2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/spi/spi.h>
28 #include <linux/workqueue.h>
29 #include <linux/delay.h>
30 #include <linux/clk.h>
34 #include <asm/hardware.h>
35 #include <asm/delay.h>
38 #include <asm/arch/hardware.h>
39 #include <asm/arch/pxa-regs.h>
40 #include <asm/arch/regs-ssp.h>
41 #include <asm/arch/ssp.h>
42 #include <asm/arch/pxa2xx_spi.h>
44 MODULE_AUTHOR("Stephen Street");
45 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
46 MODULE_LICENSE("GPL");
50 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
51 #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
52 #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
54 /* for testing SSCR1 changes that require SSP restart, basically
55 * everything except the service and interrupt enables */
56 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_EBCEI | SSCR1_SCFR \
57 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
58 | SSCR1_RWOT | SSCR1_TRAIL | SSCR1_PINTE \
59 | SSCR1_STRF | SSCR1_EFWR |SSCR1_RFT \
60 | SSCR1_TFT | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
62 #define DEFINE_SSP_REG(reg, off) \
63 static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
64 static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
66 DEFINE_SSP_REG(SSCR0
, 0x00)
67 DEFINE_SSP_REG(SSCR1
, 0x04)
68 DEFINE_SSP_REG(SSSR
, 0x08)
69 DEFINE_SSP_REG(SSITR
, 0x0c)
70 DEFINE_SSP_REG(SSDR
, 0x10)
71 DEFINE_SSP_REG(SSTO
, 0x28)
72 DEFINE_SSP_REG(SSPSP
, 0x2c)
74 #define START_STATE ((void*)0)
75 #define RUNNING_STATE ((void*)1)
76 #define DONE_STATE ((void*)2)
77 #define ERROR_STATE ((void*)-1)
79 #define QUEUE_RUNNING 0
80 #define QUEUE_STOPPED 1
83 /* Driver model hookup */
84 struct platform_device
*pdev
;
87 struct ssp_device
*ssp
;
89 /* SPI framework hookup */
90 enum pxa_ssp_type ssp_type
;
91 struct spi_master
*master
;
94 struct pxa2xx_spi_master
*master_info
;
101 /* SSP register addresses */
111 /* Driver message queue */
112 struct workqueue_struct
*workqueue
;
113 struct work_struct pump_messages
;
115 struct list_head queue
;
119 /* Message Transfer pump */
120 struct tasklet_struct pump_transfers
;
122 /* Current message transfer state info */
123 struct spi_message
* cur_msg
;
124 struct spi_transfer
* cur_transfer
;
125 struct chip_data
*cur_chip
;
139 int (*write
)(struct driver_data
*drv_data
);
140 int (*read
)(struct driver_data
*drv_data
);
141 irqreturn_t (*transfer_handler
)(struct driver_data
*drv_data
);
142 void (*cs_control
)(u32 command
);
158 int (*write
)(struct driver_data
*drv_data
);
159 int (*read
)(struct driver_data
*drv_data
);
160 void (*cs_control
)(u32 command
);
163 static void pump_messages(struct work_struct
*work
);
165 static int flush(struct driver_data
*drv_data
)
167 unsigned long limit
= loops_per_jiffy
<< 1;
169 void *reg
= drv_data
->ioaddr
;
172 while (read_SSSR(reg
) & SSSR_RNE
) {
175 } while ((read_SSSR(reg
) & SSSR_BSY
) && limit
--);
176 write_SSSR(SSSR_ROR
, reg
);
181 static void null_cs_control(u32 command
)
185 static int null_writer(struct driver_data
*drv_data
)
187 void *reg
= drv_data
->ioaddr
;
188 u8 n_bytes
= drv_data
->n_bytes
;
190 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
191 || (drv_data
->tx
== drv_data
->tx_end
))
195 drv_data
->tx
+= n_bytes
;
200 static int null_reader(struct driver_data
*drv_data
)
202 void *reg
= drv_data
->ioaddr
;
203 u8 n_bytes
= drv_data
->n_bytes
;
205 while ((read_SSSR(reg
) & SSSR_RNE
)
206 && (drv_data
->rx
< drv_data
->rx_end
)) {
208 drv_data
->rx
+= n_bytes
;
211 return drv_data
->rx
== drv_data
->rx_end
;
214 static int u8_writer(struct driver_data
*drv_data
)
216 void *reg
= drv_data
->ioaddr
;
218 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
219 || (drv_data
->tx
== drv_data
->tx_end
))
222 write_SSDR(*(u8
*)(drv_data
->tx
), reg
);
228 static int u8_reader(struct driver_data
*drv_data
)
230 void *reg
= drv_data
->ioaddr
;
232 while ((read_SSSR(reg
) & SSSR_RNE
)
233 && (drv_data
->rx
< drv_data
->rx_end
)) {
234 *(u8
*)(drv_data
->rx
) = read_SSDR(reg
);
238 return drv_data
->rx
== drv_data
->rx_end
;
241 static int u16_writer(struct driver_data
*drv_data
)
243 void *reg
= drv_data
->ioaddr
;
245 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
246 || (drv_data
->tx
== drv_data
->tx_end
))
249 write_SSDR(*(u16
*)(drv_data
->tx
), reg
);
255 static int u16_reader(struct driver_data
*drv_data
)
257 void *reg
= drv_data
->ioaddr
;
259 while ((read_SSSR(reg
) & SSSR_RNE
)
260 && (drv_data
->rx
< drv_data
->rx_end
)) {
261 *(u16
*)(drv_data
->rx
) = read_SSDR(reg
);
265 return drv_data
->rx
== drv_data
->rx_end
;
268 static int u32_writer(struct driver_data
*drv_data
)
270 void *reg
= drv_data
->ioaddr
;
272 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
273 || (drv_data
->tx
== drv_data
->tx_end
))
276 write_SSDR(*(u32
*)(drv_data
->tx
), reg
);
282 static int u32_reader(struct driver_data
*drv_data
)
284 void *reg
= drv_data
->ioaddr
;
286 while ((read_SSSR(reg
) & SSSR_RNE
)
287 && (drv_data
->rx
< drv_data
->rx_end
)) {
288 *(u32
*)(drv_data
->rx
) = read_SSDR(reg
);
292 return drv_data
->rx
== drv_data
->rx_end
;
295 static void *next_transfer(struct driver_data
*drv_data
)
297 struct spi_message
*msg
= drv_data
->cur_msg
;
