the global setting allows.
10171 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10172 return -EINVAL;
10175 * The sum of our children's runtime should not exceed our own.
10177 list_for_each_entry_rcu(child, &tg->children, siblings) {
10178 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10179 runtime = child->rt_bandwidth.rt_runtime;
10181 if (child == d->tg) {
10182 period = d->rt_period;
10183 runtime = d->rt_runtime;
10186 sum += to_ratio(period, runtime);
10189 if (sum > total)
10190 return -EINVAL;
10192 return 0;
10195 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10197 struct rt_schedulable_data data = {
10198 .tg = tg,
10199 .rt_period = period,
10200 .rt_runtime = runtime,
10203 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10206 static int tg_set_bandwidth(struct task_group *tg,
10207 u64 rt_period, u64 rt_runtime)
10209 int i, err = 0;
10211 mutex_lock(&rt_constraints_mutex);
10212 read_lock(&tasklist_lock);
10213 err = __rt_schedulable(tg, rt_period, rt_runtime);
10214 if (err)
10215 goto unlock;
10217 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10218 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10219 tg->rt_bandwidth.rt_runtime = rt_runtime;
10221 for_each_possible_cpu(i) {
10222 struct rt_rq *rt_rq = tg->rt_rq[i];
10224 spin_lock(&rt_rq->rt_runtime_lock);
10225 rt_rq->rt_runtime = rt_runtime;
10226 spin_unlock(&rt_rq->rt_runtime_lock);
10228 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10229 unlock:
10230 read_unlock(&tasklist_lock);
10231 mutex_unlock(&rt_constraints_mutex);
10233 return err;
10236 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10238 u64 rt_runtime, rt_period;
10240 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10241 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10242 if (rt_runtime_us < 0)
10243 rt_runtime = RUNTIME_INF;
10245 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10248 long sched_group_rt_runtime(struct task_group *tg)
10250 u64 rt_runtime_us;
10252 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10253 return -1;
10255 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10256 do_div(rt_runtime_us, NSEC_PER_USEC);
10257 return rt_runtime_us;
10260 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10262 u64 rt_runtime, rt_period;
10264 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10265 rt_runtime = tg->rt_bandwidth.rt_runtime;
10267 if (rt_period == 0)
10268 return -EINVAL;
10270 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10273 long sched_group_rt_period(struct task_group *tg)
10275 u64 rt_period_us;
10277 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10278 do_div(rt_period_us, NSEC_PER_USEC);
10279 return rt_period_us;
10282 static int sched_rt_global_constraints(void)
10284 u64 runtime, period;
10285 int ret = 0;
10287 if (sysctl_sched_rt_period <= 0)
10288 return -EINVAL;
10290 runtime = global_rt_runtime();
10291 period = global_rt_period();
10294 * Sanity check on the sysctl variables.
10296 if (runtime > period && runtime != RUNTIME_INF)
10297 return -EINVAL;
10299 mutex_lock(&rt_constraints_mutex);
10300 read_lock(&tasklist_lock);
10301 ret = __rt_schedulable(NULL, 0, 0);
10302 read_unlock(&tasklist_lock);
10303 mutex_unlock(&rt_constraints_mutex);
10305 return ret;
10308 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10310 /* Don't accept realtime tasks when there is no way for them to run */
10311 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10312 return 0;
10314 return 1;
10317 #else /* !CONFIG_RT_GROUP_SCHED */
10318 static int sched_rt_global_constraints(void)
10320 unsigned long flags;
10321 int i;
10323 if (sysctl_sched_rt_period <= 0)
10324 return -EINVAL;
10327 * There's always some RT tasks in the root group
10328 * -- migration, kstopmachine etc..
