2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
37 #include <linux/list.h>
38 #include <linux/ratelimit.h>
42 /* When transmitting messages in rds_send_xmit, we need to emerge from
43 * time to time and briefly release the CPU. Otherwise the softlock watchdog
45 * Also, it seems fairer to not let one busy connection stall all the
48 * send_batch_count is the number of times we'll loop in send_xmit. Setting
49 * it to 0 will restore the old behavior (where we looped until we had
52 static int send_batch_count
= 64;
53 module_param(send_batch_count
, int, 0444);
54 MODULE_PARM_DESC(send_batch_count
, " batch factor when working the send queue");
56 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
);
59 * Reset the send state. Callers must ensure that this doesn't race with
62 void rds_send_reset(struct rds_connection
*conn
)
64 struct rds_message
*rm
, *tmp
;
67 if (conn
->c_xmit_rm
) {
69 conn
->c_xmit_rm
= NULL
;
70 /* Tell the user the RDMA op is no longer mapped by the
71 * transport. This isn't entirely true (it's flushed out
72 * independently) but as the connection is down, there's
73 * no ongoing RDMA to/from that memory */
74 rds_message_unmapped(rm
);
79 conn
->c_xmit_hdr_off
= 0;
80 conn
->c_xmit_data_off
= 0;
81 conn
->c_xmit_atomic_sent
= 0;
82 conn
->c_xmit_rdma_sent
= 0;
83 conn
->c_xmit_data_sent
= 0;
85 conn
->c_map_queued
= 0;
87 conn
->c_unacked_packets
= rds_sysctl_max_unacked_packets
;
88 conn
->c_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
90 /* Mark messages as retransmissions, and move them to the send q */
91 spin_lock_irqsave(&conn
->c_lock
, flags
);
92 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
93 set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
94 set_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
);
96 list_splice_init(&conn
->c_retrans
, &conn
->c_send_queue
);
97 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
100 static int acquire_in_xmit(struct rds_connection
*conn
)
102 return test_and_set_bit(RDS_IN_XMIT
, &conn
->c_flags
) == 0;
105 static void release_in_xmit(struct rds_connection
*conn
)
107 clear_bit(RDS_IN_XMIT
, &conn
->c_flags
);
108 smp_mb__after_clear_bit();
110 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
111 * hot path and finding waiters is very rare. We don't want to walk
112 * the system-wide hashed waitqueue buckets in the fast path only to
113 * almost never find waiters.
115 if (waitqueue_active(&conn
->c_waitq
))
116 wake_up_all(&conn
->c_waitq
);
120 * We're making the conscious trade-off here to only send one message
121 * down the connection at a time.
123 * - tx queueing is a simple fifo list
124 * - reassembly is optional and easily done by transports per conn
125 * - no per flow rx lookup at all, straight to the socket
126 * - less per-frag memory and wire overhead
128 * - queued acks can be delayed behind large messages
130 * - small message latency is higher behind queued large messages
131 * - large message latency isn't starved by intervening small sends
133 int rds_send_xmit(struct rds_connection
*conn
)
135 struct rds_message
*rm
;
138 struct scatterlist
*sg
;
140 LIST_HEAD(to_be_dropped
);
145 * sendmsg calls here after having queued its message on the send
146 * queue. We only have one task feeding the connection at a time. If
147 * another thread is already feeding the queue then we back off. This
148 * avoids blocking the caller and trading per-connection data between
149 * caches per message.
151 if (!acquire_in_xmit(conn
)) {
152 rds_stats_inc(s_send_lock_contention
);
158 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
159 * we do the opposite to avoid races.
161 if (!rds_conn_up(conn
)) {
162 release_in_xmit(conn
);
167 if (conn
->c_trans
->xmit_prepare
)
168 conn
->c_trans
->xmit_prepare(conn
);
171 * spin trying to push headers and data down the connection until
172 * the connection doesn't make forward progress.