298 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
300 /* Move to next transfer */
301 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
302 drv_data
->cur_transfer
=
303 list_entry(trans
->transfer_list
.next
,
306 return RUNNING_STATE
;
311 static int map_dma_buffers(struct driver_data
*drv_data
)
313 struct spi_message
*msg
= drv_data
->cur_msg
;
314 struct device
*dev
= &msg
->spi
->dev
;
316 if (!drv_data
->cur_chip
->enable_dma
)
319 if (msg
->is_dma_mapped
)
320 return drv_data
->rx_dma
&& drv_data
->tx_dma
;
322 if (!IS_DMA_ALIGNED(drv_data
->rx
) || !IS_DMA_ALIGNED(drv_data
->tx
))
325 /* Modify setup if rx buffer is null */
326 if (drv_data
->rx
== NULL
) {
327 *drv_data
->null_dma_buf
= 0;
328 drv_data
->rx
= drv_data
->null_dma_buf
;
329 drv_data
->rx_map_len
= 4;
331 drv_data
->rx_map_len
= drv_data
->len
;
334 /* Modify setup if tx buffer is null */
335 if (drv_data
->tx
== NULL
) {
336 *drv_data
->null_dma_buf
= 0;
337 drv_data
->tx
= drv_data
->null_dma_buf
;
338 drv_data
->tx_map_len
= 4;
340 drv_data
->tx_map_len
= drv_data
->len
;
342 /* Stream map the rx buffer */
343 drv_data
->rx_dma
= dma_map_single(dev
, drv_data
->rx
,
344 drv_data
->rx_map_len
,
346 if (dma_mapping_error(drv_data
->rx_dma
))
349 /* Stream map the tx buffer */
350 drv_data
->tx_dma
= dma_map_single(dev
, drv_data
->tx
,
351 drv_data
->tx_map_len
,
354 if (dma_mapping_error(drv_data
->tx_dma
)) {
355 dma_unmap_single(dev
, drv_data
->rx_dma
,
356 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
363 static void unmap_dma_buffers(struct driver_data
*drv_data
)
367 if (!drv_data
->dma_mapped
)
370 if (!drv_data
->cur_msg
->is_dma_mapped
) {
371 dev
= &drv_data
->cur_msg
->spi
->dev
;
372 dma_unmap_single(dev
, drv_data
->rx_dma
,
373 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
374 dma_unmap_single(dev
, drv_data
->tx_dma
,
375 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
378 drv_data
->dma_mapped
= 0;
381 /* caller already set message->status; dma and pio irqs are blocked */
382 static void giveback(struct driver_data
*drv_data
)
384 struct spi_transfer
* last_transfer
;
386 struct spi_message
*msg
;
388 spin_lock_irqsave(&drv_data
->lock
, flags
);
389 msg
= drv_data
->cur_msg
;
390 drv_data
->cur_msg
= NULL
;
391 drv_data
->cur_transfer
= NULL
;
392 drv_data
->cur_chip
= NULL
;
393 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
394 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
396 last_transfer
= list_entry(msg
->transfers
.prev
,
400 if (!last_transfer
->cs_change
)
401 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
405 msg
->complete(msg
->context
);
408 static int wait_ssp_rx_stall(void *ioaddr
)
410 unsigned long limit
= loops_per_jiffy
<< 1;
412 while ((read_SSSR(ioaddr
) & SSSR_BSY
) && limit
--)
418 static int wait_dma_channel_stop(int channel
)
420 unsigned long limit
= loops_per_jiffy
<< 1;
422 while (!(DCSR(channel
) & DCSR_STOPSTATE
) && limit
--)
428 void dma_error_stop(struct driver_data
*drv_data
, const char *msg
)
430 void *reg
= drv_data
->ioaddr
;
433 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
434 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
435 write_SSSR(drv_data
->clear_sr
, reg
);
436 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
437 if (drv_data
->ssp_type
!= PXA25x_SSP
)
440 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
442 unmap_dma_buffers(drv_data
);
444 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
446 drv_data
->cur_msg
->state
= ERROR_STATE
;
447 tasklet_schedule(&drv_data
->pump_transfers
);
450 static void dma_transfer_complete(struct driver_data
*drv_data
)
452 void *reg
= drv_data
->ioaddr
;
453 struct spi_message
*msg
= drv_data
->cur_msg
;
455 /* Clear and disable interrupts on SSP and DMA channels*/
456 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
457 write_SSSR(drv_data
->clear_sr
, reg
);
458 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
459 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
461 if (wait_dma_channel_stop(drv_data
->rx_channel
) == 0)
462 dev_err(&drv_data
->pdev
->dev
,
463 "dma_handler: dma rx channel stop failed\n");
465 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
466 dev_err(&drv_data
->pdev
->dev
,
467 "dma_transfer: ssp rx stall failed\n");
469 unmap_dma_buffers(drv_data
);
471 /* update the buffer pointer for the amount completed in dma */
472 drv_data
->rx
+= drv_data
->len
-
473 (DCMD(drv_data
->rx_channel
) & DCMD_LENGTH
);
475 /* read trailing data from fifo, it does not matter how many
476 * bytes are in the fifo just read until buffer is full
477 * or fifo is empty, which ever occurs first */
478 drv_data
->read(drv_data
);
480 /* return count of what was actually read */
481 msg
->actual_length
+= drv_data
->len
-
482 (drv_data
->rx_end
- drv_data
->rx
);
484 /* Release chip select if requested, transfer delays are
485 * handled in pump_transfers */
486 if (drv_data
->cs_change
)
487 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
489 /* Move to next transfer */
490 msg
->state
= next_transfer(drv_data
);
492 /* Schedule transfer tasklet */
493 tasklet_schedule(&drv_data
->pump_transfers
);
496 static void dma_handler(int channel
, void *data
)
498 struct driver_data
*drv_data
= data
;
499 u32 irq_status