10330 if (sysctl_sched_rt_runtime == 0)
10331 return -EBUSY;
10333 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10334 for_each_possible_cpu(i) {
10335 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10337 spin_lock(&rt_rq->rt_runtime_lock);
10338 rt_rq->rt_runtime = global_rt_runtime();
10339 spin_unlock(&rt_rq->rt_runtime_lock);
10341 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10343 return 0;
10345 #endif /* CONFIG_RT_GROUP_SCHED */
10347 int sched_rt_handler(struct ctl_table *table, int write,
10348 void __user *buffer, size_t *lenp,
10349 loff_t *ppos)
10351 int ret;
10352 int old_period, old_runtime;
10353 static DEFINE_MUTEX(mutex);
10355 mutex_lock(&mutex);
10356 old_period = sysctl_sched_rt_period;
10357 old_runtime = sysctl_sched_rt_runtime;
10359 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10361 if (!ret && write) {
10362 ret = sched_rt_global_constraints();
10363 if (ret) {
10364 sysctl_sched_rt_period = old_period;
10365 sysctl_sched_rt_runtime = old_runtime;
10366 } else {
10367 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10368 def_rt_bandwidth.rt_period =
10369 ns_to_ktime(global_rt_period());
10372 mutex_unlock(&mutex);
10374 return ret;
10377 #ifdef CONFIG_CGROUP_SCHED
10379 /* return corresponding task_group object of a cgroup */
10380 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10382 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10383 struct task_group, css);
10386 static struct cgroup_subsys_state *
10387 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10389 struct task_group *tg, *parent;
10391 if (!cgrp->parent) {
10392 /* This is early initialization for the top cgroup */
10393 return &init_task_group.css;
10396 parent = cgroup_tg(cgrp->parent);
10397 tg = sched_create_group(parent);
10398 if (IS_ERR(tg))
10399 return ERR_PTR(-ENOMEM);
10401 return &tg->css;
10404 static void
10405 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10407 struct task_group *tg = cgroup_tg(cgrp);
10409 sched_destroy_group(tg);
10412 static int
10413 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10415 #ifdef CONFIG_RT_GROUP_SCHED
10416 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10417 return -EINVAL;
10418 #else
10419 /* We don't support RT-tasks being in separate groups */
10420 if (tsk->sched_class != &fair_sched_class)
10421 return -EINVAL;
10422 #endif
10423 return 0;
10426 static int
10427 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10428 struct task_struct *tsk, bool threadgroup)
10430 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10431 if (retval)
10432 return retval;
10433 if (threadgroup) {
10434 struct task_struct *c;
10435 rcu_read_lock();
10436 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10437 retval = cpu_cgroup_can_attach_task(cgrp, c);
10438 if (retval) {
10439 rcu_read_unlock();
10440 return retval;
10443 rcu_read_unlock();
10445 return 0;
10448 static void
10449 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10450 struct cgroup *old_cont, struct task_struct *tsk,
10451 bool threadgroup)
10453 sched_move_task(tsk);
10454 if (threadgroup) {
10455 struct task_struct *c;
10456 rcu_read_lock();
10457 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10458 sched_move_task(c);
10460 rcu_read_unlock();
10464 #ifdef CONFIG_FAIR_GROUP_SCHED
10465 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10466 u64 shareval)
10468 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10471 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10473 struct task_group *tg = cgroup_tg(cgrp);
10475 return (u64) tg->shares;
10477 #endif /* CONFIG_FAIR_GROUP_SCHED */
10479 #ifdef CONFIG_RT_GROUP_SCHED
10480 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10481 s64 val)
10483 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10486 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10488 return sched_group_rt_runtime(cgroup_tg(cgrp));
10491 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10492 u64 rt_period_us)
10494 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10497 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10499 return sched_group_rt_period(cgroup_tg(cgrp));
10501 #endif /* CONFIG_RT_GROUP_SCHED */
10503 static struct cftype cpu_files[] = {
10504 #ifdef CONFIG_FAIR_GROUP_SCHED
10506 .name = "shares",
10507 .read_u64 = cpu_shares_read_u64,
10508 .write_u64 = cpu_shares_write_u64,
10510 #endif
10511 #ifdef CONFIG_RT_GROUP_SCHED
10513 .name = "rt_runtime_us",
10514 .read_s64 = cpu_rt_runtime_read,
10515 .write_s64 = cpu_rt_runtime_write,
10518 .name = "rt_period_us",
10519 .read_u64 = cpu_rt_period_read_uint,
10520 .write_u64 = cpu_rt_period_write_uint,
10522 #endif
10525 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10527 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10530 struct cgroup_subsys cpu_cgroup_subsys = {
10531 .name = "cpu",
10532 .create = cpu_cgroup_create,
10533 .destroy = cpu_cgroup_destroy,
10534 .can_attach = cpu_cgroup_can_attach,
10535 .attach = cpu_cgroup_attach,
10536 .populate = cpu_cgroup_populate,
10537 .subsys_id = cpu_cgroup_subsys_id,
10538 .early_init = 1,
10541 #endif /* CONFIG_CGROUP_SCHED */
10543 #ifdef CONFIG_CGROUP_CPUACCT
10546 * CPU accounting code for task groups.
10548 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10549 * (balbir@in.ibm.com).