176 rm
= conn
->c_xmit_rm
;
179 * If between sending messages, we can send a pending congestion
182 if (!rm
&& test_and_clear_bit(0, &conn
->c_map_queued
)) {
183 rm
= rds_cong_update_alloc(conn
);
188 rm
->data
.op_active
= 1;
190 conn
->c_xmit_rm
= rm
;
194 * If not already working on one, grab the next message.
196 * c_xmit_rm holds a ref while we're sending this message down
197 * the connction. We can use this ref while holding the
198 * send_sem.. rds_send_reset() is serialized with it.
203 spin_lock_irqsave(&conn
->c_lock
, flags
);
205 if (!list_empty(&conn
->c_send_queue
)) {
206 rm
= list_entry(conn
->c_send_queue
.next
,
209 rds_message_addref(rm
);
212 * Move the message from the send queue to the retransmit
215 list_move_tail(&rm
->m_conn_item
, &conn
->c_retrans
);
218 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
223 /* Unfortunately, the way Infiniband deals with
224 * RDMA to a bad MR key is by moving the entire
225 * queue pair to error state. We cold possibly
226 * recover from that, but right now we drop the
228 * Therefore, we never retransmit messages with RDMA ops.
230 if (rm
->rdma
.op_active
&&
231 test_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
)) {
232 spin_lock_irqsave(&conn
->c_lock
, flags
);
233 if (test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
))
234 list_move(&rm
->m_conn_item
, &to_be_dropped
);
235 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
239 /* Require an ACK every once in a while */
240 len
= ntohl(rm
->m_inc
.i_hdr
.h_len
);
241 if (conn
->c_unacked_packets
== 0 ||
242 conn
->c_unacked_bytes
< len
) {
243 __set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
245 conn
->c_unacked_packets
= rds_sysctl_max_unacked_packets
;
246 conn
->c_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
247 rds_stats_inc(s_send_ack_required
);
249 conn
->c_unacked_bytes
-= len
;
250 conn
->c_unacked_packets
--;
253 conn
->c_xmit_rm
= rm
;
256 /* The transport either sends the whole rdma or none of it */
257 if (rm
->rdma
.op_active
&& !conn
->c_xmit_rdma_sent
) {
258 rm
->m_final_op
= &rm
->rdma
;
259 ret
= conn
->c_trans
->xmit_rdma(conn
, &rm
->rdma
);
262 conn
->c_xmit_rdma_sent
= 1;
264 /* The transport owns the mapped memory for now.
265 * You can't unmap it while it's on the send queue */
266 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
269 if (rm
->atomic
.op_active
&& !conn
->c_xmit_atomic_sent
) {
270 rm
->m_final_op
= &rm
->atomic
;
271 ret
= conn
->c_trans
->xmit_atomic(conn
, &rm
->atomic
);
274 conn
->c_xmit_atomic_sent
= 1;
276 /* The transport owns the mapped memory for now.
277 * You can't unmap it while it's on the send queue */
278 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
282 * A number of cases require an RDS header to be sent
283 * even if there is no data.
284 * We permit 0-byte sends; rds-ping depends on this.
285 * However, if there are exclusively attached silent ops,
286 * we skip the hdr/data send, to enable silent operation.