= DCSR(channel
) & DMA_INT_MASK
;
501 if (irq_status
& DCSR_BUSERR
) {
503 if (channel
== drv_data
->tx_channel
)
504 dma_error_stop(drv_data
,
506 "bad bus address on tx channel");
508 dma_error_stop(drv_data
,
510 "bad bus address on rx channel");
514 /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
515 if ((channel
== drv_data
->tx_channel
)
516 && (irq_status
& DCSR_ENDINTR
)
517 && (drv_data
->ssp_type
== PXA25x_SSP
)) {
519 /* Wait for rx to stall */
520 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
521 dev_err(&drv_data
->pdev
->dev
,
522 "dma_handler: ssp rx stall failed\n");
524 /* finish this transfer, start the next */
525 dma_transfer_complete(drv_data
);
529 static irqreturn_t
dma_transfer(struct driver_data
*drv_data
)
532 void *reg
= drv_data
->ioaddr
;
534 irq_status
= read_SSSR(reg
) & drv_data
->mask_sr
;
535 if (irq_status
& SSSR_ROR
) {
536 dma_error_stop(drv_data
, "dma_transfer: fifo overrun");
540 /* Check for false positive timeout */
541 if ((irq_status
& SSSR_TINT
)
542 && (DCSR(drv_data
->tx_channel
) & DCSR_RUN
)) {
543 write_SSSR(SSSR_TINT
, reg
);
547 if (irq_status
& SSSR_TINT
|| drv_data
->rx
== drv_data
->rx_end
) {
549 /* Clear and disable timeout interrupt, do the rest in
550 * dma_transfer_complete */
551 if (drv_data
->ssp_type
!= PXA25x_SSP
)
554 /* finish this transfer, start the next */
555 dma_transfer_complete(drv_data
);
560 /* Opps problem detected */
564 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
566 void *reg
= drv_data
->ioaddr
;
568 /* Stop and reset SSP */
569 write_SSSR(drv_data
->clear_sr
, reg
);
570 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
571 if (drv_data
->ssp_type
!= PXA25x_SSP
)
574 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
576 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
578 drv_data
->cur_msg
->state
= ERROR_STATE
;
579 tasklet_schedule(&drv_data
->pump_transfers
);
582 static void int_transfer_complete(struct driver_data
*drv_data
)
584 void *reg
= drv_data
->ioaddr
;
587 write_SSSR(drv_data
->clear_sr
, reg
);
588 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
589 if (drv_data
->ssp_type
!= PXA25x_SSP
)
592 /* Update total byte transfered return count actual bytes read */
593 drv_data
->cur_msg
->actual_length
+= drv_data
->len
-
594 (drv_data
->rx_end
- drv_data
->rx
);
596 /* Release chip select if requested, transfer delays are
597 * handled in pump_transfers */
598 if (drv_data
->cs_change
)
599 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
601 /* Move to next transfer */
602 drv_data
->cur_msg
->state
= next_transfer(drv_data
);
604 /* Schedule transfer tasklet */
605 tasklet_schedule(&drv_data
->pump_transfers
);
608 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
610 void *reg
= drv_data
->ioaddr
;
612 u32 irq_mask
= (read_SSCR1(reg
) & SSCR1_TIE
) ?
613 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
615 u32 irq_status
= read_SSSR(reg
) & irq_mask
;
617 if (irq_status
& SSSR_ROR
) {
618 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
622 if (irq_status
& SSSR_TINT
) {
623 write_SSSR(SSSR_TINT
, reg
);
624 if (drv_data
->read(drv_data
)) {
625 int_transfer_complete(drv_data
);
630 /* Drain rx fifo, Fill tx fifo and prevent overruns */
632 if (drv_data
->read(drv_data
)) {
633 int_transfer_complete(drv_data
);
636 } while (drv_data
->write(drv_data
));
638 if (drv_data
->read(drv_data
)) {
639 int_transfer_complete(drv_data
);
643 if (drv_data
->tx
== drv_data
->tx_end
) {
644 write_SSCR1(read_SSCR1(reg
) & ~SSCR1_TIE
, reg
);
645 /* PXA25x_SSP has no timeout, read trailing bytes */
646 if (drv_data
->ssp_type
== PXA25x_SSP
) {
647 if (!wait_ssp_rx_stall(reg
))
649 int_error_stop(drv_data
, "interrupt_transfer: "
653 if (!drv_data
->read(drv_data
))
655 int_error_stop(drv_data
,
656 "interrupt_transfer: "
657 "trailing byte read failed");
660 int_transfer_complete(drv_data
);
664 /* We did something */
668 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
670 struct driver_data
*drv_data
= dev_id
;
671 void *reg
= drv_data
->ioaddr
;
673 if (!drv_data
->cur_msg
) {
675 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
676 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
677 if (drv_data
->ssp_type
!= PXA25x_SSP
)
679 write_SSSR(drv_data
->clear_sr
, reg
);
681 dev_err(&drv_data
->pdev
->dev
, "bad message state "
682 "in interrupt handler\n");
688 return drv_data
->transfer_handler(drv_data
);
691 int set_dma_burst_and_threshold(struct chip_data
*chip
, struct spi_device
*spi
,
692 u8 bits_per_word
, u32
*burst_code
,
695 struct pxa2xx_spi_chip
*chip_info
=
696 (struct pxa2xx_spi_chip
*)spi
->controller_data
;
703 /* Set the threshold (in registers) to equal the same amount of data
704 * as represented by burst size (in bytes). The computation below
705 * is (burst_size rounded up to nearest 8 byte, word or long word)
706 * divided by (bytes/register); the tx threshold is the inverse of
707 * the rx, so that there will always be enough data in the rx fifo
708 * to satisfy a burst, and there will always be enough space in the
709 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
710 * there is not enough space), there must always remain enough empty
711 * space in the rx fifo for any data loaded to the tx fifo.
