[PATCH] scx200_acb: Fix resource name use after free
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
blobacbccf71df6dca567f412a34540f648c389b6db7
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <linux/capability.h>
29 #include <asm/param.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include <asm/siginfo.h>
35 * SLAB caches for signal bits.
38 static kmem_cache_t *sigqueue_cachep;
41 * In POSIX a signal is sent either to a specific thread (Linux task)
42 * or to the process as a whole (Linux thread group). How the signal
43 * is sent determines whether it's to one thread or the whole group,
44 * which determines which signal mask(s) are involved in blocking it
45 * from being delivered until later. When the signal is delivered,
46 * either it's caught or ignored by a user handler or it has a default
47 * effect that applies to the whole thread group (POSIX process).
49 * The possible effects an unblocked signal set to SIG_DFL can have are:
50 * ignore - Nothing Happens
51 * terminate - kill the process, i.e. all threads in the group,
52 * similar to exit_group. The group leader (only) reports
53 * WIFSIGNALED status to its parent.
54 * coredump - write a core dump file describing all threads using
55 * the same mm and then kill all those threads
56 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
58 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
59 * Other signals when not blocked and set to SIG_DFL behaves as follows.
60 * The job control signals also have other special effects.
62 * +--------------------+------------------+
63 * | POSIX signal | default action |
64 * +--------------------+------------------+
65 * | SIGHUP | terminate |
66 * | SIGINT | terminate |
67 * | SIGQUIT | coredump |
68 * | SIGILL | coredump |
69 * | SIGTRAP | coredump |
70 * | SIGABRT/SIGIOT | coredump |
71 * | SIGBUS | coredump |
72 * | SIGFPE | coredump |
73 * | SIGKILL | terminate(+) |
74 * | SIGUSR1 | terminate |
75 * | SIGSEGV | coredump |
76 * | SIGUSR2 | terminate |
77 * | SIGPIPE | terminate |
78 * | SIGALRM | terminate |
79 * | SIGTERM | terminate |
80 * | SIGCHLD | ignore |
81 * | SIGCONT | ignore(*) |
82 * | SIGSTOP | stop(*)(+) |
83 * | SIGTSTP | stop(*) |
84 * | SIGTTIN | stop(*) |
85 * | SIGTTOU | stop(*) |
86 * | SIGURG | ignore |
87 * | SIGXCPU | coredump |
88 * | SIGXFSZ | coredump |
89 * | SIGVTALRM | terminate |
90 * | SIGPROF | terminate |
91 * | SIGPOLL/SIGIO | terminate |
92 * | SIGSYS/SIGUNUSED | coredump |
93 * | SIGSTKFLT | terminate |
94 * | SIGWINCH | ignore |
95 * | SIGPWR | terminate |
96 * | SIGRTMIN-SIGRTMAX | terminate |
97 * +--------------------+------------------+
98 * | non-POSIX signal | default action |
99 * +--------------------+------------------+
100 * | SIGEMT | coredump |
101 * +--------------------+------------------+
103 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
104 * (*) Special job control effects:
105 * When SIGCONT is sent, it resumes the process (all threads in the group)
106 * from TASK_STOPPED state and also clears any pending/queued stop signals
107 * (any of those marked with "stop(*)"). This happens regardless of blocking,
108 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
109 * any pending/queued SIGCONT signals; this happens regardless of blocking,
110 * catching, or ignored the stop signal, though (except for SIGSTOP) the
111 * default action of stopping the process may happen later or never.
114 #ifdef SIGEMT
115 #define M_SIGEMT M(SIGEMT)
116 #else
117 #define M_SIGEMT 0
118 #endif
120 #if SIGRTMIN > BITS_PER_LONG
121 #define M(sig) (1ULL << ((sig)-1))
122 #else
123 #define M(sig) (1UL << ((sig)-1))
124 #endif
125 #define T(sig, mask) (M(sig) & (mask))
127 #define SIG_KERNEL_ONLY_MASK (\
128 M(SIGKILL) | M(SIGSTOP) )
130 #define SIG_KERNEL_STOP_MASK (\
131 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
133 #define SIG_KERNEL_COREDUMP_MASK (\
134 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
135 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
136 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
138 #define SIG_KERNEL_IGNORE_MASK (\
139 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
141 #define sig_kernel_only(sig) \
142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
143 #define sig_kernel_coredump(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
145 #define sig_kernel_ignore(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
147 #define sig_kernel_stop(sig) \
148 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
150 #define sig_user_defined(t, signr) \
151 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
152 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
154 #define sig_fatal(t, signr) \
155 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
156 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
158 static int sig_ignored(struct task_struct *t, int sig)
160 void __user * handler;
163 * Tracers always want to know about signals..
165 if (t->ptrace & PT_PTRACED)
166 return 0;
169 * Blocked signals are never ignored, since the
170 * signal handler may change by the time it is
171 * unblocked.
173 if (sigismember(&t->blocked, sig))
174 return 0;
176 /* Is it explicitly or implicitly ignored? */
177 handler = t->sighand->action[sig-1].sa.sa_handler;
178 return handler == SIG_IGN ||
179 (handler == SIG_DFL && sig_kernel_ignore(sig));
183 * Re-calculate pending state from the set of locally pending
184 * signals, globally pending signals, and blocked signals.
186 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
188 unsigned long ready;
189 long i;
191 switch (_NSIG_WORDS) {
192 default:
193 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
194 ready |= signal->sig[i] &~ blocked->sig[i];
195 break;
197 case 4: ready = signal->sig[3] &~ blocked->sig[3];
198 ready |= signal->sig[2] &~ blocked->sig[2];
199 ready |= signal->sig[1] &~ blocked->sig[1];
200 ready |= signal->sig[0] &~ blocked->sig[0];
201 break;
203 case 2: ready = signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
205 break;
207 case 1: ready = signal->sig[0] &~ blocked->sig[0];
209 return ready != 0;
212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
214 fastcall void recalc_sigpending_tsk(struct task_struct *t)
216 if (t->signal->group_stop_count > 0 ||
217 (freezing(t)) ||
218 PENDING(&t->pending, &t->blocked) ||
219 PENDING(&t->signal->shared_pending, &t->blocked))
220 set_tsk_thread_flag(t, TIF_SIGPENDING);
221 else
222 clear_tsk_thread_flag(t, TIF_SIGPENDING);
225 void recalc_sigpending(void)
227 recalc_sigpending_tsk(current);
230 /* Given the mask, find the first available signal that should be serviced. */
232 static int
233 next_signal(struct sigpending *pending, sigset_t *mask)
235 unsigned long i, *s, *m, x;
236 int sig = 0;
238 s = pending->signal.sig;
239 m = mask->sig;
240 switch (_NSIG_WORDS) {
241 default:
242 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
243 if ((x = *s &~ *m) != 0) {
244 sig = ffz(~x) + i*_NSIG_BPW + 1;
245 break;
247 break;
249 case 2: if ((x = s[0] &~ m[0]) != 0)
250 sig = 1;
251 else if ((x = s[1] &~ m[1]) != 0)
252 sig = _NSIG_BPW + 1;
253 else
254 break;
255 sig += ffz(~x);
256 break;
258 case 1: if ((x = *s &~ *m) != 0)
259 sig = ffz(~x) + 1;
260 break;
263 return sig;
266 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
267 int override_rlimit)
269 struct sigqueue *q = NULL;
271 atomic_inc(&t->user->sigpending);
272 if (override_rlimit ||
273 atomic_read(&t->user->sigpending) <=
274 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
275 q = kmem_cache_alloc(sigqueue_cachep, flags);
276 if (unlikely(q == NULL)) {
277 atomic_dec(&t->user->sigpending);
278 } else {
279 INIT_LIST_HEAD(&q->list);
280 q->flags = 0;
281 q->user = get_uid(t->user);
283 return(q);
286 static void __sigqueue_free(struct sigqueue *q)
288 if (q->flags & SIGQUEUE_PREALLOC)
289 return;
290 atomic_dec(&q->user->sigpending);
291 free_uid(q->user);
292 kmem_cache_free(sigqueue_cachep, q);
295 static void flush_sigqueue(struct sigpending *queue)
297 struct sigqueue *q;
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
303 __sigqueue_free(q);
308 * Flush all pending signals for a task.
311 void
312 flush_signals(struct task_struct *t)
314 unsigned long flags;
316 spin_lock_irqsave(&t->sighand->siglock, flags);
317 clear_tsk_thread_flag(t,TIF_SIGPENDING);
318 flush_sigqueue(&t->pending);
319 flush_sigqueue(&t->signal->shared_pending);
320 spin_unlock_irqrestore(&t->sighand->siglock, flags);
324 * This function expects the tasklist_lock write-locked.
326 void __exit_sighand(struct task_struct *tsk)
328 struct sighand_struct * sighand = tsk->sighand;
330 /* Ok, we're done with the signal handlers */
331 tsk->sighand = NULL;
332 if (atomic_dec_and_test(&sighand->count))
333 sighand_free(sighand);
336 void exit_sighand(struct task_struct *tsk)
338 write_lock_irq(&tasklist_lock);
339 rcu_read_lock();
340 if (tsk->sighand != NULL) {
341 struct sighand_struct *sighand = rcu_dereference(tsk->sighand);
342 spin_lock(&sighand->siglock);
343 __exit_sighand(tsk);
344 spin_unlock(&sighand->siglock);
346 rcu_read_unlock();
347 write_unlock_irq(&tasklist_lock);
351 * This function expects the tasklist_lock write-locked.