288 if (rm
->data
.op_nents
== 0) {
290 int all_ops_are_silent
= 1;
292 ops_present
= (rm
->atomic
.op_active
|| rm
->rdma
.op_active
);
293 if (rm
->atomic
.op_active
&& !rm
->atomic
.op_silent
)
294 all_ops_are_silent
= 0;
295 if (rm
->rdma
.op_active
&& !rm
->rdma
.op_silent
)
296 all_ops_are_silent
= 0;
298 if (ops_present
&& all_ops_are_silent
299 && !rm
->m_rdma_cookie
)
300 rm
->data
.op_active
= 0;
303 if (rm
->data
.op_active
&& !conn
->c_xmit_data_sent
) {
304 rm
->m_final_op
= &rm
->data
;
305 ret
= conn
->c_trans
->xmit(conn
, rm
,
306 conn
->c_xmit_hdr_off
,
308 conn
->c_xmit_data_off
);
312 if (conn
->c_xmit_hdr_off
< sizeof(struct rds_header
)) {
313 tmp
= min_t(int, ret
,
314 sizeof(struct rds_header
) -
315 conn
->c_xmit_hdr_off
);
316 conn
->c_xmit_hdr_off
+= tmp
;
320 sg
= &rm
->data
.op_sg
[conn
->c_xmit_sg
];
322 tmp
= min_t(int, ret
, sg
->length
-
323 conn
->c_xmit_data_off
);
324 conn
->c_xmit_data_off
+= tmp
;
326 if (conn
->c_xmit_data_off
== sg
->length
) {
327 conn
->c_xmit_data_off
= 0;
331 conn
->c_xmit_sg
== rm
->data
.op_nents
);
335 if (conn
->c_xmit_hdr_off
== sizeof(struct rds_header
) &&
336 (conn
->c_xmit_sg
== rm
->data
.op_nents
))
337 conn
->c_xmit_data_sent
= 1;
341 * A rm will only take multiple times through this loop
342 * if there is a data op. Thus, if the data is sent (or there was
343 * none), then we're done with the rm.
345 if (!rm
->data
.op_active
|| conn
->c_xmit_data_sent
) {
346 conn
->c_xmit_rm
= NULL
;
348 conn
->c_xmit_hdr_off
= 0;
349 conn
->c_xmit_data_off
= 0;
350 conn
->c_xmit_rdma_sent
= 0;
351 conn
->c_xmit_atomic_sent
= 0;
352 conn
->c_xmit_data_sent
= 0;
358 if (conn
->c_trans
->xmit_complete
)
359 conn
->c_trans
->xmit_complete(conn
);
361 release_in_xmit(conn
);
363 /* Nuke any messages we decided not to retransmit. */
364 if (!list_empty(&to_be_dropped
)) {
365 /* irqs on here, so we can put(), unlike above */
366 list_for_each_entry(rm
, &to_be_dropped
, m_conn_item
)
368 rds_send_remove_from_sock(&to_be_dropped
, RDS_RDMA_DROPPED
);
372 * Other senders can queue a message after we last test the send queue
373 * but before we clear RDS_IN_XMIT. In that case they'd back off and
374 * not try and send their newly queued message. We need to check the
375 * send queue after having cleared RDS_IN_XMIT so that their message
376 * doesn't get stuck on the send queue.
378 * If the transport cannot continue (i.e ret != 0), then it must
379 * call us when more room is available, such as from the tx
380 * completion handler.