712 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
713 * will be 8, or half the fifo;
714 * The threshold can only be set to 2, 4 or 8, but not 16, because
715 * to burst 16 to the tx fifo, the fifo would have to be empty;
716 * however, the minimum fifo trigger level is 1, and the tx will
717 * request service when the fifo is at this level, with only 15 spaces.
720 /* find bytes/word */
721 if (bits_per_word
<= 8)
723 else if (bits_per_word
<= 16)
728 /* use struct pxa2xx_spi_chip->dma_burst_size if available */
730 req_burst_size
= chip_info
->dma_burst_size
;
732 switch (chip
->dma_burst_size
) {
734 /* if the default burst size is not set,
736 chip
->dma_burst_size
= DCMD_BURST8
;
748 if (req_burst_size
<= 8) {
749 *burst_code
= DCMD_BURST8
;
751 } else if (req_burst_size
<= 16) {
752 if (bytes_per_word
== 1) {
753 /* don't burst more than 1/2 the fifo */
754 *burst_code
= DCMD_BURST8
;
758 *burst_code
= DCMD_BURST16
;
762 if (bytes_per_word
== 1) {
763 /* don't burst more than 1/2 the fifo */
764 *burst_code
= DCMD_BURST8
;
767 } else if (bytes_per_word
== 2) {
768 /* don't burst more than 1/2 the fifo */
769 *burst_code
= DCMD_BURST16
;
773 *burst_code
= DCMD_BURST32
;
778 thresh_words
= burst_bytes
/ bytes_per_word
;
780 /* thresh_words will be between 2 and 8 */
781 *threshold
= (SSCR1_RxTresh(thresh_words
) & SSCR1_RFT
)
782 | (SSCR1_TxTresh(16-thresh_words
) & SSCR1_TFT
);
787 static unsigned int ssp_get_clk_div(struct ssp_device
*ssp
, int rate
)
789 unsigned long ssp_clk
= clk_get_rate(ssp
->clk
);
791 if (ssp
->type
== PXA25x_SSP
)
792 return ((ssp_clk
/ (2 * rate
) - 1) & 0xff) << 8;
794 return ((ssp_clk
/ rate
- 1) & 0xfff) << 8;
797 static void pump_transfers(unsigned long data
)
799 struct driver_data
*drv_data
= (struct driver_data
*)data
;
800 struct spi_message
*message
= NULL
;
801 struct spi_transfer
*transfer
= NULL
;
802 struct spi_transfer
*previous
= NULL
;
803 struct chip_data
*chip
= NULL
;
804 struct ssp_device
*ssp
= drv_data
->ssp
;
805 void *reg
= drv_data
->ioaddr
;
811 u32 dma_thresh
= drv_data
->cur_chip
->dma_threshold
;
812 u32 dma_burst
= drv_data
->cur_chip
->dma_burst_size
;
814 /* Get current state information */
815 message
= drv_data
->cur_msg
;
816 transfer
= drv_data
->cur_transfer
;
817 chip
= drv_data
->cur_chip
;
819 /* Handle for abort */
820 if (message
->state
== ERROR_STATE
) {
821 message
->status
= -EIO
;
826 /* Handle end of message */
827 if (message
->state
== DONE_STATE
) {
833 /* Delay if requested at end of transfer*/
834 if (message
->state
== RUNNING_STATE
) {
835 previous
= list_entry(transfer
->transfer_list
.prev
,
838 if (previous
->delay_usecs
)
839 udelay(previous
->delay_usecs
);
842 /* Check transfer length */
843 if (transfer
->len
> 8191)
845 dev_warn(&drv_data
->pdev
->dev
, "pump_transfers: transfer "
846 "length greater than 8191\n");
847 message
->status
= -EINVAL
;
852 /* Setup the transfer state based on the type of transfer */
853 if (flush(drv_data
) == 0) {
854 dev_err(&drv_data
->pdev
->dev
, "pump_transfers: flush failed\n");
855 message
->status
= -EIO
;
859 drv_data
->n_bytes
= chip
->n_bytes
;
860 drv_data
->dma_width
= chip
->dma_width
;
861 drv_data
->cs_control
= chip
->cs_control
;
862 drv_data
->tx
= (void *)transfer
->tx_buf
;
863 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
864 drv_data
->rx
= transfer
->rx_buf
;
865 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
866 drv_data
->rx_dma
= transfer
->rx_dma
;
867 drv_data
->tx_dma
= transfer
->tx_dma
;
868 drv_data
->len
= transfer
->len
& DCMD_LENGTH
;
869 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
870 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
871 drv_data
->cs_change
= transfer
->cs_change
;
873 /* Change speed and bit per word on a per transfer */
875 if (transfer
->speed_hz
|| transfer
->bits_per_word
) {
877 bits
= chip
->bits_per_word
;
878 speed
= chip
->speed_hz
;
880 if (transfer
->speed_hz
)
881 speed
= transfer
->speed_hz
;
883 if (transfer
->bits_per_word
)
884 bits
= transfer
->bits_per_word
;
886 clk_div
= ssp_get_clk_div(ssp
, speed
);
889 drv_data
->n_bytes
= 1;
890 drv_data
->dma_width
= DCMD_WIDTH1
;
891 drv_data
->read
= drv_data
->read
!= null_reader
?