353 void __exit_signal(struct task_struct *tsk)
355 struct signal_struct * sig = tsk->signal;
356 struct sighand_struct * sighand;
358 if (!sig)
359 BUG();
360 if (!atomic_read(&sig->count))
361 BUG();
362 rcu_read_lock();
363 sighand = rcu_dereference(tsk->sighand);
364 spin_lock(&sighand->siglock);
365 posix_cpu_timers_exit(tsk);
366 if (atomic_dec_and_test(&sig->count)) {
367 posix_cpu_timers_exit_group(tsk);
368 tsk->signal = NULL;
369 __exit_sighand(tsk);
370 spin_unlock(&sighand->siglock);
371 flush_sigqueue(&sig->shared_pending);
372 } else {
374 * If there is any task waiting for the group exit
375 * then notify it:
377 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
378 wake_up_process(sig->group_exit_task);
379 sig->group_exit_task = NULL;
381 if (tsk == sig->curr_target)
382 sig->curr_target = next_thread(tsk);
383 tsk->signal = NULL;
385 * Accumulate here the counters for all threads but the
386 * group leader as they die, so they can be added into
387 * the process-wide totals when those are taken.
388 * The group leader stays around as a zombie as long
389 * as there are other threads. When it gets reaped,
390 * the exit.c code will add its counts into these totals.
391 * We won't ever get here for the group leader, since it
392 * will have been the last reference on the signal_struct.
394 sig->utime = cputime_add(sig->utime, tsk->utime);
395 sig->stime = cputime_add(sig->stime, tsk->stime);
396 sig->min_flt += tsk->min_flt;
397 sig->maj_flt += tsk->maj_flt;
398 sig->nvcsw += tsk->nvcsw;
399 sig->nivcsw += tsk->nivcsw;
400 sig->sched_time += tsk->sched_time;
401 __exit_sighand(tsk);
402 spin_unlock(&sighand->siglock);
403 sig = NULL; /* Marker for below. */
405 rcu_read_unlock();
406 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
407 flush_sigqueue(&tsk->pending);
408 if (sig) {
410 * We are cleaning up the signal_struct here.
412 exit_thread_group_keys(sig);
413 kmem_cache_free(signal_cachep, sig);
417 void exit_signal(struct task_struct *tsk)
419 atomic_dec(&tsk->signal->live);
421 write_lock_irq(&tasklist_lock);
422 __exit_signal(tsk);
423 write_unlock_irq(&tasklist_lock);
427 * Flush all handlers for a task.
430 void
431 flush_signal_handlers(struct task_struct *t, int force_default)
433 int i;
434 struct k_sigaction *ka = &t->sighand->action[0];
435 for (i = _NSIG ; i != 0 ; i--) {
436 if (force_default || ka->sa.sa_handler != SIG_IGN)
437 ka->sa.sa_handler = SIG_DFL;
438 ka->sa.sa_flags = 0;
439 sigemptyset(&ka->sa.sa_mask);
440 ka++;
445 /* Notify the system that a driver wants to block all signals for this
446 * process, and wants to be notified if any signals at all were to be
447 * sent/acted upon. If the notifier routine returns non-zero, then the
448 * signal will be acted upon after all. If the notifier routine returns 0,
449 * then then signal will be blocked. Only one block per process is
450 * allowed. priv is a pointer to private data that the notifier routine
451 * can use to determine if the signal should be blocked or not. */
453 void
454 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
456 unsigned long flags;
458 spin_lock_irqsave(&current->sighand->siglock, flags);
459 current->notifier_mask = mask;
460 current->notifier_data = priv;
461 current->notifier = notifier;
462 spin_unlock_irqrestore(&current->sighand->siglock, flags);
465 /* Notify the system that blocking has ended. */
467 void
468 unblock_all_signals(void)
470 unsigned long flags;
472 spin_lock_irqsave(&current->sighand->siglock, flags);
473 current->notifier = NULL;
474 current->notifier_data = NULL;
475 recalc_sigpending();
476 spin_unlock_irqrestore(&current->sighand->siglock, flags);
479 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
481 struct sigqueue *q, *first = NULL;
482 int still_pending = 0;
484 if (unlikely(!sigismember(&list->signal, sig)))
485 return 0;
488 * Collect the siginfo appropriate to this signal. Check if
489 * there is another siginfo for the same signal.
491 list_for_each_entry(q, &list->list, list) {
492 if (q->info.si_signo == sig) {
493 if (first) {
494 still_pending = 1;
495 break;
497 first = q;
500 if (first) {
501 list_del_init(&first->list);
502 copy_siginfo(info, &first->info);
503 __sigqueue_free(first);
504 if (!still_pending)
505 sigdelset(&list->signal, sig);
506 } else {
508 /* Ok, it wasn't in the queue. This must be
509 a fast-pathed signal or we must have been
510 out of queue space. So zero out the info.
512 sigdelset(&list->signal, sig);
513 info->si_signo = sig;
514 info->si_errno = 0;
515 info->si_code = 0;
516 info->si_pid = 0;
517 info->si_uid = 0;
519 return 1;
522 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
523 siginfo_t *info)
525 int sig = 0;
527 sig = next_signal(pending, mask);
528 if (sig) {
529 if (current->notifier) {
530 if (sigismember(current->notifier_mask, sig)) {
531 if (!(current->notifier)(current->notifier_data)) {
532 clear_thread_flag(TIF_SIGPENDING);
533 return 0;
538 if (!collect_signal(sig, pending, info))
539 sig = 0;
542 recalc_sigpending();
544 return sig;
548 * Dequeue a signal and return the element to the caller, which is
549 * expected to free it.
551 * All callers have to hold the siglock.
553 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
555 int signr = __dequeue_signal(&tsk->pending, mask, info);
556 if (!signr)
557 signr = __dequeue_signal(&tsk->signal->shared_pending,
558 mask, info);
559 if (signr && unlikely(sig_kernel_stop(signr))) {
561 * Set a marker that we have dequeued a stop signal. Our
562 * caller might release the siglock and then the pending
563 * stop signal it is about to process is no longer in the
564 * pending bitmasks, but must still be cleared by a SIGCONT
565 * (and overruled by a SIGKILL). So those cases clear this
566 * shared flag after we've set it. Note that this flag may
567 * remain set after the signal we return is ignored or
568 * handled. That doesn't matter because its only purpose
569 * is to alert stop-signal processing code when another
570 * processor has come along and cleared the flag.
572 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
573 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
575 if ( signr &&
576 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
577 info->si_sys_private){
579 * Release the siglock to ensure proper locking order
580 * of timer locks outside of siglocks. Note, we leave
581 * irqs disabled here, since the posix-timers code is
582 * about to disable them again anyway.
584 spin_unlock(&tsk->sighand->siglock);
585 do_schedule_next_timer(info);
586 spin_lock(&tsk->sighand->siglock);
588 return signr;
592 * Tell a process that it has a new active signal..
594 * NOTE! we rely on the previous spin_lock to
595 * lock interrupts for us! We can only be called with
596 * "siglock" held, and the local interrupt must
597 * have been disabled when that got acquired!
599 * No need to set need_resched since signal event passing
600 * goes through ->blocked
602 void signal_wake_up(struct task_struct *t, int resume)
604 unsigned int mask;
606 set_tsk_thread_flag(t, TIF_SIGPENDING);
609 * For SIGKILL, we want to wake it up in the stopped/traced case.
610 * We don't check t->state here because there is a race with it
611 * executing another processor and just now entering stopped state.
612 * By using wake_up_state, we ensure the process will wake up and
613 * handle its death signal.
615 mask = TASK_INTERRUPTIBLE;
616 if (resume)
617 mask |= TASK_STOPPED | TASK_TRACED;
618 if (!wake_up_state(t, mask))
619 kick_process(t);
623 * Remove signals in mask from the pending set and queue.
624 * Returns 1 if any signals were found.
626 * All callers must be holding the siglock.
628 * This version takes a sigset mask and looks at all signals,
629 * not just those in the first mask word.
631 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
633 struct sigqueue *q, *n;
634 sigset_t m;
636 sigandsets(&m, mask, &s->signal);
637 if (sigisemptyset(&m))
638 return 0;
640 signandsets(&s->signal, &s->signal, mask);
641 list_for_each_entry_safe(q, n, &s->list, list) {
642 if (sigismember(mask, q->info.si_signo)) {
643 list_del_init(&q->list);
644 __sigqueue_free(q);
647 return 1;
650 * Remove signals in mask from the pending set and queue.
651 * Returns 1 if any signals were found.
653 * All callers must be holding the siglock.
655 static int rm_from_queue(unsigned long mask, struct sigpending *s)
657 struct sigqueue *q, *n;
659 if (!sigtestsetmask(&s->signal, mask))
660 return 0;
662 sigdelsetmask(&s->signal, mask);
663 list_for_each_entry_safe(q, n, &s->list, list) {
664 if (q->info.si_signo < SIGRTMIN &&
665 (mask & sigmask(q->info.si_signo))) {
666 list_del_init(&q->list);
667 __sigqueue_free(q);
670 return 1;
674 * Bad permissions for sending the signal
676 static int check_kill_permission(int sig, struct siginfo *info,
677 struct task_struct *t)
679 int error = -EINVAL;
680 if (!valid_signal(sig))
681 return error;
682 error = -EPERM;
683 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
684 && ((sig != SIGCONT) ||
685 (current->signal->session != t->signal->session))
686 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
687 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
688 && !capable(CAP_KILL))
689 return error;
691 error = security_task_kill(t, info, sig);
692 if (!error)
693 audit_signal_info(sig, t); /* Let audit system see the signal */
694 return error;
697 /* forward decl */
698 static void do_notify_parent_cldstop(struct task_struct *tsk,
699 int to_self,
700 int why);
703 * Handle magic process-wide effects of stop/continue signals.
