2 * mm/truncate.c - code for taking down pages from address_spaces
4 * Copyright (C) 2002, Linus Torvalds
6 * 10Sep2002 Andrew Morton
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
14 #include <linux/swap.h>
15 #include <linux/module.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h> /* grr. try_to_release_page,
26 * do_invalidatepage - invalidate part or all of a page
27 * @page: the page which is affected
28 * @offset: the index of the truncation point
30 * do_invalidatepage() is called when all or part of the page has become
31 * invalidated by a truncate operation.
33 * do_invalidatepage() does not have to release all buffers, but it must
34 * ensure that no dirty buffer is left outside @offset and that no I/O
35 * is underway against any of the blocks which are outside the truncation
36 * point. Because the caller is about to free (and possibly reuse) those
39 void do_invalidatepage(struct page
*page
, unsigned long offset
)
41 void (*invalidatepage
)(struct page
*, unsigned long);
42 invalidatepage
= page
->mapping
->a_ops
->invalidatepage
;
45 invalidatepage
= block_invalidatepage
;
48 (*invalidatepage
)(page
, offset
);
51 static inline void truncate_partial_page(struct page
*page
, unsigned partial
)
53 zero_user_segment(page
, partial
, PAGE_CACHE_SIZE
);
54 if (page_has_private(page
))
55 do_invalidatepage(page
, partial
);
59 * This cancels just the dirty bit on the kernel page itself, it
60 * does NOT actually remove dirty bits on any mmap's that may be
61 * around. It also leaves the page tagged dirty, so any sync
62 * activity will still find it on the dirty lists, and in particular,
63 * clear_page_dirty_for_io() will still look at the dirty bits in
66 * Doing this should *normally* only ever be done when a page
67 * is truncated, and is not actually mapped anywhere at all. However,
68 * fs/buffer.c does this when it notices that somebody has cleaned
69 * out all the buffers on a page without actually doing it through
70 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
72 void cancel_dirty_page(struct page
*page
, unsigned int account_size
)
74 if (TestClearPageDirty(page
)) {
75 struct address_space
*mapping
= page
->mapping
;
76 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
77 dec_zone_page_state(page
, NR_FILE_DIRTY
);
78 dec_bdi_stat(mapping
->backing_dev_info
,
81 task_io_account_cancelled_write(account_size
);
85 EXPORT_SYMBOL(cancel_dirty_page
);
88 * If truncate cannot remove the fs-private metadata from the page, the page
89 * becomes orphaned. It will be left on the LRU and may even be mapped into
90 * user pagetables if we're racing with filemap_fault().
92 * We need to bale out if page->mapping is no longer equal to the original
93 * mapping. This happens a) when the VM reclaimed the page while we waited on
94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
98 truncate_complete_page(struct address_space
*mapping
, struct page
*page
)
100 if (page
->mapping
!= mapping
)
103 if (page_has_private(page
))
104 do_invalidatepage(page
, 0);
106 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
108 clear_page_mlock(page
);
109 ClearPageMappedToDisk(page
);
110 delete_from_page_cache(page
);
115 * This is for invalidate_mapping_pages(). That function can be called at
116 * any time, and is not supposed to throw away dirty pages. But pages can
117 * be marked dirty at any time too, so use remove_mapping which safely
118 * discards clean, unused pages.
120 * Returns non-zero if the page was successfully invalidated.
123 invalidate_complete_page(struct address_space
*mapping
, struct page
*page
)
127 if (page
->mapping
!= mapping
)
130 if (page_has_private(page
) && !try_to_release_page(page
, 0))
133 clear_page_mlock(page
);
134 ret
= remove_mapping(mapping
, page
);
139 int truncate_inode_page(struct address_space
*mapping
, struct page
*page
)
141 if (page_mapped(page
)) {
142 unmap_mapping_range(mapping
,
143 (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
,
146 return truncate_complete_page(mapping
, page
);
150 * Used to get rid of pages on hardware memory corruption.