892 u8_reader
: null_reader
;
893 drv_data
->write
= drv_data
->write
!= null_writer
?
894 u8_writer
: null_writer
;
895 } else if (bits
<= 16) {
896 drv_data
->n_bytes
= 2;
897 drv_data
->dma_width
= DCMD_WIDTH2
;
898 drv_data
->read
= drv_data
->read
!= null_reader
?
899 u16_reader
: null_reader
;
900 drv_data
->write
= drv_data
->write
!= null_writer
?
901 u16_writer
: null_writer
;
902 } else if (bits
<= 32) {
903 drv_data
->n_bytes
= 4;
904 drv_data
->dma_width
= DCMD_WIDTH4
;
905 drv_data
->read
= drv_data
->read
!= null_reader
?
906 u32_reader
: null_reader
;
907 drv_data
->write
= drv_data
->write
!= null_writer
?
908 u32_writer
: null_writer
;
910 /* if bits/word is changed in dma mode, then must check the
911 * thresholds and burst also */
912 if (chip
->enable_dma
) {
913 if (set_dma_burst_and_threshold(chip
, message
->spi
,
916 if (printk_ratelimit())
917 dev_warn(&message
->spi
->dev
,
919 "DMA burst size reduced to "
920 "match bits_per_word\n");
925 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
927 | (bits
> 16 ? SSCR0_EDSS
: 0);
930 message
->state
= RUNNING_STATE
;
932 /* Try to map dma buffer and do a dma transfer if successful */
933 if ((drv_data
->dma_mapped
= map_dma_buffers(drv_data
))) {
935 /* Ensure we have the correct interrupt handler */
936 drv_data
->transfer_handler
= dma_transfer
;
938 /* Setup rx DMA Channel */
939 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
940 DSADR(drv_data
->rx_channel
) = drv_data
->ssdr_physical
;
941 DTADR(drv_data
->rx_channel
) = drv_data
->rx_dma
;
942 if (drv_data
->rx
== drv_data
->null_dma_buf
)
943 /* No target address increment */
944 DCMD(drv_data
->rx_channel
) = DCMD_FLOWSRC
945 | drv_data
->dma_width
949 DCMD(drv_data
->rx_channel
) = DCMD_INCTRGADDR
951 | drv_data
->dma_width
955 /* Setup tx DMA Channel */
956 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
957 DSADR(drv_data
->tx_channel
) = drv_data
->tx_dma
;
958 DTADR(drv_data
->tx_channel
) = drv_data
->ssdr_physical
;
959 if (drv_data
->tx
== drv_data
->null_dma_buf
)
960 /* No source address increment */
961 DCMD(drv_data
->tx_channel
) = DCMD_FLOWTRG
962 | drv_data
->dma_width
966 DCMD(drv_data
->tx_channel
) = DCMD_INCSRCADDR
968 | drv_data
->dma_width
972 /* Enable dma end irqs on SSP to detect end of transfer */
973 if (drv_data
->ssp_type
== PXA25x_SSP
)
974 DCMD(drv_data
->tx_channel
) |= DCMD_ENDIRQEN
;
976 /* Fix me, need to handle cs polarity */
977 drv_data
->cs_control(PXA2XX_CS_ASSERT
);
979 /* Clear status and start DMA engine */
980 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
981 write_SSSR(drv_data
->clear_sr
, reg
);
982 DCSR(drv_data
->rx_channel
) |= DCSR_RUN
;
983 DCSR(drv_data
->tx_channel
) |= DCSR_RUN
;
985 /* Ensure we have the correct interrupt handler */
986 drv_data
->transfer_handler
= interrupt_transfer
;
988 /* Fix me, need to handle cs polarity */
989 drv_data
->cs_control(PXA2XX_CS_ASSERT
);
992 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
993 write_SSSR(drv_data
->clear_sr
, reg
);
996 /* see if we need to reload the config registers */
997 if ((read_SSCR0(reg
) != cr0
)
998 || (read_SSCR1(reg
) & SSCR1_CHANGE_MASK
) !=
999 (cr1
& SSCR1_CHANGE_MASK
)) {
1001 write_SSCR0(cr0
& ~SSCR0_SSE
, reg
);
1002 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1003 write_SSTO(chip
->timeout
, reg
);
1004 write_SSCR1(cr1
, reg
);
1005 write_SSCR0(cr0
, reg
);
1007 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1008 write_SSTO(chip
->timeout
, reg
);
1009 write_SSCR1(cr1
, reg
);
1013 static void pump_messages(struct work_struct
*work
)
1015 struct driver_data
*drv_data
=
1016 container_of(work
, struct driver_data
, pump_messages
);
1017 unsigned long flags
;
1019 /* Lock queue and check for queue work */
1020 spin_lock_irqsave(&drv_data
->lock
, flags
);
1021 if (list_empty(&drv_data
->queue
) || drv_data
->run
== QUEUE_STOPPED
) {
1023 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1027 /* Make sure we are not already running a message */
1028 if (drv_data
->cur_msg
) {
1029 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1033 /* Extract head of queue */