704 * Unlike the signal actions, these happen immediately at signal-generation
705 * time regardless of blocking, ignoring, or handling. This does the
706 * actual continuing for SIGCONT, but not the actual stopping for stop
707 * signals. The process stop is done as a signal action for SIG_DFL.
709 static void handle_stop_signal(int sig, struct task_struct *p)
711 struct task_struct *t;
713 if (p->signal->flags & SIGNAL_GROUP_EXIT)
715 * The process is in the middle of dying already.
717 return;
719 if (sig_kernel_stop(sig)) {
721 * This is a stop signal. Remove SIGCONT from all queues.
723 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
724 t = p;
725 do {
726 rm_from_queue(sigmask(SIGCONT), &t->pending);
727 t = next_thread(t);
728 } while (t != p);
729 } else if (sig == SIGCONT) {
731 * Remove all stop signals from all queues,
732 * and wake all threads.
734 if (unlikely(p->signal->group_stop_count > 0)) {
736 * There was a group stop in progress. We'll
737 * pretend it finished before we got here. We are
738 * obliged to report it to the parent: if the
739 * SIGSTOP happened "after" this SIGCONT, then it
740 * would have cleared this pending SIGCONT. If it
741 * happened "before" this SIGCONT, then the parent
742 * got the SIGCHLD about the stop finishing before
743 * the continue happened. We do the notification
744 * now, and it's as if the stop had finished and
745 * the SIGCHLD was pending on entry to this kill.
747 p->signal->group_stop_count = 0;
748 p->signal->flags = SIGNAL_STOP_CONTINUED;
749 spin_unlock(&p->sighand->siglock);
750 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
751 spin_lock(&p->sighand->siglock);
753 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
754 t = p;
755 do {
756 unsigned int state;
757 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
760 * If there is a handler for SIGCONT, we must make
761 * sure that no thread returns to user mode before
762 * we post the signal, in case it was the only
763 * thread eligible to run the signal handler--then
764 * it must not do anything between resuming and
765 * running the handler. With the TIF_SIGPENDING
766 * flag set, the thread will pause and acquire the
767 * siglock that we hold now and until we've queued
768 * the pending signal.
770 * Wake up the stopped thread _after_ setting
771 * TIF_SIGPENDING
773 state = TASK_STOPPED;
774 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
775 set_tsk_thread_flag(t, TIF_SIGPENDING);
776 state |= TASK_INTERRUPTIBLE;
778 wake_up_state(t, state);
780 t = next_thread(t);
781 } while (t != p);
783 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
785 * We were in fact stopped, and are now continued.
786 * Notify the parent with CLD_CONTINUED.
788 p->signal->flags = SIGNAL_STOP_CONTINUED;
789 p->signal->group_exit_code = 0;
790 spin_unlock(&p->sighand->siglock);
791 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
792 spin_lock(&p->sighand->siglock);
793 } else {
795 * We are not stopped, but there could be a stop
796 * signal in the middle of being processed after
797 * being removed from the queue. Clear that too.
799 p->signal->flags = 0;
801 } else if (sig == SIGKILL) {
803 * Make sure that any pending stop signal already dequeued
804 * is undone by the wakeup for SIGKILL.
806 p->signal->flags = 0;
810 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
811 struct sigpending *signals)
813 struct sigqueue * q = NULL;
814 int ret = 0;
817 * fast-pathed signals for kernel-internal things like SIGSTOP
818 * or SIGKILL.
820 if (info == SEND_SIG_FORCED)
821 goto out_set;
823 /* Real-time signals must be queued if sent by sigqueue, or
824 some other real-time mechanism. It is implementation
825 defined whether kill() does so. We attempt to do so, on
826 the principle of least surprise, but since kill is not
827 allowed to fail with EAGAIN when low on memory we just
828 make sure at least one signal gets delivered and don't
829 pass on the info struct. */
831 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
832 (is_si_special(info) ||
833 info->si_code >= 0)));
834 if (q) {
835 list_add_tail(&q->list, &signals->list);
836 switch ((unsigned long) info) {
837 case (unsigned long) SEND_SIG_NOINFO:
838 q->info.si_signo = sig;
839 q->info.si_errno = 0;
840 q->info.si_code = SI_USER;
841 q->info.si_pid = current->pid;
842 q->info.si_uid = current->uid;
843 break;
844 case (unsigned long) SEND_SIG_PRIV:
845 q->info.si_signo = sig;
846 q->info.si_errno = 0;
847 q->info.si_code = SI_KERNEL;
848 q->info.si_pid = 0;
849 q->info.si_uid = 0;
850 break;
851 default:
852 copy_siginfo(&q->info, info);
853 break;
855 } else if (!is_si_special(info)) {
856 if (sig >= SIGRTMIN && info->si_code != SI_USER)
858 * Queue overflow, abort. We may abort if the signal was rt
859 * and sent by user using something other than kill().
861 return -EAGAIN;
864 out_set:
865 sigaddset(&signals->signal, sig);
866 return ret;
869 #define LEGACY_QUEUE(sigptr, sig) \
870 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
873 static int
874 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
876 int ret = 0;
878 if (!irqs_disabled())
879 BUG();
880 assert_spin_locked(&t->sighand->siglock);
882 /* Short-circuit ignored signals. */
883 if (sig_ignored(t, sig))
884 goto out;
886 /* Support queueing exactly one non-rt signal, so that we
887 can get more detailed information about the cause of
888 the signal. */
889 if (LEGACY_QUEUE(&t->pending, sig))
890 goto out;
892 ret = send_signal(sig, info, t, &t->pending);
893 if (!ret && !sigismember(&t->blocked, sig))
894 signal_wake_up(t, sig == SIGKILL);
895 out:
896 return ret;
900 * Force a signal that the process can't ignore: if necessary
901 * we unblock the signal and change any SIG_IGN to SIG_DFL.
905 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
907 unsigned long int flags;
908 int ret;
910 spin_lock_irqsave(&t->sighand->siglock, flags);
911 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
912 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
914 if (sigismember(&t->blocked, sig)) {
915 sigdelset(&t->blocked, sig);
917 recalc_sigpending_tsk(t);
918 ret = specific_send_sig_info(sig, info, t);
919 spin_unlock_irqrestore(&t->sighand->siglock, flags);
921 return ret;
924 void
925 force_sig_specific(int sig, struct task_struct *t)
927 force_sig_info(sig, SEND_SIG_FORCED, t);
931 * Test if P wants to take SIG. After we've checked all threads with this,
932 * it's equivalent to finding no threads not blocking SIG. Any threads not
933 * blocking SIG were ruled out because they are not running and already
934 * have pending signals. Such threads will dequeue from the shared queue
935 * as soon as they're available, so putting the signal on the shared queue
936 * will be equivalent to sending it to one such thread.
938 static inline int wants_signal(int sig, struct task_struct *p)
940 if (sigismember(&p->blocked, sig))
941 return 0;
942 if (p->flags & PF_EXITING)
943 return 0;
944 if (sig == SIGKILL)
945 return 1;
946 if (p->state & (TASK_STOPPED | TASK_TRACED))
947 return 0;
948 return task_curr(p) || !signal_pending(p);
951 static void
952 __group_complete_signal(int sig, struct task_struct *p)
954 struct task_struct *t;
957 * Now find a thread we can wake up to take the signal off the queue.
959 * If the main thread wants the signal, it gets first crack.
960 * Probably the least surprising to the average bear.
962 if (wants_signal(sig, p))
963 t = p;
964 else if (thread_group_empty(p))
966 * There is just one thread and it does not need to be woken.
967 * It will dequeue unblocked signals before it runs again.
969 return;
970 else {
972 * Otherwise try to find a suitable thread.
974 t = p->signal->curr_target;
975 if (t == NULL)
976 /* restart balancing at this thread */
977 t = p->signal->curr_target = p;
979 while (!wants_signal(sig, t)) {
980 t = next_thread(t);
981 if (t == p->signal->curr_target)
983 * No thread needs to be woken.
984 * Any eligible threads will see
985 * the signal in the queue soon.
987 return;
989 p->signal->curr_target = t;
993 * Found a killable thread. If the signal will be fatal,
994 * then start taking the whole group down immediately.
996 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
997 !sigismember(&t->real_blocked, sig) &&
998 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1000 * This signal will be fatal to the whole group.
1002 if (!sig_kernel_coredump(sig)) {
1004 * Start a group exit and wake everybody up.
1005 * This way we don't have other threads
1006 * running and doing things after a slower
1007 * thread has the fatal signal pending.
1009 p->signal->flags = SIGNAL_GROUP_EXIT;
1010 p->signal->group_exit_code = sig;
1011 p->signal->group_stop_count = 0;
1012 t = p;
1013 do {
1014 sigaddset(&t->pending.signal, SIGKILL);
1015 signal_wake_up(t, 1);
1016 t = next_thread(t);
1017 } while (t != p);
1018 return;
1022 * There will be a core dump. We make all threads other
1023 * than the chosen one go into a group stop so that nothing
1024 * happens until it gets scheduled, takes the signal off
1025 * the shared queue, and does the core dump. This is a
1026 * little more complicated than strictly necessary, but it
1027 * keeps the signal state that winds up in the core dump
1028 * unchanged from the death state, e.g. which thread had
1029 * the core-dump signal unblocked.