384 if (!list_empty(&conn
->c_send_queue
)) {
385 rds_stats_inc(s_send_lock_queue_raced
);
393 static void rds_send_sndbuf_remove(struct rds_sock
*rs
, struct rds_message
*rm
)
395 u32 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
397 assert_spin_locked(&rs
->rs_lock
);
399 BUG_ON(rs
->rs_snd_bytes
< len
);
400 rs
->rs_snd_bytes
-= len
;
402 if (rs
->rs_snd_bytes
== 0)
403 rds_stats_inc(s_send_queue_empty
);
406 static inline int rds_send_is_acked(struct rds_message
*rm
, u64 ack
,
407 is_acked_func is_acked
)
410 return is_acked(rm
, ack
);
411 return be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
) <= ack
;
415 * This is pretty similar to what happens below in the ACK
416 * handling code - except that we call here as soon as we get
417 * the IB send completion on the RDMA op and the accompanying
420 void rds_rdma_send_complete(struct rds_message
*rm
, int status
)
422 struct rds_sock
*rs
= NULL
;
423 struct rm_rdma_op
*ro
;
424 struct rds_notifier
*notifier
;
427 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
430 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
) &&
431 ro
->op_active
&& ro
->op_notify
&& ro
->op_notifier
) {
432 notifier
= ro
->op_notifier
;
434 sock_hold(rds_rs_to_sk(rs
));
436 notifier
->n_status
= status
;
437 spin_lock(&rs
->rs_lock
);
438 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
439 spin_unlock(&rs
->rs_lock
);
441 ro
->op_notifier
= NULL
;
444 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
447 rds_wake_sk_sleep(rs
);
448 sock_put(rds_rs_to_sk(rs
));
451 EXPORT_SYMBOL_GPL(rds_rdma_send_complete
);
454 * Just like above, except looks at atomic op
456 void rds_atomic_send_complete(struct rds_message
*rm
, int status
)
458 struct rds_sock
*rs
= NULL
;
459 struct rm_atomic_op
*ao
;
460 struct rds_notifier
*notifier
;
463 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
466 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)
467 && ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
468 notifier
= ao
->op_notifier
;
470 sock_hold(rds_rs_to_sk(rs
));
472 notifier
->n_status
= status
;
473 spin_lock(&rs
->rs_lock
);
474 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
475 spin_unlock(&rs
->rs_lock
);
477 ao
->op_notifier
= NULL
;
480 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
483 rds_wake_sk_sleep(rs
);
484 sock_put(rds_rs_to_sk(rs
));
487 EXPORT_SYMBOL_GPL(rds_atomic_send_complete
);
490 * This is the same as rds_rdma_send_complete except we
491 * don't do any locking - we have all the ingredients (message,
492 * socket, socket lock) and can just move the notifier.
495 __rds_send_complete(struct rds_sock
*rs
, struct rds_message
*rm
, int status
)
497 struct rm_rdma_op
*ro
;
498 struct rm_atomic_op
*ao
;
501 if (ro
->op_active
&& ro
->op_notify
&& ro
->op_notifier
) {
502 ro
->op_notifier
->n_status
= status
;
503 list_add_tail(&ro
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
504 ro
->op_notifier
= NULL
;
508 if (ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
509 ao
->op_notifier
->n_status
= status
;
510 list_add_tail(&ao
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
511 ao
->op_notifier
= NULL
;
514 /* No need to wake the app - caller does this */
518 * This is called from the IB send completion when we detect
519 * a RDMA operation that failed with remote access error.
520 * So speed is not an issue here.
522 struct rds_message
*rds_send_get_message(struct rds_connection
*conn
,
523 struct rm_rdma_op
*op
)
525 struct rds_message
*rm
, *tmp
, *found
= NULL
;
528 spin_lock_irqsave(&conn
->c_lock
, flags
);
530 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
531 if (&rm
->rdma
== op
) {
532 atomic_inc(&rm
->m_refcount
);
538 list_for_each_entry_safe(rm
, tmp
, &conn
->c_send_queue
, m_conn_item
) {
539 if (&rm
->rdma
== op
) {
540 atomic_inc(&rm
->m_refcount
);
547 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
551 EXPORT_SYMBOL_GPL(rds_send_get_message
);
554 * This removes messages from the socket's list if they're on it. The list
555 * argument must be private to the caller, we must be able to modify it
556 * without locks. The messages must have a reference held for their
557 * position on the list. This function will drop that reference after
558 * removing the messages from the 'messages' list regardless of if it found
559 * the messages on the socket list or not.
561 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
)
564 struct rds_sock
*rs
= NULL
;
565 struct rds_message
*rm
;
567 while (!list_empty(messages
)) {
570 rm
= list_entry(messages
->next
, struct rds_message
,
572 list_del_init(&rm
->m_conn_item
);
575 * If we see this flag cleared then we're *sure* that someone
576 * else beat us to removing it from the sock. If we race
577 * with their flag update we'll get the lock and then really
578 * see that the flag has been cleared.