10552 /* track cpu usage of a group of tasks and its child groups */
10553 struct cpuacct {
10554 struct cgroup_subsys_state css;
10555 /* cpuusage holds pointer to a u64-type object on every cpu */
10556 u64 *cpuusage;
10557 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10558 struct cpuacct *parent;
10561 struct cgroup_subsys cpuacct_subsys;
10563 /* return cpu accounting group corresponding to this container */
10564 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10566 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10567 struct cpuacct, css);
10570 /* return cpu accounting group to which this task belongs */
10571 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10573 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10574 struct cpuacct, css);
10577 /* create a new cpu accounting group */
10578 static struct cgroup_subsys_state *cpuacct_create(
10579 struct cgroup_subsys *ss, struct cgroup *cgrp)
10581 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10582 int i;
10584 if (!ca)
10585 goto out;
10587 ca->cpuusage = alloc_percpu(u64);
10588 if (!ca->cpuusage)
10589 goto out_free_ca;
10591 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10592 if (percpu_counter_init(&ca->cpustat[i], 0))
10593 goto out_free_counters;
10595 if (cgrp->parent)
10596 ca->parent = cgroup_ca(cgrp->parent);
10598 return &ca->css;
10600 out_free_counters:
10601 while (--i >= 0)
10602 percpu_counter_destroy(&ca->cpustat[i]);
10603 free_percpu(ca->cpuusage);
10604 out_free_ca:
10605 kfree(ca);
10606 out:
10607 return ERR_PTR(-ENOMEM);
10610 /* destroy an existing cpu accounting group */
10611 static void
10612 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10614 struct cpuacct *ca = cgroup_ca(cgrp);
10615 int i;
10617 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10618 percpu_counter_destroy(&ca->cpustat[i]);
10619 free_percpu(ca->cpuusage);
10620 kfree(ca);
10623 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10625 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10626 u64 data;
10628 #ifndef CONFIG_64BIT
10630 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10632 spin_lock_irq(&cpu_rq(cpu)->lock);
10633 data = *cpuusage;
10634 spin_unlock_irq(&cpu_rq(cpu)->lock);
10635 #else
10636 data = *cpuusage;
10637 #endif
10639 return data;
10642 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10644 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10646 #ifndef CONFIG_64BIT
10648 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10650 spin_lock_irq(&cpu_rq(cpu)->lock);
10651 *cpuusage = val;
10652 spin_unlock_irq(&cpu_rq(cpu)->lock);
10653 #else
10654 *cpuusage = val;
10655 #endif
10658 /* return total cpu usage (in nanoseconds) of a group */
10659 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10661 struct cpuacct *ca = cgroup_ca(cgrp);
10662 u64 totalcpuusage = 0;
10663 int i;
10665 for_each_present_cpu(i)
10666 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10668 return totalcpuusage;
10671 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10672 u64 reset)
10674 struct cpuacct *ca = cgroup_ca(cgrp);
10675 int err = 0;
10676 int i;
10678 if (reset) {
10679 err = -EINVAL;
10680 goto out;
10683 for_each_present_cpu(i)
10684 cpuacct_cpuusage_write(ca, i, 0);
10686 out:
10687 return err;
10690 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10691 struct seq_file *m)
10693 struct cpuacct *ca = cgroup_ca(cgroup);
10694 u64 percpu;
10695 int i;
10697 for_each_present_cpu(i) {
10698 percpu = cpuacct_cpuusage_read(ca, i);
10699 seq_printf(m, "%llu ", (unsigned long long) percpu);
10701 seq_printf(m, "\n");
10702 return 0;
10705 static const char *cpuacct_stat_desc[] = {
10706 [CPUACCT_STAT_USER] = "user",
10707 [CPUACCT_STAT_SYSTEM] = "system",
10710 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10711 struct cgroup_map_cb *cb)
10713 struct cpuacct *ca = cgroup_ca(cgrp);
10714 int i;
10716 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10717 s64 val = percpu_counter_read(&ca->cpustat[i]);
10718 val = cputime64_to_clock_t(val);
10719 cb->fill(cb, cpuacct_stat_desc[i], val);
10721 return 0;
10724 static struct cftype files[] = {
10726 .name = "usage",
10727 .read_u64 = cpuusage_read,
10728 .write_u64 = cpuusage_write,
10731 .name = "usage_percpu",
10732 .read_seq_string = cpuacct_percpu_seq_read,
10735 .name = "stat",
10736 .read_map = cpuacct_stats_show,
10740 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10742 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10746 * charge this task's execution time to its accounting group.