152 int generic_error_remove_page(struct address_space
*mapping
, struct page
*page
)
157 * Only punch for normal data pages for now.
158 * Handling other types like directories would need more auditing.
160 if (!S_ISREG(mapping
->host
->i_mode
))
162 return truncate_inode_page(mapping
, page
);
164 EXPORT_SYMBOL(generic_error_remove_page
);
167 * Safely invalidate one page from its pagecache mapping.
168 * It only drops clean, unused pages. The page must be locked.
170 * Returns 1 if the page is successfully invalidated, otherwise 0.
172 int invalidate_inode_page(struct page
*page
)
174 struct address_space
*mapping
= page_mapping(page
);
177 if (PageDirty(page
) || PageWriteback(page
))
179 if (page_mapped(page
))
181 return invalidate_complete_page(mapping
, page
);
185 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
186 * @mapping: mapping to truncate
187 * @lstart: offset from which to truncate
188 * @lend: offset to which to truncate
190 * Truncate the page cache, removing the pages that are between
191 * specified offsets (and zeroing out partial page
192 * (if lstart is not page aligned)).
194 * Truncate takes two passes - the first pass is nonblocking. It will not
195 * block on page locks and it will not block on writeback. The second pass
196 * will wait. This is to prevent as much IO as possible in the affected region.
197 * The first pass will remove most pages, so the search cost of the second pass
200 * When looking at page->index outside the page lock we need to be careful to
201 * copy it into a local to avoid races (it could change at any time).
203 * We pass down the cache-hot hint to the page freeing code. Even if the
204 * mapping is large, it is probably the case that the final pages are the most
205 * recently touched, and freeing happens in ascending file offset order.
207 void truncate_inode_pages_range(struct address_space
*mapping
,
208 loff_t lstart
, loff_t lend
)
210 const pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
212 const unsigned partial
= lstart
& (PAGE_CACHE_SIZE
- 1);
217 if (mapping
->nrpages
== 0)
220 BUG_ON((lend
& (PAGE_CACHE_SIZE
- 1)) != (PAGE_CACHE_SIZE
- 1));
221 end
= (lend
>> PAGE_CACHE_SHIFT
);
223 pagevec_init(&pvec
, 0);
225 while (next
<= end
&&
226 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
227 mem_cgroup_uncharge_start();
228 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
229 struct page
*page
= pvec
.pages
[i
];
230 pgoff_t page_index
= page
->index
;
232 if (page_index
> end
) {
237 if (page_index
> next
)
240 if (!trylock_page(page
))
242 if (PageWriteback(page
)) {
246 truncate_inode_page(mapping
, page
);
249 pagevec_release(&pvec
);
250 mem_cgroup_uncharge_end();
255 struct page
*page
= find_lock_page(mapping
, start
- 1);
257 wait_on_page_writeback(page
);
258 truncate_partial_page(page
, partial
);
260 page_cache_release(page
);
267 if (!pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
273 if (pvec
.pages
[0]->index
> end
) {
274 pagevec_release(&pvec
);
277 mem_cgroup_uncharge_start();
278 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
279 struct page
*page
= pvec
.pages
[i
];
281 if (page
->index
> end
)
284 wait_on_page_writeback(page
);
285 truncate_inode_page(mapping
, page
);
286 if (page
->index
> next
)
291 pagevec_release(&pvec
);
292 mem_cgroup_uncharge_end();
295 EXPORT_SYMBOL(truncate_inode_pages_range
);
298 * truncate_inode_pages - truncate *all* the pages from an offset
299 * @mapping: mapping to truncate
300 * @lstart: offset from which to truncate
302 * Called under (and serialised by) inode->i_mutex.