1034 drv_data
->cur_msg
= list_entry(drv_data
->queue
.next
,
1035 struct spi_message
, queue
);
1036 list_del_init(&drv_data
->cur_msg
->queue
);
1038 /* Initial message state*/
1039 drv_data
->cur_msg
->state
= START_STATE
;
1040 drv_data
->cur_transfer
= list_entry(drv_data
->cur_msg
->transfers
.next
,
1041 struct spi_transfer
,
1044 /* prepare to setup the SSP, in pump_transfers, using the per
1045 * chip configuration */
1046 drv_data
->cur_chip
= spi_get_ctldata(drv_data
->cur_msg
->spi
);
1048 /* Mark as busy and launch transfers */
1049 tasklet_schedule(&drv_data
->pump_transfers
);
1052 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1055 static int transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1057 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1058 unsigned long flags
;
1060 spin_lock_irqsave(&drv_data
->lock
, flags
);
1062 if (drv_data
->run
== QUEUE_STOPPED
) {
1063 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1067 msg
->actual_length
= 0;
1068 msg
->status
= -EINPROGRESS
;
1069 msg
->state
= START_STATE
;
1071 list_add_tail(&msg
->queue
, &drv_data
->queue
);
1073 if (drv_data
->run
== QUEUE_RUNNING
&& !drv_data
->busy
)
1074 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1076 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1081 /* the spi->mode bits understood by this driver: */
1082 #define MODEBITS (SPI_CPOL | SPI_CPHA)
1084 static int setup(struct spi_device
*spi
)
1086 struct pxa2xx_spi_chip
*chip_info
= NULL
;
1087 struct chip_data
*chip
;
1088 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1089 struct ssp_device
*ssp
= drv_data
->ssp
;
1090 unsigned int clk_div
;
1092 if (!spi
->bits_per_word
)
1093 spi
->bits_per_word
= 8;
1095 if (drv_data
->ssp_type
!= PXA25x_SSP
1096 && (spi
->bits_per_word
< 4 || spi
->bits_per_word
> 32)) {
1097 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1098 "b/w not 4-32 for type non-PXA25x_SSP\n",
1099 drv_data
->ssp_type
, spi
->bits_per_word
);
1102 else if (drv_data
->ssp_type
== PXA25x_SSP
1103 && (spi
->bits_per_word
< 4
1104 || spi
->bits_per_word
> 16)) {
1105 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1106 "b/w not 4-16 for type PXA25x_SSP\n",
1107 drv_data
->ssp_type
, spi
->bits_per_word
);
1111 if (spi
->mode
& ~MODEBITS
) {
1112 dev_dbg(&spi
->dev
, "setup: unsupported mode bits %x\n",
1113 spi
->mode
& ~MODEBITS
);
1117 /* Only alloc on first setup */
1118 chip
= spi_get_ctldata(spi
);
1120 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1123 "failed setup: can't allocate chip data\n");
1127 chip
->cs_control
= null_cs_control
;
1128 chip
->enable_dma
= 0;
1129 chip
->timeout
= 1000;
1130 chip
->threshold
= SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
1131 chip
->dma_burst_size
= drv_data
->master_info
->enable_dma
?
1135 /* protocol drivers may change the chip settings, so...
1136 * if chip_info exists, use it */
1137 chip_info
= spi
->controller_data
;
1139 /* chip_info isn't always needed */
1142 if (chip_info
->cs_control
)
1143 chip
->cs_control
= chip_info
->cs_control
;
1145 chip
->timeout
= chip_info
->timeout
;
1147 chip
->threshold
= (SSCR1_RxTresh(chip_info
->rx_threshold
) &
1149 (SSCR1_TxTresh(chip_info
->tx_threshold
) &
1152 chip
->enable_dma
= chip_info
->dma_burst_size
!= 0
1153 && drv_data
->master_info
->enable_dma
;
1154 chip
->dma_threshold
= 0;
1156 if (chip_info
->enable_loopback
)
1157 chip
->cr1
= SSCR1_LBM
;
1160 /* set dma burst and threshold outside of chip_info path so that if
1161 * chip_info goes away after setting chip->enable_dma, the
1162 * burst and threshold can still respond to changes in bits_per_word */
1163 if (chip
->enable_dma
) {
1164 /* set up legal burst and threshold for dma */
1165 if (set_dma_burst_and_threshold(chip
, spi
, spi
->bits_per_word
,
1166 &chip
->dma_burst_size
,
1167 &chip
->dma_threshold
)) {
1168 dev_warn(&spi
->dev
, "in setup: DMA burst size reduced "
1169 "to match bits_per_word\n");
1173 clk_div
= ssp_get_clk_div(ssp
, spi
->max_speed_hz
);
1174 chip
->speed_hz
= spi
->max_speed_hz
;
1178 | SSCR0_DataSize(spi
->bits_per_word
> 16 ?