1031 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1032 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1033 p->signal->group_stop_count = 0;
1034 p->signal->group_exit_task = t;
1035 t = p;
1036 do {
1037 p->signal->group_stop_count++;
1038 signal_wake_up(t, 0);
1039 t = next_thread(t);
1040 } while (t != p);
1041 wake_up_process(p->signal->group_exit_task);
1042 return;
1046 * The signal is already in the shared-pending queue.
1047 * Tell the chosen thread to wake up and dequeue it.
1049 signal_wake_up(t, sig == SIGKILL);
1050 return;
1054 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1056 int ret = 0;
1058 assert_spin_locked(&p->sighand->siglock);
1059 handle_stop_signal(sig, p);
1061 /* Short-circuit ignored signals. */
1062 if (sig_ignored(p, sig))
1063 return ret;
1065 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1066 /* This is a non-RT signal and we already have one queued. */
1067 return ret;
1070 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1071 * We always use the shared queue for process-wide signals,
1072 * to avoid several races.
1074 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1075 if (unlikely(ret))
1076 return ret;
1078 __group_complete_signal(sig, p);
1079 return 0;
1083 * Nuke all other threads in the group.
1085 void zap_other_threads(struct task_struct *p)
1087 struct task_struct *t;
1089 p->signal->flags = SIGNAL_GROUP_EXIT;
1090 p->signal->group_stop_count = 0;
1092 if (thread_group_empty(p))
1093 return;
1095 for (t = next_thread(p); t != p; t = next_thread(t)) {
1097 * Don't bother with already dead threads
1099 if (t->exit_state)
1100 continue;
1103 * We don't want to notify the parent, since we are
1104 * killed as part of a thread group due to another
1105 * thread doing an execve() or similar. So set the
1106 * exit signal to -1 to allow immediate reaping of
1107 * the process. But don't detach the thread group
1108 * leader.
1110 if (t != p->group_leader)
1111 t->exit_signal = -1;
1113 /* SIGKILL will be handled before any pending SIGSTOP */
1114 sigaddset(&t->pending.signal, SIGKILL);
1115 signal_wake_up(t, 1);
1120 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1122 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1124 unsigned long flags;
1125 struct sighand_struct *sp;
1126 int ret;
1128 retry:
1129 ret = check_kill_permission(sig, info, p);
1130 if (!ret && sig && (sp = rcu_dereference(p->sighand))) {
1131 spin_lock_irqsave(&sp->siglock, flags);
1132 if (p->sighand != sp) {
1133 spin_unlock_irqrestore(&sp->siglock, flags);
1134 goto retry;
1136 if ((atomic_read(&sp->count) == 0) ||
1137 (atomic_read(&p->usage) == 0)) {
1138 spin_unlock_irqrestore(&sp->siglock, flags);
1139 return -ESRCH;
1141 ret = __group_send_sig_info(sig, info, p);
1142 spin_unlock_irqrestore(&sp->siglock, flags);
1145 return ret;
1149 * kill_pg_info() sends a signal to a process group: this is what the tty
1150 * control characters do (^C, ^Z etc)
1153 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1155 struct task_struct *p = NULL;
1156 int retval, success;
1158 if (pgrp <= 0)
1159 return -EINVAL;
1161 success = 0;
1162 retval = -ESRCH;
1163 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1164 int err = group_send_sig_info(sig, info, p);
1165 success |= !err;
1166 retval = err;
1167 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1168 return success ? 0 : retval;
1172 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1174 int retval;
1176 read_lock(&tasklist_lock);
1177 retval = __kill_pg_info(sig, info, pgrp);
1178 read_unlock(&tasklist_lock);
1180 return retval;
1184 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1186 int error;
1187 int acquired_tasklist_lock = 0;
1188 struct task_struct *p;
1190 rcu_read_lock();
1191 if (unlikely(sig_kernel_stop(sig) || sig == SIGCONT)) {
1192 read_lock(&tasklist_lock);
1193 acquired_tasklist_lock = 1;
1195 p = find_task_by_pid(pid);
1196 error = -ESRCH;
1197 if (p)
1198 error = group_send_sig_info(sig, info, p);
1199 if (unlikely(acquired_tasklist_lock))
1200 read_unlock(&tasklist_lock);
1201 rcu_read_unlock();
1202 return error;
1205 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1206 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1207 uid_t uid, uid_t euid)
1209 int ret = -EINVAL;
1210 struct task_struct *p;
1212 if (!valid_signal(sig))
1213 return ret;
1215 read_lock(&tasklist_lock);
1216 p = find_task_by_pid(pid);
1217 if (!p) {
1218 ret = -ESRCH;
1219 goto out_unlock;
1221 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1222 && (euid != p->suid) && (euid != p->uid)
1223 && (uid != p->suid) && (uid != p->uid)) {
1224 ret = -EPERM;
1225 goto out_unlock;
1227 if (sig && p->sighand) {
1228 unsigned long flags;
1229 spin_lock_irqsave(&p->sighand->siglock, flags);
1230 ret = __group_send_sig_info(sig, info, p);
1231 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1233 out_unlock:
1234 read_unlock(&tasklist_lock);
1235 return ret;
1237 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1240 * kill_something_info() interprets pid in interesting ways just like kill(2).
1242 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1243 * is probably wrong. Should make it like BSD or SYSV.
1246 static int kill_something_info(int sig, struct siginfo *info, int pid)
1248 if (!pid) {
1249 return kill_pg_info(sig, info, process_group(current));
1250 } else if (pid == -1) {
1251 int retval = 0, count = 0;
1252 struct task_struct * p;
1254 read_lock(&tasklist_lock);
1255 for_each_process(p) {
1256 if (p->pid > 1 && p->tgid != current->tgid) {
1257 int err = group_send_sig_info(sig, info, p);
1258 ++count;
1259 if (err != -EPERM)
1260 retval = err;
1263 read_unlock(&tasklist_lock);
1264 return count ? retval : -ESRCH;
1265 } else if (pid < 0) {
1266 return kill_pg_info(sig, info, -pid);
1267 } else {
1268 return kill_proc_info(sig, info, pid);
1273 * These are for backward compatibility with the rest of the kernel source.
1277 * These two are the most common entry points. They send a signal
1278 * just to the specific thread.
1281 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1283 int ret;
1284 unsigned long flags;
1287 * Make sure legacy kernel users don't send in bad values
1288 * (normal paths check this in check_kill_permission).
1290 if (!valid_signal(sig))
1291 return -EINVAL;
1294 * We need the tasklist lock even for the specific
1295 * thread case (when we don't need to follow the group
1296 * lists) in order to avoid races with "p->sighand"
1297 * going away or changing from under us.
1299 read_lock(&tasklist_lock);
1300 spin_lock_irqsave(&p->sighand->siglock, flags);
1301 ret = specific_send_sig_info(sig, info, p);
1302 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1303 read_unlock(&tasklist_lock);
1304 return ret;
1307 #define __si_special(priv) \
1308 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1311 send_sig(int sig, struct task_struct *p, int priv)
1313 return send_sig_info(sig, __si_special(priv), p);
1317 * This is the entry point for "process-wide" signals.
1318 * They will go to an appropriate thread in the thread group.
1321 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1323 int ret;
1324 read_lock(&tasklist_lock);
1325 ret = group_send_sig_info(sig, info, p);
1326 read_unlock(&tasklist_lock);
1327 return ret;
1330 void
1331 force_sig(int sig, struct task_struct *p)
1333 force_sig_info(sig, SEND_SIG_PRIV, p);
1337 * When things go south during signal handling, we
1338 * will force a SIGSEGV. And if the signal that caused
1339 * the problem was already a SIGSEGV, we'll want to
1340 * make sure we don't even try to deliver the signal..
1343 force_sigsegv(int sig, struct task_struct *p)
1345 if (sig == SIGSEGV) {
1346 unsigned long flags;
1347 spin_lock_irqsave(&p->sighand->siglock, flags);
1348 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1349 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1351 force_sig(SIGSEGV, p);
1352 return 0;
1356 kill_pg(pid_t pgrp, int sig, int priv)
1358 return kill_pg_info(sig, __si_special(priv), pgrp);
1362 kill_proc(pid_t pid, int sig, int priv)
1364 return kill_proc_info(sig, __si_special(priv), pid);
1368 * These functions support sending signals using preallocated sigqueue
1369 * structures. This is needed "because realtime applications cannot
1370 * afford to lose notifications of asynchronous events, like timer
1371 * expirations or I/O completions". In the case of Posix Timers
1372 * we allocate the sigqueue structure from the timer_create. If this
1373 * allocation fails we are able to report the failure to the application
1374 * with an EAGAIN error.
1377 struct sigqueue *sigqueue_alloc(void)
1379 struct sigqueue *q;
1381 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1382 q->flags |= SIGQUEUE_PREALLOC;
1383 return(q);
1386 void sigqueue_free(struct sigqueue *q)
1388 unsigned long flags;
1389 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1391 * If the signal is still pending remove it from the
1392 * pending queue.
1394 if (unlikely(!list_empty(&q->list))) {
1395 spinlock_t *lock = &current->sighand->siglock;
1396 read_lock(&tasklist_lock);
1397 spin_lock_irqsave(lock, flags);
1398 if (!list_empty(&q->list))
1399 list_del_init(&q->list);
1400 spin_unlock_irqrestore(lock, flags);
1401 read_unlock(&tasklist_lock);
1403 q->flags &= ~SIGQUEUE_PREALLOC;
1404 __sigqueue_free(q);
1408 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1410 unsigned long flags;
1411 int ret = 0;
1412 struct sighand_struct *sh;
1414 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1417 * The rcu based delayed sighand destroy makes it possible to
1418 * run this without tasklist lock held. The task struct itself
1419 * cannot go away as create_timer did get_task_struct().