10748 * called with rq->lock held.
10750 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10752 struct cpuacct *ca;
10753 int cpu;
10755 if (unlikely(!cpuacct_subsys.active))
10756 return;
10758 cpu = task_cpu(tsk);
10760 rcu_read_lock();
10762 ca = task_ca(tsk);
10764 for (; ca; ca = ca->parent) {
10765 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10766 *cpuusage += cputime;
10769 rcu_read_unlock();
10773 * Charge the system/user time to the task's accounting group.
10775 static void cpuacct_update_stats(struct task_struct *tsk,
10776 enum cpuacct_stat_index idx, cputime_t val)
10778 struct cpuacct *ca;
10780 if (unlikely(!cpuacct_subsys.active))
10781 return;
10783 rcu_read_lock();
10784 ca = task_ca(tsk);
10786 do {
10787 percpu_counter_add(&ca->cpustat[idx], val);
10788 ca = ca->parent;
10789 } while (ca);
10790 rcu_read_unlock();
10793 struct cgroup_subsys cpuacct_subsys = {
10794 .name = "cpuacct",
10795 .create = cpuacct_create,
10796 .destroy = cpuacct_destroy,
10797 .populate = cpuacct_populate,
10798 .subsys_id = cpuacct_subsys_id,
10800 #endif /* CONFIG_CGROUP_CPUACCT */
10802 #ifndef CONFIG_SMP
10804 int rcu_expedited_torture_stats(char *page)
10806 return 0;
10808 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10810 void synchronize_sched_expedited(void)
10813 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10815 #else /* #ifndef CONFIG_SMP */
10817 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10818 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10820 #define RCU_EXPEDITED_STATE_POST -2
10821 #define RCU_EXPEDITED_STATE_IDLE -1
10823 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10825 int rcu_expedited_torture_stats(char *page)
10827 int cnt = 0;
10828 int cpu;
10830 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10831 for_each_online_cpu(cpu) {
10832 cnt += sprintf(&page[cnt], " %d:%d",
10833 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10835 cnt += sprintf(&page[cnt], "\n");
10836 return cnt;
10838 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10840 static long synchronize_sched_expedited_count;
10843 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10844 * approach to force grace period to end quickly. This consumes
10845 * significant time on all CPUs, and is thus not recommended for
10846 * any sort of common-case code.
10848 * Note that it is illegal to call this function while holding any
10849 * lock that is acquired by a CPU-hotplug notifier. Failing to
10850 * observe this restriction will result in deadlock.
10852 void synchronize_sched_expedited(void)
10854 int cpu;
10855 unsigned long flags;
10856 bool need_full_sync = 0;
10857 struct rq *rq;
10858 struct migration_req *req;
10859 long snap;
10860 int trycount = 0;
10862 smp_mb(); /* ensure prior mod happens before capturing snap. */
10863 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10864 get_online_cpus();
10865 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10866 put_online_cpus();
10867 if (trycount++ < 10)
10868 udelay(trycount * num_online_cpus());
10869 else {
10870 synchronize_sched();
10871 return;
10873 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10874 smp_mb(); /* ensure test happens before caller kfree */
10875 return;
10877 get_online_cpus();
10879 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10880 for_each_online_cpu(cpu) {
10881 rq = cpu_rq(cpu);
10882 req = &per_cpu(rcu_migration_req, cpu);
10883 init_completion(&req->done);
10884 req->task = NULL;
10885 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10886 spin_lock_irqsave(&rq->lock, flags);
10887 list_add(&req->list, &rq->migration_queue);
10888 spin_unlock_irqrestore(&rq->lock, flags);
10889 wake_up_process(rq->migration_thread);
10891 for_each_online_cpu(cpu) {
10892 rcu_expedited_state = cpu;
10893 req = &per_cpu(rcu_migration_req, cpu);
10894 rq = cpu_rq(cpu);
10895 wait_for_completion(&req->done);
10896 spin_lock_irqsave(&rq->lock, flags);
10897 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10898 need_full_sync = 1;
10899 req->dest_cpu = RCU_MIGRATION_IDLE;
10900 spin_unlock_irqrestore(&rq->lock, flags);
10902 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10903 mutex_unlock(&rcu_sched_expedited_mutex);
10904 put_online_cpus();
10905 if (need_full_sync)
10906 synchronize_sched();
10908 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10910 #endif /* #else #ifndef CONFIG_SMP */