580 * The message spinlock makes sure nobody clears rm->m_rs
581 * while we're messing with it. It does not prevent the
582 * message from being removed from the socket, though.
584 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
585 if (!test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
))
586 goto unlock_and_drop
;
588 if (rs
!= rm
->m_rs
) {
590 rds_wake_sk_sleep(rs
);
591 sock_put(rds_rs_to_sk(rs
));
594 sock_hold(rds_rs_to_sk(rs
));
596 spin_lock(&rs
->rs_lock
);
598 if (test_and_clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)) {
599 struct rm_rdma_op
*ro
= &rm
->rdma
;
600 struct rds_notifier
*notifier
;
602 list_del_init(&rm
->m_sock_item
);
603 rds_send_sndbuf_remove(rs
, rm
);
605 if (ro
->op_active
&& ro
->op_notifier
&&
606 (ro
->op_notify
|| (ro
->op_recverr
&& status
))) {
607 notifier
= ro
->op_notifier
;
608 list_add_tail(¬ifier
->n_list
,
609 &rs
->rs_notify_queue
);
610 if (!notifier
->n_status
)
611 notifier
->n_status
= status
;
612 rm
->rdma
.op_notifier
= NULL
;
617 spin_unlock(&rs
->rs_lock
);
620 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
627 rds_wake_sk_sleep(rs
);
628 sock_put(rds_rs_to_sk(rs
));
633 * Transports call here when they've determined that the receiver queued
634 * messages up to, and including, the given sequence number. Messages are
635 * moved to the retrans queue when rds_send_xmit picks them off the send
636 * queue. This means that in the TCP case, the message may not have been
637 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
638 * checks the RDS_MSG_HAS_ACK_SEQ bit.
640 * XXX It's not clear to me how this is safely serialized with socket
641 * destruction. Maybe it should bail if it sees SOCK_DEAD.
643 void rds_send_drop_acked(struct rds_connection
*conn
, u64 ack
,
644 is_acked_func is_acked
)
646 struct rds_message
*rm
, *tmp
;
650 spin_lock_irqsave(&conn
->c_lock
, flags
);
652 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
653 if (!rds_send_is_acked(rm
, ack
, is_acked
))
656 list_move(&rm
->m_conn_item
, &list
);
657 clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
660 /* order flag updates with spin locks */
661 if (!list_empty(&list
))
662 smp_mb__after_clear_bit();
664 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
666 /* now remove the messages from the sock list as needed */
667 rds_send_remove_from_sock(&list
, RDS_RDMA_SUCCESS
);
669 EXPORT_SYMBOL_GPL(rds_send_drop_acked
);
671 void rds_send_drop_to(struct rds_sock
*rs
, struct sockaddr_in
*dest
)
673 struct rds_message
*rm
, *tmp
;
674 struct rds_connection
*conn
;
678 /* get all the messages we're dropping under the rs lock */
679 spin_lock_irqsave(&rs
->rs_lock
, flags
);
681 list_for_each_entry_safe(rm
, tmp
, &rs
->rs_send_queue
, m_sock_item
) {
682 if (dest
&& (dest
->sin_addr
.s_addr
!= rm
->m_daddr
||
683 dest
->sin_port
!= rm
->m_inc
.i_hdr
.h_dport
))
686 list_move(&rm
->m_sock_item
, &list
);
687 rds_send_sndbuf_remove(rs
, rm
);
688 clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
691 /* order flag updates with the rs lock */
692 smp_mb__after_clear_bit();
694 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
696 if (list_empty(&list
))
699 /* Remove the messages from the conn */
700 list_for_each_entry(rm
, &list
, m_sock_item
) {
702 conn
= rm
->m_inc
.i_conn
;
704 spin_lock_irqsave(&conn
->c_lock
, flags
);
706 * Maybe someone else beat us to removing rm from the conn.