1421 * We return -1, when the task is marked exiting, so
1422 * posix_timer_event can redirect it to the group leader
1424 rcu_read_lock();
1426 if (unlikely(p->flags & PF_EXITING)) {
1427 ret = -1;
1428 goto out_err;
1431 retry:
1432 sh = rcu_dereference(p->sighand);
1434 spin_lock_irqsave(&sh->siglock, flags);
1435 if (p->sighand != sh) {
1436 /* We raced with exec() in a multithreaded process... */
1437 spin_unlock_irqrestore(&sh->siglock, flags);
1438 goto retry;
1442 * We do the check here again to handle the following scenario:
1444 * CPU 0 CPU 1
1445 * send_sigqueue
1446 * check PF_EXITING
1447 * interrupt exit code running
1448 * __exit_signal
1449 * lock sighand->siglock
1450 * unlock sighand->siglock
1451 * lock sh->siglock
1452 * add(tsk->pending) flush_sigqueue(tsk->pending)
1456 if (unlikely(p->flags & PF_EXITING)) {
1457 ret = -1;
1458 goto out;
1461 if (unlikely(!list_empty(&q->list))) {
1463 * If an SI_TIMER entry is already queue just increment
1464 * the overrun count.
1466 if (q->info.si_code != SI_TIMER)
1467 BUG();
1468 q->info.si_overrun++;
1469 goto out;
1471 /* Short-circuit ignored signals. */
1472 if (sig_ignored(p, sig)) {
1473 ret = 1;
1474 goto out;
1477 list_add_tail(&q->list, &p->pending.list);
1478 sigaddset(&p->pending.signal, sig);
1479 if (!sigismember(&p->blocked, sig))
1480 signal_wake_up(p, sig == SIGKILL);
1482 out:
1483 spin_unlock_irqrestore(&sh->siglock, flags);
1484 out_err:
1485 rcu_read_unlock();
1487 return ret;
1491 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1493 unsigned long flags;
1494 int ret = 0;
1496 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1498 read_lock(&tasklist_lock);
1499 /* Since it_lock is held, p->sighand cannot be NULL. */
1500 spin_lock_irqsave(&p->sighand->siglock, flags);
1501 handle_stop_signal(sig, p);
1503 /* Short-circuit ignored signals. */
1504 if (sig_ignored(p, sig)) {
1505 ret = 1;
1506 goto out;
1509 if (unlikely(!list_empty(&q->list))) {
1511 * If an SI_TIMER entry is already queue just increment
1512 * the overrun count. Other uses should not try to
1513 * send the signal multiple times.
1515 if (q->info.si_code != SI_TIMER)
1516 BUG();
1517 q->info.si_overrun++;
1518 goto out;
1522 * Put this signal on the shared-pending queue.
1523 * We always use the shared queue for process-wide signals,
1524 * to avoid several races.
1526 list_add_tail(&q->list, &p->signal->shared_pending.list);
1527 sigaddset(&p->signal->shared_pending.signal, sig);
1529 __group_complete_signal(sig, p);
1530 out:
1531 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1532 read_unlock(&tasklist_lock);
1533 return ret;
1537 * Wake up any threads in the parent blocked in wait* syscalls.
1539 static inline void __wake_up_parent(struct task_struct *p,
1540 struct task_struct *parent)
1542 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1546 * Let a parent know about the death of a child.
1547 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1550 void do_notify_parent(struct task_struct *tsk, int sig)
1552 struct siginfo info;
1553 unsigned long flags;
1554 struct sighand_struct *psig;
1556 BUG_ON(sig == -1);
1558 /* do_notify_parent_cldstop should have been called instead. */
1559 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1561 BUG_ON(!tsk->ptrace &&
1562 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1564 info.si_signo = sig;
1565 info.si_errno = 0;
1566 info.si_pid = tsk->pid;
1567 info.si_uid = tsk->uid;
1569 /* FIXME: find out whether or not this is supposed to be c*time. */
1570 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1571 tsk->signal->utime));
1572 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1573 tsk->signal->stime));
1575 info.si_status = tsk->exit_code & 0x7f;
1576 if (tsk->exit_code & 0x80)
1577 info.si_code = CLD_DUMPED;
1578 else if (tsk->exit_code & 0x7f)
1579 info.si_code = CLD_KILLED;
1580 else {
1581 info.si_code = CLD_EXITED;
1582 info.si_status = tsk->exit_code >> 8;
1585 psig = tsk->parent->sighand;
1586 spin_lock_irqsave(&psig->siglock, flags);
1587 if (!tsk->ptrace && sig == SIGCHLD &&
1588 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1589 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1591 * We are exiting and our parent doesn't care. POSIX.1
1592 * defines special semantics for setting SIGCHLD to SIG_IGN
1593 * or setting the SA_NOCLDWAIT flag: we should be reaped
1594 * automatically and not left for our parent's wait4 call.
1595 * Rather than having the parent do it as a magic kind of
1596 * signal handler, we just set this to tell do_exit that we
1597 * can be cleaned up without becoming a zombie. Note that
1598 * we still call __wake_up_parent in this case, because a
1599 * blocked sys_wait4 might now return -ECHILD.
1601 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1602 * is implementation-defined: we do (if you don't want
1603 * it, just use SIG_IGN instead).
1605 tsk->exit_signal = -1;
1606 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1607 sig = 0;
1609 if (valid_signal(sig) && sig > 0)
1610 __group_send_sig_info(sig, &info, tsk->parent);
1611 __wake_up_parent(tsk, tsk->parent);
1612 spin_unlock_irqrestore(&psig->siglock, flags);
1615 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1617 struct siginfo info;
1618 unsigned long flags;
1619 struct task_struct *parent;
1620 struct sighand_struct *sighand;
1622 if (to_self)
1623 parent = tsk->parent;
1624 else {
1625 tsk = tsk->group_leader;
1626 parent = tsk->real_parent;
1629 info.si_signo = SIGCHLD;
1630 info.si_errno = 0;
1631 info.si_pid = tsk->pid;
1632 info.si_uid = tsk->uid;
1634 /* FIXME: find out whether or not this is supposed to be c*time. */
1635 info.si_utime = cputime_to_jiffies(tsk->utime);
1636 info.si_stime = cputime_to_jiffies(tsk->stime);
1638 info.si_code = why;
1639 switch (why) {
1640 case CLD_CONTINUED:
1641 info.si_status = SIGCONT;
1642 break;
1643 case CLD_STOPPED:
1644 info.si_status = tsk->signal->group_exit_code & 0x7f;
1645 break;
1646 case CLD_TRAPPED:
1647 info.si_status = tsk->exit_code & 0x7f;
1648 break;
1649 default:
1650 BUG();
1653 sighand = parent->sighand;
1654 spin_lock_irqsave(&sighand->siglock, flags);
1655 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1656 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1657 __group_send_sig_info(SIGCHLD, &info, parent);
1659 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1661 __wake_up_parent(tsk, parent);
1662 spin_unlock_irqrestore(&sighand->siglock, flags);
1666 * This must be called with current->sighand->siglock held.
1668 * This should be the path for all ptrace stops.
1669 * We always set current->last_siginfo while stopped here.
1670 * That makes it a way to test a stopped process for
1671 * being ptrace-stopped vs being job-control-stopped.
1673 * If we actually decide not to stop at all because the tracer is gone,
1674 * we leave nostop_code in current->exit_code.
1676 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1679 * If there is a group stop in progress,
1680 * we must participate in the bookkeeping.
1682 if (current->signal->group_stop_count > 0)
1683 --current->signal->group_stop_count;
1685 current->last_siginfo = info;
1686 current->exit_code = exit_code;
1688 /* Let the debugger run. */
1689 set_current_state(TASK_TRACED);
1690 spin_unlock_irq(&current->sighand->siglock);
1691 try_to_freeze();
1692 read_lock(&tasklist_lock);
1693 if (likely(current->ptrace & PT_PTRACED) &&
1694 likely(current->parent != current->real_parent ||
1695 !(current->ptrace & PT_ATTACHED)) &&
1696 (likely(current->parent->signal != current->signal) ||
1697 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1698 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1699 read_unlock(&tasklist_lock);
1700 schedule();
1701 } else {
1703 * By the time we got the lock, our tracer went away.
1704 * Don't stop here.
1706 read_unlock(&tasklist_lock);
1707 set_current_state(TASK_RUNNING);
1708 current->exit_code = nostop_code;
1712 * We are back. Now reacquire the siglock before touching
1713 * last_siginfo, so that we are sure to have synchronized with
1714 * any signal-sending on another CPU that wants to examine it.
1716 spin_lock_irq(&current->sighand->siglock);
1717 current->last_siginfo = NULL;
1720 * Queued signals ignored us while we were stopped for tracing.
1721 * So check for any that we should take before resuming user mode.
1723 recalc_sigpending();
1726 void ptrace_notify(int exit_code)
1728 siginfo_t info;
1730 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1732 memset(&info, 0, sizeof info);
1733 info.si_signo = SIGTRAP;
1734 info.si_code = exit_code;
1735 info.si_pid = current->pid;
1736 info.si_uid = current->uid;
1738 /* Let the debugger run. */
1739 spin_lock_irq(&current->sighand->siglock);
1740 ptrace_stop(exit_code, 0, &info);
1741 spin_unlock_irq(&current->sighand->siglock);
1744 static void
1745 finish_stop(int stop_count)
1747 int to_self;
1750 * If there are no other threads in the group, or if there is
1751 * a group stop in progress and we are the last to stop,
1752 * report to the parent. When ptraced, every thread reports itself.