1179 spi
->bits_per_word
- 16 : spi
->bits_per_word
)
1181 | (spi
->bits_per_word
> 16 ? SSCR0_EDSS
: 0);
1182 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1183 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1184 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1186 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1187 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1188 dev_dbg(&spi
->dev
, "%d bits/word, %ld Hz, mode %d\n",
1190 clk_get_rate(ssp
->clk
)
1191 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1194 dev_dbg(&spi
->dev
, "%d bits/word, %ld Hz, mode %d\n",
1196 clk_get_rate(ssp
->clk
)
1197 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1200 if (spi
->bits_per_word
<= 8) {
1202 chip
->dma_width
= DCMD_WIDTH1
;
1203 chip
->read
= u8_reader
;
1204 chip
->write
= u8_writer
;
1205 } else if (spi
->bits_per_word
<= 16) {
1207 chip
->dma_width
= DCMD_WIDTH2
;
1208 chip
->read
= u16_reader
;
1209 chip
->write
= u16_writer
;
1210 } else if (spi
->bits_per_word
<= 32) {
1211 chip
->cr0
|= SSCR0_EDSS
;
1213 chip
->dma_width
= DCMD_WIDTH4
;
1214 chip
->read
= u32_reader
;
1215 chip
->write
= u32_writer
;
1217 dev_err(&spi
->dev
, "invalid wordsize\n");
1220 chip
->bits_per_word
= spi
->bits_per_word
;
1222 spi_set_ctldata(spi
, chip
);
1227 static void cleanup(struct spi_device
*spi
)
1229 struct chip_data
*chip
= spi_get_ctldata(spi
);
1234 static int __init
init_queue(struct driver_data
*drv_data
)
1236 INIT_LIST_HEAD(&drv_data
->queue
);
1237 spin_lock_init(&drv_data
->lock
);
1239 drv_data
->run
= QUEUE_STOPPED
;
1242 tasklet_init(&drv_data
->pump_transfers
,
1243 pump_transfers
, (unsigned long)drv_data
);
1245 INIT_WORK(&drv_data
->pump_messages
, pump_messages
);
1246 drv_data
->workqueue
= create_singlethread_workqueue(
1247 drv_data
->master
->dev
.parent
->bus_id
);
1248 if (drv_data
->workqueue
== NULL
)
1254 static int start_queue(struct driver_data
*drv_data
)
1256 unsigned long flags
;
1258 spin_lock_irqsave(&drv_data
->lock
, flags
);
1260 if (drv_data
->run
== QUEUE_RUNNING
|| drv_data
->busy
) {
1261 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1265 drv_data
->run
= QUEUE_RUNNING
;
1266 drv_data
->cur_msg
= NULL
;
1267 drv_data
->cur_transfer
= NULL
;
1268 drv_data
->cur_chip
= NULL
;
1269 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1271 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1276 static int stop_queue(struct driver_data
*drv_data
)
1278 unsigned long flags
;
1279 unsigned limit
= 500;
1282 spin_lock_irqsave(&drv_data
->lock
, flags
);
1284 /* This is a bit lame, but is optimized for the common execution path.
1285 * A wait_queue on the drv_data->busy could be used, but then the common
1286 * execution path (pump_messages) would be required to call wake_up or
1287 * friends on every SPI message. Do this instead */
1288 drv_data
->run
= QUEUE_STOPPED
;
1289 while (!list_empty(&drv_data
->queue
) && drv_data
->busy
&& limit
--) {
1290 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1292 spin_lock_irqsave(&drv_data
->lock
, flags
);
1295 if (!list_empty(&drv_data
->queue
) || drv_data
->busy
)
1298 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1303 static int destroy_queue(struct driver_data
*drv_data
)
1307 status
= stop_queue(drv_data
);
1308 /* we are unloading the module or failing to load (only two calls
1309 * to this routine), and neither call can handle a return value.
1310 * However, destroy_workqueue calls flush_workqueue, and that will
1311 * block until all work is done. If the reason that stop_queue
1312 * timed out is that the work will never finish, then it does no
1313 * good to call destroy_workqueue, so return anyway. */
1317 destroy_workqueue(drv_data
->workqueue
);
1322 static int __init
pxa2xx_spi_probe(struct platform_device
*pdev
)
1324 struct device
*dev
= &pdev
->dev
;
1325 struct pxa2xx_spi_master
*platform_info
;
1326 struct spi_master
*master
;
1327 struct driver_data
*drv_data
= 0;
1328 struct ssp_device
*ssp
;
1331 platform_info
= dev
->platform_data
;
1333 ssp
= ssp_request(pdev
->id
, pdev
->name
);
1335 dev_err(&pdev
->dev
, "failed to request SSP%d\n", pdev
->id
);
1339 /* Allocate master with space for drv_data and null dma buffer */
1340 master
= spi_alloc_master(dev
, sizeof(struct driver_data
) + 16);
1342 dev_err(&pdev
->dev
, "can not alloc spi_master\n");
1346 drv_data
= spi_master_get_devdata(master
);
1347 drv_data
->master
= master
;
1348 drv_data
->master_info
= platform_info
;
1349 drv_data
->pdev
= pdev
;
1350 drv_data
->ssp
= ssp
;
1352 master
->bus_num
= pdev
->id
;
1353 master
->num_chipselect
= platform_info
->num_chipselect
;
1354 master
->cleanup
= cleanup
;
1355 master
->setup
= setup
;
1356 master
->transfer
= transfer
;
1358 drv_data
->ssp_type
= ssp
->type
;
1359 drv_data
->null_dma_buf
= (u32
*)ALIGN((u32
)(drv_data
+
1360 sizeof(struct driver_data
)), 8);
1362 drv_data
->ioaddr
= ssp
->mmio_base
;
1363 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1364 if (ssp
->type
== PXA25x_SSP
) {
1365 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1366 drv_data
->dma_cr1
= 0;
1367 drv_data
->clear_sr
= SSSR_ROR
;
1368 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1370 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1371 drv_data
->dma_cr1
= SSCR1_TSRE
| SSCR1_RSRE
| SSCR1_TINTE
;
1372 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1373 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1376 status
= request_irq(ssp
->irq
, ssp_int
, 0, dev