707 * If we race with their flag update we'll get the lock and
708 * then really see that the flag has been cleared.
710 if (!test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
)) {
711 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
714 list_del_init(&rm
->m_conn_item
);
715 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
718 * Couldn't grab m_rs_lock in top loop (lock ordering),
721 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
723 spin_lock(&rs
->rs_lock
);
724 __rds_send_complete(rs
, rm
, RDS_RDMA_CANCELED
);
725 spin_unlock(&rs
->rs_lock
);
728 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
733 rds_wake_sk_sleep(rs
);
735 while (!list_empty(&list
)) {
736 rm
= list_entry(list
.next
, struct rds_message
, m_sock_item
);
737 list_del_init(&rm
->m_sock_item
);
739 rds_message_wait(rm
);
745 * we only want this to fire once so we use the callers 'queued'. It's
746 * possible that another thread can race with us and remove the
747 * message from the flow with RDS_CANCEL_SENT_TO.
749 static int rds_send_queue_rm(struct rds_sock
*rs
, struct rds_connection
*conn
,
750 struct rds_message
*rm
, __be16 sport
,
751 __be16 dport
, int *queued
)
759 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
761 /* this is the only place which holds both the socket's rs_lock
762 * and the connection's c_lock */
763 spin_lock_irqsave(&rs
->rs_lock
, flags
);
766 * If there is a little space in sndbuf, we don't queue anything,
767 * and userspace gets -EAGAIN. But poll() indicates there's send
768 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
769 * freed up by incoming acks. So we check the *old* value of
770 * rs_snd_bytes here to allow the last msg to exceed the buffer,
771 * and poll() now knows no more data can be sent.
773 if (rs
->rs_snd_bytes
< rds_sk_sndbuf(rs
)) {
774 rs
->rs_snd_bytes
+= len
;
776 /* let recv side know we are close to send space exhaustion.
777 * This is probably not the optimal way to do it, as this
778 * means we set the flag on *all* messages as soon as our
779 * throughput hits a certain threshold.
781 if (rs
->rs_snd_bytes
>= rds_sk_sndbuf(rs
) / 2)
782 __set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
784 list_add_tail(&rm
->m_sock_item
, &rs
->rs_send_queue
);
785 set_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
786 rds_message_addref(rm
);
789 /* The code ordering is a little weird, but we're
790 trying to minimize the time we hold c_lock */
791 rds_message_populate_header(&rm
->m_inc
.i_hdr
, sport
, dport
, 0);
792 rm
->m_inc
.i_conn
= conn
;
793 rds_message_addref(rm
);
795 spin_lock(&conn
->c_lock
);
796 rm
->m_inc
.i_hdr
.h_sequence
= cpu_to_be64(conn
->c_next_tx_seq
++);
797 list_add_tail(&rm
->m_conn_item
, &conn
->c_send_queue
);
798 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
799 spin_unlock(&conn
->c_lock
);
801 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
802 rm
, len
, rs
, rs
->rs_snd_bytes
,
803 (unsigned long long)be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
));
808 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
814 * rds_message is getting to be quite complicated, and we'd like to allocate
815 * it all in one go. This figures out how big it needs to be up front.