1754 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1755 to_self = 1;
1756 else if (stop_count == 0)
1757 to_self = 0;
1758 else
1759 goto out;
1761 read_lock(&tasklist_lock);
1762 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1763 read_unlock(&tasklist_lock);
1765 out:
1766 schedule();
1768 * Now we don't run again until continued.
1770 current->exit_code = 0;
1774 * This performs the stopping for SIGSTOP and other stop signals.
1775 * We have to stop all threads in the thread group.
1776 * Returns nonzero if we've actually stopped and released the siglock.
1777 * Returns zero if we didn't stop and still hold the siglock.
1779 static int
1780 do_signal_stop(int signr)
1782 struct signal_struct *sig = current->signal;
1783 struct sighand_struct *sighand = current->sighand;
1784 int stop_count = -1;
1786 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1787 return 0;
1789 if (sig->group_stop_count > 0) {
1791 * There is a group stop in progress. We don't need to
1792 * start another one.
1794 signr = sig->group_exit_code;
1795 stop_count = --sig->group_stop_count;
1796 current->exit_code = signr;
1797 set_current_state(TASK_STOPPED);
1798 if (stop_count == 0)
1799 sig->flags = SIGNAL_STOP_STOPPED;
1800 spin_unlock_irq(&sighand->siglock);
1802 else if (thread_group_empty(current)) {
1804 * Lock must be held through transition to stopped state.
1806 current->exit_code = current->signal->group_exit_code = signr;
1807 set_current_state(TASK_STOPPED);
1808 sig->flags = SIGNAL_STOP_STOPPED;
1809 spin_unlock_irq(&sighand->siglock);
1811 else {
1813 * There is no group stop already in progress.
1814 * We must initiate one now, but that requires
1815 * dropping siglock to get both the tasklist lock
1816 * and siglock again in the proper order. Note that
1817 * this allows an intervening SIGCONT to be posted.
1818 * We need to check for that and bail out if necessary.
1820 struct task_struct *t;
1822 spin_unlock_irq(&sighand->siglock);
1824 /* signals can be posted during this window */
1826 read_lock(&tasklist_lock);
1827 spin_lock_irq(&sighand->siglock);
1829 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1831 * Another stop or continue happened while we
1832 * didn't have the lock. We can just swallow this
1833 * signal now. If we raced with a SIGCONT, that
1834 * should have just cleared it now. If we raced
1835 * with another processor delivering a stop signal,
1836 * then the SIGCONT that wakes us up should clear it.
1838 read_unlock(&tasklist_lock);
1839 return 0;
1842 if (sig->group_stop_count == 0) {
1843 sig->group_exit_code = signr;
1844 stop_count = 0;
1845 for (t = next_thread(current); t != current;
1846 t = next_thread(t))
1848 * Setting state to TASK_STOPPED for a group
1849 * stop is always done with the siglock held,
1850 * so this check has no races.
1852 if (!t->exit_state &&
1853 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1854 stop_count++;
1855 signal_wake_up(t, 0);
1857 sig->group_stop_count = stop_count;
1859 else {
1860 /* A race with another thread while unlocked. */
1861 signr = sig->group_exit_code;
1862 stop_count = --sig->group_stop_count;
1865 current->exit_code = signr;
1866 set_current_state(TASK_STOPPED);
1867 if (stop_count == 0)
1868 sig->flags = SIGNAL_STOP_STOPPED;
1870 spin_unlock_irq(&sighand->siglock);
1871 read_unlock(&tasklist_lock);
1874 finish_stop(stop_count);
1875 return 1;
1879 * Do appropriate magic when group_stop_count > 0.
1880 * We return nonzero if we stopped, after releasing the siglock.
1881 * We return zero if we still hold the siglock and should look
1882 * for another signal without checking group_stop_count again.
1884 static int handle_group_stop(void)
1886 int stop_count;
1888 if (current->signal->group_exit_task == current) {
1890 * Group stop is so we can do a core dump,
1891 * We are the initiating thread, so get on with it.
1893 current->signal->group_exit_task = NULL;
1894 return 0;
1897 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1899 * Group stop is so another thread can do a core dump,
1900 * or else we are racing against a death signal.
1901 * Just punt the stop so we can get the next signal.
1903 return 0;
1906 * There is a group stop in progress. We stop
1907 * without any associated signal being in our queue.
1909 stop_count = --current->signal->group_stop_count;
1910 if (stop_count == 0)
1911 current->signal->flags = SIGNAL_STOP_STOPPED;
1912 current->exit_code = current->signal->group_exit_code;
1913 set_current_state(TASK_STOPPED);
1914 spin_unlock_irq(&current->sighand->siglock);
1915 finish_stop(stop_count);
1916 return 1;
1919 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1920 struct pt_regs *regs, void *cookie)
1922 sigset_t *mask = &current->blocked;
1923 int signr = 0;
1925 relock:
1926 spin_lock_irq(&current->sighand->siglock);
1927 for (;;) {
1928 struct k_sigaction *ka;
1930 if (unlikely(current->signal->group_stop_count > 0) &&
1931 handle_group_stop())
1932 goto relock;
1934 signr = dequeue_signal(current, mask, info);
1936 if (!signr)
1937 break; /* will return 0 */
1939 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1940 ptrace_signal_deliver(regs, cookie);
1942 /* Let the debugger run. */
1943 ptrace_stop(signr, signr, info);
1945 /* We're back. Did the debugger cancel the sig? */
1946 signr = current->exit_code;
1947 if (signr == 0)
1948 continue;
1950 current->exit_code = 0;
1952 /* Update the siginfo structure if the signal has
1953 changed. If the debugger wanted something
1954 specific in the siginfo structure then it should
1955 have updated *info via PTRACE_SETSIGINFO. */
1956 if (signr != info->si_signo) {
1957 info->si_signo = signr;
1958 info->si_errno = 0;
1959 info->si_code = SI_USER;
1960 info->si_pid = current->parent->pid;
1961 info->si_uid = current->parent->uid;
1964 /* If the (new) signal is now blocked, requeue it. */
1965 if (sigismember(&current->blocked, signr)) {
1966 specific_send_sig_info(signr, info, current);
1967 continue;
1971 ka = &current->sighand->action[signr-1];
1972 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1973 continue;
1974 if (ka->sa.sa_handler != SIG_DFL) {
1975 /* Run the handler. */
1976 *return_ka = *ka;
1978 if (ka->sa.sa_flags & SA_ONESHOT)
1979 ka->sa.sa_handler = SIG_DFL;
1981 break; /* will return non-zero "signr" value */
1985 * Now we are doing the default action for this signal.
1987 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1988 continue;
1990 /* Init gets no signals it doesn't want. */
1991 if (current->pid == 1)
1992 continue;
1994 if (sig_kernel_stop(signr)) {
1996 * The default action is to stop all threads in
1997 * the thread group. The job control signals
1998 * do nothing in an orphaned pgrp, but SIGSTOP
1999 * always works. Note that siglock needs to be
2000 * dropped during the call to is_orphaned_pgrp()
2001 * because of lock ordering with tasklist_lock.
2002 * This allows an intervening SIGCONT to be posted.
2003 * We need to check for that and bail out if necessary.
2005 if (signr != SIGSTOP) {
2006 spin_unlock_irq(&current->sighand->siglock);
2008 /* signals can be posted during this window */
2010 if (is_orphaned_pgrp(process_group(current)))
2011 goto relock;
2013 spin_lock_irq(&current->sighand->siglock);
2016 if (likely(do_signal_stop(signr))) {
2017 /* It released the siglock. */
2018 goto relock;
2022 * We didn't actually stop, due to a race
2023 * with SIGCONT or something like that.
2025 continue;
2028 spin_unlock_irq(&current->sighand->siglock);
2031 * Anything else is fatal, maybe with a core dump.
2033 current->flags |= PF_SIGNALED;
2034 if (sig_kernel_coredump(signr)) {
2036 * If it was able to dump core, this kills all
2037 * other threads in the group and synchronizes with
2038 * their demise. If we lost the race with another
2039 * thread getting here, it set group_exit_code
2040 * first and our do_group_exit call below will use
2041 * that value and ignore the one we pass it.
2043 do_coredump((long)signr, signr, regs);
2047 * Death signals, no core dump.
2049 do_group_exit(signr);
2050 /* NOTREACHED */
2052 spin_unlock_irq(&current->sighand->siglock);
2053 return signr;
2056 EXPORT_SYMBOL(recalc_sigpending);
2057 EXPORT_SYMBOL_GPL(dequeue_signal);
2058 EXPORT_SYMBOL(flush_signals);
2059 EXPORT_SYMBOL(force_sig);
2060 EXPORT_SYMBOL(kill_pg);
2061 EXPORT_SYMBOL(kill_proc);
2062 EXPORT_SYMBOL(ptrace_notify);
2063 EXPORT_SYMBOL(send_sig);
2064 EXPORT_SYMBOL(send_sig_info);
2065 EXPORT_SYMBOL(sigprocmask);
2066 EXPORT_SYMBOL(block_all_signals);
2067 EXPORT_SYMBOL(unblock_all_signals);
2071 * System call entry points.