->bus_id
, drv_data
);
1378 dev_err(&pdev
->dev
, "can not get IRQ\n");
1379 goto out_error_master_alloc
;
1382 /* Setup DMA if requested */
1383 drv_data
->tx_channel
= -1;
1384 drv_data
->rx_channel
= -1;
1385 if (platform_info
->enable_dma
) {
1387 /* Get two DMA channels (rx and tx) */
1388 drv_data
->rx_channel
= pxa_request_dma("pxa2xx_spi_ssp_rx",
1392 if (drv_data
->rx_channel
< 0) {
1393 dev_err(dev
, "problem (%d) requesting rx channel\n",
1394 drv_data
->rx_channel
);
1396 goto out_error_irq_alloc
;
1398 drv_data
->tx_channel
= pxa_request_dma("pxa2xx_spi_ssp_tx",
1402 if (drv_data
->tx_channel
< 0) {
1403 dev_err(dev
, "problem (%d) requesting tx channel\n",
1404 drv_data
->tx_channel
);
1406 goto out_error_dma_alloc
;
1409 DRCMR(ssp
->drcmr_rx
) = DRCMR_MAPVLD
| drv_data
->rx_channel
;
1410 DRCMR(ssp
->drcmr_tx
) = DRCMR_MAPVLD
| drv_data
->tx_channel
;
1413 /* Enable SOC clock */
1414 clk_enable(ssp
->clk
);
1416 /* Load default SSP configuration */
1417 write_SSCR0(0, drv_data
->ioaddr
);
1418 write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data
->ioaddr
);
1419 write_SSCR0(SSCR0_SerClkDiv(2)
1421 | SSCR0_DataSize(8),
1423 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1424 write_SSTO(0, drv_data
->ioaddr
);
1425 write_SSPSP(0, drv_data
->ioaddr
);
1427 /* Initial and start queue */
1428 status
= init_queue(drv_data
);
1430 dev_err(&pdev
->dev
, "problem initializing queue\n");
1431 goto out_error_clock_enabled
;
1433 status
= start_queue(drv_data
);
1435 dev_err(&pdev
->dev
, "problem starting queue\n");
1436 goto out_error_clock_enabled
;
1439 /* Register with the SPI framework */
1440 platform_set_drvdata(pdev
, drv_data
);
1441 status
= spi_register_master(master
);
1443 dev_err(&pdev
->dev
, "problem registering spi master\n");
1444 goto out_error_queue_alloc
;
1449 out_error_queue_alloc
:
1450 destroy_queue(drv_data
);
1452 out_error_clock_enabled
:
1453 clk_disable(ssp
->clk
);
1455 out_error_dma_alloc
:
1456 if (drv_data
->tx_channel
!= -1)
1457 pxa_free_dma(drv_data
->tx_channel
);
1458 if (drv_data
->rx_channel
!= -1)
1459 pxa_free_dma(drv_data
->rx_channel
);
1461 out_error_irq_alloc
:
1462 free_irq(ssp
->irq
, drv_data
);
1464 out_error_master_alloc
:
1465 spi_master_put(master
);
1470 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1472 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1473 struct ssp_device
*ssp
= drv_data
->ssp
;
1479 /* Remove the queue */
1480 status
= destroy_queue(drv_data
);
1482 /* the kernel does not check the return status of this
1483 * this routine (mod->exit, within the kernel). Therefore
1484 * nothing is gained by returning from here, the module is
1485 * going away regardless, and we should not leave any more
1486 * resources allocated than necessary. We cannot free the
1487 * message memory in drv_data->queue, but we can release the
1488 * resources below. I think the kernel should honor -EBUSY
1490 dev_err(&pdev
->dev
, "pxa2xx_spi_remove: workqueue will not "
1491 "complete, message memory not freed\n");
1493 /* Disable the SSP at the peripheral and SOC level */
1494 write_SSCR0(0, drv_data
->ioaddr
);
1495 clk_disable(ssp
->clk
);
1498 if (drv_data
->master_info
->enable_dma
) {
1499 DRCMR(ssp
->drcmr_rx
) = 0;
1500 DRCMR(ssp
->drcmr_tx
) = 0;
1501 pxa_free_dma(drv_data
->tx_channel
);
1502 pxa_free_dma(drv_data
->rx_channel
);
1506 free_irq(ssp
->irq
, drv_data
);
1511 /* Disconnect from the SPI framework */
1512 spi_unregister_master(drv_data
->master
);
1514 /* Prevent double remove */
1515 platform_set_drvdata(pdev
, NULL
);
1520 static void pxa2xx_spi_shutdown(struct platform_device
*pdev
)
1524 if ((status
= pxa2xx_spi_remove(pdev
)) != 0)
1525 dev_err(&pdev
->dev
, "shutdown failed with %d\n", status
);
1529 static int suspend_devices(struct device
*dev
, void *pm_message
)
1531 pm_message_t
*state
= pm_message
;
1533 if (dev
->power
.power_state
.event
!= state
->event
) {
1534 dev_warn(dev
, "pm state does not match request\n");
1541 static int pxa2xx_spi_suspend(struct platform_device
*pdev
, pm_message_t state
)
1543 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1544 struct ssp_device
*ssp
= drv_data
->ssp
;
1547 /* Check all childern for current power state */
1548 if (device_for_each_child(&pdev
->dev
, &state
, suspend_devices
) != 0) {
1549 dev_warn(&pdev
->dev
, "suspend aborted\n");
1553 status
= stop_queue(drv_data
);
1556 write_SSCR0(0, drv_data
->ioaddr
);
1557 clk_disable(ssp
->clk
);
1562 static int pxa2xx_spi_resume(struct platform_device
*pdev
)
1564 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1565 struct ssp_device
*ssp
= drv_data
->ssp
;
1568 /* Enable the SSP clock */
1569 clk_disable(ssp
->clk
);
1571 /* Start the queue running */
1572 status
= start_queue(drv_data
);
1574 dev_err(&pdev
->dev
, "problem starting queue (%d)\n", status
);
1581 #define pxa2xx_spi_suspend NULL
1582 #define pxa2xx_spi_resume NULL
1583 #endif /* CONFIG_PM */
1585 static struct platform_driver driver
= {
1587 .name
= "pxa2xx-spi",
1588 .bus
= &platform_bus_type
,
1589 .owner
= THIS_MODULE
,
1591 .remove
= pxa2xx_spi_remove
,
1592 .shutdown
= pxa2xx_spi_shutdown
,
1593 .suspend
= pxa2xx_spi_suspend
,
1594 .resume
= pxa2xx_spi_resume
,
1597 static int __init
pxa2xx_spi_init(void)
1599 return platform_driver_probe(&driver
, pxa2xx_spi_probe
);
1601 module_init(pxa2xx_spi_init
);
1603 static void __exit
pxa2xx_spi_exit(void)
1605 platform_driver_unregister(&driver
);
1607 module_exit(pxa2xx_spi_exit
);