817 static int rds_rm_size(struct msghdr
*msg
, int data_len
)
819 struct cmsghdr
*cmsg
;
824 for (cmsg
= CMSG_FIRSTHDR(msg
); cmsg
; cmsg
= CMSG_NXTHDR(msg
, cmsg
)) {
825 if (!CMSG_OK(msg
, cmsg
))
828 if (cmsg
->cmsg_level
!= SOL_RDS
)
831 switch (cmsg
->cmsg_type
) {
832 case RDS_CMSG_RDMA_ARGS
:
834 retval
= rds_rdma_extra_size(CMSG_DATA(cmsg
));
841 case RDS_CMSG_RDMA_DEST
:
842 case RDS_CMSG_RDMA_MAP
:
844 /* these are valid but do no add any size */
847 case RDS_CMSG_ATOMIC_CSWP
:
848 case RDS_CMSG_ATOMIC_FADD
:
849 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
850 case RDS_CMSG_MASKED_ATOMIC_FADD
:
852 size
+= sizeof(struct scatterlist
);
861 size
+= ceil(data_len
, PAGE_SIZE
) * sizeof(struct scatterlist
);
863 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
864 if (cmsg_groups
== 3)
870 static int rds_cmsg_send(struct rds_sock
*rs
, struct rds_message
*rm
,
871 struct msghdr
*msg
, int *allocated_mr
)
873 struct cmsghdr
*cmsg
;
876 for (cmsg
= CMSG_FIRSTHDR(msg
); cmsg
; cmsg
= CMSG_NXTHDR(msg
, cmsg
)) {
877 if (!CMSG_OK(msg
, cmsg
))
880 if (cmsg
->cmsg_level
!= SOL_RDS
)
883 /* As a side effect, RDMA_DEST and RDMA_MAP will set
884 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
886 switch (cmsg
->cmsg_type
) {
887 case RDS_CMSG_RDMA_ARGS
:
888 ret
= rds_cmsg_rdma_args(rs
, rm
, cmsg
);
891 case RDS_CMSG_RDMA_DEST
:
892 ret
= rds_cmsg_rdma_dest(rs
, rm
, cmsg
);
895 case RDS_CMSG_RDMA_MAP
:
896 ret
= rds_cmsg_rdma_map(rs
, rm
, cmsg
);
900 case RDS_CMSG_ATOMIC_CSWP
:
901 case RDS_CMSG_ATOMIC_FADD
:
902 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
903 case RDS_CMSG_MASKED_ATOMIC_FADD
:
904 ret
= rds_cmsg_atomic(rs
, rm
, cmsg
);
918 int rds_sendmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*msg
,
921 struct sock
*sk
= sock
->sk
;
922 struct rds_sock
*rs
= rds_sk_to_rs(sk
);
923 struct sockaddr_in
*usin
= (struct sockaddr_in
*)msg
->msg_name
;
926 struct rds_message
*rm
= NULL
;
927 struct rds_connection
*conn
;
929 int queued
= 0, allocated_mr
= 0;
930 int nonblock
= msg
->msg_flags
& MSG_DONTWAIT
;
931 long timeo
= sock_sndtimeo(sk
, nonblock
);
933 /* Mirror Linux UDP mirror of BSD error message compatibility */
934 /* XXX: Perhaps MSG_MORE someday */
935 if (msg
->msg_flags
& ~(MSG_DONTWAIT
| MSG_CMSG_COMPAT
)) {
936 printk(KERN_INFO
"msg_flags 0x%08X\n", msg
->msg_flags
);
941 if (msg
->msg_namelen
) {
942 /* XXX fail non-unicast destination IPs? */
943 if (msg
->msg_namelen
< sizeof(*usin
) || usin
->sin_family
!= AF_INET
) {
947 daddr
= usin
->sin_addr
.s_addr
;
948 dport
= usin
->sin_port
;
950 /* We only care about consistency with ->connect() */
952 daddr
= rs
->rs_conn_addr
;
953 dport
= rs
->rs_conn_port
;
957 /* racing with another thread binding seems ok here */
958 if (daddr
== 0 || rs
->rs_bound_addr
== 0) {
959 ret
= -ENOTCONN
; /* XXX not a great errno */
963 /* size of rm including all sgs */
964 ret
= rds_rm_size(msg
, payload_len
);
968 rm
= rds_message_alloc(ret
, GFP_KERNEL
);
974 /* Attach data to the rm */
976 rm
->data
.op_sg
= rds_message_alloc_sgs(rm
, ceil(payload_len
, PAGE_SIZE
));
977 if (!rm
->data
.op_sg
) {
981 ret
= rds_message_copy_from_user(rm
, msg
->msg_iov
, payload_len
);
985 rm
->data
.op_active
= 1;
989 /* rds_conn_create has a spinlock that runs with IRQ off.