304 void truncate_inode_pages(struct address_space
*mapping
, loff_t lstart
)
306 truncate_inode_pages_range(mapping
, lstart
, (loff_t
)-1);
308 EXPORT_SYMBOL(truncate_inode_pages
);
311 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
312 * @mapping: the address_space which holds the pages to invalidate
313 * @start: the offset 'from' which to invalidate
314 * @end: the offset 'to' which to invalidate (inclusive)
316 * This function only removes the unlocked pages, if you want to
317 * remove all the pages of one inode, you must call truncate_inode_pages.
319 * invalidate_mapping_pages() will not block on IO activity. It will not
320 * invalidate pages which are dirty, locked, under writeback or mapped into
323 unsigned long invalidate_mapping_pages(struct address_space
*mapping
,
324 pgoff_t start
, pgoff_t end
)
327 pgoff_t next
= start
;
329 unsigned long count
= 0;
332 pagevec_init(&pvec
, 0);
333 while (next
<= end
&&
334 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
335 mem_cgroup_uncharge_start();
336 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
337 struct page
*page
= pvec
.pages
[i
];
341 lock_failed
= !trylock_page(page
);
344 * We really shouldn't be looking at the ->index of an
345 * unlocked page. But we're not allowed to lock these
346 * pages. So we rely upon nobody altering the ->index
347 * of this (pinned-by-us) page.
356 ret
= invalidate_inode_page(page
);
359 * Invalidation is a hint that the page is no longer
360 * of interest and try to speed up its reclaim.
363 deactivate_page(page
);
368 pagevec_release(&pvec
);
369 mem_cgroup_uncharge_end();
374 EXPORT_SYMBOL(invalidate_mapping_pages
);
377 * This is like invalidate_complete_page(), except it ignores the page's
378 * refcount. We do this because invalidate_inode_pages2() needs stronger
379 * invalidation guarantees, and cannot afford to leave pages behind because
380 * shrink_page_list() has a temp ref on them, or because they're transiently
381 * sitting in the lru_cache_add() pagevecs.
384 invalidate_complete_page2(struct address_space
*mapping
, struct page
*page
)
386 if (page
->mapping
!= mapping
)
389 if (page_has_private(page
) && !try_to_release_page(page
, GFP_KERNEL
))
392 spin_lock_irq(&mapping
->tree_lock
);
396 clear_page_mlock(page
);
397 BUG_ON(page_has_private(page
));
398 __delete_from_page_cache(page
);
399 spin_unlock_irq(&mapping
->tree_lock
);
400 mem_cgroup_uncharge_cache_page(page
);
402 if (mapping
->a_ops
->freepage
)
403 mapping
->a_ops
->freepage(page
);
405 page_cache_release(page
); /* pagecache ref */
408 spin_unlock_irq(&mapping
->tree_lock
);
412 static int do_launder_page(struct address_space
*mapping
, struct page
*page
)
414 if (!PageDirty(page
))
416 if (page
->mapping
!= mapping
|| mapping
->a_ops
->launder_page
== NULL
)
418 return mapping
->a_ops
->launder_page(page
);
422 * invalidate_inode_pages2_range - remove range of pages from an address_space
423 * @mapping: the address_space
424 * @start: the page offset 'from' which to invalidate
425 * @end: the page offset 'to' which to invalidate (inclusive)
427 * Any pages which are found to be mapped into pagetables are unmapped prior to
430 * Returns -EBUSY if any pages could not be invalidated.
432 int invalidate_inode_pages2_range(struct address_space
*mapping
,
433 pgoff_t start
, pgoff_t end
)
440 int did_range_unmap
= 0;
443 pagevec_init(&pvec
, 0);
445 while (next
<= end
&& !wrapped
&&
446 pagevec_lookup(&pvec
, mapping
, next
,
447 min(end
- next
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1)) {
448 mem_cgroup_uncharge_start();
449 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
450 struct page
*page
= pvec
.pages
[i
];
454 if (page
->mapping
!= mapping
) {
458 page_index
= page
->index
;
459 next
= page_index
+ 1;
462 if (page_index
> end
) {
466 wait_on_page_writeback(page
);
467 if (page_mapped(page
)) {
468 if (!did_range_unmap
) {
470 * Zap the rest of the file in one hit.