2074 asmlinkage long sys_restart_syscall(void)
2076 struct restart_block *restart = &current_thread_info()->restart_block;
2077 return restart->fn(restart);
2080 long do_no_restart_syscall(struct restart_block *param)
2082 return -EINTR;
2086 * We don't need to get the kernel lock - this is all local to this
2087 * particular thread.. (and that's good, because this is _heavily_
2088 * used by various programs)
2092 * This is also useful for kernel threads that want to temporarily
2093 * (or permanently) block certain signals.
2095 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2096 * interface happily blocks "unblockable" signals like SIGKILL
2097 * and friends.
2099 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2101 int error;
2102 sigset_t old_block;
2104 spin_lock_irq(&current->sighand->siglock);
2105 old_block = current->blocked;
2106 error = 0;
2107 switch (how) {
2108 case SIG_BLOCK:
2109 sigorsets(&current->blocked, &current->blocked, set);
2110 break;
2111 case SIG_UNBLOCK:
2112 signandsets(&current->blocked, &current->blocked, set);
2113 break;
2114 case SIG_SETMASK:
2115 current->blocked = *set;
2116 break;
2117 default:
2118 error = -EINVAL;
2120 recalc_sigpending();
2121 spin_unlock_irq(&current->sighand->siglock);
2122 if (oldset)
2123 *oldset = old_block;
2124 return error;
2127 asmlinkage long
2128 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2130 int error = -EINVAL;
2131 sigset_t old_set, new_set;
2133 /* XXX: Don't preclude handling different sized sigset_t's. */
2134 if (sigsetsize != sizeof(sigset_t))
2135 goto out;
2137 if (set) {
2138 error = -EFAULT;
2139 if (copy_from_user(&new_set, set, sizeof(*set)))
2140 goto out;
2141 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2143 error = sigprocmask(how, &new_set, &old_set);
2144 if (error)
2145 goto out;
2146 if (oset)
2147 goto set_old;
2148 } else if (oset) {
2149 spin_lock_irq(&current->sighand->siglock);
2150 old_set = current->blocked;
2151 spin_unlock_irq(&current->sighand->siglock);
2153 set_old:
2154 error = -EFAULT;
2155 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2156 goto out;
2158 error = 0;
2159 out:
2160 return error;
2163 long do_sigpending(void __user *set, unsigned long sigsetsize)
2165 long error = -EINVAL;
2166 sigset_t pending;
2168 if (sigsetsize > sizeof(sigset_t))
2169 goto out;
2171 spin_lock_irq(&current->sighand->siglock);
2172 sigorsets(&pending, &current->pending.signal,
2173 &current->signal->shared_pending.signal);
2174 spin_unlock_irq(&current->sighand->siglock);
2176 /* Outside the lock because only this thread touches it. */
2177 sigandsets(&pending, &current->blocked, &pending);
2179 error = -EFAULT;
2180 if (!copy_to_user(set, &pending, sigsetsize))
2181 error = 0;
2183 out:
2184 return error;
2187 asmlinkage long
2188 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2190 return do_sigpending(set, sigsetsize);
2193 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2195 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2197 int err;
2199 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2200 return -EFAULT;
2201 if (from->si_code < 0)
2202 return __copy_to_user(to, from, sizeof(siginfo_t))
2203 ? -EFAULT : 0;
2205 * If you change siginfo_t structure, please be sure
2206 * this code is fixed accordingly.
2207 * It should never copy any pad contained in the structure
2208 * to avoid security leaks, but must copy the generic
2209 * 3 ints plus the relevant union member.
2211 err = __put_user(from->si_signo, &to->si_signo);
2212 err |= __put_user(from->si_errno, &to->si_errno);
2213 err |= __put_user((short)from->si_code, &to->si_code);
2214 switch (from->si_code & __SI_MASK) {
2215 case __SI_KILL:
2216 err |= __put_user(from->si_pid, &to->si_pid);
2217 err |= __put_user(from->si_uid, &to->si_uid);
2218 break;
2219 case __SI_TIMER:
2220 err |= __put_user(from->si_tid, &to->si_tid);
2221 err |= __put_user(from->si_overrun, &to->si_overrun);
2222 err |= __put_user(from->si_ptr, &to->si_ptr);
2223 break;
2224 case __SI_POLL:
2225 err |= __put_user(from->si_band, &to->si_band);
2226 err |= __put_user(from->si_fd, &to->si_fd);
2227 break;
2228 case __SI_FAULT:
2229 err |= __put_user(from->si_addr, &to->si_addr);
2230 #ifdef __ARCH_SI_TRAPNO
2231 err |= __put_user(from->si_trapno, &to->si_trapno);
2232 #endif
2233 break;
2234 case __SI_CHLD:
2235 err |= __put_user(from->si_pid, &to->si_pid);
2236 err |= __put_user(from->si_uid, &to->si_uid);
2237 err |= __put_user(from->si_status, &to->si_status);
2238 err |= __put_user(from->si_utime, &to->si_utime);
2239 err |= __put_user(from->si_stime, &to->si_stime);
2240 break;
2241 case __SI_RT: /* This is not generated by the kernel as of now. */
2242 case __SI_MESGQ: /* But this is */
2243 err |= __put_user(from->si_pid, &to->si_pid);
2244 err |= __put_user(from->si_uid, &to->si_uid);
2245 err |= __put_user(from->si_ptr, &to->si_ptr);
2246 break;
2247 default: /* this is just in case for now ... */
2248 err |= __put_user(from->si_pid, &to->si_pid);
2249 err |= __put_user(from->si_uid, &to->si_uid);
2250 break;
2252 return err;
2255 #endif
2257 asmlinkage long
2258 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2259 siginfo_t __user *uinfo,
2260 const struct timespec __user *uts,
2261 size_t sigsetsize)
2263 int ret, sig;
2264 sigset_t these;
2265 struct timespec ts;
2266 siginfo_t info;
2267 long timeout = 0;
2269 /* XXX: Don't preclude handling different sized sigset_t's. */
2270 if (sigsetsize != sizeof(sigset_t))
2271 return -EINVAL;
2273 if (copy_from_user(&these, uthese, sizeof(these)))
2274 return -EFAULT;
2277 * Invert the set of allowed signals to get those we
2278 * want to block.
2280 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2281 signotset(&these);
2283 if (uts) {
2284 if (copy_from_user(&ts, uts, sizeof(ts)))
2285 return -EFAULT;
2286 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2287 || ts.tv_sec < 0)
2288 return -EINVAL;
2291 spin_lock_irq(&current->sighand->siglock);
2292 sig = dequeue_signal(current, &these, &info);
2293 if (!sig) {
2294 timeout = MAX_SCHEDULE_TIMEOUT;
2295 if (uts)
2296 timeout = (timespec_to_jiffies(&ts)
2297 + (ts.tv_sec || ts.tv_nsec));
2299 if (timeout) {
2300 /* None ready -- temporarily unblock those we're
2301 * interested while we are sleeping in so that we'll
2302 * be awakened when they arrive. */
2303 current->real_blocked = current->blocked;
2304 sigandsets(&current->blocked, &current->blocked, &these);
2305 recalc_sigpending();
2306 spin_unlock_irq(&current->sighand->siglock);
2308 timeout = schedule_timeout_interruptible(timeout);
2310 try_to_freeze();
2311 spin_lock_irq(&current->sighand->siglock);
2312 sig = dequeue_signal(current, &these, &info);
2313 current->blocked = current->real_blocked;
2314 siginitset(&current->real_blocked, 0);
2315 recalc_sigpending();
2318 spin_unlock_irq(&current->sighand->siglock);
2320 if (sig) {
2321 ret = sig;
2322 if (uinfo) {
2323 if (copy_siginfo_to_user(uinfo, &info))
2324 ret = -EFAULT;
2326 } else {
2327 ret = -EAGAIN;
2328 if (timeout)
2329 ret = -EINTR;
2332 return ret;
2335 asmlinkage long
2336 sys_kill(int pid, int sig)
2338 struct siginfo info;
2340 info.si_signo = sig;
2341 info.si_errno = 0;
2342 info.si_code = SI_USER;
2343 info.si_pid = current->tgid;
2344 info.si_uid = current->uid;
2346 return kill_something_info(sig, &info, pid);
2349 static int do_tkill(int tgid, int pid, int sig)
2351 int error;
2352 struct siginfo info;
2353 struct task_struct *p;
2355 error = -ESRCH;
2356 info.si_signo = sig;
2357 info.si_errno = 0;
2358 info.si_code = SI_TKILL;
2359 info.si_pid = current->tgid;
2360 info.si_uid = current->uid;
2362 read_lock(&tasklist_lock);
2363 p = find_task_by_pid(pid);
2364 if (p && (tgid <= 0 || p->tgid == tgid)) {
2365 error = check_kill_permission(sig, &info, p);
2367 * The null signal is a permissions and process existence
2368 * probe. No signal is actually delivered.
2370 if (!error && sig && p->sighand) {
2371 spin_lock_irq(&p->sighand->siglock);
2372 handle_stop_signal(sig, p);
2373 error = specific_send_sig_info(sig, &info, p);
2374 spin_unlock_irq(&p->sighand->siglock);
2377 read_unlock(&tasklist_lock);
2379 return error;
2383 * sys_tgkill - send signal to one specific thread
2384 * @tgid: the thread group ID of the thread
2385 * @pid: the PID of the thread
2386 * @sig: signal to be sent
2388 * This syscall also checks the tgid and returns -ESRCH even if the PID
2389 * exists but it's not belonging to the target process anymore. This
2390 * method solves the problem of threads exiting and PIDs getting reused.