990 * Caching the conn in the socket helps a lot. */
991 if (rs
->rs_conn
&& rs
->rs_conn
->c_faddr
== daddr
)
994 conn
= rds_conn_create_outgoing(rs
->rs_bound_addr
, daddr
,
996 sock
->sk
->sk_allocation
);
1004 /* Parse any control messages the user may have included. */
1005 ret
= rds_cmsg_send(rs
, rm
, msg
, &allocated_mr
);
1009 if (rm
->rdma
.op_active
&& !conn
->c_trans
->xmit_rdma
) {
1010 printk_ratelimited(KERN_NOTICE
"rdma_op %p conn xmit_rdma %p\n",
1011 &rm
->rdma
, conn
->c_trans
->xmit_rdma
);
1016 if (rm
->atomic
.op_active
&& !conn
->c_trans
->xmit_atomic
) {
1017 printk_ratelimited(KERN_NOTICE
"atomic_op %p conn xmit_atomic %p\n",
1018 &rm
->atomic
, conn
->c_trans
->xmit_atomic
);
1023 rds_conn_connect_if_down(conn
);
1025 ret
= rds_cong_wait(conn
->c_fcong
, dport
, nonblock
, rs
);
1027 rs
->rs_seen_congestion
= 1;
1031 while (!rds_send_queue_rm(rs
, conn
, rm
, rs
->rs_bound_port
,
1033 rds_stats_inc(s_send_queue_full
);
1034 /* XXX make sure this is reasonable */
1035 if (payload_len
> rds_sk_sndbuf(rs
)) {
1044 timeo
= wait_event_interruptible_timeout(*sk_sleep(sk
),
1045 rds_send_queue_rm(rs
, conn
, rm
,
1050 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued
, timeo
);
1051 if (timeo
> 0 || timeo
== MAX_SCHEDULE_TIMEOUT
)
1061 * By now we've committed to the send. We reuse rds_send_worker()
1062 * to retry sends in the rds thread if the transport asks us to.
1064 rds_stats_inc(s_send_queued
);
1066 if (!test_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
))
1067 rds_send_xmit(conn
);
1069 rds_message_put(rm
);
1073 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1074 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1075 * or in any other way, we need to destroy the MR again */
1077 rds_rdma_unuse(rs
, rds_rdma_cookie_key(rm
->m_rdma_cookie
), 1);
1080 rds_message_put(rm
);
1085 * Reply to a ping packet.
1088 rds_send_pong(struct rds_connection
*conn
, __be16 dport
)
1090 struct rds_message
*rm
;
1091 unsigned long flags
;
1094 rm
= rds_message_alloc(0, GFP_ATOMIC
);
1100 rm
->m_daddr
= conn
->c_faddr
;
1101 rm
->data
.op_active
= 1;
1103 rds_conn_connect_if_down(conn
);
1105 ret
= rds_cong_wait(conn
->c_fcong
, dport
, 1, NULL
);
1109 spin_lock_irqsave(&conn
->c_lock
, flags
);
1110 list_add_tail(&rm
->m_conn_item
, &conn
->c_send_queue
);
1111 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
1112 rds_message_addref(rm
);
1113 rm
->m_inc
.i_conn
= conn
;
1115 rds_message_populate_header(&rm
->m_inc
.i_hdr
, 0, dport
,
1116 conn
->c_next_tx_seq
);
1117 conn
->c_next_tx_seq
++;
1118 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
1120 rds_stats_inc(s_send_queued
);
1121 rds_stats_inc(s_send_pong
);
1123 if (!test_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
))
1124 rds_send_xmit(conn
);
1126 rds_message_put(rm
);
1131 rds_message_put(rm
);