472 unmap_mapping_range(mapping
,
473 (loff_t
)page_index
<<PAGE_CACHE_SHIFT
,
474 (loff_t
)(end
- page_index
+ 1)
482 unmap_mapping_range(mapping
,
483 (loff_t
)page_index
<<PAGE_CACHE_SHIFT
,
487 BUG_ON(page_mapped(page
));
488 ret2
= do_launder_page(mapping
, page
);
490 if (!invalidate_complete_page2(mapping
, page
))
497 pagevec_release(&pvec
);
498 mem_cgroup_uncharge_end();
503 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range
);
506 * invalidate_inode_pages2 - remove all pages from an address_space
507 * @mapping: the address_space
509 * Any pages which are found to be mapped into pagetables are unmapped prior to
512 * Returns -EBUSY if any pages could not be invalidated.
514 int invalidate_inode_pages2(struct address_space
*mapping
)
516 return invalidate_inode_pages2_range(mapping
, 0, -1);
518 EXPORT_SYMBOL_GPL(invalidate_inode_pages2
);
521 * truncate_pagecache - unmap and remove pagecache that has been truncated
523 * @old: old file offset
524 * @new: new file offset
526 * inode's new i_size must already be written before truncate_pagecache
529 * This function should typically be called before the filesystem
530 * releases resources associated with the freed range (eg. deallocates
531 * blocks). This way, pagecache will always stay logically coherent
532 * with on-disk format, and the filesystem would not have to deal with
533 * situations such as writepage being called for a page that has already
534 * had its underlying blocks deallocated.
536 void truncate_pagecache(struct inode
*inode
, loff_t old
, loff_t
new)
538 struct address_space
*mapping
= inode
->i_mapping
;
541 * unmap_mapping_range is called twice, first simply for
542 * efficiency so that truncate_inode_pages does fewer
543 * single-page unmaps. However after this first call, and
544 * before truncate_inode_pages finishes, it is possible for
545 * private pages to be COWed, which remain after
546 * truncate_inode_pages finishes, hence the second
547 * unmap_mapping_range call must be made for correctness.
549 unmap_mapping_range(mapping
, new + PAGE_SIZE
- 1, 0, 1);
550 truncate_inode_pages(mapping
, new);
551 unmap_mapping_range(mapping
, new + PAGE_SIZE
- 1, 0, 1);
553 EXPORT_SYMBOL(truncate_pagecache
);
556 * truncate_setsize - update inode and pagecache for a new file size
558 * @newsize: new file size
560 * truncate_setsize updates i_size and performs pagecache truncation (if
561 * necessary) to @newsize. It will be typically be called from the filesystem's
562 * setattr function when ATTR_SIZE is passed in.
564 * Must be called with inode_mutex held and before all filesystem specific
565 * block truncation has been performed.
567 void truncate_setsize(struct inode
*inode
, loff_t newsize
)
571 oldsize
= inode
->i_size
;
572 i_size_write(inode
, newsize
);
574 truncate_pagecache(inode
, oldsize
, newsize
);
576 EXPORT_SYMBOL(truncate_setsize
);
579 * vmtruncate - unmap mappings "freed" by truncate() syscall
580 * @inode: inode of the file used
581 * @offset: file offset to start truncating
583 * This function is deprecated and truncate_setsize or truncate_pagecache
584 * should be used instead, together with filesystem specific block truncation.
586 int vmtruncate(struct inode
*inode
, loff_t offset
)
590 error
= inode_newsize_ok(inode
, offset
);
594 truncate_setsize(inode
, offset
);
595 if (inode
->i_op
->truncate
)
596 inode
->i_op
->truncate(inode
);
599 EXPORT_SYMBOL(vmtruncate
);