2392 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2394 /* This is only valid for single tasks */
2395 if (pid <= 0 || tgid <= 0)
2396 return -EINVAL;
2398 return do_tkill(tgid, pid, sig);
2402 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2404 asmlinkage long
2405 sys_tkill(int pid, int sig)
2407 /* This is only valid for single tasks */
2408 if (pid <= 0)
2409 return -EINVAL;
2411 return do_tkill(0, pid, sig);
2414 asmlinkage long
2415 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2417 siginfo_t info;
2419 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2420 return -EFAULT;
2422 /* Not even root can pretend to send signals from the kernel.
2423 Nor can they impersonate a kill(), which adds source info. */
2424 if (info.si_code >= 0)
2425 return -EPERM;
2426 info.si_signo = sig;
2428 /* POSIX.1b doesn't mention process groups. */
2429 return kill_proc_info(sig, &info, pid);
2433 do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2435 struct k_sigaction *k;
2436 sigset_t mask;
2438 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2439 return -EINVAL;
2441 k = &current->sighand->action[sig-1];
2443 spin_lock_irq(&current->sighand->siglock);
2444 if (signal_pending(current)) {
2446 * If there might be a fatal signal pending on multiple
2447 * threads, make sure we take it before changing the action.
2449 spin_unlock_irq(&current->sighand->siglock);
2450 return -ERESTARTNOINTR;
2453 if (oact)
2454 *oact = *k;
2456 if (act) {
2457 sigdelsetmask(&act->sa.sa_mask,
2458 sigmask(SIGKILL) | sigmask(SIGSTOP));
2460 * POSIX 3.3.1.3:
2461 * "Setting a signal action to SIG_IGN for a signal that is
2462 * pending shall cause the pending signal to be discarded,
2463 * whether or not it is blocked."
2465 * "Setting a signal action to SIG_DFL for a signal that is
2466 * pending and whose default action is to ignore the signal
2467 * (for example, SIGCHLD), shall cause the pending signal to
2468 * be discarded, whether or not it is blocked"
2470 if (act->sa.sa_handler == SIG_IGN ||
2471 (act->sa.sa_handler == SIG_DFL &&
2472 sig_kernel_ignore(sig))) {
2474 * This is a fairly rare case, so we only take the
2475 * tasklist_lock once we're sure we'll need it.
2476 * Now we must do this little unlock and relock
2477 * dance to maintain the lock hierarchy.
2479 struct task_struct *t = current;
2480 spin_unlock_irq(&t->sighand->siglock);
2481 read_lock(&tasklist_lock);
2482 spin_lock_irq(&t->sighand->siglock);
2483 *k = *act;
2484 sigemptyset(&mask);
2485 sigaddset(&mask, sig);
2486 rm_from_queue_full(&mask, &t->signal->shared_pending);
2487 do {
2488 rm_from_queue_full(&mask, &t->pending);
2489 recalc_sigpending_tsk(t);
2490 t = next_thread(t);
2491 } while (t != current);
2492 spin_unlock_irq(&current->sighand->siglock);
2493 read_unlock(&tasklist_lock);
2494 return 0;
2497 *k = *act;
2500 spin_unlock_irq(&current->sighand->siglock);
2501 return 0;
2504 int
2505 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2507 stack_t oss;
2508 int error;
2510 if (uoss) {
2511 oss.ss_sp = (void __user *) current->sas_ss_sp;
2512 oss.ss_size = current->sas_ss_size;
2513 oss.ss_flags = sas_ss_flags(sp);
2516 if (uss) {
2517 void __user *ss_sp;
2518 size_t ss_size;
2519 int ss_flags;
2521 error = -EFAULT;
2522 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2523 || __get_user(ss_sp, &uss->ss_sp)
2524 || __get_user(ss_flags, &uss->ss_flags)
2525 || __get_user(ss_size, &uss->ss_size))
2526 goto out;
2528 error = -EPERM;
2529 if (on_sig_stack(sp))
2530 goto out;
2532 error = -EINVAL;
2535 * Note - this code used to test ss_flags incorrectly
2536 * old code may have been written using ss_flags==0
2537 * to mean ss_flags==SS_ONSTACK (as this was the only
2538 * way that worked) - this fix preserves that older
2539 * mechanism
2541 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2542 goto out;
2544 if (ss_flags == SS_DISABLE) {
2545 ss_size = 0;
2546 ss_sp = NULL;
2547 } else {
2548 error = -ENOMEM;
2549 if (ss_size < MINSIGSTKSZ)
2550 goto out;
2553 current->sas_ss_sp = (unsigned long) ss_sp;
2554 current->sas_ss_size = ss_size;
2557 if (uoss) {
2558 error = -EFAULT;
2559 if (copy_to_user(uoss, &oss, sizeof(oss)))
2560 goto out;
2563 error = 0;
2564 out:
2565 return error;
2568 #ifdef __ARCH_WANT_SYS_SIGPENDING
2570 asmlinkage long
2571 sys_sigpending(old_sigset_t __user *set)
2573 return do_sigpending(set, sizeof(*set));
2576 #endif
2578 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2579 /* Some platforms have their own version with special arguments others
2580 support only sys_rt_sigprocmask. */
2582 asmlinkage long
2583 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2585 int error;
2586 old_sigset_t old_set, new_set;
2588 if (set) {
2589 error = -EFAULT;
2590 if (copy_from_user(&new_set, set, sizeof(*set)))
2591 goto out;
2592 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2594 spin_lock_irq(&current->sighand->siglock);
2595 old_set = current->blocked.sig[0];
2597 error = 0;
2598 switch (how) {
2599 default:
2600 error = -EINVAL;
2601 break;
2602 case SIG_BLOCK:
2603 sigaddsetmask(&current->blocked, new_set);
2604 break;
2605 case SIG_UNBLOCK:
2606 sigdelsetmask(&current->blocked, new_set);
2607 break;
2608 case SIG_SETMASK:
2609 current->blocked.sig[0] = new_set;
2610 break;
2613 recalc_sigpending();
2614 spin_unlock_irq(&current->sighand->siglock);
2615 if (error)
2616 goto out;
2617 if (oset)
2618 goto set_old;
2619 } else if (oset) {
2620 old_set = current->blocked.sig[0];
2621 set_old:
2622 error = -EFAULT;
2623 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2624 goto out;
2626 error = 0;
2627 out:
2628 return error;
2630 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2632 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2633 asmlinkage long
2634 sys_rt_sigaction(int sig,
2635 const struct sigaction __user *act,
2636 struct sigaction __user *oact,
2637 size_t sigsetsize)
2639 struct k_sigaction new_sa, old_sa;
2640 int ret = -EINVAL;
2642 /* XXX: Don't preclude handling different sized sigset_t's. */
2643 if (sigsetsize != sizeof(sigset_t))
2644 goto out;
2646 if (act) {
2647 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2648 return -EFAULT;
2651 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2653 if (!ret && oact) {
2654 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2655 return -EFAULT;
2657 out:
2658 return ret;
2660 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2662 #ifdef __ARCH_WANT_SYS_SGETMASK
2665 * For backwards compatibility. Functionality superseded by sigprocmask.
2667 asmlinkage long
2668 sys_sgetmask(void)
2670 /* SMP safe */
2671 return current->blocked.sig[0];
2674 asmlinkage long
2675 sys_ssetmask(int newmask)
2677 int old;
2679 spin_lock_irq(&current->sighand->siglock);
2680 old = current->blocked.sig[0];
2682 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2683 sigmask(SIGSTOP)));
2684 recalc_sigpending();
2685 spin_unlock_irq(&current->sighand->siglock);
2687 return old;
2689 #endif /* __ARCH_WANT_SGETMASK */
2691 #ifdef __ARCH_WANT_SYS_SIGNAL
2693 * For backwards compatibility. Functionality superseded by sigaction.
2695 asmlinkage unsigned long
2696 sys_signal(int sig, __sighandler_t handler)
2698 struct k_sigaction new_sa, old_sa;
2699 int ret;
2701 new_sa.sa.sa_handler = handler;
2702 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2703 sigemptyset(&new_sa.sa.sa_mask);
2705 ret = do_sigaction(sig, &new_sa, &old_sa);
2707 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2709 #endif /* __ARCH_WANT_SYS_SIGNAL */
2711 #ifdef __ARCH_WANT_SYS_PAUSE
2713 asmlinkage long
2714 sys_pause(void)
2716 current->state = TASK_INTERRUPTIBLE;
2717 schedule();
2718 return -ERESTARTNOHAND;
2721 #endif
2723 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2724 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2726 sigset_t newset;
2728 /* XXX: Don't preclude handling different sized sigset_t's. */
2729 if (sigsetsize != sizeof(sigset_t))
2730 return -EINVAL;
2732 if (copy_from_user(&newset, unewset, sizeof(newset)))
2733 return -EFAULT;
2734 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2736 spin_lock_irq(&current->sighand->siglock);
2737 current->saved_sigmask = current->blocked;
2738 current->blocked = newset;
2739 recalc_sigpending();
2740 spin_unlock_irq(&current->sighand->siglock);
2742 current->state = TASK_INTERRUPTIBLE;
2743 schedule();
2744 set_thread_flag(TIF_RESTORE_SIGMASK);
2745 return -ERESTARTNOHAND;
2747 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2749 void __init signals_init(void)
2751 sigqueue_cachep =
2752 kmem_cache_create("sigqueue",
2753 sizeof(struct sigqueue),
2754 __alignof__(struct sigqueue),
2755 SLAB_PANIC, NULL, NULL);